1
|
Kim J, Lee J, Lee J, Kim K, Li X, Zhou W, Cao J, Krueger JG. Psoriasis harbors multiple pathogenic type 17 T-cell subsets: Selective modulation by risankizumab. J Allergy Clin Immunol 2025; 155:1898-1912. [PMID: 39978685 PMCID: PMC12145251 DOI: 10.1016/j.jaci.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Recent single-cell studies indicated that IL-17-producing T cells (T17) have diverse subsets expressing IL-17A, IL-17F, or a combination in human psoriasis skin. However, it is unknown how T17 subsets are differently regulated by IL-23 versus IL-17A blockade. OBJECTIVE We sought to investigate how systemic monoclonal antibody injections blocking IL-23 versus IL-17A differently modify immune cell transcriptomes in human psoriasis skin. METHODS We analyzed a total of 93 human skin single-cell libraries, including 42 psoriasis pretreatment lesional skin, 25 psoriasis pretreatment nonlesional skin, 12 psoriasis posttreatment after IL-23 inhibition, 4 psoriasis posttreatment after IL-17A inhibition, and 10 control skin samples. CLINICALTRIALS gov NCT04630652. RESULTS Of the six T17 subsets identified, an IL17A+IFNG+ subset and an IL17F+IL10- subset expressed the IL-23 receptor along with other inflammatory cytokines, and IL-23 inhibition downregulated these potentially pathogenic T17 subsets. In contrast, T17 cells expressing both IL-17A and IL-17F did not express the IL-23 receptor, and the percentage of this potentially nonpathogenic T17 subset increased after IL-23 inhibition. In addition, the expression of the IL-17-negative regulation genes, such as TNFAIP3, increased in myeloid cells more after IL-23 inhibition than after IL-17A inhibition. CONCLUSIONS This study suggests multiple immune mechanisms of how IL-23 inhibition can modify the complex inflammatory environment present in psoriatic skin, highlighting the roles of specific T17 subsets in psoriasis development and background skin protection.
Collapse
Affiliation(s)
- Jaehwan Kim
- Department of Dermatology, University of California, Davis, Sacramento, Calif; Dermatology Section, Veterans Affairs Northern California Health Care System, Mather, Calif; Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY.
| | - Jongmi Lee
- Department of Dermatology, University of California, Davis, Sacramento, Calif; Dermatology Section, Veterans Affairs Northern California Health Care System, Mather, Calif
| | - Jongeun Lee
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY
| | - Katherine Kim
- Department of Dermatology, University of California, Davis, Sacramento, Calif; Dermatology Section, Veterans Affairs Northern California Health Care System, Mather, Calif
| | - Xuan Li
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY
| | - Wei Zhou
- Laboratory of Single-cell Genomics and Population Dynamics, The Rockefeller University, New York, NY
| | - Junyue Cao
- Laboratory of Single-cell Genomics and Population Dynamics, The Rockefeller University, New York, NY
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY.
| |
Collapse
|
2
|
Parveen S, Fatma M, Mir SS, Dermime S, Uddin S. JAK-STAT Signaling in Autoimmunity and Cancer. Immunotargets Ther 2025; 14:523-554. [PMID: 40376194 PMCID: PMC12080488 DOI: 10.2147/itt.s485670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/29/2025] [Indexed: 05/18/2025] Open
Abstract
The JAK-STAT pathway is an essential cell survival signaling that regulates gene expressions related to inflammation, immunity and cancer. Cytokine receptors, signal transducer and activator of transcription (STAT) proteins, and Janus kinases (JAKs) are the critical component of this signaling cascade. When JAKs are stimulated by cytokines, STAT phosphorylation, dimerization, and nuclear translocation occur, which eventually impacts gene transcription. Dysregulation of JAK-STAT signaling is linked with various autoimmune diseases, including rheumatoid arthritis, psoriasis, and inflammatory bowel disease. This pathway is constitutively activated in human malignancies and leads to tumor cell survival, proliferation, and immune evasion. Oncogenic mutations in the JAK and STAT genes have been found in solid tumors, leukemia, and lymphoma. Targeting the JAK-STAT pathway is a viable and promising therapeutic strategy for the treatment of autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Sana Parveen
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, India
- Molecular Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research-4 (ICEIR-4) Integral University, Lucknow, India
| | - Mariyam Fatma
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, India
- Molecular Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research-4 (ICEIR-4) Integral University, Lucknow, India
| | - Snober Shabnam Mir
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, India
- Molecular Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research-4 (ICEIR-4) Integral University, Lucknow, India
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, 3050, Qatar
- College of Health Sciences, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, India
- Translational Research Institute & Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
3
|
Liakakis G, Vakrakou AG, Boufidou F, Constantinides V, Velonakis G, Paraskevas GP, Stefanis L, Kapaki E. Exploratory Analysis of Cerebrospinal Fluid IL-6 and IL-17A Levels in Subcortical Small-Vessel Disease Compared to Alzheimer's Disease: A Pilot Study. Diagnostics (Basel) 2025; 15:669. [PMID: 40150012 PMCID: PMC11941723 DOI: 10.3390/diagnostics15060669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/12/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Low-grade inflammation in the form of microglial activation may be involved in neurodegenerative and vascular dementias. Subcortical small-vessel disease (SSVD) is the main form of vascular dementia, associated with brain barrier dysfunction and endothelial and monocyte activation. IL-6 and IL-17A are known proinflammatory cytokines that contribute to the disruption of blood-brain barrier integrity and microvascular dysfunction, features that are central to SSVD pathophysiological pathways. We herein compared cerebrospinal fluid (CSF) IL-6 and IL-17A concentrations in SSVD and AD patients as well as control subjects and examined the potential associations among IL-6 and IL-17A levels with cognitive and ΜRΙ changes. The albumin quotient (Qalb) was also calculated. Methods: CSF IL-6 and IL-17A (18 SSVD, 17 AD, and 12 healthy controls) were measured with solid-phase sandwich ELISAs, while albumin levels were measured by immunonephelometry. MMSE, FAB, and the CLOX tests were used for cognitive assessment and MRI was used for atrophy and white matter hyperintensities. Results: Significantly elevated CSF levels of Qalb and IL-6 were found in SSVD patients compared to both AD (p = 0.02) and controls (p = 0.002), respectively. Moreover, CSF IL-6 levels displayed a significant inverse correlation with CLOX2 scores (r = -0.641, p = 0.02), as well as a positive correlation with the total normalized CSF volume (r = 0.7, p = 0.01). CSF IL-17A levels were found to be reduced in SSVD patients, compared to controls and AD patients (p < 0.0001 and p = 0.002, respectively). The IL-6/IL-17A ratio with a cut-off value > 1.004 displayed a sensitivity of 83.33% (95%CI; 60.78% to 94.16%) and a specificity of 68.97% (95%CI; 50.77% to 82.72%) for the discrimination of SSVD from AD patients and controls. Conclusions: In the present pilot single-center study, we found increased CSF IL-6 and IL-6/IL-17A ratio levels in SSVD patients that correlated with reduced scores in the CLOX2 test and increased CSF volume. These preliminary findings deserve further evaluation in larger cohorts in order to elucidate their potential as surrogate biomarkers for the discrimination of SSVD from AD pathology.
Collapse
Affiliation(s)
- Georgios Liakakis
- Neurochemistry and Biological Markers Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Vass. Sophias Ave. 74, 11528 Athens, Greece; (G.L.); (F.B.); (V.C.)
| | - Aigli G. Vakrakou
- Laboratory of Neuroimmunology, First Department of Neurology, Aeginition Hospital, National and Kapodistrian, University of Athens, 21 Papadiamantopoulou, Ilisia, 11528 Athens, Greece;
| | - Fotini Boufidou
- Neurochemistry and Biological Markers Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Vass. Sophias Ave. 74, 11528 Athens, Greece; (G.L.); (F.B.); (V.C.)
| | - Vasilios Constantinides
- Neurochemistry and Biological Markers Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Vass. Sophias Ave. 74, 11528 Athens, Greece; (G.L.); (F.B.); (V.C.)
| | - Georgios Velonakis
- Research Unit of Radiology, 2nd Department of Radiology, Medical School, “Attikon” University General Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece
| | - George P. Paraskevas
- 2nd Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, “Attikon” University General Hospital, Rimini 1, 12462 Athens, Greece;
| | - Leonidas Stefanis
- 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 74 Vass. Sophias Ave., 11528 Athens, Greece;
| | - Elisabeth Kapaki
- Neurochemistry and Biological Markers Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Vass. Sophias Ave. 74, 11528 Athens, Greece; (G.L.); (F.B.); (V.C.)
| |
Collapse
|
4
|
Chen G, Li W, Ge R, Guo T, Zhang Y, Zhou C, Lin M. NUSAP1 Promotes Immunity and Apoptosis by the SHCBP1/JAK2/STAT3 Phosphorylation Pathway to Induce Dendritic Cell Generation in Hepatocellular Carcinoma. J Immunother 2025; 48:46-57. [PMID: 38980111 PMCID: PMC11753460 DOI: 10.1097/cji.0000000000000531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer and is associated with high morbidity and mortality rates. The aims of this study were to investigate the immune-promoting action of nucleolar and spindle-associated protein 1 (NUSAP1) and identify an immunotherapy target for HCC. The Cancer Genome Atlas (TCGA) was used to analyze interaction molecules and immune correlation. The interaction between NUSAP1 and SHC binding and spindle associated 1 (SHCBP1) was examined. The role of the SHCBP1/Janus kinase 2/signal transducer and activator of transcription 3 (SHCBP1/JAK2/STAT3) pathway in this process was explored. After co-culture with HCC cell lines, the differentiation of peripheral blood mononuclear cells (PBMCs) into dendritic cells (DC) was evaluated by measuring the expression of surface factors CD1a and CD86. Pathological tissues from 50 patients with HCC were collected to validate the results of cell experiments. The expression levels of CD1a and CD86 in tissues were also determined. The results show that NUSAP1 interacted with SHCBP1 and was positively correlated with DC. In HCC cell lines, an interaction was observed between NUSAP1 and SHCBP1. It was verified that NUSAP1 inhibited the JAK2/STAT3 phosphorylation pathway by blocking SHCBP1. After co-culture, the levels of CD1a and CD86 in PBMC were elevated. In the clinical specimens, CD1a and CD86 expression levels were significantly higher in the high-NUSAP1 group versus the low-NUSAP1 group. In Summary, NUSAP1 enhanced immunity by inhibiting the SHCBP1/JAK2/STAT3 phosphorylation pathway and promoted DC generation and HCC apoptosis. NUSAP1 may be a target of immunotherapy for HCC.
Collapse
Affiliation(s)
- Guojie Chen
- Medical School of Nantong University, Nantong, Jiangsu, China
- Clinical Laboratory, Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - WenYa Li
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ruomu Ge
- Clinical Laboratory, Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Ting Guo
- Clinical Laboratory, Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Yuhan Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chenglin Zhou
- Laboratory Department, Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Mei Lin
- Clinical Laboratory, Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| |
Collapse
|
5
|
Póvoa da Costa F, de Sarges KML, da Silva R, dos Santos EF, do Nascimento MH, Rodrigues AM, Cantanhede MHD, Rodrigues FBB, Viana MDNDSDA, Leite MDM, de Oliveira CF, Neves PFMD, Pereira Neto GDS, de Brito MTFM, da Silva ALS, Henriques DF, Quaresma JAS, Falcão LFM, Queiroz MAF, Vallinoto IMVC, Vallinoto ACR, Viana GMR, dos Santos EJM. Genetic, Clinical, Epidemiological, and Immunological Profiling of IgG Response Duration after SARS-CoV-2 Infection. Int J Mol Sci 2024; 25:8740. [PMID: 39201427 PMCID: PMC11354850 DOI: 10.3390/ijms25168740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
The IgG response against SARS-CoV-2 infection can persist for over six months (long response; LR). However, among 30% of those infected, the duration can be as short as three months or less (short response; SR). The present study assembled serological data on the anti-SARS-CoV-2 IgG response duration of two previous studies and integrated these results with the plasmatic cytokine levels and genetic profile of 10 immune-relevant SNPs that were also previously published, along with the plasmatic total IgG, IgA, and IgM levels, allowing for the genetic, clinical, immunological, and epidemiological aspects of the post-COVID-19 IgG response duration to be understood. The SR was associated with previous mild acute COVID-19 and with an SNP (rs2228145) in IL6R related to low gene expression. Additionally, among the SR subgroup, no statistically significant Spearman correlations were observed between the plasma levels of IL-17A and the Th17 regulatory cytokines IFN-γ (rs = 0.2399; p = 0.1043), IL-4 (rs = 0.0273; p = 0.8554), and IL-2 (rs = 0.2204; p = 0.1365), while among the LR subgroup, weaker but statistically significant Spearman correlations were observed between the plasma levels of IL-17A and IFN-γ (rs = 0.3873; p = 0.0016), IL-4 (rs = 0.2671; p = 0.0328), and IL-2 (rs = 0.3959; p = 0.0012). These results suggest that the Th17 response mediated by the IL-6 pathway has a role in the prolonged IgG response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Flávia Póvoa da Costa
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Pará, Brazil; (F.P.d.C.); (K.M.L.d.S.); (R.d.S.); (E.F.d.S.); (M.H.d.N.); (A.M.R.); (M.H.D.C.); (F.B.B.R.); (M.d.N.d.S.d.A.V.); (M.d.M.L.); (M.T.F.M.d.B.); (A.L.S.d.S.)
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 66075-110, Pará, Brazil; (G.d.S.P.N.); (M.A.F.Q.); (I.M.V.C.V.); (A.C.R.V.); (G.M.R.V.)
| | - Kevin Matheus Lima de Sarges
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Pará, Brazil; (F.P.d.C.); (K.M.L.d.S.); (R.d.S.); (E.F.d.S.); (M.H.d.N.); (A.M.R.); (M.H.D.C.); (F.B.B.R.); (M.d.N.d.S.d.A.V.); (M.d.M.L.); (M.T.F.M.d.B.); (A.L.S.d.S.)
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 66075-110, Pará, Brazil; (G.d.S.P.N.); (M.A.F.Q.); (I.M.V.C.V.); (A.C.R.V.); (G.M.R.V.)
| | - Rosilene da Silva
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Pará, Brazil; (F.P.d.C.); (K.M.L.d.S.); (R.d.S.); (E.F.d.S.); (M.H.d.N.); (A.M.R.); (M.H.D.C.); (F.B.B.R.); (M.d.N.d.S.d.A.V.); (M.d.M.L.); (M.T.F.M.d.B.); (A.L.S.d.S.)
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 66075-110, Pará, Brazil; (G.d.S.P.N.); (M.A.F.Q.); (I.M.V.C.V.); (A.C.R.V.); (G.M.R.V.)
| | - Erika Ferreira dos Santos
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Pará, Brazil; (F.P.d.C.); (K.M.L.d.S.); (R.d.S.); (E.F.d.S.); (M.H.d.N.); (A.M.R.); (M.H.D.C.); (F.B.B.R.); (M.d.N.d.S.d.A.V.); (M.d.M.L.); (M.T.F.M.d.B.); (A.L.S.d.S.)
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 66075-110, Pará, Brazil; (G.d.S.P.N.); (M.A.F.Q.); (I.M.V.C.V.); (A.C.R.V.); (G.M.R.V.)
| | - Matheus Holanda do Nascimento
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Pará, Brazil; (F.P.d.C.); (K.M.L.d.S.); (R.d.S.); (E.F.d.S.); (M.H.d.N.); (A.M.R.); (M.H.D.C.); (F.B.B.R.); (M.d.N.d.S.d.A.V.); (M.d.M.L.); (M.T.F.M.d.B.); (A.L.S.d.S.)
| | - Alice Maciel Rodrigues
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Pará, Brazil; (F.P.d.C.); (K.M.L.d.S.); (R.d.S.); (E.F.d.S.); (M.H.d.N.); (A.M.R.); (M.H.D.C.); (F.B.B.R.); (M.d.N.d.S.d.A.V.); (M.d.M.L.); (M.T.F.M.d.B.); (A.L.S.d.S.)
| | - Marcos Henrique Damasceno Cantanhede
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Pará, Brazil; (F.P.d.C.); (K.M.L.d.S.); (R.d.S.); (E.F.d.S.); (M.H.d.N.); (A.M.R.); (M.H.D.C.); (F.B.B.R.); (M.d.N.d.S.d.A.V.); (M.d.M.L.); (M.T.F.M.d.B.); (A.L.S.d.S.)
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 66075-110, Pará, Brazil; (G.d.S.P.N.); (M.A.F.Q.); (I.M.V.C.V.); (A.C.R.V.); (G.M.R.V.)
| | - Fabíola Brasil Barbosa Rodrigues
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Pará, Brazil; (F.P.d.C.); (K.M.L.d.S.); (R.d.S.); (E.F.d.S.); (M.H.d.N.); (A.M.R.); (M.H.D.C.); (F.B.B.R.); (M.d.N.d.S.d.A.V.); (M.d.M.L.); (M.T.F.M.d.B.); (A.L.S.d.S.)
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 66075-110, Pará, Brazil; (G.d.S.P.N.); (M.A.F.Q.); (I.M.V.C.V.); (A.C.R.V.); (G.M.R.V.)
| | - Maria de Nazaré do Socorro de Almeida Viana
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Pará, Brazil; (F.P.d.C.); (K.M.L.d.S.); (R.d.S.); (E.F.d.S.); (M.H.d.N.); (A.M.R.); (M.H.D.C.); (F.B.B.R.); (M.d.N.d.S.d.A.V.); (M.d.M.L.); (M.T.F.M.d.B.); (A.L.S.d.S.)
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 66075-110, Pará, Brazil; (G.d.S.P.N.); (M.A.F.Q.); (I.M.V.C.V.); (A.C.R.V.); (G.M.R.V.)
| | - Mauro de Meira Leite
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Pará, Brazil; (F.P.d.C.); (K.M.L.d.S.); (R.d.S.); (E.F.d.S.); (M.H.d.N.); (A.M.R.); (M.H.D.C.); (F.B.B.R.); (M.d.N.d.S.d.A.V.); (M.d.M.L.); (M.T.F.M.d.B.); (A.L.S.d.S.)
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 66075-110, Pará, Brazil; (G.d.S.P.N.); (M.A.F.Q.); (I.M.V.C.V.); (A.C.R.V.); (G.M.R.V.)
| | - Camille Ferreira de Oliveira
- Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua 67000-000, Pará, Brazil; (C.F.d.O.); (D.F.H.)
| | - Pablo Fabiano Moura das Neves
- Center of Biological and Health Sciences, State University of Pará, Belém 66050-540, Pará, Brazil; (P.F.M.d.N.); (J.A.S.Q.); (L.F.M.F.)
| | - Gabriel dos Santos Pereira Neto
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 66075-110, Pará, Brazil; (G.d.S.P.N.); (M.A.F.Q.); (I.M.V.C.V.); (A.C.R.V.); (G.M.R.V.)
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Pará, Brazil
| | - Mioni Thieli Figueiredo Magalhães de Brito
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Pará, Brazil; (F.P.d.C.); (K.M.L.d.S.); (R.d.S.); (E.F.d.S.); (M.H.d.N.); (A.M.R.); (M.H.D.C.); (F.B.B.R.); (M.d.N.d.S.d.A.V.); (M.d.M.L.); (M.T.F.M.d.B.); (A.L.S.d.S.)
| | - Andréa Luciana Soares da Silva
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Pará, Brazil; (F.P.d.C.); (K.M.L.d.S.); (R.d.S.); (E.F.d.S.); (M.H.d.N.); (A.M.R.); (M.H.D.C.); (F.B.B.R.); (M.d.N.d.S.d.A.V.); (M.d.M.L.); (M.T.F.M.d.B.); (A.L.S.d.S.)
| | - Daniele Freitas Henriques
- Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua 67000-000, Pará, Brazil; (C.F.d.O.); (D.F.H.)
| | - Juarez Antônio Simões Quaresma
- Center of Biological and Health Sciences, State University of Pará, Belém 66050-540, Pará, Brazil; (P.F.M.d.N.); (J.A.S.Q.); (L.F.M.F.)
| | - Luiz Fábio Magno Falcão
- Center of Biological and Health Sciences, State University of Pará, Belém 66050-540, Pará, Brazil; (P.F.M.d.N.); (J.A.S.Q.); (L.F.M.F.)
| | - Maria Alice Freitas Queiroz
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 66075-110, Pará, Brazil; (G.d.S.P.N.); (M.A.F.Q.); (I.M.V.C.V.); (A.C.R.V.); (G.M.R.V.)
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Pará, Brazil
| | - Izaura Maria Vieira Cayres Vallinoto
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 66075-110, Pará, Brazil; (G.d.S.P.N.); (M.A.F.Q.); (I.M.V.C.V.); (A.C.R.V.); (G.M.R.V.)
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Pará, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 66075-110, Pará, Brazil; (G.d.S.P.N.); (M.A.F.Q.); (I.M.V.C.V.); (A.C.R.V.); (G.M.R.V.)
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Pará, Brazil
| | - Giselle Maria Rachid Viana
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 66075-110, Pará, Brazil; (G.d.S.P.N.); (M.A.F.Q.); (I.M.V.C.V.); (A.C.R.V.); (G.M.R.V.)
- Malaria Basic Research Laboratory, Parasitology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua 67000-000, Pará, Brazil
| | - Eduardo José Melo dos Santos
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Pará, Brazil; (F.P.d.C.); (K.M.L.d.S.); (R.d.S.); (E.F.d.S.); (M.H.d.N.); (A.M.R.); (M.H.D.C.); (F.B.B.R.); (M.d.N.d.S.d.A.V.); (M.d.M.L.); (M.T.F.M.d.B.); (A.L.S.d.S.)
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 66075-110, Pará, Brazil; (G.d.S.P.N.); (M.A.F.Q.); (I.M.V.C.V.); (A.C.R.V.); (G.M.R.V.)
| |
Collapse
|
6
|
Antos D, Parks OB, Duray AM, Abraham N, Michel JJ, Kupul S, Westcott R, Alcorn JF. Cell-intrinsic regulation of phagocyte function by interferon lambda during pulmonary viral, bacterial super-infection. PLoS Pathog 2024; 20:e1012498. [PMID: 39178311 PMCID: PMC11376568 DOI: 10.1371/journal.ppat.1012498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/05/2024] [Accepted: 08/12/2024] [Indexed: 08/25/2024] Open
Abstract
Influenza infections result in a significant number of severe illnesses annually, many of which are complicated by secondary bacterial super-infection. Primary influenza infection has been shown to increase susceptibility to secondary methicillin-resistant Staphylococcus aureus (MRSA) infection by altering the host immune response, leading to significant immunopathology. Type III interferons (IFNs), or IFNλs, have gained traction as potential antiviral therapeutics due to their restriction of viral replication without damaging inflammation. The role of IFNλ in regulating epithelial biology in super-infection has recently been established; however, the impact of IFNλ on immune cells is less defined. In this study, we infected wild-type and IFNLR1-/- mice with influenza A/PR/8/34 followed by S. aureus USA300. We demonstrated that global IFNLR1-/- mice have enhanced bacterial clearance through increased uptake by phagocytes, which was shown to be cell-intrinsic specifically in myeloid cells in mixed bone marrow chimeras. We also showed that depletion of IFNLR1 on CX3CR1 expressing myeloid immune cells, but not neutrophils, was sufficient to significantly reduce bacterial burden compared to mice with intact IFNLR1. These findings provide insight into how IFNλ in an influenza-infected lung impedes bacterial clearance during super-infection and show a direct cell intrinsic role for IFNλ signaling on myeloid cells.
Collapse
Affiliation(s)
- Danielle Antos
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Olivia B Parks
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alexis M Duray
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nevil Abraham
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joshua J Michel
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Saran Kupul
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rosemary Westcott
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - John F Alcorn
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
7
|
Xiao X, Qiu T, Cheng Q, Wang W, Fan C, Zuo F. Uridine phosphorylase-1 promotes cell viability and cell-cycle progression in human epidermal keratinocytes via the glycolytic pathway. Clin Exp Pharmacol Physiol 2024; 51:e13874. [PMID: 38797519 DOI: 10.1111/1440-1681.13874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Glycolysis is vital for the excessive proliferation of keratinocytes in psoriasis, and uridine phosphorylase-1 (UPP1) functions as an enhancer of cancer cell proliferation. However, little is known about whether UPP1 promotes keratinocyte proliferation and accelerates psoriasis development. This study revealed that UPP1 facilitates cell viability and cell-cycle progression in human epidermal keratinocytes (HEKs) by modulating the glycolytic pathway. Bioinformatics analysis of UPP1 gene expression and its correlation with the Reactome revealed that UPP1 mRNA expression, cell-cycle progression, the interleukin-6 (IL-6)/Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway and glycolysis were positively associated with psoriasis. Cell proliferation, the cell cycle and glycolysis were evaluated after UPP1 was silenced or overexpressed. The results showed that UPP1 overexpression increased cell proliferation, cell-cycle progression and glycolysis, which was contrary to the effects of UPP1 silencing. However, the STAT3 inhibitor diminished UPP1 expression because STAT3 can bind to the UPP1 promoter. In conclusion, UPP1 was significantly activated by the IL-6/STAT3 pathway and could modulate glycolysis to regulate cell proliferation and cell-cycle progression in keratinocytes during the development of psoriasis.
Collapse
Affiliation(s)
- Xiaoqing Xiao
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tianwen Qiu
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiong Cheng
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenyu Wang
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunyan Fan
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fuguo Zuo
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Huang Y, Wu L, Zhao Y, Guo J, Li R, Ma S, Ying Z. Schwann cell promotes macrophage recruitment through IL-17B/IL-17RB pathway in injured peripheral nerves. Cell Rep 2024; 43:113753. [PMID: 38341853 DOI: 10.1016/j.celrep.2024.113753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/05/2023] [Accepted: 01/22/2024] [Indexed: 02/13/2024] Open
Abstract
Macrophage recruitment to the injured nerve initiates a cascade of events, including myelin debris clearance and nerve trophic factor secretion, which contribute to proper nerve tissue repair. However, the mechanism of macrophage recruitment is still unclear. Here, by comparing wild-type with Mlkl-/- and Sarm1-/- mice, two mouse strains with impaired myelin debris clearance after peripheral nerve injury, we identify interleukin-17B (IL-17B) as a key regulator of macrophage recruitment. Schwann-cell-secreted IL-17B acts in an autocrine manner and binds to IL-17 receptor B to promote macrophage recruitment, and global or Schwann-cell-specific IL-17B deletion reduces macrophage infiltration, myelin clearance, and axon regeneration. We also show that the IL-17B signaling pathway is defective in the injured central nerves. These results reveal an important role for Schwann cell autocrine signaling during Wallerian degeneration and point to potential mechanistic targets for accelerating myelin clearance and improving demyelinating disease.
Collapse
Affiliation(s)
- Yanju Huang
- State Key Laboratory of Animal Biotech Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Liwen Wu
- State Key Laboratory of Animal Biotech Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yueshan Zhao
- State Key Laboratory of Animal Biotech Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jia Guo
- National Institute of Biological Sciences, Beijing, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Ruoyi Li
- State Key Laboratory of Animal Biotech Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Suchen Ma
- State Key Laboratory of Animal Biotech Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhengxin Ying
- State Key Laboratory of Animal Biotech Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Chinese Institute for Brain Research, Beijing, No. 26 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China.
| |
Collapse
|
9
|
Wang Z, Liu Z, Zheng J, Huang L, Jin R, Wang X, Chen D, Xie Y, Feng B. The effects of low-dose IL-2 on Th17/Treg cell imbalance in primary biliary cholangitis mouse models. BMC Gastroenterol 2024; 24:87. [PMID: 38408917 PMCID: PMC10895794 DOI: 10.1186/s12876-024-03176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND/AIMS Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease. The imbalance of Th17/Treg cells has been reported in PBC patients. Low-dose IL-2 can alleviate disease severity through modulating CD4 + T cell subsets in patients with autoimmune diseases. Hence, the present study aimed to examine the effects and mechanism of low-dose IL-2 in PBC mouse models. METHODS PBC models were induced in female C57BL/6 mice by two immunizations with 2OA-BSA at two-week intervals, and poly I: C every three days. PBC mouse models were divided into the IL-2 treated and untreated groups and low-dose IL-2 was injected at three different time points. Th17 and Tregs were analyzed by flow cytometry, and the related cytokines were analyzed by ELISA. Liver histopathology was examined by H&E and immunohistochemical staining. RESULTS Twelve weeks after modeling, the serum AMA was positive and the ALP was significantly increased in PBC mouse models (P<0.05). The pathology showed lymphocyte infiltration in the portal area, damage, and reactive proliferation of the small bile duct (P<0.05). The flow cytometric showed the imbalance of Th17/Treg cells in the liver of PBC mouse models, with decreased Treg cells, increased Th17 cells, and Th17/Treg ratio (P < 0.05). After the low-dose IL-2 intervention, biochemical index and liver pathologies showed improvement at 12 weeks. Besides, the imbalance of Th17 and Treg cells recovered. Public database mining showed that Th17 cell differentiation may contribute to poor response in PBC patients. CONCLUSION Low-dose IL-2 can significantly improve liver biochemistry and pathology by reversing the imbalance of Th17 and Treg cells, suggesting that it may be a potential therapeutic target for PBC.
Collapse
Affiliation(s)
- Zilong Wang
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Zhicheng Liu
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Jiarui Zheng
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Linxiang Huang
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Rui Jin
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Xiaoxiao Wang
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Dongbo Chen
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Yandi Xie
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China.
| | - Bo Feng
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China.
| |
Collapse
|
10
|
Monsour M, Croci DM, Grüter BE, Taussky P, Marbacher S, Agazzi S. Cerebral Aneurysm and Interleukin-6: a Key Player in Aneurysm Generation and Rupture or Just One of the Multiple Factors? Transl Stroke Res 2023; 14:631-639. [PMID: 36042111 DOI: 10.1007/s12975-022-01079-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
Intracranial aneurysm (IA) rupture is a common cause of subarachnoid hemorrhage (SAH) with high mortality and morbidity. Inflammatory interleukins (IL), such as IL-6, play an important role in the occurrence and rupture of IA causing SAH. With this review we aim to elucidate the specific role of IL-6 in aneurysm formation and rupture in preclinical and clinical studies. IL-6 is a novel cytokine in that it has pro-inflammatory and anti-inflammatory signaling pathways. In preclinical and clinical studies of IA formation, elevated and reduced levels of IL-6 are reported. Poor post-rupture prognosis and increased rupture risk, however, are associated with higher levels of IL-6. By better understanding the relationships between IL-6 and IA formation and rupture, IL-6 may serve as a biomarker in high-risk populations. Furthermore, by better understanding the IL-6 signaling mechanisms in IA formation and rupture, IL-6 may optimize surveillance and treatment strategies. This review examines the association between IL-6 and IA, while also suggesting future research directions.
Collapse
Affiliation(s)
- Molly Monsour
- Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA
| | - Davide Marco Croci
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Basil E Grüter
- Program for Regenerative Neuroscience, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Neurosurgery, Kantonsspital Aarau, c/o NeuroResearch Office, Tellstrasse 1, 5001, Aarau, Switzerland
| | - Philipp Taussky
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 N Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Serge Marbacher
- Program for Regenerative Neuroscience, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Neurosurgery, Kantonsspital Aarau, c/o NeuroResearch Office, Tellstrasse 1, 5001, Aarau, Switzerland
| | - Siviero Agazzi
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
11
|
Jurcau A, Andronie-Cioara FL, Nistor-Cseppento DC, Pascalau N, Rus M, Vasca E, Jurcau MC. The Involvement of Neuroinflammation in the Onset and Progression of Parkinson's Disease. Int J Mol Sci 2023; 24:14582. [PMID: 37834030 PMCID: PMC10573049 DOI: 10.3390/ijms241914582] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Parkinson's disease is a neurodegenerative disease exhibiting the fastest growth in incidence in recent years. As with most neurodegenerative diseases, the pathophysiology is incompletely elucidated, but compelling evidence implicates inflammation, both in the central nervous system and in the periphery, in the initiation and progression of the disease, although it is not yet clear what triggers this inflammatory response and where it begins. Gut dysbiosis seems to be a likely candidate for the initiation of the systemic inflammation. The therapies in current use provide only symptomatic relief, but do not interfere with the disease progression. Nonetheless, animal models have shown promising results with therapies that target various vicious neuroinflammatory cascades. Translating these therapeutic strategies into clinical trials is still in its infancy, and a series of issues, such as the exact timing, identifying biomarkers able to identify Parkinson's disease in early and pre-symptomatic stages, or the proper indications of genetic testing in the population at large, will need to be settled in future guidelines.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Delia Carmen Nistor-Cseppento
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Nicoleta Pascalau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Marius Rus
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Elisabeta Vasca
- Department of Oral Rehabilitation, Faculty of Medicine “Vasile Goldis” Arad, 310025 Arad, Romania
| | | |
Collapse
|
12
|
Wakabayashi C, Kunugi H. Possible involvement of Interleukin-17A in the deterioration of prepulse inhibition on acoustic startle response in mice. Neuropsychopharmacol Rep 2023; 43:365-372. [PMID: 37280178 PMCID: PMC10496063 DOI: 10.1002/npr2.12351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023] Open
Abstract
AIM Proinflammatory cytokines such as interleukin-6 (IL-6) and IL-17A have been implicated in the pathophysiology of schizophrenia which often shows sensorimotor gating abnormalities. This study aimed to examine whether a proinflammatory cytokine, IL-17A, induces impairment in sensorimotor gating in mice. We also examined whether IL-17A administration affects GSK3α/β protein level or phosphorylation in the striatum. METHODS Recombinant mouse IL-17A (low-dose: 0.5 ng/mL and high-dose: 50 ng/mL with 10 μL/g mouse body weight, respectively) or vehicle was intraperitoneally administered into C57BL/6 male mice 10 times in 3 weeks (sub-chronic administration). Prepulse inhibition test using acoustic startle stimulus was conducted 4 weeks after the final IL-17A administration. We evaluated the effect of IL-17A administration on protein level or phosphorylation of GSK3α/β in the striatum by using Western blot analysis. RESULTS Administration of IL-17A induced significant PPI deterioration. Low-dose of IL-17A administration significantly decreased both GSK3α (Ser21) and GSK3β (Ser9) phosphorylation in mouse striatum. There was no significant alteration of GSK3α/β protein levels except for GSK3α in low-dose IL-17A administration group. CONCLUSION We demonstrated for the first time that sub-chronic IL-17A administration induced PPI disruption and that IL-17A administration resulted in decreased phosphorylation of GSKα/β at the striatum. These results suggest that IL-17A could be a target molecule in the prevention and treatment of sensorimotor gating abnormalities observed in schizophrenia.
Collapse
Affiliation(s)
- Chisato Wakabayashi
- Department of Mental Disorder Research, National Institute of NeuroscienceNational Center of Neurology and PsychiatryKodairaJapan
- Faculty of Pharmaceutical SciencesHimeji Dokkyo UniversityHimejiJapan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of NeuroscienceNational Center of Neurology and PsychiatryKodairaJapan
- Department of PsychiatryTeikyo University School of MedicineItabashiJapan
| |
Collapse
|
13
|
Li S. Modulation of immunity by tryptophan microbial metabolites. Front Nutr 2023; 10:1209613. [PMID: 37521424 PMCID: PMC10382180 DOI: 10.3389/fnut.2023.1209613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/30/2023] [Indexed: 08/01/2023] Open
Abstract
Tryptophan (Trp) is an essential amino acid that can be metabolized via endogenous and exogenous pathways, including the Kynurenine Pathway, the 5-Hydroxyindole Pathway (also the Serotonin pathway), and the Microbial pathway. Of these, the Microbial Trp metabolic pathways in the gut have recently been extensively studied for their production of bioactive molecules. The gut microbiota plays an important role in host metabolism and immunity, and microbial Trp metabolites can influence the development and progression of various diseases, including inflammatory, cardiovascular diseases, neurological diseases, metabolic diseases, and cancer, by mediating the body's immunity. This review briefly outlines the crosstalk between gut microorganisms and Trp metabolism in the body, starting from the three metabolic pathways of Trp. The mechanisms by which microbial Trp metabolites act on organism immunity are summarized, and the potential implications for disease prevention and treatment are highlighted.
Collapse
|
14
|
Zhou Q, Wu Y, Zhang D. Exploring the role of T helper subgroups and their cytokines in the development of pregnancy-induced hypertension. Front Immunol 2023; 14:1126784. [PMID: 37342348 PMCID: PMC10277627 DOI: 10.3389/fimmu.2023.1126784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/16/2023] [Indexed: 06/22/2023] Open
Affiliation(s)
| | - Youcheng Wu
- *Correspondence: Dongmei Zhang, ; Youcheng Wu,
| | | |
Collapse
|
15
|
Toth KA, Schmitt EG, Cooper MA. Deficiencies and Dysregulation of STAT Pathways That Drive Inborn Errors of Immunity: Lessons from Patients and Mouse Models of Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1463-1472. [PMID: 37126806 PMCID: PMC10151837 DOI: 10.4049/jimmunol.2200905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/11/2023] [Indexed: 05/03/2023]
Abstract
The STAT family proteins provide critical signals for immune cell development, differentiation, and proinflammatory and anti-inflammatory responses. Inborn errors of immunity (IEIs) are caused by single gene defects leading to immune deficiency and/or dysregulation, and they have provided opportunities to identify genes important for regulating the human immune response. Studies of patients with IEIs due to altered STAT signaling, and mouse models of these diseases, have helped to shape current understanding of the mechanisms whereby STAT signaling and protein interactions regulate immunity. Although many STAT signaling pathways are shared, clinical and immune phenotypes in patients with monogenic defects of STAT signaling highlight both redundant and nonredundant pathways. In this review, we provide an overview of the shared and unique signaling pathways used by STATs, phenotypes of IEIs with altered STAT signaling, and recent discoveries that have provided insight into the human immune response and treatment of disease.
Collapse
Affiliation(s)
- Kelsey A. Toth
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, MO 63110
| | - Erica G. Schmitt
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, MO 63110
| | - Megan A. Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
16
|
Xu Y, Li Y, Wang C, Han T, Liu H, Sun L, Hong J, Hashimoto M, Wei J. The reciprocal interactions between microglia and T cells in Parkinson's disease: a double-edged sword. J Neuroinflammation 2023; 20:33. [PMID: 36774485 PMCID: PMC9922470 DOI: 10.1186/s12974-023-02723-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
In Parkinson's disease (PD), neurotoxic microglia, Th1 cells, and Th17 cells are overactivated. Overactivation of these immune cells exacerbates the disease process and leads to the pathological development of pro-inflammatory cytokines, chemokines, and contact-killing compounds, causing the loss of dopaminergic neurons. So far, we have mainly focused on the role of the specific class of immune cells in PD while neglecting the impact of interactions among immune cells on the disease. Therefore, this review demonstrates the reciprocal interplays between microglia and T cells and the associated subpopulations through cytokine and chemokine production that impair and/or protect the pathological process of PD. Furthermore, potential targets and models of PD neuroinflammation are highlighted to provide the new ideas/directions for future research.
Collapse
Affiliation(s)
- Yuxiang Xu
- grid.256922.80000 0000 9139 560XInstitute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China ,grid.256922.80000 0000 9139 560XHenan International Joint Laboratory for Nuclear Protein Regulation, Henan Medical School, Henan University, Kaifeng, 475004 China
| | - Yongjie Li
- grid.414360.40000 0004 0605 7104Department of Rehabilitation Medicine, Beijing Jishuitan Hospital Guizhou Hospital, Guizhou Provincial Orthopedics Hospital, Guiyang, China
| | - Changqing Wang
- grid.256922.80000 0000 9139 560XInstitute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Tingting Han
- grid.256922.80000 0000 9139 560XInstitute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Haixuan Liu
- grid.256922.80000 0000 9139 560XInstitute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Lin Sun
- grid.256922.80000 0000 9139 560XHenan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004 Henan China
| | - Jun Hong
- grid.256922.80000 0000 9139 560XInstitute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Makoto Hashimoto
- grid.272456.00000 0000 9343 3630Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506 Japan
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004, China. .,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan Medical School, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
17
|
Arteaga-Cruz S, Cortés-Hernández A, Alvarez-Salazar EK, Rosas-Cortina K, Aguilera-Sandoval C, Morales-Buenrostro LE, Alberú-Gómez JM, Soldevila G. Highly purified and functionally stable in vitro expanded allospecific Tr1 cells expressing immunosuppressive graft-homing receptors as new candidates for cell therapy in solid organ transplantation. Front Immunol 2023; 14:1062456. [PMID: 36911743 PMCID: PMC9998667 DOI: 10.3389/fimmu.2023.1062456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Abstract
The development of new strategies based on the use of Tr1 cells has taken relevance to induce long-term tolerance, especially in the context of allogeneic stem cell transplantation. Although Tr1 cells are currently identified by the co-expression of CD49b and LAG-3 and high production of interleukin 10 (IL-10), recent studies have shown the need for a more exhaustive characterization, including co-inhibitory and chemokines receptors expression, to ensure bona fide Tr1 cells to be used as cell therapy in solid organ transplantation. Moreover, the proinflammatory environment induced by the allograft could affect the suppressive function of Treg cells, therefore stability of Tr1 cells needs to be further investigated. Here, we establish a new protocol that allows long-term in vitro expansion of highly purified expanded allospecific Tr1 (Exp-allo Tr1). Our expanded Tr1 cell population becomes highly enriched in IL-10 producers (> 90%) and maintains high expression of CD49b and LAG-3, as well as the co-inhibitory receptors PD-1, CTLA-4, TIM-3, TIGIT and CD39. Most importantly, high dimensional analysis of Exp-allo Tr1 demonstrated a specific expression profile that distinguishes them from activated conventional T cells (T conv), showing overexpression of IL-10, CD39, CTLA-4 and LAG-3. On the other hand, Exp-allo Tr1 expressed a chemokine receptor profile relevant for allograft homing and tolerance induction including CCR2, CCR4, CCR5 and CXCR3, but lower levels of CCR7. Interestingly, Exp-allo Tr1 efficiently suppressed allospecific but not third-party T cell responses even after being expanded in the presence of proinflammatory cytokines for two extra weeks, supporting their functional stability. In summary, we demonstrate for the first time that highly purified allospecific Tr1 (Allo Tr1) cells can be efficiently expanded maintaining a stable phenotype and suppressive function with homing potential to the allograft, so they may be considered as promising therapeutic tools for solid organ transplantation.
Collapse
Affiliation(s)
- Saúl Arteaga-Cruz
- Department of Immunology, Biomedical Research Institute, Mexico City, Mexico
| | - Arimelek Cortés-Hernández
- Department of Immunology, Biomedical Research Institute, Mexico City, Mexico.,The National Laboratory of Flow Cytometry, Biomedical Research Institute, National Autonomous University of Mexico, Mexico City, Mexico
| | - Evelyn Katy Alvarez-Salazar
- Department of Immunology, Biomedical Research Institute, Mexico City, Mexico.,The National Laboratory of Flow Cytometry, Biomedical Research Institute, National Autonomous University of Mexico, Mexico City, Mexico
| | - Katya Rosas-Cortina
- Department of Immunology, Biomedical Research Institute, Mexico City, Mexico
| | | | - Luis E Morales-Buenrostro
- Department of Nephrology and Mineral Metabolism, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | | | - Gloria Soldevila
- Department of Immunology, Biomedical Research Institute, Mexico City, Mexico.,The National Laboratory of Flow Cytometry, Biomedical Research Institute, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
18
|
Reda M, Ngamcherdtrakul W, Nelson MA, Siriwon N, Wang R, Zaidan HY, Bejan DS, Reda S, Hoang NH, Crumrine NA, Rehwaldt JPC, Bindal A, Mills GB, Gray JW, Yantasee W. Development of a nanoparticle-based immunotherapy targeting PD-L1 and PLK1 for lung cancer treatment. Nat Commun 2022; 13:4261. [PMID: 35871223 PMCID: PMC9308817 DOI: 10.1038/s41467-022-31926-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/11/2022] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting PD-L1 and PD-1 have improved survival in a subset of patients with advanced non-small cell lung cancer (NSCLC). However, only a minority of NSCLC patients respond to ICIs, highlighting the need for superior immunotherapy. Herein, we report on a nanoparticle-based immunotherapy termed ARAC (Antigen Release Agent and Checkpoint Inhibitor) designed to enhance the efficacy of PD-L1 inhibitor. ARAC is a nanoparticle co-delivering PLK1 inhibitor (volasertib) and PD-L1 antibody. PLK1 is a key mitotic kinase that is overexpressed in various cancers including NSCLC and drives cancer growth. Inhibition of PLK1 selectively kills cancer cells and upregulates PD-L1 expression in surviving cancer cells thereby providing opportunity for ARAC targeted delivery in a feedforward manner. ARAC reduces effective doses of volasertib and PD-L1 antibody by 5-fold in a metastatic lung tumor model (LLC-JSP) and the effect is mainly mediated by CD8+ T cells. ARAC also shows efficacy in another lung tumor model (KLN-205), which does not respond to CTLA-4 and PD-1 inhibitor combination. This study highlights a rational combination strategy to augment existing therapies by utilizing our nanoparticle platform that can load multiple cargo types at once. Only a minority of patients with non-small cell lung cancer (NSCLC) respond to immune checkpoint inhibitors. Here the authors design a nanosystem for the co-delivery of a PLK1 inhibitor and PD-L1 antibody, showing anti-tumor immune responses in preclinical lung cancer models.
Collapse
|
19
|
Alluqmani N, Jirovec A, Taha Z, Varette O, Chen A, Serrano D, Maznyi G, Khan S, Forbes NE, Arulanandam R, Auer RC, Diallo JS. Vanadyl sulfate-enhanced oncolytic virus immunotherapy mediates the antitumor immune response by upregulating the secretion of pro-inflammatory cytokines and chemokines. Front Immunol 2022; 13:1032356. [PMID: 36532027 PMCID: PMC9749062 DOI: 10.3389/fimmu.2022.1032356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
Oncolytic viruses (OVs) are promising anticancer treatments that specifically replicate in and kill cancer cells and have profound immunostimulatory effects. We previously reported the potential of vanadium-based compounds such as vanadyl sulfate (VS) as immunostimulatory enhancers of OV immunotherapy. These compounds, in conjunction with RNA-based OVs such as oncolytic vesicular stomatitis virus (VSVΔ51), improve viral spread and oncolysis, leading to long-term antitumor immunity and prolonged survival in resistant tumor models. This effect is associated with a virus-induced antiviral type I IFN response shifting towards a type II IFN response in the presence of vanadium. Here, we investigated the systemic impact of VS+VSVΔ51 combination therapy to understand the immunological mechanism of action leading to improved antitumor responses. VS+VSVΔ51 combination therapy significantly increased the levels of IFN-γ and IL-6, and improved tumor antigen-specific T-cell responses. Supported by immunological profiling and as a proof of concept for the design of more effective therapeutic regimens, we found that local delivery of IL-12 using VSVΔ51 in combination with VS further improved therapeutic outcomes in a syngeneic CT26WT colon cancer model.
Collapse
Affiliation(s)
- Nouf Alluqmani
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada,Research Center, Molecular Oncology Department King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Anna Jirovec
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Zaid Taha
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Oliver Varette
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Andrew Chen
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Daniel Serrano
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Glib Maznyi
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Sarwat Khan
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Nicole E. Forbes
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Rozanne Arulanandam
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Rebecca C. Auer
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Department of Surgery, University of Ottawa, Ottawa, ON, Canada
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada,*Correspondence: Jean-Simon Diallo,
| |
Collapse
|
20
|
A Review of Signaling Transduction Mechanisms in Osteoclastogenesis Regulation by Autophagy, Inflammation, and Immunity. Int J Mol Sci 2022; 23:ijms23179846. [PMID: 36077242 PMCID: PMC9456406 DOI: 10.3390/ijms23179846] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoclastogenesis is an ongoing rigorous course that includes osteoclast precursors fusion and bone resorption executed by degradative enzymes. Osteoclastogenesis is controlled by endogenous signaling and/or regulators or affected by exogenous conditions and can also be controlled both internally and externally. More evidence indicates that autophagy, inflammation, and immunity are closely related to osteoclastogenesis and involve multiple intracellular organelles (e.g., lysosomes and autophagosomes) and certain inflammatory or immunological factors. Based on the literature on osteoclastogenesis induced by different regulatory aspects, emerging basic cross-studies have reported the emerging disquisitive orientation for osteoclast differentiation and function. In this review, we summarize the partial potential therapeutic targets for osteoclast differentiation and function, including the signaling pathways and various cellular processes.
Collapse
|
21
|
Loureirin C and Xanthoceraside Attenuate Depression-Like Behaviors and Expression of Interleukin-17 in the Prefrontal Cortex Induced by Chronic Unpredictable Mild Stress in Mice. Neurochem Res 2022; 47:2880-2889. [DOI: 10.1007/s11064-022-03692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 10/16/2022]
|
22
|
Neuromyelitis Optica Spectrum Disorder: From Basic Research to Clinical Perspectives. Int J Mol Sci 2022; 23:ijms23147908. [PMID: 35887254 PMCID: PMC9323454 DOI: 10.3390/ijms23147908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory disease of the central nervous system characterized by relapses and autoimmunity caused by antibodies against the astrocyte water channel protein aquaporin-4. Over the past decade, there have been significant advances in the biologic knowledge of NMOSD, which resulted in the IDENTIFICATION of variable disease phenotypes, biomarkers, and complex inflammatory cascades involved in disease pathogenesis. Ongoing clinical trials are looking at new treatments targeting NMOSD relapses. This review aims to provide an update on recent studies regarding issues related to NMOSD, including the pathophysiology of the disease, the potential use of serum and cerebrospinal fluid cytokines as disease biomarkers, the clinical utilization of ocular coherence tomography, and the comparison of different animal models of NMOSD.
Collapse
|
23
|
Forcina L, Franceschi C, Musarò A. The hormetic and hermetic role of IL-6. Ageing Res Rev 2022; 80:101697. [PMID: 35850167 DOI: 10.1016/j.arr.2022.101697] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/24/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Interleukin-6 is a pleiotropic cytokine regulating different tissues and organs in diverse and sometimes discrepant ways. The dual and sometime hermetic nature of IL-6 action has been highlighted in several contexts and can be explained by the concept of hormesis, in which beneficial or toxic effects can be induced by the same molecule depending on the intensity, persistence, and nature of the stimulation. According with hormesis, a low and/or controlled IL-6 release is associated with anti-inflammatory, antioxidant, and pro-myogenic actions, whereas increased systemic levels of IL-6 can induce pro-inflammatory, pro-oxidant and pro-fibrotic responses. However, many aspects regarding the multifaceted action of IL-6 and the complex nature of its signal transduction remains to be fully elucidated. In this review we collect mechanistic insight into the molecular networks contributing to normal or pathologic changes during advancing age and in chronic diseases. We point out the involvement of IL-6 deregulation in aging-related diseases, dissecting the hormetic action of this key mediator in different tissues, with a special focus on skeletal muscle. Since IL-6 can act as an enhancer of detrimental factor associated with both aging and pathologic conditions, such as chronic inflammation and oxidative stress, this cytokine could represent a "Gerokine", a determinant of the switch from physiologic aging to age-related diseases.
Collapse
Affiliation(s)
- Laura Forcina
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, Rome 00161, Italy.
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Scuola Superiore di Studi Avanzati Sapienza (SSAS), Via A. Scarpa, 14, Rome 00161, Italy.
| |
Collapse
|
24
|
Jiménez C, Bordagaray MJ, Villarroel JL, Flores T, Benadof D, Fernández A, Valenzuela F. Biomarkers in Oral Fluids as Diagnostic Tool for Psoriasis. Life (Basel) 2022; 12:life12040501. [PMID: 35454992 PMCID: PMC9027180 DOI: 10.3390/life12040501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/11/2022] [Accepted: 03/27/2022] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a prevalent worldwide chronic immuno-inflammatory skin disease with various variants and atypical cases. The use of biomarkers for the diagnosis of psoriasis can favor timely treatment and thus improve the quality of life of those affected. In general, the search for biomarkers in oral fluids is recommended as it is a non-invasive and fast technique. This narrative review aimed to identify biomarkers in gingival crevicular fluid (GCF) and saliva to diagnose psoriasis. To achieve this goal, we selected the available literature using the following MESH terms: “psoriasis”, “saliva” and “gingival crevicular fluid”. The studies analyzed for this review cover original research articles available in English. We found three full articles available for psoriasis biomarkers in GCF and ten articles available for psoriasis biomarkers in saliva. Studies showed that in the saliva of healthy individuals and those with psoriasis, there were differences in the levels of inflammatory cytokines, immunoglobulin A, and antioxidant biomarkers. In GCF, individuals with psoriasis showed higher levels of S100A8, IL-18 and sE-selectin in comparison to healthy individuals, independent of periodontal status. Despite these findings, more studies are required to determine an adequate panel of biomarkers to use in saliva or GCF for psoriasis.
Collapse
Affiliation(s)
- Constanza Jiménez
- Faculty of Dentistry, Universidad Andres Bello, Santiago 8370133, Chile; (C.J.); (D.B.)
| | - María José Bordagaray
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile;
| | - José Luis Villarroel
- Department of Dermatology, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Tania Flores
- Research Centre in Dental Science (CICO), Faculty of Dentistry, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Dafna Benadof
- Faculty of Dentistry, Universidad Andres Bello, Santiago 8370133, Chile; (C.J.); (D.B.)
| | - Alejandra Fernández
- Faculty of Dentistry, Universidad Andres Bello, Santiago 8370133, Chile; (C.J.); (D.B.)
- Correspondence: (A.F.); (F.V.); Tel.: +56-2-2661-5834 (A.F.); +56-2-2978-8173 (F.V.)
| | - Fernando Valenzuela
- Department of Dermatology, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
- Correspondence: (A.F.); (F.V.); Tel.: +56-2-2661-5834 (A.F.); +56-2-2978-8173 (F.V.)
| |
Collapse
|
25
|
Chen HL, Lin SC, Li S, Tang KT, Lin CC. Alantolactone alleviates collagen-induced arthritis and inhibits Th17 cell differentiation through modulation of STAT3 signalling. PHARMACEUTICAL BIOLOGY 2021; 59:134-145. [PMID: 33556301 PMCID: PMC8871681 DOI: 10.1080/13880209.2021.1876102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
CONTEXT Alantolactone, the bioactive component in Inula helenium L. (Asteraceae), exhibits multiple biological effects. OBJECTIVE We aimed to determine the anti-inflammatory effect of alantolactone in a collagen-induced arthritis (CIA) mouse model and its immunomodulatory effects on Th17 differentiation. MATERIALS AND METHODS A CIA mouse model was established with DBA/1 mice randomly divided into four groups (n = 6): healthy, vehicle and two alantolactone-treated groups (25 or 50 mg/kg), followed by oral administration of alantolactone to mice for 21 consecutive days after arthritis onset. The severity of CIA was evaluated by an arthritic scoring system and histopathological examination. Levels of cytokines and anti-CII antibodies as well as percentages of splenic Th17 and Th17 differentiation with or without alantolactone treatments (0.62, 1.2 or 2.5 μM) were detected with ELISA and flow cytometry, respectively. Western blot analysis was used to evaluate intracellular signalling in alantolactone-treated spleen cells. RESULTS In CIA mice, alantolactone at 50 mg/kg attenuated RA symptoms, including high arthritis scores, infiltrating inflammatory cells, synovial hyperplasia, bone erosion and levels of the proinflammatory cytokines TNF-α, IL-6 and IL-17A, but not IL-10 in paw tissues. Alantolactone also reduced the number of splenic Th17 cells and the capability of naïve CD4+ T cells to differentiate into the Th17 subset by downregulating STAT3/RORγt signalling by as early as 24 h of treatment. DISCUSSION AND CONCLUSIONS Alantolactone possesses an anti-inflammatory effect that suppresses murine CIA by inhibiting Th17 cell differentiation, suggesting alantolactone is an adjunctive therapeutic candidate to treat rheumatoid arthritis.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/administration & dosage
- Anti-Inflammatory Agents/isolation & purification
- Anti-Inflammatory Agents/pharmacology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/pathology
- Cell Differentiation/drug effects
- Cytokines
- Dose-Response Relationship, Drug
- Female
- Immunologic Factors/administration & dosage
- Immunologic Factors/isolation & purification
- Immunologic Factors/pharmacology
- Inula/chemistry
- Lactones/administration & dosage
- Lactones/isolation & purification
- Lactones/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- STAT3 Transcription Factor/metabolism
- Sesquiterpenes, Eudesmane/administration & dosage
- Sesquiterpenes, Eudesmane/isolation & purification
- Sesquiterpenes, Eudesmane/pharmacology
- Signal Transduction/drug effects
- Th17 Cells/cytology
- Th17 Cells/drug effects
Collapse
Affiliation(s)
- Hsiang-Lai Chen
- Department of Surgery, Division of Urology, Tung's Taichung MetroHarbor Hospital, Taichung, Taiwan, ROC
- Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Shih Chao Lin
- Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Shiming Li
- College of Chemistry & Chemical Engineering, Hubei Key Laboratory for Processing & Application of Catalytic Materials, Huanggang Normal University, Huanggang, PR China
| | - Kuo-Tung Tang
- Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- CONTACT Kuo-Tung Tang Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Chi-Chien Lin
- Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
- Institute of Biomedical Science, The iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
- Chi-Chien Lin Institute of Biomedical Science, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung402, Taiwan, ROC
| |
Collapse
|
26
|
Huang N, Dong H, Luo Y, Shao B. Th17 Cells in Periodontitis and Its Regulation by A20. Front Immunol 2021; 12:742925. [PMID: 34557201 PMCID: PMC8453085 DOI: 10.3389/fimmu.2021.742925] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is a prevalent chronic disease that results in loss of periodontal ligament and bone resorption. Triggered by pathogens and prolonged inflammation, periodontitis is modulated by the immune system, especially pro-inflammatory cells, such as T helper (Th) 17 cells. Originated from CD4+ Th cells, Th17 cells play a central role for they drive and regulate periodontal inflammation. Cytokines secreted by Th17 cells are also major players in the pathogenesis of periodontitis. Given the importance of Th17 cells, modulators of Th17 cells are of great clinical potential and worth of discussion. This review aims to provide an overview of the current understanding of the effect of Th17 cells on periodontitis, as well as a brief discussion of current and potential therapies targeting Th17 cells. Lastly, we highlight this article by summarizing the causal relationship between A20 (encoded by TNFAIP3), an anti-inflammatory molecule, and Th17 cell differentiation.
Collapse
Affiliation(s)
- Ning Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hao Dong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqi Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Ibrahim HIM, AlZahrani A, Hanieh H, Ahmed EA, Thirugnanasambantham K. MicroRNA-7188-5p and miR-7235 regulates Multiple sclerosis in an experimental mouse model. Mol Immunol 2021; 139:157-167. [PMID: 34543842 DOI: 10.1016/j.molimm.2021.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023]
Abstract
The short non-coding microRNAs (miRNAs) have emerged as reliable modulators of various pathological conditions including autoimmune diseases in mammals. The current study, aims to identify new potential differential expressed miRNAs and their downstream mRNA targets of the autoimmune disease, Multiple sclerosis (MS). The study identifies a new set of miRNA(s) that are probably implicated in MS using computational tools. The study further carried-out different in vivo and in vitro experiments to check these identified miRNAs could be role in as therapeutic and prognostic applications. Preliminary insilico screening revealed that miR-659-3p, miR-659-5p, miR-684, miR-3607-3p, miR-3607-5p, miR-3682-3p, miR-3682-5p miR-4647, miR-7188-3p, miR-7188-5p and miR-7235 are specifically elevated in the secondary lymphoid cells of EAE mice. In addition, expression of the downstream target mRNA of these miRNAs such as FXBO33, SGMS-1, ZDHHC-9, GABRA-3, NRXN-2 were reciprocal to miRNA expression in lymphoid cells. These confirmed by applying the mimic and silencing miRNA models, suggesting new inflammatory target genes of these promising miRNA markers. The in vivo adoptive transfer model revealed that the suppression of miRNA-7188-5p and miR-7235 changed the pattern of astrocytes and CNS pathophysiology. The current study opens a new miRNA and their mRNA targets in MS disease. The absence of miRNA-7188-5p and miR-7235 enhanced the disease alleviation, confirms the regulatory effect of these targets. These optimized results highlights new set of miRNA's with therapeutic potential in experimental MS. Further studies are required to confirm these miRNA as therapeutic biomarker.
Collapse
Affiliation(s)
- Hairul-Islam Mohamed Ibrahim
- Biological Sciences Department, College of Science, King Faisal University, Hofouf, Alhasa, 31982, Saudi Arabia; Pondicherry Centre for Biological Science and Educational Trust, Pondicherry, 605005, India.
| | - Abdullah AlZahrani
- Biological Sciences Department, College of Science, King Faisal University, Hofouf, Alhasa, 31982, Saudi Arabia.
| | - Hamza Hanieh
- Department of Medical Analysis, Department of Biological Sciences, Al Hussein Bin Talal University, Maan, Jordan
| | - Emad A Ahmed
- Biological Sciences Department, College of Science, King Faisal University, Hofouf, Alhasa, 31982, Saudi Arabia; Laboratory of Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, Egypt
| | | |
Collapse
|
28
|
Ngamcherdtrakul W, Reda M, Nelson MA, Wang R, Zaidan HY, Bejan DS, Hoang NH, Lane RS, Luoh SW, Leachman SA, Mills GB, Gray JW, Lund AW, Yantasee W. In Situ Tumor Vaccination with Nanoparticle Co-Delivering CpG and STAT3 siRNA to Effectively Induce Whole-Body Antitumor Immune Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100628. [PMID: 34118167 PMCID: PMC8424660 DOI: 10.1002/adma.202100628] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/26/2021] [Indexed: 05/03/2023]
Abstract
The success of immunotherapy with immune checkpoint inhibitors (ICIs) in a subset of individuals has been very exciting. However, in many cancers, responses to current ICIs are modest and are seen only in a small subsets of patients. Herein, a widely applicable approach that increases the benefit of ICIs is reported. Intratumoral administration of augmenting immune response and inhibiting suppressive environment of tumors-AIRISE-02 nanotherapeutic that co-delivers CpG and STAT3 siRNA-results in not only regression of the injected tumor, but also tumors at distant sites in multiple tumor model systems. In particular, three doses of AIRISE-02 in combination with systemic ICIs completely cure both treated and untreated aggressive melanoma tumors in 63% of mice, while ICIs alone do not cure any mice. A long-term memory immune effect is also reported. AIRISE-02 is effective in breast and colon tumor models as well. Lastly, AIRISE-02 is well tolerated in mice and nonhuman primates. This approach combines multiple therapeutic agents into a single nanoconstruct to create whole-body immune responses across multiple cancer types. Being a local therapeutic, AIRISE-02 circumvents regulatory challenges of systemic nanoparticle delivery, facilitating rapid translation to the clinic. AIRISE-02 is under investigational new drug (IND)-enabling studies, and clinical trials will soon follow.
Collapse
Affiliation(s)
| | - Moataz Reda
- PDX Pharmaceuticals, Inc., Portland, OR, 97239, USA
| | | | - Ruijie Wang
- PDX Pharmaceuticals, Inc., Portland, OR, 97239, USA
| | | | | | - Ngoc Ha Hoang
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Ryan S Lane
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Shiuh-Wen Luoh
- VA Portland Health Care System, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Sancy A Leachman
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Dermatology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Gordon B Mills
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Joe W Gray
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Amanda W Lund
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Wassana Yantasee
- PDX Pharmaceuticals, Inc., Portland, OR, 97239, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| |
Collapse
|
29
|
Matsumoto H, Tokimura R, Fujita Y, Matsuoka N, Asano T, Sato S, Temmoku J, Yashiro-Furuya M, Yoshida K, Takahashi R, Tanaka S, Itagaki Y, Honma M, Matsuda N, Watanabe H, Migita K, Kanai K. Meningoencephalitis in relapsing polychondritis: A case report. Medicine (Baltimore) 2021; 100:e26315. [PMID: 34128872 PMCID: PMC8213297 DOI: 10.1097/md.0000000000026315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/25/2021] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Aseptic meningoencephalitis is a rare central nervous system complication of relapsing polychondritis (RP). PATIENT We report a 61-year-old Japanese male patient with spiking fever and impaired consciousness. Neurological examination revealed meningealirritation, and cerebrospinal fluid (CSF) examination showed lymphocytic pleocytosis with elevated protein (199 mg/dL) and interleukin-6 (3810 pg/mL). Serological analysis showed high levels of anti-type II collagen antibodies, and the result of auricular biopsy was consistent with the diagnosis of RP showing cartilage degeneration surrounded by inflammatory cell infiltrations. DIAGNOSIS A clinical diagnosis of RP was made according to the diagnostic criteria established by MacAdams et al. INTERVENTION Steroid pulse therapy (methylprednisolone 1000 mg, consecutive 3 days) followed by oral prednisolone (60 mg/day) resolved the patient's high fever and disturbance of consciousness. OUTCOMES The patient rapidly improved after steroid treatments and has a normal quality of life under the maintenance dose of steroid plus methotrexate (4 mg/week). LESSONS RP-associated meningoencephalitis is a rare complication with significant morbidity and mortality. It should be considered and differentiated in patients with RP with unexplained spiking fever and impaired consciousness. In addition, the assessment of cerebrospinal fluid interleukin-6 levels may be useful to investigate the disease activity of RP-related meningoencephalitis. Further prospective studies are required to confirm this result.
Collapse
Affiliation(s)
| | - Ryo Tokimura
- Department of Neurology, Fukushima Medical University School of Medicine, Fukushima
| | | | | | | | | | | | | | - Kenji Yoshida
- Department of Neurology, Fukushima Medical University School of Medicine, Fukushima
| | - Ryoma Takahashi
- Department of Neurology, Fukushima Medical University School of Medicine, Fukushima
| | - Shoko Tanaka
- Department of Neurology, Fukushima Medical University School of Medicine, Fukushima
| | - Yuya Itagaki
- Department of Neurology, Fukushima Medical University School of Medicine, Fukushima
| | - Mari Honma
- Department of Neurology, Masu Memorial Hospital, Nihonmatsu, Fukushima, Japan
| | - Nozomu Matsuda
- Department of Neurology, Fukushima Medical University School of Medicine, Fukushima
| | | | | | - Kazuaki Kanai
- Department of Neurology, Fukushima Medical University School of Medicine, Fukushima
| |
Collapse
|
30
|
Tomioka H, Tatano Y, Shimizu T, Sano C. Immunoadjunctive Therapy against Bacterial Infections Using Herbal Medicines Based on Th17 Cell-mediated Protective Immunity. Curr Pharm Des 2021; 27:3949-3962. [PMID: 34102961 DOI: 10.2174/1381612827666210608143449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/27/2021] [Indexed: 11/22/2022]
Abstract
One of the major health concerns in the world is the global increase in intractable bacterial infectious diseases due to the emergence of multi- and extensively drug-resistant bacterial pathogens as well as an increase in compromised hosts around the world. Particularly, in the case of mycobacteriosis, the high incidence of tuberculosis in developing countries, resurgence of tuberculosis in industrialized countries, and increase in the prevalence of Mycobacterium avium complex infections are important worldwide health concerns. However, the development of novel antimycobacterial drugs is currently making slow progress. Therefore, it is considered that devising improved administration protocols for clinical treatment against refractory mycobacteriosis using existing chemotherapeutics is more practical than awaiting the development of new antimycobacterial drugs. The regulation of host immune responses using immunoadjunctive agents may increase the efficacy of antimicrobial treatment against mycobacteriosis. The same situations also exist in cases of intractable infectious diseases due to common bacteria other than mycobacteria. The mild and long-term up-regulation of host immune reactions in hosts with intractable chronic bacterial infections, using herbal medicines and medicinal plants, may be beneficial for such immunoadjunctive therapy. This review describes the current status regarding basic and clinical studies on therapeutic regimens using herbal medicines, useful for the clinical treatment of patients with intractable bacterial infections. In particular, we focus on immunoadjunctive effects of herbal medicines on the establishment and manifestation of host antibacterial immunity related to the immunological roles of Th17 cell lineages.
Collapse
Affiliation(s)
- Haruaki Tomioka
- Department of Basic Medical Science for Nursing, Department of Contemporary Psychology, Yasuda Women's University, Hiroshima, Japan
| | - Yutaka Tatano
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan
| | - Toshiaki Shimizu
- Department of Nutrition Administration, Yasuda Women's University, Hiroshima,, Japan
| | - Chiaki Sano
- Department of Community Medicine Management, Shimane University School of Medicine, Izumo, Japan
| |
Collapse
|
31
|
Costunolide ameliorates colitis via specific inhibition of HIF1α/glycolysis-mediated Th17 differentiation. Int Immunopharmacol 2021; 97:107688. [PMID: 33932695 DOI: 10.1016/j.intimp.2021.107688] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/02/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022]
Abstract
Ulcerative colitis (UC) is a chronic idiopathic inflammatory disorder of colon. Costunolide, the main active constituent of Radix Aucklandiae, has been demonstrated to possess anti-inflammatory and immunomodulation activities. The aim of this study is to investigate the effect of costunolide on UC induced by dextran sulfate sodium (DSS). Results showed that oral administration of costunolide significantly improved the disease active index (DAI), rescued the reduction of colon length, downregulated myeloperoxidase (MPO) activity, alleviated the pathological changes, and decreased the levels of proinflammatory cytokines in colons of colitis mice. Costunolide also rebalanced Th17/Treg cells in colons, mesenteric lymph nodes and spleen, as indicated by decreased percentages of Th17 cells and reduced mRNA expressions of Rorc, Il17a. Interestingly, the in vitro experiment showed that no significant change in dendritic cell maturation, mRNA expressions of Ifng, Il6 and Treg cell differentiation, but a significant decreased Th17 cell differentiation was observed upon costunolide treatment. Deeper mechanistic studies showed that costunolide triggered the prolyl hydroxylase 2 (PHD2)-triggered proline hydroxylation-ubiquitination-proteasome degradation of HIF-1α, which in turn inactivated glycolytic process in Th17 rather than Treg cells. These findings clearly suggest that inhibition of HIF-1α-mediated glycolysis by costunolide is specifically responsible for Th17 cell differentiation and subsequent alleviation of UC and sets the stage for a new perspective on immune-metabolism therapy for colitis.
Collapse
|
32
|
Guo K, Zhang X. Cytokines that Modulate the Differentiation of Th17 Cells in Autoimmune Uveitis. J Immunol Res 2021; 2021:6693542. [PMID: 33816637 PMCID: PMC7990547 DOI: 10.1155/2021/6693542] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence has suggested that T helper 17 (Th17) cells play a central role in the pathogenesis of ocular immune disease. The association between pathogenic Th17 cells and the development of uveitis has been confirmed in experimental and clinical studies. Several cytokines affect the initiation and stabilization of the differentiation of Th17 cells. Therefore, understanding the mechanism of related cytokines in the differentiation of Th17 cells is important for exploring the pathogenesis and the potential therapeutic targets of uveitis. This article briefly describes the structures, mechanisms, and targeted drugs of cytokines-including interleukin (IL)-6, transforming growth factor-β1 (TGF-β1), IL-1β, IL-23, IL-27, IL-35, IL-2, IL-4, IL-21, and interferon (IFN)-γ-which have an important influence on the differentiation of Th17 cells and discusses their potential as therapeutic targets for treating autoimmune uveitis.
Collapse
Affiliation(s)
- Kailei Guo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
33
|
Aryl hydrocarbon receptor is essential for the pathogenesis of pulmonary arterial hypertension. Proc Natl Acad Sci U S A 2021; 118:2023899118. [PMID: 33836606 PMCID: PMC7980441 DOI: 10.1073/pnas.2023899118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Inflammatory signals are thought to be crucial for the pathogenesis of PAH; however, the underlying mechanism is still largely unknown. In this study, we demonstrate that AHR makes a causal contribution to the pathogenesis of PAH, activating a focal inflammatory response in the lungs and promoting infiltration of immune cells from the bone marrow. Furthermore, we found that PAH patients with higher AHR agonistic activity in sera are more susceptible to severe clinical events than those with lower activity. Because conventional therapy for pulmonary hypertension targeting pulmonary artery vasodilation has limited efficacy against severe PAH, the AHR-signaling pathway represents a promising therapeutic target for PAH. In addition, AHR agonistic activity in serum represents a biomarker for PAH. Pulmonary arterial hypertension (PAH) is a devastating disease characterized by arteriopathy in the small to medium-sized distal pulmonary arteries, often accompanied by infiltration of inflammatory cells. Aryl hydrocarbon receptor (AHR), a nuclear receptor/transcription factor, detoxifies xenobiotics and regulates the differentiation and function of various immune cells. However, the role of AHR in the pathogenesis of PAH is largely unknown. Here, we explore the role of AHR in the pathogenesis of PAH. AHR agonistic activity in serum was significantly higher in PAH patients than in healthy volunteers and was associated with poor prognosis of PAH. Sprague–Dawley rats treated with the potent endogenous AHR agonist, 6-formylindolo[3,2-b]carbazole, in combination with hypoxia develop severe pulmonary hypertension (PH) with plexiform-like lesions, whereas Sprague–Dawley rats treated with the potent vascular endothelial growth factor receptor 2 inhibitors did not. Ahr-knockout (Ahr−/−) rats generated using the CRISPR/Cas9 system did not develop PH in the SU5416/hypoxia model. A diet containing Qing-Dai, a Chinese herbal drug, in combination with hypoxia led to development of PH in Ahr+/+ rats, but not in Ahr−/− rats. RNA-seq analysis, chromatin immunoprecipitation (ChIP)-seq analysis, immunohistochemical analysis, and bone marrow transplantation experiments show that activation of several inflammatory signaling pathways was up-regulated in endothelial cells and peripheral blood mononuclear cells, which led to infiltration of CD4+ IL-21+ T cells and MRC1+ macrophages into vascular lesions in an AHR-dependent manner. Taken together, AHR plays crucial roles in the development and progression of PAH, and the AHR-signaling pathway represents a promising therapeutic target for PAH.
Collapse
|
34
|
The neutrophil antimicrobial peptide cathelicidin promotes Th17 differentiation. Nat Commun 2021; 12:1285. [PMID: 33627652 PMCID: PMC7904761 DOI: 10.1038/s41467-021-21533-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/26/2021] [Indexed: 01/31/2023] Open
Abstract
The host defence peptide cathelicidin (LL-37 in humans, mCRAMP in mice) is released from neutrophils by de-granulation, NETosis and necrotic death; it has potent anti-pathogen activity as well as being a broad immunomodulator. Here we report that cathelicidin is a powerful Th17 potentiator which enhances aryl hydrocarbon receptor (AHR) and RORγt expression, in a TGF-β1-dependent manner. In the presence of TGF-β1, cathelicidin enhanced SMAD2/3 and STAT3 phosphorylation, and profoundly suppressed IL-2 and T-bet, directing T cells away from Th1 and into a Th17 phenotype. Strikingly, Th17, but not Th1, cells were protected from apoptosis by cathelicidin. We show that cathelicidin is released by neutrophils in mouse lymph nodes and that cathelicidin-deficient mice display suppressed Th17 responses during inflammation, but not at steady state. We propose that the neutrophil cathelicidin is required for maximal Th17 differentiation, and that this is one method by which early neutrophilia directs subsequent adaptive immune responses.
Collapse
|
35
|
B Cells and Antibodies as Targets of Therapeutic Intervention in Neuromyelitis Optica Spectrum Disorders. Pharmaceuticals (Basel) 2021; 14:ph14010037. [PMID: 33419217 PMCID: PMC7825598 DOI: 10.3390/ph14010037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 12/11/2022] Open
Abstract
The first description of neuromyelitis optica by Eugène Devic and Fernand Gault dates back to the 19th century, but only the discovery of aquaporin-4 autoantibodies in a major subset of affected patients in 2004 led to a fundamentally revised disease concept: Neuromyelits optica spectrum disorders (NMOSD) are now considered autoantibody-mediated autoimmune diseases, bringing the pivotal pathogenetic role of B cells and plasma cells into focus. Not long ago, there was no approved medication for this deleterious disease and off-label therapies were the only treatment options for affected patients. Within the last years, there has been a tremendous development of novel therapies with diverse treatment strategies: immunosuppression, B cell depletion, complement factor antagonism and interleukin-6 receptor blockage were shown to be effective and promising therapeutic interventions. This has led to the long-expected official approval of eculizumab in 2019 and inebilizumab in 2020. In this article, we review current pathogenetic concepts in NMOSD with a focus on the role of B cells and autoantibodies as major contributors to the propagation of these diseases. Lastly, by highlighting promising experimental and future treatment options, we aim to round up the current state of knowledge on the therapeutic arsenal in NMOSD.
Collapse
|
36
|
Aghbash PS, Hemmat N, Nahand JS, Shamekh A, Memar MY, Babaei A, Baghi HB. The role of Th17 cells in viral infections. Int Immunopharmacol 2021; 91:107331. [PMID: 33418239 DOI: 10.1016/j.intimp.2020.107331] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 02/07/2023]
Abstract
The present review provides an overview of recent advances regarding the function of Th17 cells and their produced cytokines in the progression of viral diseases. Viral infections alone do not lead to virus-induced malignancies, as both genetic and host safety factors are also involved in the occurrence of malignancies. Acquired immune responses, through the differentiation of Th17 cells, form the novel components of the Th17 cell pathway when reacting with viral infections all the way from the beginning to its final stages. As a result, instead of inducing the right immune responses, these events lead to the suppression of the immune system. In fact, the responses from Th17 cells during persistent viral infections causes chronic inflammation through the production of IL-17 and other cytokines which provide a favorable environment for tumor growth and its development. Additionally, during the past decade, these cells have been understood to be involved in tumor progression and metastasis. However, further research is required to understand Th17 cells' immune mechanisms in the vast variety of viral diseases. This review aims to determine the roles and effects of the immune system, especially Th17 cells, in the progression of viral diseases; which can be highly beneficial for the diagnosis and treatment of these infections.
Collapse
Affiliation(s)
- Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Drug Applied Research Centre, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, ZIP Code 14155 Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, ZIP Code 14155 Tehran, Iran
| | - Ali Shamekh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran
| | - Abouzar Babaei
- Department of Virology, Faculty of Medicine, Tarbiat Modares University, ZIP Code 14155 Tehran, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran.
| |
Collapse
|
37
|
Zheng Y, Hou L, Wang XL, Zhao CG, Du Y. A review of nephrotic syndrome and atopic diseases in children. Transl Androl Urol 2021; 10:475-482. [PMID: 33532335 PMCID: PMC7844495 DOI: 10.21037/tau-20-665] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pediatric nephrotic syndrome (NS) is a common and recurrent glomerular disease in childhood. Furthermore, 50–70% of children with NS have increased total IgE in peripheral blood and a variety of clinical manifestations of atopic diseases. Hence, NS has many similarities with atopic diseases. However, no study has revealed a clear link between these two diseases. The present review discusses the correlation between pediatric NS and atopic diseases in children from three aspects: pathogenesis, cytokine change, and treatment. There are similar changes in T cells in terms of pathogenesis, with Th1/Th2 dysfunction and Treg cell function downregulation. Cytokine changes are similar and manifest as an increase in Th2 cytokines, TNF-α and TGF-β1, and a decrease in IL-10. Glucocorticoids, immunosuppressants and biological agents are used for the treatment of these two diseases. Therefore, it was speculated that NS and atopic diseases may be the same kind of disease, have a similar pathogenesis, and only exhibit different clinical manifestations due to different affected parts of the disease.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ling Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiu-Li Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cheng-Guang Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Du
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
38
|
Rosado-Sánchez I, De Pablo-Bernal R, Rull A, Gónzalez J, Moreno S, Vinuesa D, Estrada V, Muñoz-Fernández MÁ, Vidal F, Leal M, Pacheco YM. Increased Frequencies of Myeloid-Derived Suppressor Cells Precede Immunodiscordance in HIV-Infected Subjects. Front Immunol 2020; 11:581307. [PMID: 33240269 PMCID: PMC7677300 DOI: 10.3389/fimmu.2020.581307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/13/2020] [Indexed: 12/26/2022] Open
Abstract
Background We have previously observed increased levels of inflammatory biomarkers and Th17 as well as Treg cells, but not other T-cell specific alterations, preceding immunodiscordance of successfully-treated HIV-infected subjects. Our hypothesis is that this could be related with potential alterations in myeloid-derived suppressor cells (MDSCs) and/or monocyte subsets. Methods We determined the frequencies of MDSCs and monocyte subsets and the expression of several functional markers (CCR2, β7-integrin, IDO, PDL1, CD11b) in HIV-infected subjects before treatment. We additionally analyzed follow-up samples after 24 months of suppressive cART in a subgroup of subjects. Bivariate regressions were performed, and correlations with soluble proinflammatory and bacterial translocation biomarkers, as well as with Th17/Treg ratio and anti-CMV titers were explored. Results Increased frequencies of MDSCs, but normal distribution of monocyte subsets, preceded immunodiscordance. The expression of several functional markers, such as CCR2, CD16, CD11b and PDL1, on MDSCs and monocyte subsets was altered in this scenario. MDSC and monocyte-related functional markers were associated with soluble biomarkers and T-cell parameters. Several of these cellular alterations were not restored after 24 months of suppressive cART. Conclusion An early immunosuppressive environment, characterized by the expansion of MDSCs and Tregs, precedes immunodiscordance and is related with a highly inflammatory status.
Collapse
Affiliation(s)
- Isaac Rosado-Sánchez
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/Consejo Superior de Investigaciones Científicas (CSIC)/University of Seville, Seville, Spain
| | - Rebeca De Pablo-Bernal
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/Consejo Superior de Investigaciones Científicas (CSIC)/University of Seville, Seville, Spain
| | - Anna Rull
- Universitat Rovira i Virgili, Instituto de Investigación Sanitaria Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Juan Gónzalez
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario La Paz, Madrid, Spain
| | - Santiago Moreno
- Servicio de Enfermedades Infecciosas, Hospital Ramón y Cajal, Madrid, Spain
| | - David Vinuesa
- Unidad de Enfermedades Infecciosas, Hospital Universitario, Universitario San Cecilio, Granada, Spain
| | | | - María Ángeles Muñoz-Fernández
- Molecular Immunology Laboratory, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Health Research Institute Gregorio Marañón (IiSGM), Spanish HIV HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Francesc Vidal
- Universitat Rovira i Virgili, Instituto de Investigación Sanitaria Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Manuel Leal
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/Consejo Superior de Investigaciones Científicas (CSIC)/University of Seville, Seville, Spain.,Internal Medicine Service, Hospital Viamed Santa Ángela de la Cruz, Seville, Spain
| | - Yolanda María Pacheco
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/Consejo Superior de Investigaciones Científicas (CSIC)/University of Seville, Seville, Spain
| |
Collapse
|
39
|
Differential Effects of MS Therapeutics on B Cells-Implications for Their Use and Failure in AQP4-Positive NMOSD Patients. Int J Mol Sci 2020; 21:ijms21145021. [PMID: 32708663 PMCID: PMC7404039 DOI: 10.3390/ijms21145021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
B cells are considered major contributors to multiple sclerosis (MS) pathophysiology. While lately approved disease-modifying drugs like ocrelizumab deplete B cells directly, most MS medications were not primarily designed to target B cells. Here, we review the current understanding how approved MS medications affect peripheral B lymphocytes in humans. These highly contrasting effects are of substantial importance when considering these drugs as therapy for neuromyelitis optica spectrum disorders (NMOSD), a frequent differential diagnosis to MS, which is considered being a primarily B cell- and antibody-driven diseases. Data indicates that MS medications, which deplete B cells or induce an anti-inflammatory phenotype of the remaining ones, were effective and safe in aquaporin-4 antibody positive NMOSD. In contrast, drugs such as natalizumab and interferon-β, which lead to activation and accumulation of B cells in the peripheral blood, lack efficacy or even induce catastrophic disease activity in NMOSD. Hence, we conclude that the differential effect of MS drugs on B cells is one potential parameter determining the therapeutic efficacy or failure in antibody-dependent diseases like seropositive NMOSD.
Collapse
|
40
|
Prado DS, Veras FP, Ferreira RG, Damasceno LEA, Melo PH, Zamboni DS, Cunha TM, Cunha FQ, Alves-Filho JC. NLRP12 controls arthritis severity by acting as a checkpoint inhibitor of Th17 cell differentiation. FASEB J 2020; 34:10907-10919. [PMID: 32632939 DOI: 10.1096/fj.202000795r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022]
Abstract
Nucleotide oligomerization domain (NOD)-like receptor-12 (NLRP12) has emerged as a negative regulator of inflammation. It is well described that the Th17 cell population increases in patients with early Rheumatoid Arthritis (RA), which correlates with the disease activity. Here, we investigated the role of NLRP12 in the differentiation of Th17 cells and the development of experimental arthritis, using the antigen-induced arthritis (AIA) murine model. We found that Nlrp12-/ - mice develop severe arthritis characterized by an exacerbated Th17-mediated inflammatory response with increases in the articular hyperalgesia, knee joint swelling, and neutrophil infiltration. Adoptive transfer of Nlrp12-/ - cells into WT mice recapitulated the hyperinflammatory response seen in Nlrp12-/ - mice and the treatment with anti-IL-17A neutralizing antibody abrogated arthritis development in Nlrp12-/ - mice, suggesting that NLRP12 works as an inhibitor of Th17 cell differentiation. Indeed, Th17 cell differentiation markedly increases in Nlrp12-/- T cells cultured under the Th17-skewing condition. Mechanistically, we found that NLRP12 negatively regulates IL-6-induced phosphorylation of STAT3 in T cells. Finally, pharmacological inhibition of STAT3 reduced Th17 cell differentiation and abrogated hyperinflammatory arthritis observed in Nlrp12-/ - mice. Thus, we described a novel role for NLRP12 as a checkpoint inhibitor of Th17 cell differentiation, which controls the severity of experimental arthritis.
Collapse
Affiliation(s)
- Douglas Silva Prado
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Flavio P Veras
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Raphael Gomes Ferreira
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luis Eduardo Alves Damasceno
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Paulo Henrique Melo
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Dario Simões Zamboni
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thiago Mattar Cunha
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando Queiroz Cunha
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - José Carlos Alves-Filho
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
41
|
Molecular Mechanisms of Premature Aging in Hemodialysis: The Complex Interplay Between Innate and Adaptive Immune Dysfunction. Int J Mol Sci 2020; 21:ijms21103422. [PMID: 32408613 PMCID: PMC7279398 DOI: 10.3390/ijms21103422] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Hemodialysis (HD) patient are known to be susceptible to a wide range of early and long-term complication such as chronic inflammation, infections, malnutrition, and cardiovascular disease that significantly affect the incidence of mortality. A large gap between the number of people with end-stage kidney disease (ESKD) and patients who received kidney transplantation has been identified. Therefore, there is a huge need to explore the underlying pathophysiology of HD complications in order to provide treatment guidelines. The immunological dysregulation, involving both the innate and adaptive response, plays a crucial role during the HD sessions and in chronic, maintenance treatments. Innate immune system mediators include the dysfunction of neutrophils, monocytes, and natural killer (NK) cells with signaling mediated by NOD-like receptor P3 (NLRP3) and Toll-like receptor 4 (TLR4); in addition, there is a significant activation of the complement system that is mediated by dialysis membrane-surfaces. These effectors induce a persistent, systemic, pro-inflammatory, and pro-coagulant milieu that has been described as inflammaging. The adaptive response, the imbalance in the CD4+/CD8+ T cell ratio, and the reduction of Th2 and regulatory T cells, together with an altered interaction with B lymphocyte by CD40/CD40L, have been mainly implicated in immune system dysfunction. Altogether, these observations suggest that intervention targeting the immune system in HD patients could improve morbidity and mortality. The purpose of this review is to expand our understanding on the role of immune dysfunction in both innate and adaptive response in patients undergoing hemodialysis treatment.
Collapse
|
42
|
Rosso M, Saxena S, Chitnis T. Targeting IL-6 receptor in the treatment of neuromyelitis optica spectrum: a review of emerging treatment options. Expert Rev Neurother 2020; 20:509-516. [PMID: 32306778 DOI: 10.1080/14737175.2020.1757434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Recent research has shown that IL-6 receptor (IL-6 R) inhibitors like tocilizumab and satralizumab are effective in reducing the relapse rate in patients with NMOSD.Areas covered: This review article explores current concepts in NMOSD management and focuses on IL-6 R as a therapeutic target. The authors delve into the biological and immunological role of IL-6 in the pathogenesis of NMOSD. Further, the authors summarize the most recent findings on the use of anti-IL-6 R monoclonal antibodies, tocilizumab and satralizumab, in the treatment of NMOSD.Expert opinion: A better understanding of the role of cytokines in NMOSD may provide the neurologist with novel therapies for this disease. IL-6 R appears to be a central hub to NMOSD pathogenesis and a relevant therapeutic target.
Collapse
Affiliation(s)
- Mattia Rosso
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Ann Romney Center for Neurologic Disease, Harvard Medical School, Boston, Massachusetts, USA
| | - Shrishti Saxena
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Ann Romney Center for Neurologic Disease, Harvard Medical School, Boston, Massachusetts, USA
| | - Tanuja Chitnis
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Ann Romney Center for Neurologic Disease, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Circulating IL-17A Levels in Postmenopausal Women with Primary Hyperparathyroidism. Mediators Inflamm 2020; 2020:3417329. [PMID: 32256191 PMCID: PMC7099202 DOI: 10.1155/2020/3417329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 01/21/2023] Open
Abstract
Background Primary hyperparathyroidism (PHPT) is a common cause of secondary osteoporosis in postmenopausal women. Th17 lymphocytes and the released cytokine IL-17A play an important role in bone metabolism. Th17 cells have been shown to be activated by PTH, and peripheral blood T cells from patients affected with PHPT express higher levels of IL-17A mRNA than controls. Aim To investigate circulating levels of IL-17A and the ratio RANKL/OPG, as markers of osteoclastogenesis, in 50 postmenopausal PHPT women compared with postmenopausal osteoporotic non-PHPT women (n = 20). Results Circulating levels of IL-17A were similarly detectable in most PHPT and non-PHPT osteoporotic women (12.9 (8.4-23.1) vs. 11.3 (8.3-14.3) pg/ml, median (range interquartile), P = 0.759), at variance with premenopausal women where IL-17A was undetectable. In PHPT women, any significant correlations could be detected between circulating IL-17A levels and PTH levels. Nonetheless, significant negative correlations between circulating IL-17A and ionized calcium levels (r = -0.294, P = 0.047) and urine calcium excretions (r = -0.300, P = 0.045) were found. Moreover, PHPT women were characterized by positive correlations between IL-17A levels and femur neck (r = 0.364, P = 0.021) and total hip (r = 0.353, P = 0.015) T-scores. Circulating IL-17A levels did not show any significant correlation with sRANKL, OPG, and sRANKL/OPG ratio in PHPT women. Conclusions In postmenopausal PHPT women, circulating IL-17A levels were similar to those detected in postmenopausal non-PHPT women, showing a disruption of the relationship observed in postmenopausal osteoporosis among circulating PTH, sRANKL, OPG, IL-17A, and bone demineralization in postmenopausal PHPT women. The data support an osteogenic effect of IL-17A in postmenopausal PHPT women.
Collapse
|
44
|
Joetham A, Schedel M, Ning F, Wang M, Takeda K, Gelfand EW. Dichotomous role of TGF-β controls inducible regulatory T-cell fate in allergic airway disease through Smad3 and TGF-β-activated kinase 1. J Allergy Clin Immunol 2020; 145:933-946.e4. [PMID: 31626843 PMCID: PMC11098441 DOI: 10.1016/j.jaci.2019.09.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/13/2019] [Accepted: 09/27/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Inducible CD4+CD25+ regulatory T (iTreg) cells can become pathogenic effector cells, enhancing lung allergic responses. OBJECTIVE We aimed to define the underlying cellular and molecular pathways activated by TGF-β, which determine the suppressor or enhancing activities of iTreg cells. METHODS Sensitized wild-type and CD8-deficient (CD8-/-) mice were challenged with allergen. Isolated CD4+CD25- T cells were activated by using anti-CD3/anti-CD28. To generate suppressor iTreg cells, cells were then differentiated in the presence of TGF-β, whereas IL-17-producing effector T cells were additionally exposed to IL-6. After TGF-β, Smad3 and TGF-β-activated kinase 1 (TAK1) kinase levels were monitored. The consequences of inhibiting either kinase were determined in vitro and after transfer into CD8-/- recipients. Quantitative PCR and chromatin immunoprecipitation were used to monitor gene expression and histone modifications at the retinoic acid-related orphan receptor γt (Rorγt) locus. RESULTS In wild-type mice, iTreg cells suppressed lung allergic responses linked to Smad3-dependent forkhead box P3 (Foxp3) expression and IL-10 production. In the presence of IL-6, iTreg cells converted to TH17 cells, mediating a neutrophil-dependent enhancement of lung allergic responses in CD8-/- mice. Conversion was regulated by TAK1. Inhibition or silencing of TAK1 prevented expression of Rorγt and TH17 differentiation through histone modifications of Rorγt; Foxp3 expression and iTreg cell-mediated suppression remained intact. In the same cell, TGF-β induced coexpression of Smad3 and TAK1 proteins; in the presence of IL-6, expression of Smad3 and Foxp3 but not TAK1 decreased. CONCLUSION TGF-β regulates iTreg cell outcomes through 2 distinct signal transduction pathways: one Smad3 dependent and the other TAK1 dependent. The balance of these pathways has important implications in TH17-mediated autoimmune diseases and neutrophil-dependent asthma.
Collapse
Affiliation(s)
- Anthony Joetham
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Michaela Schedel
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Fangkun Ning
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Meiqin Wang
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Katsuyuki Takeda
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Erwin W Gelfand
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo.
| |
Collapse
|
45
|
Pietrzak A, Chabros P, Grywalska E, Pietrzak D, Kandzierski G, Wawrzycki B, Roliñski J, Gawêda K, Krasowska D. Serum concentration of interleukin 6 is related to inflammation and dyslipidemia in patients with psoriasis. Postepy Dermatol Alergol 2020; 37:41-45. [PMID: 32467682 PMCID: PMC7247055 DOI: 10.5114/ada.2018.78028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 08/06/2018] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Patients with psoriasis and psoriatic arthritis (PsA) have metabolic disturbances, which may be due to chronic inflammation. AIM Because interleukin-6 (IL-6) regulates both metabolic and inflammatory processes, we evaluated IL-6 as a potential marker of inflammation and metabolic disturbances in psoriasis. MATERIAL AND METHODS This study involved 93 patients with psoriasis, including 31 patients with concurrent PsA. We investigated whether serum markers of lipid metabolism and inflammation, including IL-6, were related to each other and to disease activity. RESULTS We found that concurrent PsA was associated with higher serum concentrations of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and IL-6. In patients with psoriasis alone, the IL-6 serum concentration correlated positively with the concentrations of TC and LDL-c and with erythrocyte sedimentation rates (ESRs). Moreover, IL-6 concentrations tended to correlate positively with the percentage of the body area affected by psoriatic lesions. Among all patients, those with normal blood lipids had lower ESRs and IL-6 concentrations than patients with abnormal blood lipids. A logistic regression model showed that PsA, Psoriasis Area Severity Index (PASI), and ESR were significant predictors of the serum IL-6 concentration. CONCLUSIONS Interleukin-6 may be an indicator of inflammatory activity in psoriasis. Moreover, IL-6 may be related to lipid abnormalities in patients with this disease.
Collapse
Affiliation(s)
- Aldona Pietrzak
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Pawe≥ Chabros
- Department of Orthopedics and Traumatology, Medical University of Lublin, Lublin, Poland
| | - Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Lublin, Poland
| | - Daniel Pietrzak
- First Clinic of Anesthesiology and Intensive Therapy with Clinical Pediatric Department, Medical University of Lublin, Lublin, Poland
| | - Grzegorz Kandzierski
- Department of Pediatric Orthopedics and Rehabilitation, Medical University of Lublin, Lublin, Poland
| | - Bart≥omiej Wawrzycki
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Jacek Roliñski
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Gawêda
- Department of Orthopedics and Traumatology, Medical University of Lublin, Lublin, Poland
| | - Dorota Krasowska
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
46
|
Abdolmaleki F, Kovanen PT, Mardani R, Gheibi-Hayat SM, Bo S, Sahebkar A. Resolvins: Emerging Players in Autoimmune and Inflammatory Diseases. Clin Rev Allergy Immunol 2020; 58:82-91. [PMID: 31267470 DOI: 10.1007/s12016-019-08754-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Resolvins, belonging to the group of specialized proresolving mediators (SPMs), are metabolic products of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) and are synthesized during the initial phases of acute inflammatory responses to promote the resolution of inflammation. Resolvins are produced for termination of neutrophil infiltration, stimulation of the clearance of apoptotic cells by macrophages, and promotion of tissue remodeling and homeostasis. Metabolic dysregulation due to either uncontrolled activity of pro-inflammatory responses or to inefficient resolution of inflammation results in chronic inflammation and may also lead to atherosclerosis or other chronic autoimmune diseases such as rheumatoid arthritis, psoriasis, systemic lupus erythematosus, vasculitis, inflammatory bowel diseases, and type 1 diabetes mellitus. The pathogenesis of such diseases involves a complex interplay between the immune system and, environmental factors (non-infectious or infectious), and critically depends on individual susceptibility to such factors. In the present review, resolvins and their roles in the resolution of inflammation, as well as the role of these mediators as potential therapeutic agents to counteract specific chronic autoimmune and inflammatory diseases are discussed.
Collapse
Affiliation(s)
- Fereshte Abdolmaleki
- Cellular and Molecular Research Center, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Rajab Mardani
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | | | - Simona Bo
- Department of Medical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Torino, Italy
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
47
|
Kim KE, Jeon S, Song J, Kim TS, Jung MK, Kim MS, Park S, Park SB, Park JM, Park HJ, Cho D. The Novel Synthetic Peptide AESIS-1 Exerts a Preventive Effect on Collagen-Induced Arthritis Mouse Model via STAT3 Suppression. Int J Mol Sci 2020; 21:ijms21020378. [PMID: 31936141 PMCID: PMC7013888 DOI: 10.3390/ijms21020378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 12/31/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that is associated with systemic inflammation and results in the destruction of joints and cartilage. The pathogenesis of RA involves a complex inflammatory process resulting from the action of various proinflammatory cytokines and, therefore, many novel therapeutic agents to block cytokines or cytokine-mediated signaling have been developed. Here, we tested the preventive effects of a small peptide, AESIS-1, in a mouse model of collagen-induced arthritis (CIA) with the aim of identifying a novel safe and effective biological for treating RA. This novel peptide significantly suppressed the induction and development of CIA, resulting in the suppression of synovial inflammation and cartilage degradation in vivo. Moreover, AESIS-1 regulated JAK/STAT3-mediated gene expression in vitro. In particular, the gene with the most significant change in expression was suppressor of cytokine signaling 3 (Socs3), which was enhanced 8-fold. Expression of the STAT3-specific inhibitor, Socs3, was obviously enhanced dose-dependently by AESIS-1 at both the mRNA and protein levels, resulting in a significant reduction of STAT3 phosphorylation in splenocytes from severe CIA mice. This indicated that AESIS-1 regulated STAT3 activity by upregulation of SOCS3 expression. Furthermore, IL-17 expression and the frequency of Th17 cells were considerably decreased by AESIS-1 in vivo and in vitro. Collectively, our data suggest that the novel synthetic peptide AESIS-1 could be an effective therapeutic for treating RA via the downregulation of STAT3 signaling.
Collapse
Affiliation(s)
- Kyung Eun Kim
- Department of Cosmetic Sciences, Sookmyung Women’s University, Chungpa-Dong 2-Ka, Yongsan-ku, Seoul 04310, Korea;
- Nano-Bio Resources Center, Sookmyung Women’s University, Chungpa-Dong 2-Ka, Yongsan-ku, Seoul 04310, Korea;
| | - Suwon Jeon
- Institute of Convergence Science, Korea University, Anam-ro 145, Seongbuk-ku, Seoul 02841, Korea;
| | - Jisun Song
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 02841, Korea; (J.S.); (T.S.K.)
| | - Tae Sung Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 02841, Korea; (J.S.); (T.S.K.)
| | - Min Kyung Jung
- Nano-Bio Resources Center, Sookmyung Women’s University, Chungpa-Dong 2-Ka, Yongsan-ku, Seoul 04310, Korea;
| | - Myun Soo Kim
- Kine Sciences, 525, Seolleung-ro, Gangnam-gu, Seoul 06149, Korea; (M.S.K.); (S.P.)
| | - Sunyoung Park
- Kine Sciences, 525, Seolleung-ro, Gangnam-gu, Seoul 06149, Korea; (M.S.K.); (S.P.)
| | - Seung Beom Park
- Cent’l Res. Inst., Ilyang Pharm. Co., Ltd., Hagal-ro 136beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 17096, Korea; (S.B.P.); (J.M.P.)
| | - Jeong Min Park
- Cent’l Res. Inst., Ilyang Pharm. Co., Ltd., Hagal-ro 136beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 17096, Korea; (S.B.P.); (J.M.P.)
| | - Hyun Jeong Park
- Department of Dermatology, Yeouido St. Mary’s Hospital, The Catholic University of Korea, Seoul 07345, Korea
- Correspondence: (H.J.P.); (D.C.); Tel.: +82-02-3779-1230 (H.J.P.); +82-02-3290-4015 (D.C.)
| | - Daeho Cho
- Institute of Convergence Science, Korea University, Anam-ro 145, Seongbuk-ku, Seoul 02841, Korea;
- Kine Sciences, 525, Seolleung-ro, Gangnam-gu, Seoul 06149, Korea; (M.S.K.); (S.P.)
- Correspondence: (H.J.P.); (D.C.); Tel.: +82-02-3779-1230 (H.J.P.); +82-02-3290-4015 (D.C.)
| |
Collapse
|
48
|
Zhang ZS, Gu Y, Liu BG, Tang H, Hua Y, Wang J. Oncogenic role of Tc17 cells in cervical cancer development. World J Clin Cases 2020; 8:11-19. [PMID: 31970165 PMCID: PMC6962079 DOI: 10.12998/wjcc.v8.i1.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/18/2019] [Accepted: 11/30/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND As one of the subsets of CD8+ T cells, Tc17 cells have recently been identified and are characterized by the secretion of interleukin (IL)-17, which is related to inflammatory diseases.
AIM To assess the status of Tc17 cells in cervical cancer and investigate the biological function of Tc17 cells in cervical cancer development.
METHODS Flow cytometry assay, immunohistochemistry, and immunofluorescence were performed to detect the levels and phenotype of Tc17 cells in blood and tumor samples from patients with cervical cancer. Prior to cell suspension culture, ELISA was carried out to measure the production of IL-6, IL-1β, IL-23, CXCL12, and IL-17 in tumor tissue supernatant and co-cultured supernatant of patients with cervical cancer. In addition, multivariate analysis was performed to identify factors associated with overall survival using the Cox proportional hazards model.
RESULTS Compared with normal tissues, Tc17 cells specifically accumulated in tumor tissues of cervical cancer patients. Cancer cells produced a greater amount of IL-6, IL-1β, and IL-23, which in turn promoted Tc17 cell polarization. Unlike the traditional cytotoxic CD8+ T cells, Tc17 cells secreted IL-17, which subsequently promoted CXCL12 expression in tumor cells, eventually enhancing the proliferation and migration of tumor cells. Thus, the ratio of tumor-infiltrating Tc17 cells was highly correlated with poor clinical outcome in patients with cervical cancer.
CONCLUSION Our data identified the oncogenic role of Tc17 cells in the development of cervical cancer. We propose that the ratio of Tc17 cells may be a useful index in the prognosis of patients with cervical cancer.
Collapse
Affiliation(s)
- Zun-Sheng Zhang
- Department of Obstetrics and Gynecology, Shanghai Seventh People’s Hospital, Shanghai 200120, China
| | - Ying Gu
- Department of Obstetrics and Gynecology, Shanghai Seventh People’s Hospital, Shanghai 200120, China
| | - Bing-Gang Liu
- Department of Obstetrics and Gynecology, Shanghai Seventh People’s Hospital, Shanghai 200120, China
| | - Hong Tang
- Department of Obstetrics and Gynecology, Shanghai Seventh People’s Hospital, Shanghai 200120, China
| | - Yu Hua
- Department of Obstetrics and Gynecology, Shanghai Seventh People’s Hospital, Shanghai 200120, China
| | - Jun Wang
- Department of Obstetrics and Gynecology, Shanghai Seventh People’s Hospital, Shanghai 200120, China
| |
Collapse
|
49
|
Li Y, Huang L, Cai Z, Deng W, Wang P, Su H, Wu Y, Shen H. A Study of the Immunoregulatory Function of TLR3 and TLR4 on Mesenchymal Stem Cells in Ankylosing Spondylitis. Stem Cells Dev 2019; 28:1398-1412. [PMID: 31456484 DOI: 10.1089/scd.2019.0039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yuxi Li
- Department of Orthopedics and Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Huang
- Department of Orthopedics and Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaopeng Cai
- Department of Orthopedics, Sun Yat-sen University Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wen Deng
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Wang
- Department of Orthopedics, Sun Yat-sen University Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hongjun Su
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanfeng Wu
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiyong Shen
- Department of Orthopedics, Sun Yat-sen University Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
50
|
Mlambo T, Tshabalala M, Bandason T, Mhandire K, Mudenge B, Zijenah LS. Correlation of High Interleukin 17A and Interleukin 6 Levels with High Virus Load Among Subtype C HIV-infected, Antiretroviral Therapy-naive Zimbabwean Patients: A Cross-sectional Study. Open AIDS J 2019. [DOI: 10.2174/1874613601913010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction:
In response to the human immunodeficiency virus (HIV) infection, activated immune cells produce several cytokines that alter the immune response and HIV disease progression. We quantified Th1/Th2/Th17 cytokines in an antiretroviral therapy naïve (ART) cohort to investigate their correlation with traditional markers of HIV disease progression; CD4+ T-lymphocytes and virus load (VL).
Methods:
We enrolled 247 HIV-infected ART-naïve participants into the study. CD4+ T- and CD8+ T-lymphocytes were enumerated using flow cytometry. VL was quantified using the Cavidi ExaVirTM Load assay. IL-2, IL-4, IL-6, IL-10, IL-17A, TNF-α, and IFN-γ levels were quantified using the BD Cytometric Bead Array Human Th1/Th2/Th17 cytokine assay. The Kendall’s rank correlation coefficient was used to determine the correlation between log10 transformed data for cytokine levels and CD4+ T- and CD8+ T-lymphocytes, CD4/CD8 ratio, and VL.
Results:
The median CD4+ T- and CD8+ T-lymphocyte counts were 458 cells/µL (IQR:405-556) and 776 cells/µL (IQR:581-1064), respectively. The median CD4/CD8 ratio was 0.6 (IQR: 0.45-0.86). The median VL was log103.3.copies/mL (IQR:2.74-3.93). Low CD4+ T-lymphocyte counts (p=0.010) and CD4/CD8 ratio (p=0.044) were significantly correlated with high VL. There was no significant correlation of cytokine levels with CD4+ T-, CD8+ T-lymphocyte counts and CD4/CD8 ratio. However, high levels of IL-17A (p=0.012) and IL-6 (p=0.034) were significantly correlated with high VL.
Conclusion:
Our study contributes to the little knowledge available on the role of cytokine profiles in the immune response to subtype C HIV infection.
Collapse
|