1
|
Li J, Jiang B, Yang L, Zhang P, Wu J, Yang Y, Yang Y, Wang G, Chen J, Zhang L, Huang S, Zhang L, Zhang E. Dual-functional titanium implants via polydopamine-mediated lithium and copper co-incorporation: synergistic enhancement of osseointegration and antibacterial efficacy. Front Bioeng Biotechnol 2025; 13:1593545. [PMID: 40421118 PMCID: PMC12104301 DOI: 10.3389/fbioe.2025.1593545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 04/17/2025] [Indexed: 05/28/2025] Open
Abstract
Introduction Orthopedic implant failure due to inadequate osseointegration and infection remains a critical challenge. To address this, we engineered a polydopamine (PDA)-mediated dual-functional platform for lithium (Li+) and copper (Cu2+) co-incorporation on titanium alloy (Ti6Al4V) implants, aiming to synergize osteogenic and antibacterial properties through a scalable surface modification strategy. Methods PDA coatings were polymerized onto polished Ti64 substrates, followed by sequential immersion in LiCl (800 μM) and CuCl2 (10 μM) solutions to construct Li+/Cu2+ co-doped surfaces (PDA@Li 800-Cu 10). In vitro assays assessed MC3T3-E1 pre-osteoblast proliferation (CCK-8), osteogenic differentiation (ALP activity, RT-PCR for ALP/Axin2), and antibacterial activity against S. aureus and E. coli (live/dead staining, CFU assays). In vivo efficacy was evaluated in a rat femoral defect model via micro-CT and histology. Results and discussion Li+-functionalized surfaces (PDA@Li 800) enhanced osteoblast proliferation and osteogenesis via Wnt/β-catenin activation. Cu2+-loaded coatings (PDA@Cu 10) eradicated >99% bacteria but moderately suppressed osteogenic markers. The dual-doped PDA@Li 800-Cu 10 surface resolved this bioactivity conflict, maintaining antibacterial efficacy comparable to PDA@Cu 10 while elevating the osteogenic capacity of Cu2+-only modified surfaces. In vivo, dual-modified implants eliminated bacterial colonization within 72 h and significantly increased peri-implant bone volume (BV/TV) in comparison to Ti64 controls, outperforming PDA-only counterparts. By harmonizing Li-driven osteoinduction and Cu-mediated bactericidal action through a scalable PDA platform, this work advances a transformative strategy for next-generation orthopedic and dental implants, simultaneously addressing infection risks and bone regeneration demands.
Collapse
Affiliation(s)
- Jun Li
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | - Lingli Zhang
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing, China
| | - En Zhang
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing, China
| |
Collapse
|
2
|
Duan C, Zhao Y, Xiao Y, Hou Y, Gong W, Zhang H, Wang Y, Nie X. Lithium with environmentally relevant concentrations interferes with mitochondrial function, antioxidant response, and autophagy processes in Daphnia magna, leading to changes in life-history traits and behavior. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137420. [PMID: 39893979 DOI: 10.1016/j.jhazmat.2025.137420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/09/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
With the increasing production and use of lithium-based products, concerns over lithium pollution in aquatic ecosystems are increasing, whereas research on its toxicity mechanisms in aquatic organisms remains limited. The main objective of the present study was to explore the effects of environmentally relevant concentrations of lithium exposure on the life-history strategy, behavior, antioxidant system, and autophagy process of Daphnia magna. Acute (24-96 h) and chronic (21 days) exposure experiments under three lithium treatments (low: 8.34 μg/L, medium: 83.44 μg/L, and high: 834.41 μg/L) were conducted. The results indicated that exposure to medium and high lithium concentrations led to eye and tail deformities in D. magna. Furthermore, developmental and reproductive parameters such as body length, total neonates per female, and average neonates per time were negatively influenced. Lithium also interfered with energy metabolism to cause the decreasing swimming speed and the reduction in the swimming range. In addition, lithium exposure affected the expression of gsk-3β, further disrupting the dynamic balance of mitochondrial fission, fusion, and regeneration, which caused ROS accumulation and induced oxidative stress. D. magna attenuated the stress by activating the FoxO/SESN and Nrf2/Keap1 pathways, synergistically enhancing downstream antioxidant enzymes expression. Concurrently, D. magna also mitigated oxidative stress and mitochondrial damage by promoting autophagy and inhibiting apoptosis. In summary, lithium harmed the physiological and biochemical functions of D. magna through multiple mechanisms, suggesting that environmental lithium pollution may pose a potential threat to aquatic organisms.
Collapse
Affiliation(s)
- Chunni Duan
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yuanyuan Xiao
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yingshi Hou
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Weibo Gong
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Huiyu Zhang
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Bunel L, Adrien V, Coleman J, Heo P, Pincet F. Lithium fine tunes lipid membranes through phospholipid binding. Sci Rep 2025; 15:13366. [PMID: 40246965 PMCID: PMC12006515 DOI: 10.1038/s41598-025-97828-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025] Open
Abstract
Lithium is commonly prescribed for bipolar disorder due to its proven efficacy on patients. Despite this effectiveness, the molecular mechanisms underlying its action remain poorly understood, as it appears to influence numerous unrelated pathways. We propose that these diverse effects may stem from a specific physicochemical event: the binding of lithium cations to phospholipid headgroups. In model membrane systems enabling direct observation of the lithium effects on lipid bilayers, we reveal that lithium binding stiffens the membrane, subsequently altering membrane protein activities. This mechanical impact of lithium links existing rationales, drawing a way to decipher the complex lithium effect in bipolar disorder (BD). To illustrate this global effect of lithium, we use the example of intracellular trafficking, a ubiquitous mechanism involving membrane reorganization in all organelles.
Collapse
Affiliation(s)
- Louis Bunel
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005, Paris, France
| | - Vladimir Adrien
- AP-HP, Department of Psychiatry, Avicenne Hospital, Paris Nord Sorbonne Université, Bobigny, France
- INSERM, UMR-S 1266, Institut de Psychiatrie et Neurosciences de Paris, Université Paris Cité, Paris, France
| | - Jeff Coleman
- Nanobiology Institute, Yale University, West Haven, CT, 06516, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Paul Heo
- INSERM, UMR-S 1266, Institut de Psychiatrie et Neurosciences de Paris, Université Paris Cité, Paris, France
| | - Frédéric Pincet
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005, Paris, France.
| |
Collapse
|
4
|
Luo J, Zheng L, Jin Z, Yang Y, Krakowka WI, Hong E, Lombard M, Ayotte J, Ahsan H, Pinto JM, Aschebrook-Kilfoy B. Cancer Risk and Estimated Lithium Exposure in Drinking Groundwater in the US. JAMA Netw Open 2025; 8:e2460854. [PMID: 39976965 PMCID: PMC11843356 DOI: 10.1001/jamanetworkopen.2024.60854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/16/2024] [Indexed: 02/22/2025] Open
Abstract
Importance Lithium is a naturally occurring element in drinking water and is commonly used as a mood-stabilizing medication. Although clinical studies have reported associations between receiving lithium treatment and reduced cancer risk among patients with bipolar disorder, to our knowledge, the association between environmental lithium exposure and cancer risk has never been studied in the general population. Objectives To evaluate the association between exposure to lithium in drinking groundwater and cancer risk in the general population. Design, Setting, and Participants This cohort study included participants with electronic health record and residential address information but without cancer history at baseline from the All of Us Research Program between May 31, 2017, and June 30, 2022. Participants were followed up until February 15, 2023. Statistical analysis was performed from September 2023 through October 2024. Exposure Lithium concentration in groundwater, based on kriging interpolation of publicly available US Geological Survey data on lithium concentration for 4700 wells across the contiguous US between May 12, 1999, and November 6, 2018. Main Outcome and Measures The main outcome was cancer diagnosis or condition, obtained from electronic health records. Stratified Cox proportional hazards regression models were used to estimate the hazard ratios (HRs) and 95% CIs for risk of cancer overall and individual cancer types for increasing quintiles of the estimated lithium exposure in drinking groundwater, adjusting for socioeconomic, behavioral, and neighborhood-level variables. The analysis was further conducted in the western and eastern halves of the US and restricted to long-term residents living at their current address for at least 3 years. Results A total of 252 178 participants were included (median age, 52 years [IQR, 36-64 years]; 60.1% female). The median follow-up time was 3.6 years (IQR, 3.0-4.3 years), and 7573 incident cancer cases were identified. Higher estimated lithium exposure was consistently associated with reduced cancer risk. Compared with the first (lowest) quintile of lithium exposure, the HR for all cancers was 0.49 (95% CI, 0.31-0.78) for the fourth quintile and 0.29 (95% CI, 0.15-0.55) for the fifth quintile. These associations were found for all cancer types investigated in both females and males, among long-term residents, and in both western and eastern states. For example, for the fifth vs first quintile of lithium exposure for all cancers, the HR was 0.17 (95% CI, 0.07-0.42) in females and 0.13 (95% CI, 0.04-0.38) in males; for long-term residents, the HR was 0.32 (95% CI, 0.15-0.66) in females and 0.24 (95% CI, 0.11-0.52) in males; and the HR was 0.01 (95% CI, 0.00-0.09) in western states and 0.34 (95% CI, 0.21-0.57) in eastern states. Conclusions and Relevance In this cohort study of 252 178 participants, estimated lithium exposure in drinking groundwater was associated with reduced cancer risk. Given the sparse evidence and unknown mechanisms of this association, follow-up investigation is warranted.
Collapse
Affiliation(s)
- Jiajun Luo
- Department of Public Health Sciences, The University of Chicago Biological Science Division, Chicago, Illinois
- Institute for Population and Precision Health, The University of Chicago Biological Science Division, Chicago, Illinois
| | - Liang Zheng
- Department of Thyroid Surgery, The First Hospital Affiliated With Sun Yat-Sen University, Guangzhou, China
| | - Zhihao Jin
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Yuqing Yang
- Institute for Population and Precision Health, The University of Chicago Biological Science Division, Chicago, Illinois
| | - William Isaac Krakowka
- Institute for Population and Precision Health, The University of Chicago Biological Science Division, Chicago, Illinois
| | - Eric Hong
- Institute for Population and Precision Health, The University of Chicago Biological Science Division, Chicago, Illinois
| | - Melissa Lombard
- New England Water Science Center, US Geological Survey, Pembroke, New Hampshire
| | - Joseph Ayotte
- New England Water Science Center, US Geological Survey, Pembroke, New Hampshire
| | - Habibul Ahsan
- Department of Public Health Sciences, The University of Chicago Biological Science Division, Chicago, Illinois
- Institute for Population and Precision Health, The University of Chicago Biological Science Division, Chicago, Illinois
- Department of Family Medicine, The University of Chicago Biological Science Division, Chicago, Illinois
| | - Jayant M. Pinto
- Department of Surgery, The University of Chicago Biological Science Division, Chicago, Illinois
| | - Briseis Aschebrook-Kilfoy
- Department of Public Health Sciences, The University of Chicago Biological Science Division, Chicago, Illinois
- Institute for Population and Precision Health, The University of Chicago Biological Science Division, Chicago, Illinois
- Department of Family Medicine, The University of Chicago Biological Science Division, Chicago, Illinois
| |
Collapse
|
5
|
Pardossi S, Pinzi M, Cattolico M, Rescalli MB, Nicchi L, Tuci B, Mariantoni E, Cuomo A. Insights into the Incidence, Course, and Management of Lithium-Induced Hypothyroidism in Real-World Psychiatric Practice in Italy. Pharmaceuticals (Basel) 2024; 17:1425. [PMID: 39598337 PMCID: PMC11597692 DOI: 10.3390/ph17111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Lithium is a cornerstone in the treatment of bipolar disorder (BD). However, lithium use requires careful monitoring of thyroid function due to associated dysfunctions. The aim of our real-world study is to retrospectively evaluate the impact of lithium on thyroid function and how these thyroid alterations can be measured and managed. Methods: A retrospective observational study was performed on 150 patients with BD who started lithium treatment at the University Hospital of Siena. Thyroid function was assessed at baseline and after the introduction of lithium by measuring TSH, T3, and T4 levels at baseline and after 3, 6, 9, and 12 months, during which changes in psychiatric symptoms were also evaluated using specific psychometric scales. Results: Significant increases in TSH levels were observed at 3 and 6 months, while T3 and T4 levels decreased significantly at 3 months. Transient thyroid dysfunction occurred in 36.7% of patients, but normalized without the discontinuation of lithium or need for thyroid replacement therapy in most cases; however, replacement therapy was initiated in 8.7% of patients. There were no significant differences in treatment response between patients with and without thyroid abnormalities, as the abnormalities were transient or resolved. Conclusions: In our sample, lithium induced some cases of hypothyroidism, which, being transient or corrected with replacement therapy, did not interfere with symptomatic improvement. These findings underscore the necessity for continuous thyroid function monitoring during lithium therapy. Clinicians should be prepared to initiate thyroid replacement therapy, when necessary, as timely management can prevent the interruption of lithium treatment and ensure ongoing symptomatic improvement in BD patients. Future studies could include larger and more diverse populations to validate these findings further, extending the follow-up period beyond 12 months to better observe long-term thyroid function trends and management outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alessandro Cuomo
- Department of Molecular Medicine, School of Medicine, University of Siena, 53100 Siena, Italy; (S.P.); (M.P.); (M.C.); (M.B.R.); (L.N.); (B.T.); (E.M.)
| |
Collapse
|
6
|
Xiao Z, Li Y, Haider A, Pfister SK, Rong J, Chen J, Zhao C, Zhou X, Song Z, Gao Y, Patel JS, Collier TL, Ran C, Zhai C, Yuan H, Liang SH. Radiosynthesis and evaluation of a novel 18F-labeled tracer for PET imaging of glycogen synthase kinase 3. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:327-336. [PMID: 39583910 PMCID: PMC11578811 DOI: 10.62347/obzs8887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/10/2024] [Indexed: 11/26/2024]
Abstract
Glycogen synthase kinase 3 (GSK3) is a multifunctional serine/threonine kinase family that regulates diverse biological processes including glucose metabolism, insulin activity and energy homeostasis. Dysregulation of GSK3 is implicated in the development of several diseases such as type 2 diabetes mellitus, Alzheimer's disease (AD), and various cancer types. In this study, we report the synthesis and evaluation of a novel positron emission tomography (PET) ligand compound 28 (codenamed [18F]GSK3-2209). The PET ligand [18F]28 was obtained via copper-mediated radiofluorination in more than 32% radiochemical yields, with high radiochemical purity and high molar activity. In vitro autoradiography studies in rodents demonstrated that this tracer exhibited a high specific binding to GSK3. Furthermore, PET imaging studies of [18F]28 revealed its ability to penetrate the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Zhiwei Xiao
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Ahmed Haider
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Stefanie K Pfister
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Chunyu Zhao
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Xin Zhou
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
| | - Zhendong Song
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
| | - Yabiao Gao
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
| | - Jimmy S Patel
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Department of Radiation Oncology, Winship Cancer Institute of Emory UniversityAtlanta, GA 30322, USA
| | - Thomas L Collier
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical SchoolBoston, MA 02114, USA
| | - Chuangyan Zhai
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of MedicineAtlanta, GA 30322, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| |
Collapse
|
7
|
Bommaraju S, Dhokne MD, Arun EV, Srinivasan K, Sharma SS, Datusalia AK. An insight into crosstalk among multiple signalling pathways contributing to the pathophysiology of PTSD and depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110943. [PMID: 38228244 DOI: 10.1016/j.pnpbp.2024.110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
Post-traumatic stress disorder (PTSD) and depressive disorders represent two significant mental health challenges with substantial global prevalence. These are debilitating conditions characterized by persistent, often comorbid, symptoms that severely impact an individual's quality of life. Both PTSD and depressive disorders are often precipitated by exposure to traumatic events or chronic stress. The profound impact of PTSD and depressive disorders on individuals and society necessitates a comprehensive exploration of their shared and distinct pathophysiological features. Although the activation of the stress system is essential for maintaining homeostasis, the ability to recover from it after diminishing the threat stimulus is also equally important. However, little is known about the main reasons for individuals' differential susceptibility to external stressful stimuli. The solution to this question can be found by delving into the interplay of stress with the cognitive and emotional processing of traumatic incidents at the molecular level. Evidence suggests that dysregulation in these signalling cascades may contribute to the persistence and severity of PTSD and depressive symptoms. The treatment strategies available for this disorder are antidepressants, which have shown good efficiency in normalizing symptom severity; however, their efficacy is limited in most individuals. This calls for the exploration and development of innovative medications to address the treatment of PTSD. This review delves into the intricate crosstalk among multiple signalling pathways implicated in the development and manifestation of these mental health conditions. By unravelling the complexities of crosstalk among multiple signalling pathways, this review aims to contribute to the broader knowledge base, providing insights that could inform the development of targeted interventions for individuals grappling with the challenges of PTSD and depressive disorders.
Collapse
Affiliation(s)
- Sumadhura Bommaraju
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India
| | - Mrunali D Dhokne
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India
| | - E V Arun
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India
| | - Krishnamoorthy Srinivasan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India; Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Uttar Pradesh (UP) 226002, India.
| |
Collapse
|
8
|
L’Abbate S, Nicolini G, Marchetti S, Forte G, Lepore E, Unfer V, Kusmic C. Lithium Treatment Induces Cardiac Dysfunction in Mice. Int J Mol Sci 2023; 24:15872. [PMID: 37958854 PMCID: PMC10650075 DOI: 10.3390/ijms242115872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Lithium (Li) salts are commonly used as medications for bipolar disorders. In addition to its therapeutic value, Li is also being increasingly used as a battery component in modern electronic devices. Concerns about its toxicity and negative impact on the heart have recently been raised. We investigated the effects of long-term Li treatment on the heart, liver, and kidney in mice. Sixteen C57BL/6J mice were randomly assigned to receive oral administration of Li carbonate (n = 8) or act as a control group (n = 8) for 12 weeks. We evaluated the cardiac electrical activity, morphology and function, and pathways contributing to remodelling. We assessed the multi-organ toxicity using histopathology techniques in the heart, liver, and kidney. Our findings suggest that mice receiving Li had impaired systolic function and ventricular repolarisation and were more susceptible to arrhythmias under adrenergic stimulation. The Li treatment caused an increase in the cardiomyocytes' size, the modulation of the extracellular signal-regulated kinase (ERK) pathway, along with some minor tissue damage. Our findings revealed a cardiotoxic effect of Li at therapeutic dosage, along with some histopathological alterations in the liver and kidney. In addition, our study suggests that our model could be used to test potential treatments for Li-induced cardiotoxicity.
Collapse
Affiliation(s)
- Serena L’Abbate
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, 56124 Pisa, Italy;
| | - Giuseppina Nicolini
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (G.N.); (S.M.)
| | - Sabrina Marchetti
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (G.N.); (S.M.)
| | - Gianpiero Forte
- R&D Department, Lo.Li Pharma, 00156 Rome, Italy; (G.F.); (E.L.)
| | - Elisa Lepore
- R&D Department, Lo.Li Pharma, 00156 Rome, Italy; (G.F.); (E.L.)
| | - Virginia Unfer
- A.G.Un.Co. Obstetrics and Gynaecology Center, 00155 Rome, Italy;
| | - Claudia Kusmic
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (G.N.); (S.M.)
| |
Collapse
|
9
|
Mendez-Vazquez H, Roach RL, Nip K, Chanda S, Sathler MF, Garver T, Danzman RA, Moseley MC, Roberts JP, Koch ON, Steger AA, Lee R, Arikkath J, Kim S. The autism-associated loss of δ-catenin functions disrupts social behavior. Proc Natl Acad Sci U S A 2023; 120:e2300773120. [PMID: 37216537 PMCID: PMC10235948 DOI: 10.1073/pnas.2300773120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
δ-catenin is expressed in excitatory synapses and functions as an anchor for the glutamatergic AMPA receptor (AMPAR) GluA2 subunit in the postsynaptic density. The glycine 34 to serine (G34S) mutation in the δ-catenin gene has been found in autism spectrum disorder (ASD) patients and results in loss of δ-catenin functions at excitatory synapses, which is presumed to underlie ASD pathogenesis in humans. However, how the G34S mutation causes loss of δ-catenin functions to induce ASD remains unclear. Here, using neuroblastoma cells, we identify that the G34S mutation increases glycogen synthase kinase 3β (GSK3β)-dependent δ-catenin degradation to reduce δ-catenin levels, which likely contributes to the loss of δ-catenin functions. Synaptic δ-catenin and GluA2 levels in the cortex are significantly decreased in mice harboring the δ-catenin G34S mutation. The G34S mutation increases glutamatergic activity in cortical excitatory neurons while it is decreased in inhibitory interneurons, indicating changes in cellular excitation and inhibition. δ-catenin G34S mutant mice also exhibit social dysfunction, a common feature of ASD. Most importantly, pharmacological inhibition of GSK3β activity reverses the G34S-induced loss of δ-catenin function effects in cells and mice. Finally, using δ-catenin knockout mice, we confirm that δ-catenin is required for GSK3β inhibition-induced restoration of normal social behavior in δ-catenin G34S mutant animals. Taken together, we reveal that the loss of δ-catenin functions arising from the ASD-associated G34S mutation induces social dysfunction via alterations in glutamatergic activity and that GSK3β inhibition can reverse δ-catenin G34S-induced synaptic and behavioral deficits.
Collapse
Affiliation(s)
| | - Regan L. Roach
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Kaila Nip
- Cellular and Molecular Biology Program, Colorado State UniversityFort CollinsCO80523
| | - Soham Chanda
- Cellular and Molecular Biology Program, Colorado State UniversityFort CollinsCO80523
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO80523
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO80523
| | - Matheus F. Sathler
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Tyler Garver
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO80523
| | - Rosaline A. Danzman
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Madeleine C. Moseley
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO80523
| | - Jessica P. Roberts
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO80523
| | - Olivia N. Koch
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | | | - Rahmi Lee
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Jyothi Arikkath
- Developmental Neuroscience, Munore-Meyer Institute, University of Nebraska Medical Center, Omaha, NE68198
| | - Seonil Kim
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
- Cellular and Molecular Biology Program, Colorado State UniversityFort CollinsCO80523
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO80523
| |
Collapse
|
10
|
Lin M, Yu H, Xie Q, Xu Z, Shang P. Role of microglia autophagy and mitophagy in age-related neurodegenerative diseases. Front Aging Neurosci 2023; 14:1100133. [PMID: 37180741 PMCID: PMC10169626 DOI: 10.3389/fnagi.2022.1100133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/28/2022] [Indexed: 05/16/2023] Open
Abstract
Microglia, characterized by responding to damage, regulating the secretion of soluble inflammatory mediators, and engulfing specific segments in the central nervous system (CNS), function as key immune cells in the CNS. Emerging evidence suggests that microglia coordinate the inflammatory responses in CNS system and play a pivotal role in the pathogenesis of age-related neurodegenerative diseases (NDDs). Remarkably, microglia autophagy participates in the regulation of subcellular substances, which includes the degradation of misfolded proteins and other harmful constituents produced by neurons. Therefore, microglia autophagy regulates neuronal homeostasis maintenance and process of neuroinflammation. In this review, we aimed at highlighting the pivotal role of microglia autophagy in the pathogenesis of age-related NDDs. Besides the mechanistic process and the co-interaction between microglia autophagy and different kinds of NDDs, we also emphasized potential therapeutic agents and approaches that could be utilized at the onset and progression of these diseases through modulating microglia autophagy, including promising nanomedicines. Our review provides a valuable reference for subsequent studies focusing on treatments of neurodegenerative disorders. The exploration of microglia autophagy and the development of nanomedicines greatly enhances current understanding of NDDs.
Collapse
Affiliation(s)
- Mingkai Lin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongwen Yu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiuyan Xie
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiyun Xu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pei Shang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Montalto G, Ricciarelli R. Tau, tau kinases, and tauopathies: An updated overview. Biofactors 2023. [PMID: 36688478 DOI: 10.1002/biof.1930] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/13/2022] [Indexed: 01/24/2023]
Abstract
Tau is a macrotubule-associated protein primarily involved in the stabilization of the cytoskeleton. Under normal conditions, phosphorylation reduces the affinity of tau for tubulin, allowing the protein to detach from microtubules and ensuring the system dynamics in neuronal cells. However, hyperphosphorylated tau aggregates into paired helical filaments, the main constituents of neurofibrillary tangles found in the brains of patients with Alzheimer's disease and other tauopathies. In this review, we provide an overview of the structure of tau and the pathophysiological roles of tau phosphorylation. We also evaluate the major protein kinases involved and discuss the progress made in the development of drug therapies aimed at inhibiting tau kinases.
Collapse
Affiliation(s)
- Giulia Montalto
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Roberta Ricciarelli
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
12
|
Mendez-Vazquez H, Roach RL, Nip K, Sathler MF, Garver T, Danzman RA, Moseley MC, Roberts JP, Koch ON, Steger AA, Lee R, Arikkath J, Kim S. The autism-associated loss of δ-catenin functions disrupts social behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523372. [PMID: 36711484 PMCID: PMC9882145 DOI: 10.1101/2023.01.12.523372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
δ-catenin is expressed in excitatory synapses and functions as an anchor for the glutamatergic AMPA receptor (AMPAR) GluA2 subunit in the postsynaptic density. The glycine 34 to serine (G34S) mutation in the δ-catenin gene is found in autism spectrum disorder (ASD) patients and induces loss of δ-catenin functions at excitatory synapses, which is presumed to underlie ASD pathogenesis in humans. However, how the G34S mutation causes loss of δ-catenin functions to induce ASD remains unclear. Here, using neuroblastoma cells, we discover that the G34S mutation generates an additional phosphorylation site for glycogen synthase kinase 3β (GSK3β). This promotes δ-catenin degradation and causes the reduction of δ-catenin levels, which likely contributes to the loss of δ-catenin functions. Synaptic δ-catenin and GluA2 levels in the cortex are significantly decreased in mice harboring the δ-catenin G34S mutation. The G34S mutation increases glutamatergic activity in cortical excitatory neurons while it is decreased in inhibitory interneurons, indicating changes in cellular excitation and inhibition. δ-catenin G34S mutant mice also exhibit social dysfunction, a common feature of ASD. Most importantly, inhibition of GSK3β activity reverses the G34S-induced loss of δ-catenin function effects in cells and mice. Finally, using δ-catenin knockout mice, we confirm that δ-catenin is required for GSK3β inhibition-induced restoration of normal social behaviors in δ-catenin G34S mutant animals. Taken together, we reveal that the loss of δ-catenin functions arising from the ASD-associated G34S mutation induces social dysfunction via alterations in glutamatergic activity and that GSK3β inhibition can reverse δ-catenin G34S-induced synaptic and behavioral deficits. Significance Statement δ-catenin is important for the localization and function of glutamatergic AMPA receptors at synapses in many brain regions. The glycine 34 to serine (G34S) mutation in the δ-catenin gene is found in autism patients and results in the loss of δ-catenin functions. δ-catenin expression is also closely linked to other autism-risk genes involved in synaptic structure and function, further implying that it is important for the autism pathophysiology. Importantly, social dysfunction is a key characteristic of autism. Nonetheless, the links between δ-catenin functions and social behaviors are largely unknown. The significance of the current research is thus predicated on filling this gap by discovering the molecular, cellular, and synaptic underpinnings of the role of δ-catenin in social behaviors.
Collapse
|
13
|
Chatterjee D, Beaulieu JM. Inhibition of glycogen synthase kinase 3 by lithium, a mechanism in search of specificity. Front Mol Neurosci 2022; 15:1028963. [PMID: 36504683 PMCID: PMC9731798 DOI: 10.3389/fnmol.2022.1028963] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022] Open
Abstract
Inhibition of Glycogen synthase kinase 3 (GSK3) is a popular explanation for the effects of lithium ions on mood regulation in bipolar disorder and other mental illnesses, including major depression, cyclothymia, and schizophrenia. Contribution of GSK3 is supported by evidence obtained from animal and patient derived model systems. However, the two GSK3 enzymes, GSK3α and GSK3β, have more than 100 validated substrates. They are thus central hubs for major biological functions, such as dopamine-glutamate neurotransmission, synaptic plasticity (Hebbian and homeostatic), inflammation, circadian regulation, protein synthesis, metabolism, inflammation, and mitochondrial functions. The intricate contributions of GSK3 to several biological processes make it difficult to identify specific mechanisms of mood stabilization for therapeutic development. Identification of GSK3 substrates involved in lithium therapeutic action is thus critical. We provide an overview of GSK3 biological functions and substrates for which there is evidence for a contribution to lithium effects. A particular focus is given to four of these: the transcription factor cAMP response element-binding protein (CREB), the RNA-binding protein FXR1, kinesin subunits, and the cytoskeletal regulator CRMP2. An overview of how co-regulation of these substrates may result in shared outcomes is also presented. Better understanding of how inhibition of GSK3 contributes to the therapeutic effects of lithium should allow for identification of more specific targets for future drug development. It may also provide a framework for the understanding of how lithium effects overlap with those of other drugs such as ketamine and antipsychotics, which also inhibit brain GSK3.
Collapse
Affiliation(s)
| | - Jean Martin Beaulieu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Gianferrara T, Cescon E, Grieco I, Spalluto G, Federico S. Glycogen Synthase Kinase 3β Involvement in Neuroinflammation and Neurodegenerative Diseases. Curr Med Chem 2022; 29:4631-4697. [PMID: 35170406 DOI: 10.2174/0929867329666220216113517] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND GSK-3β activity has been strictly related to neuroinflammation and neurodegeneration. Alzheimer's disease is the most studied neurodegenerative disease, but GSK-3β seems to be involved in almost all neurodegenerative diseases including Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease and the autoimmune disease multiple sclerosis. OBJECTIVE The aim of this review is to help researchers both working on this research topic or not to have a comprehensive overview on GSK-3β in the context of neuroinflammation and neurodegeneration. METHOD Literature has been searched using PubMed and SciFinder databases by inserting specific keywords. A total of more than 500 articles have been discussed. RESULTS First of all, the structure and regulation of the kinase were briefly discussed and then, specific GSK-3β implications in neuroinflammation and neurodegenerative diseases were illustrated also with the help of figures, to conclude with a comprehensive overview on the most important GSK-3β and multitarget inhibitors. For all discussed compounds, the structure and IC50 values at the target kinase have been reported. CONCLUSION GSK-3β is involved in several signaling pathways both in neurons as well as in glial cells and immune cells. The fine regulation and interconnection of all these pathways are at the base of the rationale use of GSK-3β inhibitors in neuroinflammation and neurodegeneration. In fact, some compounds are now under clinical trials. Despite this, pharmacodynamic and ADME/Tox profiles of the compounds were often not fully characterized and this is deleterious in such a complex system.
Collapse
Affiliation(s)
- Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Eleonora Cescon
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Ilenia Grieco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
15
|
Fang Y, Chen B, Liu Z, Gong AY, Gunning WT, Ge Y, Malhotra D, Gohara AF, Dworkin LD, Gong R. Age-related GSK3β overexpression drives podocyte senescence and glomerular aging. J Clin Invest 2022; 132:141848. [PMID: 35166234 PMCID: PMC8843754 DOI: 10.1172/jci141848] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
As life expectancy continues to increase, clinicians are challenged by age-related renal impairment that involves podocyte senescence and glomerulosclerosis. There is now compelling evidence that lithium has a potent antiaging activity that ameliorates brain aging and increases longevity in Drosophila and Caenorhabditis elegans. As the major molecular target of lithium action and a multitasking protein kinase recently implicated in a variety of renal diseases, glycogen synthase kinase 3β (GSK3β) is overexpressed and hyperactive with age in glomerular podocytes, correlating with functional and histological signs of kidney aging. Moreover, podocyte-specific ablation of GSK3β substantially attenuated podocyte senescence and glomerular aging in mice. Mechanistically, key mediators of senescence signaling, such as p16INK4A and p53, contain high numbers of GSK3β consensus motifs, physically interact with GSK3β, and act as its putative substrates. In addition, therapeutic targeting of GSK3β by microdose lithium later in life reduced senescence signaling and delayed kidney aging in mice. Furthermore, in psychiatric patients, lithium carbonate therapy inhibited GSK3β activity and mitigated senescence signaling in urinary exfoliated podocytes and was associated with preservation of kidney function. Thus, GSK3β appears to play a key role in podocyte senescence by modulating senescence signaling and may be an actionable senostatic target to delay kidney aging.
Collapse
Affiliation(s)
- Yudong Fang
- Division of Nephrology, Department of Medicine and.,Center for Hypertension and Precision Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA.,Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bohan Chen
- Division of Nephrology, Department of Medicine and.,Division of Kidney Disease and Hypertension, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Zhangsuo Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | - Yan Ge
- Division of Nephrology, Department of Medicine and
| | | | | | - Lance D Dworkin
- Division of Nephrology, Department of Medicine and.,Center for Hypertension and Precision Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA.,Division of Kidney Disease and Hypertension, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Rujun Gong
- Division of Nephrology, Department of Medicine and.,Center for Hypertension and Precision Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA.,Division of Kidney Disease and Hypertension, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, USA
| |
Collapse
|
16
|
Arciniegas Ruiz SM, Eldar-Finkelman H. Glycogen Synthase Kinase-3 Inhibitors: Preclinical and Clinical Focus on CNS-A Decade Onward. Front Mol Neurosci 2022; 14:792364. [PMID: 35126052 PMCID: PMC8813766 DOI: 10.3389/fnmol.2021.792364] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
The protein kinase, GSK-3, participates in diverse biological processes and is now recognized a promising drug discovery target in treating multiple pathological conditions. Over the last decade, a range of newly developed GSK-3 inhibitors of diverse chemotypes and inhibition modes has been developed. Even more conspicuous is the dramatic increase in the indications that were tested from mood and behavior disorders, autism and cognitive disabilities, to neurodegeneration, brain injury and pain. Indeed, clinical and pre-clinical studies were largely expanded uncovering new mechanisms and novel insights into the contribution of GSK-3 to neurodegeneration and central nerve system (CNS)-related disorders. In this review we summarize new developments in the field and describe the use of GSK-3 inhibitors in the variety of CNS disorders. This remarkable volume of information being generated undoubtedly reflects the great interest, as well as the intense hope, in developing potent and safe GSK-3 inhibitors in clinical practice.
Collapse
|
17
|
Harrington CT, Sotillo E, Dang CV, Thomas-Tikhonenko A. Tilting MYC toward cancer cell death. Trends Cancer 2021; 7:982-994. [PMID: 34481764 PMCID: PMC8541926 DOI: 10.1016/j.trecan.2021.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
MYC oncoprotein promotes cell proliferation and serves as the key driver in many human cancers; therefore, considerable effort has been expended to develop reliable pharmacological methods to suppress its expression or function. Despite impressive progress, MYC-targeting drugs have not reached the clinic. Recent advances suggest that within a limited expression range unique to each tumor, MYC oncoprotein can have a paradoxical, proapoptotic function. Here we introduce a counterintuitive idea that modestly and transiently elevating MYC levels could aid chemotherapy-induced apoptosis and thus benefit the patients as much, if not more than MYC inhibition.
Collapse
Affiliation(s)
- Colleen T Harrington
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elena Sotillo
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Chi V Dang
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA; Ludwig Institute for Cancer Research, New York, NY 10017, USA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Khayachi A, Schorova L, Alda M, Rouleau GA, Milnerwood AJ. Posttranslational modifications & lithium's therapeutic effect-Potential biomarkers for clinical responses in psychiatric & neurodegenerative disorders. Neurosci Biobehav Rev 2021; 127:424-445. [PMID: 33971223 DOI: 10.1016/j.neubiorev.2021.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/14/2021] [Accepted: 05/03/2021] [Indexed: 01/03/2023]
Abstract
Several neurodegenerative diseases and neuropsychiatric disorders display aberrant posttranslational modifications (PTMs) of one, or many, proteins. Lithium treatment has been used for mood stabilization for many decades, and is highly effective for large subsets of patients with diverse neurological conditions. However, the differential effectiveness and mode of action are not fully understood. In recent years, studies have shown that lithium alters several protein PTMs, altering their function, and consequently neuronal physiology. The impetus for this review is to outline the links between lithium's therapeutic mode of action and PTM homeostasis. We first provide an overview of the principal PTMs affected by lithium. We then describe several neuropsychiatric disorders in which PTMs have been implicated as pathogenic. For each of these conditions, we discuss lithium's clinical use and explore the putative mechanism of how it restores PTM homeostasis, and thereby cellular physiology. Evidence suggests that determining specific PTM patterns could be a promising strategy to develop biomarkers for disease and lithium responsiveness.
Collapse
Affiliation(s)
- A Khayachi
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| | - L Schorova
- McGill University Health Center Research Institute, Montréal, Quebec, Canada
| | - M Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - G A Rouleau
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada.
| | - A J Milnerwood
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
19
|
Lithium Chloride Protects against Sepsis-Induced Skeletal Muscle Atrophy and Cancer Cachexia. Cells 2021; 10:cells10051017. [PMID: 33925786 PMCID: PMC8146089 DOI: 10.3390/cells10051017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
Inflammation-mediated skeletal muscle wasting occurs in patients with sepsis and cancer cachexia. Both conditions severely affect patient morbidity and mortality. Lithium chloride has previously been shown to enhance myogenesis and prevent certain forms of muscular dystrophy. However, to our knowledge, the effect of lithium chloride treatment on sepsis-induced muscle atrophy and cancer cachexia has not yet been investigated. In this study, we aimed to examine the effects of lithium chloride using in vitro and in vivo models of cancer cachexia and sepsis. Lithium chloride prevented wasting in myotubes cultured with cancer cell-conditioned media, maintained the expression of the muscle fiber contractile protein, myosin heavy chain 2, and inhibited the upregulation of the E3 ubiquitin ligase, Atrogin-1. In addition, it inhibited the upregulation of inflammation-associated cytokines in macrophages treated with lipopolysaccharide. In the animal model of sepsis, lithium chloride treatment improved body weight, increased muscle mass, preserved the survival of larger fibers, and decreased the expression of muscle-wasting effector genes. In a model of cancer cachexia, lithium chloride increased muscle mass, enhanced muscle strength, and increased fiber cross-sectional area, with no significant effect on tumor mass. These results indicate that lithium chloride exerts therapeutic effects on inflammation-mediated skeletal muscle wasting, such as sepsis-induced muscle atrophy and cancer cachexia.
Collapse
|
20
|
Precision Nutrition for Alzheimer's Prevention in ApoE4 Carriers. Nutrients 2021; 13:nu13041362. [PMID: 33921683 PMCID: PMC8073598 DOI: 10.3390/nu13041362] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
The ApoE4 allele is the most well-studied genetic risk factor for Alzheimer’s disease, a condition that is increasing in prevalence and remains without a cure. Precision nutrition targeting metabolic pathways altered by ApoE4 provides a tool for the potential prevention of disease. However, no long-term human studies have been conducted to determine effective nutritional protocols for the prevention of Alzheimer’s disease in ApoE4 carriers. This may be because relatively little is yet known about the precise mechanisms by which the genetic variant confers an increased risk of dementia. Fortunately, recent research is beginning to shine a spotlight on these mechanisms. These new data open up the opportunity for speculation as to how carriers might ameliorate risk through lifestyle and nutrition. Herein, we review recent discoveries about how ApoE4 differentially impacts microglia and inflammatory pathways, astrocytes and lipid metabolism, pericytes and blood–brain barrier integrity, and insulin resistance and glucose metabolism. We use these data as a basis to speculate a precision nutrition approach for ApoE4 carriers, including a low-glycemic index diet with a ketogenic option, specific Mediterranean-style food choices, and a panel of seven nutritional supplements. Where possible, we integrate basic scientific mechanisms with human observational studies to create a more complete and convincing rationale for this precision nutrition approach. Until recent research discoveries can be translated into long-term human studies, a mechanism-informed practical clinical approach may be useful for clinicians and patients with ApoE4 to adopt a lifestyle and nutrition plan geared towards Alzheimer’s risk reduction.
Collapse
|
21
|
Senner F, Kohshour MO, Abdalla S, Papiol S, Schulze TG. The Genetics of Response to and Side Effects of Lithium Treatment in Bipolar Disorder: Future Research Perspectives. Front Pharmacol 2021; 12:638882. [PMID: 33867988 PMCID: PMC8044839 DOI: 10.3389/fphar.2021.638882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/15/2021] [Indexed: 12/01/2022] Open
Abstract
Although the mood stabilizer lithium is a first-line treatment in bipolar disorder, a substantial number of patients do not benefit from it and experience side effects. No clinical tool is available for predicting lithium response or the occurrence of side effects in everyday clinical practice. Multiple genetic research efforts have been performed in this field because lithium response and side effects are considered to be multifactorial endophenotypes. Available results from linkage and segregation, candidate-gene, and genome-wide association studies indicate a role of genetic factors in determining response and side effects. For example, candidate-gene studies often report GSK3β, brain-derived neurotrophic factor, and SLC6A4 as being involved in lithium response, and the latest genome-wide association study found a genome-wide significant association of treatment response with a locus on chromosome 21 coding for two long non-coding RNAs. Although research results are promising, they are limited mainly by a lack of replicability and, despite the collaboration of consortia, insufficient sample sizes. The need for larger sample sizes and "multi-omics" approaches is apparent, and such approaches are crucial for choosing the best treatment options for patients with bipolar disorder. In this article, we delineate the mechanisms of action of lithium and summarize the results of genetic research on lithium response and side effects.
Collapse
Affiliation(s)
- Fanny Senner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Mojtaba Oraki Kohshour
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Safa Abdalla
- Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Thomas G. Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
22
|
Mechanisms and Therapeutic Implications of GSK-3 in Treating Neurodegeneration. Cells 2021; 10:cells10020262. [PMID: 33572709 PMCID: PMC7911291 DOI: 10.3390/cells10020262] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders are spreading worldwide and are one of the greatest threats to public health. There is currently no adequate therapy for these disorders, and therefore there is an urgent need to accelerate the discovery and development of effective treatments. Although neurodegenerative disorders are broad ranging and highly complex, they may share overlapping mechanisms, and thus potentially manifest common targets for therapeutic interventions. Glycogen synthase kinase-3 (GSK-3) is now acknowledged to be a central player in regulating mood behavior, cognitive functions, and neuron viability. Indeed, many targets controlled by GSK-3 are critically involved in progressing neuron deterioration and disease pathogenesis. In this review, we focus on three pathways that represent prominent mechanisms linking GSK-3 with neurodegenerative disorders: cytoskeleton organization, the mammalian target of rapamycin (mTOR)/autophagy axis, and mitochondria. We also consider the challenges and opportunities in the development of GSK-3 inhibitors for treating neurodegeneration.
Collapse
|
23
|
Zanni G, Goto S, Fragopoulou AF, Gaudenzi G, Naidoo V, Di Martino E, Levy G, Dominguez CA, Dethlefsen O, Cedazo-Minguez A, Merino-Serrais P, Stamatakis A, Hermanson O, Blomgren K. Lithium treatment reverses irradiation-induced changes in rodent neural progenitors and rescues cognition. Mol Psychiatry 2021; 26:322-340. [PMID: 31723242 PMCID: PMC7815512 DOI: 10.1038/s41380-019-0584-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/13/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Cranial radiotherapy in children has detrimental effects on cognition, mood, and social competence in young cancer survivors. Treatments harnessing hippocampal neurogenesis are currently of great relevance in this context. Lithium, a well-known mood stabilizer, has both neuroprotective, pro-neurogenic as well as antitumor effects, and in the current study we introduced lithium treatment 4 weeks after irradiation. Female mice received a single 4 Gy whole-brain radiation dose on postnatal day (PND) 21 and were randomized to 0.24% Li2CO3 chow or normal chow from PND 49 to 77. Hippocampal neurogenesis was assessed on PND 77, 91, and 105. We found that lithium treatment had a pro-proliferative effect on neural progenitors, but neuronal integration occurred only after it was discontinued. Also, the treatment ameliorated deficits in spatial learning and memory retention observed in irradiated mice. Gene expression profiling and DNA methylation analysis identified two novel factors related to the observed effects, Tppp, associated with microtubule stabilization, and GAD2/65, associated with neuronal signaling. Our results show that lithium treatment reverses irradiation-induced loss of hippocampal neurogenesis and cognitive impairment even when introduced long after the injury. We propose that lithium treatment should be intermittent in order to first make neural progenitors proliferate and then, upon discontinuation, allow them to differentiate. Our findings suggest that pharmacological treatment of cognitive so-called late effects in childhood cancer survivors is possible.
Collapse
Affiliation(s)
- Giulia Zanni
- Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, 171 64, Stockholm, Sweden.
- Department of Developmental Neuroscience, New York State Psychiatric Institute, Columbia University, 1051 Riverside, New York, NY, 10032, USA.
| | - Shinobu Goto
- Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, 171 64, Stockholm, Sweden
- Department of Obstetrics and Gynecology, Nagoya City University Graduate School of Medical Sciences, 467-8601, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | - Adamantia F Fragopoulou
- Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, 171 64, Stockholm, Sweden
| | - Giulia Gaudenzi
- Department of Neuroscience, Karolinska Institutet, Biomedicum, 171 77, Stockholm, Sweden
- Department of Protein Science, Division of Nanobiotechnology, KTH Royal Institute of Technology, Science for Life Laboratory, 171 21, Stockholm, Sweden
| | - Vinogran Naidoo
- Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, 171 64, Stockholm, Sweden
- Department of Human Biology, Faculty of Health Sciences, Anzio Road Observatory, 7925, University of Cape Town, Cape Town, South Africa
| | - Elena Di Martino
- Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, 171 64, Stockholm, Sweden
| | - Gabriel Levy
- Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, 171 64, Stockholm, Sweden
- Ludwig Institute for Cancer Research, Brussels Branch, Avenue Hippocrate 75, 1200, Brussels, Belgium
| | - Cecilia A Dominguez
- Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, 171 64, Stockholm, Sweden
| | - Olga Dethlefsen
- National Bioinformatics Infrastructure Sweden (NIBIS), Science for Life Laboratory (SciLifeLab), Svante Arrhenius väg 16C, 106 91, Stockholm, Sweden
- Department of Biochemistry and Biophysics (DBB), Stockholm University, Svante Arrhenius väg 16C, 106 91, Stockholm, Sweden
| | - Angel Cedazo-Minguez
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, BioClinicum J9:20, 171 64, Stockholm, Sweden
| | - Paula Merino-Serrais
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, BioClinicum J9:20, 171 64, Stockholm, Sweden
| | - Antonios Stamatakis
- Biology-Biochemistry Lab, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Papadiamantopoulou 123, Goudi, 11527, Athens, Greece
| | - Ola Hermanson
- Department of Neuroscience, Karolinska Institutet, Biomedicum, 171 77, Stockholm, Sweden
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, 171 64, Stockholm, Sweden.
- Pediatric Oncology, Karolinska University Hospital, Eugeniavägen 23, 171 64, Stockholm, Sweden.
| |
Collapse
|
24
|
De-Paula VJ, Dos Santos CCC, Luque MCA, Ali TM, Kalil JE, Forlenza OV, Cunha-Neto E. Acute and chronic lithium treatment increases Wnt/β-catenin transcripts in cortical and hippocampal tissue at therapeutic concentrations in mice. Metab Brain Dis 2021; 36:193-197. [PMID: 33170418 DOI: 10.1007/s11011-020-00638-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022]
Abstract
Lithium activates Wnt/β-catenin signaling leading to stabilization of free cytosolic β-catenin. The aim of the present study is to evaluate the in vivo effect of acute and chronic lithium treatment on the expression of β-catenin target genes, addressing its transcripts HIG2, Bcl-xL, Cyclin D1, c-myc, in cortical and hippocampal tissue from adult mice. Lithium doses were established to yield therapeutic working concentrations. In acute treatment, mice received a 300µL of a 350 mg/kg solution of LiCl by gavage, and were euthanized after 2 h, 6 h and 12 h. To determine the effect of chronic treatment, animals were continuously fed either with chow supplemented with 2 g/kg Li2CO3, or regular chow (controls), being euthanized after 30 days. All animals had access to drinking water and 0.9% saline ad libitum. After acute and chronic treatments samples of peripheral blood were obtained from the tail vein for each animal, and serum concentrations of lithium were determined. All transcripts were up-regulated in cortical and hippocampal tissues of lithium-treated mice, both under acute and chronic treatments. There was a positive correlation between serum lithium concentrations and the increment in the expression of all transcripts. This effect was observed in all time points of the acute treatment (i.e., 2, 6 and 12 hours) and also after 30 days. We conclude that Wnt/β-catenin transcriptional response (HIG2, Bcl-xL, Cyclin D1 and c-myc) is up-regulated in the mouse brain in response to acute and chronic lithium treatment at therapeutic concentrations.
Collapse
Affiliation(s)
- Vanessa J De-Paula
- Laboratório de Psicobiologia (LIM23), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brasil.
- Laboratorio de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brasil.
- Laboratory of Neuroscience, Department and Institute of Psychiatry, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil.
| | - Carla Cristine C Dos Santos
- Laboratório de Imunologia Clínica e Alergia (LIM60), Divisão de Imunologia Clínica e Alergia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brasil
| | - Maria Carolina A Luque
- Laboratório de Imunologia Clínica e Alergia (LIM60), Divisão de Imunologia Clínica e Alergia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brasil
- Laboratorio de Imunologia, Instituto do Coração (InCor), Faculty of Medicine, Universidade de Sao Paulo, SP, Sao Paulo, Brasil
| | - Taccyana M Ali
- Laboratório de Imunologia Clínica e Alergia (LIM60), Divisão de Imunologia Clínica e Alergia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brasil
- Laboratorio de Imunologia, Instituto do Coração (InCor), Faculty of Medicine, Universidade de Sao Paulo, SP, Sao Paulo, Brasil
| | - Jorge E Kalil
- Laboratorio de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brasil
- Laboratorio de Imunologia, Instituto do Coração (InCor), Faculty of Medicine, Universidade de Sao Paulo, SP, Sao Paulo, Brasil
- Instituto de Investigação em Imunologia (iii)-INCT, São Paulo, Brazil
| | | | - Edecio Cunha-Neto
- Laboratório de Imunologia Clínica e Alergia (LIM60), Divisão de Imunologia Clínica e Alergia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brasil
- Laboratorio de Imunologia, Instituto do Coração (InCor), Faculty of Medicine, Universidade de Sao Paulo, SP, Sao Paulo, Brasil
- Instituto de Investigação em Imunologia (iii)-INCT, São Paulo, Brazil
| |
Collapse
|
25
|
Ragu Varman D, Jayanthi LD, Ramamoorthy S. Glycogen synthase kinase-3ß supports serotonin transporter function and trafficking in a phosphorylation-dependent manner. J Neurochem 2020; 156:445-464. [PMID: 32797733 DOI: 10.1111/jnc.15152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/23/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
Serotonin (5-HT) transporter (SERT) plays a crucial role in serotonergic transmission in the central nervous system, and any aberration causes serious mental illnesses. Nevertheless, the cellular mechanisms that regulate SERT function and trafficking are not entirely understood. Growing evidence suggests that several protein kinases act as modulators. Here, we delineate the molecular mechanisms by which glycogen synthase kinase-3ß (GSK3ß) regulates SERT. When mouse striatal synaptosomes were treated with the GSK3α/ß inhibitor CHIR99021, we observed a significant increase in SERT function, Vmax , surface expression with a reduction in 5-HT Km and SERT phosphorylation. To further study how the SERT molecule is affected by GSK3α/ß, we used HEK-293 cells as a heterologous expression system. As in striatal synaptosomes, CHIR99021 treatment of cells expressing wild-type hSERT (hSERT-WT) resulted in a time and dose-dependent elevation of hSERT function with a concomitant increase in the Vmax and surface transporters because of reduced internalization and enhanced membrane insertion; silencing GSK3α/ß in these cells with siRNA also similarly affected hSERT. Converting putative GSK3α/ß phosphorylation site serine at position 48 to alanine in hSERT (hSERT-S48A) completely abrogated the effects of both the inhibitor CHIR99021 and GSK3α/ß siRNA. Substantiating these findings, over-expression of constitutively active GSK3ß with hSERT-WT, but not with hSERT-S48A, reduced SERT function, Vmax , surface density, and enhanced transporter phosphorylation. Both hSERT-WT and hSERT-S48A were inhibited similarly by PKC activation or by inhibition of Akt, CaMKII, p38 MAPK, or Src kinase. These findings provide new evidence that GSK3ß supports basal SERT function and trafficking via serine-48 phosphorylation.
Collapse
Affiliation(s)
- Durairaj Ragu Varman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Lankupalle D Jayanthi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Sammanda Ramamoorthy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
26
|
Tatavarty V, Torrado Pacheco A, Groves Kuhnle C, Lin H, Koundinya P, Miska NJ, Hengen KB, Wagner FF, Van Hooser SD, Turrigiano GG. Autism-Associated Shank3 Is Essential for Homeostatic Compensation in Rodent V1. Neuron 2020; 106:769-777.e4. [PMID: 32199104 DOI: 10.1016/j.neuron.2020.02.033] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/04/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
Abstract
Mutations in Shank3 are strongly associated with autism spectrum disorders and neural circuit changes in several brain areas, but the cellular mechanisms that underlie these defects are not understood. Homeostatic forms of plasticity allow central circuits to maintain stable function during experience-dependent development, leading us to ask whether loss of Shank3 might impair homeostatic plasticity and circuit-level compensation to perturbations. We found that Shank3 loss in vitro abolished synaptic scaling and intrinsic homeostatic plasticity, deficits that could be rescued by treatment with lithium. Further, Shank3 knockout severely compromised the in vivo ability of visual cortical circuits to recover from perturbations to sensory drive. Finally, lithium treatment ameliorated a repetitive self-grooming phenotype in Shank3 knockout mice. These findings demonstrate that Shank3 loss severely impairs the ability of central circuits to harness homeostatic mechanisms to compensate for perturbations in drive, which, in turn, may render them more vulnerable to such perturbations.
Collapse
Affiliation(s)
| | | | | | - Heather Lin
- Department of Biology, Brandeis University, Waltham, MA 02493, USA
| | - Priya Koundinya
- Department of Biology, Brandeis University, Waltham, MA 02493, USA
| | | | - Keith B Hengen
- Department of Biology, Brandeis University, Waltham, MA 02493, USA
| | - Florence F Wagner
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | | | | |
Collapse
|
27
|
Ueda M, Stefan T, Stetson L, Ignatz-Hoover JJ, Tomlinson B, Creger RJ, Cooper B, Lazarus HM, de Lima M, Wald DN, Caimi PF. Phase I Trial of Lithium and Tretinoin for Treatment of Relapsed and Refractory Non-promyelocytic Acute Myeloid Leukemia. Front Oncol 2020; 10:327. [PMID: 32211336 PMCID: PMC7076174 DOI: 10.3389/fonc.2020.00327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/25/2020] [Indexed: 11/13/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK3) inhibitors induce differentiation and growth inhibition of acute myeloid leukemia (AML) cells. Our pre-clinical studies showed GSK3 inhibition leads to sensitization of AML cells to tretinoin-mediated differentiation. We conducted a phase I trial of lithium, a GSK3 inhibitor, plus tretinoin for relapsed, refractory non-promyelocytic AML. Nine patients with median (range) age 65 (42–82) years were enrolled. All subjects had relapsed leukemia after prior therapy, with a median (range) of 3 (1–3) prior therapies. Oral lithium carbonate 300 mg was given 2–3 times daily and adjusted to meet target serum concentration (0.6 to 1.0 mmol/L); tretinoin 22.5 or 45 mg/m2/day (two equally divided doses) was administered orally on days 1–7 and 15–21 of a 28-day cycle. Four patients attained disease stability with no increase in circulating blasts for ≥4 weeks. Median (range) survival was 106 days (60–502). Target serum lithium concentration was achieved in all patients and correlated with GSK3 inhibition in leukemic cells. Immunophenotypic changes associated with myeloid differentiation were observed in five patients. The combination treatment led to a reduction in the CD34+ CD38– AML stem cell population both in vivo and in vitro. The combination of lithium and tretinoin is well-tolerated, induces differentiation of leukemic cells, and may target AML stem cells, but has limited clinical activity in the absence of other antileukemic agents. The results of this clinical trial suggest GSK3 inhibition can result in AML cell differentiation and may be a novel therapeutic strategy in this disease, particularly in combination with other antileukemic agents. Lithium is a weak GSK3 inhibitor and future strategies in AML treatment will probably require more potent agents targeting this pathway or combinations with other antileukemic agents. This trial is registered at ClinicalTrials.gov NCT01820624.
Collapse
Affiliation(s)
- Masumi Ueda
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA, United States
| | - Tammy Stefan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Lindsay Stetson
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - James J Ignatz-Hoover
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Benjamin Tomlinson
- Stem Cell Transplant and Hematologic Malignancies Program, University Hospitals Seidman Cancer Center, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Richard J Creger
- Stem Cell Transplant and Hematologic Malignancies Program, University Hospitals Seidman Cancer Center, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Brenda Cooper
- Stem Cell Transplant and Hematologic Malignancies Program, University Hospitals Seidman Cancer Center, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Hillard M Lazarus
- Stem Cell Transplant and Hematologic Malignancies Program, University Hospitals Seidman Cancer Center, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Marcos de Lima
- Stem Cell Transplant and Hematologic Malignancies Program, University Hospitals Seidman Cancer Center, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - David N Wald
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Paolo F Caimi
- Stem Cell Transplant and Hematologic Malignancies Program, University Hospitals Seidman Cancer Center, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
28
|
Cheung PW, Bouley R, Brown D. Targeting the Trafficking of Kidney Water Channels for Therapeutic Benefit. Annu Rev Pharmacol Toxicol 2020; 60:175-194. [PMID: 31561739 PMCID: PMC7334826 DOI: 10.1146/annurev-pharmtox-010919-023654] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ability to regulate water movement is vital for the survival of cells and organisms. In addition to passively crossing lipid bilayers by diffusion, water transport is also driven across cell membranes by osmotic gradients through aquaporin water channels. There are 13 aquaporins in human tissues, and of these, aquaporin-2 (AQP2) is the most highly regulated water channel in the kidney: The expression and trafficking of AQP2 respond to body volume status and plasma osmolality via the antidiuretic hormone, vasopressin (VP). Dysfunctional VP signaling in renal epithelial cells contributes to disorders of water balance, and research initially focused on regulating the major cAMP/PKA pathway to normalize urine concentrating ability. With the discovery of novel and more complex signaling networks that regulate AQP2 trafficking, promising therapeutic targets have since been identified. Several strategies based on data from preclinical studies may ultimately translate to the care of patients with defective water homeostasis.
Collapse
Affiliation(s)
- Pui W. Cheung
- Center for Systems Biology, Program in Membrane Biology, and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Richard Bouley
- Center for Systems Biology, Program in Membrane Biology, and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Dennis Brown
- Center for Systems Biology, Program in Membrane Biology, and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
29
|
Gonzalez-Fernandez C, González P, Rodríguez FJ. New insights into Wnt signaling alterations in amyotrophic lateral sclerosis: a potential therapeutic target? Neural Regen Res 2020; 15:1580-1589. [PMID: 32209757 PMCID: PMC7437582 DOI: 10.4103/1673-5374.276320] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disorder characterized by upper and lower motor neuron degeneration, which leads to progressive paralysis of skeletal muscles and, ultimately, respiratory failure between 2–5 years after symptom onset. Unfortunately, currently accepted treatments for amyotrophic lateral sclerosis are extremely scarce and only provide modest benefit. As a consequence, a great effort is being done by the scientific community in order to achieve a better understanding of the different molecular and cellular processes that influence the progression and/or outcome of this neuropathological condition and, therefore, unravel new potential targets for therapeutic intervention. Interestingly, a growing number of experimental evidences have recently shown that, besides its well-known physiological roles in the developing and adult central nervous system, the Wnt family of proteins is involved in different neuropathological conditions, including amyotrophic lateral sclerosis. These proteins are able to modulate, at least, three different signaling pathways, usually known as canonical (β-catenin dependent) and non-canonical (β-catenin independent) signaling pathways. In the present review, we aim to provide a general overview of the current knowledge that supports the relationship between the Wnt family of proteins and its associated signaling pathways and amyotrophic lateral sclerosis pathology, as well as their possible mechanisms of action. Altogether, the currently available knowledge suggests that Wnt signaling modulation might be a promising therapeutic approach to ameliorate the histopathological and functional deficits associated to amyotrophic lateral sclerosis, and thus improve the progression and outcome of this neuropathology.
Collapse
Affiliation(s)
| | - Pau González
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos (HNP), Toledo, Spain
| | | |
Collapse
|
30
|
Lukačišin M, Bollenbach T. Emergent Gene Expression Responses to Drug Combinations Predict Higher-Order Drug Interactions. Cell Syst 2019; 9:423-433.e3. [PMID: 31734160 DOI: 10.1016/j.cels.2019.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/03/2019] [Accepted: 10/11/2019] [Indexed: 01/10/2023]
Abstract
Effective design of combination therapies requires understanding the changes in cell physiology that result from drug interactions. Here, we show that the genome-wide transcriptional response to combinations of two drugs, measured at a rigorously controlled growth rate, can predict higher-order antagonism with a third drug in Saccharomyces cerevisiae. Using isogrowth profiling, over 90% of the variation in cellular response can be decomposed into three principal components (PCs) that have clear biological interpretations. We demonstrate that the third PC captures emergent transcriptional programs that are dependent on both drugs and can predict antagonism with a third drug targeting the emergent pathway. We further show that emergent gene expression patterns are most pronounced at a drug ratio where the drug interaction is strongest, providing a guideline for future measurements. Our results provide a readily applicable recipe for uncovering emergent responses in other systems and for higher-order drug combinations. A record of this paper's transparent peer review process is included in the Supplemental Information.
Collapse
Affiliation(s)
- Martin Lukačišin
- Institute for Biological Physics, University of Cologne, 50937 Cologne, Germany; IST Austria, 3400 Klosterneuburg, Austria
| | - Tobias Bollenbach
- Institute for Biological Physics, University of Cologne, 50937 Cologne, Germany.
| |
Collapse
|
31
|
Harrington CT, Sotillo E, Robert A, Hayer KE, Bogusz AM, Psathas J, Yu D, Taylor D, Dang CV, Klein PS, Hogarty MD, Geoerger B, El-Deiry WS, Wiels J, Thomas-Tikhonenko A. Transient stabilization, rather than inhibition, of MYC amplifies extrinsic apoptosis and therapeutic responses in refractory B-cell lymphoma. Leukemia 2019; 33:2429-2441. [PMID: 30914792 PMCID: PMC6884148 DOI: 10.1038/s41375-019-0454-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023]
Abstract
Therapeutic targeting of initiating oncogenes is the mainstay of precision medicine. Considerable efforts have been expended toward silencing MYC, which drives many human cancers including Burkitt lymphomas (BL). Yet, the effects of MYC silencing on standard-of-care therapies are poorly understood. Here we found that inhibition of MYC transcription renders B-lymphoblastoid cells refractory to chemotherapeutic agents. This suggested that in the context of chemotherapy, stabilization of Myc protein could be more beneficial than its inactivation. We tested this hypothesis by pharmacologically inhibiting glycogen synthase kinase 3β (GSK-3β), which normally targets Myc for proteasomal degradation. We discovered that chemorefractory BL cell lines responded better to doxorubicin and other anti-cancer drugs when Myc was transiently stabilized. In vivo, GSK3 inhibitors (GSK3i) enhanced doxorubicin-induced apoptosis in BL patient-derived xenografts (BL-PDX), as well as in murine MYC-driven lymphoma allografts. This enhancement was accompanied by and required deregulation of several key genes acting in the extrinsic, death-receptor-mediated apoptotic pathway. Consistent with this mechanism of action, GSK3i also facilitated lymphoma cell killing by a death ligand TRAIL and by a death receptor agonist mapatumumab. Thus, GSK3i synergizes with both standard chemotherapeutics and direct engagers of death receptors and could improve outcomes in patients with refractory lymphomas.
Collapse
Affiliation(s)
- Colleen T Harrington
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Cell & Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elena Sotillo
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Stanford Cancer Institute, 265 Campus Dr., Stanford, CA, 94305, USA
| | - Aude Robert
- CNRS UMR 8126, Univ Paris-Sud - Université Paris-Saclay, Institut Gustave Roussy, 94805, Villejuif, France
| | - Katharina E Hayer
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Agata M Bogusz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James Psathas
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Janssen Pharmaceutical Companies of Johnson & Johnson, 200 Great Valley Parkway, Malvern, PA, 19355, USA
| | - Duonan Yu
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Noncoding RNA Center, Yangzhou University, 225001, Yangzhou, China
| | - Deanne Taylor
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chi V Dang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Peter S Klein
- Cell & Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael D Hogarty
- Cell & Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Birgit Geoerger
- CNRS UMR 8203, Univ Paris-Sud - Université Paris-Saclay, Institut Gustave Roussy, 94805, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Univ Paris-Sud - Université Paris-Saclay, Institut Gustave Roussy, 94805, Villejuif, France
| | - Wafik S El-Deiry
- Department of Pathology and Laboratory Medicine, Brown University Medical School, Providence, RI, 02912, USA
| | - Joëlle Wiels
- CNRS UMR 8126, Univ Paris-Sud - Université Paris-Saclay, Institut Gustave Roussy, 94805, Villejuif, France
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Cell & Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
32
|
Duthie A, van Aalten L, MacDonald C, McNeilly A, Gallagher J, Geddes J, Lovestone S, Sutherland C. Recruitment, Retainment, and Biomarkers of Response; A Pilot Trial of Lithium in Humans With Mild Cognitive Impairment. Front Mol Neurosci 2019; 12:163. [PMID: 31316348 PMCID: PMC6610581 DOI: 10.3389/fnmol.2019.00163] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 06/12/2019] [Indexed: 11/30/2022] Open
Abstract
Lithium has been used for decades to treat Bipolar Disorder. Some of its therapeutic benefits may be through inhibition of Glycogen Synthase Kinase (GSK)-3. Enhanced GSK3 activity associates with development of Alzheimer’s disease (AD), therefore lithium is a currently used therapeutic with potential to be repurposed for prevention of Dementia. An important step toward a clinical trial for AD prevention using lithium is to establish the dose of lithium that blocks GSK3 in Mild Cognitive Impairment (MCI), a high-risk condition for progression to AD. We investigated volunteer recruitment, retention, and tolerance in this population, and assessed biomarkers of GSK3 in MCI compared to control and after lithium treatment. Recruitment was close to target, with higher than anticipated interest. Drop out was not related to lithium blood concentration. Indeed, 33% of the withdrawals were in the first week of very low dose lithium. Most made it through to the highest dose of lithium with no adverse events. We analyzed 18 potential biomarkers of GSK3 biology in rat PBMCs, but only four of these gave a robust reproducible baseline signal. The only biomarker that was modified by acute lithium injection in the rat was the inhibitory phosphorylation of Ser9 of GSK3beta (enhanced in PBMCs) and this associated with reduced activity of GSK3beta. In contrast to the rat PBMC preparations the protein quality of the human PBMC preparations was extremely variable. There was no difference between GSK3 biomarkers in MCI and control PBMC preparations and no significant effect of chronic lithium on the robust GSK3 biomarkers, indicating that the dose reached may not be sufficient to modify these markers. In summary, the high interest from the MCI population, and the lack of any adverse events, suggest that it would be relatively straightforward and safe to recruit to a larger clinical trial within this dosing regimen. However, it is clear that we will need an improved PBMC isolation process along with more robust, sensitive, and validated biomarkers of GSK3 function, in order to use GSK3 pathway regulation in human PBMC preparations as a biomarker of GSK3 inhibitor efficacy, within a clinical trial setting.
Collapse
Affiliation(s)
- Ashleigh Duthie
- Ninewells Hospital and Medical School, NHS Tayside, Dundee, United Kingdom
| | - Lidy van Aalten
- Division of Cellular Medicine, University of Dundee, Dundee, United Kingdom
| | - Cara MacDonald
- Ninewells Hospital and Medical School, NHS Tayside, Dundee, United Kingdom
| | - Alison McNeilly
- Division of Cellular Medicine, University of Dundee, Dundee, United Kingdom
| | - Jennifer Gallagher
- Division of Cellular Medicine, University of Dundee, Dundee, United Kingdom
| | - John Geddes
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Simon Lovestone
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Calum Sutherland
- Division of Cellular Medicine, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
33
|
Jalil AS, Reddy SB, Plautz CZ. Cellular effects of diquat dibromide exposure: Interference with Wnt signaling and cytoskeletal development. TOXICOLOGY RESEARCH AND APPLICATION 2019. [DOI: 10.1177/2397847319858563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The herbicidal action of diquat dibromide (DD) on plant cells is due primarily to the initiation of reactive oxygen species (ROS) formation, lipoperoxidation, and apoptotic cell death. It has been demonstrated that oxidative stress also occurs in animal cells exposed to high concentrations of DD; however, observations of DD’s effects on animal cells at concentrations below the reported ROS-initiation threshold suggest that some of these effects may not be attributable to ROS-induced cell death. Our results suggest that DD causes disruption of the Wnt pathway, calcium dysregulation, and cytoskeletal damage during development. Using embryos of the pond snail Lymnaea palustris as our model organism, we observed increased mortality, developmental delay and abnormality, altered motility, calcium dysregulation, decreased heart rate, and arrhythmia in embryos exposed to DD. Sperm extracted from adult snails that were exposed to DD exhibit altered motility, increased abundance, and high mortality. Effects were quantified via real-time imaging, heart rate assessment, flow cytometry, and mortality scoring. We propose that there are two models for the mechanism of DD’s action in animal cells: at low concentrations (≤28 µg/L), apoptotic cell death does not occur, but cytoskeletal elements, calcium regulation, and Wnt signaling are compromised, causing irreversible damage in L. palustris embryos; such damage is partially remediated with antioxidants or lithium chloride. At high concentrations of DD (≥44.4 µg/L), calcium dysregulation may be triggered, leading to the establishment of an intracellular positive feedback loop of ROS formation in the mitochondria, calcium release from the endoplasmic reticulum, calcium efflux, and apoptotic cell death. Permanent cellular damage occurring from exposure to sublethal concentrations of this widespread herbicide underscores the importance of research that elucidates the mechanism of DD on nontarget organisms.
Collapse
Affiliation(s)
- Amaris S Jalil
- Department of Biology, Shepherd University, Shepherdstown, WV, USA
| | - Sneha B Reddy
- Department of Biology, Shepherd University, Shepherdstown, WV, USA
| | | |
Collapse
|
34
|
Snitow ME, Zanni G, Ciesielski B, Burgess-Jones P, Eisch AJ, O'Brien WT, Klein PS. Adult hippocampal neurogenesis is not necessary for the response to lithium in the forced swim test. Neurosci Lett 2019; 704:67-72. [PMID: 30940476 PMCID: PMC6594907 DOI: 10.1016/j.neulet.2019.03.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 11/22/2022]
Abstract
Chronic lithium treatment stimulates adult hippocampal neurogenesis, but whether increased neurogenesis contributes to its therapeutic mechanism remains unclear. We use a genetic model of neural progenitor cell (NPC) ablation to test whether a lithium-sensitive behavior requires hippocampal neurogenesis. NPC-ablated mice were treated with lithium and assessed in the forced swim test (FST). Lithium reduced time immobile in the FST in NPC-ablated and control mice but had no effect on activity in the open field, a control for the locomotion-based FST. These findings show that hippocampal NPCs that proliferate in response to chronic lithium are not necessary for the behavioral response to lithium in the FST. We further show that 4-6 week old immature hippocampal neurons are not required for this response. These data suggest that increased hippocampal neurogenesis does not contribute to the response to lithium in the forced swim test and may not be an essential component of its therapeutic mechanism.
Collapse
Affiliation(s)
- Melinda E Snitow
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Giulia Zanni
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brianna Ciesielski
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Pamela Burgess-Jones
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amelia J Eisch
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neuroscience, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - W Timothy O'Brien
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Peter S Klein
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
35
|
van der Vaart A, Meng X, Bowers MS, Batman AM, Aliev F, Farris SP, Hill JS, Green TA, Dick D, Wolstenholme JT, Miles MF. Glycogen synthase kinase 3 beta regulates ethanol consumption and is a risk factor for alcohol dependence. Neuropsychopharmacology 2018; 43:2521-2531. [PMID: 30188517 PMCID: PMC6224501 DOI: 10.1038/s41386-018-0202-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 01/12/2023]
Abstract
Understanding how ethanol actions on brain signal transduction and gene expression lead to excessive consumption and addiction could identify new treatments for alcohol dependence. We previously identified glycogen synthase kinase 3-beta (Gsk3b) as a member of a highly ethanol-responsive gene network in mouse medial prefrontal cortex (mPFC). Gsk3b has been implicated in dendritic function, synaptic plasticity and behavioral responses to other drugs of abuse. Here, we investigate Gsk3b in rodent models of ethanol consumption and as a risk factor for human alcohol dependence. Stereotactic viral vector gene delivery overexpression of Gsk3b in mouse mPFC increased 2-bottle choice ethanol consumption, which was blocked by lithium, a known GSK3B inhibitor. Further, Gsk3b overexpression increased anxiety-like behavior following abstinence from ethanol. Protein or mRNA expression studies following Gsk3b over-expression identified synaptojanin 2, brain-derived neurotrophic factor and the neuropeptide Y Y5 receptor as potential downstream factors altering ethanol behaviors. Rat operant studies showed that selective pharmacologic inhibition of GSK3B with TDZD-8 dose-dependently decreased motivation to self-administer ethanol and sucrose and selectively blocked ethanol relapse-like behavior. In set-based and gene-wise genetic association analysis, a GSK3b-centric gene expression network had significant genetic associations, at a gene and network level, with risk for alcohol dependence in humans. These mutually reinforcing cross-species findings implicate GSK3B in neurobiological mechanisms controlling ethanol consumption, and as both a potential risk factor and therapeutic target for alcohol dependence.
Collapse
Affiliation(s)
- Andrew van der Vaart
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Xianfang Meng
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - M Scott Bowers
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Departments of Psychiatry, Virginia Commonwealth University, Richmond, VA, 23298, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Angela M Batman
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Fazil Aliev
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Departments of Psychology, Virginia Commonwealth University, Richmond, VA, 23298, USA
- College Behavioral and Emotional Health Institute, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Sean P Farris
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jennifer S Hill
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Thomas A Green
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | | | - Jennifer T Wolstenholme
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Michael F Miles
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
36
|
DIXDC1 contributes to psychiatric susceptibility by regulating dendritic spine and glutamatergic synapse density via GSK3 and Wnt/β-catenin signaling. Mol Psychiatry 2018; 23:467-475. [PMID: 27752079 PMCID: PMC5395363 DOI: 10.1038/mp.2016.184] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022]
Abstract
Mice lacking DIX domain containing-1 (DIXDC1), an intracellular Wnt/β-catenin signal pathway protein, have abnormal measures of anxiety, depression and social behavior. Pyramidal neurons in these animals' brains have reduced dendritic spines and glutamatergic synapses. Treatment with lithium or a glycogen synthase kinase-3 (GSK3) inhibitor corrects behavioral and neurodevelopmental phenotypes in these animals. Analysis of DIXDC1 in over 9000 cases of autism, bipolar disorder and schizophrenia reveals higher rates of rare inherited sequence-disrupting single-nucleotide variants (SNVs) in these individuals compared with psychiatrically unaffected controls. Many of these SNVs alter Wnt/β-catenin signaling activity of the neurally predominant DIXDC1 isoform; a subset that hyperactivate this pathway cause dominant neurodevelopmental effects. We propose that rare missense SNVs in DIXDC1 contribute to psychiatric pathogenesis by reducing spine and glutamatergic synapse density downstream of GSK3 in the Wnt/β-catenin pathway.
Collapse
|
37
|
Abdul AURM, De Silva B, Gary RK. The GSK3 kinase inhibitor lithium produces unexpected hyperphosphorylation of β-catenin, a GSK3 substrate, in human glioblastoma cells. Biol Open 2018; 7:bio.030874. [PMID: 29212798 PMCID: PMC5829510 DOI: 10.1242/bio.030874] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Lithium salt is a classic glycogen synthase kinase 3 (GSK3) inhibitor. Beryllium is a structurally related inhibitor that is more potent but relatively uncharacterized. This study examined the effects of these inhibitors on the phosphorylation of endogenous GSK3 substrates. In NIH-3T3 cells, both salts caused a decrease in phosphorylated glycogen synthase, as expected. GSK3 inhibitors produce enhanced phosphorylation of Ser9 of GSK3β via a positive feedback mechanism, and both salts elicited this enhancement. Another GSK3 substrate is β-catenin, which has a central role in Wnt signaling. In A172 human glioblastoma cells, lithium treatment caused a surprising increase in phospho-Ser33/Ser37-β-catenin, which was quantified using an antibody-coupled capillary electrophoresis method. The β-catenin hyperphosphorylation was unaffected by p53 RNAi knockdown, indicating that p53 is not involved in the mechanism of this response. Lithium caused a decrease in the abundance of axin, a component of the β-catenin destruction complex that has a role in coordinating β-catenin ubiquitination and protein turnover. The axin and phospho-β-catenin results were reproduced in U251 and U87MG glioblastoma cell lines. These observations run contrary to the conventional view of the canonical Wnt signaling pathway, in which a GSK3 inhibitor would be expected to decrease, not increase, phospho-β-catenin levels. This article has an associated First Person interview with the first author of the paper. Summary: GSK3 inhibitors have potential use against Alzheimer's disease and other conditions. In this study, a classic inhibitor produced unexpected molecular effects on key components of the Wnt signaling pathway.
Collapse
Affiliation(s)
| | - Bhagya De Silva
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Ronald K Gary
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| |
Collapse
|
38
|
Oliva CA, Montecinos-Oliva C, Inestrosa NC. Wnt Signaling in the Central Nervous System: New Insights in Health and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:81-130. [PMID: 29389523 DOI: 10.1016/bs.pmbts.2017.11.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Since its discovery, Wnt signaling has been shown to be one of the most crucial morphogens in development and during the maturation of central nervous system. Its action is relevant during the establishment and maintenance of synaptic structure and neuronal function. In this chapter, we will discuss the most recent evidence on these aspects, and we will explore the evidence that involves Wnt signaling on other less known functions, such as in adult neurogenesis, in the generation of oscillatory neural rhythms, and in adult behavior. The dysfunction of Wnt signaling at different levels will be also discussed, in particular in those aspects that have been found to be linked with several neurodegenerative diseases and neurological disorders. Finally, we will address the possibility of Wnt signaling manipulation to treat those pathophysiological aspects.
Collapse
Affiliation(s)
- Carolina A Oliva
- Center for Aging and Regeneration (CARE-UC), Pontifical Catholic University of Chile, Santiago, Chile
| | - Carla Montecinos-Oliva
- Center for Aging and Regeneration (CARE-UC), Pontifical Catholic University of Chile, Santiago, Chile; Interdisciplinary Institute for Neuroscience (IINS), University of Bordeaux, Bordeaux, France
| | - Nibaldo C Inestrosa
- Center for Aging and Regeneration (CARE-UC), Pontifical Catholic University of Chile, Santiago, Chile; Center for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia; Center of Excellence in Biomedicine of Magallanes (CEBIMA), University of Magallanes, Punta Arenas, Chile.
| |
Collapse
|
39
|
Wang X, Fang Z, Wang A, Luo C, Cheng X, Lu M. Lithium Suppresses Hedgehog Signaling via Promoting ITCH E3 Ligase Activity and Gli1-SUFU Interaction in PDA Cells. Front Pharmacol 2017; 8:820. [PMID: 29249966 PMCID: PMC5715333 DOI: 10.3389/fphar.2017.00820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/30/2017] [Indexed: 01/02/2023] Open
Abstract
Dysregulation of Hedgehog (Hh) signaling pathway is one of the hallmarks of pancreatic ductal adenocarcinoma (PDA). Lithium, a clinical mood stabilizer for the treatment of mental disorders, is known to suppress tumorigenic potential of PDA cells by targeting the Hh/Gli signaling pathway. In this study, we investigated the molecular mechanism of lithium induced down-regulation of Hh/Gli1. Our data show that lithium promotes the poly-ubiquitination and proteasome-mediated degradation of Gli1 through activating E3 ligase ITCH. Additionally, lithium enhances interaction between Gli1 and SUFU via suppressing GSK3β, which phosphorylates SUFU and destabilizes the SUFU-Gli1 inhibitory complex. Our studies illustrate a novel mechanism by which lithium suppresses Hh signaling via simultaneously promoting ITCH-dependent Gli1 ubiquitination/degradation and SUFU-mediated Gli1 inhibition.
Collapse
Affiliation(s)
- Xinshuo Wang
- State Key Laboratory of Natural Medicines, School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zijian Fang
- State Key Laboratory of Natural Medicines, School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Anlin Wang
- State Key Laboratory of Natural Medicines, School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Cheng Luo
- State Key Laboratory of Natural Medicines, School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Meiling Lu
- State Key Laboratory of Natural Medicines, School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
40
|
Martin LM, Bukoski AD, Whelchel DD, Evans TJ, Wiedmeyer CE, Black SJ, Johnson PJ. Pharmacokinetics of intravenous lithium chloride and assessment of agreement between two methods of lithium concentration measurement in the horse. Equine Vet J 2017; 50:537-543. [PMID: 29112289 DOI: 10.1111/evj.12778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 10/29/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Pharmacokinetics of lithium chloride (LiCl) administered as a bolus, once i.v. have not been determined in horses. There is no point-of-care test to measure lithium (Li+ ) concentrations in horses in order to monitor therapeutic levels and avoid toxicity. OBJECTIVES To determine the pharmacokinetics of LiCl in healthy adult horses and to compare agreement between two methods of plasma Li+ concentration measurement: spectrophotometric enzymatic assay (SEA) and inductively coupled plasma mass spectrometry (ICP-MS). STUDY DESIGN Nonrandomised, single exposure with repeated measures over time. METHODS Lithium chloride was administered (0.15 mmol/kg bwt) as an i.v. bolus to eight healthy adult horses. Blood samples were collected pre-administration and at multiple times until 48 h post-administration. Samples were analysed by two methods (SEA and ICP-MS) to determine plasma Li+ concentrations. Pharmacokinetics were determined based on the reference ICP-MS data. RESULTS Adverse side effects were not observed. The SEA showed linearity, R2 = 0.9752; intraday coefficient of variation, 2.5%; and recovery, 96.3%. Both noncompartmental and compartmental analyses (traditional two-stage and nonlinear mixed-effects [NLME] modelling) were performed. Geometric mean values of noncompartmental parameters were plasma Li+ concentration at time zero, 2.19 mmol/L; terminal elimination half-life, 25.68 h; area under the plasma concentration-time curve from time zero to the limit of quantification, 550 mmol/L min; clearance, 0.273 mL/min/kg; mean residence time, 31.22 h; and volume of distribution at steady state, 511 mL/kg. Results of the traditional two-stage analysis showed good agreement with the NLME modelling approach. Bland-Altman analyses demonstrated poor agreement between the SEA and ICP-MS methods (95% limits of agreement = 0.14 ± 0.13 mmol/L). MAIN LIMITATIONS Clinical effects of LiCl have not been investigated. CONCLUSIONS The LiCl i.v. bolus displayed pharmacokinetics similar to those reported in other species. The SEA displayed acceptable precision but did not agree well with the reference method (ICP-MS). The Summary is available in Spanish - see Supporting Information.
Collapse
Affiliation(s)
- L M Martin
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - A D Bukoski
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - D D Whelchel
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - T J Evans
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - C E Wiedmeyer
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - S J Black
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - P J Johnson
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
41
|
Saxena A, Scaini G, Bavaresco DV, Leite C, Valvassori SS, Carvalho AF, Quevedo J. Role of Protein Kinase C in Bipolar Disorder: A Review of the Current Literature. MOLECULAR NEUROPSYCHIATRY 2017; 3:108-124. [PMID: 29230399 DOI: 10.1159/000480349] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Abstract
Bipolar disorder (BD) is a major health problem. It causes significant morbidity and imposes a burden on the society. Available treatments help a substantial proportion of patients but are not beneficial for an estimated 40-50%. Thus, there is a great need to further our understanding the pathophysiology of BD to identify new therapeutic avenues. The preponderance of evidence pointed towards a role of protein kinase C (PKC) in BD. We reviewed the literature pertinent to the role of PKC in BD. We present recent advances from preclinical and clinical studies that further support the role of PKC. Moreover, we discuss the role of PKC on synaptogenesis and neuroplasticity in the context of BD. The recent development of animal models of BD, such as stimulant-treated and paradoxical sleep deprivation, and the ability to intervene pharmacologically provide further insights into the involvement of PKC in BD. In addition, the effect of PKC inhibitors, such as tamoxifen, in the resolution of manic symptoms in patients with BD further points in that direction. Furthermore, a wide variety of growth factors influence neurotransmission through several molecular pathways that involve downstream effects of PKC. Our current understanding identifies the PKC pathway as a potential therapeutic avenue for BD.
Collapse
Affiliation(s)
- Ashwini Saxena
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Giselli Scaini
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Daniela V Bavaresco
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Camila Leite
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Samira S Valvassori
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - André F Carvalho
- Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| |
Collapse
|
42
|
Morris G, Walder K, Carvalho AF, Tye SJ, Lucas K, Berk M, Maes M. The role of hypernitrosylation in the pathogenesis and pathophysiology of neuroprogressive diseases. Neurosci Biobehav Rev 2017; 84:453-469. [PMID: 28789902 DOI: 10.1016/j.neubiorev.2017.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/02/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
There is a wealth of data indicating that de novo protein S-nitrosylation in general and protein transnitrosylation in particular mediates the bulk of nitric oxide signalling. These processes enable redox sensing and facilitate homeostatic regulation of redox dependent protein signalling, function, stability and trafficking. Increased S-nitrosylation in an environment of increasing oxidative and nitrosative stress (O&NS) is initially a protective mechanism aimed at maintaining protein structure and function. When O&NS becomes severe, mechanisms governing denitrosylation and transnitrosylation break down leading to the pathological state referred to as hypernitrosylation (HN). Such a state has been implicated in the pathogenesis and pathophysiology of several neuropsychiatric and neurodegenerative diseases and we investigate its potential role in the development and maintenance of neuroprogressive disorders. In this paper, we propose a model whereby the hypernitrosylation of a range of functional proteins and enzymes lead to changes in activity which conspire to produce at least some of the core abnormalities contributing to the development and maintenance of pathology in these illnesses.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA152LW, Wales, United Kingdom
| | - Ken Walder
- Deakin University, The Centre for Molecular and Medical Research, School of Medicine, P.O. Box 291, Geelong, 3220, Australia
| | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, 60430-040, Fortaleza, CE, Brazil
| | - Susannah J Tye
- Deakin University, The Centre for Molecular and Medical Research, School of Medicine, P.O. Box 291, Geelong, 3220, Australia; Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, 60430-040, Fortaleza, CE, Brazil; Deakin University, IMPACT Strategic Research Centre, School of Medicine, P.O. Box 281, Geelong, 3220, Australia; Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia
| | - Kurt Lucas
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, P.O. Box 281, Geelong, 3220, Australia; Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia.
| | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, P.O. Box 281, Geelong, 3220, Australia; Department of Psychiatry, Chulalongkorn University, Faculty of Medicine, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
43
|
Leikas JV, Kohtala S, Theilmann W, Jalkanen AJ, Forsberg MM, Rantamäki T. Brief isoflurane anesthesia regulates striatal AKT-GSK3β signaling and ameliorates motor deficits in a rat model of early-stage Parkinson's disease. J Neurochem 2017; 142:456-463. [PMID: 28488766 PMCID: PMC5575520 DOI: 10.1111/jnc.14066] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 01/03/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder primarily affecting the nigrostriatal dopaminergic system. The link between heightened activity of glycogen synthase kinase 3β (GSK3β) and neurodegene-rative processes has encouraged investigation into the potential disease-modifying effects of novel GSK3β inhibitors in experimental models of PD. Therefore, the intriguing ability of several anesthetics to readily inhibit GSK3β within the cortex and hippocampus led us to investigate the effects of brief isoflurane anesthesia on striatal GSK3β signaling in naïve rats and in a rat model of early-stage PD. Deep but brief (20-min) isoflurane anesthesia exposure increased the phosphorylation of GSK3β at the inhibitory Ser9 residue, and induced phosphorylation of AKTThr308 (protein kinase B; negative regulator of GSK3β) in the striatum of naïve rats and rats with unilateral striatal 6-hydroxydopamine (6-OHDA) lesion. The 6-OHDA protocol produced gradual functional deficiency within the nigrostriatal pathway, reflected as a preference for using the limb ipsilateral to the lesioned striatum at 2 weeks post 6-OHDA. Interestingly, such motor impairment was not observed in animals exposed to four consecutive isoflurane treatments (20-min anesthesia every 48 h; treatments started 7 days after 6-OHDA delivery). However, isoflurane had no effect on striatal or nigral tyrosine hydroxylase (a marker of dopaminergic neurons) protein levels. This brief report provides promising results regarding the therapeutic potential and neurobiological mechanisms of anesthetics in experimental models of PD and guides development of novel disease-modifying therapies.
Collapse
Affiliation(s)
- Juuso V. Leikas
- School of Pharmacy (Pharmacology)University of Eastern FinlandKuopioFinland
| | - Samuel Kohtala
- Laboratory of NeurotherapeuticsDivision of Physiology and NeuroscienceDepartment of BiosciencesFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Wiebke Theilmann
- Laboratory of NeurotherapeuticsDivision of Physiology and NeuroscienceDepartment of BiosciencesFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Aaro J. Jalkanen
- School of Pharmacy (Pharmacology)University of Eastern FinlandKuopioFinland
| | - Markus M. Forsberg
- School of Pharmacy (Pharmacology)University of Eastern FinlandKuopioFinland
| | - Tomi Rantamäki
- Laboratory of NeurotherapeuticsDivision of Physiology and NeuroscienceDepartment of BiosciencesFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
44
|
Wang X, Luo C, Cheng X, Lu M. Lithium and an EPAC-specific inhibitor ESI-09 synergistically suppress pancreatic cancer cell proliferation and survival. Acta Biochim Biophys Sin (Shanghai) 2017; 49:573-580. [PMID: 28475672 DOI: 10.1093/abbs/gmx045] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Indexed: 01/03/2023] Open
Abstract
Our previous studies showed that while lithium suppresses proliferation and induces apoptosis in pancreatic cancer cells, the inhibition of exchange proteins directly activated by cyclic adenosine monophosphate (cAMP) (EPAC)1 blocks pancreatic cancer cell migration and invasion. In this study, we further investigated the combinatory effects of lithium and EPAC-specific inhibitor (ESI)-09, an EPAC-specific inhibitor, on pancreatic cancer cell proliferation and viability, and explored whether lithium synergistically cooperates with EPAC inhibition in suppressing pancreatic cancer cell tumorigenicity. The cell viability of pancreatic cancer cell lines PANC-1 and MiaPaCa-2 was measured after 48 h of incubation with different dose combination of lithium and ESI-09. Flow cytometric analysis was carried out to further verify the impact of lithium and ESI-09 upon PANC-1 cell proliferation and apoptosis. To investigate the mechanism that the effects generated by lithium and ESI-09 on PANC-1 cells, the intracellular cAMP level was measured by an ELISA-based cAMP immunoassay. Our data showed that lithium and ESI-09 synergistically inhibit pancreatic cancer cell growth and survival. Furthermore, our results revealed a novel mechanism in which the synergism between lithium and ESI-09 is not mediated by the inhibitory effect of lithium toward GSK3β, but by lithium's ability to suppress cAMP/protein kinase A signaling.
Collapse
Affiliation(s)
- Xinshuo Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Luo
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Meiling Lu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
45
|
Ahmed MM, Block A, Tong S, Davisson MT, Gardiner KJ. Age exacerbates abnormal protein expression in a mouse model of Down syndrome. Neurobiol Aging 2017. [PMID: 28641136 DOI: 10.1016/j.neurobiolaging.2017.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Ts65Dn is a popular mouse model of Down syndrome (DS). It displays DS-relevant features of learning/memory deficits and age-related loss of functional markers in basal forebrain cholinergic neurons. Here we describe protein expression abnormalities in brain regions of 12-month-old male Ts65Dn mice. We show that the magnitudes of abnormalities of human chromosome 21 and non-human chromosome 21 orthologous proteins are greater at 12 months than at ∼6 months. Age-related exacerbations involve the number of components affected in the mechanistic target of rapamycin pathway, the levels of components of the mitogen-activated protein kinase pathway, and proteins associated with Alzheimer's disease. Among brain regions, the number of abnormalities in cerebellum decreased while the number in cortex greatly increased with age. The Ts65Dn is being used in preclinical evaluations of drugs for cognition in DS. Most commonly, drug evaluations are tested in ∼4- to 6-month-old mice. Data on age-related changes in magnitude and specificity of protein perturbations can be used to understand the molecular basis of changes in cognitive ability and to predict potential age-related specificities in drug efficacies.
Collapse
Affiliation(s)
| | - Aaron Block
- Linda Crnic Institute for Down Syndrome, Aurora, CO, USA
| | - Suhong Tong
- School of Public Health, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | | | - Katheleen J Gardiner
- Linda Crnic Institute for Down Syndrome, Aurora, CO, USA; Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, CO, USA; Human Medical Genetics and Genomics, and Neuroscience Programs, University of Colorado Denver School of Medicine, Aurora, CO, USA.
| |
Collapse
|
46
|
Abstract
Originally thought to be nondruggable, kinases represent attractive drug targets for pharmaceutical companies and academia. To date, there are over 40 kinase inhibitors approved by the US FDA, with 32 of these being small molecules, in addition to the three mammalian target of rapamycin inhibitor macrolides (sirolimus, temsirolimus and everolimus). Despite the rapid development of kinase inhibitors for cancer, presently none of these agents are approved for CNS indications. This mini perspective highlights selected kinase targets for CNS disorders, of which brain-permeable small-molecule inhibitors are reported, with demonstrated preclinical proof-of-concept efficacy. This is followed by a brief discussion on the key challenges of blood–brain barrier penetration and selectivity profiles in developing kinase inhibitors for CNS disorders.
Collapse
|
47
|
Mulligan KA, Cheyette BNR. Neurodevelopmental Perspectives on Wnt Signaling in Psychiatry. MOLECULAR NEUROPSYCHIATRY 2017; 2:219-246. [PMID: 28277568 DOI: 10.1159/000453266] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mounting evidence indicates that Wnt signaling is relevant to pathophysiology of diverse mental illnesses including schizophrenia, bipolar disorder, and autism spectrum disorder. In the 35 years since Wnt ligands were first described, animal studies have richly explored how downstream Wnt signaling pathways affect an array of neurodevelopmental processes and how their disruption can lead to both neurological and behavioral phenotypes. Recently, human induced pluripotent stem cell (hiPSC) models have begun to contribute to this literature while pushing it in increasingly translational directions. Simultaneously, large-scale human genomic studies are providing evidence that sequence variation in Wnt signal pathway genes contributes to pathogenesis in several psychiatric disorders. This article reviews neurodevelopmental and postneurodevelopmental functions of Wnt signaling, highlighting mechanisms, whereby its disruption might contribute to psychiatric illness, and then reviews the most reliable recent genetic evidence supporting that mutations in Wnt pathway genes contribute to psychiatric illness. We are proponents of the notion that studies in animal and hiPSC models informed by the human genetic data combined with the deep knowledge base and tool kits generated over the last several decades of basic neurodevelopmental research will yield near-term tangible advances in neuropsychiatry.
Collapse
Affiliation(s)
- Kimberly A Mulligan
- Department of Biological Sciences, California State University, Sacramento, CA, USA
| | - Benjamin N R Cheyette
- Department of Psychiatry, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
48
|
Lithium increases synaptic GluA2 in hippocampal neurons by elevating the δ-catenin protein. Neuropharmacology 2016; 113:426-433. [PMID: 27793771 DOI: 10.1016/j.neuropharm.2016.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 09/16/2016] [Accepted: 10/24/2016] [Indexed: 01/22/2023]
Abstract
Lithium (Li+) is a drug widely employed for treating bipolar disorder, however the mechanism of action is not known. Here we study the effects of Li+ in cultured hippocampal neurons on a synaptic complex consisting of δ-catenin, a protein associated with cadherins whose mutation is linked to autism, and GRIP, an AMPA receptor (AMPAR) scaffolding protein, and the AMPAR subunit, GluA2. We show that Li+ elevates the level of δ-catenin in cultured neurons. δ-catenin binds to the ABP and GRIP proteins, which are synaptic scaffolds for GluA2. We show that Li+ increases the levels of GRIP and GluA2, consistent with Li+-induced elevation of δ-catenin. Using GluA2 mutants, we show that the increase in surface level of GluA2 requires GluA2 interaction with GRIP. The amplitude but not the frequency of mEPSCs was also increased by Li+ in cultured hippocampal neurons, confirming a functional effect and consistent with AMPAR stabilization at synapses. Furthermore, animals fed with Li+ show elevated synaptic levels of δ-catenin, GRIP, and GluA2 in the hippocampus, also consistent with the findings in cultured neurons. This work supports a model in which Li+ stabilizes δ-catenin, thus elevating a complex consisting of δ-catenin, GRIP and AMPARs in synapses of hippocampal neurons. Thus, the work suggests a mechanism by which Li+ can alter brain synaptic function that may be relevant to its pharmacologic action in treatment of neurological disease.
Collapse
|
49
|
Misztal K, Brozko N, Nagalski A, Szewczyk LM, Krolak M, Brzozowska K, Kuznicki J, Wisniewska MB. TCF7L2 mediates the cellular and behavioral response to chronic lithium treatment in animal models. Neuropharmacology 2016; 113:490-501. [PMID: 27793772 DOI: 10.1016/j.neuropharm.2016.10.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 11/15/2022]
Abstract
The mechanism of lithium's therapeutic action remains obscure, hindering the discovery of safer treatments for bipolar disorder. Lithium can act as an inhibitor of the kinase GSK3α/β, which in turn negatively regulates β-catenin, a co-activator of LEF1/TCF transcription factors. However, unclear is whether therapeutic levels of lithium activate β-catenin in the brain, and whether this activation could have a therapeutic significance. To address this issue we chronically treated mice with lithium. Although the level of non-phospho-β-catenin increased in all of the brain areas examined, β-catenin translocated into cellular nuclei only in the thalamus. Similar results were obtained when thalamic and cortical neurons were treated with a therapeutically relevant concentration of lithium in vitro. We tested if TCF7L2, a member of LEF1/TCF family that is highly expressed in the thalamus, facilitated the activation of β-catenin. Silencing of Tcf7l2 in thalamic neurons prevented β-catenin from entering the nucleus, even when the cells were treated with lithium. Conversely, when Tcf7l2 was ectopically expressed in cortical neurons, β-catenin shifted to the nucleus, and lithium augmented this process. Lastly, we silenced tcf7l2 in zebrafish and exposed them to lithium for 3 days, to evaluate whether TCF7L2 is involved in the behavioral response. Lithium decreased the dark-induced activity of control zebrafish, whereas the activity of zebrafish with tcf7l2 knockdown was unaltered. We conclude that therapeutic levels of lithium activate β-catenin selectively in thalamic neurons. This effect is determined by the presence of TCF7L2, and potentially contributes to the therapeutic response.
Collapse
Affiliation(s)
- Katarzyna Misztal
- International Institute of Molecular and Cell Biology, Laboratory of Neurodegeneration, Warsaw, Poland
| | - Nikola Brozko
- International Institute of Molecular and Cell Biology, Laboratory of Neurodegeneration, Warsaw, Poland; University of Warsaw, Centre of New Technologies, Laboratory of Molecular Neurobiology, Poland; Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Andrzej Nagalski
- International Institute of Molecular and Cell Biology, Laboratory of Neurodegeneration, Warsaw, Poland; University of Warsaw, Centre of New Technologies, Laboratory of Molecular Neurobiology, Poland
| | - Lukasz M Szewczyk
- International Institute of Molecular and Cell Biology, Laboratory of Neurodegeneration, Warsaw, Poland; Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Marta Krolak
- University of Warsaw, College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, Poland
| | - Katarzyna Brzozowska
- International Institute of Molecular and Cell Biology, Laboratory of Neurodegeneration, Warsaw, Poland; University of Warsaw, Centre of New Technologies, Laboratory of Molecular Neurobiology, Poland; Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Jacek Kuznicki
- International Institute of Molecular and Cell Biology, Laboratory of Neurodegeneration, Warsaw, Poland
| | - Marta B Wisniewska
- International Institute of Molecular and Cell Biology, Laboratory of Neurodegeneration, Warsaw, Poland; University of Warsaw, Centre of New Technologies, Laboratory of Molecular Neurobiology, Poland.
| |
Collapse
|
50
|
Malhi GS, Outhred T. Therapeutic Mechanisms of Lithium in Bipolar Disorder: Recent Advances and Current Understanding. CNS Drugs 2016; 30:931-49. [PMID: 27638546 DOI: 10.1007/s40263-016-0380-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lithium is the most effective and well established treatment for bipolar disorder, and it has a broad array of effects within cellular pathways. However, the specific processes through which therapeutic effects occur and are maintained in bipolar disorder remain unclear. This paper provides a timely update to an authoritative review of pertinent findings that was published in CNS Drugs in 2013. A literature search was conducted using the Scopus database, and was limited by year (from 2012). There has been a resurgence of interest in lithium therapy mechanisms, perhaps driven by technical advancements in recent years that permit the examination of cellular mechanisms underpinning the effects of lithium-along with the reuptake of lithium in clinical practice. Recent research has further cemented glycogen synthase kinase 3β (GSK3β) inhibition as a key mechanism, and the inter-associations between GSK3β-mediated neuroprotective, anti-oxidative and neurotransmission mechanisms have been further elucidated. In addition to highly illustrative cellular research, studies examining higher-order biological systems, such as circadian rhythms, as well as employing innovative animal and human models, have increased our understanding of how lithium-induced changes at the cellular level possibly translate to changes at behavioural and clinical levels. Neural circuitry research is yet to identify clear mechanisms of change in bipolar disorder in response to treatment with lithium, but important structural findings have demonstrated links to the modulation of cellular mechanisms, and peripheral marker and pharmacogenetic studies are showing promising findings that will likely inform the exploration for predictors of lithium treatment response. With a deeper understanding of lithium's therapeutic mechanisms-from the cellular to clinical levels of investigation-comes the opportunity to develop predictive models of lithium treatment response and identify novel drug targets, and recent findings have provided important leads towards these goals.
Collapse
Affiliation(s)
- Gin S Malhi
- Academic Department of Psychiatry, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia. .,Sydney Medical School Northern, The University of Sydney, Sydney, NSW, 2006, Australia. .,CADE Clinic Level 3, Main Hospital Building, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia.
| | - Tim Outhred
- Academic Department of Psychiatry, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia.,Sydney Medical School Northern, The University of Sydney, Sydney, NSW, 2006, Australia.,CADE Clinic Level 3, Main Hospital Building, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia
| |
Collapse
|