1
|
Wen X, Lee CW, Kim S, Hwang JU, Choi YH, Han SK, Lee E, Yoon TH, Cha DG, Lee S, Son H, Son J, Jung SH, Lee J, Lim H, Chen H, Kim JK, Kwak JM. MYB74 transcription factor guides de novo specification of epidermal cells in the abscission zone of Arabidopsis. NATURE PLANTS 2025; 11:849-860. [PMID: 40181105 DOI: 10.1038/s41477-025-01976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
The waxy cuticle layer is crucial for plant defence, growth and survival, and is produced by epidermal cells, which were thought to be specified only during embryogenesis. New surface cells are exposed during abscission, by which leaves, fruits, flowers and seeds are shed. Recent work has shown that nonepidermal residuum cells (RECs) can accumulate a protective cuticle layer after abscission, implying the potential de novo specification of epidermal cells by transdifferentiation. However, it remains unknown how this process occurs and what advantage this mechanism may offer over the other surface protection alternative, the wound healing pathways. Here we followed this transdifferentiation process with single-cell RNA sequencing analysis of RECs, showing that nonepidermal RECs transdifferentiate into epidermal cells through three distinct stages. During this vulnerable process, which involves a transient period when the protective layer is not yet formed, stress genes that protect the plant from environmental exposure are expressed before epidermis formation, ultimately facilitating cuticle development. We identify a central role for the transcription factor MYB74 in directing the transdifferentiation. In contrast to alternative protective mechanisms, our results suggest that de novo epidermal specification supports the subsequent growth of fruit at the abscission site. Altogether, we reveal a developmental programme by which plants use a transdifferentiation pathway to protect the plant while promoting growth.
Collapse
Affiliation(s)
- Xiaohong Wen
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Chan Woong Lee
- Department of Life Science, POSTECH, Pohang, Republic of Korea
| | - Seonghwan Kim
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Jae-Ung Hwang
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Science, POSTECH, Pohang, Republic of Korea
| | - Soon-Ki Han
- Department of Biological Science, Ajou University, Suwon, Republic of Korea
| | - Eunmin Lee
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Taek-Han Yoon
- Department of New Biology, DGIST, Daegu, Republic of Korea
- Aptamer Sciences Inc., Seongnam, Republic of Korea
| | - Dong Gon Cha
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Seulbee Lee
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Heejeong Son
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Jiwon Son
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Su Hyun Jung
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Jiyoun Lee
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Heejin Lim
- Department of New Biology, DGIST, Daegu, Republic of Korea
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Huize Chen
- Department of New Biology, DGIST, Daegu, Republic of Korea
- Shanxi Key Laboratory of Plant Macromolecules Stress Response, Taiyuan, People's Republic of China
- School of Life Sciences, Shanxi Normal University, Taiyuan, People's Republic of China
| | - Jong Kyoung Kim
- Department of Life Science, POSTECH, Pohang, Republic of Korea.
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea.
| | - June M Kwak
- Department of New Biology, DGIST, Daegu, Republic of Korea.
- New Biology Research Center, DGIST, Daegu, Republic of Korea.
- Center for Cell Fate Reprogramming and Control, DGIST, Daegu, Republic of Korea.
| |
Collapse
|
2
|
Tan Z, Wang Y, Liu Y, Jiang H, Li Y, Zhong X, Zhuang L, Yang Z, Zhang X, Huang B. Transcriptional Regulation Mechanisms in AsAFL1-mediated Drought Tolerance for Creeping Bentgrass (Agrostis stolonifera). PHYSIOLOGIA PLANTARUM 2025; 177:e70225. [PMID: 40257002 DOI: 10.1111/ppl.70225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/24/2025] [Accepted: 04/06/2025] [Indexed: 04/22/2025]
Abstract
Drought stress is a major environmental stress that impairs plant growth and development. The At14a-like1 (AFL1) gene encodes a stress-induced membrane protein involved in endocytosis, signal transduction, and proline accumulation. The objective of the present study was to investigate biological functions and underlying mechanisms of AFL1 regulation of drought tolerance in a perennial grass species, creeping bentgrass (Agrostis stolonifera). AsAFL1 was cloned from creeping bentgrass, and its expression was induced by drought stress. Motif analysis showed that AsAFL1 has five epidermal growth factor structural domains and one β1-integrin structural domain. Transient expression in tobacco epidermal cells indicated that AsAFL1 was localized at the plasma membrane. Overexpression of AsAFL1 in creeping bentgrass significantly enhanced drought tolerance, as manifested by significantly increased leaf relative water content, chlorophyll and proline contents but lower electrolyte leakage and malondialdehyde content. Comparative transcriptomic and weighted correlation network analysis (WGCNA) revealed that AsAFL1-mediated drought tolerance was related to transcriptional regulation of genes involved in phytohormone (abscisic acid, auxin, and strigolactone) biosynthesis and signaling, redox homeostasis, and biosynthesis of second metabolites (lignin, cutin, suberin and wax), as well as nutrient transport and mobilization.
Collapse
Affiliation(s)
- Zhenzhen Tan
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yiting Wang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yu Liu
- School of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| | - Hengyue Jiang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Ya Li
- Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
| | - Xiaoxian Zhong
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lili Zhuang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Zhimin Yang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Xiaxiang Zhang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Bingru Huang
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
3
|
Kosma DK, Graça J, Molina I. Update on the structure and regulated biosynthesis of the apoplastic polymers cutin and suberin. PLANT PHYSIOLOGY 2025; 197:kiae653. [PMID: 39657911 DOI: 10.1093/plphys/kiae653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
The plant lipid polymers cutin and suberin play a critical role in many aspects of plant growth, development, and physiology. The mechanisms of cutin and suberin biosynthesis are relatively well understood thanks to just over 2 decades of work with primarily Arabidopsis (Arabidopsis thaliana) mutants. Recent advances in our understanding of cutin and suberin structure have arisen through the application of novel chemistries targeted at quantitative comprehension of intermolecular linkages, isolating intact suberins and cutins, and the application of advanced analytical techniques. The advent of high-throughput transcription factor binding assays and next-generation sequencing has facilitated the discovery of numerous cutin and suberin-regulating transcription factors and their gene promoter targets. Herein we provide an overview of aspects of cutin and suberin structure, biosynthesis, and transcriptional regulation of their synthesis highlighting recent developments in our understanding of these facets of cutin and suberin biology. We further identify outstanding questions in these respective areas and provide perspectives on how to advance the field to address these questions.
Collapse
Affiliation(s)
- Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89501, USA
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV 89501, USA
| | - José Graça
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Isabel Molina
- Department of Biology, Algoma University, Sault Ste. Marie, ON, Canada P6A 2G4
| |
Collapse
|
4
|
Tran AD, Cho K, Han O. Rice peroxygenase catalyzes lipoxygenase-dependent regiospecific epoxidation of lipid peroxides in the response to abiotic stressors. Bioorg Chem 2023; 131:106285. [PMID: 36450198 DOI: 10.1016/j.bioorg.2022.106285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
The peroxygenase pathway plays pivotal roles in plant responses to oxidative stress and other environmental stressors. Analysis of a network of co-expressed stress-regulated rice genes demonstrated that expression of OsPXG9 is negatively correlated with expression of genes involved in jasmonic acid biosynthesis. DNA sequence analysis and structure/function studies reveal that OsPXG9 is a caleosin-like peroxygenase with amphipathic α-helices that localizes to lipid droplets in rice cells. Enzymatic studies demonstrate that 12-epoxidation is slightly more favorable with 9(S)-hydroperoxyoctadecatrienoic acid than with 9(S)-hydroperoxyoctadecadienoic acid as substrate. The products of 12-epoxidation are labile, and the epoxide ring is hydrolytically cleaved into corresponding trihydroxy compounds. On the other hand, OsPXG9 catalyzed 15-epoxidation of 13(S)-hydroperoxyoctadecatrienoic acid generates a relatively stable epoxide product. Therefore, the regiospecific 12- or 15-epoxidation catalyzed by OsPXG9 strongly depends on activation of the 9- or 13- peroxygenase reaction pathways, with their respective preferred substrates. The relative abundance of products in the 9-PXG and 13-PXG pathways suggest that the 12-epoxidation involves intramolecular oxygen transfer while the 15-epoxidation can proceed via intramolecular or intermolecular oxygen transfer. Expression of OsPXG9 is up-regulated by abiotic stimuli such as drought and salt stress, but it is down-regulated by biotic stimuli such as flagellin 22 and salicylic acid. The results suggest that the primary function of OsPXG9 is to modulate the level of lipid peroxides to facilitate effective defense responses to abiotic and biotic stressors.
Collapse
Affiliation(s)
- Anh Duc Tran
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyoungwon Cho
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Oksoo Han
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
5
|
Ghanbari Moheb Seraj R, Tohidfar M, Azimzadeh Irani M, Esmaeilzadeh-Salestani K, Moradian T, Ahmadikhah A, Behnamian M. Metabolomics analysis of milk thistle lipids to identify drought-tolerant genes. Sci Rep 2022; 12:12827. [PMID: 35896570 PMCID: PMC9329356 DOI: 10.1038/s41598-022-16887-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Milk thistle is an oil and medicinal crop known as an alternative oil crop with a high level of unsaturated fatty acids, which makes it a favorable edible oil for use in food production. To evaluate the importance of Milk thistle lipids in drought tolerance, an experiment was performed in field conditions under three different water deficit levels (Field capacity (FC), 70% FC and 40% FC). After harvesting seeds of the plant, their oily and methanolic extracts were isolated, and subsequently, types and amounts of lipids were measured using GC-MS. Genes and enzymes engaged in biosynthesizing of these lipids were identified and their expression in Arabidopsis was investigated under similar conditions. The results showed that content of almost all measured lipids of milk thistle decreased under severe drought stress, but genes (belonged to Arabidopsis), which were involved in their biosynthetic pathway showed different expression patterns. Genes biosynthesizing lipids, which had significant amounts were selected and their gene and metabolic network were established. Two networks were correlated, and for each pathway, their lipids and respective biosynthesizing genes were grouped together. Four up-regulated genes including PXG3, LOX2, CYP710A1, PAL and 4 down-regulated genes including FATA2, CYP86A1, LACS3, PLA2-ALPHA were selected. The expression of these eight genes in milk thistle was similar to Arabidopsis under drought stress. Thus, PXG3, PAL, LOX2 and CYP86A1 genes that increased expression were selected for protein analysis. Due to the lack of protein structure of these genes in the milk thistle, modeling homology was performed for them. The results of molecular docking showed that the four proteins CYP86A1, LOX2, PAL and PXG3 bind to ligands HEM, 11O, ACT and LIG, respectively. HEM ligand was involved in production of secondary metabolites and dehydration tolerance, and HEM binding site remained conserved in various plants. CA ligands were involved in synthesis of cuticles and waxes. Overall, this study confirmed the importance of lipids in drought stress tolerance in milk thistle.
Collapse
Affiliation(s)
- Rahele Ghanbari Moheb Seraj
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Masoud Tohidfar
- Department of Plant Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | | | - Keyvan Esmaeilzadeh-Salestani
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, 51014, Tartu, Estonia
| | - Toktam Moradian
- Department of Horticultural Sciences, Islamic Azad University, Shirvan Branch, Shirvan, Iran
| | - Asadollah Ahmadikhah
- Department of Plant Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mahdi Behnamian
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
6
|
Liu J, Dong L, Duan R, Hu L, Zhao Y, Zhang L, Wang X. Transcriptomic Analysis Reveals the Regulatory Networks and Hub Genes Controlling the Unsaturated Fatty Acid Contents of Developing Seed in Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:876371. [PMID: 35646018 PMCID: PMC9134122 DOI: 10.3389/fpls.2022.876371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
Soybean [Glycine max (L.) Merr.] is one of the most important crops, which produces about 25% of the world's edible oil. The nutritional value of soybean oil depends mostly on the relative contents of three unsaturated fatty acids (UFAs), i.e., oleic acid, linoleic acid (LA), and linolenic acid. However, the biosynthetic mechanism of UFAs remains largely unknown, and there are few studies on RNA-seq analysis of developing seeds. To identify the candidate genes and related pathways involved in the regulation of UFA contents during seed development in soybean, two soybean lines with different UFA profiles were selected from 314 cultivars and landraces originated from Southern China, and RNA-seq analysis was performed in soybean seeds at three developmental stages. Using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, a series of genes and pathways related to fatty acid metabolism were identified, and 40 days after flowering (DAF) was found to be the crucial period in the formation of UFA profiles. Further, weighted gene co-expression network analysis identified three modules with six genes whose functions were highly associated with the contents of oleic and LA. The detailed functional investigation of the networks and hub genes could further improve the understanding of the underlying molecular mechanism of UFA contents and might provide some ideas for the improvement in fatty acids profiles in soybean.
Collapse
Affiliation(s)
- Junqi Liu
- School of Agriculture, Yunnan University, Kunming, China
| | - Liang Dong
- School of Agriculture, Yunnan University, Kunming, China
| | - Runqing Duan
- School of Agriculture, Yunnan University, Kunming, China
| | - Li Hu
- School of Agriculture, Yunnan University, Kunming, China
| | - Yinyue Zhao
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Liang Zhang
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xianzhi Wang
- School of Agriculture, Yunnan University, Kunming, China
| |
Collapse
|
7
|
Gene Co-Expression Analysis Reveals Transcriptome Divergence between Wild and Cultivated Sugarcane under Drought Stress. Int J Mol Sci 2022; 23:ijms23010569. [PMID: 35008994 PMCID: PMC8745624 DOI: 10.3390/ijms23010569] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 02/01/2023] Open
Abstract
Drought is the main abiotic stress that constrains sugarcane growth and production. To understand the molecular mechanisms that govern drought stress, we performed a comprehensive comparative analysis of physiological changes and transcriptome dynamics related to drought stress of highly drought-resistant (ROC22, cultivated genotype) and weakly drought-resistant (Badila, wild genotype) sugarcane, in a time-course experiment (0 h, 4 h, 8 h, 16 h and 32 h). Physiological examination reviewed that ROC22, which shows superior drought tolerance relative to Badila, has high performance photosynthesis and better anti-oxidation defenses under drought conditions. The time series dataset enabled the identification of important hubs and connections of gene expression networks. We identified 36,956 differentially expressed genes (DEGs) in response to drought stress. Of these, 15,871 DEGs were shared by the two genotypes, and 16,662 and 4423 DEGs were unique to ROC22 and Badila, respectively. Abscisic acid (ABA)-activated signaling pathway, response to water deprivation, response to salt stress and photosynthesis-related processes showed significant enrichment in the two genotypes under drought stress. At 4 h of drought stress, ROC22 had earlier stress signal transduction and specific up-regulation of the processes response to ABA, L-proline biosynthesis and MAPK signaling pathway–plant than Badila. WGCNA analysis used to compile a gene regulatory network for ROC22 and Badila leaves exposed to drought stress revealed important candidate genes, including several classical transcription factors: NAC87, JAMYB, bHLH84, NAC21/22, HOX24 and MYB102, which are related to some antioxidants and trehalose, and other genes. These results provide new insights and resources for future research and cultivation of drought-tolerant sugarcane varieties.
Collapse
|
8
|
Kirtil E, Aydogdu A, Svitova T, Radke CJ. Assessment of the performance of several novel approaches to improve physical properties of guar gum based biopolymer films. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Hanano A, Shaban M, Murphy DJ. Functional involvement of caleosin/peroxygenase PdPXG4 in the accumulation of date palm leaf lipid droplets after exposure to dioxins. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 281:116966. [PMID: 33799204 DOI: 10.1016/j.envpol.2021.116966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Dioxins are highly injurious environmental pollutants with proven toxicological effects on both animals and humans, but to date their effects on plants still need to be studied in detail. We identified a dioxin-inducible caleosin/peroxygenase isoform, PdPXG4, that is mostly expressed in leaves of date palm seedlings and exhibits a specific reductase activity towards the 13-hydroperoxide of C18:2 and C18:3 (HpODE and HpOTrE, respectively). After exposure to TCDD, lipid droplets (LDs) isolated from TCDD-exposed leaves were about 6.5-15.7-fold more active in metabolizing 13-HpOTrE compared with those isolated from non-exposed leaves. A characteristic spectrum of leaf dioxin-responsive oxylipins (LDROXYL) was detected in dioxin-exposed seedlings. Of particular importance, a group of these oxylipins, referred to as Class I, comprising six congeners of hydroxides fatty acids derived from C18:2 and C18:3, was exclusively found in leaves after exposure to TCDD. The TCDD-induced oxylipin pattern was confirmed in vitro using terbufos, a typical inhibitor towards the PdPXG4 peroxygenase activity. Of particular interest, the response of terbufos-pretreated protoplasts to TCDD was drastically reduced. Together, these findings suggest that PdPXG4 is implicated in the establishment of a dioxin-specific oxylipin signature in date palm leaves soon after their exposure to these pollutants.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria.
| | - Mouhnad Shaban
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria.
| | - Denis J Murphy
- Genomics and Computational Biology Research Group, University of South Wales, NP7 7ET, United Kingdom.
| |
Collapse
|
10
|
Demonsais L, Utz‐Pugin A, Loubéry S, Lopez‐Molina L. Identification of tannic cell walls at the outer surface of the endosperm upon Arabidopsis seed coat rupture. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:567-580. [PMID: 32985026 PMCID: PMC7702108 DOI: 10.1111/tpj.14994] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/26/2020] [Accepted: 09/11/2020] [Indexed: 05/02/2023]
Abstract
The seed coat is specialized dead tissue protecting the plant embryo from mechanical and oxidative damage. Tannins, a type of flavonoids, are antioxidants known to accumulate in the Arabidopsis seed coat and transparent testa mutant seeds, deficient in flavonoid synthesis, exhibit low viability. However, their precise contribution to seed coat architecture and biophysics remains evasive. A seed coat cuticle, covering the endosperm outer surface and arising from the seed coat inner integument 1 cell layer was, intriguingly, previously shown to be more permeable in transparent testa mutants deficient not in cuticular component synthesis, but rather in flavonoid synthesis. Investigating the role of flavonoids in cuticle permeability led us to identify periclinal inner integument 1 tannic cell walls being attached, together with the cuticle, to the endosperm surface upon seed coat rupture. Hence, inner integument 1 tannic cell walls and the cuticle form two fused layers present at the surface of the exposed endosperm upon seed coat rupture, regulating its permeability. Their potential physiological role during seed germination is discussed.
Collapse
Affiliation(s)
- Lara Demonsais
- Department of Botany and Plant BiologyUniversity of GenevaGenevaSwitzerland
| | - Anne Utz‐Pugin
- Department of Botany and Plant BiologyUniversity of GenevaGenevaSwitzerland
| | - Sylvain Loubéry
- Department of Botany and Plant BiologyUniversity of GenevaGenevaSwitzerland
| | - Luis Lopez‐Molina
- Department of Botany and Plant BiologyUniversity of GenevaGenevaSwitzerland
- Institute of Genetics and Genomics in Geneva (iGE3)University of GenevaGenevaSwitzerland
| |
Collapse
|
11
|
Xiao S, Liu L, Zhang Y, Sun H, Zhang K, Bai Z, Dong H, Liu Y, Li C. Tandem mass tag-based (TMT) quantitative proteomics analysis reveals the response of fine roots to drought stress in cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2020; 20:328. [PMID: 32652934 PMCID: PMC7353779 DOI: 10.1186/s12870-020-02531-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/26/2020] [Indexed: 05/29/2023]
Abstract
BACKGROUND Cotton (Gossypium hirsutum L.) is one of the most important cash crops worldwide. Fine roots are the central part of the root system that contributes to plant water and nutrient uptake. However, the mechanisms underlying the response of cotton fine roots to soil drought remains unclear. To elucidate the proteomic changes in fine roots of cotton plants under drought stress, 70-75% and 40-45% soil relative water content treatments were imposed on control (CK) and drought stress (DS) groups, respectively. Then, tandem mass tags (TMT) technology was used to determine the proteome profiles of fine root tissue samples. RESULTS Drought significantly decreased the value of average root diameter of cotton seedlings, whereas the total root length and the activities of antioxidases were increased. To study the molecular mechanisms underlying drought response further, the proteome differences between tissues under CK and DS treatments were compared pairwise at 0, 30, and 45 DAD (days after drought stress). In total, 118 differentially expressed proteins (DEPs) were up-regulated and 105 were down-regulated in the 'DS30 versus CK30' comparison; 662 DEPs were up-regulated, and 611 were down-regulated in the 'DS45 versus CK45' comparison. The functions of these DEPs were classified according to their pathways. Under early stage drought (30 DAD), some DEPs involved in the 'Cutin, suberin, and wax synthesis' pathway were up-regulated, while the down-regulated DEPs were mainly enriched within the 'Monoterpenoid biosynthesis' pathway. Forty-five days of soil drought had a greater impact on DEPs involved in metabolism. Many proteins involving 'Carbohydrate metabolism,' 'Energy metabolism,' 'Fatty acid metabolism,' 'Amino acid metabolism,' and 'Secondary metabolite biosynthesis' were identified as DEPs. Additionally, proteins related to ion transport, stress/defense, and phytohormones were also shown to play roles in determining the fine root growth of cotton plants under drought stress. CONCLUSIONS Our study identified potential biological pathways and drought-responsive proteins related to stress/defense responses and plant hormone metabolism under drought stress. Collectively, our results provide new insights for further improving drought tolerance in cotton and other crops.
Collapse
Affiliation(s)
- Shuang Xiao
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of HeBei Province, Baoding, 071001, Hebei, China
| | - Liantao Liu
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of HeBei Province, Baoding, 071001, Hebei, China
| | - Yongjiang Zhang
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of HeBei Province, Baoding, 071001, Hebei, China
| | - Hongchun Sun
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of HeBei Province, Baoding, 071001, Hebei, China
| | - Ke Zhang
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of HeBei Province, Baoding, 071001, Hebei, China
| | - Zhiying Bai
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of HeBei Province, Baoding, 071001, Hebei, China
| | - Hezhong Dong
- Cotton Research Center/ Key Laboratory of Cotton Breeding and Cultivation in Huang-huai-hai Plain, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Yuchun Liu
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of HeBei Province, Baoding, 071001, Hebei, China
| | - Cundong Li
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of HeBei Province, Baoding, 071001, Hebei, China.
| |
Collapse
|
12
|
Diarte C, Lai PH, Huang H, Romero A, Casero T, Gatius F, Graell J, Medina V, East A, Riederer M, Lara I. Insights Into Olive Fruit Surface Functions: A Comparison of Cuticular Composition, Water Permeability, and Surface Topography in Nine Cultivars During Maturation. FRONTIERS IN PLANT SCIENCE 2019; 10:1484. [PMID: 31798618 PMCID: PMC6878217 DOI: 10.3389/fpls.2019.01484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/25/2019] [Indexed: 05/02/2023]
Abstract
Olive (Olea europaea L.) growing has outstanding economic relevance in Spain, the main olive oil producer and exporter in the world. Fruit skin properties are very relevant for fruit and oil quality, water loss, and susceptibility to mechanical damage, rots, and infestations, but limited research focus has been placed on the cuticle of intact olive fruit. In this work, fruit samples from nine olive cultivars ("Arbequina," "Argudell," "Empeltre," "Farga," "Manzanilla," "Marfil," "Morrut," "Picual," and "Sevillenca") were harvested from an experimental orchard at three different ripening stages (green, turning, and ripe), and cuticular membranes were enzymatically isolated from fruit skin. The total contents of cuticular wax and cutin significantly differed among cultivars both in absolute and in relative terms. The wax to cutin ratio generally decreased along fruit maturation, with the exception of "Marfil" and "Picual." In contrast, increased water permeance values in ripe fruit were observed uniquely for "Argudell," "Morrut," and "Marfil" fruit. The toluidine blue test revealed surface discontinuities on green samples of "Argudell," "Empeltre," "Manzanilla," "Marfil," and "Sevillenca" fruit, but not on "Arbequina," "Farga," "Morrut," or "Picual." No apparent relationship was found between water permeability and total wax coverage or the results of the toluidine blue test. The composition of cuticular waxes and cutin monomers was analyzed in detail, and sections of fruit pericarp were stained in Sudan IV for microscopy observations. Skin surface topography was also studied by means of fringe projection, showing large differences in surface roughness among the cultivars, "Farga" and "Morrut" fruits displaying the most irregular surfaces. Cultivar-related differences in cuticle and surface features of fruit are presented and discussed.
Collapse
Affiliation(s)
- Clara Diarte
- Universitat de Lleida, Lleida, Spain
- Postharvest Unit-XaRTA, AGROTÈCNIO, Lleida, Spain
| | - Po-Han Lai
- Massey Agrifood Technology Partnership, Massey University, Palmerston North, New Zealand
| | - Hua Huang
- Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Würzburg, Germany
| | - Agustí Romero
- Oliviculture, Oil Science and Nuts, IRTA-Mas de Bover, Constantí, Spain
| | | | | | - Jordi Graell
- Universitat de Lleida, Lleida, Spain
- Postharvest Unit-XaRTA, AGROTÈCNIO, Lleida, Spain
| | - Vicente Medina
- Universitat de Lleida, Lleida, Spain
- Applied Plant Biotechnology, AGROTÈCNIO, Lleida, Spain
| | - Andrew East
- Massey Agrifood Technology Partnership, Massey University, Palmerston North, New Zealand
| | - Markus Riederer
- Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Würzburg, Germany
| | - Isabel Lara
- Universitat de Lleida, Lleida, Spain
- Postharvest Unit-XaRTA, AGROTÈCNIO, Lleida, Spain
| |
Collapse
|
13
|
Hou C, Saunders RMK, Deng N, Wan T, Su Y. Pollination Drop Proteome and Reproductive Organ Transcriptome Comparison in Gnetum Reveals Entomophilous Adaptation. Genes (Basel) 2019; 10:E800. [PMID: 31614866 PMCID: PMC6826882 DOI: 10.3390/genes10100800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022] Open
Abstract
Gnetum possesses morphologically bisexual but functionally unisexual reproductive structures that exude sugary pollination drops to attract insects. Previous studies have revealed that the arborescent species (G. gnemon L.) and the lianoid species (G. luofuense C.Y.Cheng) possess different pollination syndromes. This study compared the proteome in the pollination drops of these two species using label-free quantitative techniques. The transcriptomes of fertile reproductive units (FRUs) and sterile reproductive units (SRUs) for each species were furthermore compared using Illumina Hiseq sequencing, and integrated proteomic and transcriptomic analyses were subsequently performed. Our results show that the differentially expressed proteins between FRUs and SRUs were involved in carbohydrate metabolism, the biosynthesis of amino acids and ovule defense. In addition, the differentially expressed genes between the FRUs and SRUs (e.g., MADS-box genes) were engaged in reproductive development and the formation of pollination drops. The integrated protein-transcript analyses revealed that FRUs and their exudates were relatively conservative while the SRUs and their exudates were more diverse, probably functioning as pollinator attractants. The evolution of reproductive organs appears to be synchronized with changes in the pollination drop proteome of Gnetum, suggesting that insect-pollinated adaptations are not restricted to angiosperms but also occur in gymnosperms.
Collapse
Affiliation(s)
- Chen Hou
- School of Life Sciences, Sun Yat-Sen University, Xingangxi Road No. 135, Guangzhou 510275, China.
| | - Richard M K Saunders
- Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Nan Deng
- Institute of Ecology, Hunan Academy of Forestry, Shaoshannan Road, No. 6581, Changsha 410004, China.
- Hunan Cili Forest Ecosystem State Research Station, Cili 427200, China.
| | - Tao Wan
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Liantangxianhu Road, No. 160, Shenzhen 518004, China.
- Sino-Africa Joint Research Centre, Chinese Academy of Science, Moshan, Wuhan 430074, China.
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-Sen University, Xingangxi Road No. 135, Guangzhou 510275, China.
| |
Collapse
|
14
|
Identification of a dioxin-responsive oxylipin signature in roots of date palm: involvement of a 9-hydroperoxide fatty acid reductase, caleosin/peroxygenase PdPXG2. Sci Rep 2018; 8:13181. [PMID: 30181584 PMCID: PMC6123484 DOI: 10.1038/s41598-018-31342-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 07/17/2018] [Indexed: 01/02/2023] Open
Abstract
Dioxins are highly hazardous pollutants that have well characterized impacts on both animal and human health. However, the biological effects of dioxins on plants have yet to be described in detail. Here we describe a dioxin-inducible caleosin/peroxygenase isoform, PdPXG2, that is mainly expressed in the apical zone of date palm roots and specifically reduces 9-hydroperoxide fatty acids. A characteristic spectrum of 18 dioxin-responsive oxylipin (DROXYL) congeners was also detected in date palm roots after exposure to dioxin. Of particular interest, six oxylipins, mostly hydroxy fatty acids, were exclusively formed in response to TCDD. The DROXYL signature was evaluated in planta and validated in vitro using a specific inhibitor of PdPXG2 in a root-protoplast system. Comparative analysis of root suberin showed that levels of certain monomers, especially the mono-epoxides and tri-hydroxides of C16:3 and C18:3, were significantly increased after exposure to TCDD. Specific inhibition of PdPXG2 activity revealed a positive linear relationship between deposition of suberin in roots and their permeability to TCDD. The results highlight the involvement of this peroxygenase in the plant response to dioxin and suggest the use of dioxin-responsive oxylipin signatures as biomarkers for plant exposure to this important class of xenobiotic contaminants.
Collapse
|
15
|
Rahman F, Hassan M, Rosli R, Almousally I, Hanano A, Murphy DJ. Evolutionary and genomic analysis of the caleosin/peroxygenase (CLO/PXG) gene/protein families in the Viridiplantae. PLoS One 2018; 13:e0196669. [PMID: 29771926 PMCID: PMC5957377 DOI: 10.1371/journal.pone.0196669] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 03/06/2018] [Indexed: 12/04/2022] Open
Abstract
Bioinformatics analyses of caleosin/peroxygenases (CLO/PXG) demonstrated that these genes are present in the vast majority of Viridiplantae taxa for which sequence data are available. Functionally active CLO/PXG proteins with roles in abiotic stress tolerance and lipid droplet storage are present in some Trebouxiophycean and Chlorophycean green algae but are absent from the small number of sequenced Prasinophyceaen genomes. CLO/PXG-like genes are expressed during dehydration stress in Charophyte algae, a sister clade of the land plants (Embryophyta). CLO/PXG-like sequences are also present in all of the >300 sequenced Embryophyte genomes, where some species contain as many as 10–12 genes that have arisen via selective gene duplication. Angiosperm genomes harbour at least one copy each of two distinct CLO/PX isoforms, termed H (high) and L (low), where H-forms contain an additional C-terminal motif of about 30–50 residues that is absent from L-forms. In contrast, species in other Viridiplantae taxa, including green algae, non-vascular plants, ferns and gymnosperms, contain only one (or occasionally both) of these isoforms per genome. Transcriptome and biochemical data show that CLO/PXG-like genes have complex patterns of developmental and tissue-specific expression. CLO/PXG proteins can associate with cytosolic lipid droplets and/or bilayer membranes. Many of the analysed isoforms also have peroxygenase activity and are involved in oxylipin metabolism. The distribution of CLO/PXG-like genes is consistent with an origin >1 billion years ago in at least two of the earliest diverging groups of the Viridiplantae, namely the Chlorophyta and the Streptophyta, after the Viridiplantae had already diverged from other Archaeplastidal groups such as the Rhodophyta and Glaucophyta. While algal CLO/PXGs have roles in lipid packaging and stress responses, the Embryophyte proteins have a much wider spectrum of roles and may have been instrumental in the colonisation of terrestrial habitats and the subsequent diversification as the major land flora.
Collapse
Affiliation(s)
- Farzana Rahman
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, United Kingdom
| | - Mehedi Hassan
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, United Kingdom
| | - Rozana Rosli
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, United Kingdom
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, Kuala Lumpur, Malaysia
| | - Ibrahem Almousally
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | - Denis J. Murphy
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Yang W, Pollard M, Li-Beisson Y, Ohlrogge J. Quantitative analysis of glycerol in dicarboxylic acid-rich cutins provides insights into Arabidopsis cutin structure. PHYTOCHEMISTRY 2016; 130:159-169. [PMID: 27211345 DOI: 10.1016/j.phytochem.2016.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 03/15/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
Cutin is an extracellular lipid polymer that contributes to protective cuticle barrier functions against biotic and abiotic stresses in land plants. Glycerol has been reported as a component of cutin, contributing up to 14% by weight of total released monomers. Previous studies using partial hydrolysis of cuticle-enriched preparations established the presence of oligomers with glycerol-aliphatic ester links. Furthermore, glycerol-3-phosphate 2-O-acyltransferases (sn-2-GPATs) are essential for cutin biosynthesis. However, precise roles of glycerol in cutin assembly and structure remain uncertain. Here, a stable isotope-dilution assay was developed for the quantitative analysis of glycerol by GC/MS of triacetin with simultaneous determination of aliphatic monomers. To provide clues about the role of glycerol in dicarboxylic acid (DCA)-rich cutins, this methodology was applied to compare wild-type (WT) Arabidopsis cutin with a series of mutants that are defective in cutin synthesis. The molar ratio of glycerol to total DCAs in WT cutins was 2:1. Even when allowing for a small additional contribution from hydroxy fatty acids, this is a substantially higher glycerol to aliphatic monomer ratio than previously reported for any cutin. Glycerol content was strongly reduced in both stem and leaf cutin from all Arabidopsis mutants analyzed (gpat4/gpat8, att1-2 and lacs2-3). In addition, the molar reduction of glycerol was proportional to the molar reduction of total DCAs. These results suggest "glycerol-DCA-glycerol" may be the dominant motif in DCA-rich cutins. The ramifications and caveats for this hypothesis are presented.
Collapse
Affiliation(s)
- Weili Yang
- Department of Plant Biology, Michigan State University, 48824-1312, USA.
| | - Mike Pollard
- Department of Plant Biology, Michigan State University, 48824-1312, USA
| | | | - John Ohlrogge
- Department of Plant Biology, Michigan State University, 48824-1312, USA
| |
Collapse
|
17
|
Nadiminti PP, Rookes JE, Boyd BJ, Cahill DM. Confocal laser scanning microscopy elucidation of the micromorphology of the leaf cuticle and analysis of its chemical composition. PROTOPLASMA 2015; 252:1475-1486. [PMID: 25712592 DOI: 10.1007/s00709-015-0777-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
Electron microscopy techniques such as transmission electron microscopy (TEM) and scanning electron microscopy (SEM) have been invaluable tools for the study of the micromorphology of plant cuticles. However, for electron microscopy, the preparation techniques required may invariably introduce artefacts in cuticle preservation. Further, there are a limited number of methods available for quantifying the image data obtained through electron microscopy. Therefore, in this study, optical microscopy techniques were coupled with staining procedures and, along with SEM were used to qualitatively and quantitatively assess the ultrastructure of plant leaf cuticles. Leaf cryosections of Triticum aestivum (wheat), Zea mays (maize), and Lupinus angustifolius (lupin) were stained with either fat-soluble azo stain Sudan IV or fluorescent, diarylmethane Auramine O and were observed under confocal laser scanning microscope (CLSM). For all the plant species tested, the cuticle on the leaf surfaces could be clearly resolved in many cases into cuticular proper (CP), external cuticular layer (ECL), and internal cuticular layer (ICL). Novel image data analysis procedures for quantifying the epicuticular wax micromorphology were developed, and epicuticular waxes of L. angustifolius were described here for the first time. Together, application of a multifaceted approach involving the use of a range of techniques to study the plant cuticle has led to a better understanding of cuticular structure and provides new insights into leaf surface architecture.
Collapse
Affiliation(s)
- Pavani P Nadiminti
- School of life and Environmental Sciences, Centre for Chemistry and Biotechnology, Deakin University, Geelong Campus at Waurn Ponds, Geelong, VIC, 3217, Australia
| | - James E Rookes
- School of life and Environmental Sciences, Centre for Chemistry and Biotechnology, Deakin University, Geelong Campus at Waurn Ponds, Geelong, VIC, 3217, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - David M Cahill
- School of life and Environmental Sciences, Centre for Chemistry and Biotechnology, Deakin University, Geelong Campus at Waurn Ponds, Geelong, VIC, 3217, Australia.
| |
Collapse
|
18
|
Savchenko TV, Zastrijnaja OM, Klimov VV. Oxylipins and plant abiotic stress resistance. BIOCHEMISTRY (MOSCOW) 2015; 79:362-75. [PMID: 24910209 DOI: 10.1134/s0006297914040051] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oxylipins are signaling molecules formed enzymatically or spontaneously from unsaturated fatty acids in all aerobic organisms. Oxylipins regulate growth, development, and responses to environmental stimuli of organisms. The oxylipin biosynthesis pathway in plants includes a few parallel branches named after first enzyme of the corresponding branch as allene oxide synthase, hydroperoxide lyase, divinyl ether synthase, peroxygenase, epoxy alcohol synthase, and others in which various biologically active metabolites are produced. Oxylipins can be formed non-enzymatically as a result of oxygenation of fatty acids by free radicals and reactive oxygen species. Spontaneously formed oxylipins are called phytoprostanes. The role of oxylipins in biotic stress responses has been described in many published works. The role of oxylipins in plant adaptation to abiotic stress conditions is less studied; there is also obvious lack of available data compilation and analysis in this area of research. In this work we analyze data on oxylipins functions in plant adaptation to abiotic stress conditions, such as wounding, suboptimal light and temperature, dehydration and osmotic stress, and effects of ozone and heavy metals. Modern research articles elucidating the molecular mechanisms of oxylipins action by the methods of biochemistry, molecular biology, and genetics are reviewed here. Data on the role of oxylipins in stress signal transduction, stress-inducible gene expression regulation, and interaction of these metabolites with other signal transduction pathways in cells are described. In this review the general oxylipin-mediated mechanisms that help plants to adjust to a broad spectrum of stress factors are considered, followed by analysis of more specific responses regulated by oxylipins only under certain stress conditions. New approaches to improvement of plant resistance to abiotic stresses based on the induction of oxylipin-mediated processes are discussed.
Collapse
Affiliation(s)
- T V Savchenko
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
19
|
Hofrichter M, Kellner H, Pecyna MJ, Ullrich R. Fungal Unspecific Peroxygenases: Heme-Thiolate Proteins That Combine Peroxidase and Cytochrome P450 Properties. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:341-68. [DOI: 10.1007/978-3-319-16009-2_13] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Fuchs C, Schwab W. Epoxidation, hydroxylation and aromatization is catalyzed by a peroxygenase from Solanum lycopersicum. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Kim KR, Oh DK. Production of hydroxy fatty acids by microbial fatty acid-hydroxylation enzymes. Biotechnol Adv 2013; 31:1473-85. [PMID: 23860413 DOI: 10.1016/j.biotechadv.2013.07.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/03/2013] [Accepted: 07/06/2013] [Indexed: 10/26/2022]
Abstract
Hydroxy fatty acids are widely used in chemical, food, and cosmetic industries as starting materials for the synthesis of polymers and as additives for the manufacture of lubricants, emulsifiers, and stabilizers. They have antibiotic, anti-inflammatory, and anticancer activities and therefore can be applied for medicinal uses. Microbial fatty acid-hydroxylation enzymes, including P450, lipoxygenase, hydratase, 12-hydroxylase, and diol synthase, synthesize regio-specific hydroxy fatty acids. In this article, microbial fatty acid-hydroxylation enzymes, with a focus on region-specificity and diversity, are summarized and the production of mono-, di-, and tri-hydroxy fatty acids is introduced. Finally, the production methods of regio-specific and diverse hydroxy fatty acids, such as gene screening, protein engineering, metabolic engineering, and combinatory biosynthesis, are suggested.
Collapse
Affiliation(s)
- Kyoung-Rok Kim
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-Dong Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | | |
Collapse
|
22
|
Blée E, Flenet M, Boachon B, Fauconnier ML. A non-canonical caleosin fromArabidopsisefficiently epoxidizes physiological unsaturated fatty acids with complete stereoselectivity. FEBS J 2012; 279:3981-95. [DOI: 10.1111/j.1742-4658.2012.08757.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Elizabeth Blée
- Institut de Biologie Moléculaire des Plantes; Université de Strasbourg; France
| | - Martine Flenet
- Institut de Biologie Moléculaire des Plantes; Université de Strasbourg; France
| | - Benoît Boachon
- Institut de Biologie Moléculaire des Plantes; Université de Strasbourg; France
| | | |
Collapse
|
23
|
Beisson F, Li-Beisson Y, Pollard M. Solving the puzzles of cutin and suberin polymer biosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:329-37. [PMID: 22465132 DOI: 10.1016/j.pbi.2012.03.003] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 03/04/2012] [Indexed: 05/18/2023]
Abstract
Cutin and suberin are insoluble lipid polymers that provide critical barrier functions to the cell wall of certain plant tissues, including the epidermis, endodermis and periderm. Genes that are specific to the biosynthesis of cutins and/or aliphatic suberins have been identified, mainly in Arabidopsis thaliana. They notably encode acyltransferases, oxidases and transporters, which may have either well-defined or more debatable biochemical functions. However, despite these advances, important aspects of cutin and suberin synthesis remain obscure. Central questions include whether fatty acyl monomers or oligomers are exported, and the extent of extracellular assembly and attachment to the cell wall. These issues are reviewed. Greater emphasis on chemistry and biochemistry will be required to solve these unknowns and link structure with function.
Collapse
Affiliation(s)
- Fred Beisson
- Department of Environmental Plant Biology and Microbiology, CEA/CNRS/Aix-Marseille University, IBEB/UMR, Cadarache, France.
| | | | | |
Collapse
|
24
|
Meesapyodsuk D, Qiu X. A peroxygenase pathway involved in the biosynthesis of epoxy fatty acids in oat. PLANT PHYSIOLOGY 2011; 157:454-63. [PMID: 21784965 PMCID: PMC3165891 DOI: 10.1104/pp.111.178822] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/20/2011] [Indexed: 05/20/2023]
Abstract
While oat (Avena sativa) has long been known to produce epoxy fatty acids in seeds, synthesized by a peroxygenase pathway, the gene encoding the peroxygenase remains to be determined. Here we report identification of a peroxygenase cDNA AsPXG1 from developing seeds of oat. AsPXG1 is a small protein with 249 amino acids in length and contains conserved heme-binding residues and a calcium-binding motif. When expressed in Pichia pastoris and Escherichia coli, AsPXG1 catalyzes the strictly hydroperoxide-dependent epoxidation of unsaturated fatty acids. It prefers hydroperoxy-trienoic acids over hydroperoxy-dienoic acids as oxygen donors to oxidize a wide range of unsaturated fatty acids with cis double bonds. Oleic acid is the most preferred substrate. The acyl carrier substrate specificity assay showed phospholipid and acyl-CoA were not effective substrate forms for AsPXG1 and it could only use free fatty acid or fatty acid methyl esters as substrates. A second gene, AsLOX2, cloned from oat codes for a 9-lipoxygenase catalyzing the synthesis of 9-hydroperoxy-dienoic and 9-hydroperoxy-trienoic acids, respectively, when linoleic (18:2-9c,12c) and linolenic (18:3-9c,12c,15c) acids were used as substrates. The peroxygenase pathway was reconstituted in vitro using a mixture of AsPXG1 and AsLOX2 extracts from E. coli. Incubation of methyl oleate and linoleic acid or linolenic acid with the enzyme mixture produced methyl 9,10-epoxy stearate. Incubation of linoleic acid alone with a mixture of AsPXG1 and AsLOX2 produced two major epoxy fatty acids, 9,10-epoxy-12-cis-octadecenoic acid and 12,13-epoxy-9-cis-octadecenoic acid, and a minor epoxy fatty acid, probably 12,13-epoxy-9-hydroxy-10-transoctadecenoic acid. AsPXG1 predominately catalyzes intermolecular peroxygenation.
Collapse
|
25
|
Aghofack-Nguemezi J, Fuchs C, Yeh SY, Huang FC, Hoffmann T, Schwab W. An oxygenase inhibitor study in Solanum lycopersicum combined with metabolite profiling analysis revealed a potent peroxygenase inactivator. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1313-1323. [PMID: 21115664 DOI: 10.1093/jxb/erq368] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Plant genomes contain a vast number of oxygenase genes, but only very few have been functionally characterized. To devise an alternative method for the detection of novel oxygenase-catalysed reactions the effects of the cytochrome P450 oxygenase inhibitors 1-aminobenzotriazole (ABT) and tetcyclacis (TET) have been examined by metabolite profiling analysis in tomato fruit (Solanum lycopersicum). Treatment with TET resulted in significant increases in the levels of certain flavonoids, whereas ABT strongly inhibited their formation during fruit ripening. Injections of buffered solutions of ABT into tomato fruits led rather to an accumulation of 9,12,13-trihydroxy-10(E)-octadecenoic acid probably due to retarded metabolism of the hydroxylated acid, while TET completely repressed its formation. Peroxygenase, a hydroperoxide-dependent hydroxylase involved in the formation of the trihydroxy fatty acid, is strongly inhibited by TET (IC(50) 2.6 μM) as was demonstrated by studies with the recombinant tomato enzyme expressed in yeast. The data show that ABT and TET affect oxygenases differently in tomato fruit and reveal that these enzymes catalyse distinct reactions in different metabolic pathways, among which C(18)-trihydroxy fatty acid and flavonoid metabolism involve novel oxygenase-catalysed reactions. The method is suitable to identify potential substrates and products of ripening-related, putative oxygenases and can support functional analyses of recombinant enzymes.
Collapse
Affiliation(s)
- Jean Aghofack-Nguemezi
- Department of Plant Biology, Faculty of Sciences, University of Dschang, PO Box 67, Dschang, Cameroon
| | | | | | | | | | | |
Collapse
|
26
|
Aubert Y, Vile D, Pervent M, Aldon D, Ranty B, Simonneau T, Vavasseur A, Galaud JP. RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2010; 51:1975-87. [PMID: 20952421 DOI: 10.1093/pcp/pcq155] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants overcome water deficit conditions by combining molecular, biochemical and morphological changes. At the molecular level, many stress-responsive genes have been isolated, but knowledge of their physiological functions remains fragmentary. Here, we report data for RD20, a stress-inducible Arabidopsis gene that belongs to the caleosin family. As for other caleosins, we showed that RD20 localized to oil bodies. Although caleosins are thought to play a role in the degradation of lipids during seed germination, induction of RD20 by dehydration, salt stress and ABA suggests that RD20 might be involved in processes other than germination. Using plants carrying the promoter RD20::uidA construct, we show that RD20 is expressed in leaves, guard cells and flowers, but not in root or in mature seeds. Water deficit triggers a transient increase in RD20 expression in leaves that appeared predominantly dependent on ABA signaling. To assess the biological significance of these data, a functional analysis using rd20 knock-out and overexpressing complemented lines cultivated either in standard or in water deficit conditions was performed. The rd20 knock-out plants present a higher transpiration rate that correlates with enhanced stomatal opening and a reduced tolerance to drought as compared with the wild type. These results support a role for RD20 in drought tolerance through stomatal control under water deficit conditions.
Collapse
Affiliation(s)
- Yann Aubert
- Université de Toulouse, UPS, UMR CNRS 5546, Surfaces Cellulaires et Signalisation chez les Végétaux, BP 42617, 31326 Castanet-Tolosan, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Tarchevsky IA, Yakovleva VG, Egorova AM. Salicylate-induced modification of plant proteomes (review). APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810030026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Tarchevsky IA, Yakovleva VG, Egorova AM. Proteomic analysis of salicylate-induced proteins of pea (Pisum sativum L.) leaves. BIOCHEMISTRY. BIOKHIMIIA 2010; 75:590-7. [PMID: 20632938 DOI: 10.1134/s0006297910050081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The effect of 50 microM salicylic acid on soluble proteins of pea (Pisum sativum L.) leaves was studied by proteomic analysis. Thirty-two salicylate-induced proteins were found, and 13 of these were identified using MALDI TOF MS. Salicylate-induced increased content was shown for the first time for the family 18 glycoside hydrolase, alpha-amylase, 33 kDa protein of photosystem II, lipid-desaturase-like protein, and glutamine amidotransferase. Increased content of protective proteins of direct antipathogenic action such as chitinase and beta-1,3-glucanases was also noted.
Collapse
Affiliation(s)
- I A Tarchevsky
- Kazan Institute of Biochemistry and Biophysics, Kazan Research Center, Russian Academy of Sciences, Kazan, 420111, Russia.
| | | | | |
Collapse
|
29
|
The biosynthesis of cutin and suberin as an alternative source of enzymes for the production of bio-based chemicals and materials. Biochimie 2009; 91:685-91. [DOI: 10.1016/j.biochi.2009.03.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 03/25/2009] [Indexed: 11/18/2022]
|
30
|
Mendoza-Mendoza A, Berndt P, Djamei A, Weise C, Linne U, Marahiel M, Vraneš M, Kämper J, Kahmann R. Physical-chemical plant-derived signals induce differentiation inUstilago maydis. Mol Microbiol 2009; 71:895-911. [DOI: 10.1111/j.1365-2958.2008.06567.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Sauveplane V, Kandel S, Kastner PE, Ehlting J, Compagnon V, Werck-Reichhart D, Pinot F. Arabidopsis thaliana CYP77A4 is the first cytochrome P450 able to catalyze the epoxidation of free fatty acids in plants. FEBS J 2008; 276:719-35. [PMID: 19120447 DOI: 10.1111/j.1742-4658.2008.06819.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An approach based on an in silico analysis predicted that CYP77A4, a cytochrome P450 that so far has no identified function, might be a fatty acid-metabolizing enzyme. CYP77A4 was heterologously expressed in a Saccharomyces cerevisiae strain (WAT11) engineered for cytochrome P450 expression. Lauric acid (C(12:0)) was converted into a mixture of hydroxylauric acids when incubated with microsomes from yeast expressing CYP77A4. A variety of physiological C(18) fatty acids were tested as potential substrates. Oleic acid (cis-Delta(9)C(18:1)) was converted into a mixture of omega-4- to omega-7-hydroxyoleic acids (75%) and 9,10-epoxystearic acid (25%). Linoleic acid (cis,cis-Delta(9),Delta(12)C(18:2)) was exclusively converted into 12,13-epoxyoctadeca-9-enoic acid, which was then converted into diepoxide after epoxidation of the Delta(9) unsaturation. Chiral analysis showed that 9,10-epoxystearic acid was a mixture of 9S/10R and 9R/10S in the ratio 33 : 77, whereas 12,13-epoxyoctadeca-9-enoic acid presented a strong enantiomeric excess in favor of 12S/13R, which represented 90% of the epoxide. Neither stearic acid (C(18:0)) nor linolelaidic acid (trans,trans-Delta(9),Delta(12)C(18:2)) was metabolized, showing that CYP77A4 requires a double bond, in the cis configuration, to metabolize C(18) fatty acids. CYP77A4 was also able to catalyze the in vitro formation of the three mono-epoxides of alpha-linolenic acid (cis,cis,cis-Delta(9),Delta(12),Delta(15)C(18:3)), previously described as antifungal compounds. Epoxides generated by CYP77A4 are further metabolized to the corresponding diols by epoxide hydrolases located in microsomal and cytosolic subcellular fractions from Arabidopsis thaliana. The concerted action of CYP77A4 with epoxide hydrolases and hydroxylases allows the production of compounds involved in plant-pathogen interactions, suggesting a possible role for CYP77A4 in plant defense.
Collapse
Affiliation(s)
- Vincent Sauveplane
- Institut de Biologie Moléculaire des Plantes, University of Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Falara V, Fotopoulos V, Margaritis T, Anastasaki T, Pateraki I, Bosabalidis AM, Kafetzopoulos D, Demetzos C, Pichersky E, Kanellis AK. Transcriptome analysis approaches for the isolation of trichome-specific genes from the medicinal plant Cistus creticus subsp. creticus. PLANT MOLECULAR BIOLOGY 2008; 68:633-51. [PMID: 18819010 DOI: 10.1007/s11103-008-9399-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 08/31/2008] [Indexed: 05/12/2023]
Abstract
Cistus creticus subsp. creticus is a plant of intrinsic scientific interest due to the distinctive pharmaceutical properties of its resin. Labdane-type diterpenes, the main constituents of the resin, exhibit considerable antibacterial and cytotoxic activities. In this study chemical analysis of isolated trichomes from different developmental stages revealed that young leaves of 1-2 cm length displayed the highest content of labdane-type diterpenes (80 mg/g fresh weight) whereas trichomes from older leaves (2-3 or 3-4 cm) exhibited gradual decreased concentrations. A cDNA library was constructed enriched in transcripts from trichomes isolated from young leaves, which are characterized by high levels of labdane-type diterpenes. Functional annotation of 2,022 expressed sequence tags (ESTs) from the trichome cDNA library based on homology to A. thaliana genes suggested that 8% of the putative identified sequences were secondary metabolism-related and involved primarily in flavonoid and terpenoid biosynthesis. A significant proportion of the ESTs (38%) displayed no significant similarity to any other DNA deposited in databases, indicating a yet unknown function. Custom DNA microarrays constructed with 1,248 individual clones from the cDNA library facilitated transcriptome comparisons between trichomes and trichome-free tissues. In addition, gene expression studies in various Cistus tissues and organs for one of the genes highlighted as the most differentially expressed by the microarray experiments revealed a putative sesquiterpene synthase with a trichome-specific expression pattern. Full length cDNA isolation and heterologous expression in E. coli followed by biochemical analysis, led to the characterization of the produced protein as germacrene B synthase.
Collapse
Affiliation(s)
- Vasiliki Falara
- Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pollard M, Beisson F, Li Y, Ohlrogge JB. Building lipid barriers: biosynthesis of cutin and suberin. TRENDS IN PLANT SCIENCE 2008; 13:236-46. [PMID: 18440267 DOI: 10.1016/j.tplants.2008.03.003] [Citation(s) in RCA: 535] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 03/04/2008] [Accepted: 03/07/2008] [Indexed: 05/18/2023]
Abstract
Cutin and suberin are the polymer matrices for lipophilic cell wall barriers. These barriers control the fluxes of gases, water and solutes, and also play roles in protecting plants from biotic and abiotic stresses and in controlling plant morphology. Although they are ubiquitous, cutin and suberin are the least understood of the major plant extracellular polymers. The use of forward and reverse genetic approaches in Arabidopsis has led to the identification of oxidoreductase and acyltransferase genes involved in the biosynthesis of these polymers. However, major questions about the underlying polymer structure, biochemistry, and intracellular versus extracellular assembly remain to be resolved. The analysis of plant lines with modified cutins and suberins has begun to reveal the inter-relationships between the composition and function of these polymers.
Collapse
Affiliation(s)
- Mike Pollard
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824-1312, USA.
| | | | | | | |
Collapse
|
34
|
Skamnioti P, Gurr SJ. Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence. THE PLANT CELL 2007; 19:2674-89. [PMID: 17704215 PMCID: PMC2002628 DOI: 10.1105/tpc.107.051219] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 07/17/2007] [Accepted: 07/30/2007] [Indexed: 05/16/2023]
Abstract
The rice blast fungus Magnaporthe grisea infects its host by forming a specialized infection structure, the appressorium, on the plant leaf. The enormous turgor pressure generated within the appressorium drives the emerging penetration peg forcefully through the plant cuticle. Hitherto, the involvement of cutinase(s) in this process has remained unproven. We identified a specific M. grisea cutinase, CUT2, whose expression is dramatically upregulated during appressorium maturation and penetration. The cut2 mutant has reduced extracellular cutin-degrading and Ser esterase activity, when grown on cutin as the sole carbon source, compared with the wild-type strain. The cut2 mutant strain is severely less pathogenic than the wild type or complemented cut2/CUT2 strain on rice (Oryza sativa) and barley (Hordeum vulgare). It displays reduced conidiation and anomalous germling morphology, forming multiple elongated germ tubes and aberrant appressoria on inductive surfaces. We show that Cut2 mediates the formation of the penetration peg but does not play a role in spore or appressorium adhesion, or in appressorial turgor generation. Morphological and pathogenicity defects in the cut2 mutant are fully restored with exogenous application of synthetic cutin monomers, cAMP, 3-isobutyl-1-methylxanthine, and diacylglycerol (DAG). We propose that Cut2 is an upstream activator of cAMP/protein kinase A and DAG/protein kinase C signaling pathways that direct appressorium formation and infectious growth in M. grisea. Cut2 is therefore required for surface sensing leading to correct germling differentiation, penetration, and full virulence in this model fungus.
Collapse
Affiliation(s)
- Pari Skamnioti
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | | |
Collapse
|
35
|
Richardson A, Wojciechowski T, Franke R, Schreiber L, Kerstiens G, Jarvis M, Fricke W. Cuticular permeance in relation to wax and cutin development along the growing barley (Hordeum vulgare) leaf. PLANTA 2007; 225:1471-81. [PMID: 17171372 DOI: 10.1007/s00425-006-0456-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 11/21/2006] [Indexed: 05/13/2023]
Abstract
The developing leaf three of barley provides an excellent model system for the direct determination of relationships between amounts of waxes and cutin and cuticular permeance. Permeance of the cuticle was assessed via the time-course of uptake of either toluidine blue or (14)C-labelled benzoic acid ([(14)C] BA) along the length of the developing leaf. Toluidine blue uptake only occurred within the region 0-25 mm from the point of leaf insertion (POLI). Resistance--the inverse of permeance--to uptake of [(14)C] BA was determined for four leaf regions and was lowest in the region 10-20 mm above POLI. At 20-30 and 50-60 mm above POLI, it increased by factors of 6 and a further 32, respectively. Above the point of emergence of leaf three from the sheath of leaf two, which was 76-80 mm above POLI, resistance was as high as at 50-60 mm above POLI. GC-FID/MS analyses of wax and cutin showed that: (1) the initial seven fold increase in cuticular resistance coincided with increase in cutin coverage and appearance of waxes; (2) the second, larger and final increase in cuticle resistance was accompanied by an increase in wax coverage, whereas cutin coverage remained unchanged; (3) cutin deposition in barley leaf epidermis occurred in parallel with cell elongation, whereas deposition of significant amounts of wax commenced as cells ceased to elongate.
Collapse
Affiliation(s)
- Andrew Richardson
- Division of Biological Sciences, University of Paisley, Paisley, PA1 2BE, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
Soler M, Serra O, Molinas M, Huguet G, Fluch S, Figueras M. A genomic approach to suberin biosynthesis and cork differentiation. PLANT PHYSIOLOGY 2007; 144:419-31. [PMID: 17351057 PMCID: PMC1913797 DOI: 10.1104/pp.106.094227] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 03/02/2007] [Indexed: 05/14/2023]
Abstract
Cork (phellem) is a multilayered dead tissue protecting plant mature stems and roots and plant healing tissues from water loss and injuries. Cork cells are made impervious by the deposition of suberin onto cell walls. Although suberin deposition and cork formation are essential for survival of land plants, molecular studies have rarely been conducted on this tissue. Here, we address this question by combining suppression subtractive hybridization together with cDNA microarrays, using as a model the external bark of the cork tree (Quercus suber), from which bottle cork is obtained. A suppression subtractive hybridization library from cork tree bark was prepared containing 236 independent sequences; 69% showed significant homology to database sequences and they corresponded to 135 unique genes. Out of these genes, 43.5% were classified as the main pathways needed for cork biosynthesis. Furthermore, 19% could be related to regulatory functions. To identify genes more specifically required for suberin biosynthesis, cork expressed sequence tags were printed on a microarray and subsequently used to compare cork (phellem) to a non-suberin-producing tissue such as wood (xylem). Based on the results, a list of candidate genes relevant for cork was obtained. This list includes genes for the synthesis, transport, and polymerization of suberin monomers such as components of the fatty acid elongase complexes, ATP-binding cassette transporters, and acyltransferases, among others. Moreover, a number of regulatory genes induced in cork have been identified, including MYB, No-Apical-Meristem, and WRKY transcription factors with putative functions in meristem identity and cork differentiation.
Collapse
Affiliation(s)
- Marçal Soler
- Laboratori del suro, Department of Biology, Facultat de Ciències, Universitat de Girona, Campus Montilivi s/n, 17071 Girona, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Hanano A, Burcklen M, Flenet M, Ivancich A, Louwagie M, Garin J, Blée E. Plant seed peroxygenase is an original heme-oxygenase with an EF-hand calcium binding motif. J Biol Chem 2006; 281:33140-51. [PMID: 16956885 DOI: 10.1074/jbc.m605395200] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A growing body of evidence indicates that phytooxylipins play important roles in plant defense responses. However, many enzymes involved in the biosynthesis of these metabolites are still elusive. We have purified one of these enzymes, the peroxygenase (PXG), from oat microsomes and lipid droplets. It is an integral membrane protein requiring detergent for its solubilization. Proteinase K digestion showed that PXG is probably deeply buried in lipid droplets or microsomes with only about 2 kDa at the C-terminal region accessible to proteolytic digestion. Sequencing of the N terminus of the purified protein showed that PXG had no sequence similarity with either a peroxidase or a cytochrome P450 but, rather, with caleosins, i.e. calcium-binding proteins. In agreement with this finding, we demonstrated that recombinant thale cress and rice caleosins, expressed in yeast, catalyze hydroperoxide-dependent mono-oxygenation reactions that are characteristic of PXG. Calcium was also found to be crucial for peroxygenase activity, whereas phosphorylation of the protein had no impact on catalysis. Site-directed mutagenesis studies revealed that PXG catalytic activity is dependent on two highly conserved histidines, the 9 GHz EPR spectrum being consistent with a high spin pentacoordinated ferric heme.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Laboratoire des Phytooxlipines, Institut de Biologie Moléculaire des Plantes-CNRS-UPR 2357, 67083 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Nawrath C. Unraveling the complex network of cuticular structure and function. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:281-7. [PMID: 16580871 DOI: 10.1016/j.pbi.2006.03.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 03/20/2006] [Indexed: 05/08/2023]
Abstract
A hydrophobic cuticle is deposited at the outermost extracellular matrix of the epidermis in primary tissues of terrestrial plants. Besides forming a protective shield against the environment, the cuticle is potentially involved in several developmental processes during plant growth. A high degree of variation in cuticle composition and structure exists between different plant species and tissues. Lots of progress has been made recently in understanding the different steps of biosynthesis, transport, and deposition of cuticular components. However, the molecular mechanisms that underlie cuticular function remain largely elusive.
Collapse
Affiliation(s)
- Christiane Nawrath
- University of Lausanne, Department of Plant Molecular Biology, Biophore Building, UNIL-Sorge, CH-1015 Lausanne, Switzerland
| |
Collapse
|
39
|
Kurdyukov S, Faust A, Nawrath C, Bär S, Voisin D, Efremova N, Franke R, Schreiber L, Saedler H, Métraux JP, Yephremov A. The epidermis-specific extracellular BODYGUARD controls cuticle development and morphogenesis in Arabidopsis. THE PLANT CELL 2006; 18:321-39. [PMID: 16415209 PMCID: PMC1356542 DOI: 10.1105/tpc.105.036079] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The outermost epidermal cell wall is specialized to withstand pathogens and natural stresses, and lipid-based cuticular polymers are the major barrier against incursions. The Arabidopsis thaliana mutant bodyguard (bdg), which exhibits defects characteristic of the loss of cuticle structure not attributable to a lack of typical cutin monomers, unexpectedly accumulates significantly more cell wall-bound lipids and epicuticular waxes than wild-type plants. Pleiotropic effects of the bdg mutation on growth, viability, and cell differentiation are also observed. BDG encodes a member of the alpha/beta-hydrolase fold protein superfamily and is expressed exclusively in epidermal cells. Using Strep-tag epitope-tagged BDG for mutant complementation and immunolocalization, we show that BDG is a polarly localized protein that accumulates in the outermost cell wall in the epidermis. With regard to the appearance and structure of the cuticle, the phenotype conferred by bdg is reminiscent of that of transgenic Arabidopsis plants that express an extracellular fungal cutinase, suggesting that bdg may be incapable of completing the polymerization of carboxylic esters in the cuticular layer of the cell wall or the cuticle proper. We propose that BDG codes for an extracellular synthase responsible for the formation of cuticle. The alternative hypothesis proposes that BDG controls the proliferation/differentiation status of the epidermis via an unknown mechanism.
Collapse
|
40
|
Suh MC, Samuels AL, Jetter R, Kunst L, Pollard M, Ohlrogge J, Beisson F. Cuticular lipid composition, surface structure, and gene expression in Arabidopsis stem epidermis. PLANT PHYSIOLOGY 2005; 139:1649-65. [PMID: 16299169 PMCID: PMC1310549 DOI: 10.1104/pp.105.070805] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 09/22/2005] [Accepted: 09/23/2005] [Indexed: 05/05/2023]
Abstract
All vascular plants are protected from the environment by a cuticle, a lipophilic layer synthesized by epidermal cells and composed of a cutin polymer matrix and waxes. The mechanism by which epidermal cells accumulate and assemble cuticle components in rapidly expanding organs is largely unknown. We have begun to address this question by analyzing the lipid compositional variance, the surface micromorphology, and the transcriptome of epidermal cells in elongating Arabidopsis (Arabidopsis thaliana) stems. The rate of cell elongation is maximal near the apical meristem and decreases steeply toward the middle of the stem, where it is 10 times slower. During and after this elongation, the cuticular wax load and composition remain remarkably constant (32 microg/cm2), indicating that the biosynthetic flux into waxes is closely matched to surface area expansion. By contrast, the load of polyester monomers per unit surface area decreases more than 2-fold from the upper (8 microg/cm2) to the lower (3 microg/cm2) portion of the stem, although the compositional variance is minor. To aid identification of proteins involved in the biosynthesis of waxes and cutin, we have isolated epidermal peels from Arabidopsis stems and determined transcript profiles in both rapidly expanding and nonexpanding cells. This transcriptome analysis was validated by the correct classification of known epidermis-specific genes. The 15% transcripts preferentially expressed in the epidermis were enriched in genes encoding proteins predicted to be membrane associated and involved in lipid metabolism. An analysis of the lipid-related subset is presented.
Collapse
Affiliation(s)
- Mi Chung Suh
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
BRIGGS CL, MORRIS EC, ASHFORD AE. Investigations into seed dormancy in Grevillea linearifolia, G. buxifolia and G. sericea: anatomy and histochemistry of the seed coat. ANNALS OF BOTANY 2005; 96:965-80. [PMID: 16157632 PMCID: PMC4247087 DOI: 10.1093/aob/mci250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Seeds of east Australian Grevillea species generally recruit post-fire; previous work showed that the seed coat was the controller of dormancy in Grevillea linearifolia. Former studies on seed development in Grevillea have concentrated on embryology, with little information that would allow testing of hypotheses about the breaking of dormancy by fire-related cues. Our aim was to investigate structural and chemical characteristics of the seed coat that may be related to dormancy for three Grevillea species. METHODS Seeds of Grevillea linearifolia, Grevillea buxifolia and Grevillea sericea were investigated using gross dissection, thin sectioning and histochemical staining. Water movement across the seed coat was tested for by determining the water content of embryos from imbibed and dry seeds of G. sericea. Penetration of intact seeds by Lucifer Yellow was used to test for internal barriers to diffusion of high-molecular-weight compounds. KEY RESULTS Two integuments were present in the seed coat: an outer testa, with exo-, meso- and endotestal (palisade) layers, and an inner tegmen of unlignified sclerenchyma. A hypostase at the chalazal end was a region of structural difference in the seed coat, and differed slightly among the three species. An internal cuticle was found on each side of the sclerenchyma layer. The embryos of imbibed seeds had a water content six times that of dry seeds. Barriers to diffusion of Lucifer Yellow existed at the exotestal and the endotestal/hypostase layers. CONCLUSIONS Several potential mechanisms of seed coat dormancy were identified. The embryo appeared to be completely surrounded by outer and inner barriers to diffusion of high-molecular-weight compounds. Phenolic compounds present in the exotesta could interfere with gas exchange. The sclerenchyma layer, together with strengthening in the endotestal and exotestal cells, could act as a mechanical constraint.
Collapse
Affiliation(s)
- C. L. BRIGGS
- Ecology Research Group, University of Western Sydney, Locked Bag 1797, Penrith South DC, NSW 1797, Australia
| | - E. C. MORRIS
- Ecology Research Group, University of Western Sydney, Locked Bag 1797, Penrith South DC, NSW 1797, Australia
- For correspondence. E-mail
| | - A. E. ASHFORD
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
42
|
Mommer L, Pons TL, Wolters-Arts M, Venema JH, Visser EJW. Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance. PLANT PHYSIOLOGY 2005; 139:497-508. [PMID: 16126859 PMCID: PMC1203398 DOI: 10.1104/pp.105.064725] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 05/20/2005] [Accepted: 07/11/2005] [Indexed: 05/04/2023]
Abstract
Gas exchange between the plant and the environment is severely hampered when plants are submerged, leading to oxygen and energy deficits. A straightforward way to reduce these shortages of oxygen and carbohydrates would be continued photosynthesis under water, but this possibility has received only little attention. Here, we combine several techniques to investigate the consequences of anatomical and biochemical responses of the terrestrial species Rumex palustris to submergence for different aspects of photosynthesis under water. The orientation of the chloroplasts in submergence-acclimated leaves was toward the epidermis instead of the intercellular spaces, indicating that underwater CO(2) diffuses through the cuticle and epidermis. Interestingly, both the cuticle thickness and the epidermal cell wall thickness were significantly reduced upon submergence, suggesting a considerable decrease in diffusion resistance. This decrease in diffusion resistance greatly facilitated underwater photosynthesis, as indicated by higher underwater photosynthesis rates in submergence-acclimated leaves at all CO(2) concentrations investigated. The increased availability of internal CO(2) in these "aquatic" leaves reduced photorespiration, and furthermore reduced excitation pressure of the electron transport system and, thus, the risk of photodamage. Acclimation to submergence also altered photosynthesis biochemistry as reduced Rubisco contents were observed in aquatic leaves, indicating a lower carboxylation capacity. Electron transport capacity was also reduced in these leaves but not as strongly as the reduction in Rubisco, indicating a substantial increase of the ratio between electron transport and carboxylation capacity upon submergence. This novel finding suggests that this ratio may be less conservative than previously thought.
Collapse
Affiliation(s)
- Liesje Mommer
- Department of Experimental Plant Ecology , Radboud University Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
43
|
Sturaro M, Hartings H, Schmelzer E, Velasco R, Salamini F, Motto M. Cloning and characterization of GLOSSY1, a maize gene involved in cuticle membrane and wax production. PLANT PHYSIOLOGY 2005; 138:478-89. [PMID: 15849306 PMCID: PMC1104201 DOI: 10.1104/pp.104.058164] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 02/09/2005] [Accepted: 02/09/2005] [Indexed: 05/20/2023]
Abstract
The cuticle covering the aerial organs of land plants plays a protective role against several biotic and abiotic stresses and, in addition, participates in a variety of plant-insect interactions. Here, we describe the molecular cloning and characterization of the maize (Zea mays) GLOSSY1 (GL1) gene, a component of the pathway leading to cuticular wax biosynthesis in seedling leaves. The genomic and cDNA sequences we isolated differ significantly in length and in most of the coding region from those previously identified. The predicted GL1 protein includes three histidine-rich domains, the landmark of a family of membrane-bound desaturases/hydroxylases, including fatty acid-modifying enzymes. GL1 expression is not restricted to the juvenile developmental stage of the maize plant, pointing to a broader function of the gene product than anticipated on the basis of the mutant phenotype. Indeed, in addition to affecting cuticular wax biosynthesis, gl1 mutations have a pleiotropic effect on epidermis development, altering trichome size and impairing cutin structure. Of the many wax biosynthetic genes identified so far, only a few from Arabidopsis (Arabidopsis thaliana) were found to be essential for normal cutin formation. Among these is WAX2, which shares 62% identity with GL1 at the protein level. In wax2-defective plants, cutin alterations induce postgenital organ fusion. This trait is not displayed by gl1 mutants, suggesting a different role of the maize and Arabidopsis cuticle in plant development.
Collapse
Affiliation(s)
- Monica Sturaro
- Istituto Sperimentale per la Cerealicoltura, Sezione di Bergamo, 24126 Bergamo, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Chassot C, Métraux JP. The cuticle as source of signals for plant defense. PLANT BIOSYSTEMS - AN INTERNATIONAL JOURNAL DEALING WITH ALL ASPECTS OF PLANT BIOLOGY 2005; 139:28-31. [PMID: 0 DOI: 10.1080/11263500500056344] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
45
|
Newman JW, Morisseau C, Hammock BD. Epoxide hydrolases: their roles and interactions with lipid metabolism. Prog Lipid Res 2005; 44:1-51. [PMID: 15748653 DOI: 10.1016/j.plipres.2004.10.001] [Citation(s) in RCA: 344] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The epoxide hydrolases (EHs) are enzymes present in all living organisms, which transform epoxide containing lipids by the addition of water. In plants and animals, many of these lipid substrates have potent biologically activities, such as host defenses, control of development, regulation of inflammation and blood pressure. Thus the EHs have important and diverse biological roles with profound effects on the physiological state of the host organisms. Currently, seven distinct epoxide hydrolase sub-types are recognized in higher organisms. These include the plant soluble EHs, the mammalian soluble epoxide hydrolase, the hepoxilin hydrolase, leukotriene A4 hydrolase, the microsomal epoxide hydrolase, and the insect juvenile hormone epoxide hydrolase. While our understanding of these enzymes has progressed at different rates, here we discuss the current state of knowledge for each of these enzymes, along with a distillation of our current understanding of their endogenous roles. By reviewing the entire enzyme class together, both commonalities and discrepancies in our understanding are highlighted and important directions for future research pertaining to these enzymes are indicated.
Collapse
Affiliation(s)
- John W Newman
- Department of Entomology, UCDavis Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
46
|
La Camera S, Gouzerh G, Dhondt S, Hoffmann L, Fritig B, Legrand M, Heitz T. Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways. Immunol Rev 2004; 198:267-84. [PMID: 15199968 DOI: 10.1111/j.0105-2896.2004.0129.x] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In their environment, plants interact with a multitude of living organisms and have to cope with a large variety of aggressions of biotic or abiotic origin. To survive, plants have acquired, during evolution, complex mechanisms to detect their aggressors and defend themselves. Receptors and signaling pathways that are involved in such interactions with the environment are just beginning to be uncovered. What has been known for several decades is the extraordinary variety of chemical compounds the plants are capable to synthesize, and many of these products are implicated in defense responses. The number of natural products occurring in plants may be estimated in the range of hundreds of thousands, but only a fraction have been fully characterized. Despite the great importance of these metabolites for plant and also for human health, our knowledge about their biosynthetic pathways and functions is still fragmentary. Recent progress has been made particularly for phenylpropanoid and oxylipin metabolism, which are emphasized in this review. Both pathways are involved in plant resistance at several levels: by providing building units of physical barriers against pathogen invasion, by synthesizing an array of antibiotic compounds, and by producing signals implicated in the mounting of plant resistance.
Collapse
Affiliation(s)
- Sylvain La Camera
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|