1
|
Ichinose P, Miró MV, Viviani P, Herrera JM, Lifschitz A, Virkel G. Exploring precision-cut liver slices for comparative xenobiotic metabolism profiling in swine and cattle. Xenobiotica 2024; 54:279-287. [PMID: 38626291 DOI: 10.1080/00498254.2024.2343905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/18/2024]
Abstract
In vitro systems are useful tools for unravelling species differences in xenobiotic metabolism.The current work aimed to validate the technique of precision-cut liver slices (PCLS) for comparative studies on xenobiotic metabolism in swine and cattle.PCLS from swine (n = 3) and cattle (n = 3) were produced using a Brendel-VitronTM Tissue Slicer and cultured for 6 h. Tissue viability was preserved throughout the whole culture period.Metabolic viability was evaluated using the anthelmintics albendazole (ABZ) and fenbendazole (FBZ) as model drugs, as well as other substrates of hepatic monooxygenases: benzydamine (BZ) N-oxygenase (FMO-dependent), and the O-dealkylations of 7-ethoxyresorufin (EROD, CYP1A1-dependent) and 7-methoxyresorufin (MROD, CYP1A2-dependent).ABZ S-oxygenation resulted 6-fold (cattle) and 13.6-fold (swine) higher (p = 0.001) compared to FBZ S-oxygenation.Similar BZ N-oxygenation and EROD activities were observed in PCLS cultures from both species. MROD was 2.5-fold higher (p = 0.033) in swine than in cattle. Similarly, ABZ S-oxygenation was 1.7-fold higher (p = 0.0002) in swine than in cattle. Conversely, a 82% higher (p = 0.0003) rate of FBZ S-oxygenation was evidenced in PCLS cultures from cattle compared to those from swine.Overall, this work shows that PCLS cultures are useful to obtain relevant information on species differences in xenobiotic metabolism.
Collapse
Affiliation(s)
- Paula Ichinose
- Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Buenos Aires, Argentina
| | - María Victoria Miró
- Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Buenos Aires, Argentina
| | - Paula Viviani
- Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Buenos Aires, Argentina
| | - Juan Manuel Herrera
- Facultad de Ciencias Veterinarias, Centro de Investigaciones Biológicas, Laboratorio de Histología y Embriología, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Buenos Aires, Argentina
| | - Adrián Lifschitz
- Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Buenos Aires, Argentina
| | - Guillermo Virkel
- Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Buenos Aires, Argentina
| |
Collapse
|
2
|
Ichinose P, Miró MV, Larsen K, Lifschitz A, Virkel G. Unravelling drug-drug interactions in pigs: Induction of hepatic cytochrome P450 1A (CYP1A) metabolism after the in-feed medication with the anthelmintic fenbendazole. Res Vet Sci 2024; 167:105113. [PMID: 38141570 DOI: 10.1016/j.rvsc.2023.105113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
The anthelmintic fenbendazole (FBZ) undergoes hepatic S‑oxygenation by monooxygenases belonging to the cytochrome P450 (CYP) and flavin-monooxygenase (FMO) families. The in-feed medication with FBZ induced CYP1A-dependent metabolism in pig liver. This fact may alter the metabolism of the anthelmintic itself, and of CYP1A substrates like aflatoxin B1 (AFB1). This work evaluated the effect of the in-feed administration of FBZ on CYP1A-dependent metabolism, on its own pattern of hepatic S‑oxygenation, and on the metabolism of AFB1. Landrace piglets remained untreated (n = 5) or received a pre-mix of FBZ (n = 6) in feed for 9 days. Pigs were slaughtered for preparation of liver microsomes used for: CYP content determination; monitoring the CYP1A-dependent enzyme activities, 7-ethoxyresorufin O-deethylase (EROD) and 7-methoxyresorufin O-demethylase (MROD); measurement of FBZ (50 μM) S‑oxygenation, and AFB1 (16 nM) disappearance from the incubation medium. In microsomes of FBZ-treated animals, EROD and MROD increased 19-fold (p = 0.002) and 14-fold (p = 0.003), respectively. An enhanced (3-fold, p = 0.004) participation of the CYP pathway in FBZ S‑oxygenation was observed in the liver of piglets treated with the anthelmintic (210 ± 69 pmol/min.nmol CYP) compared to untreated animals (68 ± 34 pmol/min.nmol CYP). AFB1 metabolism was 93% higher (p = 0.009) in the liver of FBZ-treated compared to untreated pigs. Positive and significant (p < 0.05) correlations were observed between CYP1A-dependent enzyme activities and FBZ or AFB1 metabolism. The sustained administration of FBZ caused an auto-induction of the CYP1A-dependent S‑oxygenation of this anthelmintic. The CYP1A induction triggered by the anthelmintic could amplify the production of AFB1 metabolites in pig liver, including the hepatotoxic AFB1-derived epoxide.+.
Collapse
Affiliation(s)
- Paula Ichinose
- Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Tandil, Buenos Aires, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina
| | - María Victoria Miró
- Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Tandil, Buenos Aires, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina
| | - Karen Larsen
- Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Tandil, Buenos Aires, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina
| | - Adrián Lifschitz
- Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Tandil, Buenos Aires, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina
| | - Guillermo Virkel
- Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Tandil, Buenos Aires, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Eleiwa NZ, El-Shabrawi AA, Ibrahim D, Abdelwarith AA, Younis EM, Davies SJ, Metwally MMM, Abu-Zeid EH. Dietary Curcumin Modulating Effect on Performance, Antioxidant Status, and Immune-Related Response of Broiler Chickens Exposed to Imidacloprid Insecticide. Animals (Basel) 2023; 13:3650. [PMID: 38067001 PMCID: PMC10705146 DOI: 10.3390/ani13233650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 10/16/2024] Open
Abstract
Birds appear to be especially vulnerable to adverse impacts from insecticides. This is especially true for imidacloprid (IMI), which is considered the most toxic to avian species. Recently, prospective studies aimed at including natural alternative products to alleviate the toxic impact that comes from insecticides have been increased. Focusing on herbal growth promoters and antioxidative medicament for the poultry industry, this ongoing experiment was conducted to examine the curcumin role (CUR) in mitigating IMI-prompted detrimental effects on broilers' performance, immunity, and antioxidant status. A total number of one hundred and fifty commercial meat-type Ross 308 broilers chicks (one-day-old) were randomly allocated into equal five groups (30 chicks/group and 10 birds/replicate). The first group (C) was the control; the second group (CUR) was fed a diet containing CUR at the level of 450 mg/kg; the third group (IMI) was fed control diet for 14 days and then was fed a diet containing IMI at the level of 50 mg/kg; the fourth group (CUR+IMI co-treated) was fed a diet containing CUR+IMI; and the fifth group (CUR+IMI pro/co-treated) was fed a diet containing CUR for 14 days as protective and then a diet containing CUR+IMI for the rest of the trial. CUR supplementation either in the (CUR pro/co-treated) or (CUR co-treated) groups significantly (p < 0.05) improved final body weight and total body weight gain while decreasing the total feed intake and feed conversion ratio when compared to the IMI-exposed and non-treated birds. CUR induced a significant (p < 0.05) enhancement in hematological indices, phagocytosis %, phagocytic index, intracellular killing capacity, total proteins, globulin, liver function enzymes, lysozyme activity, and immunoglobulin-G levels compared to IMI-exposed and non-treated birds. In addition, dietary supplementation of CUR significantly (p < 0.05) modulated oxidative stress-related biomarkers in splenic tissues (total antioxidant capacity, superoxide dismutase, catalase, and glutathione peroxidase) and decreased malondialdehyde levels (p < 0.05) when compared to IMI-exposed and non-treated birds. CUR significantly down-regulated mRNA levels expression of IL-1β, TNF-α, and TLR4 and up-regulated IL-10 mRNA expression levels in spleens of birds when compared to those exposed to IMI-and non-treated. Finally, our results provided new insight into IMI-induced immuno-toxicity in broiler chickens. Furthermore, for the first time, our study informed that CUR can cause an in vivo protective effect against IMI toxicity, principally as a protective and/or as concurrent supplementation during the exposure to IMI toxicity.
Collapse
Affiliation(s)
- Naglaa Z. Eleiwa
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (N.Z.E.); (A.A.E.-S.)
| | - Ahmed A. El-Shabrawi
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (N.Z.E.); (A.A.E.-S.)
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Abdelwahab A. Abdelwarith
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.); (E.M.Y.)
| | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.); (E.M.Y.)
| | - Simon J. Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, H91V8Y1 Galway, Ireland;
| | - Mohamed M. M. Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr 46612, Egypt;
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ehsan H. Abu-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
4
|
Eid YZ, Omara Y, Ragab A, Ismail A, Zommara M, Dawood MAO. Mitigation of Imidacloprid Toxicity in Poultry Chicken by Selenium Nanoparticles: Growth Performance, Lipid Peroxidation, and Blood Traits. Biol Trace Elem Res 2023; 201:5379-5388. [PMID: 36790585 PMCID: PMC10509070 DOI: 10.1007/s12011-023-03592-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Imidacloprid is an insecticide that protects against insects in the agriculture, animal, and poultry production sectors. Since the accumulation of imidacloprid induces adverse impacts on general health status and quality of the food chain, this study tested the impacts on broilers. Besides, selenium nanoparticles were fed to birds to relieve the negative impacts on growth performance and health status. Birds (1-day age, initial weight 46.05 ± 1.0 g) divided into four groups (triplicates) where 15 chicks of each replicate (45 for each group). The first group (control) was fed the basal diet without either selenium or imidacloprid toxicity. The second group was fed selenium nano form at 3 mg/kg. The third group was fed selenium and exposed to imidacloprid at 1/10 LT50 (3 mg/kg body weight). The fourth group was fed selenium nano form (3 mg/kg) and exposed to imidacloprid at 1/10 LT50 (3 mg/kg body weight). All groups were kept under the same conditions for 35 days. The final weight and weight gain of birds fed selenium nano form showed marked improvement compared to the imidacloprid-exposed group, while the feed intake and feed conversion ratio markedly reduced. The red blood cells showed higher values in birds fed selenium nano than the control and those exposed to imidacloprid. Interestingly, the hemoglobulin and hematocrit increased in birds fed selenium nano form with or without imidacloprid exposure. Furthermore, the white blood cells increased in birds fed selenium nano form with or without imidacloprid exposure. The total protein, albumin, and globulin were higher in birds fed selenium nanoparticles than those exposed to imidacloprid with or without selenium feeding. Birds in the control and imidacloprid groups had higher aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde levels than the remaining groups. Accordingly, dietary selenium nanoparticles are suggested in broiler feed to cope with the adverse effects of imidacloprid toxicity.
Collapse
Affiliation(s)
- Yahya Z Eid
- Department of Poultry Science, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Yassin Omara
- Department of Poultry Science, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Asmaa Ragab
- Department of Pesticides, Chemistry and Toxicology, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ahmed Ismail
- Department of Pesticides, Chemistry and Toxicology, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohsen Zommara
- Department of Dairy Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Mahmoud A O Dawood
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt.
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, Cairo, 11835, Egypt.
| |
Collapse
|
5
|
Barbosa H, Leite C, Pinto J, Soares AMVM, Pereira E, Freitas R. Are Lithium batteries so eco-friendly? Ecotoxicological impacts of Lithium in estuarine bivalves. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104197. [PMID: 37356678 DOI: 10.1016/j.etap.2023.104197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Lithium (Li) is now widely used in green energies/clean technologies, although its inefficient recycling and treatment means it is an emerging contaminant in aquatic systems. Bivalves, such as clams, are considered good bioindicators of pollution, hence we evaluated the biochemical effects of Li in the clam Venerupis corrugata. Clams were exposed (14 days) to an increasing Li gradient (0, 200, 400, 800µg/L). Bioconcentration capacity tended to decrease with increasing Li exposure possibly due to efforts to eliminate Li from the cells, to avert damage. No influences on the clams' metabolic capacity and protein content were observed. Antioxidant and detoxification defences were activated, especially at 400 and 800µg/L of Li, avoiding lipid damage while protein injuries were observed at higher concentrations. Furthermore, a loss of redox balance was observed. This study highlights the importance of preventing and regulating Li discharges into the environment, avoiding adverse consequences to aquatic ecosystems.
Collapse
Affiliation(s)
- Helena Barbosa
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carla Leite
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Pinto
- Department of Chemistry and REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Pereira
- Department of Chemistry and REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
Lautz LS, Hendriks AJ, Dorne JLCM, Louisse J, Kramer NI. Establishing allometric relationships between microsomal protein and cytochrome P450 content with body weight in vertebrate species. Toxicology 2023; 486:153429. [PMID: 36641055 DOI: 10.1016/j.tox.2023.153429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023]
Abstract
Data from in vitro studies are routinely used to estimate in vivo hepatic clearance of chemicals and this information is needed to parameterise physiologically based kinetic models. Such clearance data can be obtained from laboratory experiments using liver microsomes, hepatocytes, precision-cut liver slices or recombinant enzymes. Irrespective of the selected test system, scaling factors are required to convert the in vitro measured intrinsic clearance to a whole liver intrinsic clearance. Scaling factors such as the hepatic microsomal protein per gram of liver and/or the amount of cytochrome P450 per hepatocyte provide a means to calculate the whole liver intrinsic clearance. Here, a database from the peer-reviewed literature has been developed and provides quantitative metrics on microsomal protein (MP) and cytochrome P450 contents in vertebrate orders namely amphibians, mammals, birds, fish and reptiles. This database allows to address allometric relationships between body weight and MP content, and body weight and cytochrome P450 content. A total of 85 and 74 vertebrate species were included to assess the relationships between log10 body weight versus log10 MP, and between log10 body weight and log10 cytochrome P450 content, respectively. The resulting slopes range from 0.76 to 1.45 in a range of vertebrate species. Such data-driven allometric relationships can be used to estimate the MP content necessary for in vitro to in vivo extrapolation of in vitro clearance data. Future work includes applications of these relationships for different vertebrate taxa using quantitative in vitro to in vivo extrapolation models coupled to physiologically based kinetic models using chemicals of relevance as case studies including pesticides, contaminants and feed additives.
Collapse
Affiliation(s)
- L S Lautz
- Wageningen Food Safety Research, Wageningen University and Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands.
| | - A J Hendriks
- Environmental Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - J L C M Dorne
- Methodology and Scientific Support Unit, European Food Safety Authority (EFSA), Via Carlo Magno 1 A, 43126 Parma, Italy
| | - J Louisse
- Wageningen Food Safety Research, Wageningen University and Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| | - N I Kramer
- Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
7
|
Metabolic Disposition and Elimination of Tritum-Labeled Sulfamethoxazole in Pigs, Chickens and Rats. Metabolites 2022; 13:metabo13010057. [PMID: 36676982 PMCID: PMC9861212 DOI: 10.3390/metabo13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
Sulfamethoxazole (SMZ), as a sulfa antibiotic, is often used in the treatment of various infectious diseases in animal husbandry. At present, SMZ still has many unresolved problems in the material balance, metabolic pathways, and residual target tissues in food animals. Therefore, in order to solve these problems, the metabolism, distribution, and elimination of SMZ is investigated in pigs, chickens, and rats by radioactive tracing methods, and the residue marker and target tissue of SMZ in food animals were determined, providing a reliable basis for food safety. After a single administration of [3H]-SMZ (rats and pigs by intramuscular injection and chickens by oral gavage), the total radioactivity was rapidly excreted, with more than 93% of the dose excreted within 14 days in the three species. Pigs and rats had more than 75% of the administered volume recovered by urine. After 7 days of continuous administration, within the first 6 h, radioactivity was found in almost all tissues. The highest radioactivity and longest persistence in pigs was in the liver, while in chickens it was in the liver and kidneys, most of which was removed within 14 days. A total of six, three and three metabolites were found in chickens, rats and pigs, respectively. N4-acetyl-sulfamethoxazole (S1) was the main metabolite of SMZ in rats, pigs and chickens. The radioactive substance with the longest elimination half-life is sulfamethoxazole (S0), so S0 was suggested to be the marker residue in pigs and chickens.
Collapse
|
8
|
Medication with fenbendazole in feed: plasma concentrations and effects on hepatic xenobiotic metabolizing enzymes in swine. Vet Res Commun 2022; 47:803-815. [PMID: 36542192 DOI: 10.1007/s11259-022-10041-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022]
|
9
|
Bešlo D, Došlić G, Agić D, Rastija V, Šperanda M, Gantner V, Lučić B. Polyphenols in Ruminant Nutrition and Their Effects on Reproduction. Antioxidants (Basel) 2022; 11:970. [PMID: 35624834 PMCID: PMC9137580 DOI: 10.3390/antiox11050970] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
The feeding of domestic animals with diets in which polyphenols are present is increasingly attracting the attention of nutritionists and scientists. This review summarizes the knowledge regarding polyphenols' possible positive and negative effects and their bioavailability. The bioavailability of substances is a prerequisite for any postabsorption effect in vivo. Positive and negative properties have been confirmed in previous studies on the diets of domestic animals rich in polyphenols, such as secondary metabolites of plants. Free radicals are formed in every organism, leading to oxidative stress. Free radicals are highly reactive molecules and can react in cells with macromolecules and can cause damage, including in reproductive cells. Some polyphenols at specific concentrations have antioxidant properties that positively affect animal reproduction by improving the quality of male and female gametes. The intake of phytoestrogens that mimic estrogen function can induce various pathological conditions in the female reproductive tract, including ovarian, fallopian, and uterine dysfunction. The metabolism of genistein and daidzein yields the metabolites equol and p-phenyl-phenol, leading to a decline in cow fertilization. The findings so far confirm that numerous questions still need to be answered. This review points out the importance of using polyphenols that have both benificial and some unfavorable properties in specific diets.
Collapse
Affiliation(s)
- Drago Bešlo
- Faculty of Agrobiotechnical Sciences Osijek, University J. J. Strossmayer Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (G.D.); (D.A.); (V.R.); (M.Š.); (V.G.)
| | - Gloria Došlić
- Faculty of Agrobiotechnical Sciences Osijek, University J. J. Strossmayer Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (G.D.); (D.A.); (V.R.); (M.Š.); (V.G.)
| | - Dejan Agić
- Faculty of Agrobiotechnical Sciences Osijek, University J. J. Strossmayer Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (G.D.); (D.A.); (V.R.); (M.Š.); (V.G.)
| | - Vesna Rastija
- Faculty of Agrobiotechnical Sciences Osijek, University J. J. Strossmayer Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (G.D.); (D.A.); (V.R.); (M.Š.); (V.G.)
| | - Marcela Šperanda
- Faculty of Agrobiotechnical Sciences Osijek, University J. J. Strossmayer Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (G.D.); (D.A.); (V.R.); (M.Š.); (V.G.)
| | - Vesna Gantner
- Faculty of Agrobiotechnical Sciences Osijek, University J. J. Strossmayer Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (G.D.); (D.A.); (V.R.); (M.Š.); (V.G.)
| | - Bono Lučić
- Ruđer Bošković Institute, NMR Centre, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| |
Collapse
|
10
|
Induction by Phenobarbital of Phase I and II Xenobiotic-Metabolizing Enzymes in Bovine Liver: An Overall Catalytic and Immunochemical Characterization. Int J Mol Sci 2022; 23:ijms23073564. [PMID: 35408925 PMCID: PMC8998613 DOI: 10.3390/ijms23073564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
In cattle, phenobarbital (PB) upregulates target drug-metabolizing enzyme (DME) mRNA levels. However, few data about PB's post-transcriptional effects are actually available. This work provides the first, and an almost complete, characterization of PB-dependent changes in DME catalytic activities in bovine liver using common probe substrates and confirmatory immunoblotting investigations. As expected, PB increased the total cytochrome P450 (CYP) content and the extent of metyrapone binding; moreover, an augmentation of protein amounts and related enzyme activities was observed for known PB targets such as CYP2B, 2C, and 3A, but also CYP2E1. However, contradictory results were obtained for CYP1A, while a decreased catalytic activity was observed for flavin-containing monooxygenases 1 and 3. The barbiturate had no effect on the chosen hydrolytic and conjugative DMEs. For the first time, we also measured the 26S proteasome activity, and the increase observed in PB-treated cattle would suggest this post-translational event might contribute to cattle DME regulation. Overall, this study increased the knowledge of cattle hepatic drug metabolism, and further confirmed the presence of species differences in DME expression and activity between cattle, humans, and rodents. This reinforced the need for an extensive characterization and understanding of comparative molecular mechanisms involved in expression, regulation, and function of DMEs.
Collapse
|
11
|
Effects of Echinococcus multilocularis metacestodes infection and drug treatment on the activities of biotransformation enzymes in mouse liver. Parasitol Int 2022; 89:102563. [PMID: 35202818 DOI: 10.1016/j.parint.2022.102563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
The changes of biotransformation enzymes will substantially affect the host's ability to metabolize drugs and other xenobiotic compounds. In order to further elucidate this process and promote the development in treatment of echinococcosis, we investigated the effects of Echinococcus multilocularis infection and drug treatment on biotransformation enzymes in mouse liver. In microsomal and cytosolic fractions, from the six activities assayed, significant decrease of glutathione S-transferases (GST) activity and significant increase of 7-pentoxyresorufin (PROD) and NADPH-cytochrome P450 reductase (CPR) activity were observed in the mice. infected with E. multilocularis metacestodes. In addition, after six weeks treatment of albendazole in E. multilocularis infected mice, significant decreased GST activity and significant increase of 7- ethoxyresorufin (EROD), PROD, and particularly 3-fold higher 7-methoxyresorufin (MROD) activity were observed. The 3-bromopyruvate treated mice only exhibited significantly lower GST activity. Our results demonstrate that E. multilocularis metacestodes infection can affect the activities of main hepatic biotransformation enzymes and such alterations of activity may further affect the hepatic biotransformation of xenobiotics. Moreover, albendazole and 3-bromopyruvate, the promising potential drug against Echinococcus, affected different hepatic biotransformation enzymes and may affect their metabolism. The findings will help to develop rational treatments with less side effects and promote the development of more efficient treatments against E. multilocularis.
Collapse
|
12
|
Lautz LS, Nebbia C, Hoeks S, Oldenkamp R, Hendriks AJ, Ragas AMJ, Dorne JLCM. An open source physiologically based kinetic model for the chicken (Gallus gallus domesticus): Calibration and validation for the prediction residues in tissues and eggs. ENVIRONMENT INTERNATIONAL 2020; 136:105488. [PMID: 31991240 DOI: 10.1016/j.envint.2020.105488] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
Xenobiotics from anthropogenic and natural origin enter animal feed and human food as regulated compounds, environmental contaminants or as part of components of the diet. After dietary exposure, a chemical is absorbed and distributed systematically to a range of organs and tissues, metabolised, and excreted. Physiologically based kinetic (PBK) models have been developed to estimate internal concentrations from external doses. In this study, a generic multi-compartment PBK model was developed for chicken. The PBK model was implemented for seven compounds (with log Kow range -1.37-6.2) to quantitatively link external dose and internal dose for risk assessment of chemicals. Global sensitivity analysis was performed for a hydrophilic and a lipophilic compound to identify the most sensitive parameters in the PBK model. Model predictions were compared to measured data according to dataset-specific exposure scenarios. Globally, 71% of the model predictions were within a 3-fold change of the measured data for chicken and only 7% of the PBK predictions were outside a 10-fold change. While most model input parameters still rely on in vivo experiments, in vitro data were also used as model input to predict internal concentration of the coccidiostat monensin. Future developments of generic PBK models in chicken and other species of relevance to animal health risk assessment are discussed.
Collapse
Affiliation(s)
- L S Lautz
- Department of Environmental Science, Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands.
| | - C Nebbia
- Department of Veterinary Sciences, University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - S Hoeks
- Department of Environmental Science, Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands
| | - R Oldenkamp
- Department of Environmental Science, Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands
| | - A J Hendriks
- Department of Environmental Science, Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands
| | - A M J Ragas
- Department of Environmental Science, Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands; Department of Science, Faculty of Management, Science &Technology, Open University, 6419 AT Heerlen, the Netherlands
| | - J L C M Dorne
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| |
Collapse
|
13
|
Türkeş C. Investigation of Potential Paraoxonase-I Inhibitors by Kinetic and Molecular Docking Studies: Chemotherapeutic Drugs. Protein Pept Lett 2019; 26:392-402. [PMID: 30819074 DOI: 10.2174/0929866526666190226162225] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/07/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Metabolic processes in living organisms are closely related to the catalytic activity of enzymes. Changes in enzyme activity cause various diseases e.g., neurological, cancer, metabolic and cardiovascular. Most of the current therapeutic drugs available in clinical utilization function as enzyme inhibitors. OBJECTIVE The main goal of the current study to contribute to this growing drug design area (such as medication discovery and development) by investigating protein-drug interactions. METHODS The paraoxonase-I (PON1) enzyme was purified from human serum by using different and simple chromatographic techniques. Additionally, it was investigated inhibition effects of some chemotherapeutic drugs on the PON1. RESULTS The purification results for PON1 depicted a 3880.83 EU/mg proteins specific activity and the molecular weight was calculated as 43 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These drugs found to strongly inhibit PON1, with IC50 values ranging from 0.222±0.002 to 688.300±0.897 µM. Ki constants for vincristine sulfate, epirubicin hydrochloride, and doxorubicin hydrochloride were determined to be 0.235±0.032 µM, 221.400±29.270 µM, and 913.300±201.000 µM, respectively. CONCLUSION These drugs showed in competitive inhibition. Also, the molecular docking poses of these agents inside the catalytic sites of 1V04 and 3SRE were analysis.
Collapse
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, 24100, Turkey
| |
Collapse
|
14
|
Türkeş C. A potential risk factor for paraoxonase 1: in silico and in-vitro analysis of the biological activity of proton-pump inhibitors†. J Pharm Pharmacol 2019; 71:1553-1564. [DOI: 10.1111/jphp.13141] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/29/2019] [Indexed: 01/06/2023]
Abstract
Abstract
Objectives
Proton-pump inhibitors (PPIs) are drugs commonly utilized by about 7% of adults in the world. Recent researches have shown that there are countless and severe side effects of these drugs. This situation has raised concern among clinicians and patients alike. The purpose of this study is to contribute the novel drug discovery and development technology and toxicology field by researching interactions of PPIs on paraoxonase 1.
Methods
In this study, the paraoxonase 1 enzyme was purified from human serum by using rapid and straightforward chromatographic techniques. Subsequently, the inhibition effects of pantoprazole, omeprazole, and esomeprazole, PPIs, were investigated on paraoxonase 1. Besides, molecular docking studies were performed to unravel the binding mechanism between the enzyme and drugs.
Key findings
All drugs showed potent inhibitory activities. IC50 of the drugs values were 54.780 ± 0.524, 86.470 ± 0.818 and 93.390 ± 0.885 mm and Ki constants were found as 39.895 ± 0.005 mm, 70.112 ± 0.010 mm and 78.868 ± 0.008 mm, respectively. The binding scores observed in silico studies were found to agree with the obtained from in-vitro experimental results.
Conclusions
We observed that the drugs decreased PON1 activity at low concentrations. The results show that adjusting the dosages of these medications is a crucial case for each patient. The physicians should more carefully interpret whether there is an essential indication before prescribing PPIs and, if there is, to approve the proper dosing for the situation.
Collapse
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| |
Collapse
|
15
|
Türkeş C, Beydemir Ş. Inhibition of Human Serum Paraoxonase-I with Antimycotic Drugs: In Vitro and In Silico Studies. Appl Biochem Biotechnol 2019; 190:252-269. [DOI: 10.1007/s12010-019-03073-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022]
|
16
|
Türkeş C. Investigation of Potential Paraoxonase-I Inhibitors by Kinetic and Molecular Docking Studies: Chemotherapeutic Drugs. Protein Pept Lett 2019. [DOI: 10.2174/0929866526666190226162225 pmid: 30819074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Metabolic processes in living organisms are closely related to the catalytic
activity of enzymes. Changes in enzyme activity cause various diseases e.g., neurological, cancer,
metabolic and cardiovascular. Most of the current therapeutic drugs available in clinical utilization
function as enzyme inhibitors.
Objective:
The main goal of the current study to contribute to this growing drug design area (such
as medication discovery and development) by investigating protein-drug interactions.
Methods:
The paraoxonase-I (PON1) enzyme was purified from human serum by using different
and simple chromatographic techniques. Additionally, it was investigated inhibition effects of some
chemotherapeutic drugs on the PON1.
Results:
The purification results for PON1 depicted a 3880.83 EU/mg proteins specific activity and
the molecular weight was calculated as 43 kDa by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis. These drugs found to strongly inhibit PON1, with IC50 values ranging from
0.222±0.002 to 688.300±0.897 µM. Ki constants for vincristine sulfate, epirubicin hydrochloride,
and doxorubicin hydrochloride were determined to be 0.235±0.032 µM, 221.400±29.270 µM, and
913.300±201.000 µM, respectively.
Conclusion:
These drugs showed in competitive inhibition. Also, the molecular docking poses of
these agents inside the catalytic sites of 1V04 and 3SRE were analysis.
Collapse
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, 24100, Turkey
| |
Collapse
|
17
|
Zhang GL, Feng YL, Song JL, Zhou XS. Zearalenone: A Mycotoxin With Different Toxic Effect in Domestic and Laboratory Animals' Granulosa Cells. Front Genet 2018; 9:667. [PMID: 30619484 PMCID: PMC6305301 DOI: 10.3389/fgene.2018.00667] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
Zearalenone (ZEA), one of the most prevalent estrogenic mycotoxins, is mainly produced by Fusarium fungi and has been proven to affect the reproductive capacity of animals. Exposure of farm animals to ZEA is a global public health concern because of its toxicity and wide distribution in animal feeds. In vitro and in vivo experiments indicate that ZEA possesses estrogenic activity in mice, swine, Equus asinus and cattle. The precise mechanism of the reproductive toxicity of ZEA has not been established yet. This article reviews evidence on the deleterious effects of ZEA on mammalian folliculogenesis from early to final oogenesis stages. Such effects include impaired granulosa cell (GC) development and follicle steroidogenesis, reduced oocyte nest breakdown, damaged meiotic progression, poor fetal oocyte survival, accelerated primordial follicle activation and enhanced follicle atresia. These phenomena may result in reproductive and non-reproductive problems in domestic animals. In addition, emerging data indicates that ZEA may cause mRNA expression changes in the GCs. In general, E. asinus is more sensitive than swine to ZEA exposure. Finally, results of in vivo animal studies and in vitro tests are reported and discussed.
Collapse
Affiliation(s)
- Guo-Liang Zhang
- Qingdao Agricultural University, Qingdao, China.,National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Liaocheng, China
| | - Yu-Long Feng
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Liaocheng, China
| | | | - Xiang-Shan Zhou
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Liaocheng, China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
18
|
Zhang GL, Song JL, Zhou Y, Zhang RQ, Cheng SF, Sun XF, Qin GQ, Shen W, Li L. Differentiation of sow and mouse ovarian granulosa cells exposed to zearalenone in vitro using RNA-seq gene expression. Toxicol Appl Pharmacol 2018; 350:78-90. [PMID: 29758222 DOI: 10.1016/j.taap.2018.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/24/2018] [Accepted: 05/03/2018] [Indexed: 12/27/2022]
Abstract
Zearalenone (ZEA), a natural contaminant found in feed, has been shown to have a negative impact on domestic animal reproduction, particularly in pigs. There are species-specific differences in the ZEA-induced toxicity pattern. Here, we investigated the different biological effects of ZEA exposure on porcine and mouse granulosa cells, using RNA-seq analysis. We treated murine and porcine granulosa cells with 10 μM and 30 μM ZEA during 72 h of culturing, in vitro. The results showed that 10 μM ZEA exposure significantly altered mitosis associated genes in porcine granulosa cells, while the same treatment significantly altered the steroidogenesis associated genes in mouse granulosa cells. Exposure to 30 μM ZEA resulted in significantly up-regulated expression of inflammatory related genes in porcine granulosa cells as well as the cancer related genes in mouse granulosa cells. Similarly, 30 μM ZEA exposure significantly decreased the expression of tumor suppressor factors in the mouse granulosa cells. Furthermore, immunofluorescence, RT-qPCR as well as western-blot analysis verified the different expression of related genes in ZEA exposed porcine and mouse granulosa cells. Collectively, these results illustrate the presence of species differences with regards to ZEA effects between porcine and mouse ovarian granulosa cells, in vitro.
Collapse
Affiliation(s)
- Guo-Liang Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun-Lin Song
- Central Laboratory, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yi Zhou
- Center for Reproductive Medicine, Qingdao Women's and Children's Hospital, Qingdao University, Qingdao 266034, China
| | - Rui-Qian Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-Feng Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Guo-Qing Qin
- Institute of Research & Development, Yongda Food, Hebi 458030, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
19
|
BORTEY-SAM N, IKENAKA Y, AKOTO O, NAKAYAMA SM, MARFO JT, SAENGTIENCHAI A, MIZUKAWA H, ISHIZUKA M. Sex and site differences in urinary excretion of conjugated pyrene metabolites in the West African Shorthorn cattle. J Vet Med Sci 2018; 80:375-381. [PMID: 29279463 PMCID: PMC5836780 DOI: 10.1292/jvms.17-0410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 12/06/2017] [Indexed: 11/26/2022] Open
Abstract
Industrialization, economic and population growth rates in Ghana have increased the release of contaminants including polycyclic aromatic hydrocarbons (PAHs) into the environment through which humans and animals are exposed. Cattle is reported to be exposed to high levels of PAHs through feed and inhalation. Once exposed, PAHs are metabolized and excreted in urine, feces or bile. In a previous study, cattle in Ghana was reported to excrete high levels of 1-hydroxypyrene (1-OHPyr) due to high exposure to the parent compound, pyrene. 1-OHPyr is further metabolized to glucuronide and sulfate conjugates. Thus, the aim of this study was to investigate the sex and site differences in urinary excretion of conjugated pyrene metabolites using cattle urine collected from rural and urban sites of the Ashanti region, Ghana. From the results, geometric mean concentration adjusted by specific gravity indicated that 1-OHPyreneGlucuronide (PyG) was the most abundant conjugate followed by PyrenediolSulfate (M3). The sum of conjugated pyrene metabolites and sum of both conjugated and deconjugated pyrene metabolites correlated significantly with PyG, PydiolSulfate (M2) and PydiolSulfate (M3). The study revealed no significant difference in urinary excretion of conjugated pyrene metabolites between rural and urban sites. This indicated that similar to urban sites, cattle in rural sites were exposed to high levels of pyrene. There was no significant difference in urinary concentrations of conjugated pyrene metabolites between sexes.
Collapse
Affiliation(s)
- Nesta BORTEY-SAM
- Laboratory of Toxicology, Department of Environmental
Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18,
Nishi 9, Kita ku, Sapporo, Hokkaido 060-818, Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental
Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18,
Nishi 9, Kita ku, Sapporo, Hokkaido 060-818, Japan
- Water Research Group, Unit for Environmental Sciences and
Management, North-West University, Potchefstroom, South Africa
| | - Osei AKOTO
- Department of Chemistry, Kwame Nkrumah University of Science
and Technology, Kumasi, Ghana
| | - Shouta M.M. NAKAYAMA
- Laboratory of Toxicology, Department of Environmental
Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18,
Nishi 9, Kita ku, Sapporo, Hokkaido 060-818, Japan
| | - Jemima T. MARFO
- Laboratory of Toxicology, Department of Environmental
Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18,
Nishi 9, Kita ku, Sapporo, Hokkaido 060-818, Japan
| | - Aksorn SAENGTIENCHAI
- Department of Pharmacology, Faculty of Veterinary Medicine,
Kasetsart University, Bangkok, Thailand
| | - Hazuki MIZUKAWA
- Laboratory of Toxicology, Department of Environmental
Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18,
Nishi 9, Kita ku, Sapporo, Hokkaido 060-818, Japan
| | - Mayumi ISHIZUKA
- Laboratory of Toxicology, Department of Environmental
Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18,
Nishi 9, Kita ku, Sapporo, Hokkaido 060-818, Japan
| |
Collapse
|
20
|
Zhan J, Liang Y, Liu D, Liu C, Liu H, Wang P, Zhou Z. Organochlorine pesticide acetofenate and its hydrolytic metabolite in rabbits: Enantioselective metabolism and cytotoxicity. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 145:76-83. [PMID: 29482734 DOI: 10.1016/j.pestbp.2018.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 01/11/2018] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Acetofenate (AF) is a chiral organochlorine pesticide used for controlling hygiene pests. In this study, the metabolism of AF in rabbits in vivo and in vitro was investigated and the primary chiral metabolite acetofenate-alcohol (AF-A) was analyzed. The cytotoxicity of AF and AF-A was also determined. AF in rabbits in vivo was eliminated so rapidly that AF could not be detected within 10min after intravenous administration at 20mg/kg (body weight), and AF-A was quickly formed. In vitro metabolism assay, using plasma and liver microsomes, showed that AF was also quickly metabolized to AF-A and the metabolic process was significantly enantioselective with preferential degradation of (-)-AF and formation of (-)-AF-A. The cytotoxicity of AF and AF-A were investigated by assessing cell proliferation, apoptosis and generation of reactive oxygen species. The results showed that AF and AF-A induce enantioselective cytotoxicity. This study will be helpful for improving knowledge about the metabolism and toxicity of AF on an enantiomeric level and providing evidence to understand the potential environmental risk.
Collapse
Affiliation(s)
- Jing Zhan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, Agricultural University, Beijing 100193, China
| | - Yiran Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, Agricultural University, Beijing 100193, China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, Agricultural University, Beijing 100193, China
| | - Chang Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, Agricultural University, Beijing 100193, China
| | - Hui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, Agricultural University, Beijing 100193, China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, Agricultural University, Beijing 100193, China.
| |
Collapse
|
21
|
Figueira I, Tavares L, Jardim C, Costa I, Terrasso AP, Almeida AF, Govers C, Mes JJ, Gardner R, Becker JD, McDougall GJ, Stewart D, Filipe A, Kim KS, Brites D, Brito C, Brito MA, Santos CN. Blood-brain barrier transport and neuroprotective potential of blackberry-digested polyphenols: an in vitro study. Eur J Nutr 2017; 58:113-130. [PMID: 29151137 DOI: 10.1007/s00394-017-1576-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/31/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE Epidemiological and intervention studies have attempted to link the health effects of a diet rich in fruits and vegetables with the consumption of polyphenols and their impact in neurodegenerative diseases. Studies have shown that polyphenols can cross the intestinal barrier and reach concentrations in the bloodstream able to exert effects in vivo. However, the effective uptake of polyphenols into the brain is still regarded with some reservations. Here we describe a combination of approaches to examine the putative transport of blackberry-digested polyphenols (BDP) across the blood-brain barrier (BBB) and ultimate evaluation of their neuroprotective effects. METHODS BDP was obtained by in vitro digestion of blackberry extract and BDP major aglycones (hBDP) were obtained by enzymatic hydrolysis. Chemical characterization and BBB transport of extracts were evaluated by LC-MSn. BBB transport and cytoprotection of both extracts was assessed in HBMEC monolayers. Neuroprotective potential of BDP was assessed in NT2-derived 3D co-cultures of neurons and astrocytes and in primary mouse cerebellar granule cells. BDP-modulated genes were evaluated by microarray analysis. RESULTS Components from BDP and hBDP were shown to be transported across the BBB. Physiologically relevant concentrations of both extracts were cytoprotective at endothelial level and BDP was neuroprotective in primary neurons and in an advanced 3D cell model. The major canonical pathways involved in the neuroprotective effect of BDP were unveiled, including mTOR signaling and the unfolded protein response pathway. Genes such as ASNS and ATF5 emerged as novel BDP-modulated targets. CONCLUSIONS BBB transport of BDP and hBDP components reinforces the health benefits of a diet rich in polyphenols in neurodegenerative disorders. Our results suggest some novel pathways and genes that may be involved in the neuroprotective mechanism of the BDP polyphenol components.
Collapse
Affiliation(s)
- Inês Figueira
- Instituto de Tecnologia Quı́mica e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Lucélia Tavares
- Instituto de Tecnologia Quı́mica e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Carolina Jardim
- Instituto de Tecnologia Quı́mica e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Inês Costa
- Instituto de Tecnologia Quı́mica e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Ana P Terrasso
- Instituto de Tecnologia Quı́mica e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Andreia F Almeida
- Instituto de Tecnologia Quı́mica e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Coen Govers
- Wageningen Food & Biobased Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Jurriaan J Mes
- Wageningen Food & Biobased Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Rui Gardner
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | | | - Derek Stewart
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK.,School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS, Scotland, UK.,NIBIO, Norwegian Institute of Bioeconomy Research, Pb 115, 1431, Ås, Norway
| | - Augusto Filipe
- Medical Department, Grupo Tecnimede, 2710-089, Sintra, Portugal
| | - Kwang S Kim
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, 600 North Wolfe Street Park 256, Baltimore, MD, 21287, USA
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Catarina Brito
- Instituto de Tecnologia Quı́mica e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - M Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Cláudia N Santos
- Instituto de Tecnologia Quı́mica e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal. .,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
| |
Collapse
|
22
|
Nebbia C, Girolami F, Carletti M, Gasco L, Zoccarato I, Giuliano Albo A. In vitro interactions of malachite green and leucomalachite green with hepatic drug-metabolizing enzyme systems in the rainbow trout (Onchorhyncus mykiss). Toxicol Lett 2017; 280:41-47. [DOI: 10.1016/j.toxlet.2017.07.900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
|
23
|
Bortey-Sam N, Ikenaka Y, Akoto O, Nakayama SMM, Asante KA, Baidoo E, Obirikorang C, Saengtienchai A, Isoda N, Nimako C, Mizukawa H, Ishizuka M. Oxidative stress and respiratory symptoms due to human exposure to polycyclic aromatic hydrocarbons (PAHs) in Kumasi, Ghana. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 228:311-320. [PMID: 28551561 DOI: 10.1016/j.envpol.2017.05.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/07/2017] [Accepted: 05/14/2017] [Indexed: 06/07/2023]
Abstract
Studies of polycyclic aromatic hydrocarbons (PAHs) and its metabolites in PM10, soils, rat livers and cattle urine in Kumasi, Ghana, revealed high concentrations and cancer potency. In addition, WHO and IARC have reported an increase in cancer incidence and respiratory diseases in Ghana. Human urine were therefore collected from urban and control sites to: assess the health effects associated with PAHs exposure using malondialdehyde (MDA) and 8-hydroxy-2-deoxyguanosine (8-OHdG); identify any association between OH-PAHs, MDA, 8-OHdG with age and sex; and determine the relationship between PAHs exposure and occurrence of respiratory diseases. From the results, urinary concentrations of the sum of OH-PAHs (∑OHPAHs) were significantly higher from urban sites compared to the control site. Geometric mean concentrations adjusted by specific gravity, GMSG, indicated 2-OHNaphthalene (2-OHNap) (6.01 ± 4.21 ng/mL) as the most abundant OH-PAH, and exposure could be through the use of naphthalene-containing-mothballs in drinking water purification, insect repellent, freshener in clothes and/or "treatment of various ailments". The study revealed that exposure to naphthalene significantly increases the occurrence of persistent cough (OR = 2.68, CI: 1.43-5.05), persistent headache (OR = 1.82, CI: 1.02-3.26), tachycardia (OR = 3.36, CI: 1.39-8.10) and dyspnea (OR = 3.07, CI: 1.27-7.43) in Kumasi residents. Highest level of urinary 2-OHNap (224 ng/mL) was detected in a female, who reported symptoms of persistent cough, headache, tachycardia, nasal congestion and inflammation, all of which are symptoms of naphthalene exposure according to USEPA. The ∑OHPAHs, 2-OHNap, 2-3-OHFluorenes, and -OHPhenanthrenes showed a significantly positive correlation with MDA and 4-OHPhenanthrene with 8-OHdG, indicating possible lipid peroxidation/cell damage or degenerative disease in some participants. MDA and 8-OHdG were highest in age group 21-60. The present study showed a significant sex difference with higher levels of urinary OH-PAHs in females than males.
Collapse
Affiliation(s)
- Nesta Bortey-Sam
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita ku, Sapporo 060-0818, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita ku, Sapporo 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Osei Akoto
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita ku, Sapporo 060-0818, Japan
| | - Kwadwo A Asante
- CSIR Water Research Institute, P. O. Box AH 38, Achimota, Accra, Ghana
| | - Elvis Baidoo
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Christian Obirikorang
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| | - Aksorn Saengtienchai
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita ku, Sapporo 060-0818, Japan; Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Norikazu Isoda
- Unit of Risk Analysis and Management, Research Center for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan; Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education (GI-CoRE), Hokkaido University, Japan
| | - Collins Nimako
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Hazuki Mizukawa
- Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita ku, Sapporo 060-0818, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita ku, Sapporo 060-0818, Japan.
| |
Collapse
|
24
|
Jacobsen ML, Jaspers VLB, Ciesielski TM, Jenssen BM, Løseth ME, Briels N, Eulaers I, Leifsson PS, Rigét FF, Gomez-Ramirez P, Sonne C. Japanese quail (Coturnix japonica) liver and thyroid gland histopathology as a result of in ovo exposure to the flame retardants tris(1,3-dichloro-2-propyl) phosphate and Dechlorane Plus. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:525-531. [PMID: 28696837 DOI: 10.1080/15287394.2017.1336414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Japanese quails (Coturnix japonica) were exposed in ovo to tris(1,3-dichloro-2-propyl) phosphate (TDCIPP; 500 ng/µl), Dechlorane Plus (DP; 500 ng/µl), or a 1:1 mixture of these two to investigate the effects on liver and thyroid gland morphology. Histological examination of 14-day-old quails showed that exposure to TDCIPP or the mixture induced hepatic sinusoidal dilatation. No marked effects were seen for DP alone. In addition, the mixture produced divergence of thyroid gland follicles and proliferation of follicular cells. Our study is the first demonstrating histopathological alterations as a result of exposure during early development to the flame retardants TDCIPP or a TDCIPP-DP mixture suggesting the need for further research efforts to investigate potential adverse health effects associated with exposure to these environmental chemicals in wild birds.
Collapse
Affiliation(s)
- Mona L Jacobsen
- a Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences , University of Copenhagen , Frederiksberg , Denmark
- b Department of Bioscience, Arctic Research Centre , Aarhus University , Roskilde , Denmark
| | - Veerle L B Jaspers
- c Department of Biology , Norwegian University of Science and Technology , Trondheim , Norway
| | - Tomasz M Ciesielski
- c Department of Biology , Norwegian University of Science and Technology , Trondheim , Norway
| | - Bjørn M Jenssen
- c Department of Biology , Norwegian University of Science and Technology , Trondheim , Norway
| | - Mari E Løseth
- c Department of Biology , Norwegian University of Science and Technology , Trondheim , Norway
| | - Nathalie Briels
- c Department of Biology , Norwegian University of Science and Technology , Trondheim , Norway
| | - Igor Eulaers
- b Department of Bioscience, Arctic Research Centre , Aarhus University , Roskilde , Denmark
| | - Páll S Leifsson
- a Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences , University of Copenhagen , Frederiksberg , Denmark
| | - Frank F Rigét
- b Department of Bioscience, Arctic Research Centre , Aarhus University , Roskilde , Denmark
| | - Pilar Gomez-Ramirez
- d Area of Toxicology, Faculty of Veterinary Medicine , University of Murcia , Murcia , Spain
| | - Christian Sonne
- b Department of Bioscience, Arctic Research Centre , Aarhus University , Roskilde , Denmark
| |
Collapse
|
25
|
Liang Y, Zhan J, Liu X, Zhou Z, Zhu W, Liu D, Wang P. Stereoselective metabolism of the UV-filter 2-ethylhexyl 4-dimethylaminobenzoate and its metabolites in rabbits in vivo and vitro. RSC Adv 2017. [DOI: 10.1039/c7ra00431a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
.The stereoselective metabolism of the enantiomers of the UV-filter 2-ethylhexyl 4-dimethylaminobenzoate (EDP) and its two major metabolites were studied in rabbits in vivo and in vitro. Cytotoxicity of EDP and its two metabolites was also investigated in hepatocytes.
Collapse
Affiliation(s)
- Yiran Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Department of Applied Chemistry
- China Agricultural University
- Department of Applied Chemistry
- China Agricultural University
| | - Jing Zhan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Department of Applied Chemistry
- China Agricultural University
- Department of Applied Chemistry
- China Agricultural University
| | - Xueke Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Department of Applied Chemistry
- China Agricultural University
- Department of Applied Chemistry
- China Agricultural University
| | - Zhiqaing Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Department of Applied Chemistry
- China Agricultural University
- Department of Applied Chemistry
- China Agricultural University
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Department of Applied Chemistry
- China Agricultural University
- Department of Applied Chemistry
- China Agricultural University
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Department of Applied Chemistry
- China Agricultural University
- Department of Applied Chemistry
- China Agricultural University
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Department of Applied Chemistry
- China Agricultural University
- Department of Applied Chemistry
- China Agricultural University
| |
Collapse
|
26
|
Figueira I, Menezes R, Macedo D, Costa I, Nunes dos Santos C. Polyphenols Beyond Barriers: A Glimpse into the Brain. Curr Neuropharmacol 2017; 15:562-594. [PMID: 27784225 PMCID: PMC5543676 DOI: 10.2174/1570159x14666161026151545] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 08/02/2016] [Accepted: 09/28/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ageing can be simply defined as the process of becoming older, which is genetically determined but also environmentally modulated. With the continuous increase of life expectancy, quality of life during ageing has become one of the biggest challenges of developed countries. The quest for a healthy ageing has led to the extensive study of plant polyphenols with the aim to prevent age-associated deterioration and diseases, including neurodegenerative diseases. The world of polyphenols has fascinated researchers over the past decades, and in vitro, cell-based, animal and human studies have attempted to unravel the mechanisms behind dietary polyphenols neuroprotection. METHODS In this review, we compiled some of the extensive and ever-growing research in the field, highlighting some of the most recent trends in the area. RESULTS The main findings regarding polypolyphenols neuroprotective potential performed using in vitro, cellular and animal studies, as well as human trials are covered in this review. Concepts like bioavailability, polyphenols biotransformation, transport of dietary polyphenols across barriers, including the blood-brain barrier, are here explored. CONCLUSION The diversity and holistic properties of polypolyphenol present them as an attractive alternative for the treatment of multifactorial diseases, where a multitude of cellular pathways are disrupted. The underlying mechanisms of polypolyphenols for nutrition or therapeutic applications must be further consolidated, however there is strong evidence of their beneficial impact on brain function during ageing. Nevertheless, only the tip of the iceberg of nutritional and pharmacological potential of dietary polyphenols is hitherto understood and further research needs to be done to fill the gaps in pursuing a healthy ageing.
Collapse
Affiliation(s)
- Inês Figueira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
| | - Regina Menezes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| | - Diana Macedo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| | - Inês Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| | - Cláudia Nunes dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| |
Collapse
|
27
|
Bortey-Sam N, Ikenaka Y, Akoto O, Nakayama SMM, Marfo J, Saengtienchai A, Mizukawa H, Ishizuka M. Excretion of polycyclic aromatic hydrocarbon metabolites (OH-PAHs) in cattle urine in Ghana. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:331-337. [PMID: 27423502 DOI: 10.1016/j.envpol.2016.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 07/03/2016] [Accepted: 07/03/2016] [Indexed: 06/06/2023]
Abstract
Previous studies of polycyclic aromatic hydrocarbons (PAHs) in particulate matter, soils and livers of wild rats indicated that the city centre of Kumasi, Ghana has been severely polluted with high cancer potency. Cattle urine were therefore collected from Kumasi (urban) and Offinso (rural), Ghana: to determine concentrations of urinary PAH metabolites (OH-PAHs); and find their association with sex; and to estimate exposure of cattle to PAHs from the different sites. From the results, geometric mean concentrations (adjusted by specific gravity), GMSG, showed that 2-OHNaphthalene (2-OHNap) was the most abundant OH-PAH in cattle urine from all study sites, and naphthalene-containing-mothballs might have contributed significantly to the levels. There was no significant difference between urinary OH-PAHs concentrations in cattle from urban and rural sites except for 2-OHPhe and 4-OHPhe, and similar to urban areas, rural sites could also be polluted with PAHs. GMSG of 2-OHNap in cattle urine in Kokote (21.9 ± 6.51 ng/mL; a rural area), was significantly higher compared to the other sites followed by Oforikrom (4.15 ± 4.37 ng/mL; urban). The GMSG concentration (ng/mL) of the sum of OH-PAHs decreased in the order, Kokote (44.7) > Oforikrom (7.87) > Saboa (6.98) > Santasi (6.68) > and Twumasen Estate (5.23). The high concentrations of urinary 2-OHNap, 2-3-OHFlu, 2-OHPhe, 3-OHPhe and 4-OHPhe in Kokote indicated high PAHs exposure to cattle in this area or different/specific source of PAHs exposure. GMSG of 2-OHNap was significantly higher in male cattle compared to females while 1-9-OHPhe was significantly higher in females.
Collapse
Affiliation(s)
- Nesta Bortey-Sam
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita ku, Sapporo 060-0818, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita ku, Sapporo 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Osei Akoto
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita ku, Sapporo 060-0818, Japan
| | - Jemima Marfo
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita ku, Sapporo 060-0818, Japan
| | - Aksorn Saengtienchai
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita ku, Sapporo 060-0818, Japan; Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Hazuki Mizukawa
- Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita ku, Sapporo 060-0818, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita ku, Sapporo 060-0818, Japan.
| |
Collapse
|
28
|
Wang L, Huang L, Pan Y, Kuča K, Klímová B, Wu Q, Xie S, Ahmad I, Chen D, Tao Y, Wan D, Liu Z, Yuan Z. Metabolism and Disposition of Aditoprim in Swine, Broilers, Carp and Rats. Sci Rep 2016; 6:20370. [PMID: 26838160 PMCID: PMC4738305 DOI: 10.1038/srep20370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/31/2015] [Indexed: 12/20/2022] Open
Abstract
Aditoprim (ADP) is a newly developed antibacterial agent in veterinary medicine. The metabolism and disposition of ADP in swine, broilers, carp and rats were investigated by using a radio tracer method combined with a radioactivity detector and a liquid chromatography/ion trap/time-of-flight mass spectrometry. After a single oral administration, more than 94% of the dose was recovered within 14 d in the four species. The urine excretion was dominant in swine and rats, making up 78% of the dose. N-monodesmethyl-ADP, N-didesmethyl-ADP, and 10 new metabolites were characterized. These metabolites were biotransformed from the process of demethylation, α-hydroxylation, N-oxidation, and NH2-glucuronidation. After an oral dose for 7 d, ADP-derived radioactivity was widely distributed in tissues, and high concentrations were especially observed in bile, liver, kidney, lung, and spleen. The radioactivity in the liver was eliminated much more slowly than in other tissues, with a half-life of 4.26, 3.38, 6.69, and 5.21 d in swine, broilers, carp, and rats, respectively. ADP, N-monodesmethyl-ADP, and N-didesmethyl-ADP were the major metabolites in edible tissues. Notably, ADP was detected with the highest concentration and the longest duration in these tissues. These findings indicated that ADP is the marker residue and the liver is the residue target tissue.
Collapse
Affiliation(s)
- Liye Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei 430070, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lingli Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei 430070, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuanhu Pan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei 430070, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Kamil Kuča
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Blanka Klímová
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Qinghua Wu
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic.,College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei 430070, China
| | - Ijaz Ahmad
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dan Wan
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei 430070, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
29
|
Peters L, Demmel S, Pusch G, Buters J, Thormann W, Zielinski J, Leeb T, Mevissen M, Schmitz A. Equine cytochrome P450 2B6 — Genomic identification, expression and functional characterization with ketamine. Toxicol Appl Pharmacol 2013; 266:101-8. [DOI: 10.1016/j.taap.2012.10.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 10/19/2012] [Accepted: 10/26/2012] [Indexed: 01/23/2023]
|
30
|
Factors affecting pharmacokinetics of benzimidazole anthelmintics in food-producing animals: The consequences and potential risks. Res Vet Sci 2011; 91:333-41. [DOI: 10.1016/j.rvsc.2010.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 10/27/2010] [Accepted: 12/18/2010] [Indexed: 01/26/2023]
|
31
|
Maté ML, Lifschitz A, Sallovitz J, Ballent M, Muscher AS, Wilkens MR, Schröder B, Lanusse C, Virkel G. Cytochrome P450 3A expression and function in liver and intestinal mucosa from dexamethasone-treated sheep. J Vet Pharmacol Ther 2011; 35:319-28. [PMID: 21906085 DOI: 10.1111/j.1365-2885.2011.01334.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The effects of repeated administrations of dexamethasone (DEX) (3 mg/kg/day by i.m. route for 7 days) on the gene expression profile of a cytochrome P450 (CYP) 3A28-like isoenzyme, on the expression of a CYP3A-immunoreactive protein and on CYP3A-dependent metabolic activities in sheep liver and small intestinal mucosa were evaluated in the current work. CYP 3A-dependent metabolic activities (erythromycin and triacetyl-oleandomycin N-demethylations) were assessed in microsomal fractions. The mRNA expression of CYP3A28-like, glucocorticoid receptor, constitutive androstane receptor, pregnane X receptor and retinoic X receptor alpha (RXRα) was determined by quantitative real-time PCR. The expression of a CYP3A-immunoreactive protein was measured by Western blot analyses. In the liver, DEX treatment increased CYP3A28-like mRNA levels (2.67-fold, P<0.01) and CYP3A apoprotein expression (1.34-fold, P<0.05) and stimulated CYP3A-dependent metabolism. High and significant correlation coefficients between CYP3A-dependent activities and CYP3A28-like gene (r=0.835-0.856, P<0.01) or protein (r=0.728-0.855, P<0.05) expression profiles were observed. Among the transcriptional factors, DEX only stimulated (2.1-fold, P<0.01) the mRNA expression of RXRα. In sheep small intestine, DEX caused a slight increment (34.6%, P<0.05) in erythromycin N-demethylase activity in the jejunal mucosa and a significant enhancement (P<0.05) of CYP3A apoprotein level in the duodenal mucosa.
Collapse
Affiliation(s)
- M L Maté
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Sciences, UNCPBA, Tandil, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Novel strategies for tracing the exposure of meat cattle to illegal growth-promoters. Vet J 2011; 189:34-42. [DOI: 10.1016/j.tvjl.2010.06.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 06/22/2010] [Accepted: 06/23/2010] [Indexed: 01/03/2023]
|
33
|
Ahmad I, Siddiqui H, Akhtar MJ, Khan MI, Patil G, Ashquin M, Patel DK, Arif JM. Toxic responses in primary rat hepatocytes exposed with occupational dust collected from work environment of bone-based industrial unit. CHEMOSPHERE 2011; 83:455-460. [PMID: 21237481 DOI: 10.1016/j.chemosphere.2010.12.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 12/21/2010] [Accepted: 12/21/2010] [Indexed: 05/30/2023]
Abstract
In this in vitro study we investigated the toxic responses in hepatocytes treated with occupational dust to which workers are exposed in bone-based industrial units. The present study investigated the toxicity mechanism of bone-based occupational dust, from a particular industrial unit, on isolated rat hepatocytes. The hepatocytes were isolated by collagenase perfusion method and cell viability was determined by trypan blue exclusion and MTT [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay treated with occupational dust at 0.1-1.0 mgmL(-1), for 120 min. The cell viability decreased significantly in a concentration-dependent manner. Dust induced significant membrane damage measured by lactate dehydrogenase (LDH) and glutathione (GSH) release in culture media for 30-, 60- and 120 min treatment duration. The toxicity was found to be correlated with the induction of lipid peroxidation (LPO). In addition, nitric oxide (NO), and hydrogen peroxide (H(2)O(2)) generation by occupational dusts were also found to be time- and concentration-dependent. Over all the present study provides initial evidences for the toxic potential of occupational dust generated in bone-based industries and, therefore, the dust exposure to workers in unorganized industrial units should be controlled.
Collapse
Affiliation(s)
- Iqbal Ahmad
- Fibre Toxicology Division, Indian Institute of Toxicology Research (CSIR), Lucknow 226 001, UP, India.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
UNEY K, TRAS B. Comparative Pharmacokinetics and Metabolisms of Caffeine in Sheep Breeds. J Vet Med Sci 2011; 73:25-31. [DOI: 10.1292/jvms.09-0580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Kamil UNEY
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk
| | - Bünyamin TRAS
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk
| |
Collapse
|
35
|
Shabani A, Dastar B, Khomeiri M, Shabanpour B, Hassani S. Response of Broiler Chickens to Different Levels of Nanozeolite During Experimental Aflatoxicosis. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/jbs.2010.362.367] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
MATÉ L, VIRKEL G, LIFSCHITZ A, SALLOVITZ J, BALLENT M, LANUSSE C. Phase 1 and phase 2 metabolic activities along the small intestine in adult male sheep1. J Vet Pharmacol Ther 2010; 33:537-45. [DOI: 10.1111/j.1365-2885.2010.01177.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Pegolo S, Merlanti R, Giantin M, Dacasto M, Montesissa C, Capolongo F. High performance liquid chromatography determination of cytochrome P450 1A and 2C activities in bovine liver microsomes. Vet J 2010; 183:81-88. [DOI: 10.1016/j.tvjl.2008.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 07/24/2008] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
|
38
|
Fink-Gremmels J. Defense mechanisms against toxic phytochemicals in the diet of domestic animals. Mol Nutr Food Res 2009; 54:249-58. [DOI: 10.1002/mnfr.200900361] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
VIRKEL G, CARLETTI M, CANTIELLO M, DELLA DONNA L, GARDINI G, GIROLAMI F, NEBBIA C. Characterization of xenobiotic metabolizing enzymes in bovine small intestinal mucosa. J Vet Pharmacol Ther 2009; 33:295-303. [DOI: 10.1111/j.1365-2885.2009.01137.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Cvilink V, Lamka J, Skálová L. Xenobiotic metabolizing enzymes and metabolism of anthelminthics in helminths. Drug Metab Rev 2009; 41:8-26. [PMID: 19514969 DOI: 10.1080/03602530802602880] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Anthelminthics remain the only accessible means in the struggle against helminth parasites, which cause significant morbidity and mortality in man and farm animals. The treatment of helminthic infections has become problematic because of frequent drug resistance of helminth parasites. The development of drug resistance can be facilitated by the action of xenobiotic metabolizing enzymes (XMEs). In all organisms, XMEs serve as an efficient defense against the potential negative action of xenobiotics. The activities of XMEs determine both desired and undesired effects of drugs, and the knowledge of drug metabolism is necessary for safe, effective pharmacotherapy. While human and mammalian XMEs have been intensively studied for many years, XMEs of helminth parasites have undergone relatively little investigation, so far. However, many types of XMEs, including oxidases, reductases, hydrolases, transferases, and transporters, have been described in several helminth species. XMEs of helminth parasites may protect these organisms from the toxic effects of anthelminthics. In case of certain anthelminthics, metabolic deactivation was reported in helminth larvae and/or adults. Moreover, if a helminth is in the repeated contact with an anthelminthic, it defends itself against the chemical stress by the induction of biotransformation enzymes or transporters. This induction can represent an advantageous defense strategy of the parasites and may facilitate the drug-resistance development.
Collapse
Affiliation(s)
- Viktor Cvilink
- Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | | | | |
Collapse
|
41
|
Implications of hepatic cytochrome P450-related biotransformation processes in veterinary sciences. Eur J Pharmacol 2008; 585:502-9. [DOI: 10.1016/j.ejphar.2008.03.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 02/07/2023]
|
42
|
Giantin M, Carletti M, Capolongo F, Pegolo S, Lopparelli RM, Gusson F, Nebbia C, Cantiello M, Martin P, Pineau T, Dacasto M. Effect of breed upon cytochromes P450 and phase II enzyme expression in cattle liver. Drug Metab Dispos 2008; 36:885-93. [PMID: 18268077 DOI: 10.1124/dmd.107.019042] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Cattle represent an important source of animal-derived food-products; nonetheless, our knowledge about the expression of drug-metabolizing enzymes (DMEs) in present and other food-producing animals still remains superficial, despite the obvious toxicological consequences. Breed represents an internal factor that modulates DME expression and catalytic activity. In the present work, the effect of breed upon relevant phase I and phase II DMEs was investigated at the pretranscriptional and post-translational levels in male Charolais (CH), Piedmontese (PM) and Blonde d'Aquitaine (BA) cattle. Because specific substrates for cattle have not yet been identified, the breed effect upon specific cytochrome P450 (P450), UDP-glucuronosyltransferase (UGT), or glutathione S-transferase (GST) DMEs, in terms of catalytic activity, was determined by using human marker substrates. Among P450s, benzphetamine N-demethylase, 16beta-, 6beta-, and 2beta-testosterone hydroxylase, aniline and p-nitrophenol hydroxylase, and alpha-naphthol and p-nitrophenol UGT activities were significantly higher in CH; in contrast, lower levels of CYP1A1-, CYP1A2-, CYP2B6-, CYP2C9-, CYP2C18-, CYP3A4-, and UGT1A1-like mRNAs were noticed, with CH < PM < or = BA as a trend. CYP2B and CYP3A mRNA results were confirmed with immunoblotting, too. As regards conjugative DMEs, UGT1A6-like mRNA levels were consistent with respective catalytic activities. Both 1-chloro-2,4-dinitrobenzene and 3,4-dichloronitrobenzene GST activities were higher in BA, and these results agreed with GSTA1-, GSTM1-, and GSTP1-like mRNA amounts. Correlation analysis between catalytic activities and mRNAs showed either significant or uneven results, depending on the substrate. These findings confirm previous data obtained in laboratory species; however, further studies are required to ascribe this behavior to pretranscriptional or post-translational phenomena.
Collapse
Affiliation(s)
- Mery Giantin
- Dipartimento di Sanità Pubblica, Patologia Comparata ed Igiene Veterinaria, Area di Farmacologia e Tossicologia, Viale dell'Università 16, I-35020 Agripolis Legnaro (Padova), Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kolf-Clauw M, Ayouni F, Tardieu D, Guerre P. Variations in zearalenone activation in avian food species. Food Chem Toxicol 2007; 46:1467-73. [PMID: 18221829 DOI: 10.1016/j.fct.2007.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2007] [Revised: 05/21/2007] [Accepted: 12/06/2007] [Indexed: 10/22/2022]
Abstract
Zearalenone (ZEA), a widely distributed oestrogenic fusariotoxin, constitutes a potential risk for human and animal health. ZEA is metabolised to the main metabolites identified in vitro and in vivo: alpha-zearalenol (alpha-ZOL) and beta-zearalenol (beta-ZOL). The efficiency to produce alpha-reduced metabolites appears of particular interest in risk assessment as alpha-reduced metabolites constitute activated forms whereas beta-reduced metabolites are less oestrogenic than ZEA. In this study ZEA activation was compared in avian food species. ZEA and its reduced metabolites were quantified in subcellular fractions of six avian species and rat livers. The alpha-ZOL/beta-ZOL ratio in rats was 19. The various avian food species cannot be considered to be equivalent in terms of ZEA reduction (P<0.001). Quails represented high "beta reducers", with alpha-ZOL/beta-ZOL ratio less than two. Weak "beta reducers" included on one part ducks and chickens showing alpha-ZOL/beta-ZOL ratio greater than 3 and up to 5.6 and on a second part geese, showing a lower production of alpha-ZOL than other poultry. Comparisons of enzyme kinetics in ducks and in quails show that these variations can be explained by the action of various isoforms of dehydrogenases. These results are relevant to food safety, in the context of frequently inevitable contamination of animal feed.
Collapse
Affiliation(s)
- M Kolf-Clauw
- Unité de Mycotoxicologie, Ecole Nationale Vétérinaire de Toulouse, Toulouse Cedex, France.
| | | | | | | |
Collapse
|
44
|
Skálová L, Krízová V, Cvilink V, Szotáková B, Storkánová L, Velík J, Lamka J. Mouflon (Ovis musimon) dicrocoeliosis: Effects of parasitosis on the activities of biotransformation enzymes and albendazole metabolism in liver. Vet Parasitol 2007; 146:254-62. [PMID: 17386978 DOI: 10.1016/j.vetpar.2007.02.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 02/16/2007] [Accepted: 02/21/2007] [Indexed: 11/15/2022]
Abstract
Parasitic infections can modify the host's ability to metabolize drugs and other xenobiotics by altering the biotransformation enzymes; these changes may have various pharmacological, toxicological or physiological consequences. In our study, several activities of liver biotransformation enzymes and in vitro metabolism of albendazole (ABZ) were tested and compared in non-infected mouflons (Ovis musimon) and in mouflons infected by lancet fluke (Dicrocoelium dendriticum). Subcellular fractions of liver homogenates were isolated from 5+5 mouflon rams (1-year-old) parasitologically negative or naturally infected by fluke. From the eight enzyme activities that were assayed, only two activities significantly differ in the case of Dicrocoelium-infected versus non-infected animals. In infected mouflons, a significant increase (53%) of thiobenzamide-S-oxidase (TBSO) activity, corresponding mainly to the activity of flavine monooxygenase (FMO), and significant decrease (60%) of glutathione-S-transferase (GST) activity was observed. In addition, dicrocoeliosis caused the enhancement of ABZ hepatic biotransformation. The velocity of the formation of (+)-ABZ sulfoxide and ABZ sulfone was significantly increased. However, the shifts in ABZ biotransformation were very mild that undesirable alterations in ABZ pharmacokinetic are not expected. From this point of view, the use of ABZ in the therapy of mouflon dicrocoeliosis in young animals can be recommended. The treatment of the same mouflons by other drugs that are mainly conjugated with glutathione, seems to be more problematic; hence, all consequences of documented reduced GST activity should be accounted.
Collapse
Affiliation(s)
- L Skálová
- Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
45
|
Al Katheeri NA, Wasfi IA, Lambert M, Giuliano Albo A, Nebbia C. In vivo and in vitro metabolism of dexamethasone in the camel. Vet J 2006; 172:532-43. [PMID: 16061409 DOI: 10.1016/j.tvjl.2005.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The metabolism of dexamethasone (DXM) in the camel was assessed by in vivo and in vitro techniques. Liver samples were collected at the abattoir from camels of either sex, and microsomes were isolated and characterized as to their protein and haemoprotein content as well as for their ability to metabolise several cytochrome P450 model substrates. The expression of different P450 enzymes was evaluated by means of immunoblotting, and the glucuronidating capacity was assessed with 1-naphthol as the substrate. The activity of 11 beta-hydroxysteroid dehydrogenase type 1 was assayed using metyrapone as a model substrate. To examine the in vitro metabolism of DXM, microsomes were incubated with the corticoid in the presence of either a NADPH-generating system or of uridindiphosphoglucuronic acid. In vivo metabolism of DXM was studied in two male camels, injected with a bolus intravenous dose of DXM (0.2 mg/kg body weight) and DXM metabolites were evaluated in urine samples collected at different times after the administration. DXM and metabolites were extracted using solid phase and liquid-liquid extraction, and analysed by liquid chromatography mass spectrometry (LC/MS) and by LC/MS/MS. Comparative results were obtained by in vitro and in vivo studies. Two phase I metabolites were detected: the major one resulted from reduction of the 3-carbonyl group in ring A and the minor metabolite from ring hydroxylation of ring A. Glucuronidation involved both phase I metabolites as well as the parent compound.
Collapse
Affiliation(s)
- N A Al Katheeri
- Camel Racing Laboratory, Forensic Science Laboratory, Abu Dhabi, United Arab Emirates
| | | | | | | | | |
Collapse
|
46
|
GIANTIN M, CARLETTI M, CAPOLONGO F, NEBBIA C, DACASTO M. D04 Expression of liver cytochrome P450 drug metabolizing enzymes in different meat cattle breeds. J Vet Pharmacol Ther 2006. [DOI: 10.1111/j.1365-2885.2006.00762_6.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Malekinejad H, Maas-Bakker R, Fink-Gremmels J. Species differences in the hepatic biotransformation of zearalenone. Vet J 2006; 172:96-102. [PMID: 15907386 DOI: 10.1016/j.tvjl.2005.03.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Zearalenone (ZEA), a Fusarium toxin, is frequently found in animal feed materials. It is known to exert oestrogenic effects in all animals tested but susceptibility varies between species, possibly reflecting differences in the metabolic processing of ZEA, which predominantly involves hydroxylations, assumed to be catalysed by 3alpha- and 3beta- hydroxysteroid dehydrogenases, as well as conjugation with glucuronic acid. In this study, the biotransformation of ZEA by hepatic subcellular fractions of various domestic animals was investigated and compared to the rat. Notable inter-species differences in terms of the rate of absolute and relative metabolite production in the different subcellular fractions were identified. The highest amount of alpha-zearalenol (alpha-ZOL) was produced by pig hepatic microsomes (V(max)=795.8+/-122.7pmol/mg/min), whereas in chicken microsomes the highest amounts of beta-zearalenol (beta-ZOL) (V(max)=1524+/-29.7pmol/mg/min) could be measured. Except for sheep and cattle, the efficiency of alpha-ZOL production (expressed as the ratio of apparent V(max)/k(m)) was higher in the microsomal fraction compared to the post-mitochondrial fraction. In contrast, the apparent efficiency of beta-ZOL production was high in pigs, cattle, chickens and rats, but very low in sheep. Conjugation of ZEA with glucuronic acid was investigated, and the results indicated significant inter-species differences in the rate of glucuronidation, which was saturable at low concentrations in all species tested, except pigs. The significant differences between the percentages of glucuronidation of ZEA, alpha-ZOL, and beta-ZOL suggest not only differences in the affinity of the individual substrate, but might also indicate the presence of different isoforms of uridine diphosphate glucuronyl transferases (UDPGTs). The results are of clinical relevance, as they contribute to the understanding of the species-specific susceptibility towards exposure to ZEA.
Collapse
Affiliation(s)
- H Malekinejad
- Department of Veterinary Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands.
| | | | | |
Collapse
|
48
|
|
49
|
Virkel G, Lifschitz A, Sallovitz J, Pis A, Lanusse C. Assessment of the main metabolism pathways for the flukicidal compound triclabendazole in sheep. J Vet Pharmacol Ther 2006; 29:213-23. [PMID: 16669866 DOI: 10.1111/j.1365-2885.2006.00735.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Triclabendazole (TCBZ) is an halogenated benzimidazole (BZD) compound worldwide used to control immature and adult stages of the liver fluke Fasciola hepatica. The purpose of this investigation was to characterize in vitro the patterns of hepatic and ruminal biotransformation of TCBZ and its metabolites in sheep. TCBZ parent drug was metabolized into its sulphoxide (TCBZSO), sulphone (TCBZSO2) and hydroxy derivatives by sheep liver microsomes. The same microsomal fraction was also able to oxidize TCBZSO into TCBZSO2 and hydroxy-TCBZSO (HO-TCBZSO). TCBZ sulphoxidation was significantly (P < 0.001) inhibited after inactivation of the flavin-monooxygenase (FMO) system (77% inhibition) as well as in the presence of the FMO substrate methimazole (MTZ) (71% inhibition). TCBZ sulphoxidative metabolism was also reduced (24% inhibition, P < 0.05) by the cytochrome P450 inhibitor piperonyl butoxide (PB). The rate of TCBZSO conversion into TCBZSO2 was also significantly inhibited by PB (55% inhibition), MTZ (52% inhibition) and also following FMO inactivation (58% inhibition). The data reported here indicate that the FMO is the main enzymatic pathway involved in TCBZ sulphoxidation (ratio FMO/P450 = 3.83 +/- 1.63), although both enzymatic systems participate in a similar proportion in the sulphonation of TCBZSO to form the sulphone metabolite (ratio FMO/P450 = 1.31 +/- 0.23). Additionally, ketoconazole (KTZ) did not affect TCBZ sulphoxidation but decreased (66% inhibition, P < 0.05) the formation of TCBZSO2. Similarly, inhibition of TCBZSO2 production was observed after incubation of TCBZSO in the presence of KTZ and erythromycin (ETM). Conversely, thiabendazole (TBZ) and fenbendazole (FBZ) did not affect the oxidative metabolism of both incubated substrates. The sheep ruminal microflora was able to reduce the sulphoxide (TCBZSO) into the parent thioether (TCBZ). The ruminal sulphoreduction of the HO-TCBZSO derivative into HO-TCBZ was also demonstrated. The rate of sulphoreduction of HO-TCBZSO was significantly (P < 0.05) higher than that observed for TCBZSO. The metabolic approach tested here contributes to the identification of the different pathways involved in drug biotransformation in ruminant species. These findings on the pattern of hepatic and ruminal biotransformation of TCBZ and its main metabolites are a further contribution to the understanding of the pharmacological properties of widely used anthelmintics in ruminants. Comprehension of TCBZ metabolism is critical to optimize its flukicidal activity.
Collapse
Affiliation(s)
- G Virkel
- Laboratorio de Farmacologia, Departmento de Fisiopatologia, Nuncleo Fisfarvet, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina.
| | | | | | | | | |
Collapse
|
50
|
Crnić AP, Sakar D, Pompe-Gotal J, Bidin Z, Lojkić I, Cajavec S. Effects of two infectious bursal disease vaccine virus strains on hepatic microsomal enzyme activities in chickens. Acta Vet Hung 2006; 54:281-93. [PMID: 16841765 DOI: 10.1556/avet.54.2006.2.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The influence of two infectious bursal disease vaccines on the activities of hepatic microsomal enzymes aniline hydroxylase, ethylmorphine N-demethylase, NADPH-cytochrome c reductase, aryl sulphotransferase and p-nitrophenol UDP-glucuronyltransferase was investigated in chickens. The vaccines contained attenuated Winterfield 2512 and VMG-91 strains, respectively. The activities of enzymes were determined on postvaccination days 0, 2, 5 and 7. At the same time, post-mitochondrial supernatant, cytosolic and microsomal pellet protein concentrations were determined. As expected, the antibody titres against infectious bursal disease virus in the serum were increased in both tested groups in relation to each administered vaccine. Using RT-PCR, the presence of the VP2 gene fragment of virus in the liver of chicken was demonstrated 4 and 6 h after vaccination. The results of this study suggest that the two commercial vaccines modulate the activities of five enzymes tested, and that the two attenuated vaccines applied triggered induction and/or inhibition of phases I and II of biotransformation enzyme activities.
Collapse
Affiliation(s)
- Andreja Prevendar Crnić
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|