1
|
Bradl M, Yu Q, Takai Y. The immunological processes behind aquaporin 4-antibody seropositive neuromyelitis optica spectrum disorders. Semin Immunol 2025; 78:101945. [PMID: 40154151 DOI: 10.1016/j.smim.2025.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Ever since the discovery of pathogenic aquaporin 4-specific antibodies in the serum of patients with neuromyelitis optica spectrum disorders current knowledge about clinical observations and diagnosis, and about the underlying pathology and resulting therapies have been put forward in excellent reviews and primary publications. However, in order to further develop novel strategies for the treatment of this disease, there is an urgent need to understand the immunological processes associated with the formation of the pathogenic antibodies, and with aberrant immune responses observed in affected patients. In this review, we will highlight and evaluate important studies on these processes.
Collapse
Affiliation(s)
- Monika Bradl
- Medical University Vienna, Center for Brain Research, Division of Neuroimmunology, Austria.
| | - Qian Yu
- Medical University Vienna, Center for Brain Research, Division of Neuroimmunology, Austria
| | - Yoshiki Takai
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Pathology, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
2
|
Fujio K, Ushijima T, Okamura T, Ota M. The role of polyreactive memory B cells in systemic lupus erythematosus. Int Immunol 2025; 37:189-194. [PMID: 39514642 PMCID: PMC11884719 DOI: 10.1093/intimm/dxae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
In systemic lupus erythematosus (SLE), the production of autoantibodies is a crucial characteristic, and B cells play a significant role in its pathogenesis. B cells are the immune cells most associated with the genetic predispositions of SLE, and recent clinical studies showing that anti-CD19 chimeric antigen receptor (CAR)-T cell therapy induces drug-free remission have underscored the importance of B cells in SLE. Meanwhile, various B-cell subsets exist across different stages of differentiation, from naive B cells to plasma cells, and identifying the important subpopulations within SLE remains a critical future challenge. Years of B-cell repertoire analyses have revealed the importance of polyreactive B-cell receptors (BCRs) and autoantibodies that react to various self-antigens and microbial antigens. Particularly, memory B cells with polyreactive BCRs, which play a crucial role in biological defense during the fetal stage, are characteristically differentiated in SLE. Type I interferon-mediated expression of CXCL13 and IL-21 in CD4+ T cells is associated with the development of polyreactive memory B cells. The expansion of the polyreactive B-cell repertoire, vital for defending against infections such as viruses, may exert an intrinsic function in SLE.
Collapse
Affiliation(s)
- Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Toshiyuki Ushijima
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
3
|
Kramer M, Mele F, Jovic S, Fernandez BM, Jarrossay D, Low JS, Sokollik C, Filipowicz Sinnreich M, Ferrari-Lacraz S, Mieli-Vergani G, Vergani D, Lanzavecchia A, Cassotta A, Terziroli Beretta-Piccoli B, Sallusto F. Clonal analysis of SepSecS-specific B and T cells in autoimmune hepatitis. J Clin Invest 2025; 135:e183776. [PMID: 39817450 PMCID: PMC11735102 DOI: 10.1172/jci183776] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025] Open
Abstract
Autoimmune hepatitis (AIH) is a rare chronic inflammatory liver disease characterized by the presence of autoantibodies, including those targeting O-phosphoseryl-tRNA:selenocysteine-tRNA synthase (SepSecS), also known as soluble liver antigen (SLA). Anti-SepSecS antibodies have been associated with a more severe phenotype, suggesting a key role for the SepSecS autoantigen in AIH. To analyze the immune response to SepSecS in patients with AIH at the clonal level, we combined sensitive high-throughput screening assays with the isolation of monoclonal antibodies (mAbs) and T cell clones. The anti-SepSecS mAbs isolated were primarily IgG1, affinity-matured compared with their germline versions, and recognized at least 3 nonoverlapping epitopes. SepSecS-specific CD4+ T cell clones were found in patients with AIH who were anti-SLA-positive and anti-SLA-negative,and, to a lesser extent, in patients with non-AIH liver diseases and in healthy individuals. SepSecS-specific T cell clones from patients with AIH produced IFN-γ, IL-4, and IL-10, targeted multiple SepSecS epitopes, and, in one patient, were clonally expanded in both blood and liver biopsy. Finally, SepSecS-specific B cell clones, but not those of unrelated specificities, were able to present soluble SepSecS to specific T cells. Collectively, our study provides the first detailed analysis of B and T cell repertoires targeting SepSecS in patients with AIH, offering a rationale for improved targeted therapies.
Collapse
Affiliation(s)
- Michael Kramer
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | - Federico Mele
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | - Sandra Jovic
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | | | - David Jarrossay
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | - Jun Siong Low
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Christiane Sokollik
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Magdalena Filipowicz Sinnreich
- Department of Gastroenterology and Hepatology, Basel University Medical Clinic, Cantonal Hospital Baselland, Liestal, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sylvie Ferrari-Lacraz
- Transplant Immunology Unit & National Laboratory of Immunogenetics, Division of Nephrology, Department of Diagnostic, University Hospital Geneva, Geneva, Switzerland
| | - Giorgina Mieli-Vergani
- MowatLabs, Faculty of Life Sciences & Medicine, King’s College London, King’s College Hospital, London, United Kingdom
| | - Diego Vergani
- MowatLabs, Faculty of Life Sciences & Medicine, King’s College London, King’s College Hospital, London, United Kingdom
| | | | - Antonino Cassotta
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | - Benedetta Terziroli Beretta-Piccoli
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Epatocentro Ticino, Lugano, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| |
Collapse
|
4
|
Sanchez GM, Hirsch ES, VanValkenburg A, Mayer DP, Gbedande K, Francis RL, Song W, Antao OQ, Brimmer KE, Lemenze A, Stephens R, Johnson WE, Weinstein JS. Aberrant zonal recycling of germinal center B cells impairs appropriate selection in lupus. Cell Rep 2024; 43:114978. [PMID: 39527476 PMCID: PMC11682828 DOI: 10.1016/j.celrep.2024.114978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/28/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Autoimmune diseases such as lupus are characterized by polyclonal B cell activation, leading to the production of autoantibodies. The mechanism leading to B cell dysregulation is unclear; however, the defect may lie in selection within germinal centers (GCs). GC B cells cycle between proliferation and mutation in the dark zone and selection in the light zone (LZ). Temporal assessment of GCs from mice with either persistent infection or lupus showed an accumulation of LZ B cells. Yet, only in lupus, GC B cells exhibited reduced proliferation and progressive loss of MYC and FOXO1, which regulate zonal recycling and differentiation. As lupus progressed, decreased mutational frequency and repertoire diversity were associated with reduced responsiveness to CD40 signaling, despite accumulation of plasma cells. Collectively, these findings suggest that lupus disease progression coincides with an intrinsic defect in LZ B cell signaling, altering the zonal recycling, selection, and differentiation of autoreactive B cells.
Collapse
Affiliation(s)
- Gina M Sanchez
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Eden S Hirsch
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Arthur VanValkenburg
- Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Daniel P Mayer
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Komi Gbedande
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Rebecca L Francis
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Wenzhi Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA
| | - Olivia Q Antao
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Kyleigh E Brimmer
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Alexander Lemenze
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Robin Stephens
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - W Evan Johnson
- Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jason S Weinstein
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
5
|
de Silva K, Yan J. Immune Landscape within Cutaneous Lesions of Human Bullous Pemphigoid. J Invest Dermatol 2024:S0022-202X(24)00364-6. [PMID: 39177546 DOI: 10.1016/j.jid.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 08/24/2024]
Affiliation(s)
- Kalpani de Silva
- Department of Neuroscience Training, University of Louisville, Louisville, Kentucky, USA; Kentucky IDeA Networks of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, Kentucky, USA
| | - Jun Yan
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, Kentucky, USA.
| |
Collapse
|
6
|
Chavan SV, Desikan S, Roman CAJ, Huan C. PKCδ Protects against Lupus Autoimmunity. Biomedicines 2024; 12:1364. [PMID: 38927570 PMCID: PMC11202175 DOI: 10.3390/biomedicines12061364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Protein kinase C delta (PKCδ) has emerged as a key protective molecule against systemic lupus erythematosus (SLE or lupus), an autoimmune disease characterized by anti-double stranded (ds) DNA IgGs. Although PKCδ-deficient mice and lupus patients with mutated PRKCD genes clearly demonstrate the requirement for PKCδ in preventing lupus autoimmunity, this critical tolerance mechanism remains poorly understood. We recently reported that PKCδ acts as a key regulator of B cell tolerance by selectively deleting anti-dsDNA B cells in the germinal center (GC). PKCδ's tolerance function is activated by sphingomyelin synthase 2 (SMS2), a lipid enzyme whose expression is generally reduced in B cells from lupus patients. Moreover, pharmacologic strengthening of the SMS2/PKCδ tolerance pathway alleviated lupus pathogenesis in mice. Here, we review relevant publications in order to provide mechanistic insights into PKCδ's tolerance activity and discuss the potential significance of therapeutically targeting PKCδ's tolerance activity in the GC for selectively inhibiting lupus autoimmunity.
Collapse
Affiliation(s)
- Sailee Vijay Chavan
- Program in Molecular and Cellular Biology, The School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.V.C.); (S.D.)
| | - Shreya Desikan
- Program in Molecular and Cellular Biology, The School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.V.C.); (S.D.)
| | - Christopher A J Roman
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| | - Chongmin Huan
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| |
Collapse
|
7
|
Paparoditis P, Shulman Z. The tumor-driven antibody-mediated immune response in cancer. Curr Opin Immunol 2024; 88:102431. [PMID: 38866666 DOI: 10.1016/j.coi.2024.102431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Immune cells in the tumor microenvironment play a crucial role in cancer prognosis and response to immunotherapy. Recent studies highlight the significance of tumor-infiltrating B cells and tertiary lymphoid structures as markers of favorable prognosis and patient-positive response to immune checkpoint blockers in some types of cancer. Although the presence of germinal center B cells and plasma cells in the tumor microenvironment has been established, determining their tumor reactivity remains challenging. The few known tumor targets range from viral proteins to self and altered self-proteins. The emergence of self-reactive antibodies in patients with cancer, involves the opposing forces of antigen-driven affinity increase and peripheral tolerance mechanisms. Here, B cell tumor antigen specificity and affinity maturation in tumor-directed immune responses in cancer are discussed.
Collapse
Affiliation(s)
- Philipp Paparoditis
- Department of Systems Immunology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ziv Shulman
- Department of Systems Immunology, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
8
|
Rosetti F, Madera-Salcedo IK, Crispín JC. Relevance of acquired T cell molecular defects in the immunopathogenesis of SLE. Clin Immunol 2024; 263:110225. [PMID: 38642784 DOI: 10.1016/j.clim.2024.110225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/07/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Systemic lupus erythematosus (SLE) and other autoimmune diseases are thought to develop in genetically predisposed individuals when triggered by environmental factors. This paradigm does not fully explain disease development, as it fails to consider the delay between birth and disease expression. In this review, we discuss observations described in T cells from patients with SLE that are not related to hereditary factors and have therefore been considered secondary to the disease process itself. Here, we contextualize some of those observations and argue that they may represent a pathogenic layer between genetic factors and disease development. Acquired changes in T cell phenotype and function in the setting of SLE may affect the immune system, creating a predisposition towards a more inflammatory and pathogenic system that amplifies autoimmunity and facilitates disease development.
Collapse
Affiliation(s)
- Florencia Rosetti
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Mexico City 14080, Mexico
| | - Iris K Madera-Salcedo
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Mexico City 14080, Mexico
| | - José C Crispín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Mexico City 14080, Mexico; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico.
| |
Collapse
|
9
|
Xiao ZX, Liang R, Olsen N, Zheng SG. Roles of IRF4 in various immune cells in systemic lupus erythematosus. Int Immunopharmacol 2024; 133:112077. [PMID: 38615379 DOI: 10.1016/j.intimp.2024.112077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Interferon regulatory factor 4 (IRF4) is a member of IRF family of transcription factors which mainly regulates the transcription of IFN. IRF4 is restrictively expressed in immune cells such as T and B cells, macrophages, as well as DC. It is essential for the development and function of these cells. Since these cells take part in the homeostasis of the immune system and dysfunction of them contributes to the initiation and progress of systemic lupus erythematosus (SLE), the roles of IRF4 in the SLE development becomes an important topic. Here we systemically discuss the biological characteristics of IRF4 in various immune cells and analyze the pathologic effects of IRF4 alteration in SLE and the potential targeting therapeutics of SLE.
Collapse
Affiliation(s)
- Ze Xiu Xiao
- Department of Immunology, the School of Cell and Gene Therapy, Songjiang Research Institute and Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China; Department of Clinical Immunology, the Third Affiliated Hospital at the Sun Yat-sen University, Guangzhou 510630, China
| | - Rongzhen Liang
- Department of Immunology, the School of Cell and Gene Therapy, Songjiang Research Institute and Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China
| | - Nancy Olsen
- Division of Rheumatology, Department of Medicine, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Song Guo Zheng
- Department of Immunology, the School of Cell and Gene Therapy, Songjiang Research Institute and Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China.
| |
Collapse
|
10
|
Rios-Serna LJ, Rosero AM, Tobón GJ, Cañas CA. Biological changes in human B-cell line Ramos (RA.1) related to increasing doses of human parathyroid hormone. Heliyon 2024; 10:e30556. [PMID: 38770298 PMCID: PMC11103429 DOI: 10.1016/j.heliyon.2024.e30556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Background The etiopathogenesis of autoimmune diseases is multifactorial, including hormonal factors. Remission of autoimmunity has been observed following treatment for concomitant hyperparathyroidism. Additionally, patients with autoimmune diseases have shown increased expression of parathyroid hormone receptor (PTH1R) and altered distribution of B cells subsets. Hence, this study aims to evaluate potential mechanisms and in vitro effects of PTH stimulation on B lymphocytes. Methods Using the human B-cell line Ramos (RA.1), various biological effects were evaluated with and without parathyroid hormone (PTH) stimulation at varying concentrations. Flow cytometry was employed to evaluate the phenotype of B lymphocytes based on IgD and CD38 expression, apoptosis induction via Annexin V and proliferation using CFSE. IgM production was quantified through ELISA, and Western blot analysis was performed to assess syk protein phosphorylation as an indicator of cell activation. Results Ramos cells (RA.1) evidenced a statistically significant change in the phenotype under human PTH stimulation, demonstrating an increased proportion of germinal centre cells (Bm3-Bm4) when stimulated with high concentrations of PTH. Conclusions The in vitro effects of PTH in B cells subsets align with previous findings of an altered phenotype in B lymphocytes expressing PTH1R among autoimmune disease patients, suggesting a potential role of this hormone in the pathophysiology of autoimmune diseases. However, further studies are necessary to elucidate the mechanisms by which PTH generates observed effects in B lymphocytes and to determine if PTH plays a role in autoimmunity.
Collapse
Affiliation(s)
- Lady J. Rios-Serna
- Universidad Icesi, CIRAT: Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Cali, 760031, Colombia
| | - Angie M. Rosero
- Universidad Icesi, CIRAT: Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Cali, 760031, Colombia
| | - Gabriel J. Tobón
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, USA
| | - Carlos A. Cañas
- Universidad Icesi, CIRAT: Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Cali, 760031, Colombia
- Unidad de Reumatología, Fundación Valle del Lili, Cali, 760032, Colombia
| |
Collapse
|
11
|
Éliás S, Wrzodek C, Deane CM, Tissot AC, Klostermann S, Ros F. Prediction of polyspecificity from antibody sequence data by machine learning. FRONTIERS IN BIOINFORMATICS 2024; 3:1286883. [PMID: 38651055 PMCID: PMC11033685 DOI: 10.3389/fbinf.2023.1286883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 04/25/2024] Open
Abstract
Antibodies are generated with great diversity in nature resulting in a set of molecules, each optimized to bind a specific target. Taking advantage of their diversity and specificity, antibodies make up for a large part of recently developed biologic drugs. For therapeutic use antibodies need to fulfill several criteria to be safe and efficient. Polyspecific antibodies can bind structurally unrelated molecules in addition to their main target, which can lead to side effects and decreased efficacy in a therapeutic setting, for example via reduction of effective drug levels. Therefore, we created a neural-network-based model to predict polyspecificity of antibodies using the heavy chain variable region sequence as input. We devised a strategy for enriching antibodies from an immunization campaign either for antigen-specific or polyspecific binding properties, followed by generation of a large sequencing data set for training and cross-validation of the model. We identified important physico-chemical features influencing polyspecificity by investigating the behaviour of this model. This work is a machine-learning-based approach to polyspecificity prediction and, besides increasing our understanding of polyspecificity, it might contribute to therapeutic antibody development.
Collapse
Affiliation(s)
- Szabolcs Éliás
- Roche Pharma Research and Early Development Informatics, Roche Innovation Center Munich, Penzberg, Germany
| | - Clemens Wrzodek
- Roche Pharma Research and Early Development Informatics, Roche Innovation Center Munich, Penzberg, Germany
| | - Charlotte M. Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Alain C. Tissot
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Stefan Klostermann
- Roche Pharma Research and Early Development Informatics, Roche Innovation Center Munich, Penzberg, Germany
| | - Francesca Ros
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
12
|
Akama-Garren EH, Yin X, Prestwood TR, Ma M, Utz PJ, Carroll MC. T cell help shapes B cell tolerance. Sci Immunol 2024; 9:eadj7029. [PMID: 38363829 PMCID: PMC11095409 DOI: 10.1126/sciimmunol.adj7029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/29/2023] [Indexed: 02/18/2024]
Abstract
T cell help is a crucial component of the normal humoral immune response, yet whether it promotes or restrains autoreactive B cell responses remains unclear. Here, we observe that autoreactive germinal centers require T cell help for their formation and persistence. Using retrogenic chimeras transduced with candidate TCRs, we demonstrate that a follicular T cell repertoire restricted to a single autoreactive TCR, but not a foreign antigen-specific TCR, is sufficient to initiate autoreactive germinal centers. Follicular T cell specificity influences the breadth of epitope spreading by regulating wild-type B cell entry into autoreactive germinal centers. These results demonstrate that TCR-dependent T cell help can promote loss of B cell tolerance and that epitope spreading is determined by TCR specificity.
Collapse
Affiliation(s)
- Elliot H. Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Xihui Yin
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tyler R. Prestwood
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Minghe Ma
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paul J. Utz
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael C. Carroll
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Rhodes RH, Love GL, Da Silva Lameira F, Sadough Shahmirzadi M, Fox SE, Vander Heide RS. Acute neutrophilic vasculitis (leukocytoclasia) in 36 COVID-19 autopsy brains. Diagn Pathol 2024; 19:33. [PMID: 38360666 PMCID: PMC10870569 DOI: 10.1186/s13000-024-01445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Hypercytokinemia, the renin-angiotensin system, hypoxia, immune dysregulation, and vasculopathy with evidence of immune-related damage are implicated in brain morbidity in COVID-19 along with a wide variety of genomic and environmental influences. There is relatively little evidence of direct SARS-CoV-2 brain infection in COVID-19 patients. METHODS Brain histopathology of 36 consecutive autopsies of patients who were RT-PCR positive for SARS-CoV-2 was studied along with findings from contemporary and pre-pandemic historical control groups. Immunostaining for serum and blood cell proteins and for complement components was employed. Microcirculatory wall complement deposition in the COVID-19 cohort was compared to historical control cases. Comparisons also included other relevant clinicopathological and microcirculatory findings in the COVID-19 cohort and control groups. RESULTS The COVID-19 cohort and both the contemporary and historical control groups had the same rate of hypertension, diabetes mellitus, and obesity. The COVID-19 cohort had varying amounts of acute neutrophilic vasculitis with leukocytoclasia in the microcirculation of the brain in all cases. Prominent vascular neutrophilic transmural migration was found in several cases and 25 cases had acute perivasculitis. Paravascular microhemorrhages and petechial hemorrhages (small brain parenchymal hemorrhages) had a slight tendency to be more numerous in cohort cases that displayed less acute neutrophilic vasculitis. Tissue burden of acute neutrophilic vasculitis with leukocytoclasia was the same in control cases as a group, while it was significantly higher in COVID-19 cases. Both the tissue burden of acute neutrophilic vasculitis and the activation of complement components, including membrane attack complex, were significantly higher in microcirculatory channels in COVID-19 cohort brains than in historical controls. CONCLUSIONS Acute neutrophilic vasculitis with leukocytoclasia, acute perivasculitis, and associated paravascular blood extravasation into brain parenchyma constitute the first phase of an immune-related, acute small-vessel inflammatory condition often termed type 3 hypersensitivity vasculitis or leukocytoclastic vasculitis. There is a higher tissue burden of acute neutrophilic vasculitis and an increased level of activated complement components in microcirculatory walls in COVID-19 cases than in pre-pandemic control cases. These findings are consistent with a more extensive small-vessel immune-related vasculitis in COVID-19 cases than in control cases. The pathway(s) and mechanism for these findings are speculative.
Collapse
Affiliation(s)
- Roy H Rhodes
- Department of Pathology, Louisiana State University Health Sciences Center, 7th Floor, 2021 Perdido Street, New Orleans, Louisiana, 70112, USA.
| | - Gordon L Love
- Department of Pathology, Louisiana State University Health Sciences Center, 7th Floor, 2021 Perdido Street, New Orleans, Louisiana, 70112, USA
| | - Fernanda Da Silva Lameira
- Department of Pathology, Louisiana State University Health Sciences Center, 7th Floor, 2021 Perdido Street, New Orleans, Louisiana, 70112, USA
- Department of Pathology, Virginia Commonwealth University, Norfolk, Virginia, 23510, USA
| | - Maryam Sadough Shahmirzadi
- Department of Pathology, Louisiana State University Health Sciences Center, 7th Floor, 2021 Perdido Street, New Orleans, Louisiana, 70112, USA
| | - Sharon E Fox
- Department of Pathology, Louisiana State University Health Sciences Center, 7th Floor, 2021 Perdido Street, New Orleans, Louisiana, 70112, USA
- Pathology and Laboratory Medicine Services, Southeast Louisiana Veterans Healthcare System, New Orleans, Louisiana, 70112, USA
| | - Richard S Vander Heide
- Department of Pathology, Louisiana State University Health Sciences Center, 7th Floor, 2021 Perdido Street, New Orleans, Louisiana, 70112, USA
- Marshfield Clinic Health System, Marshfield, Wisconsin, 54449, USA
| |
Collapse
|
14
|
Yuuki H, Itamiya T, Nagafuchi Y, Ota M, Fujio K. B cell receptor repertoire abnormalities in autoimmune disease. Front Immunol 2024; 15:1326823. [PMID: 38361948 PMCID: PMC10867955 DOI: 10.3389/fimmu.2024.1326823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
B cells play a crucial role in the immune response and contribute to various autoimmune diseases. Recent studies have revealed abnormalities in the B cell receptor (BCR) repertoire of patients with autoimmune diseases, with distinct features observed among different diseases and B cell subsets. Classically, BCR repertoire was used as an identifier of distinct antigen-specific clonotypes, but the recent advancement of analyzing large-scale repertoire has enabled us to use it as a tool for characterizing cellular biology. In this review, we provide an overview of the BCR repertoire in autoimmune diseases incorporating insights from our latest research findings. In systemic lupus erythematosus (SLE), we observed a significant skew in the usage of VDJ genes, particularly in CD27+IgD+ unswitched memory B cells and plasmablasts. Notably, autoreactive clones within unswitched memory B cells were found to be increased and strongly associated with disease activity, underscoring the clinical significance of this subset. Similarly, various abnormalities in the BCR repertoire have been reported in other autoimmune diseases such as rheumatoid arthritis. Thus, BCR repertoire analysis holds potential for enhancing our understanding of the underlying mechanisms involved in autoimmune diseases. Moreover, it has the potential to predict treatment effects and identify therapeutic targets in autoimmune diseases.
Collapse
Affiliation(s)
- Hayato Yuuki
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Itamiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Aoun M, Coelho A, Krämer A, Saxena A, Sabatier P, Beusch CM, Lönnblom E, Geng M, Do NN, Xu Z, Zhang J, He Y, Romero Castillo L, Abolhassani H, Xu B, Viljanen J, Rorbach J, Fernandez Lahore G, Gjertsson I, Kastbom A, Sjöwall C, Kihlberg J, Zubarev RA, Burkhardt H, Holmdahl R. Antigen-presenting autoreactive B cells activate regulatory T cells and suppress autoimmune arthritis in mice. J Exp Med 2023; 220:e20230101. [PMID: 37695523 PMCID: PMC10494526 DOI: 10.1084/jem.20230101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/31/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023] Open
Abstract
B cells undergo several rounds of selection to eliminate potentially pathogenic autoreactive clones, but in contrast to T cells, evidence of positive selection of autoreactive B cells remains moot. Using unique tetramers, we traced natural autoreactive B cells (C1-B) specific for a defined triple-helical epitope on collagen type-II (COL2), constituting a sizeable fraction of the physiological B cell repertoire in mice, rats, and humans. Adoptive transfer of C1-B suppressed arthritis independently of IL10, separating them from IL10-secreting regulatory B cells. Single-cell sequencing revealed an antigen processing and presentation signature, including induced expression of CD72 and CCR7 as surface markers. C1-B presented COL2 to T cells and induced the expansion of regulatory T cells in a contact-dependent manner. CD72 blockade impeded this effect suggesting a new downstream suppressor mechanism that regulates antigen-specific T cell tolerization. Thus, our results indicate that autoreactive antigen-specific naïve B cells tolerize infiltrating T cells against self-antigens to impede the development of tissue-specific autoimmune inflammation.
Collapse
Affiliation(s)
- Mike Aoun
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Ana Coelho
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Alexander Krämer
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Amit Saxena
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Pierre Sabatier
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Christian Michel Beusch
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Erik Lönnblom
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Manman Geng
- Precision Medicine Institute, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Nhu-Nguyen Do
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
- Fraunhofer Institute for Translational Medicine and Pharmacology, and Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, Frankfurt am Main, Germany
| | - Zhongwei Xu
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Jingdian Zhang
- Max Planck Institute Biology of Ageing—Karolinska Institute Laboratory, Karolinska Institute, Solna, Sweden
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Yibo He
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Laura Romero Castillo
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Neo Building, Solna, Sweden
| | - Bingze Xu
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Johan Viljanen
- Department of Chemistry, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Joanna Rorbach
- Max Planck Institute Biology of Ageing—Karolinska Institute Laboratory, Karolinska Institute, Solna, Sweden
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Gonzalo Fernandez Lahore
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Alf Kastbom
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Christopher Sjöwall
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jan Kihlberg
- Department of Chemistry, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Roman A. Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
- Department of Pharmacological and Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Harald Burkhardt
- Fraunhofer Institute for Translational Medicine and Pharmacology, and Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, Frankfurt am Main, Germany
- Division of Rheumatology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
- Precision Medicine Institute, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
16
|
Liu Y, Zhang Z, Kang Z, Zhou XJ, Liu S, Guo S, Jin Q, Li T, Zhou L, Wu X, Wang YN, Lu L, He Y, Li F, Zhang H, Liu Y, Xu H. Interleukin 4-driven reversal of self-reactive B cell anergy contributes to the pathogenesis of systemic lupus erythematosus. Ann Rheum Dis 2023; 82:1444-1454. [PMID: 37567607 DOI: 10.1136/ard-2023-224453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023]
Abstract
OBJECTIVES Reactivation of anergic autoreactive B cells (BND cells) is a key aetiological process in systemic lupus erythematosus (SLE), yet the underlying mechanism remains largely elusive. This study aimed to investigate how BND cells participate in the pathogenesis of SLE and the underlying mechanism. METHODS A combination of phenotypical, large-scale transcriptome and B cell receptor (BCR) repertoire profiling were employed at molecular and single cell level on samples from healthy donors and patients with SLE. Isolated naïve B cells from human periphery blood were treated with anti-CD79b mAb in vitro to induce anergy. IgM internalisation was tracked by confocal microscopy and was qualified by flow cytometer. RESULTS We characterised the decrease and disruption of BND cells in SLE patients and demonstrated IL-4 as an important cytokine to drive such pathological changes. We then elucidated that IL-4 reversed B cell anergy by promoting BCR recycling to the cell surface via STAT6 signalling. CONCLUSIONS We demonstrated the significance of IL-4 in reversing B cell anergy and established the scientific rationale to treat SLE via blocking IL-4 signalling, also providing diagnostic and prognostic biomarkers to identify patients who are most likely going to benefit from such treatments.
Collapse
Affiliation(s)
- Yaoyang Liu
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhiguo Zhang
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zijian Kang
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xu-Jie Zhou
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University) Ministry of Education, Beijing, China
| | - Shujun Liu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Qianmei Jin
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ting Li
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ling Zhou
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Wu
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yan-Na Wang
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University) Ministry of Education, Beijing, China
| | - Liangjing Lu
- Department of Rheumatology and Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanran He
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA
| | - Fubin Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University) Ministry of Education, Beijing, China
| | - Yuncai Liu
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Huji Xu
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
17
|
Atisha-Fregoso Y, Diamond B. Decoding B cell receptors in autoimmune diseases. Ann Rheum Dis 2023; 82:1369-1370. [PMID: 37591659 DOI: 10.1136/ard-2023-224779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Affiliation(s)
- Yemil Atisha-Fregoso
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Betty Diamond
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| |
Collapse
|
18
|
Sun W, Li P, Wang M, Xu Y, Shen D, Zhang X, Liu Y. Molecular characterization of PANoptosis-related genes with features of immune dysregulation in systemic lupus erythematosus. Clin Immunol 2023; 253:109660. [PMID: 37295541 DOI: 10.1016/j.clim.2023.109660] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease. PANoptosis is a novel form of programmed cell death involved in various inflammatory diseases. This study aimed to identify the differentially-expressed PANoptosis-related genes (PRGs) involved in immune dysregulation in SLE. Five key PRGs, including ZBP1, MEFV, LCN2, IFI27, and HSP90AB1, were identified. The prediction model with these 5 key PRGs showed a good diagnostic performance in distinguishing SLE patients from controls. These key PRGs were associated with memory B cells, neutrophils and CD8 + T cells. Besides, these key PRGs were significantly enriched in pathways involving the type I interferon responses and IL-6-JAK-STAT3 signaling. The expression levels of the key PRGs were validated in peripheral blood mononuclear cells (PBMCs) of patients with SLE. Our findings suggest that PANoptosis may be implicated in the immune dysregulation in SLE by regulating the interferons and JAK-STAT signaling pathways in memory B cells, neutrophils and CD8 + T cells.
Collapse
Affiliation(s)
- Wei Sun
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Southeast University, Sch Med, Nanjing, China
| | - Pengchong Li
- Department of Gastroenterology, Beijing Friendship Hospital, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Capital Medical University, Beijing, China
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yue Xu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Shen
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China.
| |
Collapse
|
19
|
Steinmetz TD, Verstappen GM, Suurmond J, Kroese FGM. Targeting plasma cells in systemic autoimmune rheumatic diseases - Promises and pitfalls. Immunol Lett 2023; 260:44-57. [PMID: 37315847 DOI: 10.1016/j.imlet.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/12/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Plasma cells are the antibody secretors of the immune system. Continuous antibody secretion over years can provide long-term immune protection but could also be held responsible for long-lasting autoimmunity in case of self-reactive plasma cells. Systemic autoimmune rheumatic diseases (ARD) affect multiple organ systems and are associated with a plethora of different autoantibodies. Two prototypic systemic ARDs are systemic lupus erythematosus (SLE) and Sjögren's disease (SjD). Both diseases are characterized by B-cell hyperactivity and the production of autoantibodies against nuclear antigens. Analogues to other immune cells, different subsets of plasma cells have been described. Plasma cell subsets are often defined dependent on their current state of maturation, that also depend on the precursor B-cell subset from which they derived. But, a universal definition of plasma cell subsets is not available so far. Furthermore, the ability for long-term survival and effector functions may differ, potentially in a disease-specific manner. Characterization of plasma cell subsets and their specificity in individual patients can help to choose a suitable targeting approach for either a broad or more selective plasma cell depletion. Targeting plasma cells in systemic ARDs is currently challenging because of side effects or varying depletion efficacies in the tissue. Recent developments, however, like antigen-specific targeting and CAR-T-cell therapy might open up major benefits for patients beyond current treatment options.
Collapse
Affiliation(s)
- Tobit D Steinmetz
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Gwenny M Verstappen
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jolien Suurmond
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans G M Kroese
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
20
|
Wu S, Chen J, Teo BHD, Wee SYK, Wong MHM, Cui J, Chen J, Leong KP, Lu J. The axis of complement C1 and nucleolus in antinuclear autoimmunity. Front Immunol 2023; 14:1196544. [PMID: 37359557 PMCID: PMC10288996 DOI: 10.3389/fimmu.2023.1196544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Antinuclear autoantibodies (ANA) are heterogeneous self-reactive antibodies that target the chromatin network, the speckled, the nucleoli, and other nuclear regions. The immunological aberration for ANA production remains partially understood, but ANA are known to be pathogenic, especially, in systemic lupus erythematosus (SLE). Most SLE patients exhibit a highly polygenic disease involving multiple organs, but in rare complement C1q, C1r, or C1s deficiencies, the disease can become largely monogenic. Increasing evidence point to intrinsic autoimmunogenicity of the nuclei. Necrotic cells release fragmented chromatins as nucleosomes and the alarmin HMGB1 is associated with the nucleosomes to activate TLRs and confer anti-chromatin autoimmunogenecity. In speckled regions, the major ANA targets Sm/RNP and SSA/Ro contain snRNAs that confer autoimmunogenecity to Sm/RNP and SSA/Ro antigens. Recently, three GAR/RGG-containing alarmins have been identified in the nucleolus that helps explain its high autoimmunogenicity. Interestingly, C1q binds to the nucleoli exposed by necrotic cells to cause protease C1r and C1s activation. C1s cleaves HMGB1 to inactive its alarmin activity. C1 proteases also degrade many nucleolar autoantigens including nucleolin, a major GAR/RGG-containing autoantigen and alarmin. It appears that the different nuclear regions are intrinsically autoimmunogenic by containing autoantigens and alarmins. However, the extracellular complement C1 complex function to dampen nuclear autoimmunogenecity by degrading these nuclear proteins.
Collapse
Affiliation(s)
- Shan Wu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Junjie Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Boon Heng Dennis Teo
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Seng Yin Kelly Wee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ming Hui Millie Wong
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jianzhou Cui
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jinmiao Chen
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Khai Pang Leong
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Jinhua Lu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Fu X, Cheng D, Luo Z, Heath SL, Adekunle R, McKinnon JE, Martin L, Sheng Z, Espinosa E, Jiang W. Impacts of plasma microbial lipopolysaccharide translocation on B cell perturbations and anti-CD4 autoantibody production in people with HIV on suppressive antiretroviral therapy. Cell Biosci 2023; 13:78. [PMID: 37138358 PMCID: PMC10157945 DOI: 10.1186/s13578-023-01022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND . Up to 20% of people with HIV (PWH) who undergo virologically suppressed antiretroviral therapy (ART) fail to experience complete immune restoration. We recently reported that plasma anti-CD4 IgG (antiCD4IgG) autoantibodies from immune non-responders specifically deplete CD4 + T cells via antibody-dependent cytotoxicity. However, the mechanism of antiCD4IgG production remains unclear. METHODS . Blood samples were collected from 16 healthy individuals and 25 PWH on suppressive ART. IgG subclass, plasma lipopolysaccharide (LPS), and antiCD4IgG levels were measured by ELISA. Gene profiles in B cells were analyzed by microarray and quantitative PCR. Furthermore, a patient-derived antiCD4IgG-producing B cell line was generated and stimulated with LPS in vitro. B cell IgG class switch recombination (CSR) was evaluated in response to LPS in splenic B cells from C57/B6 mice in vitro. RESULTS . Increased plasma anti-CD4 IgGs in PWH were predominantly IgG1 and associated with increased plasma LPS levels as well as B cell expression of TLR2, TLR4, and MyD88 mRNA in vivo. Furthermore, LPS stimulation induced antiCD4IgG production in the antiCD4IgG B cell line in vitro. Finally, LPS promoted CSR in vitro. CONCLUSION . Our findings suggest that persistent LPS translocation may promote anti-CD4 autoreactive B cell activation and antiCD4IgG production in PWH on ART, which may contribute to gradual CD4 + T cell depletion. This study suggests that reversing a compromised mucosal barrier could improve ART outcomes in PWH who fail to experience complete immune restoration.
Collapse
Affiliation(s)
- Xiaoyu Fu
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave. BSB207, Charleston, SC, 29425, USA
| | - Da Cheng
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave. BSB207, Charleston, SC, 29425, USA
| | - Zhenwu Luo
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave. BSB207, Charleston, SC, 29425, USA
| | - Sonya L Heath
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ruth Adekunle
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, 173 Ashley Ave. BSB207, Charleston, SC, 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, USA
| | - John E McKinnon
- Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, USA
| | - Lisa Martin
- Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, USA
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Enrique Espinosa
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City, 14080, Mexico
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave. BSB207, Charleston, SC, 29425, USA.
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, 173 Ashley Ave. BSB207, Charleston, SC, 29425, USA.
- Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, USA.
| |
Collapse
|
22
|
Heming M, Müller-Miny L, Rolfes L, Schulte-Mecklenbeck A, Brix TJ, Varghese J, Pawlitzki M, Pavenstädt H, Kriegel MA, Gross CC, Wiendl H, Meyer zu Hörste G. Supporting the differential diagnosis of connective tissue diseases with neurological involvement by blood and cerebrospinal fluid flow cytometry. J Neuroinflammation 2023; 20:46. [PMID: 36823602 PMCID: PMC9951507 DOI: 10.1186/s12974-023-02733-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
OBJECTIVE Neurological manifestations of autoimmune connective tissue diseases (CTD) are poorly understood and difficult to diagnose. We here aimed to address this shortcoming by studying immune cell compositions in CTD patients with and without neurological manifestation. METHODS Using flow cytometry, we retrospectively investigated paired cerebrospinal fluid (CSF) and blood samples of 28 CTD patients without neurological manifestation, 38 CTD patients with neurological manifestation (N-CTD), 38 non-inflammatory controls, and 38 multiple sclerosis (MS) patients, a paradigmatic primary neuroinflammatory disease. RESULTS We detected an expansion of plasma cells in the blood of both N-CTD and CTD compared to non-inflammatory controls and MS. Blood plasma cells alone distinguished the clinically similar entities N-CTD and MS with high discriminatory performance (AUC: 0.81). Classical blood monocytes indicated higher disease activity in systemic lupus erythematosus (SLE) patients. Surprisingly, immune cells in the CSF did not differ significantly between N-CTD and CTD, while CD4+ T cells and the CD4+/CD8+ ratio were elevated in the blood of N-CTD compared to CTD. Several B cell-associated parameters partially overlapped in the CSF in MS and N-CTD. We built a machine learning model that distinguished N-CTD from MS with high discriminatory power using either blood or CSF. CONCLUSION We here find that blood flow cytometry alone surprisingly suffices to distinguish CTD with neurological manifestations from clinically similar entities, suggesting that a rapid blood test could support clinicians in the differential diagnosis of N-CTD.
Collapse
Affiliation(s)
- Michael Heming
- grid.16149.3b0000 0004 0551 4246Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Louisa Müller-Miny
- grid.16149.3b0000 0004 0551 4246Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Leoni Rolfes
- grid.14778.3d0000 0000 8922 7789Department of Neurology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Andreas Schulte-Mecklenbeck
- grid.16149.3b0000 0004 0551 4246Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Tobias J. Brix
- grid.5949.10000 0001 2172 9288Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Julian Varghese
- grid.5949.10000 0001 2172 9288Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Marc Pawlitzki
- grid.14778.3d0000 0000 8922 7789Department of Neurology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Hermann Pavenstädt
- grid.16149.3b0000 0004 0551 4246Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany
| | - Martin A. Kriegel
- grid.5949.10000 0001 2172 9288Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, Münster, Germany ,grid.16149.3b0000 0004 0551 4246Section of Rheumatology and Clinical Immunology, Department of Medicine, University Hospital Münster, Münster, Germany
| | - Catharina C. Gross
- grid.16149.3b0000 0004 0551 4246Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Heinz Wiendl
- grid.16149.3b0000 0004 0551 4246Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Gerd Meyer zu Hörste
- grid.16149.3b0000 0004 0551 4246Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| |
Collapse
|
23
|
Biljecki M, Eisenhut K, Beltrán E, Winklmeier S, Mader S, Thaller A, Eichhorn P, Steininger P, Flierl-Hecht A, Lewerenz J, Kümpfel T, Kerschensteiner M, Meinl E, Thaler FS. Antibodies Against Glutamic Acid Decarboxylase 65 Are Locally Produced in the CSF and Arise During Affinity Maturation. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:10/3/e200090. [PMID: 36823135 PMCID: PMC9969496 DOI: 10.1212/nxi.0000000000200090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/12/2022] [Indexed: 02/25/2023]
Abstract
BACKGROUND AND OBJECTIVES Antibodies (Abs) against the cytoplasmic protein glutamic acid decarboxylase 65 (GAD65) are detected in patients with neurologic syndromes together referred to as GAD65-Ab spectrum disorders. The response of some of these patients to plasma exchange or immunoglobulins indicates that GAD65-Abs could contribute to disease pathogenesis at least at some stages of disease. However, the involvement of GAD65-reactive B cells in the CNS is incompletely understood. METHODS We studied 7 patients with high levels of GAD65-Abs and generated monoclonal Abs (mAbs) derived from single cells in the CSF. Sequence characteristics, reactivity to GAD65, and the role of somatic hypermutations of the mAbs were analyzed. RESULTS Twelve CSF-derived mAbs were generated originating from 3 patients with short disease duration, and 7/12 of these mAbs (58%) were GAD65 reactive in at least 1 detection assay. Four of 12 (33%) were definitely positive in all 3 detection assays. The intrathecal anti-GAD65 response was polyclonal. GAD65-Abs were mostly of the IgG1 subtype and had undergone affinity maturation. Reversion of 2 GAD65-reactive mAbs to their corresponding germline-encoded unmutated common ancestors abolished GAD65 reactivity. DISCUSSION GAD65-specific B cells are present in the CNS and represent a sizable fraction of CSF B cells early in the disease course. The anti-GAD65 response in the CSF is polyclonal and shows evidence of antigen-driven affinity maturation required for GAD65 recognition. Our data support the hypothesis that the accumulation of GAD65-specific B cells and plasma cells in the CSF is an important feature of early disease stages.
Collapse
Affiliation(s)
- Michelle Biljecki
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany
| | - Katharina Eisenhut
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany
| | - Eduardo Beltrán
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany
| | - Stephan Winklmeier
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany
| | - Simone Mader
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany
| | - Anna Thaller
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany
| | - Peter Eichhorn
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany
| | - Philipp Steininger
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany
| | - Andrea Flierl-Hecht
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany
| | - Jan Lewerenz
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany
| | - Tania Kümpfel
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany
| | - Martin Kerschensteiner
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany
| | - Edgar Meinl
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany
| | - Franziska S Thaler
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany.
| |
Collapse
|
24
|
Souri M, Ozawa T, Osaki T, Koyama T, Muraguchi A, Ichinose A. Cloning of human anti-factor XIII monoclonal antibody dissects mechanisms of polyclonal antibodies in a single patient. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2023; 21:255-268. [PMID: 36700504 DOI: 10.1016/j.jtha.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/28/2022] [Accepted: 11/13/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Coagulation factor XIII (FXIII) consists of 2 A (FXIII-A) and 2 B (FXIII-B) subunits that cross-link and strengthen the hemostatic fibrin thrombus; thus, abnormal bleeding occurs when FXIII is significantly reduced. Autoimmune-acquired FXIII deficiency (AiF13D) is characterized by lethal bleeding secondary to the development of autoantibodies against FXIII. However, since anti-FXIII autoantibodies are polyclonal, the mechanism underlying FXIII dysfunction is unclear. OBJECTIVES The objective of this study was to dissect the inhibitory mechanisms of polyclonal anti-FXIII autoantibodies. METHODS In this study, we prepared the human monoclonal antibodies (hmAbs) from the peripheral blood of an 86-year-old man with AiF13D by using a new complementary DNA cloning method and analyzed the properties of each autoantibody. RESULTS Seventeen clones obtained from hmAbs were divided into the following 3 groups: dissociation inhibitors of FXIII-A2B2 (6 clones), assembly inhibitors of FXIII-A2B2 (3 clones), and nonneutralizing/inhibitory hmAbs (8 clones). Dissociation inhibitors strongly inhibited fibrin cross-linking and amine incorporation. Assembly inhibitors extracted FXIII-A from FXIII-A2B2, strongly inhibited binding of FXIII-A to FXIII-B, and activation peptide cleavage. However, the patient's plasma presented a strong inhibition of A2B2 heterodimer assembly but only a slight inhibition of thrombin-Ca2+-dependent dissociation, suggesting that the assembly inhibitors concealed the effect of dissociation inhibitors in plasma. By contrast, nonneutralizing antibodies had little effect on the function of FXIII, suggesting that nonneutralizing hmAbs (and/or dissociation inhibitors and/or assembly inhibitors) promoted the clearance of FXIII-A from the blood. CONCLUSION Cloning of anti-FXIII autoantibodies enabled us to not only elucidate the mechanism and pathophysiology of AiF13D but also develop a completely new type of anticoagulant.
Collapse
Affiliation(s)
- Masayoshi Souri
- Department of Molecular Patho-Biochemistry and Patho-Biology, Yamagata University School of Medicine, Yamagata, Japan; The Japanese Collaborative Research Group (JCRG) on Autoimmune Acquired Coagulation Factor Deficiencies supported by the Japanese Ministry of Health, Labor and Welfare, Tokyo, Japan; Department of Public Health and Hygiene, Yamagata University Graduate School of Medical Science, 2-2-2, Iida-Nishi, Yamagata, Japan
| | - Tatsuhiko Ozawa
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Tsukasa Osaki
- Department of Molecular Patho-Biochemistry and Patho-Biology, Yamagata University School of Medicine, Yamagata, Japan; The Japanese Collaborative Research Group (JCRG) on Autoimmune Acquired Coagulation Factor Deficiencies supported by the Japanese Ministry of Health, Labor and Welfare, Tokyo, Japan
| | - Takatoshi Koyama
- Department of Hematology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Muraguchi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Akitada Ichinose
- Department of Molecular Patho-Biochemistry and Patho-Biology, Yamagata University School of Medicine, Yamagata, Japan; The Japanese Collaborative Research Group (JCRG) on Autoimmune Acquired Coagulation Factor Deficiencies supported by the Japanese Ministry of Health, Labor and Welfare, Tokyo, Japan.
| |
Collapse
|
25
|
Dysregulated naïve B cells and de novo autoreactivity in severe COVID-19. Nature 2022; 611:139-147. [PMID: 36044993 PMCID: PMC9630115 DOI: 10.1038/s41586-022-05273-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/24/2022] [Indexed: 12/15/2022]
Abstract
Severe SARS-CoV-2 infection1 has been associated with highly inflammatory immune activation since the earliest days of the COVID-19 pandemic2–5. More recently, these responses have been associated with the emergence of self-reactive antibodies with pathologic potential6–10, although their origins and resolution have remained unclear11. Previously, we and others have identified extrafollicular B cell activation, a pathway associated with the formation of new autoreactive antibodies in chronic autoimmunity12,13, as a dominant feature of severe and critical COVID-19 (refs. 14–18). Here, using single-cell B cell repertoire analysis of patients with mild and severe disease, we identify the expansion of a naive-derived, low-mutation IgG1 population of antibody-secreting cells (ASCs) reflecting features of low selective pressure. These features correlate with progressive, broad, clinically relevant autoreactivity, particularly directed against nuclear antigens and carbamylated proteins, emerging 10–15 days after the onset of symptoms. Detailed analysis of the low-selection compartment shows a high frequency of clonotypes specific for both SARS-CoV-2 and autoantigens, including pathogenic autoantibodies against the glomerular basement membrane. We further identify the contraction of this pathway on recovery, re-establishment of tolerance standards and concomitant loss of acute-derived ASCs irrespective of antigen specificity. However, serological autoreactivity persists in a subset of patients with postacute sequelae, raising important questions as to the contribution of emerging autoreactivity to continuing symptomology on recovery. In summary, this study demonstrates the origins, breadth and resolution of autoreactivity in severe COVID-19, with implications for early intervention and the treatment of patients with post-COVID sequelae. Single-cell B cell repertoire analysis identifies the expansion of a naive-derived population of antibody-secreting cells contributing to de novo autoreactivity in patients with severe COVID-19 and those with post-COVID symptoms.
Collapse
|
26
|
Targets of autoantibodies in acquired hemophilia A are not restricted to factor VIII: data from the GTH-AH 01/2010 study. Blood Adv 2022; 7:122-130. [PMID: 35947142 PMCID: PMC9830154 DOI: 10.1182/bloodadvances.2022008071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023] Open
Abstract
The root cause of autoantibody formation against factor VIII (FVIII) in acquired hemophilia A (AHA) remains unclear. We aimed to assess whether AHA is exclusively associated with autoantibodies toward FVIII or whether patients also produce increased levels of autoantibodies against other targets. A case-control study was performed enrolling patients with AHA and age-matched controls. Human epithelial cell (HEp-2) immunofluorescence was applied to screen for antinuclear (ANA) and anticytoplasmic autoantibodies. Screening for autoantibodies against extractable nuclear antigens was performed by enzyme immunoassay detecting SS-A/Ro, SS-B/La, U1RNP, Scl-70, Jo-1, centromere B, Sm, double-stranded DNA, and α-fodrin (AF). Patients with AHA were more often positive for ANA than control patients (64% vs 30%; odds ratio [OR] 4.02, 1.98-8.18) and had higher ANA titers detected than controls. Cytoplasmic autoantibodies and anti-AF immunoglobulin A autoantibodies were also more frequent in patients with AHA compared with controls. Autoantibodies against any target other than FVIII were found in 78% of patients with AHA compared with 46% of controls (OR 4.16, 1.98-8.39). Results were similar preforming sensitivity analyses (excluding either subjects with autoimmune disorders, cancer, pregnancy, or immunosuppressive medication at baseline) and in multivariable binary logistic regression. To exclude that autoantibody staining was merely a result of cross-reactivity of anti-FVIII autoantibodies, we tested a mix of 7 well-characterized monoclonal anti-FVIII antibodies. These antibodies did not stain HEp-2 cells used for ANA detection. In conclusion, a diverse pattern of autoantibodies is associated with AHA, suggesting that a more general breakdown of immune tolerance might be involved in its pathology.
Collapse
|
27
|
Lee H, Yoo DK, Han J, Kim KH, Noh J, Lee Y, Lee E, Kwon S, Chung J. Optimization of peripheral blood volume for in silico reconstitution of the human B cell receptor repertoire. FEBS Open Bio 2022; 12:1634-1643. [PMID: 35866358 PMCID: PMC9433817 DOI: 10.1002/2211-5463.13467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
B cells recognize antigens via membrane‐expressed B‐cell receptors (BCR) and antibodies. Similar human BCR sequences are frequently found at a significantly higher frequency than that theoretically calculated. Patients infected with SARS‐CoV2 and HIV or with autoimmune diseases share very similar BCRs. Therefore, in silico reconstitution of BCR repertoires and identification of stereotypical BCR sequences related to human pathology have diagnostic potential. Furthermore, monitoring changes of clinically significant BCR sequences and isotype conversion has prognostic potential. For BCR repertoire analysis, peripheral blood (PB) is the most convenient source. However, the optimal human PB volume for in silico reconstitution of the BCR repertoire has not been studied in detail. Here, we sampled 5, 10, and 20 mL PB from the left arm and 40 mL PB from the right arm of two volunteers, reconstituted in silico PB BCR repertoires, and compared their composition. In both volunteers, PB sampling over 20 mL resulted in slight increases in functional unique sequences (FUSs) or almost no increase in repertoire diversity. All FUSs with a frequency above 0.08% or 0.03% in the 40 mL PB BCR repertoire were detected even in the 5 mL PB BCR repertoire from each volunteer. FUSs with a higher frequency were more likely to be found in BCR repertoires from reduced PB volume, and those coexisting in two repertoires showed a statistically significant correlation in frequency irrespective of sampled anatomical site. The correlation was more significant in higher‐frequency FUSs. These observations support the potential of BCR repertoire analysis for diagnosis.
Collapse
Affiliation(s)
- Hyunho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Korea
| | - Duck Kyun Yoo
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea.,Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Jerome Han
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea.,Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Ki Hyun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Jinsung Noh
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Korea
| | - Yonghee Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Korea
| | - Eunjae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea.,Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Korea.,BK21+ Creative Research Engineer Development for IT, Seoul National University, Seoul, 08826, Korea.,Bio-MAX Institute, Seoul National University, Seoul, 08826, Korea
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea.,Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| |
Collapse
|
28
|
Bhattacharya D. Instructing durable humoral immunity for COVID-19 and other vaccinable diseases. Immunity 2022; 55:945-964. [PMID: 35637104 PMCID: PMC9085459 DOI: 10.1016/j.immuni.2022.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Many aspects of SARS-CoV-2 have fully conformed with the principles established by decades of viral immunology research, ultimately leading to the crowning achievement of highly effective COVID-19 vaccines. Nonetheless, the pandemic has also exposed areas where our fundamental knowledge is thinner. Some key unknowns are the duration of humoral immunity post-primary infection or vaccination and how long booster shots confer protection. As a corollary, if protection does not last as long as desired, what are some ways it can be improved? Here, I discuss lessons from other infections and vaccines that point to several key features that influence durable antibody production and the perseverance of immunity. These include (1) the specific innate sensors that are initially triggered, (2) the kinetics of antigen delivery and persistence, (3) the starting B cell receptor (BCR) avidity and antigen valency, and (4) the memory B cell subsets that are recalled by boosters. I further highlight the fundamental B cell-intrinsic and B cell-extrinsic pathways that, if understood better, would provide a rational framework for vaccines to reliably provide durable immunity.
Collapse
Affiliation(s)
- Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| |
Collapse
|
29
|
Akama-Garren EH, Carroll MC. T Cell Help in the Autoreactive Germinal Center. Scand J Immunol 2022; 95:e13192. [PMID: 35587582 DOI: 10.1111/sji.13192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
The germinal center serves as a site of B cell selection and affinity maturation, critical processes for productive adaptive immunity. In autoimmune disease tolerance is broken in the germinal center reaction, leading to production of autoreactive B cells that may propagate disease. Follicular T cells are crucial regulators of this process, providing signals necessary for B cell survival in the germinal center. Here we review the emerging roles of follicular T cells in the autoreactive germinal center. Recent advances in immunological techniques have allowed study of the gene expression profiles and repertoire of follicular T cells at unprecedented resolution. These studies provide insight into the potential role follicular T cells play in preventing or facilitating germinal center loss of tolerance. Improved understanding of the mechanisms of T cell help in autoreactive germinal centers provides novel therapeutic targets for diseases of germinal center dysfunction.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Nguyen K, Alsaati N, Le Coz C, Romberg N. Genetic obstacles to developing and tolerizing human B cells. WIREs Mech Dis 2022; 14:e1554. [DOI: 10.1002/wsbm.1554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Kim Nguyen
- Division of Immunology and Allergy Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| | - Nouf Alsaati
- Division of Immunology and Allergy Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| | - Carole Le Coz
- Division of Immunology and Allergy Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| | - Neil Romberg
- Division of Immunology and Allergy Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
- Department of Pediatrics, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
- Institute for Immunology University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
31
|
Ko H, Kim CJ, Im SH. T Helper 2-Associated Immunity in the Pathogenesis of Systemic Lupus Erythematosus. Front Immunol 2022; 13:866549. [PMID: 35444658 PMCID: PMC9014558 DOI: 10.3389/fimmu.2022.866549] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease that mainly affects women in their reproductive years. A complex interaction of environmental and genetic factors leads to the disruption of immune tolerance towards self, causing overt immune activation and production of autoantibodies that attack multiple organs. Kidney damage, termed lupus nephritis, is the leading cause of SLE-related morbidity and mortality. Autoantibodies are central to propagating lupus nephritis through forming immune complexes and triggering complements. Immunoglobulin G (IgG) potently activates complement; therefore, autoantibodies were mainly considered to be of the IgG isotype. However, studies revealed that over 50% of patients produce autoantibodies of the IgE isotype. IgE autoantibodies actively participate in disease pathogenesis as omalizumab treatment, a humanized anti-IgE monoclonal antibody, improved disease severity in an SLE clinical trial. IgE is a hallmark of T helper 2-associated immunity. Thus, T helper 2-associated immunity seems to play a pathogenic role in a subset of SLE patients. This review summarizes human and animal studies that illustrate type 2 immune responses involved during the pathology of SLE.
Collapse
Affiliation(s)
- Haeun Ko
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Chan Johng Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
- Pohang University of Science and Technology (POSTECH) Biotech Center, Pohang University of Science and Technology, Pohang, South Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
- Institute for Convergence Research and Education, Yonsei University, Seoul, South Korea
- ImmunoBiome Inc., Bio Open Innovation Center, Pohang, South Korea
| |
Collapse
|
32
|
Tumor-reactive antibodies evolve from non-binding and autoreactive precursors. Cell 2022; 185:1208-1222.e21. [PMID: 35305314 DOI: 10.1016/j.cell.2022.02.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/20/2021] [Accepted: 02/09/2022] [Indexed: 12/27/2022]
Abstract
The tumor microenvironment hosts antibody-secreting cells (ASCs) associated with a favorable prognosis in several types of cancer. Patient-derived antibodies have diagnostic and therapeutic potential; yet, it remains unclear how antibodies gain autoreactivity and target tumors. Here, we found that somatic hypermutations (SHMs) promote antibody antitumor reactivity against surface autoantigens in high-grade serous ovarian carcinoma (HGSOC). Patient-derived tumor cells were frequently coated with IgGs. Intratumoral ASCs in HGSOC were both mutated and clonally expanded and produced tumor-reactive antibodies that targeted MMP14, which is abundantly expressed on the tumor cell surface. The reversion of monoclonal antibodies to their germline configuration revealed two types of classes: one dependent on SHMs for tumor binding and a second with germline-encoded autoreactivity. Thus, tumor-reactive autoantibodies are either naturally occurring or evolve through an antigen-driven selection process. These findings highlight the origin and potential applicability of autoantibodies directed at surface antigens for tumor targeting in cancer patients.
Collapse
|
33
|
Chen PM, Tsokos GC. Mitochondria in the Pathogenesis of Systemic Lupus Erythematosus. Curr Rheumatol Rep 2022; 24:88-95. [PMID: 35290598 DOI: 10.1007/s11926-022-01063-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibody production and inflammation in multiple organs. In this article, we present data on how various mitochondria pathologies are involved in the pathogenesis of the disease including the fact that they serve as a reservoir of autoantigens which contribute to the upending of lymphocyte tolerance. RECENT FINDINGS Mitochondrial DNA from various cell sources, including neutrophil extracellular traps, platelets, and red blood cells, elicits the production of type I interferon which contributes to breaking of peripheral tolerance. Mitochondrial DNA also serves as autoantigen targeted by autoantibodies. Mutations of mitochondrial DNA triggered by reactive oxygen species induce T cell cross-reactivity against self-antigens. Selective gene polymorphisms that regulate mitochondrial apoptosis in autoreactive B and T cells represent another key aspect in the induction of autoimmunity. Various mitochondrial abnormalities, including changes in mitochondrial function, oxidative stress, genetic polymorphism, mitochondrial DNA mutations, and apoptosis pathways, are each linked to different aspects of lupus pathogenesis. However, whether targeting these mitochondrial pathologies can be used to harness autoimmunity remains to be explored.
Collapse
Affiliation(s)
- Ping-Min Chen
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Descatoire M, Fritzen R, Rotman S, Kuntzelman G, Leber XC, Droz-Georget S, Thrasher AJ, Traggiai E, Candotti F. Critical role of WASp in germinal center tolerance through regulation of B cell apoptosis and diversification. Cell Rep 2022; 38:110474. [PMID: 35263577 DOI: 10.1016/j.celrep.2022.110474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/18/2021] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Abstract
A main feature of Wiskott-Aldrich syndrome (WAS) is increased susceptibility to autoimmunity. A key contribution of B cells to development of these complications has been demonstrated through studies of samples from affected individuals and mouse models of the disease, but the role of the WAS protein (WASp) in controlling peripheral tolerance has not been specifically explored. Here we show that B cell responses remain T cell dependent in constitutive WASp-deficient mice, whereas selective WASp deletion in germinal center B cells (GCBs) is sufficient to induce broad development of self-reactive antibodies and kidney pathology, pointing to loss of germinal center tolerance as a primary cause leading to autoimmunity. Mechanistically, we show that WASp is upregulated in GCBs and regulates apoptosis and plasma cell differentiation in the germinal center and that the somatic hypermutation-derived diversification is the basis of autoantibody development.
Collapse
Affiliation(s)
- Marc Descatoire
- Laboratory of Inherited Immune Disorders, Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | | | - Samuel Rotman
- Service of Clinical Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | | | - Stephanie Droz-Georget
- Laboratory of Inherited Immune Disorders, Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Adrian J Thrasher
- University College of London, Great Ormond Street Institute of Child Health, London, UK
| | | | - Fabio Candotti
- Laboratory of Inherited Immune Disorders, Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Reed JH. Transforming mutations in the development of pathogenic B cell clones and autoantibodies. Immunol Rev 2022; 307:101-115. [PMID: 35001403 DOI: 10.1111/imr.13064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 12/16/2022]
Abstract
Autoimmune diseases are characterized by serum autoantibodies, some of which are pathogenic, causing severe manifestations and organ injury. However, autoantibodies of the same antigenic reactivity are also present in the serum of asymptomatic people years before they develop any clinical signs of autoimmunity. Autoantibodies can arise during multiple stages of B cell development, and various genetic and environmental factors drive their production. However, what drives the development of pathogenic autoantibodies is poorly understood. Advances in single-cell technology have enabled the deep analysis of rare B cell clones producing pathogenic autoantibodies responsible for vasculitis in patients with primary Sjögren's syndrome complicated by mixed cryoglobulinaemia. These findings demonstrated a cascade of genetic events involving stereotypic immunoglobulin V(D)J recombination and transforming somatic mutations in lymphoma genes and V(D)J regions that disrupted antibody quality control mechanisms and decreased autoantibody solubility. Most studies consider V(D)J mutations that enhance autoantibody affinity to drive pathology; however, V(D)J mutations that increase autoantibody propensity to form insoluble complexes could be a major contributor to autoantibody pathogenicity. Defining the molecular characteristics of pathogenic autoantibodies and failed tolerance checkpoints driving their formation will improve prognostication, enabling early treatment to prevent escalating organ damage and B cell malignancy.
Collapse
Affiliation(s)
- Joanne H Reed
- Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Westmead, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
36
|
Tsubata T. Role of inhibitory B cell co-receptors in B cell self-tolerance to non-protein antigens. Immunol Rev 2022; 307:53-65. [PMID: 34989000 DOI: 10.1111/imr.13059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
Abstract
Antibodies to non-protein antigens such as nucleic acids, polysaccharides, and glycolipids play important roles in both host defense against microbes and development of autoimmune diseases. Although non-protein antigens are not recognized by T cells, antibody production to non-protein antigens involve T cell-independent mechanisms such as signaling through TLR7 and TLR9 in antibody production to nucleic acids. Although self-reactive B cells are tolerized by various mechanisms including deletion, anergy, and receptor editing, T cell tolerance is also crucial in self-tolerance of B cells to protein self-antigen because self-reactive T cells induce autoantibody production to these self-antigens. However, presence of T cell-independent mechanism suggests that T cell tolerance is not able to maintain B cell tolerance to non-protein self-antigens. Lines of evidence suggest that B cell response to non-protein self-antigens such as nucleic acids and gangliosides, sialic acid-containing glycolipids, are suppressed by inhibitory B cell co-receptors CD72 and Siglec-G, respectively. These inhibitory co-receptors recognize non-protein self-antigens and suppress BCR signaling induced by these antigens, thereby inhibiting B cell response to these self-antigens. Inhibitory B cell co-receptors appear to be involved in B cell self-tolerance to non-protein self-antigens that can activate B cells by T cell-independent mechanisms.
Collapse
Affiliation(s)
- Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
37
|
Anang DC, Balzaretti G, van Kampen A, de Vries N, Klarenbeek PL. The Germinal Center Milieu in Rheumatoid Arthritis: The Immunological Drummer or Dancer? Int J Mol Sci 2021; 22:10514. [PMID: 34638855 PMCID: PMC8508581 DOI: 10.3390/ijms221910514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 01/04/2023] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic autoimmune disease characterized by joint inflammation, affecting approximately 1% of the general population. To alleviate symptoms and ameliorate joint damage, chronic use of immunosuppressives is needed. However, these treatments are only partially effective and may lead to unwanted side effects. Therefore, a more profound understanding of the pathophysiology might lead to more effective therapies, or better still, a cure. The presence of autoantibodies in RA indicates that B cells might have a pivotal role in the disease. This concept is further supported by the fact that a diverse antibody response to various arthritis-related epitopes is associated with arthritis development. In this context, attention has focused in recent years on the role of Germinal Centers (GCs) in RA. Since GCs act as the main anatomic location of somatic hypermutations, and, thus, contributing to the diversity and specificity of (auto) antibodies, it has been speculated that defects in germinal center reactions might be crucial in the initiation and maintenance of auto-immune events. In this paper, we discuss current evidence that various processes within GCs can result in the aberrant production of B cells that possess autoreactive properties and might result in the production of RA related autoantibodies. Secondly, we discuss various (pre-)clinical studies that have targeted various GC processes as novel therapies for RA treatment.
Collapse
Affiliation(s)
- Dornatien C. Anang
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (G.B.); (P.L.K.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Giulia Balzaretti
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (G.B.); (P.L.K.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Antoine van Kampen
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Niek de Vries
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (G.B.); (P.L.K.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Paul L. Klarenbeek
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (G.B.); (P.L.K.)
- Department of Rheumatology, Spaarne Gasthuis, Hoofdorp, 2000 AK Haarlem, The Netherlands
| |
Collapse
|
38
|
Regulation of B Cell Responses in SLE by Three Classes of Interferons. Int J Mol Sci 2021; 22:ijms221910464. [PMID: 34638804 PMCID: PMC8508684 DOI: 10.3390/ijms221910464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022] Open
Abstract
There are three classes of interferons (type 1, 2, and 3) that can contribute to the development and maintenance of various autoimmune diseases, including systemic lupus erythematosus (SLE). Each class of interferons promotes the generation of autoreactive B cells and SLE-associated autoantibodies by distinct signaling mechanisms. SLE patients treated with various type 1 interferon-blocking biologics have diverse outcomes, suggesting that additional environmental and genetic factors may dictate how these cytokines contribute to the development of autoreactive B cells and SLE. Understanding how each class of interferons controls B cell responses in SLE is necessary for developing optimized B cell- and interferon-targeted therapeutics. In this review, we will discuss how each class of interferons differentially promotes the loss of peripheral B cell tolerance and leads to the development of autoreactive B cells, autoantibodies, and SLE.
Collapse
|
39
|
Reijm S, Kissel T, Stoeken-Rijsbergen G, Slot LM, Wortel CM, van Dooren HJ, Levarht NEW, Kampstra ASB, Derksen VFAM, Heer POD, Bang H, Drijfhout JW, Trouw LA, Huizinga TWJ, Rispens T, Scherer HU, Toes REM. Cross-reactivity of IgM anti-modified protein antibodies in rheumatoid arthritis despite limited mutational load. Arthritis Res Ther 2021; 23:230. [PMID: 34479638 PMCID: PMC8413699 DOI: 10.1186/s13075-021-02609-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background Anti-modified protein antibodies (AMPA) targeting citrullinated, acetylated and/or carbamylated self-antigens are hallmarks of rheumatoid arthritis (RA). Although AMPA-IgG cross-reactivity to multiple post-translational modifications (PTMs) is evident, it is unknown whether the first responding B cells, expressing IgM, display similar characteristics or if cross-reactivity is crucially dependent on somatic hypermutation (SHM). We now studied the reactivity of (germline) AMPA-IgM to further understand the breach of B cell tolerance and to identify if cross-reactivity depends on extensive SHM. Moreover, we investigated whether AMPA-IgM can efficiently recruit immune effector mechanisms. Methods Polyclonal AMPA-IgM were isolated from RA patients and assessed for cross-reactivity towards PTM antigens. AMPA-IgM B cell receptor sequences were obtained by single cell isolation using antigen-specific tetramers. Subsequently, pentameric monoclonal AMPA-IgM, their germline counterparts and monomeric IgG variants were generated. The antibodies were analysed on a panel of PTM antigens and tested for complement activation. Results Pentameric monoclonal and polyclonal AMPA-IgM displayed cross-reactivity to multiple antigens and different PTMs. PTM antigen recognition was still present, although reduced, after reverting the IgM into germline. Valency of AMPA-IgM was crucial for antigen recognition as PTM-reactivity significantly decreased when AMPA-IgM were expressed as IgG. Furthermore, AMPA-IgM was 15- to 30-fold more potent in complement-activation compared to AMPA-IgG. Conclusions We provide first evidence that AMPA-IgM are cross-reactive towards different PTMs, indicating that PTM (cross-)reactivity is not confined to IgG and does not necessarily depend on extensive somatic hypermutation. Moreover, our data indicate that a diverse set of PTM antigens could be involved in the initial tolerance breach in RA and suggest that AMPA-IgM can induce complement-activation and thereby inflammation. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02609-5.
Collapse
Affiliation(s)
- Sanne Reijm
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Theresa Kissel
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Linda M Slot
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Corrie M Wortel
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hugo J van Dooren
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nivine E W Levarht
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arieke S B Kampstra
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Veerle F A M Derksen
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pleuni Ooijevaar-de Heer
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Jan W Drijfhout
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Leendert A Trouw
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Theo Rispens
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, The Netherlands
| | - Hans U Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
40
|
Ou P, Stanek A, Huan Z, Roman CAJ, Huan C. SMS2 deficiency impairs PKCδ-regulated B cell tolerance in the germinal center. Cell Rep 2021; 36:109624. [PMID: 34469734 DOI: 10.1016/j.celrep.2021.109624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/14/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
B cell tolerance prevents autoimmunity by deleting or deactivating autoreactive B cells that otherwise may cause autoantibody-driven disorders, including systemic lupus erythematosus (lupus). Lupus is characterized by immunoglobulin Gs carrying a double-stranded (ds)-DNA autospecificity derived mainly from somatic hypermutation in the germinal center (GC), pointing to a checkpoint breach of GC B cell tolerance that leads to lupus. However, tolerance mechanisms in the GC remain poorly understood. Here, we show that upregulated sphingomyelin synthase 2 (SMS2) in anti-dsDNA GC B cells induces apoptosis by directly activating protein kinase C δ (PKCδ)'s pro-apoptotic activity. This tolerance mechanism prevents lupus autoimmunity in C57/BL6 mice and can be stimulated pharmacologically to inhibit lupus pathogenesis in lupus-prone NZBWF1 mice. Patients with lupus consistently have substantially reduced SMS2 expression in B cells and to an even greater extent in autoimmune-prone, age-associated B cells, suggesting that patients with lupus have insufficient SMS2-regulated B cell tolerance.
Collapse
Affiliation(s)
- Peiqi Ou
- Program in Molecular and Cellular Biology, The School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Albert Stanek
- Department of Surgery, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Zack Huan
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Christopher A J Roman
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA.
| | - Chongmin Huan
- Department of Surgery, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA; Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA.
| |
Collapse
|
41
|
Pearce AC, Bamford MJ, Barber R, Bridges A, Convery MA, Demetriou C, Evans S, Gobbetti T, Hirst DJ, Holmes DS, Hutchinson JP, Jayne S, Lezina L, McCabe MT, Messenger C, Morley J, Musso MC, Scott-Stevens P, Manso AS, Schofield J, Slocombe T, Somers D, Walker AL, Wyce A, Zhang XP, Wagner SD. GSK137, a potent small-molecule BCL6 inhibitor with in vivo activity, suppresses antibody responses in mice. J Biol Chem 2021; 297:100928. [PMID: 34274316 PMCID: PMC8350397 DOI: 10.1016/j.jbc.2021.100928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
B-cell lymphoma 6 (BCL6) is a zinc finger transcriptional repressor possessing a BTB-POZ (BR-C, ttk, and bab for BTB; pox virus and zinc finger for POZ) domain, which is required for homodimerization and association with corepressors. BCL6 has multiple roles in normal immunity, autoimmunity, and some types of lymphoma. Mice bearing disrupted BCL6 loci demonstrate suppressed high-affinity antibody responses to T-dependent antigens. The corepressor binding groove in the BTB-POZ domain is a potential target for small compound-mediated therapy. Several inhibitors targeting this binding groove have been described, but these compounds have limited or absent in vivo activity. Biophysical studies of a novel compound, GSK137, showed an in vitro pIC50 of 8 and a cellular pIC50 of 7.3 for blocking binding of a peptide derived from the corepressor silencing mediator for retinoid or thyroid hormone receptors to the BCL6 BTB-POZ domain. The compound has good solubility (128 μg/ml) and permeability (86 nM/s). GSK137 caused little change in cell viability or proliferation in four BCL6-expressing B-cell lymphoma lines, although there was modest dose-dependent accumulation of G1 phase cells. Pharmacokinetic studies in mice showed a profile compatible with achieving good levels of target engagement. GSK137, administered orally, suppressed immunoglobulin G responses and reduced numbers of germinal centers and germinal center B cells following immunization of mice with the hapten trinitrophenol. Overall, we report a novel small-molecule BCL6 inhibitor with in vivo activity that inhibits the T-dependent antigen immune response.
Collapse
Affiliation(s)
| | - Mark J Bamford
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | - Ruth Barber
- Leicester Drug Discovery and Diagnostics, University of Leicester, Leicester, UK
| | - Angela Bridges
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | | | - Constantinos Demetriou
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Leicester, UK
| | - Sian Evans
- Leicester Drug Discovery and Diagnostics, University of Leicester, Leicester, UK
| | | | - David J Hirst
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | | | | | - Sandrine Jayne
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Leicester, UK
| | - Larissa Lezina
- Leicester Drug Discovery and Diagnostics, University of Leicester, Leicester, UK; Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Leicester, UK
| | | | | | - Joanne Morley
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | | | | | - Ana Sousa Manso
- Leicester Drug Discovery and Diagnostics, University of Leicester, Leicester, UK; Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Leicester, UK
| | - Jennifer Schofield
- Leicester Drug Discovery and Diagnostics, University of Leicester, Leicester, UK
| | - Tom Slocombe
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | - Don Somers
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | - Ann L Walker
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | | | | | - Simon D Wagner
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Leicester, UK.
| |
Collapse
|
42
|
Jang A, Sharp R, Wang JM, Feng Y, Wang J, Chen M. Dependence on Autophagy for Autoreactive Memory B Cells in the Development of Pristane-Induced Lupus. Front Immunol 2021; 12:701066. [PMID: 34335611 PMCID: PMC8322733 DOI: 10.3389/fimmu.2021.701066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/30/2021] [Indexed: 02/02/2023] Open
Abstract
The production of autoantibodies by autoreactive B cells plays a major role in the pathogenesis of lupus. Increases in memory B cells have been observed in human lupus patients and autoimmune lpr mice. Autophagy is required for the maintenance of memory B cells against viral infections; however, whether autophagy regulates the persistence of autoantigen-specific memory B cells and the development of lupus remains to be determined. Here we show that memory B cells specific for autoantigens can be detected in autoimmune lpr mice and a pristane-induced lupus mouse model. Interestingly, B cell-specific deletion of Atg7 led to significant loss of autoreactive memory B cells and reduced autoantibody production in pristane-treated mice. Autophagy deficiency also attenuated the development of autoimmune glomerulonephritis and pulmonary inflammation after pristane treatment. Adoptive transfer of wild type autoreactive memory B cells restored autoantibody production in Atg7-deficient recipients. These data suggest that autophagy is important for the persistence of autoreactive memory B cells in mediating autoantibody responses. Our results suggest that autophagy could be targeted to suppress autoreactive memory B cells and ameliorate humoral autoimmunity.
Collapse
Affiliation(s)
- Albert Jang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Robert Sharp
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Jeffrey M. Wang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Yin Feng
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Jin Wang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, United States,Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY, United States,*Correspondence: Jin Wang, ; Min Chen,
| | - Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States,*Correspondence: Jin Wang, ; Min Chen,
| |
Collapse
|
43
|
Jiang R, Meng H, Raddassi K, Fleming I, Hoehn KB, Dardick KR, Belperron AA, Montgomery RR, Shalek AK, Hafler DA, Kleinstein SH, Bockenstedt LK. Single-cell immunophenotyping of the skin lesion erythema migrans identifies IgM memory B cells. JCI Insight 2021; 6:148035. [PMID: 34061047 PMCID: PMC8262471 DOI: 10.1172/jci.insight.148035] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
The skin lesion erythema migrans (EM) is an initial sign of the Ixodes tick-transmitted Borreliella spirochetal infection known as Lyme disease. T cells and innate immune cells have previously been shown to predominate the EM lesion and promote the reaction. Despite the established importance of B cells and antibodies in preventing infection, the role of B cells in the skin immune response to Borreliella is unknown. Here, we used single-cell RNA-Seq in conjunction with B cell receptor (BCR) sequencing to immunophenotype EM lesions and their associated B cells and BCR repertoires. We found that B cells were more abundant in EM in comparison with autologous uninvolved skin; many were clonally expanded and had circulating relatives. EM-associated B cells upregulated the expression of MHC class II genes and exhibited preferential IgM isotype usage. A subset also exhibited low levels of somatic hypermutation despite a gene expression profile consistent with memory B cells. Our study demonstrates that single-cell gene expression with paired BCR sequencing can be used to interrogate the sparse B cell populations in human skin and reveals that B cells in the skin infection site in early Lyme disease expressed a phenotype consistent with local antigen presentation and antibody production.
Collapse
Affiliation(s)
| | | | - Khadir Raddassi
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ira Fleming
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | | | | | - Alexia A. Belperron
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ruth R. Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Alex K. Shalek
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, USA
| | - David A. Hafler
- Department of Immunobiology
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | - Steven H. Kleinstein
- Department of Immunobiology
- Department of Pathology, and
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
| | - Linda K. Bockenstedt
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
44
|
Takeshita M, Suzuki K, Nakazawa M, Kamata H, Ishii M, Oyamada Y, Oshima H, Takeuchi T. Antigen-driven autoantibody production in lungs of interstitial lung disease with autoimmune disease. J Autoimmun 2021; 121:102661. [PMID: 34034155 DOI: 10.1016/j.jaut.2021.102661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/26/2022]
Abstract
Interstitial lung disease (ILD) sometimes becomes a life-threatening complication of systemic autoimmune diseases; however, little is known about the immune response in lung lesions. We aimed to investigate humoural immunity in ILD associated with rheumatoid arthritis (RA), sjögren's syndrome (SjS), and mixed connective tissue disease (MCTD), using bronchoalveolar fluid (BALF) and serum samples from 15 patients with autoimmune disease associated-ILD. We first showed that BALF contained higher titers of disease-related autoantibodies than serum, suggesting the possibility of autoantibody production in lungs. Next, we produced 326 monoclonal antibodies from antibody-secreting cells in BALF, and the reactivity and their revertants, in which somatic hypermutations were reverted to germline, were analyzed. Among 123 antibodies from RA-ILD, 16 disease-related antibodies (anti-modified protein antibodies and rheumatoid factors) were identified, of which one antibody had both properties. The revertant antibodies changed their target modification in a complicated manner, suggesting that the antibodies were selected against various modifications in lungs. Among 146 antibodies from SjS-ILD and/or MCTD-ILD, seven anti-SSA/Ro60 antibodies and 15 anti-RNP antibodies were identified. Some of the anti-RNP antibodies recognized multiple RNP constituent proteins simultaneously, indicating that epitope spreading may progress in lungs. Our results revealed the existence of an active autoimmunity in the lungs of autoimmune disease associated-ILD.
Collapse
Affiliation(s)
- Masaru Takeshita
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Katsuya Suzuki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Maho Nakazawa
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hirofumi Kamata
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshitaka Oyamada
- Department of Respiratory Medicine, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Hisaji Oshima
- Department of Connective Tissue Diseases, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
45
|
Bonasia CG, Abdulahad WH, Rutgers A, Heeringa P, Bos NA. B Cell Activation and Escape of Tolerance Checkpoints: Recent Insights from Studying Autoreactive B Cells. Cells 2021; 10:1190. [PMID: 34068035 PMCID: PMC8152463 DOI: 10.3390/cells10051190] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022] Open
Abstract
Autoreactive B cells are key drivers of pathogenic processes in autoimmune diseases by the production of autoantibodies, secretion of cytokines, and presentation of autoantigens to T cells. However, the mechanisms that underlie the development of autoreactive B cells are not well understood. Here, we review recent studies leveraging novel techniques to identify and characterize (auto)antigen-specific B cells. The insights gained from such studies pertaining to the mechanisms involved in the escape of tolerance checkpoints and the activation of autoreactive B cells are discussed. In addition, we briefly highlight potential therapeutic strategies to target and eliminate autoreactive B cells in autoimmune diseases.
Collapse
Affiliation(s)
- Carlo G. Bonasia
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; (C.G.B.); (W.H.A.); (A.R.)
| | - Wayel H. Abdulahad
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; (C.G.B.); (W.H.A.); (A.R.)
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands;
| | - Abraham Rutgers
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; (C.G.B.); (W.H.A.); (A.R.)
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands;
| | - Nicolaas A. Bos
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; (C.G.B.); (W.H.A.); (A.R.)
| |
Collapse
|
46
|
Wu S, Teo BHD, Wee SYK, Chen J, Lu J. The GAR/RGG motif defines a family of nuclear alarmins. Cell Death Dis 2021; 12:477. [PMID: 33980825 PMCID: PMC8116331 DOI: 10.1038/s41419-021-03766-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/03/2023]
Abstract
The nucleus is the target of autoantibodies in many diseases, which suggests intrinsic nuclear adjuvants that confer its high autoimmunogenicity. Nucleolin (NCL) is one abundant nucleolar autoantigen in systemic lupus erythematosus (SLE) patients and, in lupus-prone mice, it elicits autoantibodies early. With purified NCL, we observed that it was a potent alarmin that activated monocytes, macrophages and dendritic cells and it was a ligand for TLR2 and TLR4. NCL released by necrotic cells also exhibited alarmin activity. The NCL alarmin activity resides in its glycine/arginine-rich (GAR/RGG) motif and can be displayed by synthetic GAR/RGG peptides. Two more GAR/RGG-containing nucleolar proteins, fibrillarin (FBRL) and GAR1, were also confirmed to be novel alarmins. Therefore, the GAR/RGG alarmin motif predicts a family of nucleolar alarmins. The apparent prevalence of nucleolar alarmins suggests their positive contribution to tissue homeostasis by inducing self-limiting tissue inflammation with autoimmunity only occurring when surveillance is broken down.
Collapse
Affiliation(s)
- Shan Wu
- grid.4280.e0000 0001 2180 6431Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD4, 5 Science Drive 2, Singapore, 117545 Singapore ,grid.4280.e0000 0001 2180 6431Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore, 117456 Singapore
| | - Boon Heng Dennis Teo
- grid.4280.e0000 0001 2180 6431Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD4, 5 Science Drive 2, Singapore, 117545 Singapore ,grid.4280.e0000 0001 2180 6431Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore, 117456 Singapore
| | - Seng Yin Kelly Wee
- grid.4280.e0000 0001 2180 6431Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD4, 5 Science Drive 2, Singapore, 117545 Singapore ,grid.4280.e0000 0001 2180 6431Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore, 117456 Singapore
| | - Junjie Chen
- grid.4280.e0000 0001 2180 6431Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD4, 5 Science Drive 2, Singapore, 117545 Singapore ,grid.4280.e0000 0001 2180 6431Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore, 117456 Singapore
| | - Jinhua Lu
- grid.4280.e0000 0001 2180 6431Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD4, 5 Science Drive 2, Singapore, 117545 Singapore ,grid.4280.e0000 0001 2180 6431Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore, 117456 Singapore
| |
Collapse
|
47
|
Sáez Moya M, Gutiérrez-Cózar R, Puñet-Ortiz J, Rodríguez de la Concepción ML, Blanco J, Carrillo J, Engel P. Autoimmune B Cell Repertoire in a Mouse Model of Sjögren's Syndrome. Front Immunol 2021; 12:666545. [PMID: 33968069 PMCID: PMC8103202 DOI: 10.3389/fimmu.2021.666545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/07/2021] [Indexed: 11/24/2022] Open
Abstract
In genetically prone individuals, chronic immune activation may lead to expansion of autoreactive lymphocyte clones that can induce organ damage developing autoimmune disorders. Sjögren’s Syndrome (SjS) is a systemic chronic autoimmune disease that primarily affects exocrine glands. Despite the accumulated evidences of profound B-cell alterations of humoral immunity, the repertoire and development of B-cell autoreactivity in SjS remains to be determined. We hypothesize that SjS mice will have an increased frequency of self-reactive B cells with a progressive evolution to antigen-driven oligoclonality. Here, we study the B cell repertoire of NOD.H-2h4 mice, a mouse model of spontaneous autoimmunity mimicking SjS without developing diabetes. A library of 168 hybridomas from NOD.H-2h4 mice and 186 C57BL/6J splenocytes at different ages was created. The presence of mono or polyreactive autoantibodies to several antigens was evaluated by ELISA, and their staining patterns and cellular reactivity were tested by IFA and FACS. We observed a higher frequency of autoreactivity among B-cell clones from NOD.H-2h4 mice as compared to wild-type mice. The presence of polyreactive and autoreactive IgG clones increased with mice age. Strikingly, all anti-Ro52 autoantibodies were polyreactive. No loss of polyreactivity was observed upon antibody class switching to IgG. There was a progression to oligoclonality in IgG B cells with mice aging. Our results indicate that in the NOD.H-2h4 mouse model of SjS, IgG+ B cells are mainly polyreactive and might expand following an unknown antigen-driven positive selection process.
Collapse
Affiliation(s)
- Manuel Sáez Moya
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Rebeca Gutiérrez-Cózar
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Joan Puñet-Ortiz
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | | | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Badalona, Spain, Germans Trias i Pujol Research Institute (IGTP), Catalonia, Spain.,AIDS and Related Diseases Chair, Universitat de Vic-Central de Catalunya (UVIC-UCC), Vic, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Badalona, Spain, Germans Trias i Pujol Research Institute (IGTP), Catalonia, Spain
| | - Pablo Engel
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
48
|
Bhagavati S. Autoimmune Disorders of the Nervous System: Pathophysiology, Clinical Features, and Therapy. Front Neurol 2021; 12:664664. [PMID: 33935958 PMCID: PMC8079742 DOI: 10.3389/fneur.2021.664664] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Remarkable discoveries over the last two decades have elucidated the autoimmune basis of several, previously poorly understood, neurological disorders. Autoimmune disorders of the nervous system may affect any part of the nervous system, including the brain and spinal cord (central nervous system, CNS) and also the peripheral nerves, neuromuscular junction and skeletal muscle (peripheral nervous system, PNS). This comprehensive overview of this rapidly evolving field presents the factors which may trigger breakdown of self-tolerance and development of autoimmune disease in some individuals. Then the pathophysiological basis and clinical features of autoimmune diseases of the nervous system are outlined, with an emphasis on the features which are important to recognize for accurate clinical diagnosis. Finally the latest therapies for autoimmune CNS and PNS disorders and their mechanisms of action and the most promising research avenues for targeted immunotherapy are discussed.
Collapse
Affiliation(s)
- Satyakam Bhagavati
- Department of Neurology, Downstate Medical Center, State University of New York College of Medicine, New York, NY, United States
| |
Collapse
|
49
|
Fichtner ML, Vieni C, Redler RL, Kolich L, Jiang R, Takata K, Stathopoulos P, Suarez PA, Nowak RJ, Burden SJ, Ekiert DC, O'Connor KC. Affinity maturation is required for pathogenic monovalent IgG4 autoantibody development in myasthenia gravis. J Exp Med 2021; 217:152036. [PMID: 32820331 PMCID: PMC7953735 DOI: 10.1084/jem.20200513] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/04/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022] Open
Abstract
Pathogenic muscle-specific tyrosine kinase (MuSK)–specific IgG4 autoantibodies in autoimmune myasthenia gravis (MG) are functionally monovalent as a result of Fab-arm exchange. The development of these unique autoantibodies is not well understood. We examined MG patient–derived monoclonal autoantibodies (mAbs), their corresponding germline-encoded unmutated common ancestors (UCAs), and monovalent antigen-binding fragments (Fabs) to investigate how affinity maturation contributes to binding and immunopathology. Mature mAbs, UCA mAbs, and mature monovalent Fabs bound to MuSK and demonstrated pathogenic capacity. However, monovalent UCA Fabs bound to MuSK but did not have measurable pathogenic capacity. Affinity of the UCA Fabs for MuSK was 100-fold lower than the subnanomolar affinity of the mature Fabs. Crystal structures of two Fabs revealed how mutations acquired during affinity maturation may contribute to increased MuSK-binding affinity. These findings indicate that the autoantigen drives autoimmunity in MuSK MG through the accumulation of somatic mutations such that monovalent IgG4 Fab-arm–exchanged autoantibodies reach a high-affinity threshold required for pathogenic capacity.
Collapse
Affiliation(s)
- Miriam L Fichtner
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Casey Vieni
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY.,Medical Scientist Training Program, New York University School of Medicine, New York, NY
| | - Rachel L Redler
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Ljuvica Kolich
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Ruoyi Jiang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Kazushiro Takata
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Panos Stathopoulos
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Pablo A Suarez
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Steven J Burden
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Damian C Ekiert
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Kevin C O'Connor
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
50
|
Skin-Associated B Cells in the Pathogenesis of Cutaneous Autoimmune Diseases-Implications for Therapeutic Approaches. Cells 2020; 9:cells9122627. [PMID: 33297481 PMCID: PMC7762338 DOI: 10.3390/cells9122627] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
B lymphocytes are crucial mediators of systemic immune responses and are known to be substantial in the pathogenesis of autoimmune diseases with cutaneous manifestations. Amongst them are lupus erythematosus, dermatomyositis, systemic sclerosis and psoriasis, and particularly those driven by autoantibodies such as pemphigus and pemphigoid. However, the concept of autoreactive skin-associated B cells, which may reside in the skin and locally contribute to chronic inflammation, is gradually evolving. These cells are believed to differ from B cells of primary and secondary lymphoid organs and may provide additional features besides autoantibody production, including cytokine expression and crosstalk to autoreactive T cells in an antigen-presenting manner. In chronically inflamed skin, B cells may appear in tertiary lymphoid structures. Those abnormal lymph node-like structures comprise a network of immune and stromal cells possibly enriched by vascular structures and thus constitute an ideal niche for local autoimmune responses. In this review, we describe current considerations of different B cell subsets and their assumed role in skin autoimmunity. Moreover, we discuss traditional and B cell-associated approaches for the treatment of autoimmune skin diseases, including drugs targeting B cells (e.g., CD19- and CD20-antibodies), plasma cells (e.g., proteasome inhibitors, CXCR4 antagonists), activated pathways (such as BTK- and PI3K-inhibitors) and associated activator molecules (BLyS, APRIL).
Collapse
|