1
|
Glutamine-dependent effects of nitric oxide on cancer cells subjected to hypoxia-reoxygenation. Nitric Oxide 2023; 130:22-35. [PMID: 36414197 DOI: 10.1016/j.niox.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Limited O2 availability can decrease essential processes in energy metabolism. However, cancers have developed distinct metabolic adaptations to these conditions. For example, glutaminolysis can maintain energy metabolism and hypoxia signaling. Additionally, it has been observed that nitric oxide (NO) possesses concentration-dependent, biphasic effects in cancer. NO has potent anti-tumor effects through modulating events such as angiogenesis and metastasis at low physiological concentrations and inducing cell death at higher concentrations. In this study, Ewing Sarcoma cells (A-673), MIA PaCa, and SKBR3 cells were treated with DetaNONOate (DetaNO) in a model of hypoxia (1% O2) and reoxygenation (21% O2). All 3 cell types showed NO-dependent inhibition of cellular O2 consumption which was enhanced as O2-tension decreased. L-Gln depletion suppressed the mitochondrial response to decreasing O2 tension in all 3 cell types and resulted in inhibition of Complex I activity. In A-673 cells the O2 tension dependent change in mitochondrial O2 consumption and increase in glycolysis was dependent on the presence of L-Gln. The response to hypoxia and Complex I activity were restored by α-ketoglutarate. NO exposure resulted in the A-673 cells showing greater sensitivity to decreasing O2 tension. Under conditions of L-Gln depletion, NO restored HIF-1α levels and the mitochondrial response to O2 tension possibly through the increase of 2-hydroxyglutarate. NO also resulted in suppression of cellular bioenergetics and further inhibition of Complex I which was not rescued by α-ketoglutarate. Taken together these data suggest that NO modulates the mitochondrial response to O2 differentially in the absence and presence of L-Gln. These data suggest a combination of metabolic strategies targeting glutaminolysis and Complex I in cancer cells.
Collapse
|
2
|
Hu R, Li G, Xu Q, Chen L. Iron supplementation inhibits hypoxia-induced mitochondrial damage and protects zebrafish liver cells from death. Front Physiol 2022; 13:925752. [PMID: 36091397 PMCID: PMC9459849 DOI: 10.3389/fphys.2022.925752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022] Open
Abstract
Acute hypoxia in water has always been a thorny problem in aquaculture. Oxygen and iron play important roles and are interdependent in fish. Iron is essential for oxygen transport and its concentration tightly controlled to maintain the cellular redox homeostasis. However, it is still unclear the role and mechanism of iron in hypoxic stress of fish. In this study, we investigated the role of iron in hypoxic responses of two zebrafish-derived cell lines. We found hypoxia exposed zebrafish liver cells (ZFL) demonstrated reduced expression of Ferritin and the gene fth31 for mitochondrial iron storage, corresponding to reduction of both intracellular and mitochondrial free iron and significant decrease of ROS levels in multiple cellular components, including mitochondrial ROS and lipid peroxidation level. In parallel, the mitochondrial integrity was severely damaged. Addition of exogenous iron restored the iron and ROS levels in cellular and mitochondria, reduced mitochondrial damage through enhancing mitophagy leading to higher cell viability, while treated the cells with iron chelator (DFO) or ferroptosis inhibitor (Fer-1) showed no improvements of the cellular conditions. In contrast, in hypoxia insensitive zebrafish embryonic fibroblasts cells (ZF4), the expression of genes related to iron metabolism showed opposite trends of change and higher mitochondrial ROS level compared with the ZFL cells. These results suggest that iron homeostasis is important for zebrafish cells to maintain mitochondrial integrity in hypoxic stress, which is cell type dependent. Our study enriched the hypoxia regulation mechanism of fish, which helped to reduce the hypoxia loss in fish farming.
Collapse
Affiliation(s)
- Ruiqin Hu
- International Joint Research Centre for Marine Biosciences (Ministry of Science and Technology), College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Centre for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Genfang Li
- International Joint Research Centre for Marine Biosciences (Ministry of Science and Technology), College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Centre for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Qianghua Xu
- International Joint Research Centre for Marine Biosciences (Ministry of Science and Technology), College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Centre for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, College of Marine Science, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- International Joint Research Centre for Marine Biosciences (Ministry of Science and Technology), College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Centre for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- *Correspondence: Liangbiao Chen,
| |
Collapse
|
3
|
Massai L, Messori L, Carpentieri A, Amoresano A, Melchiorre C, Fiaschi T, Modesti A, Gamberi T, Magherini F. The effects of two gold-N-heterocyclic carbene (NHC) complexes in ovarian cancer cells: a redox proteomic study. Cancer Chemother Pharmacol 2022; 89:809-823. [PMID: 35543764 PMCID: PMC9135895 DOI: 10.1007/s00280-022-04438-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/15/2022] [Indexed: 01/04/2023]
Abstract
PURPOSE Ovarian cancer is the fifth leading cause of cancer-related deaths in women. Standard treatment consists of tumor debulking surgery followed by platinum and paclitaxel chemotherapy; yet, despite the initial response, about 70-75% of patients develop resistance to chemotherapy. Gold compounds represent a family of very promising anticancer drugs. Among them, we previously investigated the cytotoxic and pro-apoptotic properties of Au(NHC) and Au(NHC)2PF6, i.e., a monocarbene gold(I) complex and the corresponding bis(carbene) complex. Gold compounds are known to alter the redox state of cells interacting with free cysteine and selenocysteine residues of several proteins. Herein, a redox proteomic study has been carried out to elucidate the mechanisms of cytotoxicity in A2780 human ovarian cancer cells. METHODS A biotinylated iodoacetamide labeling method coupled with mass spectrometry was used to identify oxidation-sensitive protein cysteines. RESULTS Gold carbene complexes cause extensive oxidation of several cellular proteins; many affected proteins belong to two major functional classes: carbohydrate metabolism, and cytoskeleton organization/cell adhesion. Among the affected proteins, Glyceraldehyde-3-phosphate dehydrogenase inhibition was proved by enzymatic assays and by ESI-MS studies. We also found that Au(NHC)2PF6 inhibits mitochondrial respiration impairing complex I function. Concerning the oxidized cytoskeletal proteins, gold binding to the free cysteines of actin was demonstrated by ESI-MS analysis. Notably, both gold compounds affected cell migration and invasion. CONCLUSIONS In this study, we deepened the mode of action of Au(NHC) and Au(NHC)2PF6, identifying common cellular targets but confirming their different influence on the mitochondrial function.
Collapse
Affiliation(s)
- Lara Massai
- Department of Chemistry 'Ugo Schiff', University of Florence, via della Lastruccia 3-13, Sesto Fiorentino, 50019, Firenze, Italy
| | - Luigi Messori
- Department of Chemistry 'Ugo Schiff', University of Florence, via della Lastruccia 3-13, Sesto Fiorentino, 50019, Firenze, Italy
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Chiara Melchiorre
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Tania Fiaschi
- Department of Experimental and Clinical Biomedical Sciences, Mario Serio" University of Florence Viale G.B. Morgagni 50, 50134, Florence, Italy
| | - Alessandra Modesti
- Department of Experimental and Clinical Biomedical Sciences, Mario Serio" University of Florence Viale G.B. Morgagni 50, 50134, Florence, Italy
| | - Tania Gamberi
- Department of Experimental and Clinical Biomedical Sciences, Mario Serio" University of Florence Viale G.B. Morgagni 50, 50134, Florence, Italy.
| | - Francesca Magherini
- Department of Experimental and Clinical Biomedical Sciences, Mario Serio" University of Florence Viale G.B. Morgagni 50, 50134, Florence, Italy.
| |
Collapse
|
4
|
Gao X, Song Y, Du P, Yang S, Cui H, Lu S, Hu L, Liu L, Jia S, Zhao M. Administration of a microRNA-21 inhibitor improves the lupus-like phenotype in MRL/lpr mice by repressing Tfh cell-mediated autoimmune responses. Int Immunopharmacol 2022; 106:108578. [DOI: 10.1016/j.intimp.2022.108578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/13/2022] [Accepted: 01/23/2022] [Indexed: 12/31/2022]
|
5
|
Mitra S, Anand U, Sanyal R, Jha NK, Behl T, Mundhra A, Ghosh A, Radha, Kumar M, Proćków J, Dey A. Neoechinulins: Molecular, cellular, and functional attributes as promising therapeutics against cancer and other human diseases. Biomed Pharmacother 2021; 145:112378. [PMID: 34741824 DOI: 10.1016/j.biopha.2021.112378] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/21/2022] Open
Abstract
Neoechinulins are fungal and plant-derived chemicals extracted from Microsporum sp., Eurotium rubrum, Aspergillus sp., etc. Two analogues of neoechinulin, i.e., A and B, exerted extensive pharmacological properties described in this review. Neoechinulin is an indole alkaloid and has a double bond between C8/C9, which tends to contribute to its cytoprotective nature. Neoechinulin A exhibits protection to PC12 cells against nitrosative stress via increasing NAD(P)H reserve capacity and decreasing cellular GSH levels. It also confers protection via rescuing PC12 cells from rotenone-induced stress by lowering LDH leakage. This compound has great positive potential against neurodegenerative diseases by inhibiting SIN-1 induced cell death in neuronal cells. Together with these, neoechinulin A tends to inhibit Aβ42-induced microglial activation and confers protection against neuroinflammation. Alongside, it also inhibits cervical cancer cells by caspase-dependent apoptosis and via upregulation of apoptosis inducing genes like Bax, it suppresses LPS-induced inflammation in RAW264.7 macrophages and acts as an antidepressant. Whereas, another analogue, Neoechinulin B tends to interfere with the cellular mechanism thereby, inhibiting the entry of influenza A virus and it targets Liver X receptor (LXR) and decreases the infection rate of Hepatitis C. The present review describes the pharmaceutical properties of neoechinulins with notes on their molecular, cellular, and functional basis and their therapeutic properties.
Collapse
Affiliation(s)
- Sicon Mitra
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Rupa Sanyal
- Department of Botany, Bhairab Ganguly College (affiliated to West Bengal State University), Feeder Road, Belghoria, Kolkata 700056, West Bengal, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Avinash Mundhra
- Department of Botany, Rishi Bankim Chandra College (Affiliated to the West Bengal State University), East Kantalpara, North 24 Parganas, Naihati 743165, West Bengal, India
| | - Arabinda Ghosh
- Department of Botany, Gauhati University, Guwahati, Assam 781014, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai 400019, Maharashtra, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
6
|
Ramachandran A, Jaeschke H. Acetaminophen hepatotoxicity: A mitochondrial perspective. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 85:195-219. [PMID: 31307587 DOI: 10.1016/bs.apha.2019.01.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acetaminophen (APAP) is a highly effective analgesic, which is safe at therapeutic doses. However, an overdose can cause hepatotoxicity and even liver failure. APAP toxicity is currently the most common cause of acute liver failure in the United States. Decades of research on mechanisms of liver injury have established the role of mitochondria as central players in APAP-induced hepatocyte necrosis and this chapter examines the various facets of the organelle's involvement in the process of injury as well as in resolution of damage. The injury process is initiated by formation of a reactive metabolite, which binds to sulfhydryl groups of cellular proteins including mitochondrial proteins. This inhibits the electron transport chain and leads to formation of reactive oxygen species, which induce the activation of redox-sensitive members of the MAP kinase family ultimately causing activation of c-Jun N terminal kinase, JNK. Translocation of JNK to the mitochondria then amplifies mitochondrial dysfunction, ultimately resulting in mitochondrial permeability transition and release of mitochondrial intermembrane proteins, which trigger nuclear DNA fragmentation. Together, these events result in hepatocyte necrosis, while adaptive mechanisms such as mitophagy remove damaged mitochondria and minimize the extent of the injury. This oscillation between recovery and necrosis is predominant in cells at the edge of the necrotic area in the liver, where induction of mitochondrial biogenesis is important for liver regeneration. All these aspects of mitochondria in APAP hepatotoxicity, as well as their relevance to humans with APAP overdose and development of therapeutic approaches will be examined in detail in this chapter.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States.
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
7
|
Srinivas Bharath MM. Post-Translational Oxidative Modifications of Mitochondrial Complex I (NADH: Ubiquinone Oxidoreductase): Implications for Pathogenesis and Therapeutics in Human Diseases. J Alzheimers Dis 2018; 60:S69-S86. [PMID: 28582861 DOI: 10.3233/jad-170117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial complex I (NADH: ubiquinone oxidoreductase; CI) is central to the electron transport chain (ETC), oxidative phosphorylation, and ATP production in eukaryotes. CI is a multi-subunit complex with a complicated yet organized structure that optimally connects electron transfer with proton translocation and forms higher-order supercomplexes with other ETC complexes. Efforts to understand the molecular genetics, expression profile of subunits, and structure-function relationship of CI have increased over the years due to the direct role of the complex in human diseases. Although mutations in the nuclear and mitochondrial genes of CI and altered expression of subunits could potentially lower CI activity leading to mitochondrial dysfunction in many diseases, oxidative post-translational modifications (PTMs) have emerged as an important mechanism contributing to altered CI activity. These mainly include reversible and irreversible cysteine modifications, tyrosine nitration, carbonylation, and tryptophan oxidation that are generated following exposure to reactive oxygen species/reactive nitrogen species. Interestingly, oxidative PTMs could contribute either to CI damage, mitochondrial dysfunction, and ensuing cell death or a response mechanism with potential cytoprotective effects. This has also emerged as a promising field for structural biologists since analysis of PTMs could assist in understanding the structure-function relationship of the complex and correlate electron transfer mechanism with energy production. However, analysis of PTMs of CI and their contribution to CI function are incomplete in many physiological and pathological conditions. This review aims to highlight the role of oxidative PTMs in modulating CI activity with implications toward pathobiology of CNS diseases and novel therapeutics.
Collapse
Affiliation(s)
- M M Srinivas Bharath
- Department of Neurochemistry and Neurotoxicology Laboratory at the Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
8
|
Altinoz MA, Elmaci İ. Targeting nitric oxide and NMDA receptor-associated pathways in treatment of high grade glial tumors. Hypotheses for nitro-memantine and nitrones. Nitric Oxide 2017; 79:68-83. [PMID: 29030124 DOI: 10.1016/j.niox.2017.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/26/2017] [Accepted: 10/07/2017] [Indexed: 12/31/2022]
Abstract
Glioblastoma multiforme (GBM) is a devastating brain cancer with no curative treatment. Targeting Nitric Oxide (NO) and glutamatergic pathways may help as adjunctive treatments in GBM. NO at low doses promotes tumorigenesis, while at higher levels (above 300 nM) triggers apoptosis. Gliomas actively secrete high amounts of glutamate which activates EGR signaling and mediates degradation of peritumoral tissues via excitotoxic injury. Memantine inhibits NMDA-subtype of glutamate receptors (NMDARs) and induces autophagic death of glioma cells in vitro and blocks glioma growth in vivo. Nitro-memantines may exert further benefits by limiting NMDAR signaling and by delivery of NO to the areas of excessive NMDAR activity leading NO-accumulation at tumoricidal levels within gliomas. Due to the duality of NO in tumorigenesis, agents which attenuate NO levels may also act beneficial in treatment of GBM. Nitrone compounds including N-tert-Butyl-α-phenylnitrone (PBN) and its disulfonyl-phenyl derivative, OKN-007 suppress free radical formation in experimental cerebral ischemia. OKN-007 failed to show clinical efficacy in stroke, but trials demonstrated its high biosafety in humans including elderly subjects. PBN inhibits the signaling pathways of NF-κB, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX). In animal models of liver cancer and glioblastoma, OKN-007 seemed more efficient than PBN in suppression of cell proliferation, microvascular density and in induction of apoptosis. OKN-007 also inhibits SULF2 enzyme, which promotes tumor growth via versatile pathways. We assume that nitromemantines may be more beneficial concomitant with chemo-radiotherapy while nitrones alone may act useful in suppressing basal tumor growth and angiogenesis.
Collapse
Affiliation(s)
- Meric A Altinoz
- Neuroacademy Group, Department of Neurosurgery, Memorial Hospital, Istanbul, Turkey.
| | - İlhan Elmaci
- Neuroacademy Group, Department of Neurosurgery, Memorial Hospital, Istanbul, Turkey
| |
Collapse
|
9
|
Li L, Zhu L, Hao B, Gao W, Wang Q, Li K, Wang M, Huang M, Liu Z, Yang Q, Li X, Zhong Z, Huang W, Xiao G, Xu Y, Yao K, Liu Q. iNOS-derived nitric oxide promotes glycolysis by inducing pyruvate kinase M2 nuclear translocation in ovarian cancer. Oncotarget 2017; 8:33047-33063. [PMID: 28380434 PMCID: PMC5464849 DOI: 10.18632/oncotarget.16523] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/15/2017] [Indexed: 01/30/2023] Open
Abstract
Aerobic glycolysis is essential for tumor growth and survival. Activation of multiple carcinogenic signals contributes to metabolism reprogramming during malignant transformation of cancer. Recently nitric oxide has been noted to promote glycolysis but the mechanism remains elusive. We report here the dual role of nitric oxide in glycolysis: low/physiological nitric oxide (≤ 100 nM) promotes glycolysis for ATP production, oxidative defense and cell proliferation of ovary cancer cells, whereas excess nitric oxide (≥ 500 nM) inhibits it. Nitric oxide has a positive effect on glycolysis by inducing PKM2 nuclear translocation in an EGFR/ERK2 signaling-dependent manner. Moreover, iNOS induced by mild inflammatory stimulation increased glycolysis and cell proliferation by producing low doses of nitric oxide, while hyper inflammation induced iNOS inhibited it by producing excess nitric oxide. Finally, iNOS expression is abnormally increased in ovarian cancer tissues and is correlated with PKM2 expression. Overexpression of iNOS is associated with aggressive phenotype and poor survival outcome in ovarian cancer patients. Our study indicated that iNOS/NO play a dual role of in tumor glycolysis and progression, and established a bridge between iNOS/NO signaling pathway and EGFR/ERK2/PKM2 signaling pathway, suggesting that interfering glycolysis by targeting the iNOS/NO/PKM2 axis may be a valuable new therapeutic approach of treating ovarian cancer.
Collapse
Affiliation(s)
- Linlin Li
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research, Guangzhou 510515, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Southern Medical University, Guangzhou 510515, China
| | - Lingqun Zhu
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Bingtao Hao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research, Guangzhou 510515, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Southern Medical University, Guangzhou 510515, China
| | - Wenwen Gao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Qianli Wang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Keyi Li
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Meng Wang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Mengqiu Huang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Zhengjun Liu
- Department of Vascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiaohong Yang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiqing Li
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China
| | - Zhuo Zhong
- Department of Oncology, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510800, China
| | - Wenhua Huang
- Department of Human Anatomy, Southern Medical University, Guangzhou 510515, China
| | - Guanghui Xiao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yang Xu
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research, Guangzhou 510515, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Southern Medical University, Guangzhou 510515, China
| | - Kaitai Yao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Qiuzhen Liu
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research, Guangzhou 510515, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
10
|
Grievink H, Zeltcer G, Drenger B, Berenshtein E, Chevion M. Protection by Nitric Oxide Donors of Isolated Rat Hearts Is Associated with Activation of Redox Metabolism and Ferritin Accumulation. PLoS One 2016; 11:e0159951. [PMID: 27447933 PMCID: PMC4957751 DOI: 10.1371/journal.pone.0159951] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/11/2016] [Indexed: 11/19/2022] Open
Abstract
Preconditioning (PC) procedures (ischemic or pharmacological) are powerful procedures used for attaining protection against prolonged ischemia and reperfusion (I/R) injury, in a variety of organs, including the heart. The detailed molecular mechanisms underlying the protection by PC are however, complex and only partially understood. Recently, an ‘iron-based mechanism’ (IBM), that includes de novo ferritin synthesis and accumulation, was proposed to explain the specific steps in cardioprotection generated by IPC. The current study investigated whether nitric oxide (NO), generated by exogenous NO-donors, could play a role in the observed IBM of cardioprotection by IPC. Therefore, three distinct NO-donors were investigated at different concentrations (1–10 μM): sodium nitroprusside (SNP), 3-morpholinosydnonimine (SIN-1) and S-nitroso-N-acetylpenicillamine (SNAP). Isolated rat hearts were retrogradely perfused using the Langendorff configuration and subjected to prolonged ischemia and reperfusion with or without pretreatment by NO-donors. Hemodynamic parameters, infarct sizes and proteins of the methionine-centered redox cycle (MCRC) were analyzed, as well as cytosolic aconitase (CA) activity and ferritin protein levels. All NO-donors had significant effects on proteins involved in the MCRC system. Nonetheless, pretreatment with 10 μM SNAP was found to evoke the strongest effects on Msr activity, thioredoxin and thioredoxin reductase protein levels. These effects were accompanied with a significant reduction in infarct size, increased CA activity, and ferritin accumulation. Conversely, pretreatment with 2 μM SIN-1 increased infarct size and was associated with slightly lower ferritin protein levels. In conclusion, the abovementioned findings indicate that NO, depending on its bio-active redox form, can regulate iron metabolism and plays a role in the IBM of cardioprotection against reperfusion injury.
Collapse
Affiliation(s)
- Hilbert Grievink
- Department of Biochemistry and Molecular Biology, Hebrew University of Jerusalem, Jerusalem, Israel
- Anesthesiology and Critical Care Medicine, Hebrew University—Hadassah Medical Center, Jerusalem, Israel
| | - Galina Zeltcer
- Department of Biochemistry and Molecular Biology, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Radiology, Hebrew University—Hadassah Medical Center, Jerusalem, Israel
| | - Benjamin Drenger
- Anesthesiology and Critical Care Medicine, Hebrew University—Hadassah Medical Center, Jerusalem, Israel
| | - Eduard Berenshtein
- Department of Biochemistry and Molecular Biology, Hebrew University of Jerusalem, Jerusalem, Israel
- Electron Microscopy Unit, The Core Research Facility, Hebrew University, Jerusalem, Israel
| | - Mordechai Chevion
- Department of Biochemistry and Molecular Biology, Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
11
|
Regulators of mitochondrial complex I activity: A review of literature and evaluation in postmortem prefrontal cortex from patients with bipolar disorder. Psychiatry Res 2016; 236:148-157. [PMID: 26723136 DOI: 10.1016/j.psychres.2015.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 12/28/2022]
Abstract
Phenomenologically, bipolar disorder (BD) is characterized by biphasic increases and decreases in energy. As this is a state-related phenomenon, identifying regulators responsible for this phasic dysregulation has the potential to uncover key elements in the pathophysiology of BD. Given the evidence suggesting mitochondrial complex I dysfunction in BD, we aimed to identify the main regulators of complex I in BD by reviewing the literature and using the published microarray data to examine their gene expression profiles. We also validated protein expression levels of the main complex I regulators by immunohistochemistry. Upon reviewing the literature, we found PARK-7, STAT-3, SIRT-3 and IMP-2 play an important role in regulating complex I activity. Published microarray studies however revealed no significant direction of regulation of STAT-3, SIRT-3, and IMP-2, but a trend towards downregulation of PARK-7 was observed in BD. Immunocontent of DJ-1 (PARK-7-encoded protein) were not elevated in post mortem prefrontal cortex from patients with BD. We also found a trend towards upregulation of DJ-1 expression with age. Our results suggest that DJ-1 is not significantly altered in BD subjects, however further studies are needed to examine DJ-1 expression levels in a cohort of older patients with BD.
Collapse
|
12
|
Chang CF, Diers AR, Hogg N. Cancer cell metabolism and the modulating effects of nitric oxide. Free Radic Biol Med 2015; 79:324-36. [PMID: 25464273 PMCID: PMC5275750 DOI: 10.1016/j.freeradbiomed.2014.11.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/31/2014] [Accepted: 11/08/2014] [Indexed: 12/18/2022]
Abstract
Altered metabolic phenotype has been recognized as a hallmark of tumor cells for many years, but this aspect of the cancer phenotype has come into greater focus in recent years. NOS2 (inducible nitric oxide synthase of iNOS) has been implicated as a component in many aggressive tumor phenotypes, including melanoma, glioblastoma, and breast cancer. Nitric oxide has been well established as a modulator of cellular bioenergetics pathways, in many ways similar to the alteration of cellular metabolism observed in aggressive tumors. In this review we attempt to bring these concepts together with the general hypothesis that one function of NOS2 and NO in cancer is to modulate metabolic processes to facilitate increased tumor aggression. There are many mechanisms by which NO can modulate tumor metabolism, including direct inhibition of respiration, alterations in mitochondrial mass, oxidative inhibition of bioenergetic enzymes, and the stimulation of secondary signaling pathways. Here we review metabolic alterations in the context of cancer cells and discuss the role of NO as a potential mediator of these changes.
Collapse
Affiliation(s)
- Ching-Fang Chang
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Anne R Diers
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Neil Hogg
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
13
|
Kanugula AK, Gollavilli PN, Vasamsetti SB, Karnewar S, Gopoju R, Ummanni R, Kotamraju S. Statin‐induced inhibition of breast cancer proliferation and invasion involves attenuation of iron transport: intermediacy of nitric oxide and antioxidant defence mechanisms. FEBS J 2014; 281:3719-3738. [DOI: https:/doi.org/10.1111/febs.12893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/23/2014] [Indexed: 11/07/2023]
Abstract
Accumulating evidence from in vitro, in vivo, clinical and epidemiological studies shows promising results for the use of statins against many cancers including breast carcinoma. However, the molecular mechanisms responsible for the anti‐proliferative and anti‐invasive properties of statins still remain elusive. In this study, we investigated the involvement of nitric oxide, iron homeostasis and antioxidant defence mechanisms in mediating the anti‐proliferative and anti‐invasive properties of hydrophobic statins in MDA‐MB‐231, MDA‐MB‐453 and BT‐549 metastatic triple negative breast cancer cells. Fluvastatin and simvastatin significantly increased cytotoxicity which was reversed with mevalonate. Interestingly, fluvastatin downregulated transferrin receptor (TfR1), with a concomitant depletion of intracellular iron levels in these cells. Statin‐induced effects were mimicked by geranylgeranyl transferase inhibitor (GGTI‐298) but not farnesyl transferase inhibitor (FTI‐277). Further, it was observed that TfR1 downregulation is mediated by increased nitric oxide levels via inducible nitric oxide synthase (iNOS) expression. NOS inhibitors (asymmetric dimethylarginine and 1400W) counteracted and sepiapterin, a precursor of tetrahydrobiopterin, exacerbated statin‐induced depletion of intracellular iron levels. Notably, fluvastatin increased manganese superoxide dismutase (by repressing the transcription factor DNA damage‐binding protein 2), catalase and glutathione which, in turn, diminished H2O2 levels. Fluvastatin‐induced downregulation of TfR1, matrix metalloproteinase‐2, ‐9 and inhibition of invasion were reversed in the presence of aminotriazole, a specific inhibitor of catalase. Finally, we conclude that fluvastatin, by altering iron homeostasis, nitric oxide generation and antioxidant defence mechanisms, induces triple negative breast cancer cell death.
Collapse
Affiliation(s)
| | | | | | - Santosh Karnewar
- Centre for Chemical Biology CSIR Indian Institute of Chemical Technology Hyderabad India
| | - Raja Gopoju
- Centre for Chemical Biology CSIR Indian Institute of Chemical Technology Hyderabad India
| | - Ramesh Ummanni
- Centre for Chemical Biology CSIR Indian Institute of Chemical Technology Hyderabad India
| | - Srigiridhar Kotamraju
- Centre for Chemical Biology CSIR Indian Institute of Chemical Technology Hyderabad India
| |
Collapse
|
14
|
Kanugula AK, Gollavilli PN, Vasamsetti SB, Karnewar S, Gopoju R, Ummanni R, Kotamraju S. Statin-induced inhibition of breast cancer proliferation and invasion involves attenuation of iron transport: intermediacy of nitric oxide and antioxidant defence mechanisms. FEBS J 2014; 281:3719-3738. [PMID: 24964743 DOI: 10.1111/febs.12893] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/05/2014] [Accepted: 06/23/2014] [Indexed: 11/29/2022]
Abstract
Accumulating evidence from in vitro, in vivo, clinical and epidemiological studies shows promising results for the use of statins against many cancers including breast carcinoma. However, the molecular mechanisms responsible for the anti-proliferative and anti-invasive properties of statins still remain elusive. In this study, we investigated the involvement of nitric oxide, iron homeostasis and antioxidant defence mechanisms in mediating the anti-proliferative and anti-invasive properties of hydrophobic statins in MDA-MB-231, MDA-MB-453 and BT-549 metastatic triple negative breast cancer cells. Fluvastatin and simvastatin significantly increased cytotoxicity which was reversed with mevalonate. Interestingly, fluvastatin downregulated transferrin receptor (TfR1), with a concomitant depletion of intracellular iron levels in these cells. Statin-induced effects were mimicked by geranylgeranyl transferase inhibitor (GGTI-298) but not farnesyl transferase inhibitor (FTI-277). Further, it was observed that TfR1 downregulation is mediated by increased nitric oxide levels via inducible nitric oxide synthase (iNOS) expression. NOS inhibitors (asymmetric dimethylarginine and 1400W) counteracted and sepiapterin, a precursor of tetrahydrobiopterin, exacerbated statin-induced depletion of intracellular iron levels. Notably, fluvastatin increased manganese superoxide dismutase (by repressing the transcription factor DNA damage-binding protein 2), catalase and glutathione which, in turn, diminished H2 O2 levels. Fluvastatin-induced downregulation of TfR1, matrix metalloproteinase-2, -9 and inhibition of invasion were reversed in the presence of aminotriazole, a specific inhibitor of catalase. Finally, we conclude that fluvastatin, by altering iron homeostasis, nitric oxide generation and antioxidant defence mechanisms, induces triple negative breast cancer cell death.
Collapse
|
15
|
Napoli E, Wong S, Hertz-Picciotto I, Giulivi C. Deficits in bioenergetics and impaired immune response in granulocytes from children with autism. Pediatrics 2014; 133:e1405-10. [PMID: 24753527 PMCID: PMC4006429 DOI: 10.1542/peds.2013-1545] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite the emerging role of mitochondria in immunity, a link between bioenergetics and the immune response in autism has not been explored. Mitochondrial outcomes and phorbol 12-myristate 13-acetate (PMA)-induced oxidative burst were evaluated in granulocytes from age-, race-, and gender-matched children with autism with severity scores of ≥7 (n = 10) and in typically developing (TD) children (n = 10). The oxidative phosphorylation capacity of granulocytes was 3-fold lower in children with autism than in TD children, with multiple deficits encompassing ≥1 Complexes. Higher oxidative stress in cells of children with autism was evidenced by higher rates of mitochondrial reactive oxygen species production (1.6-fold), higher mitochondrial DNA copy number per cell (1.5-fold), and increased deletions. Mitochondrial dysfunction in children with autism was accompanied by a lower (26% of TD children) oxidative burst by PMA-stimulated reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase and by a lower gene expression (45% of TD children's mean values) of the nuclear factor erythroid 2-related factor 2 transcription factor involved in the antioxidant response. Given that the majority of granulocytes of children with autism exhibited defects in oxidative phosphorylation, immune response, and antioxidant defense, our results support the concept that immunity and response to oxidative stress may be regulated by basic mitochondrial functions as part of an integrated metabolic network.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine
| | - Sarah Wong
- Department of Molecular Biosciences, School of Veterinary Medicine
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, and,Medical Investigations of Neurodevelopmental Disorders (M. I. N. D.) Institute, University of California, Davis, Davis California
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, Medical Investigations of Neurodevelopmental Disorders (M. I. N. D.) Institute, University of California, Davis, Davis California
| |
Collapse
|
16
|
Lewinska A, Bartosz G. Yeast flavohemoglobin protects against nitrosative stress and controls ferric reductase activity. Redox Rep 2013; 11:231-9. [PMID: 17132272 DOI: 10.1179/135100006x154987] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The role of Saccharomyces cerevisiae flavohemoglobin (Yhb1) is controversial and far from understood. This study compares the effects of nitrosative and oxidative challenge on the yeast mutant lacking the YHB1 gene. Growth of the mutant was impaired by nitrosoglutathione and peroxynitrite, whereas increased sensitivity to reactive oxygen species was not observed. Increased levels of intracellular NO(*) after incubation with NO(*) donors were found in the mutants cells as compared to the wild-type cells. Deletion of the YHB1 gene was found to augment the reduction of Fe(3+) by yeast cells which suggests that flavohemoglobin participates in regulation of the activity of plasma membrane ferric reductase(s).
Collapse
Affiliation(s)
- Anna Lewinska
- Department of Biochemistry and Cell Biology, University of Rzeszow, Rzeszow, Poland.
| | | |
Collapse
|
17
|
Hill BG, Benavides GA, Lancaster JR, Ballinger S, Dell’Italia L, Zhang J, Darley-Usmar VM. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol Chem 2012; 393:1485-1512. [PMID: 23092819 PMCID: PMC3594552 DOI: 10.1515/hsz-2012-0198] [Citation(s) in RCA: 366] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 06/22/2012] [Indexed: 02/06/2023]
Abstract
Bioenergetic dysfunction is emerging as a cornerstone for establishing a framework for understanding the pathophysiology of cardiovascular disease, diabetes,cancer and neurodegeneration. Recent advances in cellular bioenergetics have shown that many cells maintain a substantial bioenergetic reserve capacity, which is a prospective index of ‘ healthy ’ mitochondrial populations.The bioenergetics of the cell are likely regulated by energy requirements and substrate availability. Additionally,the overall quality of the mitochondrial population and the relative abundance of mitochondria in cells and tissues also impinge on overall bioenergetic capacity and resistance to stress. Because mitochondria are susceptible to damage mediated by reactive oxygen/nitrogen and lipid species, maintaining a ‘ healthy ’ population of mitochondria through quality control mechanisms appears to be essential for cell survival under conditions of pathological stress. Accumulating evidence suggest that mitophagy is particularly important for preventing amplification of initial oxidative insults, which otherwise would further impair the respiratory chain or promote mutations in mitochondrial DNA (mtDNA). The processes underlying the regulation of mitophagy depend on several factors, including the integrity of mtDNA, electron transport chain activity, and the interaction and regulation of the autophagic machinery. The integration and interpretation of cellular bioenergetics in the context of mitochondrial quality control and genetics is the theme of this review.
Collapse
Affiliation(s)
- Bradford G. Hill
- Diabetes and Obesity Center, Institute of Molecular Cardiology, and Department of Medicine, University of Louisville, Louisville, KY
- Departments of Biochemistry and Molecular Biology and Physiology and Biophysics, University of Louisville, Louisville, KY
| | - Gloria A. Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jack R. Lancaster
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Scott Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Medicine, Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Lou Dell’Italia
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Medicine, Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Veteran Affairs Medical Center, Birmingham, AL 35294
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Veteran Affairs Medical Center, Birmingham, AL 35294
| | - Victor M. Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Medicine, Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
18
|
Lewandowska H, Stępkowski TM, Sadło J, Wójciuk GP, Wójciuk KE, Rodger A, Kruszewski M. Coordination of iron ions in the form of histidinyl dinitrosyl complexes does not prevent their genotoxicity. Bioorg Med Chem 2012; 20:6732-8. [DOI: 10.1016/j.bmc.2012.09.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 09/06/2012] [Accepted: 09/11/2012] [Indexed: 12/31/2022]
|
19
|
Bicarbonate plays a critical role in the generation of cytotoxicity during SIN-1 decomposition in culture medium. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:326731. [PMID: 22848780 PMCID: PMC3400428 DOI: 10.1155/2012/326731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/14/2012] [Indexed: 11/30/2022]
Abstract
3-Morpholinosydnonimine (SIN-1) is used as a donor of peroxynitrite (ONOO−) in various studies. We demonstrated, however, that, the cell-culture medium remains cytotoxic to PC12 cells even after almost complete SIN-1 decomposition, suggesting that reaction product(s) in the medium, rather than ONOO−, exert cytotoxic effects. Here, we clarified that significant cytotoxicity persists after SIN-1 decomposes in bicarbonate, a component of the culture medium, but not in NaOH. Cytotoxic SIN-1-decomposed bicarbonate, which lacks both oxidizing and nitrosating activities, degrades to innocuous state over time. The extent of SIN-1 cytotoxicity, irrespective of its fresh or decomposed state, appears to depend on the total number of initial SIN-1 molecules per cell, rather than its concentration, and involves oxidative/nitrosative stress-related cell damage. These results suggest that, despite its low abundance, the bicarbonate-dependent cytotoxic substance that accumulates in the medium during SIN-1 breakdown is the cytotoxic entity of SIN-1.
Collapse
|
20
|
Takahashi M, Chin Y, Nonaka T, Hasegawa M, Watanabe N, Arai T. Prolonged nitric oxide treatment induces tau aggregation in SH-SY5Y cells. Neurosci Lett 2012; 510:48-52. [DOI: 10.1016/j.neulet.2011.12.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/30/2011] [Accepted: 12/30/2011] [Indexed: 01/28/2023]
|
21
|
Ramirez L, Simontacchi M, Murgia I, Zabaleta E, Lamattina L. Nitric oxide, nitrosyl iron complexes, ferritin and frataxin: a well equipped team to preserve plant iron homeostasis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:582-92. [PMID: 21893255 DOI: 10.1016/j.plantsci.2011.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 05/08/2023]
Abstract
Iron is a key element in plant nutrition. Iron deficiency as well as iron overload results in serious metabolic disorders that affect photosynthesis, respiration and general plant fitness with direct consequences on crop production. More than 25% of the cultivable land possesses low iron availability due to high pH (calcareous soils). Plant biologists are challenged by this concern and aimed to find new avenues to ameliorate plant responses and keep iron homeostasis under control even at wide range of iron availability in various soils. For this purpose, detailed knowledge of iron uptake, transport, storage and interactions with cellular compounds will help to construct a more complete picture of its role as essential nutrient. In this review, we summarize and describe the recent findings involving four central players involved in keeping cellular iron homeostasis in plants: nitric oxide, ferritin, frataxin and nitrosyl iron complexes. We attempt to highlight the interactions among these actors in different scenarios occurring under iron deficiency or iron overload, and discuss their counteracting and/or coordinating actions leading to the control of iron homeostasis.
Collapse
Affiliation(s)
- Leonor Ramirez
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, CC 1245 Mar del Plata, Argentina
| | | | | | | | | |
Collapse
|
22
|
Lewandowska H, Kalinowska M, Brzóska K, Wójciuk K, Wójciuk G, Kruszewski M. Nitrosyl iron complexes--synthesis, structure and biology. Dalton Trans 2011; 40:8273-89. [PMID: 21643591 DOI: 10.1039/c0dt01244k] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nitrosyl complexes of iron are formed in living species in the presence of nitric oxide. They are considered a form in which NO can be stored and stabilized within a living cell. Upon entering a topic in bioinorganic chemistry the researcher faces a wide spectrum of issues concerning synthetic methods, the structure and chemical properties of the complex on the one hand, and its biological implications on the other. The aim of this review is to present the newest knowledge on nitrosyl iron complexes, summarizing the issues that are important for understanding the nature of nitrosyl iron complexes, their possible interactions, behavior in vitro and in vivo, handling of the preparations etc. in response to the growing interest in these compounds. Herein we focus mostly on the dinitrosyl iron complexes (DNICs) due to their prevailing occurrence in NO-treated biological samples. This article reviews recent knowledge on the structure, chemical properties and biological action of DNICs and some mononitrosyls of heme proteins. Synthetic methods are also briefly reviewed.
Collapse
Affiliation(s)
- Hanna Lewandowska
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, 16 Dorodna Str., 03-195, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
23
|
Chen J, Chen CL, Alevriadou BR, Zweier JL, Chen YR. Excess no predisposes mitochondrial succinate-cytochrome c reductase to produce hydroxyl radical. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:491-502. [PMID: 21406178 DOI: 10.1016/j.bbabio.2011.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 11/30/2022]
Abstract
Mitochondria-derived oxygen-free radical(s) are important mediators of oxidative cellular injury. It is widely hypothesized that excess NO enhances O(2)(•-) generated by mitochondria under certain pathological conditions. In the mitochondrial electron transport chain, succinate-cytochrome c reductase (SCR) catalyzes the electron transfer reaction from succinate to cytochrome c. To gain the insights into the molecular mechanism of how NO overproduction may mediate the oxygen-free radical generation by SCR, we employed isolated SCR, cardiac myoblast H9c2, and endothelial cells to study the interaction of NO with SCR in vitro and ex vivo. Under the conditions of enzyme turnover in the presence of NO donor (DEANO), SCR gained pro-oxidant function for generating hydroxyl radical as detected by EPR spin trapping using DEPMPO. The EPR signal associated with DEPMPO/(•)OH adduct was nearly completely abolished in the presence of catalase or an iron chelator and partially inhibited by SOD, suggesting the involvement of the iron-H(2)O(2)-dependent Fenton reaction or O(2)(•-)-dependent Haber-Weiss mechanism. Direct EPR measurement of SCR at 77K indicated the formation of a nonheme iron-NO complex, implying that electron leakage to molecular oxygen was enhanced at the FAD cofactor, and that excess NO predisposed SCR to produce (•)OH. In H9c2 cells, SCR-dependent oxygen-free radical generation was stimulated by NO released from DEANO or produced by the cells following exposure to hypoxia/reoxygenation. With shear exposure that led to overproduction of NO by the endothelium, SCR-mediated oxygen-free radical production was also detected in cultured vascular endothelial cells.
Collapse
Affiliation(s)
- Jingfeng Chen
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
24
|
Prevention of diabetic nephropathy in Ins2(+/)⁻(AkitaJ) mice by the mitochondria-targeted therapy MitoQ. Biochem J 2010; 432:9-19. [PMID: 20825366 PMCID: PMC2973231 DOI: 10.1042/bj20100308] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondrial production of ROS (reactive oxygen species) is thought to be associated with the cellular damage resulting from chronic exposure to high glucose in long-term diabetic patients. We hypothesized that a mitochondria-targeted antioxidant would prevent kidney damage in the Ins2(+/)⁻(AkitaJ) mouse model (Akita mice) of Type 1 diabetes. To test this we orally administered a mitochondria-targeted ubiquinone (MitoQ) over a 12-week period and assessed tubular and glomerular function. Fibrosis and pro-fibrotic signalling pathways were determined by immunohistochemical analysis, and mitochondria were isolated from the kidney for functional assessment. MitoQ treatment improved tubular and glomerular function in the Ins2(+/)⁻(AkitaJ) mice. MitoQ did not have a significant effect on plasma creatinine levels, but decreased urinary albumin levels to the same level as non-diabetic controls. Consistent with previous studies, renal mitochondrial function showed no significant change between any of the diabetic or wild-type groups. Importantly, interstitial fibrosis and glomerular damage were significantly reduced in the treated animals. The pro-fibrotic transcription factors phospho-Smad2/3 and β-catenin showed a nuclear accumulation in the Ins2(+/)⁻(AkitaJ) mice, which was prevented by MitoQ treatment. These results support the hypothesis that mitochondrially targeted therapies may be beneficial in the treatment of diabetic nephropathy. They also highlight a relatively unexplored aspect of mitochondrial ROS signalling in the control of fibrosis.
Collapse
|
25
|
Abstract
After major skeletal muscle trauma, the iron-containing protein myoglobin and diverse other intracellular metabolites are liberated into the circulation from injured myocytes. Because chelatable iron should also be present in skeletal muscle cells, this redox-active, not tightly bound iron should be released from injured muscle tissue in addition to myoglobin and potentially account for oxidative tissue damage. The current study demonstrates in vitro the existence of 5 muM chelatable iron within the supernatant of a 1:10 homogenate of rat gastrocnemius muscle. This iron was almost exclusively associated with macromolecules greater than 30 kDa, most likely proteins. Presumably because of this association, only part of the chelatable iron could be scavenged by added apotransferrin. The chelatable iron was redox-active and thus responsible for the formation of thiobarbituric acid-reactive substances (TBARS) within the muscle homogenate. Correspondingly, using an in vivo model of closed trauma to the rat gastrocnemius muscle, a local TBARS formation in the damaged muscle tissue could be detected. Muscle trauma significantly increased plasma creatine kinase and myoglobin levels; however, no increase in serum non-transferrin-bound iron could be observed. Likewise, the serum parameters of iron-induced oxidative damage, TBARS, and protein carbonyls did not significantly increase after trauma. In conclusion, chelatable, redox-active iron is locally released by muscle destruction and responsible for lipid peroxidation within the damaged tissue. However, the liberation of chelatable iron into the circulation and its contribution to oxidative alterations of serum lipids and proteins could not be confirmed.
Collapse
|
26
|
Chinta SJ, Andersen JK. Nitrosylation and nitration of mitochondrial complex I in Parkinson's disease. Free Radic Res 2010; 45:53-8. [PMID: 20815786 DOI: 10.3109/10715762.2010.509398] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Impairment of the mitochondrial electron transport chain has been suggested to be a critical factor in the neuropathogenesis of Parkinson's disease (PD), as inhibition of mitochondrial complex I (CI) activity is consistently detected in PD patients as well as in mitochondrial toxin models of the disorder. Increased levels of various reactive oxygen and nitrogen species appear to contribute to CI inhibition and mitochondrial dysfunction in PD. Reactive nitrogen species (RNS) such as nitric oxide (NO) and its metabolite peroxynitrite (PN) may inhibit CI activity via several different mechanisms including S-nitrosylation, nitration, and protein thiol formation. Studies using various cell and animal PD models have demonstrated that selective mitochondrial CI inhibition in dopaminergic cells may be due to both NO-mediated S-nitrosylation and nitration of CI sub-units. Strategies to modulate mitochondrial NO levels will therefore likely be a promising approach to enhance mitochondrial function and protect dopaminergic neurons against oxidative or nitrosative insult.
Collapse
Affiliation(s)
- Shankar J Chinta
- Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA 94945, USA
| | | |
Collapse
|
27
|
Dranka BP, Hill BG, Darley-Usmar VM. Mitochondrial reserve capacity in endothelial cells: The impact of nitric oxide and reactive oxygen species. Free Radic Biol Med 2010; 48:905-14. [PMID: 20093177 PMCID: PMC2860730 DOI: 10.1016/j.freeradbiomed.2010.01.015] [Citation(s) in RCA: 282] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 12/10/2009] [Accepted: 01/06/2010] [Indexed: 12/13/2022]
Abstract
The endothelium is not considered to be a major energy-requiring organ, but nevertheless endothelial cells have an extensive mitochondrial network. This suggests that mitochondrial function may be important in response to stress and signaling in these cells. In this study, we used extracellular flux analysis to measure mitochondrial function in adherent bovine aortic endothelial cells (BAEC). Under basal conditions, BAEC use only approximately 35% of their maximal respiratory capacity. We calculate that this represents an intermediate respiratory state between States 3 and 4, which we define as State(apparent) equal to 3.64. Interestingly, the apparent respiratory control ratio (maximal mitochondrial oxygen consumption/non-ADP-linked respiration) in these cells is on the order of 23, which is substantially higher than that which is frequently obtained with isolated mitochondria. These results suggest that mitochondria in endothelial cells are highly coupled and possess a considerable bioenergetic reserve. Because endothelial cells are exposed to both reactive oxygen (ROS) and reactive nitrogen species in the course of vascular disease, we hypothesized that this reserve capacity is important in responding to oxidative stress. To test this, we exposed BAEC to NO or ROS alone or in combination. We found that exposure to nontoxic concentrations of NO or low levels of hydrogen peroxide generated from 2,3-dimethoxy-1,4-napthoquinone (DMNQ) had little impact on basal mitochondrial function but both treatments reversibly decreased mitochondrial reserve capacity. However, combined NO and DMNQ treatment resulted in an irreversible loss of reserve capacity and was associated with cell death. These data are consistent with a critical role for the mitochondrial reserve capacity in endothelial cells in responding to oxidative stress.
Collapse
Affiliation(s)
- Brian P Dranka
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
28
|
Davis CW, Hawkins BJ, Ramasamy S, Irrinki KM, Cameron BA, Islam K, Daswani VP, Doonan PJ, Manevich Y, Madesh M. Nitration of the mitochondrial complex I subunit NDUFB8 elicits RIP1- and RIP3-mediated necrosis. Free Radic Biol Med 2010; 48:306-17. [PMID: 19897030 PMCID: PMC2818448 DOI: 10.1016/j.freeradbiomed.2009.11.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/15/2009] [Accepted: 11/03/2009] [Indexed: 11/18/2022]
Abstract
Nitric oxide (NO) and other reactive nitrogen species target multiple sites in the mitochondria to influence cellular bioenergetics and survival. Kinetic imaging studies revealed that NO from either activated macrophages or donor compounds rapidly diffuses to the mitochondria, causing a dose-dependent progressive increase in NO-dependent DAF fluorescence, which corresponded to mitochondrial membrane potential loss and initiated alterations in cellular bioenergetics that ultimately led to necrotic cell death. Cellular dysfunction is mediated by an elevated 3-nitrotyrosine signature of the mitochondrial complex I subunit NDUFB8, which is vital for normal mitochondrial function as evidenced by selective knockdown via siRNA. Overexpression of mitochondrial superoxide dismutase substantially decreased NDUFB8 nitration and restored mitochondrial homeostasis. Further, treatment of cells with either necrostatin-1 or siRNA knockdown of RIP1 and RIP3 prevented NO-mediated necrosis. This work demonstrates that the interaction between NO and mitochondrially derived superoxide alters mitochondrial bioenergetics and cell function, thus providing a molecular mechanism for reactive oxygen and nitrogen species-mediated alterations in mitochondrial homeostasis.
Collapse
Affiliation(s)
- Christiana W. Davis
- Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Brian J. Hawkins
- Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Subbiah Ramasamy
- Department of Biochemistry, Temple University, Philadelphia, PA 19140
| | - Krishna M. Irrinki
- Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Biochemistry, Temple University, Philadelphia, PA 19140
| | - Bruce A. Cameron
- Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Defence Research and Development Canada, Toronto, Ontario, Canada
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, V0R 1B0, Canada
| | - Khalid Islam
- Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Varsha P. Daswani
- Department of Biochemistry, Temple University, Philadelphia, PA 19140
| | - Patrick J. Doonan
- Department of Biochemistry, Temple University, Philadelphia, PA 19140
| | - Yefim Manevich
- Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Muniswamy Madesh
- Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104
- Department of Biochemistry, Temple University, Philadelphia, PA 19140
| |
Collapse
|
29
|
Padmini E, Vijaya Geetha B, Usha Rani M. Pollution induced nitrative stress and heat shock protein 70 overexpression in fish liver mitochondria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:1307-1317. [PMID: 19027932 DOI: 10.1016/j.scitotenv.2008.09.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/10/2008] [Accepted: 09/11/2008] [Indexed: 05/27/2023]
Abstract
Exposure to heavy metals and organic pollutants in natural water bodies can have detrimental effects on fish health. A combination of biochemical and energy studies were used to observe the changes in fish liver mitochondria in response to environmental pollutant induced nitrative stress in natural field conditions. The fish samples Mugil cephalus were collected from polluted (Ennore) and unpolluted (Kovalam) estuaries for a period of two years. The results revealed elevated nitrite (NO2-) and nitrate (NO3-) levels, increased nitric oxide (NO) synthesis and 3-nitrotyrosine expression, decreased respiratory chain enzyme activities and ATP/ADP ratio, reduced mitochondrial superoxide dismutase (MnSOD), glutathione peroxidase (Gpx) levels, diminished thiol status that leads to alterations in the mitochondrial function and elevated mitochondrial heat shock protein 70 (mtHSP70) expression (30%) to a significant extent in fish from the polluted estuary than in the unpolluted estuary. The overexpression of HSP70 under stress may aid mitochondrial survival by protecting against nitrative stress induced damage. The results also reveal the percentage increase in fish liver mitochondrial HSP70 in response to cumulative effect of environmental pollutants.
Collapse
Affiliation(s)
- E Padmini
- Research Department of Biochemistry, Bharathi Women's College, Chennai-600108, Tamilnadu, India.
| | | | | |
Collapse
|
30
|
Kim M, Hong M, Song E. Changes in cytochrome c oxidase and NO in rat lung mitochondria following iron overload. Anim Cells Syst (Seoul) 2009. [DOI: 10.1080/19768354.2009.9647200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
31
|
Thomas SR, Witting PK, Drummond GR. Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2008; 10:1713-65. [PMID: 18707220 DOI: 10.1089/ars.2008.2027] [Citation(s) in RCA: 289] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The endothelium is essential for the maintenance of vascular homeostasis. Central to this role is the production of endothelium-derived nitric oxide (EDNO), synthesized by the endothelial isoform of nitric oxide synthase (eNOS). Endothelial dysfunction, manifested as impaired EDNO bioactivity, is an important early event in the development of various vascular diseases, including hypertension, diabetes, and atherosclerosis. The degree of impairment of EDNO bioactivity is a determinant of future vascular complications. Accordingly, growing interest exists in defining the pathologic mechanisms involved. Considerable evidence supports a causal role for the enhanced production of reactive oxygen species (ROS) by vascular cells. ROS directly inactivate EDNO, act as cell-signaling molecules, and promote protein dysfunction, events that contribute to the initiation and progression of endothelial dysfunction. Increasing data indicate that strategies designed to limit vascular ROS production can restore endothelial function in humans with vascular complications. The purpose of this review is to outline the various ways in which ROS can influence endothelial function and dysfunction, describe the redox mechanisms involved, and discuss approaches for preventing endothelial dysfunction that may highlight future therapeutic opportunities in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Shane R Thomas
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | |
Collapse
|
32
|
Deng A, Tang T, Singh P, Wang C, Satriano J, Thomson SC, Blantz RC. Regulation of oxygen utilization by angiotensin II in chronic kidney disease. Kidney Int 2008; 75:197-204. [PMID: 18818681 DOI: 10.1038/ki.2008.481] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Angiotensin II blockade delays progression of chronic kidney disease by modifying intrarenal hemodynamics, but the effects on metabolic adaptations are unknown. Using the remnant kidney model of chronic kidney disease in rats, we measured the effects of combined angiotensin II blockade with captopril and losartan on renal oxygen consumption (QO(2)) and factors influencing QO(2). Remnant kidneys had proteinuria and reductions in the glomerular filtration rate (GFR), renal blood flow (RBF) and nitric oxide synthase-1 protein expression while QO(2), factored by sodium reabsorption (QO(2)/TNa), was markedly increased. Combined blockade treatment normalized these parameters while increasing sodium reabsorption but, since QO(2) was unchanged, QO(2)/TNa also normalized. Triple antihypertensive therapy, to control blood pressure, and treatment with lysine, to increase GFR and RBF, did not normalize QO(2)/TNa, suggesting a specific effect of angiotensin II in elevating QO(2)/TNa. Inhibition of nitric oxide synthase increased QO(2) in the kidney of sham-operated rats but not in the remnant kidney of untreated rats. Our study shows that combined captopril and losartan treatment normalized QO(2)/TNa and functional nitric oxide activity in the remnant kidney independent of blood pressure and GFR effects, suggesting that other mechanisms in addition to hemodynamics underlie the benefits of angiotensin II blockade.
Collapse
Affiliation(s)
- Aihua Deng
- Division of Nephrology-Hypertension, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, California 92161, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Zmijewski JW, Lorne E, Zhao X, Tsuruta Y, Sha Y, Liu G, Siegal GP, Abraham E. Mitochondrial respiratory complex I regulates neutrophil activation and severity of lung injury. Am J Respir Crit Care Med 2008; 178:168-79. [PMID: 18436790 DOI: 10.1164/rccm.200710-1602oc] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Mitochondria have important roles in intracellular energy generation, modulation of apoptosis, and redox-dependent intracellular signaling. Although reactive oxygen species (ROS) participate in the regulation of intracellular signaling pathways, including activation of nuclear factor (NF)-kappaB, there is only limited information concerning the role of mitochondrially derived ROS in modulating cellular activation and tissue injury associated with acute inflammatory processes. OBJECTIVES To examine involvement of the mitochondrial electron transport chain complex I on LPS-mediated NF-kappaB activation in neutrophils and neutrophil-dependent acute lung injury. METHODS Neutrophils incubated with rotenone or metformin were treated with bacterial lipopolysaccharide (LPS) to determine the effects of mitochondrial complex I inhibition on intracellular concentrations of reactive oxygen species, NF-kappaB activation, and proinflammatory cytokine expression. Acute lung injury was produced by intratracheal injection of LPS into control, metformin, or rotenone-treated mice. MEASUREMENTS AND MAIN RESULTS Inhibition of complex I with either rotenone or the antihyperglycemic agent metformin was associated with increased intracellular levels of both superoxide and hydrogen peroxide, as well as inhibition of LPS-induced I kappaB-alpha degradation, NF-kappaB nuclear accumulation, and proinflammatory cytokine production. Treatment of LPS-exposed mice with rotenone or metformin resulted in inhibition of complex I in the lungs, as well as diminished severity of lung injury. CONCLUSIONS These results demonstrate that mitochondrial complex I plays an important role in modulating Toll-like receptor 4-mediated neutrophil activation and suggest that metformin, as well as other agents that inhibit mitochondrial complex I, may be useful in the prevention or treatment of acute inflammatory processes in which activated neutrophils play a major role, such as acute lung injury.
Collapse
Affiliation(s)
- Jaroslaw W Zmijewski
- Department of Medicine, University of Alabama at Birmingham School of Medicine, 1530 Third Avenue S, Birmingham, AL 35294-0012, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Richardson DR, Lok HC. The nitric oxide–iron interplay in mammalian cells: Transport and storage of dinitrosyl iron complexes. Biochim Biophys Acta Gen Subj 2008; 1780:638-51. [DOI: 10.1016/j.bbagen.2007.12.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/03/2007] [Accepted: 12/18/2007] [Indexed: 02/05/2023]
|
35
|
Vlasova MA, Smirin BV, Pokidyshev DA, Mashina SY, Vanin AF, Malyshev IY, Manukhina EB. Mechanism of adaptation of the vascular system to chronic changes in nitric oxide level in the organism. Bull Exp Biol Med 2007; 142:670-4. [PMID: 17603666 DOI: 10.1007/s10517-006-0447-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We studied the possibility of directed modulation of the efficiency of NO storage in rats due to adaptation to the chronic changes in plasma NO level. The efficiency of NO storage increased during long-term maintenance of high plasma level of NO and decreased in NO-deficient states. The compensatory changes in NO storage capacity of vessels depending on its organism content represent a new mechanism of adaptation of the cardiovascular system to chronic excess or deficit of NO, while directed modulation of this process can be important for the protection of the organism against both surplus or shortage of NO.
Collapse
Affiliation(s)
- M A Vlasova
- State Research Institute of General Pathology and Pathological Physiology, Russian Academy of Medical Sciences; Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
36
|
de Cavanagh EMV, Inserra F, Ferder M, Ferder L. From mitochondria to disease: role of the renin-angiotensin system. Am J Nephrol 2007; 27:545-53. [PMID: 17785964 DOI: 10.1159/000107757] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 07/16/2007] [Indexed: 01/12/2023]
Abstract
Mitochondria are energy-producing organelles that conduct other key cellular tasks. Thus, mitochondrial damage may impair various aspects of tissue functioning. Mitochondria generate oxygen- and nitrogen-derived oxidants, being themselves major oxidation targets. Dysfunctional mitochondria seem to contribute to the pathophysiology of hypertension, cardiac failure, the metabolic syndrome, obesity, diabetes mellitus, renal disease, atherosclerosis, and aging. Mitochondrial proteins and metabolic intermediates participate in various cellular processes, apart from their well-known roles in energy metabolism. This emphasizes the participation of dysfunctional mitochondria in disease, notwithstanding that most evidences supporting this concept come from animal and cultured-cell studies. Mitochondrial oxidant production is altered by several factors related to vascular pathophysiology. Among these, angiotensin-II stimulates mitochondrial oxidant release leading to energy metabolism depression. By lowering mitochondrial oxidant production, angiotensin-II inhibition enhances energy production and protects mitochondrial structure. This seems to be one of the mechanisms underlying the benefits of angiotensin-II inhibition in hypertension, diabetes, and aging rodent models. If some of these findings can be reproduced in humans, they would provide a new perspective on the implications that RAS-blockade can offer as a therapeutic strategy. This review intends to present available information pointing to mitochondria as targets for therapeutic Ang-II blockade in human renal and CV disease.
Collapse
Affiliation(s)
- E M V de Cavanagh
- Laboratory of Experimental Nephrology, Institute for Cardiovascular Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
37
|
Abstract
Increased production of reactive oxygen species in mitochondria, accumulation of mitochondrial DNA damage, and progressive respiratory chain dysfunction are associated with atherosclerosis or cardiomyopathy in human investigations and animal models of oxidative stress. Moreover, major precursors of atherosclerosis-hypercholesterolemia, hyperglycemia, hypertriglyceridemia, and even the process of aging-all induce mitochondrial dysfunction. Chronic overproduction of mitochondrial reactive oxygen species leads to destruction of pancreatic beta-cells, increased oxidation of low-density lipoprotein and dysfunction of endothelial cells-factors that promote atherosclerosis. An additional mechanism by which impaired mitochondrial integrity predisposes to clinical manifestations of vascular diseases relates to vascular cell growth. Mitochondrial function is required for normal vascular cell growth and function. Mitochondrial dysfunction can result in apoptosis, favoring plaque rupture. Subclinical episodes of plaque rupture accelerate the progression of hemodynamically significant atherosclerotic lesions. Flow-limiting plaque rupture can result in myocardial infarction, stroke, and ischemic/reperfusion damage. Much of what is known on reactive oxygen species generation and modulation comes from studies in cultured cells and animal models. In this review, we have focused on linking this large body of literature to the clinical syndromes that predispose humans to atherosclerosis and its complications.
Collapse
Affiliation(s)
- Nageswara R Madamanchi
- Carolina Cardiovascular Biology Center, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599-7005, USA
| | | |
Collapse
|
38
|
Yang Z, Harrison CM, Chuang GC, Ballinger SW. The role of tobacco smoke induced mitochondrial damage in vascular dysfunction and atherosclerosis. Mutat Res 2007; 621:61-74. [PMID: 17428506 PMCID: PMC2212590 DOI: 10.1016/j.mrfmmm.2007.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 12/12/2006] [Accepted: 12/13/2006] [Indexed: 01/08/2023]
Abstract
The majority of individuals chronically exposed to tobacco smoke will eventually succumb to cardiovascular disease (CVD). However, despite the major cardiovascular health implications of tobacco smoke exposure, concepts of how such exposure specifically results in cardiovascular cell dysfunction that leads to CVD development are still being explored. Moreover, surprisingly little is known about the effects of prenatal and childhood tobacco smoke exposure on adult CVD development. Herein, it is proposed that the mitochondrion is a central target for environmental oxidants, including tobacco smoke. By virtue of its multiple, essential roles in cell function including energy production, oxidant signaling, apoptosis, immune response, and thermogenesis, damage to the mitochondrion will likely play an important role in the development of multiple common forms of human disease, including CVD. Specifically, this review will discuss the potential role of tobacco smoke and environmental oxidant exposure in the induction of mitochondrial damage which is related to CVD development. Furthermore, mechanisms of how mitochondrial damage can initiate and/or contribute to CVD are discussed, as are experimental results that are consistent with the hypothesis that mitochondrial damage and dysfunction will increase CVD susceptibility. Aspects of both adult and developmental (fetal and childhood) exposure to tobacco smoke on mitochondrial damage, function and disease development are also discussed, including the future implications and direction of studies involving the role of the mitochondrion in influencing disease susceptibility mediated by environmental factors.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294-001, United States
| | | | | | | |
Collapse
|
39
|
Dimitrov JD, Roumenina LT, Doltchinkova VR, Vassilev TL. Iron Ions and Haeme Modulate the Binding Properties of Complement Subcomponent C1q and of Immunoglobulins. Scand J Immunol 2007; 65:230-9. [PMID: 17309777 DOI: 10.1111/j.1365-3083.2006.01893.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The complement system and circulating antibodies play a major role in the defence against infection. They act at the sites of inflammation, where the harsh microenvironment and the oxidative stress lead to the release of free iron ions and haeme. The aim of this study was to analyse the consequences of the exposure of C1q and immunoglobulins to iron ions or haeme. The changes in target recognition by C1q and in the rheumatoid factor activity of the immunoglobulins were investigated. The exposure of C1q to ferrous ions increased its binding to IgG and to IgM. In contrast, haeme inhibited C1q binding to all studied targets, especially to IgG1 and C-reactive protein. Thus, the haeme released as a result of tissue damage and oxidative stress may act as a negative feedback regulator of an inappropriate complement triggering as seen in ischaemia-reperfusion tissue injury. The results also show that iron ions and haeme were able to reveal rheumatoid factor activity of IgG. The modulation of the C1q-target binding as well as the revealing of rheumatoid factor activity of IgG by exposure to redox-active agents released at the sites of inflammation may have important consequences for the understanding of the immunopathological mechanisms of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- J D Dimitrov
- Department of Immunology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | | | | |
Collapse
|
40
|
Carraway MS, Suliman HB, Madden MC, Piantadosi CA, Ghio AJ. Metabolic capacity regulates iron homeostasis in endothelial cells. Free Radic Biol Med 2006; 41:1662-9. [PMID: 17145554 DOI: 10.1016/j.freeradbiomed.2006.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 08/07/2006] [Accepted: 09/01/2006] [Indexed: 11/21/2022]
Abstract
The sensitivity of endothelial cells to oxidative stress and the high concentrations of iron in mitochondria led us to test the hypotheses that (1) changes in respiratory capacity alter iron homeostasis, and (2) lack of aerobic metabolism decreases labile iron stores and attenuates oxidative stress. Two respiration-deficient (rho(o)) endothelial cell lines with selective deletion of mitochondrial DNA (mtDNA) were created by exposing a parent endothelial cell line (EA) to ethidium bromide. Surviving cells were cloned and mtDNA-deficient cell lines were demonstrated to have diminished oxygen consumption. Total cellular and mitochondrial iron levels were measured, and iron uptake and compartmentalization were measured by inductively coupled plasma atomic emission spectroscopy. Iron transport and storage protein expression were analyzed by real-time polymerase chain reaction and Western blot or ELISA, and total and mitochondrial reactive oxygen species (ROS) generation was measured. Mitochondrial iron content was the same in all three cell lines, but both rho(o) lines had lower iron uptake and total cellular iron. Protein and mRNA expressions of major cytosolic iron transport constituents were down-regulated in rho(o) cells, including transferrin receptor, divalent metal transporter-1 (-IRE isoform), and ferritin. The mitochondrial iron-handling protein, frataxin, was also decreased in respiration-deficient cells. The rho(o) cell lines generated less mitochondrial ROS but released more extracellular H(2)O(2), and demonstrated significantly lower levels of lipid aldehyde formation than control cells. In summary, rho(o) cells with a minimal aerobic capacity had decreased iron uptake and storage. This work demonstrates that mitochondria regulate iron homeostasis in endothelial cells.
Collapse
Affiliation(s)
- M S Carraway
- Duke University Medical Center, Department of Medicine, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
41
|
Han Z, Chen YR, Jones CI, Meenakshisundaram G, Zweier JL, Alevriadou BR. Shear-induced reactive nitrogen species inhibit mitochondrial respiratory complex activities in cultured vascular endothelial cells. Am J Physiol Cell Physiol 2006; 292:C1103-12. [PMID: 17020931 DOI: 10.1152/ajpcell.00389.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is evidence that nitric oxide (NO), superoxide (O(2)(*-)), and their associated reactive nitrogen species (RNS) produced by vascular endothelial cells (ECs) in response to hemodynamic forces play a role in cell signaling. NO is known to impair mitochondrial respiration. We sought to determine whether exposure of human umbilical vein ECs (HUVECs) to steady laminar shear stress and the resultant NO production modulate electron transport chain (ETC) enzymatic activities. The activities of respiratory complexes I, II/III, and IV were dependent on the presence of serum and growth factor supplement in the medium. EC exposure to steady laminar shear stress (10 dyn/cm(2)) resulted in a gradual inhibition of each of the complexes starting as early as 5 min from the flow onset and lasting up to 16 h. Ramp flow resulted in inhibition of the complexes similar to that of step flow. When ECs were sheared in the presence of the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME; 100 microM), the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO; 100 microM), or the peroxynitrite (ONOO(-)) scavenger uric acid (UA; 50 microM), the flow-inhibitory effect on mitochondrial complexes was attenuated. In particular, L-NAME and UA abolished the flow effect on complex IV. Increased tyrosine nitration was observed in the mitochondria of sheared ECs, and UA blocked the shear-induced nitrotyrosine staining. In summary, shear stress induces mitochondrial RNS formation that inhibits the electron flux of the ETC at multiple sites. This may be a critical mechanism by which shear stress modulates EC signaling and function.
Collapse
Affiliation(s)
- Zhaosheng Han
- Department of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
42
|
Kartikasari AER, Georgiou NA, de Geest M, van Kats-Renaud JH, Bouwman JJM, van Asbeck BS, Marx JJM, Visseren FLJ. Iron enhances endothelial cell activation in response to Cytomegalovirus or Chlamydia pneumoniae infection. Eur J Clin Invest 2006; 36:743-52. [PMID: 16968471 DOI: 10.1111/j.1365-2362.2006.01709.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Chronic inflammation has been implemented in the pathogenesis of inflammatory diseases like atherosclerosis. Several pathogens like Chlamydia pneumoniae (Cp) and cytomegalovirus (CMV) result in inflammation and thereby are potentially artherogenic. Those infections could trigger endothelial activation, the starting point of the atherogenic inflammatory cascade. Considering the role of iron in a wide range of infection processes, the presence of iron may complicate infection-mediated endothelial activation. MATERIALS AND METHODS Endothelial intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and endothelial selectin (E-selectin) expression were measured using flow cytometry, as an indication of endothelial activation. Cytotoxicity was monitored using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Immunostaining was applied to measure Cp and CMV infectivity to endothelial cells. RESULTS An increased number of infected endothelial cells in a monolayer population leads to a raised expression of adhesion molecules of the whole cell population, suggesting paracrine interactions. Iron additively up-regulated Cp-induced VCAM-1 expression, whereas synergistically potentiated Cp-induced ICAM-1 expression. Together with CMV, iron also enhanced ICAM-1 and VCAM-1 expression. These iron effects were observed without modulation of the initial infectivity of both microorganisms. Moreover, the effects of iron could be reversed by intracellular iron chelation or radical scavenging, conforming modulating effects of iron on endothelial activation after infections. CONCLUSIONS Endothelial response towards chronic infections depends on intracellular iron levels. Iron status in populations positive for Cp or CMV infections should be considered as a potential determinant for the development of atherosclerosis.
Collapse
|
43
|
Eaton P. Protein thiol oxidation in health and disease: techniques for measuring disulfides and related modifications in complex protein mixtures. Free Radic Biol Med 2006; 40:1889-99. [PMID: 16716890 DOI: 10.1016/j.freeradbiomed.2005.12.037] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 12/06/2005] [Accepted: 12/11/2005] [Indexed: 11/23/2022]
Abstract
Oxidant species are known to contribute to disease and dysfunction in biological systems. However, evidence has been progressively accumulating that demonstrates a more fundamental role for many oxidant species in the regulation of everyday function of healthy cells. Redox dependent signaling events involving the post-translational, oxidative modification of proteins has now been accepted as an important regulatory process, although the full extent of such mechanisms is yet to be determined. Some protein cysteinyl thiols are known to be susceptible to a number of redox-dependent modifications, including an interchange between the reduced thiol and several different oxidized disulfide states. Here, the role of oxidants as regulatory entities is reviewed, as are the many different ways protein disulfide formation can be analysed in complex protein mixtures. This includes an overview of many of the Proteomic strategies that can be used to identify proteins that form disulfides when pro-oxidizing conditions arise in cells, as well as related methods for studying intermediates that may precede disulfide formation.
Collapse
Affiliation(s)
- Philip Eaton
- Department of Cardiology, Cardiovascular Division, The Rayne Institute, St Thomas' Hospital, King's College London, London SE1 7EH, UK.
| |
Collapse
|
44
|
Handy DE, Loscalzo J. Nitric oxide and posttranslational modification of the vascular proteome: S-nitrosation of reactive thiols. Arterioscler Thromb Vasc Biol 2006; 26:1207-14. [PMID: 16543494 DOI: 10.1161/01.atv.0000217632.98717.a0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO*) is known to exert its effects via guanylyl cyclase and cyclic GMP-dependent pathways and by cyclic GMP-independent pathways, including the posttranslational modification of proteins. Much ongoing research is focused on defining the mechanisms of NO*-mediated protein modification, the identity and function of the modified proteins, and the significance of these changes in health and disease. S-nitrosation or thionitrite formation has only been found on a limited number of residues in a subset of proteins in in vitro and in vivo studies. Protein S-nitrosation also appears to be reversible. There are several theories about the in vivo S-nitrosating agent, and most suggest a role for oxidation products of NO* in this process. Flux in cellular S-nitrosoprotein pools appears to be regulated by NO* availability and is redox-sensitive. An analysis of S-nitrosation in candidate proteins has clarified the mechanism by which NO* regulates enzymatic and cellular functions. These findings suggest the utility of using proteomic methods to identify unique targets for protein S-nitrosation to understand further the molecular mechanisms of the effects of NO*.
Collapse
Affiliation(s)
- Diane E Handy
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
45
|
Landar A, Oh JY, Giles NM, Isom A, Kirk M, Barnes S, Darley-Usmar VM. A sensitive method for the quantitative measurement of protein thiol modification in response to oxidative stress. Free Radic Biol Med 2006; 40:459-68. [PMID: 16443161 DOI: 10.1016/j.freeradbiomed.2005.08.046] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 08/25/2005] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
The combination of proteomics with highly specific and sensitive affinity techniques is important for the identification of posttranslational modifications by reactive oxygen and nitrogen species (ROS/RNS). One of the most pressing problems with this approach is to determine accurately the extent of modification of specific amino acids, such as cysteine residues, in a complex protein sample. A number of techniques relevant to free radical biology use biotin tagging as a method to follow protein modification with high sensitivity and specificity. To realize the potential of this approach to provide quantitative data, we have prepared a series of biotinylated proteins through the modification of lysine residues. These proteins were then used as quantitative standards in electrophoretic separation of protein samples labeled with biotin-conjugated iodoacetamide. The utility of the approach was assessed by measuring modification of thiols in response to exposure to thiol oxidants, as well as the amount of protein adduct formation with a biotin-tagged electrophilic lipid. Furthermore, using a combination of native and biotin-tagged cytochrome c, this method was used to quantitate the amount of thiol relative to the amount of protein in a given spot on a two-dimensional gel. Thus, we have developed a versatile, cost-effective standard that can be used in proteomic methods to quantitate biotin tags in response to oxidative stress.
Collapse
Affiliation(s)
- Aimee Landar
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Schild L, Jaroscakova I, Lendeckel U, Wolf G, Keilhoff G. Neuronal nitric oxide synthase controls enzyme activity pattern of mitochondria and lipid metabolism. FASEB J 2005; 20:145-7. [PMID: 16246868 DOI: 10.1096/fj.05-3898fje] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mitochondria are affected by endogenous nitric oxide (NO). Besides effects of NO on mitochondrial enzymes and the stimulation of mitochondrial H2O2 production, a NO-dependent increase in mitochondrial biogenesis in several tissues has been reported. It is still obscure whether NO generated by one specific or different NO synthase (NOS) isoenzymes determine such effects. Therefore, we analyzed the amount of mitochondria, respiratory chain enzyme complexes, and citrate synthase in the brain, muscle, heart, kidney, and liver by comparing wild-type (WT) mice and mice lacking the neuronal nitric oxide synthase isoform (nNOS-KO). Our results show that the activities of NADH:cytochrome c oxidoreductase and succinate cytochrome c oxidoreductase differ between WT and nNOS-KO mice. However, similar quantities of mitochondria were found in the homogenates of tissues in WT and nNOS-KO animals. Most impressive, higher activities and protein of citrate synthase were found in the brain, muscle, heart, kidney, and liver of nNOS-KO mice. Additionally, higher contents of fatty acid synthase and lipids were determined in the livers of nNOS-KO mice but not in the heart and brain. Furthermore, liver mitochondria from nNOS-KO mice consumed pyruvate at a higher rate and released more citric acid. Our data document a previously unrecognized role of endogenous NO in the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Lorenz Schild
- Institut für Klinische Chemie und Pathologische Biochemie, Bereich Pathologische Biochemie, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Zmijewski JW, Moellering DR, Le Goffe C, Landar A, Ramachandran A, Darley-Usmar VM. Oxidized LDL induces mitochondrially associated reactive oxygen/nitrogen species formation in endothelial cells. Am J Physiol Heart Circ Physiol 2005; 289:H852-61. [PMID: 15805232 DOI: 10.1152/ajpheart.00015.2005] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure of cells to complex mixtures of oxidized lipids such as those found in oxidized low-density lipoprotein (oxLDL) induce reactive oxygen and nitrogen species (ROS/RNS) formation. The source of the ROS/RNS within cells is unknown; it is thought they may be involved in redox cell signaling. Although this possibility was initially overlooked, it is becoming clear that mitochondria, which are a source of superoxide and hydrogen peroxide, may play a critical role in the response of cells on exposure to oxidized lipids. In this study, we tested the possibility that mitochondria are a potential source of oxLDL-dependent formation of ROS/RNS in endothelial cells. Using confocal microscopy, we demonstrated that a significant proportion of oxLDL-dependent dichlorodihydrofluorescein (DCF) fluorescence is colocalized to mitochondria. In support of this concept, rho0 endothelial cells showed a substantial decrease in ROS/RNS formation stimulated by oxLDL. In contrast, mostly nonmitochondrial DCF fluorescence was detected in cells exposed to an extracellular source of hydrogen peroxide. The exposure of cells to a nitric oxide synthase inhibitor and urate resulted in a decrease in oxLDL-induced DCF fluorescence that was restored by addition of nitric oxide donors to the medium. Taken together, these results suggest that oxLDL-dependent DCF fluorescence is mitochondrially associated and may be due to the formation of peroxynitrite.
Collapse
Affiliation(s)
- Jaroslaw W Zmijewski
- Center for Free Radical Biology, Univ. of Alabama at Birmingham, Biomedical Research Bldg. II, 901 19th St. South, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
49
|
Itoh S, Lemay S, Osawa M, Che W, Duan Y, Tompkins A, Brookes PS, Sheu SS, Abe JI. Mitochondrial Dok-4 Recruits Src Kinase and Regulates NF-κB Activation in Endothelial Cells. J Biol Chem 2005; 280:26383-96. [PMID: 15855164 DOI: 10.1074/jbc.m410262200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The downstream of kinase (Dok) family of adapter proteins consists of at least five members structurally characterized by an NH2-terminal tandem of conserved pleckstrin homology and phosphotyrosine binding domains linked to a unique COOH-terminal region. To determine the role of the novel adapter protein Dok-4 in endothelial cells, we first investigated the cell localization of Dok-4. Most surprisingly, immunofluorescence microscopy, cell fractionation studies, and studies with enhanced green fluorescent protein chimeras showed that wild type Dok-4 (Dok-4-WT) specifically localized in mitochondria. An NH2-terminal deletion mutant of Dok-4 (Dok-4-(deltaN11-29)), which lacks the mitochondrial targeting sequence, could not accumulate in mitochondria. Co-immunoprecipitation revealed an interaction of c-Src with Dok-4-WT in endothelial cells. Most interestingly, overexpression of Dok-4-WT, but not Dok-4-(deltaN1-99), increased mitochondrial c-Src expression, whereas knock-down of endogenous Dok-4 with a small interfering RNA vector greatly inhibited mitochondrial localization of c-Src, suggesting a unique function for Dok-4 as an anchoring protein for c-Src in mitochondria. Dok-4-WT significantly decreased 39-kDa subunit complex I expression. PP2, a specific Src kinase inhibitor, prevented the Dok-4-mediated complex I decrease, suggesting the involvement of Src kinase in regulation of complex I expression. Dok-4-WT enhanced tumor necrosis factor-alpha (TNF-alpha)-mediated reactive oxygen species (ROS) production, supporting the functional relevance of a Dok-4-Src-complex I/ROS signaling pathway in mitochondria. Finally, Dok-4 enhanced TNF-alpha-mediated NF-kappaB activation, whereas this was inhibited by transfection with Dok-4 small interfering RNA. In addition, Dok-4-induced NF-kappaB activation was also inhibited by transfection of a dominant negative form of c-Src. These data suggest a role for mitochondrial Dok-4 as an anchoring molecule for the tyrosine kinase c-Src, and in turn as a regulator of TNF-alpha-mediated ROS production and NF-kappaB activation.
Collapse
Affiliation(s)
- Seigo Itoh
- Center for Cardiovascular Research, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ballinger SW. Mitochondrial dysfunction in cardiovascular disease. Free Radic Biol Med 2005; 38:1278-95. [PMID: 15855047 DOI: 10.1016/j.freeradbiomed.2005.02.014] [Citation(s) in RCA: 271] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 02/15/2005] [Accepted: 02/15/2005] [Indexed: 12/11/2022]
Abstract
Whereas the pathogenesis of atherosclerosis has been intensively studied and described, the underlying events that initiate cardiovascular disease are not yet fully understood. A substantial number of studies suggest that altered levels of oxidative and nitrosoxidative stress within the cardiovascular environment are essential in the development of cardiovascular disease; however, the impact of such changes on the subcellular or organellar components and their functions that are relevant to cardiovascular disease inception are less understood. In this regard, studies are beginning to show that mitochondria not only appear susceptible to damage mediated by increased oxidative and nitrosoxidative stress, but also play significant roles in the regulation of cardiovascular cell function. In addition, accumulating evidence suggests that a common theme among cardiovascular disease development and cardiovascular disease risk factors is increased mitochondrial damage and dysfunction. This review discusses aspects relating mitochondrial damage and function to cardiovascular disease risk factors and disease development.
Collapse
Affiliation(s)
- Scott W Ballinger
- Division of Molecular and Cellular Pathology, VH G019F, 1530 3rd Avenue South, Birmingham, AL 35294-0019, USA.
| |
Collapse
|