1
|
Montastier É, Ye RZ, Noll C, Amrani M, Frisch F, Fortin M, Bouffard L, Phoenix S, Sarrhini O, Cunnane SC, Guérin B, Turcotte EE, Carpentier AC. Nicotinic acid increases adipose tissue dietary fatty acid trapping and reduces postprandial hepatic and cardiac fatty acid uptake in prediabetes. Eur J Pharmacol 2025; 998:177563. [PMID: 40157702 DOI: 10.1016/j.ejphar.2025.177563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Increased adipose tissue (AT) dietary fatty acids (DFA) trapping limits fatty acid exposure to lean organs in the face of elevated postprandial nonesterified fatty acid (NEFA) flux from excess AT intracellular lipolysis in prediabetes. We hypothesized that pharmacological inhibition of postprandial AT intracellular lipolysis using short-acting nicotinic acid (NA) would increase AT DFA trapping and limit AT NEFA spillover to lean organs in subjects with prediabetes. Twenty subjects with impaired glucose tolerance and 19 individuals with normal glucose tolerance underwent four postprandial studies with positron emission tomography/computed tomography with radio-labeled fatty acid tracers and stable isotopic palmitate tracers. Over the 6-h postprandial period, NA increased AT DFA partitioning with reciprocal reduction in liver and in muscle. NA also robustly reduced cardiac and liver total (DFA + NEFA) postprandial fatty acid uptake. Short-acting NA administered postprandially thus enhances AT DFA trapping and markedly reduces postprandial hepatic and cardiac fatty acid uptake. (clinicaltrials.gov NCT02808182).
Collapse
Affiliation(s)
- Émilie Montastier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Run Zhou Ye
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mehdi Amrani
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mélanie Fortin
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Lucie Bouffard
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Serge Phoenix
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Quebec, Canada
| | - Otman Sarrhini
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Quebec, Canada
| | - Stephen C Cunnane
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Quebec, Canada
| | - Eric E Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Quebec, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Quebec, Canada.
| |
Collapse
|
2
|
Li L, Gao W, Yao F, Li J, Sang W, Zhang R. Innovative nanomedicine approaches for the management of nonalcoholic fatty liver disease. J Control Release 2025; 382:113680. [PMID: 40180250 DOI: 10.1016/j.jconrel.2025.113680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/17/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver disorder globally. The prevalence of NAFLD in the general population is estimated to be 25-30 %, making it the most common chronic liver condition in China as well as worldwide. Given the escalating disease burden and the scarcity of effective therapeutic interventions, there is a pressing unmet clinical need. Consequently, the development of novel pharmaceuticals has emerged as a pivotal research focus in recent years. Moreover, the advent of nano-delivery technology offers innovative solutions for NAFLD drug therapy. This paper presents a comprehensive examination of the pathogenesis and therapeutic targets of NAFLD. It critically reviews the latest advancements in nanomedicine research pertinent to NAFLD treatment. The review synthesizes a broad range of research findings to bridge the gap between current knowledge and emerging therapeutic strategies, and aims to inform and guide future research directions in NAFLD management.
Collapse
Affiliation(s)
- Limeng Li
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Weiqi Gao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China; Shanxi Academy of Advanced Research and Innovation (SAARl), Taiyuan, 030032, China
| | - Fengyang Yao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Jiayi Li
- School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Wei Sang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China; Institute of Medical Technology, Shanxi Medical University, Taiyuan 030001, China.
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
3
|
Saleh RO, Hamad HA, Najim MA, Menon SV, Kaur M, Sivaprasad GV, Abohassan M, Juan WT, Husseen B, Mustafa YF. Exosome-mediated Transfer of lncRNA in Liver Associated Diseases; Uncovered Truths. Cell Biochem Biophys 2025; 83:1465-1481. [PMID: 39567423 DOI: 10.1007/s12013-024-01617-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
Exosomes are extracellular vesicles with a diameter ranging from 40 to 160 nm. They are produced by hepatocytes, cholangiocytes, hepatic stellate cells (HSCs), liver sinusoidal endothelial cells (LSECs) and Kupffer cells in liver tissue. The secretion of exosomes might vary in quantity and composition in reaction to multiple triggers and various stages of disease. They transport various payloads, such as proteins, DNAs, and RNAs, and enable cell interaction to regulate myriad physiological and pathological processes in liver tissue. Long non-coding RNAs (lncRNAs) are a crucial component of exosomes with an excellent capability to regulate multiple cellular activities such as differentiation, development, metabolism, proliferation, apoptosis, and activation. With the advancements in transcriptomic and genomic study methods and database management technology, the functions and mechanisms of exosomal lncRNAs in liver diseases have been well-studied. This article delves into the detailed role of exosomal lncRNAs in liver disease onset and progression, ranging from hepatocellular carcinoma (HCC) to liver fibrosis drug-induced liver damage (DILI) and steatotic liver diseases.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al Maarif, Anbar, Iraq.
| | - Hamad Ali Hamad
- Department of Pathological Analysis, Collage of Applied Sciences, University of Fallujah, Fallujah, Iraq
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Malaysia
| | | | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Wen-Tau Juan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Beneen Husseen
- Medical Laboratory Technique college, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique college, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique college, The Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
4
|
Liu Y, Hu Y, Shan ZL. Mitochondrial DNA release mediates metabolic-associated steatohepatitis via activation of inflammatory pathways. Shijie Huaren Xiaohua Zazhi 2025; 33:344-360. [DOI: 10.11569/wcjd.v33.i5.344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/25/2025] [Accepted: 05/19/2025] [Indexed: 05/28/2025] Open
Affiliation(s)
- Ying Liu
- Gannan Institute of Medical Innovation and Translational Medicine, Gannan Medical University, Ganzhou 431000, Jiangxi Province, China
| | - Yang Hu
- Gannan Institute of Medical Innovation and Translational Medicine, Gannan Medical University, Ganzhou 431000, Jiangxi Province, China
| | - Zhao-Liang Shan
- Gannan Institute of Medical Innovation and Translational Medicine, Gannan Medical University, Ganzhou 431000, Jiangxi Province, China
| |
Collapse
|
5
|
Ma N, Gao J, Pang X, Wu K, Yang S, Wei H, Hao Y. Formulation-optimized oncolytic viruses: Advancing systemic delivery and immune amplification. J Control Release 2025; 383:113822. [PMID: 40348130 DOI: 10.1016/j.jconrel.2025.113822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/06/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025]
Abstract
Cancer is a major global public health challenge. Traditional treatments such as surgery, radiotherapy, and chemotherapy often show limited efficacy, minimal improvements in survival rates, and high recurrence risks. With limited therapeutic options for solid tumors, tumor immunotherapy, which harness the body's immune system, has gained significant attention. Oncolytic viruses (OVs) selectively infect and destroy tumor cells, induce immunogenic cell death (ICD) and stimulate antitumor immune responses. However, current OVs therapies, which are predominantly administered via intratumoral injection, have numerous limitations, including the need for guidance, suboptimal viral spread, extracellular matrix barriers, and immune clearance. These challenges hinder repeated dosing effectiveness and restrict its clinical applicability. Although genetic engineering has improved the tumor selectivity and immune activation of OVs, significant delivery challenges remain. Recently, optimizing pharmaceutical formulations to enhance tumor targeting and viral accumulation has emerged as a key approach to improving OV therapy and expanding clinical applicability. This review highlights the critical role of pharmaceutical formulations in biologics and outlines recent advances in OVs formulations. Specifically, we discuss strategies aimed at enhancing tumor targeting, reducing adverse effects, and promoting antitumor immunity. These strategies significantly enhance OV therapeutic potential and inform novel delivery systems for clinical translation.
Collapse
Affiliation(s)
- Ningye Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jian Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Xiaoao Pang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Kexin Wu
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Shihua Yang
- Department of Breast Surgery, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning 110042, China; Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Heng Wei
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Yingying Hao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
6
|
Lee J, Choi WG, Rhee M, Lee SH. Extracellular Vesicle-Mediated Network in the Pathogenesis of Obesity, Diabetes, Steatotic Liver Disease, and Cardiovascular Disease. Diabetes Metab J 2025; 49:348-367. [PMID: 40367986 PMCID: PMC12086558 DOI: 10.4093/dmj.2025.0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed particles carrying bioactive cargo, including nucleic acids, proteins, and lipids, facilitating intercellular and interorgan communication. In addition to traditional mediators such as hormones, metabolites, and cytokines, increasing evidence suggests that EVs are key modulators in various physiological and pathological processes, particularly influencing metabolic homeostasis and contributing to the progression of cardiometabolic diseases. This review provides an overview of the most recent insights into EV-mediated mechanisms involved in the pathogenesis of obesity, insulin resistance, diabetes mellitus, steatotic liver disease, atherosclerosis, and cardiovascular disease. EVs play a critical role in modulating insulin sensitivity, glucose homeostasis, systemic inflammation, and vascular health by transferring functional molecules to target cells. Understanding the EV-mediated network offers potential for identifying novel biomarkers and therapeutic targets, providing opportunities for EV-based interventions in cardiometabolic disease management. Although many challenges remain, this evolving field highlights the need for further research into EV biology and its translational applications in cardiovascular and metabolic health.
Collapse
Affiliation(s)
- Joonyub Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Won Gun Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Marie Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Hwan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
7
|
Geng Y, Luo K, Stam J, Oosterhuis D, Gorter AR, van den Heuvel M, Crescitelli R, de Meijer VE, Wolters JC, Olinga P. Characterization of Extracellular Vesicles Derived From Human Precision-Cut Liver Slices in Metabolic Dysfunction-Associated Steatotic Liver Disease. JOURNAL OF EXTRACELLULAR BIOLOGY 2025; 4:e70043. [PMID: 40313415 PMCID: PMC12042696 DOI: 10.1002/jex2.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/30/2025] [Accepted: 02/28/2025] [Indexed: 05/03/2025]
Abstract
Extracellular vesicles (EVs) are cell-produced, membrane-surrounded vesicles that harbour the biological features of donor cells. In the current study, we are the first to isolate and characterize EVs isolated from human precision-cut liver slices (PCLS), obtained from both healthy and metabolic dysfunction-associated steatohepatitis (MASH) cirrhotic livers. PCLS derived from patients can faithfully represent disease conditions in humans. EVs were isolated from human PCLS after incubating in normal medium or modified medium that mimics the pathophysiological environment of metabolic dysfunction associated liver disease (MASLD). MASH PCLS produced higher amounts of EVs compared to healthy PCLS (p < 0.001). Mass spectrometry revealed that around 300 proteins were significantly different in EVs derived from MASH PCLS versus healthy PCLS (FDR < 0.05), irrespective of the type of medium. Significantly changed EV proteins were largely involved in signalling receptor binding function and showed potential in promoting fibrosis. In the liver, these ligand-associated receptors are highly expressed in hepatic stellate cells, and the MASH EVs functionally promoted the activation of hepatic stellate cells. Furthermore, the amounts of EpCAM and ITGA3 in EVs were positively associated with the progression of MASLD, which suggests the use of liver-derived EVs as potential biomarkers for MASLD. Characterization of EVs derived from human PCLS may assist future studies in investigating the pathogenesis and identifying liver-specific EVs as biomarkers of MASLD.
Collapse
Affiliation(s)
- Yana Geng
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of PharmacyUniversity of GroningenGroningenthe Netherlands
| | - Ke Luo
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of PharmacyUniversity of GroningenGroningenthe Netherlands
| | - Janine Stam
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of PharmacyUniversity of GroningenGroningenthe Netherlands
- Department of Analytical Biochemistry, Groningen Research Institute of PharmacyUniversity of GroningenGroningenthe Netherlands
| | - Dorenda Oosterhuis
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of PharmacyUniversity of GroningenGroningenthe Netherlands
| | - Alan R. Gorter
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of PharmacyUniversity of GroningenGroningenthe Netherlands
| | - Marius van den Heuvel
- Division of Pathology, Department of Pathology and Medical BiologyUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Rossella Crescitelli
- Department of Surgery, Sahlgrenska Center for Cancer Research and Wallenberg Centre for Molecular and Translational Medicine, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGöteborgSweden
| | - Vincent E. de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery & Liver TransplantationUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Justina C. Wolters
- Department of PediatricsUniversity Medical Center Groningen, University of GroningenGroningenthe Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of PharmacyUniversity of GroningenGroningenthe Netherlands
| |
Collapse
|
8
|
Luo H, Wang J, Lin F, Liu Y, Wu X, Li G, Su C, Chen J, Xiong F, Mo J, Zheng Z, Zheng X, Li Q, Zha L. Macrophage exosomes mediate palmitic acid-induced metainflammation by transferring miR-3064-5p to target IκBα and activate NF-κB signaling. J Adv Res 2025; 71:501-519. [PMID: 38960278 DOI: 10.1016/j.jare.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
INTRODUCTION High palmitic acid (PA) levels trigger metainflammation, facilitating the onset and progression of chronic metabolic diseases. Recently, exosomes were identified as new inflammation mediators. However, the mechanism by which macrophage exosomes mediate PA-induced inflammation remains unclear. OBJECTIVES To explore how PA induces metainflammation through macrophage exosomes. METHODS Exosomes secreted by RAW264.7 mouse macrophages stimulated with PA (ExosPA) or not (Exos) were prepared by ultracentrifugation. The differential miRNAs between ExosPA and Exos were identified by high-throughput sequencing, and their targeted mRNAs and proteins were bioinformatically analyzed and verified by qPCR and western blot. Mouse macrophages and metabolic cells (AML-12 hepatocytes, C2C12 myocytes or 3T3-L1 adipocytes) were treated with ExosPA or Exos. The verified miRNAs and its targeted molecules related to inflammation were analyzed in recipient cells. Furthers, exosomes were prepared from primary peritoneal macrophages isolated from AIN93G diet-fed (Control PM-Exos) or HPD-fed (PA PM-Exos) mice. Control or PA PM-Exos were then tail vein injected (30 μg) into mice (n = 10), once a week for 2 weeks. The verified miRNA and its targets in blood, blood exosomes, and metabolic tissues were detected. Finally, measured the levels of miRNA, inflammatory factors, and fatty acids in the blood of 20 obese/overweight individuals and 20 healthy individuals. RESULTS ExoPA activate NF-κB signaling and enhance inflammatory enzyme/cytokine production in macrophages and metabolic cells. ExoPA enrich miR-3064-5p and target to inhibit IκBα as verified by exosome inhibitors and miR-3064-5p mimics and inhibitors. HPD elevates exosomal miR-3064-5p, macrophage exosomal miR-3064-5p, and inflammatory cytokine levels in mice circulation. PA PM-Exos from HPD-fed mice triggered inflammation in the circulation and metabolic tissues/organs of chow diet-fed mice. Overweight/obese individuals exhibit increased levels of circulating palmitoleic acid, exosomal miR-3064-5p, and high-sensitivity C-reactive proteins. CONCLUSIONS Macrophage exosomes transferring miR-3064-5p to target IκBα and activate NF-κB signaling in metabolic cells is a mechanism of PA-induced metainflammation.
Collapse
Affiliation(s)
- Huiyu Luo
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Jiexian Wang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Fengjuan Lin
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Yuguo Liu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Xinglong Wu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Gan Li
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000 Chenzhou, PR China
| | - Chuhong Su
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Junbin Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Fei Xiong
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Jiaqi Mo
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Zhongdaixi Zheng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Xiangyi Zheng
- Department of Health Management Medicine, Guangzhou Panyu District Health Management Center (Guangzhou Panyu District Rehabilitation Hospital), Guangzhou 511450, Guangdong, PR China
| | - Qing Li
- Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Longying Zha
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China.
| |
Collapse
|
9
|
Kuchay MS, Choudhary NS, Ramos-Molina B. Pathophysiological underpinnings of metabolic dysfunction-associated steatotic liver disease. Am J Physiol Cell Physiol 2025; 328:C1637-C1666. [PMID: 40244183 DOI: 10.1152/ajpcell.00951.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 01/31/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is emerging as the leading cause of chronic liver disease worldwide, reflecting the global epidemics of obesity, metabolic syndrome, and type 2 diabetes. Beyond its strong association with excess adiposity, MASLD encompasses a heterogeneous population that includes individuals with normal body weight ("lean MASLD") highlighting the complexity of its pathogenesis. This disease results from a complex interplay between genetic susceptibility, epigenetic modifications, and environmental factors, which converge to disrupt metabolic homeostasis. Adipose tissue dysfunction and insulin resistance trigger an overflow of lipids to the liver, leading to mitochondrial dysfunction, oxidative stress, and hepatocellular injury. These processes promote hepatic inflammation and fibrogenesis, driven by cross talk among hepatocytes, immune cells, and hepatic stellate cells, with key contributions from gut-liver axis perturbations. Recent advances have unraveled pivotal molecular pathways, such as transforming growth factor-β signaling, Notch-induced osteopontin, and sphingosine kinase 1-mediated responses, that orchestrate fibrogenic activation. Understanding these interconnected mechanisms is crucial for developing targeted therapies. This review integrates current knowledge on the pathophysiology of MASLD, emphasizing emerging concepts such as lean metabolic dysfunction-associated steatohepatitis (MASH), epigenetic alterations, hepatic extracellular vesicles, and the relevance of extrahepatic signals. It also discusses novel therapeutic strategies under investigation, aiming to provide a comprehensive and structured overview of the evolving MASLD landscape for both basic scientists and clinicians.
Collapse
Affiliation(s)
| | - Narendra Singh Choudhary
- Institute of Digestive and Hepatobiliary Sciences, Medanta-The Medicity Hospital, Gurugram, India
| | - Bruno Ramos-Molina
- Group of Obesity, Diabetes & Metabolism, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
10
|
Xia W, Xiao L, Cheng H, Feng Y. TRIB3 Is a Hub Gene in Steatohepatitis and Aggravates Lipid Deposition and Inflammation in Hepatocytes. Diabetes Metab Syndr Obes 2025; 18:1111-1124. [PMID: 40255971 PMCID: PMC12009121 DOI: 10.2147/dmso.s486377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 03/20/2025] [Indexed: 04/22/2025] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD), also known as Metabolic dysfunction-associated fatty liver disease (MASLD), has become one of the most common chronic liver diseases worldwide, approximately 30% of adults and 70%~80% of patients with obesity and diabetes suffer from NAFLD. Objective We attempted to find a potential hub gene in NAFLD hepatocyte cell model induced by palmitic acid and oil acid (PAOA), and investigated the function of the hub-gene. Methods We searched and downloaded the GSE122660 dataset from GEO-DataSets, and differentially expressed genes (DEGs) were analyzed using R software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to identify the significantly activated signaling pathways in steatohepatitis. A protein-protein interaction (PPI) network was constructed to identify hub genes among the DEGs. qRT-PCR, Western blotting, and Oil Red O staining were used to explore the function of hub genes in PAOA-induced hepatocytes in vitro. Results A total of 255 DEGs were identified in the GSE122660 dataset and were primarily associated with inflammation-and lipid metabolism-related pathways. The tribbles pseudokinase 3 (TRIB3) was highlighted as a hub gene. We found that TRIB3 was upregulated in CDHFDinduced NAFLD mouse liver tissue and hepatocyte cell models. Furthermore, TRIB3 aggravated PAOA-induced lipid accumulation and inflammation in hepatocytes in vitro. Conclusion The present study identified TRIB3 as a hub gene for steatohepatitis and aggravated lipid accumulation and inflammation in vitro. Therefore, targeting TRIB3 could be a potential pharmacological strategy for NAFLD treatment.
Collapse
Affiliation(s)
- Wen Xia
- Department of Cardiovascular Medicine, Wuhan No.1 Hospital, Wuhan, Hubei, People’s Republic of China
| | - Li Xiao
- Department of Cardiovascular Medicine, Wuhan No.1 Hospital, Wuhan, Hubei, People’s Republic of China
| | - Huan Cheng
- Department of Cardiovascular Medicine, Wuhan No.1 Hospital, Wuhan, Hubei, People’s Republic of China
| | - Yuwei Feng
- Department of Hepatology with Integrated Traditional Chinese and Western Medicine, Hubei No.3 People’s Hospital of Jianghan University, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
11
|
Rohm TV, Dos Reis FCG, Cunha E Rocha K, Isaac R, Strayer S, Murphy C, Bandyopadhyay G, Gao H, Ganguly S, Nguyen T, Wang J, Youhanna JE, Pack D, Liu X, Kim HY, Jeelani I, Dhar D, Kisseleva T, Ying W, Olefsky JM. Metabolic Dysfunction-Associated Steatohepatitis Adipose Tissue Macrophages Secrete Extracellular Vesicles That Activate Liver Fibrosis in Obese Male Mice. Gastroenterology 2025:S0016-5085(25)00604-3. [PMID: 40204101 DOI: 10.1053/j.gastro.2025.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND & AIMS Given the need for effective interventions in metabolic dysfunction-associated steatohepatitis (MASH), understanding the role of adipose tissue macrophage (ATM)-derived small extracellular vesicles (sEVs) is important. We aimed to evaluate the contribution of MASH-ATM-sEVs to the development of liver fibrosis in obese male mice. METHODS Using flow cytometry and nanoparticle tracking analysis, we characterized MASH-ATMs and their secreted sEVs. We assessed the fibrogenic effects of sEVs from MASH-ATMs or anti-inflammatory macrophages on stellate cells in vitro and in mice in vivo. In addition, we isolated Dicer knockdown microRNA (miRNA)-depleted sEVs from MASH-ATMs and cotreated stellate cells with MASH-ATM-sEVs and miR-155 or miR-34a antagomirs. RESULTS MASH-ATMs exhibited a pro-inflammatory and lipid-associated phenotype, secreting sEVs enriched in the fibrogenic miRNAs, miR-155 and miR-34a, which also down-regulate Pparg. In vitro, MASH-ATM-sEVs induced hepatic stellate cell activation and fibrogenesis and exacerbated liver fibrosis when administered to obese mice. In addition, anti-inflammatory macrophage sEVs mitigated fibrosis both in vitro and in vivo. miRNA-free Dicer knockdown-MASH-ATM-sEVs were without effects and cotreatment with miR-155/miR-34a antagomirs blocked the effects of MASH-ATM-sEVs to induce hepatic stellate cell activation. CONCLUSIONS This study demonstrated the role of MASH-ATM-sEVs in promoting liver fibrosis in obesity. Identification of the fibrogenic miRs, miR-155, and miR-34a, within MASH-ATM-sEVs, highlights the mechanistic importance of extrahepatic signals in MASH. These findings showed the therapeutic potential of modulating macrophage phenotypes and their sEV cargo to ameliorate MASH.
Collapse
Affiliation(s)
- Theresa V Rohm
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California.
| | | | - Karina Cunha E Rocha
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California
| | - Roi Isaac
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California
| | - Sean Strayer
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California
| | - Cairo Murphy
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California
| | - Gautam Bandyopadhyay
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California
| | - Hong Gao
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California
| | - Souradipta Ganguly
- Department of Medicine, School of Medicine, University of California, San Diego, California; Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Tram Nguyen
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California
| | - Jinyue Wang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California
| | - John E Youhanna
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California
| | - David Pack
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California
| | - Xiao Liu
- Department of Surgery, University of California San Diego, School of Medicine, La Jolla, California
| | - Hyun Young Kim
- Department of Medicine, School of Medicine, University of California, San Diego, California; Department of Surgery, University of California San Diego, School of Medicine, La Jolla, California
| | - Ishtiaq Jeelani
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California
| | - Debanjan Dhar
- Department of Medicine, School of Medicine, University of California, San Diego, California; Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, School of Medicine, La Jolla, California
| | - Wei Ying
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California
| | - Jerrold M Olefsky
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California.
| |
Collapse
|
12
|
Yang F, Chen Y, Zheng G, Gu K, Fan L, Li T, Zhu L, Yan Y. LIMA1 O-GlcNAcylation Promotes Hepatic Lipid Deposition through Inducing β-catenin-Regulated FASn Expression in Metabolic Dysfunction-Associated Steatotic Liver Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415941. [PMID: 39921472 PMCID: PMC12005730 DOI: 10.1002/advs.202415941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/20/2025] [Indexed: 02/10/2025]
Abstract
Hepatic lipid deposition is a key factor in progressing metabolic dysfunction-associated steatotic liver disease (MASLD). This study investigates the impact of the LIM domain and actin-binding protein 1 (LIMA1) on hepatic steatotic in MASLD and explore the underlying mechanisms. Increased levels of LIMA1 is observed in both serum and serum sEV of metabolic dysfunction-associated steatohepatitis (MASH) patients compared to healthy controls, with AUROC values of 0.76 and 0.86, respectively. Furthermore, increased LIMA1 O-GlcNAcylation is observed in mouse models of MASLD, and steatotic hepatocytes. Mechanistic studies revealed that steatosis upregulated Host cell factor 1 (HCF1) and O-GlcNAc transferase (OGT) expression, leading to catalyzed O-GlcNAcylation at the T662 site of LIMA1 and subsequent inhibition of its ubiquitin-dependent degradation. O-GlcNAcylation of LIMA1 enhances hepatocyte lipid deposition by activating β-catenin/FASn-associated signaling. Additionally, compared with their AAV8-TBG-LIMA1-WT counterparts, AAV8-TBG-LIMA1ΔT662 injection exhibited decreases in systemic insulin resistance, steatosis severity, inflammation and fibrosis in HFD-fed and CDAHFD-fed LIMA1 HKO (hepatocyte-specific knockout) mice. Moreover, LTH-sEV-mediated delivery of LIMA1 promoted MASLD progression by promoting hepatic stellate cell (HSC) activation. The findings suggest that serum sEV LIMA1 may be a potential noninvasive biomarker and therapeutic target for individuals with MASH.
Collapse
Affiliation(s)
- Fuji Yang
- Department of Laboratory MedicineWujin Hospital Affiliated with Jiangsu UniversityJiangsu UniversityChangzhou213017China
- Department of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
| | - Yifei Chen
- Department of Laboratory MedicineWujin Hospital Affiliated with Jiangsu UniversityJiangsu UniversityChangzhou213017China
- Department of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
| | - Guojun Zheng
- Department of Laboratory MedicineThe Third People's Hospital of ChangzhouChangzhou213017China
| | - Kefeng Gu
- Changzhou Key Laboratory of Exosome Foundation and Transformation ApplicationWujin Hospital Affiliated with Jiangsu UniversityJiangsu UniversityChangzhou213017China
| | - Lin Fan
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu UniversityJiangsu UniversityChangzhou213017China
| | - Tingfen Li
- Department of laboratory medicineThe Second People's Hospital of ChangzhouChangzhou213614China
| | - Ling Zhu
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu UniversityJiangsu UniversityChangzhou213017China
| | - Yongmin Yan
- Department of Laboratory MedicineWujin Hospital Affiliated with Jiangsu UniversityJiangsu UniversityChangzhou213017China
- Changzhou Key Laboratory of Exosome Foundation and Transformation ApplicationWujin Hospital Affiliated with Jiangsu UniversityJiangsu UniversityChangzhou213017China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu UniversityJiangsu UniversityChangzhou213017China
| |
Collapse
|
13
|
Roy A, Hoff A, Her TK, Ariyaratne G, Gutiérrez RL, Tahawi MHDN, Rajagopalan KS, Brown MR, Omori K, Lewis-Brinkman S, Nguyen T, Soto-González A, Peterson QP, Matveyenko AV, Javeed N. Lipotoxicity Induces β-cell Small Extracellular Vesicle-Mediated β-cell Dysfunction in Male Mice. Endocrinology 2025; 166:bqaf067. [PMID: 40179251 PMCID: PMC12006739 DOI: 10.1210/endocr/bqaf067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/19/2024] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
Chronically elevated circulating excess free fatty acids (ie, lipotoxicity) is a pathological process implicated in several metabolic disorders, including obesity-driven type 2 diabetes (T2D). Lipotoxicity exerts detrimental effects on pancreatic islet β-cells by reducing glucose-stimulated insulin secretion (GSIS), altering β-cell transcriptional identity, and promoting apoptosis. While β-cell-derived small extracellular vesicles (sEV) have been shown to contribute to β-cell failure in T2D, their specific role in lipotoxicity-mediated β-cell failure remains to be elucidated. In this work, we demonstrate that lipotoxicity enhances the release of sEVs from β-cells, which exhibit altered proteomic and lipidomic profiles. These palmitate (PAL)-exposed extracellular vesicles (EVs) induce β-cell dysfunction in healthy mouse and human islets and trigger significant islet transcriptional changes, including the upregulation of genes associated with the TGFβ/Smad3 pathway, as noted by RNA sequencing. Importantly, pharmacological inhibition of the TGFβI/II receptor improved PAL EV-induced β-cell dysfunction, underscoring their involvement in activating the TGFβ/Smad3 pathway during this process. We have comprehensively characterized lipotoxic β-cell sEVs and implicated their role in inducing β-cell functional failure in T2D. These findings highlight potential avenues for therapeutic interventions targeting sEV-mediated pathways to preserve β-cell health in metabolic disorders.
Collapse
Affiliation(s)
- Abhishek Roy
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Alexandra Hoff
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tracy K Her
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Gallage Ariyaratne
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Roberto-León Gutiérrez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - M H D Noor Tahawi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Matthew R Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kazuno Omori
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Sean Lewis-Brinkman
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Thanh Nguyen
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Quinn P Peterson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of Endocrinology, Diabetes, and Metabolism, Mayo Clinic, Rochester, MN 55905, USA
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of Endocrinology, Diabetes, and Metabolism, Mayo Clinic, Rochester, MN 55905, USA
| | - Naureen Javeed
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of Endocrinology, Diabetes, and Metabolism, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Wang J, Bao S, An Q, Li C, Feng J. Roles of extracellular vesicles from different origins in metabolic-associated fatty liver disease: progress and perspectives. Front Immunol 2025; 16:1544012. [PMID: 40129979 PMCID: PMC11930831 DOI: 10.3389/fimmu.2025.1544012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/19/2025] [Indexed: 03/26/2025] Open
Abstract
Metabolic-Associated Fatty Liver Disease (MAFLD) is the most common chronic liver disease worldwide, associated with systemic metabolic dysregulation. It can progress from simple hepatic steatosis (MAFL) to more severe conditions like Metabolic-Associated Steatohepatitis (MASH), fibrosis, cirrhosis, and Hepatocellular Carcinoma (HCC). There is a critical lack of reliable non-invasive diagnostic methods and effective pharmaceutical treatments for MAFLD/MASH, emphasizing the need for further research. Extracellular vesicles (EVs) are nanoscale structures that play important roles in cell signaling by delivering bioactive molecules. However, there is a significant gap in literature regarding the roles of EVs from hosts, plants, and microbiota in MAFLD. This review explores the potential of EVs from various sources-host, plants, and microbiota-as biomarkers, therapeutic agents, drug carriers, and treatment targets for MAFLD. Firstly, the roles of host-derived extracellular vesicles (EVs) in MAFLD, with a focus on cell-type specific EVs and their components-proteins, miRNAs, and lipids-for disease diagnosis and monitoring were discussed. Moreover, it highlighted the therapeutic potential of mesenchymal stem cell (MSC)-derived EVs in reducing lipid accumulation and liver injury, and immune cell-derived EVs in mitigating inflammation and fibrosis. The review also discussed the use of host-derived EVs as drug carriers and therapeutic targets due to their ability to deliver bioactive molecules that impact disease mechanisms. Additionally, it summarized research on plant-derived EVs, which help reduce liver lipid accumulation, inflammation, and enhance gut barrier function in MAFLD. Also, the review explored microbial-derived EVs as novel therapeutic targets, particularly in relation to insulin resistance, liver inflammation, and dysfunction in MAFLD. Overall, by exploring the diverse roles of EVs from host, plant, and microbiota sources in MAFLD, this review offers valuable insights into their potential as non-invasive biomarkers and novel therapeutic strategies, which could pave the way for more effective diagnostic and treatment options for this increasingly prevalent liver disease. Notably, the challenges of translating EVs into clinical practice were also thoroughly discussed, aiming to provide possible directions and strategies for future research.
Collapse
Affiliation(s)
- Jing Wang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shuoqiang Bao
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qi An
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Caihong Li
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Juan Feng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
15
|
Mullin SM, Kelly AJ, Ní Chathail MB, Norris S, Shannon CE, Roche HM. Macronutrient Modulation in Metabolic Dysfunction-Associated Steatotic Liver Disease-the Molecular Role of Fatty Acids compared with Sugars in Human Metabolism and Disease Progression. Adv Nutr 2025; 16:100375. [PMID: 39842721 PMCID: PMC11849631 DOI: 10.1016/j.advnut.2025.100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a significant public health concern, with its progression to metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis leading to severe outcomes including cirrhosis, hepatocellular carcinoma, and liver failure. Whereas obesity and excess energy intake are well-established contributors to the development and progression of MASLD, the distinct role of specific macronutrients is less clear. This review examines the mechanistic pathways through which dietary fatty acids and sugars contribute to the development of hepatic inflammation and fibrosis, offering a nuanced understanding of their respective roles in MASLD progression. In terms of addressing potential therapeutic options, human intervention studies that investigate whether modifying the intake of dietary fats and carbohydrates affects MASLD progression are reviewed. By integrating this evidence, this review seeks to bridge the gap in the understanding between the mechanisms of macronutrient-driven MASLD progression and the effect of altering the intake of these nutrients in the clinical setting and presents a foundation for future research into targeted dietary strategies for the treatment of the disease.
Collapse
Affiliation(s)
- Sinéad M Mullin
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Aidan J Kelly
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Méabh B Ní Chathail
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Suzanne Norris
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Christopher E Shannon
- Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland; School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Helen M Roche
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland; Institute for Global Food Security, Queen's University Belfast, Northern Ireland.
| |
Collapse
|
16
|
Wang Q, Tang X, Wang Y, Zhang D, Li X, Liu S. The role of extracellular vesicles in non-alcoholic steatohepatitis: Emerging mechanisms, potential therapeutics and biomarkers. J Adv Res 2025; 69:157-168. [PMID: 38494073 PMCID: PMC11954800 DOI: 10.1016/j.jare.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH), an emerging global healthcare problem, has become the leading cause of liver transplantation in recent decades. No effective therapies in the clinic have been proven due to the incomplete understanding of the pathogenesis of NASH, and further studies are expected to continue to delve into the mechanisms of NASH. Extracellular vesicles (EVs), which are small lipid membrane vesicles carrying proteins, microRNAs and other molecules, have been identified to play a vital role in cell-to-cell communication and are involved in the development and progression of various diseases. In recent years, there has been increasing interest in the role of EVs in NASH. Many studies have revealed that EVs mediate important pathological processes in NASH, and the role of EVs in NASH is distinct and variable depending on their origin cells and target cells. This review outlines the emerging mechanisms of EVs in the development of NASH and the preclinical evidence related to stem cell-derived EVs as a potential therapeutic strategy for NASH. Moreover, possible strategies involving EVs as clinical diagnostic, staging and prognostic biomarkers for NASH are summarized.
Collapse
Affiliation(s)
- Qianrong Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiangning Tang
- Department of endocrinology, the Second Affiliated Hospital of University of South China, 421001 Hunan Province, China
| | - Yu Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Danyi Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
17
|
Li W, Chen L, Zhou Q, Huang T, Zheng W, Luo F, Luo ZG, Zhang J, Liu J. Liver macrophage-derived exosomal miRNA-342-3p promotes liver fibrosis by inhibiting HPCAL1 in stellate cells. Hum Genomics 2025; 19:9. [PMID: 39910671 PMCID: PMC11800645 DOI: 10.1186/s40246-025-00722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND The progression of liver fibrosis involves complex interactions between hepatic stellate cells (HSCs) and multiple immune cells in the liver, including macrophages. However, the mechanism of exosomes in the crosstalk between liver macrophages and HSCs remains unclear. METHOD Exosomes were extracted from primary mouse macrophages and cultured with HSCs, and the differential expression of microRNAs was evaluated using high-throughput sequencing technology. The functions of miR-342-3p in exosomes were verified by qPCR and luciferase reporter gene experiments with HSCs. The function of the target gene Hippocalcin-like protein 1 (HPCAL1) in HSCs was verified by Western blotting, qPCR, cellular immunofluorescence and co-IP in vivo and in vitro. RESULTS We demonstrated that exosomal microRNA-342-3p derived from primary liver macrophages could activate HSCs by inhibiting the expression of HPCAL1 in HSCs. HPCAL1, which is a fibrogenesis suppressor, could inhibit TGF-β signaling in HSCs by regulating the ubiquitination of Smad2 through direct interactions with its EF-hand 4 domain. CONCLUSION This study reveals a previously unidentified profibrotic mechanism of crosstalk between macrophages and HSCs in the liver and suggests an attractive novel therapeutic strategy for treating fibroproliferative liver diseases.
Collapse
Affiliation(s)
- Wenshuai Li
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lirong Chen
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qi Zhou
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Tiansheng Huang
- Department of Digestive Diseases, Shanghai Guanghua Hospital of Integrated Traditional Chinese And Western Medicine, Shanghai, 200040, China
| | - Wanwei Zheng
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Feifei Luo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zhong Guang Luo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jun Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
18
|
Parthasarathy G, Venkatesan N, Sidhu GS, Song MJ, Liao CY, Barrow F, Mauer A, Sehrawat T, Nakao Y, Daniel PV, Dasgupta D, Pavelko K, Revelo XS, Malhi H. Deletion of sphingosine 1-phosphate receptor 1 in myeloid cells reduces hepatic inflammatory macrophages and attenuates MASH. Hepatol Commun 2025; 9:e0613. [PMID: 39899672 DOI: 10.1097/hc9.0000000000000613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/02/2024] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Immune cell-driven inflammation is a key mediator of metabolic dysfunction-associated steatohepatitis (MASH) progression. We have previously demonstrated that pharmacological sphingosine 1-phosphate (S1P) receptor modulation ameliorates MASH and is associated with attenuated accumulation of intrahepatic macrophage and T-cell subsets. Although S1P receptors are expressed on several immune cell types, given the prominent role of monocyte-derived recruited macrophages in the sterile inflammation of MASH, we hypothesized that deletion of S1P receptor 1 (S1P1) on myeloid cells may ameliorate MASH by reducing the accumulation of proinflammatory monocyte-derived macrophages in the liver. METHODS The LyzMCre approach was used to generate myeloid cell-specific knockout mice, termed S1pr1MKO. Littermate S1pr1loxp/loxp mice were used as wild-type controls. MASH was established by feeding mice a high-fat, -fructose, and -cholesterol (FFC) diet for 24 weeks, which led to the development of steatohepatitis and MASH-defining cardiometabolic risk factors. Liver injury and inflammation were determined by histological and gene expression analyses. Intrahepatic leukocyte populations were analyzed by mass cytometry and immunohistochemistry. RESULTS Histological examination demonstrated a reduction in liver inflammatory infiltrates and fibrosis in high-fat, -fructose, and -cholesterol-fed S1pr1MKO compared to wild-type. There was a corresponding reduction in alanine aminotransferase, a sensitive marker for liver injury. As determined by mass cytometry, a significant decrease in recruited macrophages was noted in the livers of high-fat, -fructose, and -cholesterol-fed S1pr1MKO mice compared to wild-type. Gene ontology pathway analysis revealed significant suppression of the peroxisome proliferator-activated receptor gamma and mitogen-activated protein kinase pathways in S1pr1MKO consistent with attenuated MASH in mice. CONCLUSIONS Deletion of S1P1 in myeloid cells is sufficient to attenuate intrahepatic accumulation of monocyte-derived macrophages and ameliorate murine MASH.
Collapse
Affiliation(s)
- Gopanandan Parthasarathy
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nanditha Venkatesan
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Guneet Singh Sidhu
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Myeong Jun Song
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chieh-Yu Liao
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Fanta Barrow
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amy Mauer
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tejasav Sehrawat
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yasuhiko Nakao
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - P Vineeth Daniel
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Debanjali Dasgupta
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Kevin Pavelko
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Xavier S Revelo
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
19
|
Barberi L, Porcu C, Boccia C, Cosentino M, Nicoletti C, Peruzzi B, Iosi F, Forconi F, Bagnato G, Dobrowolny G, Di Cola S, Lapenna L, Cera G, Merli M, Musarò A. Circulating Extracellular Vesicles in Alcoholic Liver Disease Affect Skeletal Muscle Homeostasis and Differentiation. J Cachexia Sarcopenia Muscle 2025; 16:e13675. [PMID: 39921321 PMCID: PMC11806195 DOI: 10.1002/jcsm.13675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/13/2024] [Accepted: 11/16/2024] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND The mechanisms underlying muscle alteration associated to alcoholic liver disease (ALD) are not fully understood and the physiopathologic mediators of the liver-muscle interplay remains elusive. We investigated the role of circulating extracellular vesicles (EVs) in ALD as potential mediators of muscle atrophy. METHODS We established a mouse model of sarcopenia associated to ALD, by feeding mice with an alcoholic diet for 8 weeks. We investigated the effects of hepatic and circulating EVs isolated from these mice (EtOH mice; n = 7 females) on muscle cell cultures, comparing them with EVs from mice fed with a standard diet (CD mice; n = 6 females). Additionally, we examined the impact of circulating EVs from patients with alcohol-related cirrhosis (7 males and 2 females, mean age 55.4 years) on primary human muscle cells, comparing them with EVs from age-matched healthy subjects (6 males and 3 females). We analysed the miRNA profile of the EVs to identify potential mediators of ALD-associated sarcopenia. RESULTS We demonstrated that circulating EVs were internalized by muscle cells and that EVs from ALD mice and cirrhotic patients caused alteration in the myogenic program. Molecular analysis revealed that serum EVs from ALD mice reduced protein synthesis in C2C12 cells, decreasing levels of p-AKT/AKT (-54.6%; p < 0.05), p-mTOR/mTOR (-54.5%; p < 0.05) and p-GSK3(Ser9)/GSK3 (-30.63%). Similarly, hepatic EVs induced defects in muscle differentiation, with reduced levels of p-AKT/AKT (-39.1%; p < 0.05), p-mTOR/mTOR (-30.1%; p < 0.05) and p-GSK3(Ser9)/GSK3 (-40%). C2C12 cells treated with either serum or hepatic EtOH-EVs exhibited upregulated expression of muscle-specific atrophy markers Atrogin-1 (+61.2% and +189.5%, respectively; p < 0.05) and MuRF1 (+260.4% and +112.5%, respectively; p < 0.05), along with an increased LC3-II/-I ratio (+131.5% and +40.2%, respectively; p < 0.05), indicating enhanced autophagy. MiRNA analysis revealed that both circulating and hepatic EVs from ALD mice showed elevated expression of miR-21, miR-155, miR-223 and miR-122 (+230% and +292%, respectively; p < 0.01) suggesting their potential role in sarcopenia. Human muscle cells exposed to EVs from cirrhotic patients exhibited reduced protein synthesis and upregulated Atrogin-1 (+113%; p < 0.05) and MuRF1 (+86.3%; p < 0.05), indicating proteasome activation. Circulating EVs of alcoholic patients showed upregulation of the same miRNAs observed in EtOH mice, including the liver-specific miR-122 (+260%; p < 0.05) suggesting, also in human liver disease, a hepatic origin of circulating EVs. CONCLUSIONS Our study highlights the critical role of ALD-derived circulating EVs in affecting muscle homeostasis and myogenic program, suggesting potential therapeutic targets for mitigating muscle loss in ALD.
Collapse
Affiliation(s)
- Laura Barberi
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Cristiana Porcu
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Caterina Boccia
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Marianna Cosentino
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Carmine Nicoletti
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Barbara Peruzzi
- Bone Pathophysiology Research UnitBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Francesca Iosi
- Core Facilities, Microscopy AreaIstituto Superiore di SanitàRomeItaly
| | - Flavia Forconi
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Giulia Bagnato
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
- Bone Pathophysiology Research UnitBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Gabriella Dobrowolny
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Simone Di Cola
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Lucia Lapenna
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Gianluca Cera
- Department of Orthopaedics and TraumatologyPoliclinico Umberto IRomeItaly
| | - Manuela Merli
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Antonio Musarò
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
- Scuola Superiore di Studi Avanzati Sapienza (SSAS)Sapienza University of RomeRomeItaly
| |
Collapse
|
20
|
Li X, Chen R, Kemper S, Xu Z, Brigstock DR. Therapeutic Actions of Hepatocyte Extracellular Vesicles in a Murine Model of Diet-Induced Steatohepatitis with Fibrosis. Biomedicines 2025; 13:274. [PMID: 40002688 PMCID: PMC11852249 DOI: 10.3390/biomedicines13020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
INTRODUCTION Metabolic dysfunction-associated steatohepatitis (MASH) is a leading cause of liver failure globally and is characterized by hepatic steatosis and inflammation, which may progress to fibrosis, the severity of which is highly predictive of patient demise and death. In view of the lack of treatment options for MASH, we investigated the therapeutic properties of extracellular vesicles (EVs) from normal human hepatocytes, which we have previously been shown to alleviate toxin-mediated hepatic fibrosis in mice. METHODS C57BI/6J mice were fed a choline-deficient amino acid-defined high (60%) fat (CDAA-HF) diet for up to 12 weeks while receiving i.p. administration of EVs purified from cultured human HepG2 hepatocytes. RESULTS CDAA-HF diet consumption resulted in severe hepatic steatosis, increased frequency of CD45+ lymphocytes and F4/80+ macrophages, robust production of aortic smooth muscle actin (ACTA2), and deposition of interstitial collagen, as well as altered serum levels of ALT, AST, cholesterol, triglycerides, alkaline phosphatase, unconjugated bilirubin, and total protein, thus recapitulating typical MASH phenotypes. EVs administered preventively or therapeutically resulted in the restoration of serum marker levels, reduced hepatic inflammation and attenuation of collagen deposition, ACTA2 production, and expression of fibrosis-associated genes. HepG2 EVs contained 205 miRs and, among the 30 most abundant miRs, seven (miRs-423-5p, -483-5p, -191-5p, -148a-3p, -423-3p, -92a-3p, -122-5p) are predicted to directly target fibrosis-related genes (collagens, ACTA2, MMPs, and TIMPs). CONCLUSIONS Hepatocyte EVs are therapeutic in a mouse model of diet-induced steatohepatitis with fibrosis. Further studies of hepatocyte EVs or their cargo components as novel therapeutics for MASH in humans are warranted, including treatment of fibrotic stages, which are associated with clinical demise and are predictive of patient death.
Collapse
Affiliation(s)
- Xinlei Li
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (X.L.); (R.C.); (S.K.)
| | - Ruju Chen
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (X.L.); (R.C.); (S.K.)
| | - Sherri Kemper
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (X.L.); (R.C.); (S.K.)
| | - Zhaohui Xu
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - David R. Brigstock
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (X.L.); (R.C.); (S.K.)
- Department of Surgery, Wexner Medical Center, The Ohio State University, Columbus, OH 43212, USA
| |
Collapse
|
21
|
Yin W, Xu H, Bai Z, Wu Y, Zhang Y, Liu R, Wang Z, Zhang B, Shen J, Zhang H, Chen X, Ma D, Shi X, Yan L, Zhang C, Jiang H, Chen K, Guo D, Niu W, Yin H, Zhang WJ, Luo C, Xie X. Inhibited peroxidase activity of peroxiredoxin 1 by palmitic acid exacerbates nonalcoholic steatohepatitis in male mice. Nat Commun 2025; 16:598. [PMID: 39799115 PMCID: PMC11724923 DOI: 10.1038/s41467-025-55939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
Reactive oxygen species exacerbate nonalcoholic steatohepatitis (NASH) by oxidizing macromolecules; yet how they promote NASH remains poorly understood. Here, we show that peroxidase activity of global hepatic peroxiredoxin (PRDX) is significantly decreased in NASH, and palmitic acid (PA) binds to PRDX1 and inhibits its peroxidase activity. Using three genetic models, we demonstrate that hepatic PRDX1 protects against NASH in male mice. Mechanistically, PRDX1 suppresses STAT signaling and protects mitochondrial function by scavenging hydrogen peroxide, and mitigating the oxidation of protein tyrosine phosphatases and lipid peroxidation. We further identify rosmarinic acid (RA) as a potent agonist of PRDX1. As revealed by the complex crystal structure, RA binds to PRDX1 and stabilizes its peroxidatic cysteine. RA alleviates NASH through specifically activating PRDX1's peroxidase activity. Thus, beyond revealing the molecular mechanism underlying PA promoting oxidative stress and NASH, our study suggests that boosting PRDX1's peroxidase activity is a promising intervention for treating NASH.
Collapse
Affiliation(s)
- Wen Yin
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Heng Xu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhonghao Bai
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, 300070, China
| | - Yue Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yan Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Rui Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Zhangzhao Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Bei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Jing Shen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Hao Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Danting Ma
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Xiaofeng Shi
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Lihui Yan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Chang Zhang
- Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kaixian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dean Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenyan Niu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, 300070, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Weiping J Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Cheng Luo
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xiangyang Xie
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
22
|
Gurjar S, Bhat A R, Upadhya R, Shenoy RP. Extracellular vesicle-mediated approaches for the diagnosis and therapy of MASLD: current advances and future prospective. Lipids Health Dis 2025; 24:5. [PMID: 39773634 PMCID: PMC11705780 DOI: 10.1186/s12944-024-02396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an asymptomatic, multifaceted condition often associated with various risk factors, including fatigue, obesity, insulin resistance, metabolic syndrome, and sleep apnea. The increasing burden of MASLD underscores the critical need for early diagnosis and effective therapies. Owing to the lack of efficient therapies for MASLD, early diagnosis is crucial. Consequently, noninvasive biomarkers and imaging techniques are essential for analyzing disease risk and play a pivotal role in the global diagnostic process. The use of extracellular vesicles has emerged as promising for early diagnosis and therapy of various liver ailments. Herein, a comprehensive summary of the current diagnostic modalities for MASLD is presented, highlighting their advantages and limitations while exploring the potential of extracellular vesicles (EVs) as innovative diagnostic and therapeutic tools for MASLD. With this aim, this review emphasizes an in-depth understanding of the origin of EVs and the pathophysiological alterations of these ectosomes and exosomes in various liver diseases. This review also explores the therapeutic potential of EVs as key components in the future management of liver disease. The dual role of EVs as biomarkers and their therapeutic utility in MASLD essentially highlights their clinical integration to improve MASLD diagnosis and treatment. While EV-based therapies are still in their early stages of development and require substantial research to increase their therapeutic value before they can be used clinically, the diagnostic application of EVs has been extensively explored. Moving forward, developing diagnostic devices leveraging EVs will be crucial in advancing MASLD diagnosis. Thus, the literature summarized provides suitable grounds for clinicians and researchers to explore EVs for devising diagnostic and treatment strategies for MASLD.
Collapse
Affiliation(s)
- Swasthika Gurjar
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Ramanarayana Bhat A
- Manipal Centre for Biotherapeutics Research, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Raghavendra Upadhya
- Manipal Centre for Biotherapeutics Research, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India.
| | - Revathi P Shenoy
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India.
| |
Collapse
|
23
|
Alpízar Salazar M, Olguín Reyes SE, Medina Estévez A, Saturno Lobos JA, De Aldecoa Castillo JM, Carrera Aguas JC, Alaniz Monreal S, Navarro Rodríguez JA, Alpízar Sánchez DMF. Natural History of Metabolic Dysfunction-Associated Steatotic Liver Disease: From Metabolic Syndrome to Hepatocellular Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:88. [PMID: 39859069 PMCID: PMC11766802 DOI: 10.3390/medicina61010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/30/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025]
Abstract
Introduction: Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) stems from disrupted lipid metabolism in the liver, often linked to obesity, type 2 diabetes, and dyslipidemia. In Mexico, where obesity affects 36.9% of adults, MASLD prevalence has risen, especially with metabolic syndrome affecting 56.31% by 2018. MASLD can progress to Metabolic Dysfunction-Associated Steatohepatitis (MASH), affecting 5.27% globally, leading to severe complications like cirrhosis and hepatocellular carcinoma. Background: Visceral fat distribution varies by gender, impacting MASLD development due to hormonal influences. Insulin resistance plays a central role in MASLD pathogenesis, exacerbated by high-fat diets and specific fatty acids, leading to hepatic steatosis. Lipotoxicity from saturated fatty acids further damages hepatocytes, triggering inflammation and fibrosis progression in MASH. Diagnosing MASLD traditionally involves invasive liver biopsy, but non-invasive methods like ultrasound and transient elastography are preferred due to their safety and availability. These methods detect liver steatosis and fibrosis with reasonable accuracy, offering alternatives to biopsy despite varying sensitivity and specificity. Conclusions: MASLD as a metabolic disorder underscores its impact on public health, necessitating improved awareness and early management strategies to mitigate its progression to severe liver diseases.
Collapse
Affiliation(s)
- Melchor Alpízar Salazar
- Endocrinology, Specialized Center for Diabetes, Obesity and Prevention of Cardiovascular Diseases (CEDOPEC), Mexico City 11650, Mexico
| | - Samantha Estefanía Olguín Reyes
- Clinical Research, Specialized Center for Diabetes, Obesity and Prevention of Cardiovascular Diseases (CEDOPEC), Mexico City 11650, Mexico; (S.E.O.R.); (A.M.E.); (J.A.S.L.); (S.A.M.); (J.A.N.R.); (D.M.F.A.S.)
| | - Andrea Medina Estévez
- Clinical Research, Specialized Center for Diabetes, Obesity and Prevention of Cardiovascular Diseases (CEDOPEC), Mexico City 11650, Mexico; (S.E.O.R.); (A.M.E.); (J.A.S.L.); (S.A.M.); (J.A.N.R.); (D.M.F.A.S.)
| | - Julieta Alejandra Saturno Lobos
- Clinical Research, Specialized Center for Diabetes, Obesity and Prevention of Cardiovascular Diseases (CEDOPEC), Mexico City 11650, Mexico; (S.E.O.R.); (A.M.E.); (J.A.S.L.); (S.A.M.); (J.A.N.R.); (D.M.F.A.S.)
| | - Jesús Manuel De Aldecoa Castillo
- Clinical Nutrition, Specialized Center for Diabetes, Obesity and Prevention of Cardiovascular Diseases (CEDOPEC), Mexico City 11650, Mexico;
| | - Juan Carlos Carrera Aguas
- Clinical Nutrition, Specialized Center for Diabetes, Obesity and Prevention of Cardiovascular Diseases (CEDOPEC), Mexico City 11650, Mexico;
| | - Samary Alaniz Monreal
- Clinical Research, Specialized Center for Diabetes, Obesity and Prevention of Cardiovascular Diseases (CEDOPEC), Mexico City 11650, Mexico; (S.E.O.R.); (A.M.E.); (J.A.S.L.); (S.A.M.); (J.A.N.R.); (D.M.F.A.S.)
| | - José Antonio Navarro Rodríguez
- Clinical Research, Specialized Center for Diabetes, Obesity and Prevention of Cardiovascular Diseases (CEDOPEC), Mexico City 11650, Mexico; (S.E.O.R.); (A.M.E.); (J.A.S.L.); (S.A.M.); (J.A.N.R.); (D.M.F.A.S.)
| | - Dulce María Fernanda Alpízar Sánchez
- Clinical Research, Specialized Center for Diabetes, Obesity and Prevention of Cardiovascular Diseases (CEDOPEC), Mexico City 11650, Mexico; (S.E.O.R.); (A.M.E.); (J.A.S.L.); (S.A.M.); (J.A.N.R.); (D.M.F.A.S.)
| |
Collapse
|
24
|
Guo X, Li H, Zhu B, Wang X, Xu Q, Aquino E, Koo M, Li Q, Cai J, Glaser S, Wu C. HFD feeding for seven months abolishes STING disruption-driven but not female sex-based protection against hepatic steatosis and inflammation in mice. J Nutr Biochem 2025; 135:109770. [PMID: 39284534 PMCID: PMC11620956 DOI: 10.1016/j.jnutbio.2024.109770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
Stimulator of interferon genes (STING) is positively correlated with the degrees of liver inflammation in human metabolic dysfunction-associated steatotic liver disease (MASLD). In addition, STING disruption alleviates MASLD in mice fed a high-fat diet (HFD) for 3 months (3-m-HFD). Here we investigated the role of the duration of dietary feeding in regulating MASLD in mice and explored the involvement of STING in sex differences in MASLD. Both male and female STING-disrupted (STINGgt) and wild-type C57BL/6J mice were fed an HFD for 3 or 7 months (7-m-HFD). Additionally, female STINGgt mice upon ovariectomy (OVX) and 3-m-HFD were analyzed for MASLD. Upon 3-m-HFD, STINGgt mice exhibited decreased severity of MASLD compared to control. However, upon 7-m-HFD, STINGgt mice were comparable with wild-type mice in body weight, fat mass, and MASLD. Regarding regulating the liver RNA transcriptome, 7-m-HFD increased the expression of genes indicating proinflammatory activation of various liver cells. Interestingly, the severity of MASLD in female mice was much lighter than in male mice, regardless of STING disruption. Upon OVX, female STINGgt mice showed significantly increased severity of MASLD relative to sham control but were comparable with male STINGgt mice. Upon treatment with 17-beta estradiol (E2), hepatocytes revealed decreased fat deposition while macrophages displayed decreases in lipopolysaccharide-induced phosphorylation of Nfkb p65 and Jnk p46 independent of STING. These results suggest that 7-m-HFD, without altering female sex-based protection, abolishes STING disruption-driven protection of MASLD, likely through causing proinflammatory activation of multiple types of liver cells to offset the effect of STING disruption.
Collapse
Affiliation(s)
- Xinlei Guo
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Honggui Li
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Bilian Zhu
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Xiaoxiao Wang
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Qian Xu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Eduardo Aquino
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Minji Koo
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - James Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Byran, Texas, USA.
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
25
|
Wang X, Ning C, Cheng X, Wu Z, Wu D, Ding X, Ju C, Zhou Z, Wan L, Zhao W, Shi P. The N-terminal domain of gasdermin D induces liver fibrosis by reprogrammed lipid metabolism. Animal Model Exp Med 2025; 8:114-125. [PMID: 39731223 PMCID: PMC11798734 DOI: 10.1002/ame2.12506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/07/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND The emerging incidence of pathogenic liver conditions is turning into a major concern for global health. Induction of pyroptosis in hepatocytes instigates cellular disintegration, which in turn liberates substantial quantities of pro-inflammatory intracellular substances, thereby accelerating the advancement of liver fibrosis. Consequently, directing therapeutic efforts towards inhibiting pyroptosis could potentially serve as an innovative approach in managing inflammation related chronic hepatic disorders. METHODS GSDMD-NTki/wt mice and Alb-creki/wt mice were generated using CRISPR/Cas9 technology. After crossing the two strains together, we induced conditional cell death by doxycycline to construct a mouse model of liver fibrosis. We analyzed differentially expressed genes by RNA sequencing and explored their biological functions. The efficacy of obeticholic acid (OCA) in the treatment of liver fibrosis was assessed. RESULTS Doxycycline-treated GSDMD-NTki/wt × Alb-creki/wt mice showed severe liver damage, vacuolation of hepatocytes, increased collagen fibers, and accumulation of lipid droplets. The expression of liver fibrosis related genes was greatly increased in the doxycycline-treated mouse liver compared with untreated mouse liver. RNA-sequencing showed that upregulated differentially expressed genes were involved in inflammatory responses, cell activation, and metabolic processes. Treatment with OCA alleviated the liver fibrosis, with reduced ALT and AST levels seen in the GSDMD-NTki/wt × Alb-creki/wt mice. CONCLUSIONS We successfully constructed a novel mouse model for liver fibrosis. This GSDMD-NT-induced fibrosis may be mediated by abnormal lipid metabolism. Our results demonstrated that we successfully constructed a mouse model of liver fibrosis, and GSDMD-NT induced fibrosis by mediating lipid metabolism.
Collapse
Affiliation(s)
- Xue Wang
- GemPharmatech Chengdu Co., Ltd.ChengduChina
| | | | | | | | - Dongbo Wu
- Center of Infectious DiseasesWest China Hospital, Sichuan UniversityChengduChina
| | | | - Cunxiang Ju
- Gempharmatech Shanghai Co., Ltd.ShanghaiChina
| | - Zhihang Zhou
- Department of Gastroenterologythe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Lingfeng Wan
- Fatty Liver Disease Center of Integrated Chinese and Western MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Wei Zhao
- School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical CollegeChengduChina
- Department of Clinical Biochemistry, School of Laboratory MedicineChengdu Medical CollegeChengduChina
| | - Peiliang Shi
- GemPharmatech Chengdu Co., Ltd.ChengduChina
- GemPharmatech Co., Ltd.GuangdongChina
| |
Collapse
|
26
|
Merret PE, Sparfel L, Lavau C, Lagadic-Gossmann D, Martin-Chouly C. Extracellular vesicles as a potential source of biomarkers for endocrine disruptors in MASLD: A short review on the case of DEHP. Biochimie 2025; 228:127-137. [PMID: 39307409 DOI: 10.1016/j.biochi.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Metabolic dysfunction-Associated Steatotic Liver Disease (MASLD) is a chronic disease with increasing prevalence and for which non-invasive biomarkers are needed. Environmental endocrine disruptors (EDs) are known to be involved in the onset and progression of MASLD and assays to monitor their impact on the liver are being developed. Extracellular vesicles (EVs) mediate cell communication and their content reflects the pathophysiological state of the cells from which they are released. They can thus serve as biomarkers of the pathological state of the liver and of exposure to EDs. In this review, we present the relationships between DEHP (Di(2-ethylhexyl) phthalate) and MASLD and highlight the potential of EVs as biomarkers of DEHP exposure and the resulting progression of MASLD.
Collapse
Affiliation(s)
- Pierre-Etienne Merret
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Catherine Lavau
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France.
| | - Corinne Martin-Chouly
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
27
|
Zhu A, Yan X, Chen M, Lin Y, Li L, Wang Y, Huang J, He J, Yang M, Hua W, Chen K, Qi J, Zhou Z. Sappanone A alleviates metabolic dysfunction-associated steatohepatitis by decreasing hepatocyte lipotoxicity via targeting Mup3 in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156341. [PMID: 39733550 DOI: 10.1016/j.phymed.2024.156341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/01/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND AND PURPOSE Metabolic dysfunction-associated steatohepatitis (MASH) is an inflammatory lipotoxic disorder marked by hepatic steatosis, hepatocyte damage, inflammation, and varying stages of fibrosis. Sappanone A (SA), a flavonoid, exhibits anti-inflammatory and hepatoprotection activities. Nevertheless, the effects of SA on MASH remain ambiguous. We evaluated the effects of SA on hepatocyte lipotoxicity, inflammation, and fibrosis conditions in MASH mice, as well as the underlying mechanisms. METHODS A conventional murine MASH model fed a methionine-choline-deficient (MCD) diet was utilized to assess the role of SA on MASH in vivo. Drug target prediction and liver transcriptomics were employed to elucidate the potential actions of SA. AML12 cells were applied to further explore the effects and mechanisms of SA in vitro. RESULTS The in silico prediction indicated that SA could modulate inflammation, insulin resistance, lipid metabolism, and collagen catabolic process. Treating with SA dose-dependently lessened the elevated levels of serum ALT and AST in mice with diet-triggered MASH, and high-dose SA treatment exhibited a similar effect to silymarin. Additionally, SA treatment significantly reduced lipid deposition, inflammation, and fibrosis subjected to metabolic stress in a dose-dependent manner. Besides, SA mitigated palmitate-triggered lipotoxicity in hepatocytes. Liver transcriptomics further confirmed the aforementioned findings. Of note, mRNA-sequencing analysis and molecular biology experiments demonstrated that SA statistically up-regulated the hepatic expression of major urinary protein 3 (Mup3), thereby facilitating lipid transportation and inhibiting lipotoxicity. Furthermore, Mup3 knockdown in hepatocytes significantly abolished the hepatoprotection provided by SA. CONCLUSION SA alleviates MASH by decreasing lipid accumulation and lipotoxicity in hepatocytes, at least partially by targeting Mup3, and subsequently blocks MASH process. Therefore, SA could be a promising hepatoprotective agent in the context of MASH.
Collapse
Affiliation(s)
- An Zhu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, 1 Xue Fu North Road, Fuzhou 350122, China
| | - Xueqing Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, No.1, Xuefu North Road, University Town, Fuzhou, Fujian 350122, China
| | - Mengting Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, 1 Xue Fu North Road, Fuzhou 350122, China
| | - Yifan Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, 1 Xue Fu North Road, Fuzhou 350122, China
| | - Lanqian Li
- Department of Pathology & Diagnosis Pathological Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Yufei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, No.1, Xuefu North Road, University Town, Fuzhou, Fujian 350122, China
| | - Jiabin Huang
- Department of Pathology & Diagnosis Pathological Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Jiale He
- Department of Pathology & Diagnosis Pathological Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Mengchen Yang
- Department of Pathology & Diagnosis Pathological Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Wenxi Hua
- Department of Pathology & Diagnosis Pathological Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Kunqi Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, 1 Xue Fu North Road, Fuzhou 350122, China.
| | - Jing Qi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, No.1, Xuefu North Road, University Town, Fuzhou, Fujian 350122, China.
| | - Zixiong Zhou
- Department of Pathology & Diagnosis Pathological Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China.
| |
Collapse
|
28
|
Huete-Acevedo J, Mas-Bargues C, Arnal-Forné M, Atencia-Rabadán S, Sanz-Ros J, Borrás C. Role of Redox Homeostasis in the Communication Between Brain and Liver Through Extracellular Vesicles. Antioxidants (Basel) 2024; 13:1493. [PMID: 39765821 PMCID: PMC11672896 DOI: 10.3390/antiox13121493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/21/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Extracellular vesicles (EVs) are small, membrane-bound particles secreted by cells into the extracellular environment, playing an increasingly recognized role in inter-organ communication and the regulation of various physiological processes. Regarding the redox homeostasis context, EVs play a pivotal role in propagating and mitigating oxidative stress signals across different organs. Cells under oxidative stress release EVs containing signaling molecules that can influence the redox status of distant cells and tissues. EVs are starting to be recognized as contributors to brain-liver communication. Therefore, in this review, we show how redox imbalance can affect the release of EVs in the brain and liver. We propose EVs as mediators of redox homeostasis in the brain-liver axis.
Collapse
Affiliation(s)
- Javier Huete-Acevedo
- MiniAging Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibáñez, 15, 46010 Valencia, Spain; (J.H.-A.); (C.M.-B.); (M.A.-F.); (S.A.-R.)
| | - Cristina Mas-Bargues
- MiniAging Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibáñez, 15, 46010 Valencia, Spain; (J.H.-A.); (C.M.-B.); (M.A.-F.); (S.A.-R.)
| | - Marta Arnal-Forné
- MiniAging Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibáñez, 15, 46010 Valencia, Spain; (J.H.-A.); (C.M.-B.); (M.A.-F.); (S.A.-R.)
| | - Sandra Atencia-Rabadán
- MiniAging Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibáñez, 15, 46010 Valencia, Spain; (J.H.-A.); (C.M.-B.); (M.A.-F.); (S.A.-R.)
| | - Jorge Sanz-Ros
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Consuelo Borrás
- MiniAging Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibáñez, 15, 46010 Valencia, Spain; (J.H.-A.); (C.M.-B.); (M.A.-F.); (S.A.-R.)
| |
Collapse
|
29
|
Shi C, Hu S, Liu S, Jia X, Feng Y. Emerging role of exosomes during the pathogenesis of viral hepatitis, non-alcoholic steatohepatitis and alcoholic hepatitis. Hum Cell 2024; 38:26. [PMID: 39630211 DOI: 10.1007/s13577-024-01158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/24/2024] [Indexed: 01/07/2025]
Abstract
Extracellular vesicles (EVs) refer to a diverse range of membranous vesicles that are secreted by various cell types, they can be categorized into two primary subgroups: exosomes and microvesicles. Specifically, exosomes constitute a nanosized subset of EVs characterized by their intact lipid bilayer and diameters ranging from 30 to 150 nm. These vesicles play a crucial role in intercellular communication by transporting a diverse array of biomolecules, which act as cargoes for this communication process. Exosomes have demonstrated significant implications in a wide range of biologic processes and pathologic conditions, including immunity, development, cancer, neurodegenerative diseases, and liver diseases. Liver diseases significantly contribute to the global burden of morbidity and mortality, yet their pathogenesis remains complex and effective therapies are relatively scarce. Emerging evidence suggests that exosomes play a modulatory role in the pathogenesis of liver diseases, including viral hepatitis, non-alcoholic steatohepatitis (NASH), and alcoholic hepatitis (AH). These findings bolster our confidence in the potential of exosomes as biomarkers and therapeutic tools for the diagnosis and treatment of liver diseases. In this comprehensive review, we offer a straightforward overview of exosomes and summarize the current understanding of their role in the pathogenesis of liver diseases. This provides a foundation for novel diagnostic and therapeutic approaches in the treatment of liver diseases.
Collapse
Affiliation(s)
- Congjian Shi
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Shuang Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China
| | - Shen Liu
- Department of Pharmacy, Linquan County People's Hospital, Fuyang, 236400, Anhui, China
| | - Xiaodi Jia
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Yubin Feng
- Department of Pharmacy, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, 230001, Anhui, China.
| |
Collapse
|
30
|
Li W, Yu L. Role and therapeutic perspectives of extracellular vesicles derived from liver and adipose tissue in metabolic dysfunction-associated steatotic liver disease. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:355-369. [PMID: 38833340 DOI: 10.1080/21691401.2024.2360008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
The global epidemic of metabolic diseases has led to the emergence of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH), which pose a significant threat to human health. Despite recent advances in research on the pathogenesis and treatment of MASLD/MASH, there is still a lack of more effective and targeted therapies. Extracellular vesicles (EVs) discovered in a wide range of tissues and body fluids encapsulate different activated biomolecules and mediate intercellular communication. Recent studies have shown that EVs derived from the liver and adipose tissue (AT) play vital roles in MASLD/MASH pathogenesis and therapeutics, depending on their sources and intervention types. Besides, adipose-derived stem cell (ADSC)-derived EVs appear to be more effective in mitigating MASLD/MASH. This review presents an overview of the definition, extraction strategies, and characterisation of EVs, with a particular focus on the biogenesis and release of exosomes. It also reviews the effects and potential molecular mechanisms of liver- and AT-derived EVs on MASLD/MASH, and emphasises the contribution and clinical therapeutic potential of ADSC-derived EVs. Furthermore, the future perspective of EV therapy in a clinical setting is discussed.
Collapse
Affiliation(s)
- Wandi Li
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Haidian District, Beijing, P.R. China
| | - Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, P.R. China
- Endocrine Department, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Henan, P.R. China
| |
Collapse
|
31
|
Musavi H, Iraie R, Mohammadi M, Barartabar Z, Yazdi M, Bagheri A, Khonakdar-Tarsi A. Investigating the Effect of Galbanic Acid on Lipin-1 and Lipin-2 Genes in Fatty Liver Cells with Palmitate. Adv Biomed Res 2024; 13:106. [PMID: 39717250 PMCID: PMC11665169 DOI: 10.4103/abr.abr_456_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 12/25/2024] Open
Abstract
Background Non-alcoholic fatty liver disease is related to lipid accumulation and inflammation. Considering the role of lipin-1 and lipin-2 in fat homeostasis and inflammation, this study aimed to explore the effect of galbanic acid (Gal) and resveratrol (RSV) on alterations in the gene expression levels and protein abundance of lipin-1 and lipin-2 in HepG2 liver cells lipid-enriched with palmitate (Pal). Materials and Methods HepG2 cells were subjected to different amounts of Gal and RSV for 24 hours in the presence of Pal to induce lipid accumulation. The RT-PCR method was employed to assess the expression of lipin-1 and lipin-2 genes, while protein levels were evaluated by western blot analysis. Lipid accumulation was determined qualitatively and semi-quantitatively using the oil-red staining technique. Results Gal treatment increased lipin-1 and lipin-2 gene expression (P < 0.05). In contrast, the groups treated with RSV did not show a substantial variance in the expression levels of the two genes (P > 0.05). In the groups treated with Gal/RSV, the intensity of lipin-2 protein bands was higher compared to the Pal group (P > 0.01); however, the intensity of lipin-1 protein bands was not significantly different (P > 0.05). Conclusion Gal, a coumarin compound, significantly increased the expression of lipin-1 and lipin-2 in HepG2 cells treated with Pal. Consequently, this research suggests gal as a novel strategy for regulating fat homeostasis in HepG2 cells.
Collapse
Affiliation(s)
- Hadis Musavi
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Iraie
- Department of Medical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Mohammadi
- Health System Research, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Zeinab Barartabar
- Department of Clinical Biochemistry, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Mohammad Yazdi
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbas Khonakdar-Tarsi
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
32
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Extracellular Vesicles in Viral Liver Diseases. Viruses 2024; 16:1785. [PMID: 39599900 PMCID: PMC11598962 DOI: 10.3390/v16111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Extracellular vesicles (EVs) are bilayer vesicles released by cells in the microenvironment of the liver including parenchymal and non-parenchymal cells. They are the third important mechanism in the communications between cells, besides the secretion of cytokines and chemokines and the direct cell-to-cell contact. The aim of this review is to discuss the important role of EVs in viral liver disease, as there is increasing evidence that the transportation of viral proteins, all types of RNA, and viral particles including complete virions is implicated in the pathogenesis of both viral cirrhosis and viral-related hepatocellular carcinoma. The biogenesis of EVs is discussed and their role in the pathogenesis of viral liver diseases is presented. Their use as diagnostic and prognostic biomarkers is also analyzed. Most importantly, the significance of possible novel treatment strategies for liver fibrosis and hepatocellular carcinoma is presented, although available data are based on experimental evidence and clinical trials have not been reported.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece;
| |
Collapse
|
33
|
Li S, Cheng F, Zhang Z, Xu R, Shi H, Yan Y. The role of hepatocyte-derived extracellular vesicles in liver and extrahepatic diseases. Biomed Pharmacother 2024; 180:117502. [PMID: 39357327 DOI: 10.1016/j.biopha.2024.117502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Extracellular vesicles (EVs) are vesicle-like bodies with a double membrane structure that are released from the cell membrane or secreted by cells into the extracellular environment. These include exosomes, microvesicles, and apoptotic bodies. There is growing evidence indicating that the composition of liver cell contents changes following injury. The quantity of EVs and the biologically active substances they carry vary depending on the condition of the liver cells. Hepatocytes utilize EVs to modulate the functions of different liver cells and transfer them to distant organs via the systemic circulation, thereby playing a crucial role in intercellular communication. This review provides a concise overview of the research on the effects and potential mechanisms of hepatocyte-derived EVs (Hep-EVs) on liver diseases and extrahepatic diseases under different physiological and pathological conditions. Common liver diseases discussed include non-alcoholic fatty liver disease (NAFLD), viral hepatitis, alcoholic liver disease, drug-induced liver damage, and liver cancer. Given that NAFLD is the most prevalent chronic liver disease globally, this review particularly highlights the use of hepatocyte-derived EVs in NAFLD for disease progression, diagnosis, and treatment.
Collapse
Affiliation(s)
- Shihui Li
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Fang Cheng
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Zhuan Zhang
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Ruizi Xu
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Honglei Shi
- Wujin Hospital Affiliated With Jiangsu University, Changzhou Wujin People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213004, China; Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou 213017, China; Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou 213017, China.
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou 213017, China; Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou 213017, China.
| |
Collapse
|
34
|
Mantovani A, Lonardo A, Stefan N, Targher G. Metabolic dysfunction-associated steatotic liver disease and extrahepatic gastrointestinal cancers. Metabolism 2024; 160:156014. [PMID: 39182602 DOI: 10.1016/j.metabol.2024.156014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/09/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) poses a significant and ever-increasing health and economic burden worldwide. Substantial epidemiological evidence shows that MASLD is a multisystem disease that is associated not only with liver-related complications but is also associated with an increased risk of developing cardiometabolic comorbidities and extrahepatic cancers (principally gastrointestinal [GI] cancers). GI cancers account for a quarter of the global cancer incidence and a third of cancer-related deaths. In this narrative review, we provide an overview of the literature on (a) the epidemiological data on the risk of non-liver GI cancers in MASLD, (b) the putative mechanisms by which MASLD (and factors linked with MASLD) may increase this risk, and (c) the possible pharmacotherapies beneficially affecting both MASLD and extrahepatic GI cancer risk. There are multiple potential pathophysiological mechanisms by which MASLD may increase extrahepatic GI cancer risk. Although further studies are needed, the current evidence supports a possible extrahepatic carcinogenic role for MASLD, regardless of obesity and diabetes status, thus highlighting the potential role of tailoring cancer screening for individuals with MASLD. Although there are conflicting data in the literature, aspirin, statins and metformin appear to exert some chemo-preventive effects against GI cancer.
Collapse
Affiliation(s)
- Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Amedeo Lonardo
- Department of Internal Medicine, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Norbert Stefan
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University of Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tübingen, Germany
| | - Giovanni Targher
- Department of Medicine, University of Verona, Italy; Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy.
| |
Collapse
|
35
|
Li J, Yuan Y, Fu Q, Chen M, Liang H, Chen X, Long X, Zhang B, Zhao J, Chen Q. Novel insights into the role of immunomodulatory extracellular vesicles in the pathogenesis of liver fibrosis. Biomark Res 2024; 12:119. [PMID: 39396032 PMCID: PMC11470730 DOI: 10.1186/s40364-024-00669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
Liver fibrosis, a chronic and long-term disease, can develop into hepatocellular carcinoma (HCC) and ultimately lead to liver failure. Early diagnosis and effective treatment still face significant challenges. Liver inflammation leads to liver fibrosis through continuous activation of hepatic stellate cells (HSCs) and the accumulation of immune cells. Intracellular communication among various immune cells is important for mediating the inflammatory response during fibrogenesis. Extracellular vesicles (EVs), which are lipid bilayer membrane-enclosed particles naturally secreted by cells, make great contributions to cell-cell communication and the transport of bioactive molecules. Nearly all the cells that participate in liver fibrosis release EVs loaded with lipids, proteins, and nucleic acids. EVs from hepatocytes, immune cells and stem cells are involved in mediating the inflammatory microenvironment of liver fibrosis. Recently, an increasing number of extracellular vesicle-based clinical applications have emerged, providing promising cell-free diagnostic and therapeutic tools for liver fibrosis because of their crucial role in immunomodulation during pathogenesis. The advantages of extracellular vesicle-based therapies include stability, biocompatibility, low cytotoxicity, and minimal immunogenicity, which highlight their great potential for drug delivery and specific treatments for liver fibrosis. In this review, we summarize the complex biological functions of EVs in the inflammatory response in the pathogenesis of liver fibrosis and evaluate the potential of EVs in the diagnosis and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jiaxuan Li
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Yuan
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qinggang Fu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xin Long
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Qian Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
36
|
Shin GC, Lee HM, Kim N, Hur J, Yoo SK, Park YS, Park HS, Ryu D, Park MH, Park JH, Seo SU, Choi LS, Madsen MR, Feigh M, Kim KP, Kim KH. Paraoxonase-2 agonist vutiglabridin promotes autophagy activation and mitochondrial function to alleviate non-alcoholic steatohepatitis. Br J Pharmacol 2024; 181:3717-3742. [PMID: 38852992 DOI: 10.1111/bph.16438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND AND PURPOSE Only limited therapeutic agents have been developed for non-alcoholic steatohepatitis (NASH). Glabridin, a promising anti-obesity candidate, has only limited druggability due to its low in vivo chemical stability and bioavailability. Therefore, we developed vutiglabridin (VUTI), which is based on a glabridin backbone, and investigated its mechanism of action in treating NASH in animal models. EXPERIMENTAL APPROACH Anti-NASH effects of VUTI were determined in in vitro fatty liver models, spheroids of primary human hepatocytes and L02 normal liver cell lines. To identify VUTI possible cellular target/s, biotin-labelled VUTI was synthesized and underwent chemical proteomic analysis. Further, the evaluation of VUTI therapeutic efficacy was carried out using an amylin-NASH and high-fat (HF) diet-induced obese (DIO) mouse models. This was carried out using transcriptomic, lipidomic and proteomic analyses of the livers from the amylin-NASH mouse model. KEY RESULTS VUTI treatment markedly reduces hepatic steatosis, fibrosis and inflammation by promoting lipid catabolism, activating autophagy and improving mitochondrial dysfunction, all of which are hallmarks of effective NASH treatment. The cellular target of VUTI was identified as paraoxonase 2 (PON2), a newly proposed protein target for the treatment of NASH, VUTI enhanced PON2 activity. The results using PON2 knockdown cells demonstrated that PON2 is important for VUTI- activation of autophagy, promoting mitochondrial function, decreasing oxidative stress and alleviating lipid accumulation under lipotoxic condition. CONCLUSION AND IMPLICATIONS Our data demonstrated that VUTI is a promising therapeutic for NASH. Targeting PON2 may be important for improving liver function in various immune-metabolic diseases including NASH.
Collapse
Affiliation(s)
- Gu-Choul Shin
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyeong Min Lee
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
- Glaceum Inc., Suwon, Republic of Korea
| | - Nayeon Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jihyeon Hur
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
| | | | | | | | - Dongryeol Ryu
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - Min-Ho Park
- Division of Biotechnology, College of Environmental & Bioresource Sciences, Jeonbuk National University, Iksan, Republic of Korea
| | - Jung Hee Park
- Division of Biotechnology, College of Environmental & Bioresource Sciences, Jeonbuk National University, Iksan, Republic of Korea
- Advanced Institute of Environment and Bioscience, College of Environmental & Bioresource Sciences, Jeonbuk National University, Iksan, Republic of Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | | | | | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Kyun-Hwan Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
37
|
Fayezi S, Oehms S, Wolff von Gudenberg H, Ponnaiah M, Lhomme M, Strowitzki T, Germeyer A. De novo synthesis of monounsaturated fatty acids modulates exosome-mediated lipid export from human granulosa cells. Mol Cell Endocrinol 2024; 592:112317. [PMID: 38901632 DOI: 10.1016/j.mce.2024.112317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/21/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Ovarian somatic cells support the maturation and fertility of oocytes. Metabolic desaturation of fatty acids in these cells has a positive paracrine impact on the maturation of oocytes. We hypothesized that the enzyme stearoyl-CoA desaturase 1 (SCD1) in granulosa cells regulates the lipid cargo of exosomes secreted from these cells by maintaining the balance between saturated and unsaturated lipids. We investigated the effect of SCD1 on exosome lipid content in a cumulus-granulosa cell model under physiologically relevant in vitro conditions. METHODS Non-luteinized human COV434 granulosa cells were subjected to treatment with an inhibitor of SCD1 (SCDinhib) alone, in combination with oleic acid, or under control conditions. Subsequently, the exosomes were isolated and characterized via nanoparticle tracking analysis, transmission electron microscopy, and Western blotting. We used liquid chromatography mass spectrometry to investigate the lipidomic profiles. We used quantitative PCR with TaqMan primers to assess the expression of genes involved in lipogenesis and control of cell cycle progression. RESULTS A trend toward exosome production was observed with a shift toward smaller exosome sizes in cells treated with SCD1inhib. This trend reached statistical significance when SCDinhib was combined with oleic acid supplementation. SCD1 inhibition led to the accumulation of saturated omega-6 lipids in exosomes. The latter effect was reversed by oleic acid supplementation, which also improved exosome production and suppressed the expression of fatty acid synthase and Cyclin D2. CONCLUSION These findings underscore the critical role of de novo fatty acid desaturation in the regulation of the export of specific lipids through exosomes, with potential implications for controlling intercellular communication within the ovary.
Collapse
Affiliation(s)
- Shabnam Fayezi
- Department of Gynecological Endocrinology and Fertility Disorders, Women's Hospital, University of Heidelberg, 69120 Heidelberg, Germany.
| | - Sophie Oehms
- Department of Gynecological Endocrinology and Fertility Disorders, Women's Hospital, University of Heidelberg, 69120 Heidelberg, Germany
| | - Helena Wolff von Gudenberg
- Department of Gynecological Endocrinology and Fertility Disorders, Women's Hospital, University of Heidelberg, 69120 Heidelberg, Germany
| | - Maharajah Ponnaiah
- Foundation for Innovation in Cardiometabolism and Nutrition (IHU ICAN), ICAN I/O - Data Sciences (MP), ICAN Omics (ML), 75013 Paris, France
| | - Marie Lhomme
- Foundation for Innovation in Cardiometabolism and Nutrition (IHU ICAN), ICAN I/O - Data Sciences (MP), ICAN Omics (ML), 75013 Paris, France
| | - Thomas Strowitzki
- Department of Gynecological Endocrinology and Fertility Disorders, Women's Hospital, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ariane Germeyer
- Department of Gynecological Endocrinology and Fertility Disorders, Women's Hospital, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
38
|
Lombardo GE, Navarra M, Cremonini E. A flavonoid-rich extract of bergamot juice improves high-fat diet-induced intestinal permeability and associated hepatic damage in mice. Food Funct 2024; 15:9941-9953. [PMID: 39263833 DOI: 10.1039/d4fo02538e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Consumption of high-fat diets (HFDs) is a contributing factor to obesity, insulin resistance and non-alcoholic fatty liver disease (NAFLD). Several studies suggested the protective role of bioactives present in Citrus fruits against the above mentioned chronic metabolic conditions. In this study, we evaluated if a flavonoid-rich extract of Citrus bergamia (bergamot) juice (BJe) could inhibit HFD-induced intestinal permeability and endotoxemia and, through this mechanism, mitigate the associated hepatic damage in C57BL/6J mice. After 12 weeks of the treatment, HFD consumption caused high body weight (BW) gain, hyperinsulinemia, hyperglycemia, and dyslipidemia, which were mitigated by BJe (50 mg per kg BW) supplementation. Furthermore, supplementation with BJe prevented HFD-induced liver alterations, including increased plasma alanine aminotransferase (ALT) activity, increased hepatic lipid deposition, high NAS, and fibrosis. Mice fed a HFD for 12 weeks showed (i) a decrease in small intestine tight junction protein levels (ZO-1, occludin, and claudin-1), (ii) increased intestinal permeability, and (iii) endotoxemia. All these adverse events were mitigated by BJe supplementation. Linking the capacity of BJe to prevent HFD-associated endotoxemia, supplementation with this extract decreased the HFD-induced overexpression of hepatic TLR-4, downstream signaling pathways (MyD88, NF-κB and MAPK), and the associated inflammation, evidenced by increased MCP-1, TNF-α, IL-6, iNOS, and F4/80 levels. Overall, we suggest that BJe could mitigate the harmful consequences of western style diet consumption on liver physiology by protecting the gastrointestinal tract from permeabilization and associated metabolic endotoxemia.
Collapse
Affiliation(s)
- Giovanni E Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
- Prof. Antonio Imbesi Foundation, Messina, Italy
- Department of Medicine and Surgery, "Kore" University of Enna, Enna, Italy
- Department of Nutrition, University of California, Davis, USA.
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | | |
Collapse
|
39
|
Montoya-Buelna M, Ramirez-Lopez IG, San Juan-Garcia CA, Garcia-Regalado JJ, Millan-Sanchez MS, de la Cruz-Mosso U, Haramati J, Pereira-Suarez AL, Macias-Barragan J. Contribution of extracellular vesicles to steatosis-related liver disease and their therapeutic potential. World J Hepatol 2024; 16:1211-1228. [PMID: 39351515 PMCID: PMC11438597 DOI: 10.4254/wjh.v16.i9.1211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/23/2024] Open
Abstract
Extracellular vesicles (EVs) are small particles released by many cell types in different tissues, including the liver, and transfer specific cargo molecules from originating cells to receptor cells. This process generally culminates in activation of distant cells and inflammation and progression of certain diseases. The global chronic liver disease (CLD) epidemic is estimated at 1.5 billion patients worldwide. Cirrhosis and liver cancer are the most common risk factors for CLD. However, hepatitis C and B virus infection and obesity are also highly associated with CLD. Nonetheless, the etiology of many CLD pathophysiological, cellular, and molecular events are unclear. Changes in hepatic lipid metabolism can lead to lipotoxicity events that induce EV release. Here, we aimed to present an overview of EV features, from definition to types and biogenesis, with particular focus on the molecules related to steatosis-related liver disease, diagnosis, and therapy.
Collapse
Affiliation(s)
- Margarita Montoya-Buelna
- Laboratorio de Inmunología, Departamento de Fisiología, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Inocencia G Ramirez-Lopez
- Departamento de Ciencias de la Salud, Centro Universitario de los Valles, Universidad de Guadalajara, Ameca 46600, Jalisco, Mexico
| | - Cesar A San Juan-Garcia
- Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Jose J Garcia-Regalado
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Mariana S Millan-Sanchez
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Ulises de la Cruz-Mosso
- Red de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Jesse Haramati
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico
| | - Ana L Pereira-Suarez
- Instituto de Investigación en Ciencias Biomédicas, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Jose Macias-Barragan
- Departamento de Ciencias de la Salud, Centro Universitario de los Valles, Universidad de Guadalajara, Ameca 46600, Jalisco, Mexico.
| |
Collapse
|
40
|
Xu HL, Wan SR, An Y, Wu Q, Xing YH, Deng CH, Zhang PP, Long Y, Xu BT, Jiang ZZ. Targeting cell death in NAFLD: mechanisms and targeted therapies. Cell Death Discov 2024; 10:399. [PMID: 39244571 PMCID: PMC11380694 DOI: 10.1038/s41420-024-02168-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a group of chronic liver disease which ranges from simple steatosis (NAFL) to non-alcoholic steatohepatitis (NASH) and is characterized by lipid accumulation, inflammation activation, fibrosis, and cell death. To date, a number of preclinical studies or clinical trials associated with therapies targeting fatty acid metabolism, inflammatory factors and liver fibrosis are performed to develop effective drugs for NAFLD/NASH. However, few therapies are cell death signaling-targeted even though the various cell death modes are present throughout the progression of NAFLD/NASH. Here we summarize the four types of cell death including apoptosis, necroptosis, pyroptosis, and ferroptosis in the NAFLD and the underlying molecular mechanisms by which the pathogenic factors such as free fatty acid and LPS induce cell death in the pathogenesis of NAFLD. In addition, we also review the effects of cell death-targeted therapies on NAFLD. In summary, our review provides comprehensive insight into the roles of various cell death modes in the progression of NAFLD, which we hope will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Hui-Li Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Sheng-Rong Wan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Ying An
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Qi Wu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Precision Pathology Diagnosis for Serious Diseases Key Laboratory of LuZhou, Luzhou, Sichuan, PR China
| | - Yi-Hang Xing
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Chen-Hao Deng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Ping-Ping Zhang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Precision Pathology Diagnosis for Serious Diseases Key Laboratory of LuZhou, Luzhou, Sichuan, PR China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Bu-Tuo Xu
- The People's Hospital of Pingyang, Wenzhou, Zhejiang, PR China.
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China.
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China.
| |
Collapse
|
41
|
Ahamed F, Eppler N, Jones E, Zhang Y. Understanding Macrophage Complexity in Metabolic Dysfunction-Associated Steatotic Liver Disease: Transitioning from the M1/M2 Paradigm to Spatial Dynamics. LIVERS 2024; 4:455-478. [PMID: 39328386 PMCID: PMC11426415 DOI: 10.3390/livers4030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses metabolic dysfunction-associated fatty liver (MASL) and metabolic dysfunction-associated steatohepatitis (MASH), with MASH posing a risk of progression to cirrhosis and hepatocellular carcinoma (HCC). The global prevalence of MASLD is estimated at approximately a quarter of the population, with significant healthcare costs and implications for liver transplantation. The pathogenesis of MASLD involves intrahepatic liver cells, extrahepatic components, and immunological aspects, particularly the involvement of macrophages. Hepatic macrophages are a crucial cellular component of the liver and play important roles in liver function, contributing significantly to tissue homeostasis and swift responses during pathophysiological conditions. Recent advancements in technology have revealed the remarkable heterogeneity and plasticity of hepatic macrophage populations and their activation states in MASLD, challenging traditional classification methods like the M1/M2 paradigm and highlighting the coexistence of harmful and beneficial macrophage phenotypes that are dynamically regulated during MASLD progression. This complexity underscores the importance of considering macrophage heterogeneity in therapeutic targeting strategies, including their distinct ontogeny and functional phenotypes. This review provides an overview of macrophage involvement in MASLD progression, combining traditional paradigms with recent insights from single-cell analysis and spatial dynamics. It also addresses unresolved questions and challenges in this area.
Collapse
Affiliation(s)
- Forkan Ahamed
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Natalie Eppler
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Elizabeth Jones
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
42
|
Tamimi A, Javid M, Sedighi-Pirsaraei N, Mirdamadi A. Exosome prospects in the diagnosis and treatment of non-alcoholic fatty liver disease. Front Med (Lausanne) 2024; 11:1420281. [PMID: 39144666 PMCID: PMC11322140 DOI: 10.3389/fmed.2024.1420281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
The growing prevalence of NAFLD and its global health burden have provoked considerable research on possible diagnostic and therapeutic options for NAFLD. Although various pathophysiological mechanisms and genetic factors have been identified to be associated with NAFLD, its treatment remains challenging. In recent years, exosomes have attracted widespread attention for their role in metabolic dysfunctions and their efficacy as pathological biomarkers. Exosomes have also shown tremendous potential in treating a variety of disorders. With increasing evidence supporting the significant role of exosomes in NAFLD pathogenesis, their theragnostic potential has become a point of interest in NAFLD. Expectedly, exosome-based treatment strategies have shown promise in the prevention and amelioration of NAFLD in preclinical studies. However, there are still serious challenges in preparing, standardizing, and applying exosome-based therapies as a routine clinical option that should be overcome. Due to the great potential of this novel theragnostic agent in NAFLD, further investigations on their safety, clinical efficacy, and application standardization are highly recommended.
Collapse
|
43
|
Chen G, Xiang X, Zeng Z, Huang R, Jin S, Xiao M, Song C. [Regulatory effect of Diwu Yanggan Decoction on lysoglycerophospholipids in circulating exosomes in a mouse model of nonalcoholic fatty liver disease]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1382-1388. [PMID: 39051084 PMCID: PMC11270654 DOI: 10.12122/j.issn.1673-4254.2024.07.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE To evaluate the regulatory effect of Diwu Yanggan (DWYG) Decoction on lysoglycerophospholipids (Lyso-GPLs) in circulating exosomes in a mouse model of nonalcoholic fatty liver disease (NAFLD). METHODS Circulating exosomes isolated from mouse serum by size exclusion chromatography were morphologically characterized using transmission electron microscope and examined for surface markers CD9, CD63 and TSG101 using Western blotting. Twenty-four male Kunming mice were randomized into 3 groups for normal feeding (control, n=8) or high-fat diet feeding for 1 week to induce NAFLD, after which the latter mice were given DWYG decoction (treatment group, n=8) or normal saline (model group, n=8) by gavage for 4 weeks. After the last treatment, blood samples were collected from the mice for testing serum TC, HDL-C, LDL-C, ALT and AST levels and isolating circulating exosomes. Using multivariate statistical analysis based on targeted metabolomics strategy, the potential biomarkers for Lyso-GPLs in the exosomes were screened. RESULTS The isolated exosomes about 100 nm in size had a typical saucer-like structure with distinct double-layer membranes and a mean particle size of 137.5 nm and expressed the specific surface marker proteins CD9, CD63 and TSG101. The mouse models of NAFLD had significantly increased serum levels of TC, HDL-C, LDL-C and AST and lowered serum ALT level. A total of 43 Lyso-GPLs with significant reduction after DWYG Decoction treatment were identified in NAFLD mice. CONCLUSION DWYG Decoction can regulate Lyso-GPLs in circulating exosomes in NAFLD mice, which provides a new clue for studying the therapeutic mechanism of DWYG Decoction for liver disease.
Collapse
Affiliation(s)
- G Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Ezhou Central Hospital, Department of Pharmacy, Ezhou 436000, China
| | - X Xiang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Z Zeng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - R Huang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - S Jin
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - M Xiao
- Hepatic Disease Institute, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430000, China
| | - C Song
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Hubei Shizhen Laboratory, Wuhan 430065, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan 430065, China
| |
Collapse
|
44
|
Liang Y, Kaushal D, Wilson RB. Cellular Senescence and Extracellular Vesicles in the Pathogenesis and Treatment of Obesity-A Narrative Review. Int J Mol Sci 2024; 25:7943. [PMID: 39063184 PMCID: PMC11276987 DOI: 10.3390/ijms25147943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
This narrative review explores the pathophysiology of obesity, cellular senescence, and exosome release. When exposed to excessive nutrients, adipocytes develop mitochondrial dysfunction and generate reactive oxygen species with DNA damage. This triggers adipocyte hypertrophy and hypoxia, inhibition of adiponectin secretion and adipogenesis, increased endoplasmic reticulum stress and maladaptive unfolded protein response, metaflammation, and polarization of macrophages. Such feed-forward cycles are not resolved by antioxidant systems, heat shock response pathways, or DNA repair mechanisms, resulting in transmissible cellular senescence via autocrine, paracrine, and endocrine signaling. Senescence can thus affect preadipocytes, mature adipocytes, tissue macrophages and lymphocytes, hepatocytes, vascular endothelium, pancreatic β cells, myocytes, hypothalamic nuclei, and renal podocytes. The senescence-associated secretory phenotype is closely related to visceral adipose tissue expansion and metaflammation; inhibition of SIRT-1, adiponectin, and autophagy; and increased release of exosomes, exosomal micro-RNAs, pro-inflammatory adipokines, and saturated free fatty acids. The resulting hypernefemia, insulin resistance, and diminished fatty acid β-oxidation lead to lipotoxicity and progressive obesity, metabolic syndrome, and physical and cognitive functional decline. Weight cycling is related to continuing immunosenescence and exposure to palmitate. Cellular senescence, exosome release, and the transmissible senescence-associated secretory phenotype contribute to obesity and metabolic syndrome. Targeted therapies have interrelated and synergistic effects on cellular senescence, obesity, and premature aging.
Collapse
Affiliation(s)
- Yicong Liang
- Bankstown Hospital, University of New South Wales, Sydney, NSW 2560, Australia;
| | - Devesh Kaushal
- Campbelltown Hospital, Western Sydney University, Sydney, NSW 2560, Australia;
| | - Robert Beaumont Wilson
- School of Clinical Medicine, University of New South Wales, High St., Kensington, Sydney, NSW 2052, Australia
| |
Collapse
|
45
|
Friedline RH, Noh HL, Suk S, Albusharif M, Dagdeviren S, Saengnipanthkul S, Kim B, Kim AM, Kim LH, Tauer LA, Baez Torres NM, Choi S, Kim BY, Rao SD, Kasina K, Sun C, Toles BJ, Zhou C, Li Z, Benoit VM, Patel PR, Zheng DXT, Inashima K, Beaverson A, Hu X, Tran DA, Muller W, Greiner DL, Mullen AC, Lee KW, Kim JK. IFNγ-IL12 axis regulates intercellular crosstalk in metabolic dysfunction-associated steatotic liver disease. Nat Commun 2024; 15:5506. [PMID: 38951527 PMCID: PMC11217362 DOI: 10.1038/s41467-024-49633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Obesity is a major cause of metabolic dysfunction-associated steatohepatitis (MASH) and is characterized by inflammation and insulin resistance. Interferon-γ (IFNγ) is a pro-inflammatory cytokine elevated in obesity and modulating macrophage functions. Here, we show that male mice with loss of IFNγ signaling in myeloid cells (Lyz-IFNγR2-/-) are protected from diet-induced insulin resistance despite fatty liver. Obesity-mediated liver inflammation is also attenuated with reduced interleukin (IL)-12, a cytokine primarily released by macrophages, and IL-12 treatment in vivo causes insulin resistance by impairing hepatic insulin signaling. Following MASH diets, Lyz-IFNγR2-/- mice are rescued from developing liver fibrosis, which is associated with reduced fibroblast growth factor (FGF) 21 levels. These results indicate critical roles for IFNγ signaling in macrophages and their release of IL-12 in modulating obesity-mediated insulin resistance and fatty liver progression to MASH. In this work, we identify the IFNγ-IL12 axis in regulating intercellular crosstalk in the liver and as potential therapeutic targets to treat MASH.
Collapse
Affiliation(s)
- Randall H Friedline
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hye Lim Noh
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sujin Suk
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- WCU Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Mahaa Albusharif
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sezin Dagdeviren
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Suchaorn Saengnipanthkul
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Division of Nutrition, Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Bukyung Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kosin University College of Medicine, Busan, Republic of Korea
| | - Allison M Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lauren H Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lauren A Tauer
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Natalie M Baez Torres
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Stephanie Choi
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bo-Yeon Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Suryateja D Rao
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kaushal Kasina
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cheng Sun
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Benjamin J Toles
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Chan Zhou
- Division of Biostatistics and Health Services Research, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zixiu Li
- Division of Biostatistics and Health Services Research, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Vivian M Benoit
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Payal R Patel
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Doris X T Zheng
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kunikazu Inashima
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Annika Beaverson
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Xiaodi Hu
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Duy A Tran
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Werner Muller
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Dale L Greiner
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alan C Mullen
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ki Won Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- XO Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- WCU Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
46
|
Khanal S, Liu Y, Bamidele AO, Wixom AQ, Washington AM, Jalan-Sakrikar N, Cooper SA, Vuckovic I, Zhang S, Zhong J, Johnson KL, Charlesworth MC, Kim I, Yeon Y, Yoon S, Noh YK, Meroueh C, Timbilla AA, Yaqoob U, Gao J, Kim Y, Lucien F, Huebert RC, Hay N, Simons M, Shah VH, Kostallari E. Glycolysis in hepatic stellate cells coordinates fibrogenic extracellular vesicle release spatially to amplify liver fibrosis. SCIENCE ADVANCES 2024; 10:eadn5228. [PMID: 38941469 PMCID: PMC11212729 DOI: 10.1126/sciadv.adn5228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/24/2024] [Indexed: 06/30/2024]
Abstract
Liver fibrosis is characterized by the activation of perivascular hepatic stellate cells (HSCs), the release of fibrogenic nanosized extracellular vesicles (EVs), and increased HSC glycolysis. Nevertheless, how glycolysis in HSCs coordinates fibrosis amplification through tissue zone-specific pathways remains elusive. Here, we demonstrate that HSC-specific genetic inhibition of glycolysis reduced liver fibrosis. Moreover, spatial transcriptomics revealed a fibrosis-mediated up-regulation of EV-related pathways in the liver pericentral zone, which was abrogated by glycolysis genetic inhibition. Mechanistically, glycolysis in HSCs up-regulated the expression of EV-related genes such as Ras-related protein Rab-31 (RAB31) by enhancing histone 3 lysine 9 acetylation on the promoter region, which increased EV release. Functionally, these glycolysis-dependent EVs increased fibrotic gene expression in recipient HSC. Furthermore, EVs derived from glycolysis-deficient mice abrogated liver fibrosis amplification in contrast to glycolysis-competent mouse EVs. In summary, glycolysis in HSCs amplifies liver fibrosis by promoting fibrogenic EV release in the hepatic pericentral zone, which represents a potential therapeutic target.
Collapse
Affiliation(s)
- Shalil Khanal
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuanhang Liu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Alexander Q. Wixom
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Alexander M. Washington
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Shawna A. Cooper
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Ivan Vuckovic
- Metabolomics Core, Mayo Clinic, Rochester, MN 55905, USA
| | - Song Zhang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jun Zhong
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Iljung Kim
- Department of Computer Science, Hanyang University, Seoul 04763, Republic of South Korea
| | - Yubin Yeon
- Department of Computer Science, Hanyang University, Seoul 04763, Republic of South Korea
| | - Sangwoong Yoon
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of South Korea
| | - Yung-Kyun Noh
- Department of Computer Science, Hanyang University, Seoul 04763, Republic of South Korea
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of South Korea
| | - Chady Meroueh
- Department of Pathology, Division of Anatomic Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Abdul Aziz Timbilla
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Medical Biochemistry, Faculty of Medicine, Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Usman Yaqoob
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jinhang Gao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yohan Kim
- Department of Urology, Mayo Clinic, Rochester, MN 55905, USA
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert C. Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Michael Simons
- Cardiovascular Research Center, Yale University, New Haven, CI 06510, USA
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
47
|
Biachi de Castria T, Kim RD. Real-World Effectiveness of First Line Lenvatinib Therapy in Advanced Hepatocellular Carcinoma: Current Insights. Pragmat Obs Res 2024; 15:79-87. [PMID: 38881691 PMCID: PMC11178097 DOI: 10.2147/por.s395974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Lenvatinib received its initial approval in 2018 for the treatment of advanced hepatocellular carcinoma. It has since emerged as the preferred first line agent, supported by non-inferiority data from the REFLECT trial. Notably, lenvatinib exhibits a more favorable toxicity profile and a higher response rate compared to sorafenib. Despite the approval of immunotherapy in 2020, specifically the combination of atezolizumab and bevacizumab following the IMbrave150 trial, tyrosine kinase inhibitors remain an indispensable class of agents in the landscape of hepatocellular carcinoma treatment. This comprehensive review delves into various facets of lenvatinib utilization in hepatocellular carcinoma, shedding light on real-world data, addressing challenges, and providing insights into strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Tiago Biachi de Castria
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Richard D Kim
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
48
|
Guo N, Wang Y, Wen Z, Fan X. Promising nanotherapeutics of stem cell extracellular vesicles in liver regeneration. Regen Ther 2024; 26:1037-1047. [PMID: 39569342 PMCID: PMC11576938 DOI: 10.1016/j.reth.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 11/22/2024] Open
Abstract
Extracellular vesicles (EVs) have gainedsignificant attention due totheir crucialroles invarious biological systems. This review aims to explore the functions of EVs in both in physiological and pathological states of the liver, with a specific focus on the potential mechanisms and concrete evidence of EVs in liver regeneration processes. The review begins by emphasizing the importance of EVs in maintaining liver health and their involvement in different pathological conditions, starting from the liver's own EVs. Reviewing the role of EVs in liver diseases to reveal the impact of EVs in pathological processes (e.g., hepatitis, liver fibrosis, and cirrhosis) and elucidate their signaling functions at the molecular level. Subsequently, the work concentrates on the functions of EVs in liver regeneration, revealing their key role in repair and regeneration following liver injury by carrying growth factors, nucleic acids, and other bioactive molecules. This part not only theoretically clarifies the mechanisms of EVs in liver regeneration but also experimentally demonstrates their role in promoting liver cell proliferation, inhibiting apoptosis, regulating immune responses, and fostering angiogenesis, laying the groundwork for future clinical applications. Moreover, this work provides a comprehensive analysis of the challenges faced by existing EV-based therapies in liver regeneration and offers prospects for future research directions. It highlights that despite the tremendous potential of EVs in treating liver diseases, there are still technical challenges (e.g., EV isolation and purification, dosage control, and targeted delivery). To overcome these challenges, the review suggests improvements to current technologies and the development of new methods to realize the clinical application of EVs in treating liver diseases.
Collapse
Affiliation(s)
- Na Guo
- Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Hexi Yuelu District, Changsha, Hunan, 410000, China
| | - Yan Wang
- Department of Basic Medicine, Cangzhou Medical College, No.39, West Jiuhe Road, Cangzhou, 061001, China
| | - Zhaofeng Wen
- Heze Medical College, No.1950, Daxue Road, Heze Shandong, 274000, China
| | - Xiaofei Fan
- Shandong Medical College, No.5460, Second Ring South Road, Jinan, Shandong, 250002, China
| |
Collapse
|
49
|
Keingeski MB, Longo L, Brum da Silva Nunes V, Figueiró F, Dallemole DR, Pohlmann AR, Vier Schmitz TM, da Costa Lopez PL, Álvares-da-Silva MR, Uribe-Cruz C. Extracellular Vesicles and Their Correlation with Inflammatory Factors in an Experimental Model of Steatotic Liver Disease Associated with Metabolic Dysfunction. Metab Syndr Relat Disord 2024; 22:394-401. [PMID: 38498801 DOI: 10.1089/met.2023.0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Background/Aims: Extracellular vesicles (EVs) are promising as a biomarker of metabolic dysfunction associated steatotic liver disease (MASLD). The objective is to study EVs and their involvement in MASLD concerning the disease's pathogenesis and progression characteristics. Methods: Male adult Sprague Dawley rats were randomly assigned into two experimental models of MASLD: MASLD-16 and MASLD-28, animals received a choline-deficient high-fat diet (CHFD) and Control-16 and Control-28, animals received a standard diet (SD) for 16 and 28 weeks, respectively. Biological samples from these animal models were used, as well as previously registered variables. EVs from hepatic tissue were characterized using confocal microscopy. EVs were isolated through differential ultracentrifugation from serum and characterized using NanoSight. The data from the EVs were correlated with biochemical, molecular, and histopathological parameters. Results: Liver EVs were identified through the flotillin-1 protein. EVs were isolated from the serum of all groups. There was a decrease of EVs concentration in MASLD-28 in comparison with Control-28 (P < 0.001) and a significant increase in EVs concentration in Control-28 compared with Control-16 (P < 0.001). There was a strong correlation between serum EVs concentration with hepatic gene expression of interleukin (Il)6 (r2 = 0.685, P < 0.05), Il1b (r2 = 0.697, P < 0.05) and tumor necrosis factor-alpha (Tnfa; r2 = 0.636, P < 0.05) in MASLD-16. Moreover, there was a strong correlation between serum EVs size and Il10 in MASLD-28 (r2 = 0.762, P < 0.05). Conclusion: The concentration and size of EVs correlated with inflammatory markers, suggesting their involvement in the systemic circulation, cellular communication, and development and progression of MASLD, demonstrating that EVs have the potential to serve as noninvasive biomarkers for MASLD diagnosis and prognosis.
Collapse
Affiliation(s)
- Melina Belén Keingeski
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Larisse Longo
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Vitória Brum da Silva Nunes
- Laboratory of Cancer Immunobiochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fabrício Figueiró
- Laboratory of Cancer Immunobiochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Danieli Rosane Dallemole
- Graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Adriana Raffin Pohlmann
- Graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Thalia Michele Vier Schmitz
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Patrícia Luciana da Costa Lopez
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Mário Reis Álvares-da-Silva
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Brazil
| | - Carolina Uribe-Cruz
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Investigación de la Facultad de Ciencias de la Salud, (UCAMI) Universidad Católica de las Misiones, Posadas, Argentina
| |
Collapse
|
50
|
Kim ES, Lee JM, Kwak JY, Lee HW, Lee IJ, Kim HM. Multicolor Two-Photon Microscopy Imaging of Lipid Droplets and Liver Capsule Macrophages In Vivo. Anal Chem 2024; 96:8467-8473. [PMID: 38723271 DOI: 10.1021/acs.analchem.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Lipid droplets (LDs) store energy and supply fatty acids and cholesterol. LDs are a hallmark of chronic nonalcoholic fatty liver disease (NAFLD). Recently, studies have focused on the role of hepatic macrophages in NAFLD. Green fluorescent protein (GFP) is used for labeling the characteristic targets in bioimaging analysis. Cx3cr1-GFP mice are widely used in studying the liver macrophages such as the NAFLD model. Here, we have developed a tool for two-photon microscopic observation to study the interactions between LDs labeled with LD2 and liver capsule macrophages labeled with GFP in vivo. LD2, a small-molecule two-photon excitation fluorescent probe for LDs, exhibits deep-red (700 nm) fluorescence upon excitation at 880 nm, high cell staining ability and photostability, and low cytotoxicity. This probe can clearly observe LDs through two-photon microscopy (TPM) and enables the simultaneous imaging of GFP+ liver capsule macrophages (LCMs) in vivo in the liver capsule of Cx3cr1-GFP mice. In the NAFLD mouse model, Cx3cr1+ LCMs and LDs increased with the progress of fatty liver disease, and spatiotemporal changes in LCMs were observed through intravital 3D TPM images. LD2 will aid in studying the interactions and immunological roles of hepatic macrophages and LDs to better understand NAFLD.
Collapse
Affiliation(s)
- Eun Seo Kim
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - Jeong-Mi Lee
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon 16499, Korea
| | - Jong-Young Kwak
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon 16499, Korea
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Korea
| | - Hyo Won Lee
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - In-Jeong Lee
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon 16499, Korea
| | - Hwan Myung Kim
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| |
Collapse
|