1
|
Yang J. Emerging Insights into Sall4's Role in Cardiac Regenerative Medicine. Cells 2025; 14:154. [PMID: 39936946 PMCID: PMC11817359 DOI: 10.3390/cells14030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Sall4 as a pivotal transcription factor has been extensively studied across diverse biological processes, including stem cell biology, embryonic development, hematopoiesis, tissue stem/progenitor maintenance, and the progression of various cancers. Recent research highlights Sall4's emerging roles in modulating cardiac progenitors and cellular reprogramming, linking its functions to early heart development and regenerative medicine. These findings provide new insights into the critical functions of Sall4 in cardiobiology. This review explores Sall4's complex molecular mechanisms and their implications for advancing cardiac regenerative medicine.
Collapse
Affiliation(s)
- Jianchang Yang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
2
|
Sun S, Wang L, Tang Q, Yi J, Yu X, Cao Y, Jiang L, Liu J. Myocardial infarction in rats was alleviated by MSCs derived from the maternal segment of the human umbilical cord. Front Cell Dev Biol 2024; 12:1469541. [PMID: 39479514 PMCID: PMC11521943 DOI: 10.3389/fcell.2024.1469541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
Background Mesenchymal stem cells (MSCs) are safe and effective in treating myocardial infarction (MI) and have broad application prospects. However, the heterogeneity of MSCs may affect their therapeutic effect on the disease. We recently found that MSCs derived from different segments of the same umbilical cord (UC) showed significant difference in the expression of genes that are related to heart development and injury repair. We therefore hypothesized that those MSCs with high expression of above genes are more effective to treat MI and tested it in this study. Methods MSCs were isolated from 3 cm-long segments of the maternal, middle and fetal segments of the UC (maternal-MSCs, middle-MSCs and fetal-MSCs, respectively). RNA-seq was used to analyze and compare the transcriptomes. We verified the effects of MSCs on oxygen-glucose deprivation (OGD)-induced cardiomyocyte apoptosis in vitro. In vivo, a rat MI model was established by ligating the left anterior descending coronary artery, and MSCs were injected into the myocardium surrounding the MI site. The therapeutic effects of MSCs derived from different segments of the UC were evaluated by examining cardiac function, histopathology, cardiomyocyte apoptosis, and angiogenesis. Results Compared to fetal-MSCs and middle-MSCs, maternal-MSCs exhibited significantly higher expression of genes that are associated with heart development, such as GATA-binding protein 4 (GATA4), and myocardin (MYOCD). Coculture with maternal-MSCs reduced OGD-induced cardiomyocyte apoptosis. In rats with MI, maternal-MSCs significantly restored cardiac contractile function and reduced the infarct size. Mechanistic experiments revealed that maternal-MSCs exerted cardioprotective effects by decreasing cardiomyocyte apoptosis, and promoting angiogenesis. Conclusion Our data demonstrated that maternal segment-derived MSCs were a superior cell source for regenerative repair after MI. Segmental localization of the entire UC when isolating hUCMSCs was necessary to improve the effectiveness of clinical applications.
Collapse
Affiliation(s)
- Shuifen Sun
- Regenerative Medicine Research Center, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
| | - Linping Wang
- Regenerative Medicine Research Center, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
| | - Qisheng Tang
- Regenerative Medicine Research Center, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
| | - Jialian Yi
- Regenerative Medicine Research Center, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
| | - Xin Yu
- Medicine School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yu Cao
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
- Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lihong Jiang
- Regenerative Medicine Research Center, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
- Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Liu
- Regenerative Medicine Research Center, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
3
|
Luo Y, Cao K, Chiu J, Chen H, Wang HJ, Thornton ME, Grubbs BH, Kolb M, Parmacek MS, Mishina Y, Shi W. Defective mesenchymal Bmpr1a-mediated BMP signaling causes congenital pulmonary cysts. eLife 2024; 12:RP91876. [PMID: 38856718 PMCID: PMC11164533 DOI: 10.7554/elife.91876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Abnormal lung development can cause congenital pulmonary cysts, the mechanisms of which remain largely unknown. Although the cystic lesions are believed to result directly from disrupted airway epithelial cell growth, the extent to which developmental defects in lung mesenchymal cells contribute to abnormal airway epithelial cell growth and subsequent cystic lesions has not been thoroughly examined. In the present study using genetic mouse models, we dissected the roles of bone morphogenetic protein (BMP) receptor 1a (Bmpr1a)-mediated BMP signaling in lung mesenchyme during prenatal lung development and discovered that abrogation of mesenchymal Bmpr1a disrupted normal lung branching morphogenesis, leading to the formation of prenatal pulmonary cystic lesions. Severe deficiency of airway smooth muscle cells and subepithelial elastin fibers were found in the cystic airways of the mesenchymal Bmpr1a knockout lungs. In addition, ectopic mesenchymal expression of BMP ligands and airway epithelial perturbation of the Sox2-Sox9 proximal-distal axis were detected in the mesenchymal Bmpr1a knockout lungs. However, deletion of Smad1/5, two major BMP signaling downstream effectors, from the lung mesenchyme did not phenocopy the cystic abnormalities observed in the mesenchymal Bmpr1a knockout lungs, suggesting that a Smad-independent mechanism contributes to prenatal pulmonary cystic lesions. These findings reveal for the first time the role of mesenchymal BMP signaling in lung development and a potential pathogenic mechanism underlying congenital pulmonary cysts.
Collapse
Affiliation(s)
- Yongfeng Luo
- Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Ke Cao
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Joanne Chiu
- Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Hui Chen
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Hong-Jun Wang
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Matthew E Thornton
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Brendan H Grubbs
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Martin Kolb
- Department of Medicine, McMaster UniversityHamiltonCanada
| | - Michael S Parmacek
- Department of Medicine, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yuji Mishina
- Department of Biologic and Material Sciences, University of Michigan-Ann ArborAnn ArborUnited States
| | - Wei Shi
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of MedicineCincinnatiUnited States
| |
Collapse
|
4
|
Luo Y, Cao K, Chiu J, Chen H, Wang HJ, Thornton ME, Grubbs BH, Kolb M, Parmacek MS, Mishina Y, Shi W. Defective mesenchymal Bmpr1a-mediated BMP signaling causes congenital pulmonary cysts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.26.559527. [PMID: 37808788 PMCID: PMC10557633 DOI: 10.1101/2023.09.26.559527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Abnormal lung development can cause congenital pulmonary cysts, the mechanisms of which remain largely unknown. Although the cystic lesions are believed to result directly from disrupted airway epithelial cell growth, the extent to which developmental defects in lung mesenchymal cells contribute to abnormal airway epithelial cell growth and subsequent cystic lesions has not been thoroughly examined. In the present study, we dissected the roles of BMP receptor 1a (Bmpr1a)-mediated BMP signaling in lung mesenchyme during prenatal lung development and discovered that abrogation of mesenchymal Bmpr1a disrupted normal lung branching morphogenesis, leading to the formation of prenatal pulmonary cystic lesions. Severe deficiency of airway smooth muscle cells and subepithelial elastin fibers were found in the cystic airways of the mesenchymal Bmpr1a knockout lungs. In addition, ectopic mesenchymal expression of BMP ligands and airway epithelial perturbation of the Sox2-Sox9 proximal-distal axis were detected in the mesenchymal Bmpr1a knockout lungs. However, deletion of Smad1/5, two major BMP signaling downstream effectors, from the lung mesenchyme did not phenocopy the cystic abnormalities observed in the mesenchymal Bmpr1a knockout lungs, suggesting that a Smad-independent mechanism contributes to prenatal pulmonary cystic lesions. These findings reveal for the first time the role of mesenchymal BMP signaling in lung development and a potential pathogenic mechanism underlying congenital pulmonary cysts.
Collapse
Affiliation(s)
- Yongfeng Luo
- Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027
| | - Ke Cao
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Joanne Chiu
- Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027
| | - Hui Chen
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Hong-Jun Wang
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Matthew E. Thornton
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Brendan H. Grubbs
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Martin Kolb
- Department of Medicine, McMaster University, Hamilton, ON, Canada L8N 4A6
| | - Michael S. Parmacek
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuji Mishina
- Department of Biologic and Material Sciences, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109
| | - Wei Shi
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
5
|
Gan P, Eppert M, De La Cruz N, Lyons H, Shah AM, Veettil RT, Chen K, Pradhan P, Bezprozvannaya S, Xu L, Liu N, Olson EN, Sabari BR. Coactivator condensation drives cardiovascular cell lineage specification. SCIENCE ADVANCES 2024; 10:eadk7160. [PMID: 38489358 PMCID: PMC10942106 DOI: 10.1126/sciadv.adk7160] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024]
Abstract
During development, cells make switch-like decisions to activate new gene programs specifying cell lineage. The mechanisms underlying these decisive choices remain unclear. Here, we show that the cardiovascular transcriptional coactivator myocardin (MYOCD) activates cell identity genes by concentration-dependent and switch-like formation of transcriptional condensates. MYOCD forms such condensates and activates cell identity genes at critical concentration thresholds achieved during smooth muscle cell and cardiomyocyte differentiation. The carboxyl-terminal disordered region of MYOCD is necessary and sufficient for condensate formation. Disrupting this region's ability to form condensates disrupts gene activation and smooth muscle cell reprogramming. Rescuing condensate formation by replacing this region with disordered regions from functionally unrelated proteins rescues gene activation and smooth muscle cell reprogramming. Our findings demonstrate that MYOCD condensate formation is required for gene activation during cardiovascular differentiation. We propose that the formation of transcriptional condensates at critical concentrations of cell type-specific regulators provides a molecular switch underlying the activation of key cell identity genes during development.
Collapse
Affiliation(s)
- Peiheng Gan
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mikayla Eppert
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nancy De La Cruz
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heankel Lyons
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Akansha M. Shah
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reshma T. Veettil
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashant Pradhan
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Svetlana Bezprozvannaya
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ning Liu
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric N. Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Benjamin R. Sabari
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
6
|
Yuan W, Lin H, Sun Y, Liu L, Yan M, Song Y, Zhang X, Lu X, Xu Y, He Q, Ouyang K, Zhang C, Pan Y, Huang Y, Li Y, Lu X, Liu J. Myocardin reverses insulin resistance and ameliorates cardiomyopathy by increasing IRS-1 expression in a murine model of lipodystrophy caused by adipose deficiency of vacuolar H +-ATPase V0d1 subunit. Theranostics 2024; 14:2246-2264. [PMID: 38505620 PMCID: PMC10945344 DOI: 10.7150/thno.93192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/02/2024] [Indexed: 03/21/2024] Open
Abstract
Aim: Adipose tissue (AT) dysfunction that occurs in both obesity and lipodystrophy is associated with the development of cardiomyopathy. However, it is unclear how dysfunctional AT induces cardiomyopathy due to limited animal models available. We have identified vacuolar H+-ATPase subunit Vod1, encoded by Atp6v0d1, as a master regulator of adipogenesis, and adipose-specific deletion of Atp6v0d1 (Atp6v0d1AKO) in mice caused generalized lipodystrophy and spontaneous cardiomyopathy. Using this unique animal model, we explore the mechanism(s) underlying lipodystrophy-related cardiomyopathy. Methods and Results: Atp6v0d1AKO mice developed cardiac hypertrophy at 12 weeks, and progressed to heart failure at 28 weeks. The Atp6v0d1AKO mouse hearts exhibited excessive lipid accumulation and altered lipid and glucose metabolism, which are typical for obesity- and diabetes-related cardiomyopathy. The Atp6v0d1AKO mice developed cardiac insulin resistance evidenced by decreased IRS-1/2 expression in hearts. Meanwhile, the expression of forkhead box O1 (FoxO1), a transcription factor which plays critical roles in regulating cardiac lipid and glucose metabolism, was increased. RNA-seq data and molecular biological assays demonstrated reduced expression of myocardin, a transcription coactivator, in Atp6v0d1AKO mouse hearts. RNA interference (RNAi), luciferase reporter and ChIP-qPCR assays revealed the critical role of myocardin in regulating IRS-1 transcription through the CArG-like element in IRS-1 promoter. Reducing IRS-1 expression with RNAi increased FoxO1 expression, while increasing IRS-1 expression reversed myocardin downregulation-induced FoxO1 upregulation in cardiomyocytes. In vivo, restoring myocardin expression specifically in Atp6v0d1AKO cardiomyocytes increased IRS-1, but decreased FoxO1 expression. As a result, the abnormal expressions of metabolic genes in Atp6v0d1AKO hearts were reversed, and cardiac dysfunctions were ameliorated. Myocardin expression was also reduced in high fat diet-induced diabetic cardiomyopathy and palmitic acid-treated cardiomyocytes. Moreover, increasing systemic insulin resistance with rosiglitazone restored cardiac myocardin expression and improved cardiac functions in Atp6v0d1AKO mice. Conclusion: Atp6v0d1AKO mice are a novel animal model for studying lipodystrophy- or metabolic dysfunction-related cardiomyopathy. Moreover, myocardin serves as a key regulator of cardiac insulin sensitivity and metabolic homeostasis, highlighting myocardin as a potential therapeutic target for treating lipodystrophy- and diabetes-related cardiomyopathy.
Collapse
Affiliation(s)
- Wenlin Yuan
- Department of pathophysiology, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Hui Lin
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Yuan Sun
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Pharmacology, College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Lihuan Liu
- Department of pathophysiology, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Meijuan Yan
- Department of pathophysiology, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yujuan Song
- Department of pathophysiology, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xiaofan Zhang
- Department of pathophysiology, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xiangling Lu
- Department of pathophysiology, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yipei Xu
- Department of pathophysiology, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Qiyue He
- Department of pathophysiology, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chenglin Zhang
- Department of pathophysiology, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yong Pan
- Department of pathophysiology, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Ying Li
- Department of pathophysiology, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xifeng Lu
- Department of pathophysiology, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Jie Liu
- Department of pathophysiology, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Choo YY, Sakai T, Ikebe R, Jeffers A, Idell S, Tucker TA, Ikebe M. Role of ZIP kinase in development of myofibroblast differentiation from HPMCs. Am J Physiol Lung Cell Mol Physiol 2024; 326:L353-L366. [PMID: 38252666 PMCID: PMC11281797 DOI: 10.1152/ajplung.00251.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/14/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
During the development of pleural fibrosis, pleural mesothelial cells (PMCs) undergo phenotypic switching from differentiated mesothelial cells to mesenchymal cells (MesoMT). Here, we investigated how external stimuli such as TGF-β induce HPMC-derived myofibroblast differentiation to facilitate the development of pleural fibrosis. TGF-β significantly increased di-phosphorylation but not mono-phosphorylation of myosin II regulatory light chain (RLC) in HPMCs. An increase in RLC di-phosphorylation was also found at the pleural layer of our carbon black bleomycin (CBB) pleural fibrosis mouse model, where it showed filamentous localization that coincided with alpha smooth muscle actin (αSMA) in the cells in the pleura. Among the protein kinases that can phosphorylate myosin II RLC, ZIPK (zipper-interacting kinase) protein expression was significantly augmented after TGF-β stimulation. Furthermore, ZIPK gene silencing attenuated RLC di-phosphorylation, suggesting that ZIPK is responsible for di-phosphorylation of myosin II in HPMCs. Although TGF-β significantly increased the expression of ZIP kinase protein, the change in ZIP kinase mRNA was marginal, suggesting a posttranscriptional mechanism for the regulation of ZIP kinase expression by TGF-β. ZIPK gene knockdown (KD) also significantly reduced TGF-β-induced upregulation of αSMA expression. This finding suggests that siZIPK attenuates myofibroblast differentiation of HPMCs. siZIPK diminished TGF-β-induced contractility of HPMCs consistent with siZIPK-induced decrease in the di-phosphorylation of myosin II RLC. The present results implicate ZIPK in the regulation of the contractility of HPMC-derived myofibroblasts, phenotype switching, and myofibroblast differentiation of HPMCs.NEW & NOTEWORTHY Here, we highlight that ZIP kinase is responsible for di-phosphorylation of myosin light chain, which facilitates stress fiber formation and actomyosin-based cell contraction during mesothelial to mesenchymal transition in human pleural mesothelial cells. This transition has a significant impact on tissue remodeling and subsequent stiffness of the pleura. This study provides insight into a new therapeutic strategy for the treatment of pleural fibrosis.
Collapse
Affiliation(s)
- Young-Yeon Choo
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, Texas, United States
| | - Tsuyoshi Sakai
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, Texas, United States
| | - Reiko Ikebe
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, Texas, United States
| | - Ann Jeffers
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, Texas, United States
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, Texas, United States
| | - Torry A Tucker
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, Texas, United States
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, Texas, United States
| |
Collapse
|
8
|
Liang Y, Zhou Y, Xie D, Yin F, Luo X. Hypermethylation and low expression of FANCC involved in multi-walled carbon nanotube-induced toxicity on ARPE-19 cells. ENVIRONMENTAL RESEARCH 2024; 241:117619. [PMID: 37952855 DOI: 10.1016/j.envres.2023.117619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Multi-walled carbon nanotube (MWCNT) exposure was observed to cause damages on the viability of ocular cells, however, the underlying mechanisms remain not well understood. Epigenetic alterations that regulate gene expression have been identified as a major responsiveness to environmental challenge. Thus, the aim of this study was to screen methylation-regulated genes involved in MWCNT exposure. The Illumina Human Methylation 850 K array was employed to determine the genome-wide DNA methylation profile of human retinal pigment epithelial cell line (ARPE-19) exposed to 50% inhibition concentration of MWCNTs (100 μg/ml) for 24 h or without (n = 3 for each group). Then, the transcriptome data obtained by high-throughput RNA sequencing previously were integrated with DNA methylome to identify the overlapped genes. As a result, the integrative bioinformatics analysis identified that compared with controls, FA complementation group C (FANCC) was hypermethylated and downregulated in MWCNT-exposed ARPE-19 cells. Quantitative real-time polymerase chain reaction analysis confirmed the mRNA expression level of FANCC was significantly decreased following MWCNT treatment and the addition of DNA methylation inhibitor 5-Aza-deoxycytidine (10 μM) reversed this decrease. Pyrosequencing analysis further validated the hypermethylation status at the 5'-untranslated promoter region of FANCC (cg14583550) in MWCNT-exposed ARPE-19 cells. Protein-protein interaction network and function analyses predicted that FANCC may contribute to MWCNT-induced cytotoxicity by interacting with heat shock protein 90 beta family member 1 and then upregulating cytokine interleukin-6 and apoptosis biomarker caspase 3. In conclusion, the present study links the epigenetic modification of FANCC with the pathogenesis of MWCNT-induced retinal toxicity.
Collapse
Affiliation(s)
- Yunxia Liang
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Yang Zhou
- School of Textile Science and Engineering/State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, Wuhan, 430200, China.
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Fei Yin
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China.
| |
Collapse
|
9
|
Katano W, Mori S, Sasaki S, Tajika Y, Tomita K, Takeuchi JK, Koshiba-Takeuchi K. Sall1 and Sall4 cooperatively interact with Myocd and SRF to promote cardiomyocyte proliferation by regulating CDK and cyclin genes. Development 2023; 150:dev201913. [PMID: 38014633 DOI: 10.1242/dev.201913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Sall1 and Sall4 (Sall1/4), zinc-finger transcription factors, are expressed in the progenitors of the second heart field (SHF) and in cardiomyocytes during the early stages of mouse development. To understand the function of Sall1/4 in heart development, we generated heart-specific Sall1/4 functionally inhibited mice by forced expression of the truncated form of Sall4 (ΔSall4) in the heart. The ΔSall4-overexpression mice exhibited a hypoplastic right ventricle and outflow tract, both of which were derived from the SHF, and a thinner ventricular wall. We found that the numbers of proliferative SHF progenitors and cardiomyocytes were reduced in ΔSall4-overexpression mice. RNA-sequencing data showed that Sall1/4 act upstream of the cyclin-dependent kinase (CDK) and cyclin genes, and of key transcription factor genes for the development of compact cardiomyocytes, including myocardin (Myocd) and serum response factor (Srf). In addition, ChIP-sequencing and co-immunoprecipitation analyses revealed that Sall4 and Myocd form a transcriptional complex with SRF, and directly bind to the upstream regulatory regions of the CDK and cyclin genes (Cdk1 and Ccnb1). These results suggest that Sall1/4 are critical for the proliferation of cardiac cells via regulation of CDK and cyclin genes that interact with Myocd and SRF.
Collapse
Affiliation(s)
- Wataru Katano
- Graduate School of Life Sciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Shunta Mori
- Faculty of Life Sciences, Department of Applied Biosciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Shun Sasaki
- Graduate School of Life Sciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Yuki Tajika
- Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
- Department of Radiological Technology, Gunma Prefectural College of Health Sciences, 323-1, Kamioki-machi, Maebashi, Gunma 371-0052, Japan
| | - Koichi Tomita
- Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Jun K Takeuchi
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8510, Japan
| | - Kazuko Koshiba-Takeuchi
- Graduate School of Life Sciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
- Faculty of Life Sciences, Department of Applied Biosciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| |
Collapse
|
10
|
Morita T, Hayashi K. Actin-related protein 5 suppresses the cooperative activation of cardiac gene transcription by myocardin and MEF2. FEBS Open Bio 2023; 13:363-379. [PMID: 36610028 PMCID: PMC9900090 DOI: 10.1002/2211-5463.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 01/08/2023] Open
Abstract
MYOCD is a transcription factor important for cardiac and smooth muscle development. We previously identified that actin-related protein 5 (ARP5) binds to the N-terminus of MYOCD. Here, we demonstrate that ARP5 inhibits the cooperative action of the cardiac-specific isoform of MYOCD with MEF2. ARP5 overexpression in murine hearts induced cardiac hypertrophy and fibrosis, whereas ARP5 knockdown in P19CL6 cells significantly increased cardiac gene expression. ARP5 was found to bind to a MEF2-binding motif of cardiac MYOCD and inhibit MEF2-mediated transactivation by MYOCD. RNA-seq analysis revealed 849 genes that are upregulated by MYOCD-MEF2 and 650 genes that are repressed by ARP5. ARP5 expression increased with cardiomyopathy and was negatively correlated with the expression of Tnnt2 and Ttn, which were regulated by cardiac MYOCD-MEF2. Overall, our data suggest that ARP5 is a potential suppressor of cardiac MYOCD during physiological and pathological processes.
Collapse
Affiliation(s)
| | - Ken'ichiro Hayashi
- Department of OphthalmologyYamaguchi University Graduate School of MedicineJapan,Department of RNA Biology and NeuroscienceOsaka University Graduate School of MedicineJapan
| |
Collapse
|
11
|
Marinescu MC, Lazar AL, Marta MM, Cozma A, Catana CS. Non-Coding RNAs: Prevention, Diagnosis, and Treatment in Myocardial Ischemia-Reperfusion Injury. Int J Mol Sci 2022; 23:ijms23052728. [PMID: 35269870 PMCID: PMC8911068 DOI: 10.3390/ijms23052728] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/17/2022] Open
Abstract
Recent knowledge concerning the role of non-coding RNAs (ncRNAs) in myocardial ischemia/reperfusion (I/R) injury provides new insight into their possible roles as specific biomarkers for early diagnosis, prognosis, and treatment. MicroRNAs (miRNAs) have fewer than 200 nucleotides, while long ncRNAs (lncRNAs) have more than 200 nucleotides. The three types of ncRNAs (miRNAs, lncRNAs, and circRNAs) act as signaling molecules strongly involved in cardiovascular disorders (CVD). I/R injury of the heart is the main CVD correlated with acute myocardial infarction (AMI), cardiac surgery, and transplantation. The expression levels of many ncRNAs and miRNAs are highly modified in the plasma of MI patients, and thus they have the potential to diagnose and treat MI. Cardiomyocyte and endothelial cell death is the major trigger for myocardial ischemia–reperfusion syndrome (MIRS). The cardioprotective effect of inflammasome activation in MIRS and the therapeutics targeting the reparative response could prevent progressive post-infarction heart failure. Moreover, the pharmacological and genetic modulation of these ncRNAs has the therapeutic potential to improve clinical outcomes in AMI patients.
Collapse
Affiliation(s)
- Mihnea-Cosmin Marinescu
- County Clinical Emergency Hospital of Brasov Romania, 500326 Brașov, Romania;
- Department of Vascular Surgery, Second Surgical Clinic, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andrada-Luciana Lazar
- Department of Dermatology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Monica Mihaela Marta
- Department of Medical Education, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Angela Cozma
- Department of Internal Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence:
| | - Cristina-Sorina Catana
- Department of Medical Biochemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
12
|
Luo Y, Tian L, Lian C, Xu Y. KLHL38 facilitates STS-induced apoptosis in HL-1 cells via myocardin degradation. IUBMB Life 2022; 74:446-462. [PMID: 35112472 DOI: 10.1002/iub.2602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/14/2021] [Accepted: 01/28/2022] [Indexed: 11/06/2022]
Abstract
Cardiac apoptosis has been identified as one of the main precipitating factors of heart failure (HF) throughout the whole course of progressive disease. Limited to the lack of diagnostic markers and effective drug targets, cardiac apoptosis is still a major clinical challenge. Here, we reveal a potential novel therapeutic target for cardiac apoptosis. In the cause of the study, we found that KLHL38 was highly expressed in cardiac tissue of heart failure patients via GEO data-mining, which was further verified in the heart tissue of TAC mice. Meanwhile, the expression of KLHL38 is negatively correlated with myocardin protein level, which is a key cardiac apoptosis regulator. The KLHL38 overexpression obviously promoted cardiomyocyte apoptosis treated with staurosporine (STS) by facilitation of myocardin's ubiquitylation and subsequent proteasomal degradation. These findings reveal a new therapeutic target which may provide a new theoretical foundation for the treatment of myocardial apoptosis in clinical practice.
Collapse
Affiliation(s)
- Ying Luo
- College of Biological Science and Technology, Hubei Minzu University, Enshi, Hubei, China.,Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic diseases, Hubei Minzu University, Enshi, Hubei, China
| | - Lei Tian
- College of Biological Science and Technology, Hubei Minzu University, Enshi, Hubei, China
| | - Chen Lian
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yao Xu
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
13
|
Giri P, Mukhopadhyay A, Gupta M, Mohapatra B. Dilated cardiomyopathy: a new insight into the rare but common cause of heart failure. Heart Fail Rev 2021; 27:431-454. [PMID: 34245424 DOI: 10.1007/s10741-021-10125-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 12/26/2022]
Abstract
Heart failure is a global health burden responsible for high morbidity and mortality with a prevalence of greater than 60 million individuals worldwide. One of the major causes of heart failure is dilated cardiomyopathy (DCM), characterized by associated systolic dysfunction. During the last few decades, there have been remarkable advances in our understanding about the genetics of dilated cardiomyopathy. The genetic causes were initially thought to be associated with mutations in genes encoding proteins that are localized to cytoskeleton and sarcomere only; however, with the advancement in mechanistic understanding, the roles of ion channels, Z-disc, mitochondria, nuclear proteins, cardiac transcription factors (e.g., NKX-2.5, TBX20, GATA4), and the factors involved in calcium homeostasis have also been identified and found to be implicated in both familial and sporadic DCM cases. During past few years, next-generation sequencing (NGS) has been established as a diagnostic tool for genetic analysis and it has added significantly to the existing candidate gene list for DCM. The animal models have also provided novel insights to develop a better treatment strategy based on phenotype-genotype correlation, epigenetic and phenomic profiling. Most of the DCM biomarkers that are used in routine genetic and clinical testing are structural proteins, but during the last few years, the role of mi-RNA has also emerged as a biomarker due to their accessibility through noninvasive methods. Our increasing genetic knowledge can improve the clinical management of DCM by bringing clinicians and geneticists on one platform, thereby influencing the individualized clinical decision making and leading to precision medicine.
Collapse
Affiliation(s)
- Prerna Giri
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi-5, India
| | - Amrita Mukhopadhyay
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi-5, India
| | - Mohini Gupta
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi-5, India
| | - Bhagyalaxmi Mohapatra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi-5, India.
| |
Collapse
|
14
|
Madonna R, Guarnieri S, Kovácsházi C, Görbe A, Giricz Z, Geng YJ, Mariggiò MA, Ferdinandy P, De Caterina R. Telomerase/myocardin expressing mesenchymal cells induce survival and cardiovascular markers in cardiac stromal cells undergoing ischaemia/reperfusion. J Cell Mol Med 2021; 25:5381-5390. [PMID: 33949765 PMCID: PMC8184669 DOI: 10.1111/jcmm.16549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022] Open
Abstract
Cardiac stromal cells (CSCs) contain a pool of cells with supportive and paracrine functions. Various types of mesenchymal stromal cells (MSCs) can influence CSCs in the cardiac niche through their paracrine activity. Ischaemia/reperfusion (I/R) leads to cell death and reduction of the paracrine activity of CSCs. The forced co‐expression of telomerase reverse transcriptase (TERT) and myocardin (MYOCD), known to potentiate anti‐apoptotic, pro‐survival and pro‐angiogenic activities of MSCs isolated from the adipose tissue (AT‐MSCs), may increase CSC survival, favouring their paracrine activities. We aimed at investigating the hypothesis that CSCs feature improved resistance to simulated I/R (SI/R) and increased commitment towards the cardiovascular lineage when preconditioned with conditioned media (CM) or extracellular vesicles (EV) released from AT‐MSCs overexpressing TERT and MYOCD (T/M AT‐MSCs). Murine CSCs were isolated with the cardiosphere (CSps) isolation technique. T/M AT‐MSCs and their secretome improved spontaneous intracellular calcium changes and ryanodine receptor expression in aged CSps. The cytoprotective effect of AT‐MSCs was tested in CSCs subjected to SI/R. SI/R induced cell death as compared to normoxia (28 ± 4 vs 10 ± 3%, P = .02). Pre‐treatment with CM (15 ± 2, P = .02) or with the EV‐enriched fraction (10 ± 1%, P = .02) obtained from mock‐transduced AT‐MSCs in normoxia reduced cell death after SI/R. The effect was more pronounced with CM (7 ± 1%, P = .01) or the EV‐enriched fraction (2 ± 1%, P = .01) obtained from T/M AT‐MSCs subjected to SI/R. In parallel, we observed lower expression of the apoptosis marker cleaved caspase‐3 and higher expression of cardiac and vascular markers eNOS, sarcomeric α‐actinin and cardiac actin. The T/M AT‐MSCs secretome exerts a cytoprotective effect and promotes development of CSCs undergoing SI/R towards a cardiovascular phenotype.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Department of Internal Medicine, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Pathology, Cardiology Division, University of Pisa, Pisa, Italy
| | - Simone Guarnieri
- Center for Advanced Studies and Technology -CAST, Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, Chieti-Pescara and StemTeCh Group, "G. d'Annunzio" University, Chieti, Italy
| | - Csenger Kovácsházi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Aniko Görbe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Yong-Jian Geng
- Department of Internal Medicine, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Maria Addolorata Mariggiò
- Center for Advanced Studies and Technology -CAST, Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, Chieti-Pescara and StemTeCh Group, "G. d'Annunzio" University, Chieti, Italy
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | | |
Collapse
|
15
|
Rippe C, Morén B, Liu L, Stenkula KG, Mustaniemi J, Wennström M, Swärd K. NG2/CSPG4, CD146/MCAM and VAP1/AOC3 are regulated by myocardin-related transcription factors in smooth muscle cells. Sci Rep 2021; 11:5955. [PMID: 33727640 PMCID: PMC7966398 DOI: 10.1038/s41598-021-85335-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 02/26/2021] [Indexed: 12/28/2022] Open
Abstract
The present work addressed the hypothesis that NG2/CSPG4, CD146/MCAM, and VAP1/AOC3 are target genes of myocardin-related transcription factors (MRTFs: myocardin/MYOCD, MRTF-A/MKL1, MRTF-B/MKL2) and serum response factor (SRF). Using a bioinformatics approach, we found that CSPG4, MCAM, and AOC3 correlate with MYOCD, MRTF-A/MKL1, and SRF across human tissues. No other transcription factor correlated as strongly with these transcripts as SRF. Overexpression of MRTFs increased both mRNA and protein levels of CSPG4, MCAM, and AOC3 in cultured human smooth muscle cells (SMCs). Imaging confirmed increased staining for CSPG4, MCAM, and AOC3 in MRTF-A/MKL1-transduced cells. MRTFs exert their effects through SRF, and the MCAM and AOC3 gene loci contained binding sites for SRF. SRF silencing reduced the transcript levels of these genes, and time-courses of induction paralleled the direct target ACTA2. MRTF-A/MKL1 increased the activity of promoter reporters for MCAM and AOC3, and transcriptional activation further depended on the chromatin remodeling enzyme KDM3A. CSPG4, MCAM, and AOC3 responded to the MRTF-SRF inhibitor CCG-1423, to actin dynamics, and to ternary complex factors. Coincidental detection of these proteins should reflect MRTF-SRF activity, and beyond SMCs, we observed co-expression of CD146/MCAM, NG2/CSPG4, and VAP1/AOC3 in pericytes and endothelial cells in the human brain. This work identifies highly responsive vascular target genes of MRTF-SRF signaling that are regulated via a mechanism involving KDM3A.
Collapse
Affiliation(s)
- Catarina Rippe
- Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden
| | - Björn Morén
- Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden
| | - Li Liu
- Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden.,Department of Urology, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Karin G Stenkula
- Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden
| | - Johan Mustaniemi
- Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden
| | - Malin Wennström
- Department of Clinical Sciences, Malmö, Lund University, 221 84, Lund, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden.
| |
Collapse
|
16
|
Kay M, Soltani BM. LncRNAs in Cardiomyocyte Maturation: New Window for Cardiac Regenerative Medicine. Noncoding RNA 2021; 7:ncrna7010020. [PMID: 33802186 PMCID: PMC8005985 DOI: 10.3390/ncrna7010020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiomyocyte (CM) maturation, which is characterized by structural, functional, and metabolic specializations, is the last phase of CM development that prepares the cells for efficient and forceful contraction throughout life. Over the past decades, CM maturation has gained increased attention due to the fact that pluripotent stem cell-derived CMs are structurally, transcriptionally, and functionally immature and embryonic-like, which causes a defect in cell replacement therapy. The current challenge is to discover and understand the molecular mechanisms, which control the CM maturation process. Currently, emerging shreds of evidence emphasize the role of long noncoding RNAs (lncRNAs) in regulating different aspects of CM maturation, including myofibril maturation, electrophysiology, and Ca2+ handling maturation, metabolic maturation and proliferation to hypertrophy transition. Here, we describe the structural and functional characteristics of mature CMs. Furthermore, this review highlights the lncRNAs as crucial regulators of different aspects in CM maturation, which have the potential to be used for mature CM production. With the current advances in oligonucleotide delivery; lncRNAs may serve as putative therapeutic targets to produce highly mature CMs for research and regenerative medicine.
Collapse
|
17
|
Su Q, Lv XW, Xu YL, Cai RP, Dai RX, Yang XH, Zhao WK, Kong BH. Exosomal LINC00174 derived from vascular endothelial cells attenuates myocardial I/R injury via p53-mediated autophagy and apoptosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:1304-1322. [PMID: 33717651 PMCID: PMC7920812 DOI: 10.1016/j.omtn.2021.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
In this study, we aim to investigate the regulation of specific long non-coding RNAs (lncRNAs) on the progression of ischemia/reperfusion (I/R) injury. We identified and characterized the exosomes derived from mouse primary aortic endothelial cells. Subsequently, we found that these exosomes expressed typical exosomal markers and high levels of LINC00174, which significantly ameliorated I/R-induced myocardial damage and suppressed the apoptosis, vacuolation, and autophagy of myocardial cells. Mechanistic approaches revealed that LINC00174 directly interacted with SRSF1 to suppress the expression of p53, thus restraining the transcription of myocardin and repressing the activation of the Akt/AMPK pathway that was crucial for autophagy initiation in I/R-induced myocardial damage. Moreover, this molecular mechanism was verified by in vivo study. In summary, exosomal LINC00174 generated from vascular endothelial cells repressed p53-mediated autophagy and apoptosis to mitigate I/R-induced myocardial damage, suggesting that targeting LINC00174 may be a novel strategy to treat I/R-induced myocardial infarction.
Collapse
Affiliation(s)
- Qiang Su
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, P.R. China
| | - Xiang-Wei Lv
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, P.R. China
| | - Yu-Li Xu
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, P.R. China
| | - Ru-Ping Cai
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, P.R. China
| | - Ri-Xin Dai
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, P.R. China
| | - Xi-Heng Yang
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, P.R. China
| | - Wei-Kun Zhao
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, P.R. China
| | - Bing-Hui Kong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, P.R. China
| |
Collapse
|
18
|
Zhao H, Zhang Y, Xu X, Sun Q, Yang C, Wang H, Yang J, Yang Y, Yang X, Liu Y, Zhao Y. Sall4 and Myocd Empower Direct Cardiac Reprogramming From Adult Cardiac Fibroblasts After Injury. Front Cell Dev Biol 2021; 9:608367. [PMID: 33718351 PMCID: PMC7953844 DOI: 10.3389/fcell.2021.608367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 02/08/2021] [Indexed: 01/14/2023] Open
Abstract
Direct conversion of fibroblasts into induced cardiomyocytes (iCMs) holds promising potential to generate functional cardiomyocytes for drug development and clinical applications, especially for direct in situ heart regeneration by delivery of reprogramming genes into adult cardiac fibroblasts in injured hearts. For a decade, many cocktails of transcription factors have been developed to generate iCMs from fibroblasts of different tissues in vitro and some were applied in vivo. Here, we aimed to develop genetic cocktails that induce cardiac reprogramming directly in cultured cardiac fibroblasts isolated from adult mice with myocardial infarction (MICFs), which could be more relevant to heart diseases. We found that the widely used genetic cocktail, Gata4, Mef2c, and Tbx5 (GMT) were inefficient in reprogramming cardiomyocytes from MICFs. In a whole well of a 12-well plate, less than 10 mCherry+ cells (<0.1%) were observed after 2 weeks of GMT infection with Myh6-reporter transgenic MICFs. By screening 22 candidate transcription factors predicted through analyzing the gene regulatory network of cardiac development, we found that five factors, GMTMS (GMT plus Myocd and Sall4), induced more iCMs expressing the cardiac structural proteins cTnT and cTnI at a frequency of about 22.5 ± 2.7% of the transduced MICFs at day 21 post infection. What is more, GMTMS induced abundant beating cardiomyocytes at day 28 post infection. Specifically, Myocd contributed mainly to inducing the expression of cardiac proteins, while Sall4 accounted for the induction of functional properties, such as contractility. RNA-seq analysis of the iCMs at day 28 post infection revealed that they were reprogrammed to adopt a cardiomyocyte-like gene expression profile. Overall, we show here that Sall4 and Myocd play important roles in cardiac reprogramming from MICFs, providing a cocktail of genetic factors that have potential for further applications in in vivo cardiac reprogramming.
Collapse
Affiliation(s)
- Hong Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, The Ministry of Education (MOE) Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing, China
- PKU-Nanjing Institute of Translational Medicine, Nanjing, China
| | - Yi Zhang
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Xiaochan Xu
- The Center for Models of Life, Niels Bohr Institute, Copenhagen, Denmark
| | - Qiushi Sun
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Chunyan Yang
- State Key Laboratory of Natural and Biomimetic Drugs, The Ministry of Education (MOE) Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing, China
- PKU-Nanjing Institute of Translational Medicine, Nanjing, China
| | - Hao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, The Ministry of Education (MOE) Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing, China
- PKU-Nanjing Institute of Translational Medicine, Nanjing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Junbo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, The Ministry of Education (MOE) Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing, China
- PKU-Nanjing Institute of Translational Medicine, Nanjing, China
| | - Yang Yang
- State Key Laboratory of Natural and Biomimetic Drugs, The Ministry of Education (MOE) Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing, China
- PKU-Nanjing Institute of Translational Medicine, Nanjing, China
| | - Xiaochun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, The Ministry of Education (MOE) Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing, China
- PKU-Nanjing Institute of Translational Medicine, Nanjing, China
| | - Yi Liu
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Yang Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, The Ministry of Education (MOE) Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing, China
- PKU-Nanjing Institute of Translational Medicine, Nanjing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Plastech Pharmaceutical Technology Co., Ltd., Nanjing, China
| |
Collapse
|
19
|
Madonna R, Pieragostino D, Rossi C, Guarnieri S, Nagy CT, Giricz Z, Ferdinandy P, Del Boccio P, Mariggiò MA, Geng YJ, De Caterina R. Transplantation of telomerase/myocardin-co-expressing mesenchymal cells in the mouse promotes myocardial revascularization and tissue repair. Vascul Pharmacol 2020; 135:106807. [PMID: 33130246 DOI: 10.1016/j.vph.2020.106807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
AIM Cell therapies are hampered by poor survival and growth of grafts. We tested whether forced co-expression of telomerase reverse transcriptase (TERT) and myocardin (MYOCD) improves post-infarct revascularization and tissue repair by adipose tissue-derived mesenchymal stromal cells (AT-MSCs). METHODS AND RESULTS We transplanted AT-MSCs overexpressing MYOCD and TERT in a murine model of acute myocardial infarction (AMI). We characterized paracrine effects of AT-MSCs. When transplanted into infarcted hearts of C57BL/6 mice, AT-MSCs overexpressing TERT and MYOCD decreased scar tissue and the intra-scar CD3 and B220 lymphocyte infiltration; and increased arteriolar density as well as ejection fraction compared with saline or mock-transduced AT-MSCs. These effects were accompanied by higher persistence of the injected cells in the heart, increased numbers of Ki-67+ and CD117+ cells, and the expression of cardiac actin and β-myosin heavy chain. Intramyocardial delivery of the secretome and its extracellular vesicle (EV)-enriched fraction also decreased scar tissue formation and increased arteriolar density in the murine AMI model. Proteomic analysis of AT-MSCs-EV-enriched fraction predicted the activation of vascular development and the inhibition of immune cell trafficking. Elevated concentrations of miR-320a, miR-150-5p and miR-126-3p associated with regulation of apoptosis and vasculogenesis were confirmed in the AT-MSCs-EV-enriched fraction. CONCLUSIONS AT-MSCs overexpressing TERT and MYOCD promote persistence of transplanted aged AT-MSCs and enhance arteriolar density in a murine model of AMI. EV-enriched fraction is the component of the paracrine secretion by AT-MSCs with pro-angiogenic and anti-fibrotic activities.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Department of Internal Medicine, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States of America; Chair of Cardiology, Department of Surgical, Medical and Molecular Pathology, University of Pisa, Pisa, Italy.
| | - Damiana Pieragostino
- Center of Aging Sciences and Translational Medicine - CESI-Met and Institute of Cardiology, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy; Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Claudia Rossi
- Center of Aging Sciences and Translational Medicine - CESI-Met and Institute of Cardiology, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy; Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Simone Guarnieri
- Center of Aging Sciences and Translational Medicine - CESI-Met and Institute of Cardiology, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara and StemTeCh Group, Chieti, Italy
| | - Csilla T Nagy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Piero Del Boccio
- Center of Aging Sciences and Translational Medicine - CESI-Met and Institute of Cardiology, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy; Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Maria Addolorata Mariggiò
- Center of Aging Sciences and Translational Medicine - CESI-Met and Institute of Cardiology, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara and StemTeCh Group, Chieti, Italy
| | - Yong-Jian Geng
- Department of Internal Medicine, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Raffaele De Caterina
- Chair of Cardiology, Department of Surgical, Medical and Molecular Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
20
|
Shetty PMV, Rangrez AY, Frey N. SUMO proteins in the cardiovascular system: friend or foe? J Biomed Sci 2020; 27:98. [PMID: 33099299 PMCID: PMC7585181 DOI: 10.1186/s12929-020-00689-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Post-translational modifications (PTMs) are crucial for the adaptation of various signalling pathways to ensure cellular homeostasis and proper adaptation to stress. PTM is a covalent addition of a small chemical functional group such as a phosphate group (phosphorylation), methyl group (methylation), or acetyl group (acetylation); lipids like hydrophobic isoprene polymers (isoprenylation); sugars such as a glycosyl group (glycosylation); or even small peptides such as ubiquitin (ubiquitination), SUMO (SUMOylation), NEDD8 (neddylation), etc. SUMO modification changes the function and/or fate of the protein especially under stress conditions, and the consequences of this conjugation can be appreciated from development to diverse disease processes. The impact of SUMOylation in disease has not been monotonous, rather SUMO is found playing a role on both sides of the coin either facilitating or impeding disease progression. Several recent studies have implicated SUMO proteins as key regulators in various cardiovascular disorders. The focus of this review is thus to summarize the current knowledge on the role of the SUMO family in the pathophysiology of cardiovascular diseases.
Collapse
Affiliation(s)
- Prithviraj Manohar Vijaya Shetty
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany
- Manipal Institute of Regenerative Medicine, MAHE-Bengaluru, Bangalore, India
| | - Ashraf Yusuf Rangrez
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany.
| | - Norbert Frey
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany.
| |
Collapse
|
21
|
Houweling AC, Beaman GM, Postma AV, Gainous TB, Lichtenbelt KD, Brancati F, Lopes FM, van der Made I, Polstra AM, Robinson ML, Wright KD, Ellingford JM, Jackson AR, Overwater E, Genesio R, Romano S, Camerota L, D'Angelo E, Meijers-Heijboer EJ, Christoffels VM, McHugh KM, Black BL, Newman WG, Woolf AS, Creemers EE. Loss-of-function variants in myocardin cause congenital megabladder in humans and mice. J Clin Invest 2020; 129:5374-5380. [PMID: 31513549 PMCID: PMC6877301 DOI: 10.1172/jci128545] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/03/2019] [Indexed: 01/01/2023] Open
Abstract
Myocardin (MYOCD) is the founding member of a class of transcriptional coactivators that bind the serum-response factor to activate gene expression programs critical in smooth muscle (SM) and cardiac muscle development. Insights into the molecular functions of MYOCD have been obtained from cell culture studies, and to date, knowledge about in vivo roles of MYOCD comes exclusively from experimental animals. Here, we defined an often lethal congenital human disease associated with inheritance of pathogenic MYOCD variants. This disease manifested as a massively dilated urinary bladder, or megabladder, with disrupted SM in its wall. We provided evidence that monoallelic loss-of-function variants in MYOCD caused congenital megabladder in males only, whereas biallelic variants were associated with disease in both sexes, with a phenotype additionally involving the cardiovascular system. These results were supported by cosegregation of MYOCD variants with the phenotype in 4 unrelated families by in vitro transactivation studies in which pathogenic variants resulted in abrogated SM gene expression and by the finding of megabladder in 2 distinct mouse models with reduced Myocd activity. In conclusion, we have demonstrated that variants in MYOCD result in human disease, and the collective findings highlight a vital role for MYOCD in mammalian organogenesis.
Collapse
Affiliation(s)
- Arjan C Houweling
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, Netherlands
| | - Glenda M Beaman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Centre for Genomic Medicine and Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Alex V Postma
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, Netherlands.,Department of Medical Biology, Amsterdam UMC, Amsterdam, Netherlands
| | - T Blair Gainous
- Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | - Klaske D Lichtenbelt
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Francesco Brancati
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy.,Department of Life, Health and Environmental Sciences, University of L'Aquila, Aquila, Italy
| | - Filipa M Lopes
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Centre for Genomic Medicine and Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | | | - Abeltje M Polstra
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, Netherlands
| | | | - Kevin D Wright
- Department of Biology, Miami University, Oxford, Ohio, USA
| | - Jamie M Ellingford
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Centre for Genomic Medicine and Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ashley R Jackson
- Center for Clinical and Translational Research, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Eline Overwater
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, Netherlands
| | - Rita Genesio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Silvio Romano
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Aquila, Italy
| | - Letizia Camerota
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Aquila, Italy
| | - Emanuela D'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Aquila, Italy
| | | | | | - Kirk M McHugh
- Center for Clinical and Translational Research, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Brian L Black
- Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | - William G Newman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Centre for Genomic Medicine and Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Adrian S Woolf
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Centre for Genomic Medicine and Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Esther E Creemers
- Department of Experimental Cardiology, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
22
|
Comprehensive Overview of Non-coding RNAs in Cardiac Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:197-211. [PMID: 32285413 DOI: 10.1007/978-981-15-1671-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cardiac development in the human embryo is characterized by the interactions of several transcription and growth factors leading the heart from a primordial linear tube into a synchronous contractile four-chamber organ. Studies on cardiogenesis showed that cell proliferation, differentiation, fate specification and morphogenesis are spatiotemporally coordinated by cell-cell interactions and intracellular signalling cross-talks. In recent years, research has focused on a class of inter- and intra-cellular modulators called non-coding RNAs (ncRNAs), transcribed from the noncoding portion of the DNA and involved in the proper formation of the heart. In this chapter, we will summarize the current state of the art on the roles of three major forms of ncRNAs [microRNAs (miRNAs), long ncRNAs (lncRNAs) and circular RNAs (circRNAs)] in orchestrating the four sequential phases of cardiac organogenesis.
Collapse
|
23
|
Abstract
Maturation is the last phase of heart development that prepares the organ for strong, efficient, and persistent pumping throughout the mammal's lifespan. This process is characterized by structural, gene expression, metabolic, and functional specializations in cardiomyocytes as the heart transits from fetal to adult states. Cardiomyocyte maturation gained increased attention recently due to the maturation defects in pluripotent stem cell-derived cardiomyocyte, its antagonistic effect on myocardial regeneration, and its potential contribution to cardiac disease. Here, we review the major hallmarks of ventricular cardiomyocyte maturation and summarize key regulatory mechanisms that promote and coordinate these cellular events. With advances in the technical platforms used for cardiomyocyte maturation research, we expect significant progress in the future that will deepen our understanding of this process and lead to better maturation of pluripotent stem cell-derived cardiomyocyte and novel therapeutic strategies for heart disease.
Collapse
Affiliation(s)
- Yuxuan Guo
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - William Pu
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
24
|
Young RE, Jones MK, Hines EA, Li R, Luo Y, Shi W, Verheyden JM, Sun X. Smooth Muscle Differentiation Is Essential for Airway Size, Tracheal Cartilage Segmentation, but Dispensable for Epithelial Branching. Dev Cell 2020; 53:73-85.e5. [PMID: 32142630 PMCID: PMC7540204 DOI: 10.1016/j.devcel.2020.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/10/2019] [Accepted: 01/31/2020] [Indexed: 01/11/2023]
Abstract
Airway smooth muscle is best known for its role as an airway constrictor in diseases such as asthma. However, its function in lung development is debated. A prevalent model, supported by in vitro data, posits that airway smooth muscle promotes lung branching through peristalsis and pushing intraluminal fluid to branching tips. Here, we test this model in vivo by inactivating Myocardin, which prevented airway smooth muscle differentiation. We found that Myocardin mutants show normal branching, despite the absence of peristalsis. In contrast, tracheal cartilage, vasculature, and neural innervation patterns were all disrupted. Furthermore, airway diameter is reduced in the mutant, counter to the expectation that the absence of smooth muscle constriction would lead to a more relaxed and thereby wider airway. These findings together demonstrate that during development, while airway smooth muscle is dispensable for epithelial branching, it is integral for building the tracheal architecture and promoting airway growth.
Collapse
Affiliation(s)
- Randee E Young
- Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, USA; Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mary-Kayt Jones
- Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elizabeth A Hines
- Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rongbo Li
- Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, USA
| | - Yongfeng Luo
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Wei Shi
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jamie M Verheyden
- Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, USA.
| | - Xin Sun
- Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, USA; Department of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
25
|
Liu Q, Liu Z, Zhou LJ, Cui YL, Xu JM. The long noncoding RNA NKILA protects against myocardial ischaemic injury by enhancing myocardin expression via suppressing the NF-κB signalling pathway. Exp Cell Res 2019; 387:111774. [PMID: 31838061 DOI: 10.1016/j.yexcr.2019.111774] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND The lncRNA NKILA has been reported to interact with NF-κB and has an important role in various human diseases. However, the role of NKILA in myocardial ischaemic injury is still unknown. METHODS We established cell and animal models of myocardial ischaemic injury. We confirmed our findings by overexpressing NKILA, silencing myocardin and using an NF-κB pathway inhibitor in a hypoxia/reoxygenation (H/R) model of H9c2 cells. An animal model of ischaemia-reperfusion (I/R) injury was established by LAD ligation. Overexpression of NKILA was achieved by adeno-associated virus (AAV) injection through the tail vein. Annexin-V/PI staining and flow cytometric analysis were performed to test cell apoptosis. ELISAs were used to determine the secretion of inflammatory factors. TTC, HE and TUNEL staining were performed to study myocardial pathological injury. qRT-PCR or Western blotting were used to test the expression levels of NKILA, myocardin, the NF-κB pathway and apoptosis-related proteins. RESULTS H/R and I/R treatment significantly suppressed the expression of NKILA and activated the NF-κB pathway, resulting in the loss of myocardin. Overexpressing NKILA led to the suppression of the NF-κB pathway and successfully prevented the cell apoptosis and inflammatory responses caused by H/R stimulation in H9c2 cells. Silencing myocardin reversed the protective effect of NKILA and led to severe injury in the H9c2 cells that underwent H/R. Furthermore, the NF-κB pathway inhibitor BAY11-7028 reduced the H/R injury in H9c2 cells with little effect on NKILA expression. Similar results were confirmed in an animal model of myocardial I/R injury and showed that overexpression of NKILA inhibited I/R-triggered myocardial injury in vivo. CONCLUSION NKILA enhanced the expression of myocardin via inhibiting the NF-κB signalling pathway and preventing cell apoptosis and the inflammatory response of cardiomyocytes, thus ameliorating myocardial I/R injury.
Collapse
Affiliation(s)
- Qing Liu
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan Province, PR China
| | - Zheng Liu
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan Province, PR China
| | - Li-Jun Zhou
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan Province, PR China
| | - Yu-Long Cui
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan Province, PR China
| | - Jun-Mei Xu
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan Province, PR China.
| |
Collapse
|
26
|
Anil Kumar S, Alonzo M, Allen SC, Abelseth L, Thakur V, Akimoto J, Ito Y, Willerth SM, Suggs L, Chattopadhyay M, Joddar B. A Visible Light-Cross-Linkable, Fibrin-Gelatin-Based Bioprinted Construct with Human Cardiomyocytes and Fibroblasts. ACS Biomater Sci Eng 2019; 5:4551-4563. [PMID: 32258387 PMCID: PMC7117097 DOI: 10.1021/acsbiomaterials.9b00505] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study, fibrin was added to a photo-polymerizable gelatin-based bioink mixture to fabricate cardiac cell-laden constructs seeded with human induced pluripotent stem cell-derived cardiomyocytes (iPS-CM) or CM cell lines with cardiac fibroblasts (CF). The extensive use of platelet-rich fibrin, its capacity to offer patient specificity, and the similarity in composition to surgical glue prompted us to include fibrin in the existing bioink composition. The cell-laden bioprinted constructs were cross-linked to retain a herringbone pattern via a two-step procedure including the visible light cross-linking of furfuryl-gelatin followed by the chemical cross-linking of fibrinogen via thrombin and calcium chloride. The printed constructs revealed an extremely porous, networked structure that afforded long-term in vitro stability. Cardiomyocytes printed within the sheet structure showed excellent viability, proliferation, and expression of the troponin I cardiac marker. We extended the utility of this fibrin-gelatin bioink toward coculturing and coupling of CM and cardiac fibroblasts (CF), the interaction of which is extremely important for maintenance of normal physiology of the cardiac wall in vivo. This enhanced "cardiac construct" can be used for drug cytotoxicity screening or unraveling triggers for heart diseases in vitro.
Collapse
Affiliation(s)
- Shweta Anil Kumar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, M201 Metallurgy Building, United States
| | - Matthew Alonzo
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, M201 Metallurgy Building, United States
| | - Shane C. Allen
- Department of Biomedical Engineering, The University of Texas at Austin, 110 Inner Campus Drive, Austin, Texas 78712, United States
| | - Laila Abelseth
- Department of Mechanical Engineering, University of Victoria, Engineering Office Wing, Room 548, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Biomedical Engineering Program, University of Victoria, Engineering Office Wing, Room 548, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Vikram Thakur
- Department of Molecular and Translational Medicine, Center of Emphasis in Diabetes and Metabolism, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, Texas 79905, United States
| | - Jun Akimoto
- Nano Medical Engineering Laboratory, RIKEN Custer for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Custer for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Stephanie M. Willerth
- Department of Mechanical Engineering, University of Victoria, Engineering Office Wing, Room 548, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Biomedical Engineering Program, University of Victoria, Engineering Office Wing, Room 548, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Engineering Office Wing, Room 548, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, 818 West 10th Avenue, Vancouver, British Columbia V5Z 1M9, Canada
| | - Laura Suggs
- Department of Biomedical Engineering, The University of Texas at Austin, 110 Inner Campus Drive, Austin, Texas 78712, United States
| | - Munmun Chattopadhyay
- Department of Molecular and Translational Medicine, Center of Emphasis in Diabetes and Metabolism, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, Texas 79905, United States
| | - Binata Joddar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, M201 Metallurgy Building, United States
- Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
- Nano Medical Engineering Laboratory, RIKEN Custer for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
27
|
Swenson BR, Louie T, Lin HJ, Méndez-Giráldez R, Below JE, Laurie CC, Kerr KF, Highland H, Thornton TA, Ryckman KK, Kooperberg C, Soliman EZ, Seyerle AA, Guo X, Taylor KD, Yao J, Heckbert SR, Darbar D, Petty LE, McKnight B, Cheng S, Bello NA, Whitsel EA, Hanis CL, Nalls MA, Evans DS, Rotter JI, Sofer T, Avery CL, Sotoodehnia N. GWAS of QRS duration identifies new loci specific to Hispanic/Latino populations. PLoS One 2019; 14:e0217796. [PMID: 31251759 PMCID: PMC6599128 DOI: 10.1371/journal.pone.0217796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/17/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The electrocardiographically quantified QRS duration measures ventricular depolarization and conduction. QRS prolongation has been associated with poor heart failure prognosis and cardiovascular mortality, including sudden death. While previous genome-wide association studies (GWAS) have identified 32 QRS SNPs across 26 loci among European, African, and Asian-descent populations, the genetics of QRS among Hispanics/Latinos has not been previously explored. METHODS We performed a GWAS of QRS duration among Hispanic/Latino ancestry populations (n = 15,124) from four studies using 1000 Genomes imputed genotype data (adjusted for age, sex, global ancestry, clinical and study-specific covariates). Study-specific results were combined using fixed-effects, inverse variance-weighted meta-analysis. RESULTS We identified six loci associated with QRS (P<5x10-8), including two novel loci: MYOCD, a nuclear protein expressed in the heart, and SYT1, an integral membrane protein. The top SNP in the MYOCD locus, intronic SNP rs16946539, was found in Hispanics/Latinos with a minor allele frequency (MAF) of 0.04, but is monomorphic in European and African descent populations. The most significant QRS duration association was with intronic SNP rs3922344 (P = 1.19x10-24) in SCN5A/SCN10A. Three other previously identified loci, CDKN1A, VTI1A, and HAND1, also exceeded the GWAS significance threshold among Hispanics/Latinos. A total of 27 of 32 previously identified QRS duration SNPs were shown to generalize in Hispanics/Latinos. CONCLUSIONS Our QRS duration GWAS, the first in Hispanic/Latino populations, identified two new loci, underscoring the utility of extending large scale genomic studies to currently under-examined populations.
Collapse
Affiliation(s)
- Brenton R. Swenson
- Institute for Public Health Genetics, University of Washington, Seattle, WA, United States of America
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, United States of America
| | - Tin Louie
- Department of Biostatistics, University of Washington, Seattle, WA, United States of America
| | - Henry J. Lin
- The Institute for Translational Genomics and Population Sciences, and Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, United States of America
- Division of Medical Genetics, Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Raúl Méndez-Giráldez
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America
| | - Jennifer E. Below
- Department of Medical Genetics, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Cathy C. Laurie
- Department of Biostatistics, University of Washington, Seattle, WA, United States of America
| | - Kathleen F. Kerr
- Department of Biostatistics, University of Washington, Seattle, WA, United States of America
| | - Heather Highland
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Timothy A. Thornton
- Department of Biostatistics, University of Washington, Seattle, WA, United States of America
| | - Kelli K. Ryckman
- Departments of Epidemiology and Pediatrics, University of Iowa, Iowa City, IA, United States of America
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Elsayed Z. Soliman
- Department of Internal Medicine, Section on Cardiology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
- Epidemiological Cardiology Research Center (EPICARE), Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Amanda A. Seyerle
- Division of Pharmaceutical Outcomes and Policy, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States of America
- Carolina Health Informatics Program, University of North Carolina, Chapel Hill, NC, United States of America
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, and Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, and Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, and Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Susan R. Heckbert
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, United States of America
- Department of Epidemiology, University of Washington, Seattle, WA, United States of America
| | - Dawood Darbar
- Division of Cardiology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Lauren E. Petty
- Department of Medical Genetics, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Barbara McKnight
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, United States of America
- Department of Biostatistics, University of Washington, Seattle, WA, United States of America
| | - Susan Cheng
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Natalie A. Bello
- Brigham and Women's Hospital, Division of Cardiovascular Medicine, Boston, MA, United States of America
- Division of Cardiology, Columbia University Medical Center, New York, NY, United States of America
| | - Eric A. Whitsel
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States of America
- Department of Medicine, University of North Carolina, Chapel Hill, NC, United States of America
| | - Craig L. Hanis
- Human Genetics Center, University of Texas, Health Science Center at Houston, Houston, TX, United States of America
| | - Mike A. Nalls
- Data Technical International, Glen Echo, MD, United States of America
- Laboratory of Neurogenetics, National Institute of Aging, Bethesda, MD, United States of America
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, CA, United States of America
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, and Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Tamar Sofer
- Department of Medicine, Harvard Medical School, Boston, MA, United States of America
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States of America
| | - Christy L. Avery
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States of America
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, United States of America
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, United States of America
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
28
|
Madonna R, Angelucci S, Di Giuseppe F, Doria V, Giricz Z, Görbe A, Ferdinandy P, De Caterina R. Proteomic analysis of the secretome of adipose tissue-derived murine mesenchymal cells overexpressing telomerase and myocardin. J Mol Cell Cardiol 2019; 131:171-186. [PMID: 31055035 DOI: 10.1016/j.yjmcc.2019.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/06/2019] [Accepted: 04/18/2019] [Indexed: 12/25/2022]
Abstract
RATIONALE Understanding mechanisms of the therapeutic effects of stem/progenitor cells, among which adipose tissue-derived mesenchymal stromal cells (AT-MSCs), has important implications for clinical use. Since the majority of such cells die within days or weeks after transplantation and do not persist in the transplanted organ or tissue, their effects appear to be largely mediated by paracrine signaling pathways, and are enhanced by overexpression of the antisenescent protein telomerase reverse transcriptase (TERT), and the anti-apoptotic transcription factor myocardin (MYOCD). AIM By a proteomic approach combining two-dimensional gel electrophoresis (2DE) with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF/TOF) mass spectrometry, we aimed at analyzing how soluble and vesicular secretomes of aged murine AT-MSCs and their angiogenic function are modulated by the overexpression of TERT and MYOCD. METHODS We cultured murine mock-transduced AT-MSCs and "rejuvenated" AT-MSCs overexpressing TERT and MYOCD (rTMAT-MSCs) harvested from 1-year-old male C57BL/6 mice. We established proteomes from 3 mock-transduced AT-MSCs and rTMAT-MSCs cultures in serum-free conditions, as well as their corresponding conditioned medium (CM) and exosome-enriched fractions (Exo+). RESULTS AND CONCLUSIONS Proteomic analysis revealed a 2-fold increase of matrix metalloproteinase-2 (MMP-2) and its inhibitor metalloproteinase inhibitor 2 (TIMP2) in the CM - but not in the Exo + - of rTMAT-MSCs as compared to mock-transduced AT-MSCs. At the functional level, rTMAT-MSCs-CM, and - to a lesser extent - its Exo + fraction, increased tube formation of human vein endothelial cells (HUVECs), which could be blocked by anti-MMP2 and enhanced by anti-TIMP2 antibodies, respectively. Altogether, our results identify MMP2 and its inhibitor TIMP2 as novel candidates by which rTMAT-MSCs can support angiogenesis. Our strategy also illustrates the usefulness of comparative targeted proteomic approach to decipher molecular pathways underlying rTMAT-MSCs properties.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Center of Aging Sciences and Translational Medicine - CESI-Met and Institute of Cardiology, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy; Department of Internal Medicine, Cardiology, The University of Texas Health Science Center at Houston, Houston, Texas, United States; Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy.
| | - Stefania Angelucci
- Department of Medical, Oral & Biotechnological Sciences, Dentistry and Biotechnology, and Aging Research Center and Translational Medicine, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Stem TeCh Group, Via L Polacchi 13, Chieti, Italy
| | - Fabrizio Di Giuseppe
- Department of Medical, Oral & Biotechnological Sciences, Dentistry and Biotechnology, and Aging Research Center and Translational Medicine, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Stem TeCh Group, Via L Polacchi 13, Chieti, Italy
| | - Vanessa Doria
- Center of Aging Sciences and Translational Medicine - CESI-Met and Institute of Cardiology, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy; Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Raffaele De Caterina
- Center of Aging Sciences and Translational Medicine - CESI-Met and Institute of Cardiology, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy; Institute of Cardiology, University of Pisa, Pisa, Italy; Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
29
|
Mittal A, Rana S, Sharma R, Kumar A, Prasad R, Raut SK, Sarkar S, Saikia UN, Bahl A, Dhandapany PS, Khullar M. Myocardin ablation in a cardiac-renal rat model. Sci Rep 2019; 9:5872. [PMID: 30971740 PMCID: PMC6458122 DOI: 10.1038/s41598-019-42009-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/13/2019] [Indexed: 11/09/2022] Open
Abstract
Cardiorenal syndrome is defined by primary heart failure conditions influencing or leading to renal injury or dysfunction. Dilated cardiomyopathy (DCM) is a major co-existing form of heart failure (HF) with renal diseases. Myocardin (MYOCD), a cardiac-specific co-activator of serum response factor (SRF), is increased in DCM porcine and patient cardiac tissues and plays a crucial role in the pathophysiology of DCM. Inhibiting the increased MYOCD has shown to be partially rescuing the DCM phenotype in porcine model. However, expression levels of MYOCD in the cardiac tissues of the cardiorenal syndromic patients and the effect of inhibiting MYOCD in a cardiorenal syndrome model remains to be explored. Here, we analyzed the expression levels of MYOCD in the DCM patients with and without renal diseases. We also explored, whether cardiac specific silencing of MYOCD expression could ameliorate the cardiac remodeling and improve cardiac function in a renal artery ligated rat model (RAL). We observed an increase in MYOCD levels in the endomyocardial biopsies of DCM patients associated with renal failure compared to DCM alone. Silencing of MYOCD in RAL rats by a cardiac homing peptide conjugated MYOCD siRNA resulted in attenuation of cardiac hypertrophy, fibrosis and restoration of the left ventricular functions. Our data suggest hyper-activation of MYOCD in the pathogenesis of the cardiorenal failure cases. Also, MYOCD silencing showed beneficial effects by rescuing cardiac hypertrophy, fibrosis, size and function in a cardiorenal rat model.
Collapse
Affiliation(s)
- Anupam Mittal
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India.,Department of Cardiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Santanu Rana
- Department of Zoology, University of Calcutta, Kolkata, India
| | - Rajni Sharma
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Akhilesh Kumar
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rishikesh Prasad
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Satish K Raut
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Uma Nahar Saikia
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Bahl
- Department of Cardiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Perundurai S Dhandapany
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India. .,The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA. .,Department of Medicine, Oregon Health and Science University, Portland, OR, USA. .,Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA.
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
30
|
Rehmani T, Salih M, Tuana BS. Cardiac-Specific Cre Induces Age-Dependent Dilated Cardiomyopathy (DCM) in Mice. Molecules 2019; 24:molecules24061189. [PMID: 30917606 PMCID: PMC6471127 DOI: 10.3390/molecules24061189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022] Open
Abstract
The genetic modification of the mouse genome using the cre-lox system has been an invaluable tool in deciphering gene and protein function in a temporal and/or spatial manner. However, it has its pitfalls, as researchers have shown that the unregulated expression of cre recombinase can cause DNA damage, the consequences of which can be very detrimental to mouse health. Previously published literature on the most utilized cardiac-specific cre, αMHC-cre, mouse model exhibited a nonlethal hypertrophic cardiomyopathy (HCM) with aging. However, using the same αMHC-cre mice, we observed a cardiac pathology, resulting in complete lethality by 11 months of age. Echocardiography and histology revealed that the αMHC-cre mice were displaying symptoms of dilated cardiomyopathy (DCM) by seven months of age, which ultimately led to their demise in the absence of any HCM at any age. Molecular analysis showed that this phenotype was associated with the DNA damage response through the downregulation of activated p38 and increased expression of JNK, p53, and Bax, known inducers of myocyte death resulting in fibrosis. Our data urges strong caution when interpreting the phenotypic impact of gene responses using αMHC-cre mice, since a lethal DCM was induced by the cre driver in an age-dependent manner in this commonly utilized model system.
Collapse
Affiliation(s)
- Taha Rehmani
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Balwant S Tuana
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
31
|
Saxena S, Gupta A, Shukla V, Rani V. Functional annotation of differentially expressed fetal cardiac microRNA targets: implication for microRNA-based cardiovascular therapeutics. 3 Biotech 2018; 8:494. [PMID: 30498667 DOI: 10.1007/s13205-018-1520-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/17/2018] [Indexed: 01/23/2023] Open
Abstract
Gene expression pattern of a failing heart depicts remarkable similarity with developing fetal heart. Elucidating genetic as well as epigenetic mechanisms regulating the gene expression during cardiac development will improve our understanding of cardiovascular diseases. In the present study, we aimed to validate and characterize differentially expressed known microRNAs (miRNA) obtained from next generation sequencing data of two fetal cardiac developmental stages (days 4th and 14th) from chicken (G. gallus domesticus) using bioinformatic approaches. Potential mRNA targets of individual miRNA were identified and classified according to their biological, cellular, and molecular functions. Functional annotation of putative target genes was performed to predict their association with cardiovascular diseases. We identified a total of 19 differentially expressed miRNAs between 4th and 14th day sample from the data sets obtained by next generation sequencing. A total of nearly 1522 potential targets ranging from 15 to 270 for each miRNA were predicted out of which 1221 were unique, while 301 were overlapping. Gene ontology and KEGG analysis revealed that majority of these target genes regulate critical cellular and molecular processes including transcriptional regulation, protein transport, signal transduction, matrix remodeling, Ras signaling, MAPK signaling, and TGF-beta signaling pathways indicating the complex nature of microRNA-mediated gene regulation during cardiogenesis. We found a significant association between potential target genes and cardiovascular diseases validating a link between fetal cardiac miRNAs and regulation of cardiovascular disease-related genes. These important findings may lay a foundation for further understanding the regulatory mechanisms operative in gene re-programming in the failing heart.
Collapse
|
32
|
Mughal W, Martens M, Field J, Chapman D, Huang J, Rattan S, Hai Y, Cheung KG, Kereliuk S, West AR, Cole LK, Hatch GM, Diehl-Jones W, Keijzer R, Dolinsky VW, Dixon IM, Parmacek MS, Gordon JW. Myocardin regulates mitochondrial calcium homeostasis and prevents permeability transition. Cell Death Differ 2018; 25:1732-1748. [PMID: 29511336 PMCID: PMC6180099 DOI: 10.1038/s41418-018-0073-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 12/17/2017] [Accepted: 01/15/2018] [Indexed: 01/20/2023] Open
Abstract
Myocardin is a transcriptional co-activator required for cardiovascular development, but also promotes cardiomyocyte survival through an unclear molecular mechanism. Mitochondrial permeability transition is implicated in necrosis, while pore closure is required for mitochondrial maturation during cardiac development. We show that loss of myocardin function leads to subendocardial necrosis at E9.5, concurrent with elevated expression of the death gene Nix. Mechanistically, we demonstrate that myocardin knockdown reduces microRNA-133a levels to allow Nix accumulation, leading to mitochondrial permeability transition, reduced mitochondrial respiration, and necrosis. Myocardin knockdown elicits calcium release from the endo/sarcoplasmic reticulum with mitochondrial calcium accumulation, while restoration of microRNA-133a function, or knockdown of Nix rescues calcium perturbations. We observed reduced myocardin and elevated Nix expression within the infarct border-zone following coronary ligation. These findings identify a myocardin-regulated pathway that maintains calcium homeostasis and mitochondrial function during development, and is attenuated during ischemic heart disease. Given the diverse role of Nix and microRNA-133a, these findings may have broader implications to metabolic disease and cancer.
Collapse
Affiliation(s)
- Wajihah Mughal
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Matthew Martens
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Jared Field
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Biological Science, University of Manitoba, Winnipeg, MB, Canada
| | - Donald Chapman
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Jianhe Huang
- Department of Medicine, Penn Cardiovascular Institute, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sunil Rattan
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Research Centre, Winnipeg, MB, Canada
| | - Yan Hai
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- College of Nursing, University of Manitoba, Winnipeg, MB, Canada
| | - Kyle G Cheung
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Stephanie Kereliuk
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Adrian R West
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
- The Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Laura K Cole
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Grant M Hatch
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - William Diehl-Jones
- Department of Biological Science, University of Manitoba, Winnipeg, MB, Canada
- Faculty of Health Disciplines, Athabasca University, Edmonton, MB, Canada
| | - Richard Keijzer
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
- The Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Surgery, University of Manitoba, Winnipeg, MB, Canada
| | - Vernon W Dolinsky
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Ian M Dixon
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Research Centre, Winnipeg, MB, Canada
| | - Michael S Parmacek
- Department of Medicine, Penn Cardiovascular Institute, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
- College of Nursing, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
33
|
Trembley MA, Quijada P, Agullo-Pascual E, Tylock KM, Colpan M, Dirkx RA, Myers JR, Mickelsen DM, de Mesy Bentley K, Rothenberg E, Moravec CS, Alexis JD, Gregorio CC, Dirksen RT, Delmar M, Small EM. Mechanosensitive Gene Regulation by Myocardin-Related Transcription Factors Is Required for Cardiomyocyte Integrity in Load-Induced Ventricular Hypertrophy. Circulation 2018; 138:1864-1878. [PMID: 29716942 PMCID: PMC6202206 DOI: 10.1161/circulationaha.117.031788] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hypertrophic cardiomyocyte growth and dysfunction accompany various forms of heart disease. The mechanisms responsible for transcriptional changes that affect cardiac physiology and the transition to heart failure are not well understood. The intercalated disc (ID) is a specialized intercellular junction coupling cardiomyocyte force transmission and propagation of electrical activity. The ID is gaining attention as a mechanosensitive signaling hub and hotspot for causative mutations in cardiomyopathy. METHODS Transmission electron microscopy, confocal microscopy, and single-molecule localization microscopy were used to examine changes in ID structure and protein localization in the murine and human heart. We conducted detailed cardiac functional assessment and transcriptional profiling of mice lacking myocardin-related transcription factor (MRTF)-A and MRTF-B specifically in adult cardiomyocytes to evaluate the role of mechanosensitive regulation of gene expression in load-induced ventricular remodeling. RESULTS We found that MRTFs localize to IDs in the healthy human heart and accumulate in the nucleus in heart failure. Although mice lacking MRTFs in adult cardiomyocytes display normal cardiac physiology at baseline, pressure overload leads to rapid heart failure characterized by sarcomere disarray, ID disintegration, chamber dilation and wall thinning, cardiac functional decline, and partially penetrant acute lethality. Transcriptional profiling reveals a program of actin cytoskeleton and cardiomyocyte adhesion genes driven by MRTFs during pressure overload. Indeed, conspicuous remodeling of gap junctions at IDs identified by single-molecule localization microscopy may partially stem from a reduction in Mapre1 expression, which we show is a direct mechanosensitive MRTF target. CONCLUSIONS Our study describes a novel paradigm in which MRTFs control an acute mechanosensitive signaling circuit that coordinates cross-talk between the actin and microtubule cytoskeleton and maintains ID integrity and cardiomyocyte homeostasis in heart disease.
Collapse
MESH Headings
- Aged
- Animals
- Animals, Newborn
- COS Cells
- Case-Control Studies
- Chlorocebus aethiops
- Connexin 43/genetics
- Connexin 43/metabolism
- Female
- Gene Expression Regulation
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/pathology
- Heart Failure/physiopathology
- Humans
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Male
- Mechanotransduction, Cellular
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Confocal
- Microscopy, Electron, Transmission
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Middle Aged
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/ultrastructure
- NIH 3T3 Cells
- Single Molecule Imaging
- Trans-Activators/deficiency
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Ventricular Function, Left
- Ventricular Remodeling
Collapse
Affiliation(s)
- Michael A. Trembley
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY
| | - Pearl Quijada
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY
| | - Esperanza Agullo-Pascual
- The Leon H Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Kevin M. Tylock
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY
| | - Mert Colpan
- Department of Cellular and Molecular Medicine, Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| | - Ronald A. Dirkx
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY
| | - Jason R. Myers
- Genomics Research Center, University of Rochester, Rochester, NY
| | - Deanne M. Mickelsen
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY
| | | | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY
| | | | - Jeffrey D. Alexis
- Division of Cardiology, Department of Medicine, University of Rochester, Rochester, NY
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine, Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY
| | - Mario Delmar
- The Leon H Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Eric M. Small
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
- Author for correspondence: Eric M. Small, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY 14642, Phone: (585)276-7706, Fax: (585) 276-9839,
| |
Collapse
|
34
|
Guo Y, Jardin BD, Zhou P, Sethi I, Akerberg BN, Toepfer CN, Ai Y, Li Y, Ma Q, Guatimosim S, Hu Y, Varuzhanyan G, VanDusen NJ, Zhang D, Chan DC, Yuan GC, Seidman CE, Seidman JG, Pu WT. Hierarchical and stage-specific regulation of murine cardiomyocyte maturation by serum response factor. Nat Commun 2018; 9:3837. [PMID: 30242271 PMCID: PMC6155060 DOI: 10.1038/s41467-018-06347-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
After birth, cardiomyocytes (CM) acquire numerous adaptations in order to efficiently pump blood throughout an animal's lifespan. How this maturation process is regulated and coordinated is poorly understood. Here, we perform a CRISPR/Cas9 screen in mice and identify serum response factor (SRF) as a key regulator of CM maturation. Mosaic SRF depletion in neonatal CMs disrupts many aspects of their maturation, including sarcomere expansion, mitochondrial biogenesis, transverse-tubule formation, and cellular hypertrophy. Maintenance of maturity in adult CMs is less dependent on SRF. This stage-specific activity is associated with developmentally regulated SRF chromatin occupancy and transcriptional regulation. SRF directly activates genes that regulate sarcomere assembly and mitochondrial dynamics. Perturbation of sarcomere assembly but not mitochondrial dynamics recapitulates SRF knockout phenotypes. SRF overexpression also perturbs CM maturation. Together, these data indicate that carefully balanced SRF activity is essential to promote CM maturation through a hierarchy of cellular processes orchestrated by sarcomere assembly.
Collapse
Affiliation(s)
- Yuxuan Guo
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Blake D Jardin
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Pingzhu Zhou
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Isha Sethi
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Brynn N Akerberg
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Christopher N Toepfer
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Radcliffe Department of Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Yulan Ai
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Yifei Li
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Qing Ma
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Yongwu Hu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Wenzhou Medical University, School of Life Sciences, Wenzhou, China
| | - Grigor Varuzhanyan
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, MC 114-96, Pasadena, CA, 91125, USA
| | - Nathan J VanDusen
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Donghui Zhang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 430062, Wuhan, China
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, MC 114-96, Pasadena, CA, 91125, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD, 20815, USA
| | - Jonathan G Seidman
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA, 02138, USA.
| |
Collapse
|
35
|
Lyu Q, Dhagia V, Han Y, Guo B, Wines-Samuelson ME, Christie CK, Yin Q, Slivano OJ, Herring P, Long X, Gupte SA, Miano JM. CRISPR-Cas9-Mediated Epitope Tagging Provides Accurate and Versatile Assessment of Myocardin-Brief Report. Arterioscler Thromb Vasc Biol 2018; 38:2184-2190. [PMID: 29976770 PMCID: PMC6204210 DOI: 10.1161/atvbaha.118.311171] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/22/2018] [Indexed: 11/16/2022]
Abstract
Objective- Unreliable antibodies often hinder the accurate detection of an endogenous protein, and this is particularly true for the cardiac and smooth muscle cofactor, MYOCD (myocardin). Accordingly, the mouse Myocd locus was targeted with 2 independent epitope tags for the unambiguous expression, localization, and activity of MYOCD protein. Approach and Results- 3cCRISPR (3-component clustered regularly interspaced short palindromic repeat) was used to engineer a carboxyl-terminal 3×FLAG or 3×HA epitope tag in mouse embryos. Western blotting with antibodies to each tag revealed a MYOCD protein product of ≈150 kDa, a size considerably larger than that reported in virtually all publications. MYOCD protein was most abundant in some adult smooth muscle-containing tissues with surprisingly low-level expression in the heart. Both alleles of Myocd are active in aorta because a 2-fold increase in protein was seen in mice homozygous versus heterozygous for FLAG-tagged Myocd. ChIP (chromatin immunoprecipitation)-quantitative polymerase chain reaction studies provide proof-of-principle data demonstrating the utility of this mouse line in conducting genome-wide ChIP-seq studies to ascertain the full complement of MYOCD-dependent target genes in vivo. Although FLAG-tagged MYOCD protein was undetectable in sections of adult mouse tissues, low-passaged vascular smooth muscle cells exhibited expected nuclear localization. Conclusions- This report validates new mouse models for analyzing MYOCD protein expression, localization, and binding activity in vivo and highlights the need for rigorous authentication of antibodies in biomedical research.
Collapse
Affiliation(s)
- Qing Lyu
- Aab Cardiovascular Research Institute, University of
Rochester Medical Center, Rochester, NY
| | - Vidhi Dhagia
- Department of Pharmacology, New York Medical College,
Valhalla NY
| | - Yu Han
- Aab Cardiovascular Research Institute, University of
Rochester Medical Center, Rochester, NY
| | - Bing Guo
- Aab Cardiovascular Research Institute, University of
Rochester Medical Center, Rochester, NY
| | - Mary E. Wines-Samuelson
- Aab Cardiovascular Research Institute, University of
Rochester Medical Center, Rochester, NY
| | - Christine K. Christie
- Aab Cardiovascular Research Institute, University of
Rochester Medical Center, Rochester, NY
| | - Qiangzong Yin
- Aab Cardiovascular Research Institute, University of
Rochester Medical Center, Rochester, NY
| | - Orazio J. Slivano
- Aab Cardiovascular Research Institute, University of
Rochester Medical Center, Rochester, NY
| | - Paul Herring
- Department of Cellular and Integrative Physiology, Indiana
University School of Medicine, Indianapolis, IN
| | - Xiaochun Long
- Department of Molecular and Cellular Physiology, Albany
Medical College, Albany, NY 12208
| | - Sachin A. Gupte
- Department of Pharmacology, New York Medical College,
Valhalla NY
| | - Joseph M. Miano
- Aab Cardiovascular Research Institute, University of
Rochester Medical Center, Rochester, NY
| |
Collapse
|
36
|
Zhu B, Rippe C, Holmberg J, Zeng S, Perisic L, Albinsson S, Hedin U, Uvelius B, Swärd K. Nexilin/NEXN controls actin polymerization in smooth muscle and is regulated by myocardin family coactivators and YAP. Sci Rep 2018; 8:13025. [PMID: 30158653 PMCID: PMC6115340 DOI: 10.1038/s41598-018-31328-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/17/2018] [Indexed: 01/03/2023] Open
Abstract
Nexilin, encoded by the NEXN gene, is expressed in striated muscle and localizes to Z-discs, influencing mechanical stability. We examined Nexilin/NEXN in smooth muscle cells (SMCs), and addressed if Nexilin localizes to dense bodies and dense bands and whether it is regulated by actin-controlled coactivators from the MRTF (MYOCD, MKL1, MKL2) and YAP/TAZ (YAP1 and WWTR1) families. NEXN expression in SMCs was comparable to that in striated muscles. Immunofluorescence and immunoelectron microscopy suggested that Nexilin localizes to dense bodies and dense bands. Correlations at the mRNA level suggested that NEXN expression might be controlled by actin polymerization. Depolymerization of actin using Latrunculin B repressed the NEXN mRNA and protein in bladder and coronary artery SMCs. Overexpression and knockdown supported involvement of both YAP/TAZ and MRTFs in the transcriptional control of NEXN. YAP/TAZ and MRTFs appeared equally important in bladder SMCs, whereas MRTFs dominated in vascular SMCs. Expression of NEXN was moreover reduced in situations of SMC phenotypic modulation in vivo. The proximal promoter of NEXN conferred control by MRTF-A/MKL1 and MYOCD. NEXN silencing reduced actin polymerization and cell migration, as well as SMC marker expression. NEXN targeting by actin-controlled coactivators thus amplifies SMC differentiation through the actin cytoskeleton, probably via dense bodies and dense bands.
Collapse
Affiliation(s)
- Baoyi Zhu
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden. .,Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), 511518, Guangdong, China.
| | - Catarina Rippe
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Johan Holmberg
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Shaohua Zeng
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden.,Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), 511518, Guangdong, China
| | - Ljubica Perisic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Albinsson
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Uvelius
- Department of Clinical Science, Section of Urology, Lund University, SE-221 84, Lund, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| |
Collapse
|
37
|
Das A, Samidurai A, Salloum FN. Deciphering Non-coding RNAs in Cardiovascular Health and Disease. Front Cardiovasc Med 2018; 5:73. [PMID: 30013975 PMCID: PMC6036139 DOI: 10.3389/fcvm.2018.00073] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/29/2018] [Indexed: 12/16/2022] Open
Abstract
After being long considered as “junk” in the human genome, non-coding RNAs (ncRNAs) currently represent one of the newest frontiers in cardiovascular disease (CVD) since they have emerged in recent years as potential therapeutic targets. Different types of ncRNAs exist, including small ncRNAs that have fewer than 200 nucleotides, which are mostly known as microRNAs (miRNAs), and long ncRNAs that have more than 200 nucleotides. Recent discoveries on the role of ncRNAs in epigenetic and transcriptional regulation, atherosclerosis, myocardial ischemia/reperfusion (I/R) injury and infarction (MI), adverse cardiac remodeling and hypertrophy, insulin resistance, and diabetic cardiomyopathy prompted vast interest in exploring candidate ncRNAs for utilization as potential therapeutic targets and/or diagnostic/prognostic biomarkers in CVDs. This review will discuss our current knowledge concerning the roles of different types of ncRNAs in cardiovascular health and disease and provide some insight on the cardioprotective signaling pathways elicited by the non-coding genome. We will highlight important basic and clinical breakthroughs that support employing ncRNAs for treatment or early diagnosis of a variety of CVDs, and also depict the most relevant limitations that challenge this novel therapeutic approach.
Collapse
Affiliation(s)
- Anindita Das
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Arun Samidurai
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Fadi N Salloum
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
38
|
Abstract
There are multiple intrinsic mechanisms for diastolic dysfunction ranging from molecular to structural derangements in ventricular myocardium. The molecular mechanisms regulating the progression from normal diastolic function to severe dysfunction still remain poorly understood. Recent studies suggest a potentially important role of core cardio-enriched transcription factors (TFs) in the control of cardiac diastolic function in health and disease through their ability to regulate the expression of target genes involved in the process of adaptive and maladaptive cardiac remodeling. The current relevant findings on the role of a variety of such TFs (TBX5, GATA-4/6, SRF, MYOCD, NRF2, and PITX2) in cardiac diastolic dysfunction and failure are updated, emphasizing their potential as promising targets for novel treatment strategies. In turn, the new animal models described here will be key tools in determining the underlying molecular mechanisms of disease. Since diastolic dysfunction is regulated by various TFs, which are also involved in cross talk with each other, there is a need for more in-depth research from a biomedical perspective in order to establish efficient therapeutic strategies.
Collapse
|
39
|
Sun X, Hota SK, Zhou YQ, Novak S, Miguel-Perez D, Christodoulou D, Seidman CE, Seidman JG, Gregorio CC, Henkelman RM, Rossant J, Bruneau BG. Cardiac-enriched BAF chromatin-remodeling complex subunit Baf60c regulates gene expression programs essential for heart development and function. Biol Open 2018; 7:bio029512. [PMID: 29183906 PMCID: PMC5829499 DOI: 10.1242/bio.029512] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/21/2017] [Indexed: 01/01/2023] Open
Abstract
How chromatin-remodeling complexes modulate gene networks to control organ-specific properties is not well understood. For example, Baf60c (Smarcd3) encodes a cardiac-enriched subunit of the SWI/SNF-like BAF chromatin complex, but its role in heart development is not fully understood. We found that constitutive loss of Baf60c leads to embryonic cardiac hypoplasia and pronounced cardiac dysfunction. Conditional deletion of Baf60c in cardiomyocytes resulted in postnatal dilated cardiomyopathy with impaired contractile function. Baf60c regulates a gene expression program that includes genes encoding contractile proteins, modulators of sarcomere function, and cardiac metabolic genes. Many of the genes deregulated in Baf60c null embryos are targets of the MEF2/SRF co-factor Myocardin (MYOCD). In a yeast two-hybrid screen, we identified MYOCD as a BAF60c interacting factor; we showed that BAF60c and MYOCD directly and functionally interact. We conclude that Baf60c is essential for coordinating a program of gene expression that regulates the fundamental functional properties of cardiomyocytes.
Collapse
Affiliation(s)
- Xin Sun
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1X8 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Swetansu K Hota
- Gladstone Institutes, San Francisco, CA, 94158 USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Yu-Qing Zhou
- The Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, M5G 1X8 Canada
| | - Stefanie Novak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Dario Miguel-Perez
- Gladstone Institutes, San Francisco, CA, 94158 USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, Gladstone Institutes, San Francisco, CA 94158, USA
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - J G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - R Mark Henkelman
- The Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, M5G 1X8 Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1X8 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA, 94158 USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
40
|
Liu CY, Zhang YH, Li RB, Zhou LY, An T, Zhang RC, Zhai M, Huang Y, Yan KW, Dong YH, Ponnusamy M, Shan C, Xu S, Wang Q, Zhang YH, Zhang J, Wang K. LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nat Commun 2018; 9:29. [PMID: 29295976 PMCID: PMC5750208 DOI: 10.1038/s41467-017-02280-y] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 11/14/2017] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence suggests that long noncoding RNAs (lncRNAs) play crucial roles in various biological processes. However, little is known about the effects of lncRNAs on autophagy. Here we report that a lncRNA, termed cardiac autophagy inhibitory factor (CAIF), suppresses cardiac autophagy and attenuates myocardial infarction by targeting p53-mediated myocardin transcription. Myocardin expression is upregulated upon H2O2 and ischemia/reperfusion, and knockdown of myocardin inhibits autophagy and attenuates myocardial infarction. p53 regulates cardiomyocytes autophagy and myocardial ischemia/reperfusion injury by regulating myocardin expression. CAIF directly binds to p53 protein and blocks p53-mediated myocardin transcription, which results in the decrease of myocardin expression. Collectively, our data reveal a novel CAIF-p53-myocardin axis as a critical regulator in cardiomyocyte autophagy, which will be potential therapeutic targets in treatment of defective autophagy-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Cui-Yun Liu
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yu-Hui Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Rui-Bei Li
- School of Professional Studies, Northwestern University, Chicago, IL, 60611, USA
| | - Lu-Yu Zhou
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Tao An
- State Key Laboratory of Cardiovascular Disease, Heart Failure center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Rong-Cheng Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Mei Zhai
- State Key Laboratory of Cardiovascular Disease, Heart Failure center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Yan Huang
- State Key Laboratory of Cardiovascular Disease, Heart Failure center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Kao-Wen Yan
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yan-Han Dong
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Murugavel Ponnusamy
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Chan Shan
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Sheng Xu
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Qi Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yan-Hui Zhang
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Jian Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Kun Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
41
|
Xiang Y, Liao XH, Li JP, Li H, Qin H, Yao A, Yu CX, Hu P, Guo W, Gu CJ, Zhang TC. Myocardin and Stat3 act synergistically to inhibit cardiomyocyte apoptosis. Oncotarget 2017; 8:99612-99623. [PMID: 29245928 PMCID: PMC5725119 DOI: 10.18632/oncotarget.20450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
Signal transducer and activator of transcription 3 (Stat3) and Myocardin regulate cardiomyocyte differentiation, proliferation, and apoptosis. We report a novel aspect of the cellular function of Myocardin and Stat3 in the regulation of cardiomyocyte apoptosis. Myocardin and Stat3 showed anti-apoptotic function by increasing the expression of Bcl-2 while reducing expression of the pro-apoptotic genes Bax, Apaf-1, caspase-9, and caspase-3. Moreover, myocardin/Stat3-mediated activation of Bcl-2 and Mcl-1 transcription is contingent on the CArG box. Myocardin and Stat3 synergistically inhibited staurosporine-induced cardiomyocyte apoptosis by up-regulating expression of anti-apoptotic Bcl-2 and Mcl-1 in neonatal rat cardiomyocytes. These results describe a novel anti-apoptotic Myocardin/Stat3 signaling pathway operating during cardiomyocyte apoptosis. This provides a molecular explanation for cardiomyocyte apoptosis inhibition as a critical component of myocardial protection.
Collapse
Affiliation(s)
- Yuan Xiang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Xing-Hua Liao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Jia-Peng Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Hui Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Huan Qin
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Ao Yao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Cheng-Xi Yu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Peng Hu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Wei Guo
- Shenzhen Ritzcon Biological Technology Co., LTD, Shenzhen, Guangdong, 518000, P.R. China
| | - Chao-Jiang Gu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Tong-Cun Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China.,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| |
Collapse
|
42
|
|
43
|
Jehanno C, Flouriot G, Nicol-Benoît F, Le Page Y, Le Goff P, Michel D. Envisioning metastasis as a transdifferentiation phenomenon clarifies discordant results on cancer. Breast Dis 2017; 36:47-59. [PMID: 27177343 DOI: 10.3233/bd-150210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer is generally conceived as a dedifferentiation process in which quiescent post-mitotic differentiated cells acquire stem-like properties and the capacity to proliferate. This view holds for the initial stages of carcinogenesis but is more questionable for advanced stages when the cells can transdifferentiate into the contractile phenotype associated to migration and metastasis. Singularly from this perspective, the hallmark of the most aggressive cancers would correspond to a genuine differentiation status, even if it is different from the original one. This seeming paradox could help reconciling discrepancies in the literature about the pro- or anti-tumoral functions of candidate molecules involved in cancer and whose actual effects depend on the tumoral grade. These ambiguities which are likely to concern a myriad of molecules and pathways, are illustrated here with the selected examples of chromatin epigenetics and myocardin-related transcription factors, using the human MCF10A and MCF7 breast cancer cells. Self-renewing stem like cells are characterized by a loose chromatin with low levels of the H3K9 trimetylation, but high levels of this mark can also appear in cancer cells acquiring a contractile-type differentiation state associated to metastasis. Similarly, the myocardin-related transcription factor MRTF-A is involved in metastasis and epithelial-mesenchymal transition, whereas this factor is naturally enriched in the quiescent cells which are precisely the most resistant to cancer: cardiomyocytes. These seeming paradoxes reflect the bistable epigenetic landscape of cancer in which dedifferentiated self-renewing and differentiated migrating states are incompatible at the single cell level, though coexisting at the population level.
Collapse
|
44
|
Kubiniok P, Lavoie H, Therrien M, Thibault P. Time-resolved Phosphoproteome Analysis of Paradoxical RAF Activation Reveals Novel Targets of ERK. Mol Cell Proteomics 2017; 16:663-679. [PMID: 28188228 DOI: 10.1074/mcp.m116.065128] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/31/2016] [Indexed: 12/19/2022] Open
Abstract
Small molecules targeting aberrant RAF activity, like vemurafenib (PLX4032), are highly effective against cancers harboring the V600E BRAF mutation and are now approved for clinical use against metastatic melanoma. However, in tissues showing elevated RAS activity and in RAS mutant tumors, these inhibitors stimulate RAF dimerization, resulting in inhibitor resistance and downstream "paradoxical" ERK activation. To understand the global signaling response of cancer cells to RAF inhibitors, we profiled the temporal changes of the phosphoproteome of two colon cancer cell lines (Colo205 and HCT116) that respond differently to vemurafenib. Comprehensive data mining and filtering identified a total of 37,910 phosphorylation sites, 660 of which were dynamically modulated upon treatment with vemurafenib. We established that 83% of these dynamic phosphorylation sites were modulated in accordance with the phospho-ERK profile of the two cell lines. Accordingly, kinase substrate prediction algorithms linked most of these dynamic sites to direct ERK1/2-mediated phosphorylation, supporting a low off-target rate for vemurafenib. Functional classification of target proteins indicated the enrichment of known (nuclear pore, transcription factors, and RAS-RTK signaling) and novel (Rho GTPases signaling and actin cytoskeleton) ERK-controlled functions. Our phosphoproteomic data combined with experimental validation established novel dynamic connections between ERK signaling and the transcriptional regulators TEAD3 (Hippo pathway), MKL1, and MKL2 (Rho serum-response elements pathway). We also confirm that an ERK-docking site found in MKL1 is directly antagonized by overlapping actin binding, defining a novel mechanism of actin-modulated phosphorylation. Altogether, time-resolved phosphoproteomics further documented vemurafenib selectivity and identified novel ERK downstream substrates.
Collapse
Affiliation(s)
- Peter Kubiniok
- From the ‡Institute for Research in Immunology and Cancer and.,Departments of §Chemistry
| | - Hugo Lavoie
- From the ‡Institute for Research in Immunology and Cancer and
| | - Marc Therrien
- From the ‡Institute for Research in Immunology and Cancer and .,‖Pathology and Cell Biology, and
| | - Pierre Thibault
- From the ‡Institute for Research in Immunology and Cancer and .,Departments of §Chemistry.,‡‡Biochemistry, Université de Montréal, C.P. 6128, Succursale Centreville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
45
|
An CI, Ichihashi Y, Peng J, Sinha NR, Hagiwara N. Transcriptome Dynamics and Potential Roles of Sox6 in the Postnatal Heart. PLoS One 2016; 11:e0166574. [PMID: 27832192 PMCID: PMC5104335 DOI: 10.1371/journal.pone.0166574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/31/2016] [Indexed: 01/20/2023] Open
Abstract
The postnatal heart undergoes highly coordinated developmental processes culminating in the complex physiologic properties of the adult heart. The molecular mechanisms of postnatal heart development remain largely unexplored despite their important clinical implications. To gain an integrated view of the dynamic changes in gene expression during postnatal heart development at the organ level, time-series transcriptome analyses of the postnatal hearts of neonatal through adult mice (P1, P7, P14, P30, and P60) were performed using a newly developed bioinformatics pipeline. We identified functional gene clusters by principal component analysis with self-organizing map clustering which revealed organized, discrete gene expression patterns corresponding to biological functions associated with the neonatal, juvenile and adult stages of postnatal heart development. Using weighted gene co-expression network analysis with bootstrap inference for each of these functional gene clusters, highly robust hub genes were identified which likely play key roles in regulating expression of co-expressed, functionally linked genes. Additionally, motivated by the role of the transcription factor Sox6 in the functional maturation of skeletal muscle, the role of Sox6 in the postnatal maturation of cardiac muscle was investigated. Differentially expressed transcriptome analyses between Sox6 knockout (KO) and control hearts uncovered significant upregulation of genes involved in cell proliferation at postnatal day 7 (P7) in the Sox6 KO heart. This result was validated by detecting mitotically active cells in the P7 Sox6 KO heart. The current report provides a framework for the complex molecular processes of postnatal heart development, thus enabling systematic dissection of the developmental regression observed in the stressed and failing adult heart.
Collapse
Affiliation(s)
- Chung-Il An
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California Davis, Davis, California, United States of America
- * E-mail: (CA); (YI); (NH)
| | - Yasunori Ichihashi
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
- * E-mail: (CA); (YI); (NH)
| | - Jie Peng
- Department of Statistics, University of California Davis, Davis, California, United States of America
| | - Neelima R. Sinha
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Nobuko Hagiwara
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California Davis, Davis, California, United States of America
- * E-mail: (CA); (YI); (NH)
| |
Collapse
|
46
|
Kaymak A, Richly H. Zrf1 controls mesoderm lineage genes and cardiomyocyte differentiation. Cell Cycle 2016; 15:3306-3317. [PMID: 27754813 DOI: 10.1080/15384101.2016.1245246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In the present study we addressed the function of the transcriptional activator Zrf1 in the generation of the 3 germ layers during in vitro development. Currently, Zrf1 is rather regarded as a factor that drives the expression of neuronal genes. Here, we have employed mouse embryonic stem cells and P19 cells to understand the role of Zrf1 in the generation of mesoderm-derived tissues like adipocytes, cartilage and heart. Our data shows that Zrf1 is essential for the transcriptional activation of genes that give rise to mesoderm and in particular heart development. In both, the mESC and P19 systems, we provide evidence that Zrf1 contributes to the generation of functional cardiomyocytes. We further demonstrate that Zrf1 binds to the transcription start sites (TSSs) of heart tissue-specific genes from the first and second heart field where it drives their temporal expression during differentiation. Taken together, we have identified Zrf1 as a novel regulator of the mesodermal lineage that might facilitate spatiotemporal expression of genes.
Collapse
Affiliation(s)
- Aysegül Kaymak
- a Laboratory of Molecular Epigenetics, Institute of Molecular Biology (IMB) , Mainz , Germany.,b Faculty of Biology, Johannes Gutenberg University , Mainz , Germany
| | - Holger Richly
- a Laboratory of Molecular Epigenetics, Institute of Molecular Biology (IMB) , Mainz , Germany
| |
Collapse
|
47
|
Wassenaar JW, Gaetani R, Garcia JJ, Braden RL, Luo CG, Huang D, DeMaria AN, Omens JH, Christman KL. Evidence for Mechanisms Underlying the Functional Benefits of a Myocardial Matrix Hydrogel for Post-MI Treatment. J Am Coll Cardiol 2016; 67:1074-1086. [PMID: 26940929 DOI: 10.1016/j.jacc.2015.12.035] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND There is increasing need for better therapies to prevent the development of heart failure after myocardial infarction (MI). An injectable hydrogel derived from decellularized porcine ventricular myocardium has been shown to halt the post-infarction progression of negative left ventricular remodeling and decline in cardiac function in both small and large animal models. OBJECTIVES This study sought to elucidate the tissue-level mechanisms underlying the therapeutic benefits of myocardial matrix injection. METHODS Myocardial matrix or saline was injected into infarcted myocardium 1 week after ischemia-reperfusion in Sprague-Dawley rats. Cardiac function was evaluated by magnetic resonance imaging and hemodynamic measurements at 5 weeks after injection. Whole transcriptome microarrays were performed on RNA isolated from the infarct at 3 days and 1 week after injection. Quantitative polymerase chain reaction and histologic quantification confirmed expression of key genes and their activation in altered pathways. RESULTS Principal component analysis of the transcriptomes showed that samples collected from myocardial matrix-injected infarcts are distinct and cluster separately from saline-injected control subjects. Pathway analysis indicated that these differences are due to changes in several tissue processes that may contribute to improved cardiac healing after MI. Matrix-injected infarcted myocardium exhibits an altered inflammatory response, reduced cardiomyocyte apoptosis, enhanced infarct neovascularization, diminished cardiac hypertrophy and fibrosis, altered metabolic enzyme expression, increased cardiac transcription factor expression, and progenitor cell recruitment, along with improvements in global cardiac function and hemodynamics. CONCLUSIONS These results indicate that the myocardial matrix alters several key pathways after MI creating a pro-regenerative environment, further demonstrating its promise as a potential post-MI therapy.
Collapse
Affiliation(s)
- Jean W Wassenaar
- Department of Bioengineering, University of California, San Diego; Sanford Consortium for Regenerative Medicine
| | - Roberto Gaetani
- Department of Bioengineering, University of California, San Diego; Sanford Consortium for Regenerative Medicine
| | - Julian J Garcia
- Department of Bioengineering, University of California, San Diego; Sanford Consortium for Regenerative Medicine
| | - Rebecca L Braden
- Department of Bioengineering, University of California, San Diego; Sanford Consortium for Regenerative Medicine
| | - Colin G Luo
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Diane Huang
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Anthony N DeMaria
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jeffrey H Omens
- Department of Bioengineering, University of California, San Diego; Department of Medicine, University of California, San Diego, La Jolla, California
| | - Karen L Christman
- Department of Bioengineering, University of California, San Diego; Sanford Consortium for Regenerative Medicine.
| |
Collapse
|
48
|
Cenik BK, Liu N, Chen B, Bezprozvannaya S, Olson EN, Bassel-Duby R. Myocardin-related transcription factors are required for skeletal muscle development. Development 2016; 143:2853-61. [PMID: 27385017 PMCID: PMC5004908 DOI: 10.1242/dev.135855] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/17/2016] [Indexed: 12/24/2022]
Abstract
Myocardin-related transcription factors (MRTFs) play a central role in the regulation of actin expression and cytoskeletal dynamics. Stimuli that promote actin polymerization allow for shuttling of MRTFs to the nucleus where they activate serum response factor (SRF), a regulator of actin and other cytoskeletal protein genes. SRF is an essential regulator of skeletal muscle differentiation and numerous components of the muscle sarcomere, but the potential involvement of MRTFs in skeletal muscle development has not been examined. We explored the role of MRTFs in muscle development in vivo by generating mutant mice harboring a skeletal muscle-specific deletion of MRTF-B and a global deletion of MRTF-A. These double knockout (dKO) mice were able to form sarcomeres during embryogenesis. However, the sarcomeres were abnormally small and disorganized, causing skeletal muscle hypoplasia and perinatal lethality. Transcriptome analysis demonstrated dramatic dysregulation of actin genes in MRTF dKO mice, highlighting the importance of MRTFs in actin cycling and myofibrillogenesis. MRTFs were also shown to be necessary for the survival of skeletal myoblasts and for the efficient formation of intact myotubes. Our findings reveal a central role for MRTFs in sarcomere formation during skeletal muscle development and point to the potential involvement of these transcriptional co-activators in skeletal myopathies.
Collapse
Affiliation(s)
- Bercin K Cenik
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Beibei Chen
- Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Svetlana Bezprozvannaya
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| |
Collapse
|
49
|
Abstract
SUMOylation is a ubiquitin-related transient posttranslational modification pathway catalyzing the conjugation of small ubiquitin-like modifier (SUMO) proteins (SUMO1, SUMO2, and SUMO3) to lysine residues of proteins. SUMOylation targets a wide variety of cellular regulators and thereby affects a multitude of different cellular processes. SUMO/sentrin-specific proteases are able to remove SUMOs from targets, contributing to a tight control of SUMOylated proteins. Genetic and cell biological experiments indicate a critical role of balanced SUMOylation/deSUMOylation for proper cardiac development, metabolism, and stress adaptation. Here, we review the current knowledge about SUMOylation/deSUMOylation in the heart and provide an integrated picture of cardiac functions of the SUMO system under physiologic or pathologic conditions. We also describe potential therapeutic approaches targeting the SUMO machinery to combat heart disease.
Collapse
Affiliation(s)
- Luca Mendler
- From the Institute of Biochemistry II, Goethe University, Medical School, Frankfurt, Germany (L.M., S.M.); Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Szeged, Hungary (L.M.); and Department I - Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.)
| | - Thomas Braun
- From the Institute of Biochemistry II, Goethe University, Medical School, Frankfurt, Germany (L.M., S.M.); Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Szeged, Hungary (L.M.); and Department I - Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.).
| | - Stefan Müller
- From the Institute of Biochemistry II, Goethe University, Medical School, Frankfurt, Germany (L.M., S.M.); Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Szeged, Hungary (L.M.); and Department I - Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.).
| |
Collapse
|
50
|
Myocardin-related transcription factors are required for cardiac development and function. Dev Biol 2015; 406:109-16. [PMID: 26386146 DOI: 10.1016/j.ydbio.2015.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 01/24/2023]
Abstract
Myocardin-Related Transcription Factors A and B (MRTF-A and MRTF-B) are highly homologous proteins that function as powerful coactivators of serum response factor (SRF), a ubiquitously expressed transcription factor essential for cardiac development. The SRF/MRTF complex binds to CArG boxes found in the control regions of genes that regulate cytoskeletal dynamics and muscle contraction, among other processes. While SRF is required for heart development and function, the role of MRTFs in the developing or adult heart has not been explored. Through cardiac-specific deletion of MRTF alleles in mice, we show that either MRTF-A or MRTF-B is dispensable for cardiac development and function, whereas deletion of both MRTF-A and MRTF-B causes a spectrum of structural and functional cardiac abnormalities. Defects observed in MRTF-A/B null mice ranged from reduced cardiac contractility and adult onset heart failure to neonatal lethality accompanied by sarcomere disarray. RNA-seq analysis on neonatal hearts identified the most altered pathways in MRTF double knockout hearts as being involved in cytoskeletal organization. Together, these findings demonstrate redundant but essential roles of the MRTFs in maintenance of cardiac structure and function and as indispensible links in cardiac cytoskeletal gene regulatory networks.
Collapse
|