1
|
Kawaguchi K, Nguyen LBT, Kinoshita M, Abe N, Oba M, Abe H, Sudo K, Inoue K, Uchida S, Sawa T. Highly pure mRNA vaccine provides robust immunization against P. aeruginosa by minimizing type I interferon responses. J Control Release 2025:113860. [PMID: 40383159 DOI: 10.1016/j.jconrel.2025.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 05/03/2025] [Accepted: 05/16/2025] [Indexed: 05/20/2025]
Abstract
Developing effective vaccines against bacteria is critical given the growing threat of antimicrobial resistance (AMR). In this study, we developed mRNA vaccines targeting Pseudomonas aeruginosa (P. aeruginosa), a key AMR pathogen, using PureCap mRNA encapsulated in lipid nanoparticles (LNPs). The PureCap technology offers a facile method for removing immunostimulatory impurities from in vitro transcribed mRNA, such as uncapped RNA and double-stranded RNA (dsRNA). Following intramuscular vaccination of mice with mRNA encoding a model antigen, PureCap mRNA elicited antibody titers that were 26-fold higher than those induced by conventional ARCA-capped mRNA. Mechanistic analyses revealed that both uncapped RNA and dsRNA impurities in ARCA-capped mRNA were responsible for the reduced humoral immune responses. While PureCap mRNA enhanced protein expression efficiency and reduced pro-inflammatory responses compared to ARCA-capped mRNA, minimizing pro-inflammatory responses was particularly critical. When anti-interferon-α/β receptor antibodies were administered, antibody responses to ARCA-capped mRNA vaccination were restored to levels comparable to those achieved with PureCap mRNA vaccination, highlighting the negative impact of type I interferon responses on antibody responses following vaccination with ARCA-capped mRNA. In a vaccination targeting the PcrV protein of P. aeruginosa, PureCap mRNA, but not ARCA-capped mRNA, significantly prolonged the survival of mice following bacterial challenges, presumably due to enhanced antibody production. Furthermore, PureCap mRNA vaccination significantly reduced bacterial loads in the lungs and mitigated tissue damage, edema, and inflammatory responses. These findings underscore the potential of PureCap mRNA as a promising platform for bacterial vaccination, offering a valuable strategy to combat AMR.
Collapse
Affiliation(s)
- Ken Kawaguchi
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Le Bui Thao Nguyen
- Department of Advanced Nanomedical Engineering, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku Tokyo 113-8510, Japan; Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Mao Kinoshita
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Naoko Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Makoto Oba
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Kazuki Sudo
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Keita Inoue
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Satoshi Uchida
- Department of Advanced Nanomedical Engineering, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku Tokyo 113-8510, Japan; Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan.
| | - Teiji Sawa
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| |
Collapse
|
2
|
Feng YYF, Li YC, Liu HM, Xu R, Liu YT, Zhang W, Yang HY, Chen G. Synthetic lethal CRISPR screen identifies a cancer cell-intrinsic role of PD-L1 in regulation of vulnerability to ferroptosis. Cell Rep 2024; 43:114477. [PMID: 38985676 DOI: 10.1016/j.celrep.2024.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 05/20/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024] Open
Abstract
Despite the success of programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibition in tumor therapy, many patients do not benefit. This failure may be attributed to the intrinsic functions of PD-L1. We perform a genome-wide CRISPR synthetic lethality screen to systematically explore the intrinsic functions of PD-L1 in head and neck squamous cell carcinoma (HNSCC) cells, identifying ferroptosis-related genes as essential for the viability of PD-L1-deficient cells. Genetic and pharmacological induction of ferroptosis accelerates cell death in PD-L1 knockout cells, which are also more susceptible to immunogenic ferroptosis. Mechanistically, nuclear PD-L1 transcriptionally activates SOD2 to maintain redox homeostasis. Lower reactive oxygen species (ROS) and ferroptosis are observed in patients with HNSCC who have higher PD-L1 expression. Our study illustrates that PD-L1 confers ferroptosis resistance in HNSCC cells by activating the SOD2-mediated antioxidant pathway, suggesting that targeting the intrinsic functions of PD-L1 could enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Yang-Ying-Fan Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yi-Cun Li
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong 518036, China; Guangdong Provincial High-level Clinical Key Specialty, Guangdong 518036, China; Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Guangdong 518036, China; The Institute of Stomatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong 518036, China
| | - Hai-Ming Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Rui Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yu-Tong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Wei Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Hong-Yu Yang
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong 518036, China; Guangdong Provincial High-level Clinical Key Specialty, Guangdong 518036, China; Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Guangdong 518036, China; The Institute of Stomatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong 518036, China.
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
3
|
Katagiri W, Yokomizo S, Ishizuka T, Yamashita K, Kopp T, Roessing M, Sato A, Iwasaki T, Sato H, Fukuda T, Monaco H, Manganiello S, Nomura S, Ng MR, Feil S, Ogawa E, Fukumura D, Atochin DN, Choi HS, Kashiwagi S. Dual near-infrared II laser modulates the cellular redox state of T cells and augments the efficacy of cancer immunotherapy. FASEB J 2022; 36:e22521. [PMID: 36052742 PMCID: PMC9574655 DOI: 10.1096/fj.202200033r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 11/11/2022]
Abstract
Immunotherapy, including immune checkpoint inhibitors, has revolutionized cancer treatment, but only a minor fraction of patients shows durable responses. A new approach to overcome this limitation is yet to be identified. Recently, we have shown that photobiomodulation (PBM) with near-infrared (NIR) light in the NIR-II window reduces oxidative stress and supports the proliferation of CD8+ T cells, suggesting that PBM with NIR-II light could augment anti-cancer immunity. Here, we report a novel approach to support tumor-infiltrating CD8+ T cells upon PBM with NIR-II laser with high tissue penetration depth. Brief treatments of a murine model of breast cancer with dual 1064 and 1270 nm lasers reduced the expression of the programmed cell death protein 1 (PD-1) in CD8+ T cells in a syngeneic mouse model of breast cancer. The direct effect of the NIR-II laser treatment on T cells was confirmed by the enhanced tumor growth delay by the adoptive transfer of laser-treated CD8+ T cells ex vivo against a model tumor antigen. We further demonstrated that specific NIR-II laser parameters augmented the effect of the immune checkpoint inhibitor on tumor growth. PBM with NIR-II light augments the efficacy of cancer immunotherapy by supporting CD8+ T cells. Unlike the current immunotherapy with risks of undesirable drug-drug interactions and severe adverse events, the laser is safe and low-cost. It can be broadly combined with other therapy without modification to achieve clinical significance. In addition, our study established a path to develop a novel laser-based therapy to treat cancer effectively.
Collapse
Affiliation(s)
- Wataru Katagiri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan
| | - Shinya Yokomizo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
- Department of Radiological Science, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa, Tokyo 116-8551, Japan
| | - Takanobu Ishizuka
- Bioresearch Center, Corporate R&D Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0151, Japan
- Corporate R&D Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Keiko Yamashita
- Corporate R&D Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Timo Kopp
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Malte Roessing
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Akiko Sato
- Bioresearch Center, Corporate R&D Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Taizo Iwasaki
- Bioresearch Center, Corporate R&D Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Hideki Sato
- Bioresearch Center, Corporate R&D Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Takeshi Fukuda
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Hailey Monaco
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Sophia Manganiello
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Shinsuke Nomura
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
- Department of Surgery, Faculty of Medicine, University of Miyazaki Hospital, 5200 Kihara, Kiyotake, Miyazaki, Miyazaki 889-1692, Japan
| | - Mei Rosa Ng
- Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Susanne Feil
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Emiyu Ogawa
- School of Allied Health Science, Kitasato University, 1-15-1 Kitasato Minami-ku Sagamihara, Kanagawa, Japan
| | - Dai Fukumura
- Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Dmitriy N. Atochin
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13 Street, Charlestown, MA, 02129, United States of America
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| |
Collapse
|
4
|
Yuan X, Duan Y, Xiao Y, Sun K, Qi Y, Zhang Y, Ahmed Z, Moiani D, Yao J, Li H, Zhang L, Yuzhalin AE, Li P, Zhang C, Badu-Nkansah A, Saito Y, Liu X, Kuo WL, Ying H, Sun SC, Chang JC, Tainer JA, Yu D. Vitamin E Enhances Cancer Immunotherapy by Reinvigorating Dendritic Cells via Targeting Checkpoint SHP1. Cancer Discov 2022; 12:1742-1759. [PMID: 35420681 PMCID: PMC9262841 DOI: 10.1158/2159-8290.cd-21-0900] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/10/2022] [Accepted: 03/23/2022] [Indexed: 01/09/2023]
Abstract
Despite the popular use of dietary supplements during conventional cancer treatments, their impacts on the efficacies of prevalent immunotherapies, including immune-checkpoint therapy (ICT), are unknown. Surprisingly, our analyses of electronic health records revealed that ICT-treated patients with cancer who took vitamin E (VitE) had significantly improved survival. In mouse models, VitE increased ICT antitumor efficacy, which depended on dendritic cells (DC). VitE entered DCs via the SCARB1 receptor and restored tumor-associated DC functionality by directly binding to and inhibiting protein tyrosine phosphatase SHP1, a DC-intrinsic checkpoint. SHP1 inhibition, genetically or by VitE treatment, enhanced tumor antigen cross-presentation by DCs and DC-derived extracellular vesicles (DC-EV), triggering systemic antigen-specific T-cell antitumor immunity. Combining VitE with DC-recruiting cancer vaccines or immunogenic chemotherapies greatly boosted ICT efficacy in animals. Therefore, combining VitE supplement or SHP1-inhibited DCs/DC-EVs with DC-enrichment therapies could substantially augment T-cell antitumor immunity and enhance the efficacy of cancer immunotherapies. SIGNIFICANCE The impacts of nutritional supplements on responses to immunotherapies remain unexplored. Our study revealed that dietary vitamin E binds to and inhibits DC checkpoint SHP1 to increase antigen presentation, prime antitumor T-cell immunity, and enhance immunotherapy efficacy. VitE-treated or SHP1-silenced DCs/DC-EVs could be developed as potent immunotherapies. This article is highlighted in the In This Issue feature, p. 1599.
Collapse
Affiliation(s)
- Xiangliang Yuan
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Yimin Duan
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Yi Xiao
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Kai Sun
- Houston Methodist Research Institute, Houston, TX 77030, USA.,Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Yutao Qi
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Yuan Zhang
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Zamal Ahmed
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Davide Moiani
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Hongzhong Li
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Lin Zhang
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Arseniy E. Yuzhalin
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Ping Li
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Chenyu Zhang
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Akosua Badu-Nkansah
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Yohei Saito
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Xianghua Liu
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Wen-Ling Kuo
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Jenny C. Chang
- Houston Methodist Research Institute, Houston, TX 77030, USA.,Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - John A. Tainer
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA.,Corresponding Author: Dihua Yu, M.D., Ph.D., Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center. 6565 MD Anderson Blvd., Unit 108, Houston, TX 77030-4009, USA. Phone: 713-792-3636,
| |
Collapse
|
5
|
Kobayashi E, Jin A, Hamana H, Shitaoka K, Tajiri K, Kusano S, Yokoyama S, Ozawa T, Obata T, Muraguchi A, Kishi H. Rapid cloning of antigen-specific T-cell receptors by leveraging the cis activation of T cells. Nat Biomed Eng 2022; 6:806-818. [PMID: 35393565 DOI: 10.1038/s41551-022-00874-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/24/2022] [Indexed: 02/08/2023]
Abstract
It is commonly understood that T cells are activated via trans interactions between antigen-specific T-cell receptors (TCRs) and antigenic peptides presented on major histocompatibility complex (MHC) molecules on antigen-presenting cells. By analysing a large number of T cells at the single-cell level on a microwell array, we show that T-cell activation can occur via cis interactions (where TCRs on the T cell interact with the antigenic peptides presented on MHC class-I molecules on the same cell), and that such cis activation can be used to detect antigen-specific T cells and clone their TCR within 4 d. We used the detection-and-cloning system to clone a tumour-antigen-specific TCR from peripheral blood mononuclear cells of healthy donors. TCR cloning by leveraging the cis activation of T cells may facilitate the development of TCR-engineered T cells for cancer therapy.
Collapse
Affiliation(s)
- Eiji Kobayashi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Aishun Jin
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
- Department of Immunology, Chongqing Medical University, Chongqing, China
- Department of Immunology, Harbin Medical University, Harbin, China
| | - Hiroshi Hamana
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Kiyomi Shitaoka
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
- Department of Immunology, Hiroshima University, Hiroshima, Japan
| | - Kazuto Tajiri
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
- The Third Department of Internal Medicine, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Seisuke Kusano
- RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
| | - Shigeyuki Yokoyama
- RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
| | - Tatsuhiko Ozawa
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Tsutomu Obata
- Toyama Industrial Technology Research and Development Center, Takaoka, Japan
| | - Atsushi Muraguchi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan.
| |
Collapse
|
6
|
Reticker-Flynn NE, Zhang W, Belk JA, Basto PA, Escalante NK, Pilarowski GOW, Bejnood A, Martins MM, Kenkel JA, Linde IL, Bagchi S, Yuan R, Chang S, Spitzer MH, Carmi Y, Cheng J, Tolentino LL, Choi O, Wu N, Kong CS, Gentles AJ, Sunwoo JB, Satpathy AT, Plevritis SK, Engleman EG. Lymph node colonization induces tumor-immune tolerance to promote distant metastasis. Cell 2022; 185:1924-1942.e23. [PMID: 35525247 PMCID: PMC9149144 DOI: 10.1016/j.cell.2022.04.019] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 01/31/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
For many solid malignancies, lymph node (LN) involvement represents a harbinger of distant metastatic disease and, therefore, an important prognostic factor. Beyond its utility as a biomarker, whether and how LN metastasis plays an active role in shaping distant metastasis remains an open question. Here, we develop a syngeneic melanoma mouse model of LN metastasis to investigate how tumors spread to LNs and whether LN colonization influences metastasis to distant tissues. We show that an epigenetically instilled tumor-intrinsic interferon response program confers enhanced LN metastatic potential by enabling the evasion of NK cells and promoting LN colonization. LN metastases resist T cell-mediated cytotoxicity, induce antigen-specific regulatory T cells, and generate tumor-specific immune tolerance that subsequently facilitates distant tumor colonization. These effects extend to human cancers and other murine cancer models, implicating a conserved systemic mechanism by which malignancies spread to distant organs.
Collapse
Affiliation(s)
| | - Weiruo Zhang
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Julia A Belk
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Pamela A Basto
- Division of Oncology, Department of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | | | | | - Alborz Bejnood
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Maria M Martins
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Justin A Kenkel
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Ian L Linde
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Sreya Bagchi
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Robert Yuan
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Serena Chang
- Institute for Immunity, Transplantation, and Infection Operations, Stanford University, Palo Alto, CA 94305, USA; Department of Otolaryngology-Head & Neck Surgery, Stanford University, Palo Alto, CA 94305, USA
| | - Matthew H Spitzer
- Department of Microbiology and Immunology and Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Yaron Carmi
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jiahan Cheng
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lorna L Tolentino
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Okmi Choi
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Nancy Wu
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Christina S Kong
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University, Palo Alto, CA 94305, USA
| | - Andrew J Gentles
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - John B Sunwoo
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, Palo Alto, CA 94305, USA; Stanford Cancer Institute, Stanford University, Palo Alto, CA 94305, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University, Palo Alto, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Sylvia K Plevritis
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA; Department of Radiology, Stanford University, Palo Alto, CA 94305, USA
| | - Edgar G Engleman
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University, Palo Alto, CA 94305, USA.
| |
Collapse
|
7
|
Mowat C, Mosley SR, Namdar A, Schiller D, Baker K. Anti-tumor immunity in mismatch repair-deficient colorectal cancers requires type I IFN-driven CCL5 and CXCL10. J Exp Med 2021; 218:e20210108. [PMID: 34297038 PMCID: PMC8313406 DOI: 10.1084/jem.20210108] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/19/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancers (CRCs) deficient in DNA mismatch repair (dMMR) contain abundant CD8+ tumor-infiltrating lymphocytes (TILs) responding to the abundant neoantigens from their unstable genomes. Priming of such tumor-targeted TILs first requires recruitment of CD8+ T cells into the tumors, implying that this is an essential prerequisite of successful dMMR anti-tumor immunity. We have discovered that selective recruitment and activation of systemic CD8+ T cells into dMMR CRCs strictly depend on overexpression of CCL5 and CXCL10 due to endogenous activation of cGAS/STING and type I IFN signaling by damaged DNA. TIL infiltration into orthotopic dMMR CRCs is neoantigen-independent and followed by induction of a resident memory-like phenotype key to the anti-tumor response. CCL5 and CXCL10 could be up-regulated by common chemotherapies in all CRCs, indicating that facilitating CD8+ T cell recruitment underlies their efficacy. Induction of CCL5 and CXCL10 thus represents a tractable therapeutic strategy to induce TIL recruitment into CRCs, where local priming can be maximized even in neoantigen-poor CRCs.
Collapse
Affiliation(s)
- Courtney Mowat
- Department of Oncology, University of Alberta, Edmonton, Canada
| | | | - Afshin Namdar
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - Daniel Schiller
- Department of Surgery, Royal Alexandra Hospital, Edmonton, Canada
| | - Kristi Baker
- Department of Oncology, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| |
Collapse
|
8
|
Do-Thi VA, Lee H, Jeong HJ, Lee JO, Kim YS. Protective and Therapeutic Effects of an IL-15:IL-15Rα-Secreting Cell-Based Cancer Vaccine Using a Baculovirus System. Cancers (Basel) 2021; 13:cancers13164039. [PMID: 34439192 PMCID: PMC8394727 DOI: 10.3390/cancers13164039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
This study reports the use of the BacMam system to deliver and express self-assembling IL-15 and IL-15Rα genes to murine B16F10 melanoma and CT26 colon cancer cells. BacMam-based IL-15 and IL-15Rα were well-expressed and assembled to form the biologically functional IL-15:IL-15Rα complex. Immunization with this IL-15:IL-15Rα cancer vaccine delayed tumor growth in mice by inducing effector memory CD4+ and CD8+ cells and effector NK cells which are tumor-infiltrating. It caused strong antitumor immune responses of CD8+ effector cells in a tumor-antigen specific manner both in vitro and in vivo and significantly attenuated Treg cells which a control virus-infected cancer vaccine could induce. Post-treatment with this cancer vaccine after a live cancer cell injection also prominently delayed the growth of the tumor. Collectively, we demonstrate a vaccine platform consisting of BacMam virus-infected B16F10 or CT26 cancer cells that secrete IL-15:IL-15Rα. This study is the first demonstration of a functionally competent soluble IL-15:IL-15Rα complex-related cancer vaccine using a baculovirus system and advocates that the BacMam system can be used as a secure and rapid method of producing a protective and therapeutic cancer vaccine.
Collapse
Affiliation(s)
- Van Anh Do-Thi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea; (V.A.D.-T.); (H.J.J.)
| | - Hayyoung Lee
- Institute of Biotechnology, Chungnam National University, Daejeon 34134, Korea;
| | - Hye Jin Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea; (V.A.D.-T.); (H.J.J.)
| | - Jie-Oh Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea; (V.A.D.-T.); (H.J.J.)
- Correspondence: (J.-O.L.); (Y.S.K.)
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
- Correspondence: (J.-O.L.); (Y.S.K.)
| |
Collapse
|
9
|
Ampudia-Mesias E, Puerta-Martinez F, Bridges M, Zellmer D, Janeiro A, Strokes M, Sham YY, Taher A, Castro MG, Moertel CL, Pluhar GE, Olin MR. CD200 Immune-Checkpoint Peptide Elicits an Anti-glioma Response Through the DAP10 Signaling Pathway. Neurotherapeutics 2021; 18:1980-1994. [PMID: 33829411 PMCID: PMC8609078 DOI: 10.1007/s13311-021-01038-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
Numerous therapies aimed at driving an effective anti-glioma response have been employed over the last decade; nevertheless, survival outcomes for patients remain dismal. This may be due to the expression of immune-checkpoint ligands such as PD-L1 by glioblastoma (GBM) cells which interact with their respective receptors on tumor-infiltrating effector T cells curtailing the activation of anti-GBM CD8+ T cell-mediated responses. Therefore, a combinatorial regimen to abolish immunosuppression would provide a powerful therapeutic approach against GBM. We developed a peptide ligand (CD200AR-L) that binds an uncharacterized CD200 immune-checkpoint activation receptor (CD200AR). We sought to test the hypothesis that CD200AR-L/CD200AR binding signals via he DAP10&12 pathways through in vitro studies by analyzing transcription, protein, and phosphorylation, and in vivo loss of function studies using inhibitors to select signaling molecules. We report that CD200AR-L/CD200AR binding induces an initial activation of the DAP10&12 pathways followed by a decrease in activity within 30 min, followed by reactivation via a positive feedback loop. Further in vivo studies using DAP10&12KO mice revealed that DAP10, but not DAP12, is required for tumor control. When we combined CD200AR-L with an immune-stimulatory gene therapy, in an intracranial GBM model in vivo, we observed increased median survival, and long-term survivors. These studies are the first to characterize the signaling pathway used by the CD200AR, demonstrating a novel strategy for modulating immune checkpoints for immunotherapy currently being analyzed in a phase I adult trial.
Collapse
Affiliation(s)
| | - Francisco Puerta-Martinez
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Miurel Bridges
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN, 55455, USA
| | - David Zellmer
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Andrew Janeiro
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Matt Strokes
- Cell Signaling Technology, Inc, Danvers, MA, 09123, USA
| | - Yuk Y Sham
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ayman Taher
- Department of Neurosurgery and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Maria G Castro
- Department of Neurosurgery and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Christopher L Moertel
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - G Elizabeth Pluhar
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael R Olin
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
- University of Minnesota, 2-167 Moos Tower, 515 Delaware St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
10
|
Crommentuijn MHW, Schetters STT, Dusoswa SA, Kruijssen LJW, Garcia-Vallejo JJ, van Kooyk Y. Immune involvement of the contralateral hemisphere in a glioblastoma mouse model. J Immunother Cancer 2021; 8:jitc-2019-000323. [PMID: 32303613 PMCID: PMC7204813 DOI: 10.1136/jitc-2019-000323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2020] [Indexed: 12/31/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common and deadliest form of brain cancer in adults. Standard treatment, consisting of surgery and radiochemotherapy, only provides a modest survival benefit and is incapable of combating infiltrating GBM cells in other parts of the brain. New therapies in clinical trials, such as anti-programmed cell death 1 immunotherapy, have so far shown limited success in GBM. Moreover, it is unclear how the growth of GBM suppresses the immune system locally at the site of the brain tumor or if distant sites of tumor cell migration are also involved. Invasive GBM cells in brain tissue beyond the primary tumor limit the use of surgery, thus immunotherapy could be beneficial if activated/suppressed immune cells are present in the contralateral hemisphere. Methods Here, we used a syngeneic orthotopic GL26 GBM mouse model and multiparameter fluorescence-activated cell sorting analysis to study the phenotype of resident and infiltrating immune cells in both the brain tumor hemisphere and contralateral hemisphere. Results We show that lymphoid cells, including tumor antigen-specific CD8+ tumor-infiltrating lymphocytes (TILs) are present in the tumor and are characterized by a tolerogenic phenotype based on high immune checkpoint expression. Massive infiltration of myeloid cells is observed, expressing immune checkpoint ligands, suggesting an immune-dependent coinhibitory axis limiting TIL responses. Surprisingly, these phenotypes are paralleled in the contralateral hemisphere, showing that infiltrating immune cells are also present at distant sites, expressing key immune checkpoints and immune checkpoint ligands. Conclusion Whole-brain analysis indicates active immune involvement throughout the brain, both at the site of the primary tumor and in the contralateral hemisphere. Using the right combination and timing, immune checkpoint blockade could have the potential to activate immune cells at the site of the brain tumor and at distant sites, thereby also targeting diffusely infiltrating GBM cells.
Collapse
Affiliation(s)
- Matheus H W Crommentuijn
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sjoerd T T Schetters
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sophie A Dusoswa
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Laura J W Kruijssen
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Want MY, Tsuji T, Singh PK, Thorne JL, Matsuzaki J, Karasik E, Gillard B, Cortes Gomez E, Koya RC, Lugade A, Odunsi K, Battaglia S. WHSC1/NSD2 regulates immune infiltration in prostate cancer. J Immunother Cancer 2021; 9:jitc-2020-001374. [PMID: 33589522 PMCID: PMC7887377 DOI: 10.1136/jitc-2020-001374] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Immunotherapy in prostate cancer (PCa) lags behind the progresses obtained in other cancer types partially because of its limited immune infiltration. Tumor-resident immune cells have been detected in the prostate, but the regulatory mechanisms that govern tumor infiltration are still poorly understood. To address this gap, we investigated the role of Wolf-Hirschhorn syndrome candidate 1 (WHSC1), a histone methyltransferase enzyme that targets dimethyl and trimethyl H3K36. WHSC1 is known to promote malignant growth and progression in multiple tumors, but its role in the interface between PCa and immune system is unknown. METHODS RNA Sequencing (RNASeq) data from patients with PCa from The Cancer Genome Atlas (TCGA) were collected and divided into top/bottom 30% based on the expression of WHSC1 and disease-free survival was calculated. Publicly available chromatin immunoprecipitation (ChIPSeq) data were obtained from Cistrome and integrated with the available RNASeq data. RNASeq, ATACSeq and methylomic were analyzed using R Bioconductor packages comparing C42 cells with or without stable knockdown on WHSC1. Flow cytometry was used to measure Major Histocompatibility complex (MHC) levels, MHC-bound ovalbumin and tumor infiltration. C57B6 and NOD scid gamma (NSG) mice were subcutaneously grafted with TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) C2 cells and treated with MCTP39 (10 mg/kg); tumor size was monitored over time and curves were compared using permutation analyses. All analyses used a significance threshold of 0.05. RESULTS Leveraging TCGA data, we demonstrated that elevated WHSC1 levels positively correlate with the presence of an immunosuppressive microenvironment. We validated those results in vitro, demonstrating that genetic and pharmacological inhibition of WHSC1 restores antigen presentation. This occurs via an elegant epigenetic regulation of gene expression at the chromatin and DNA methylation levels. In vivo studies in immunocompetent mice also show an increased frequency of CD8+ T cells in tumors from mice treated with WHSC1 inhibitor, supporting the hypothesis that the antitumor effect following WHSC1 inhibition requires a fully functional immune system. CONCLUSIONS This study demonstrates a novel role for WHSC1 in defining immune infiltration in PCa, with significant future implications for the use of immunotherapies in prostate malignancies.
Collapse
Affiliation(s)
- Muzamil Y Want
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Takemasa Tsuji
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Prashant K Singh
- Genomics Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - James L Thorne
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, West Yorkshire, UK
| | - Junko Matsuzaki
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Ellen Karasik
- Department of Pharmacology and Experimental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Bryan Gillard
- Department of Pharmacology and Experimental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Richard C Koya
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Amit Lugade
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Kunle Odunsi
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Sebastiano Battaglia
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
12
|
Kim YC, Hsueh HT, Kim N, Rodriguez J, Leo KT, Rao D, West NE, Hanes J, Suk JS. Strategy to enhance dendritic cell-mediated DNA vaccination in the lung. ADVANCED THERAPEUTICS 2021; 4:2000228. [PMID: 33709020 PMCID: PMC7941873 DOI: 10.1002/adtp.202000228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We here introduce a new paradigm to promote pulmonary DNA vaccination. Specifically, we demonstrate that nanoparticles designed to rapidly penetrate airway mucus (mucus-penetrating particle or MPP) enhance the delivery of inhaled model DNA vaccine (i.e. ovalbumin-expressing plasmids) to pulmonary dendritic cells (DC), leading to robust and durable local and trans-mucosal immunity. In contrast, mucus-impermeable particles were poorly taken up by pulmonary DC following inhalation, despite their superior ability to mediate DC uptake in vitro compared to MPP. In addition to the enhanced immunity achieved in mucosal surfaces, inhaled MPP unexpectedly provided significantly greater systemic immune responses compared to gold-standard approaches applied in the clinic for systemic vaccination, including intradermal injection and intramuscular electroporation. We also showed here that inhaled MPP significantly enhanced the survival of an orthotopic mouse model of aggressive lung cancer compared to the gold-standard approaches. Importantly, we discovered that MPP-mediated pulmonary DNA vaccination induced memory T-cell immunity, particularly the ready-to-act effector memory-biased phenotype, both locally and systemically. The findings here underscore the importance of breaching the airway mucus barrier to facilitate DNA vaccine uptake by pulmonary DC and thus to initiate full-blown immune responses.
Collapse
Affiliation(s)
- Yoo C. Kim
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Henry T. Hsueh
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Namho Kim
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Jason Rodriguez
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Kirby T. Leo
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218
| | - Divya Rao
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Natalie E. West
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218
| | - Jung Soo Suk
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
13
|
Scheetz L, Kadiyala P, Sun X, Son S, Hassani Najafabadi A, Aikins M, Lowenstein PR, Schwendeman A, Castro MG, Moon JJ. Synthetic High-density Lipoprotein Nanodiscs for Personalized Immunotherapy Against Gliomas. Clin Cancer Res 2020; 26:4369-4380. [PMID: 32439701 PMCID: PMC7442596 DOI: 10.1158/1078-0432.ccr-20-0341] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/15/2020] [Accepted: 05/15/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Gliomas are brain tumors with dismal prognoses. The standard-of-care treatments for gliomas include surgical resection, radiation, and temozolomide administration; however, they have been ineffective in providing significant increases in median survival. Antigen-specific cancer vaccines and immune checkpoint blockade may provide promising immunotherapeutic approaches for gliomas. EXPERIMENTAL DESIGN We have developed immunotherapy delivery vehicles based on synthetic high-density lipoprotein (sHDL) loaded with CpG, a Toll-like receptor-9 agonist, and tumor-specific neoantigens to target gliomas and elicit immune-mediated tumor regression. RESULTS We demonstrate that vaccination with neoantigen peptide-sHDL/CpG cocktail in combination with anti-PD-L1 immune checkpoint blocker elicits robust neoantigen-specific T-cell responses against GL261 cells and eliminated established orthotopic GL261 glioma in 33% of mice. Mice remained tumor free upon tumor cell rechallenge in the contralateral hemisphere, indicating the development of immunologic memory. Moreover, in a genetically engineered murine model of orthotopic mutant IDH1 (mIDH1) glioma, sHDL vaccination with mIDH1 neoantigen eliminated glioma in 30% of animals and significantly extended the animal survival, demonstrating the versatility of our approach in multiple glioma models. CONCLUSIONS Overall, our strategy provides a general roadmap for combination immunotherapy against gliomas and other cancer types.
Collapse
Affiliation(s)
- Lindsay Scheetz
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
| | - Xiaoqi Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Sejin Son
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Alireza Hassani Najafabadi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Marisa Aikins
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan.
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan.
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
14
|
Jiang Y, Krishnan N, Zhou J, Chekuri S, Wei X, Kroll AV, Yu CL, Duan Y, Gao W, Fang RH, Zhang L. Engineered Cell-Membrane-Coated Nanoparticles Directly Present Tumor Antigens to Promote Anticancer Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001808. [PMID: 32538494 PMCID: PMC7669572 DOI: 10.1002/adma.202001808] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/13/2020] [Indexed: 05/04/2023]
Abstract
The recent success of immunotherapies has highlighted the power of leveraging the immune system in the fight against cancer. In order for most immune-based therapies to succeed, T cell subsets with the correct tumor-targeting specificities must be mobilized. When such specificities are lacking, providing the immune system with tumor antigen material for processing and presentation is a common strategy for stimulating antigen-specific T cell populations. While straightforward in principle, experience has shown that manipulation of the antigen presentation process can be incredibly complex, necessitating sophisticated strategies that are difficult to translate. Herein, the design of a biomimetic nanoparticle platform is reported that can be used to directly stimulate T cells without the need for professional antigen-presenting cells. The nanoparticles are fabricated using a cell membrane coating derived from cancer cells engineered to express a co-stimulatory marker. Combined with the peptide epitopes naturally presented on the membrane surface, the final formulation contains the necessary signals to promote tumor antigen-specific immune responses, priming T cells that can be used to control tumor growth. The reported approach represents an emerging strategy that can be used to develop multiantigenic, personalized cancer immunotherapies.
Collapse
Affiliation(s)
- Yao Jiang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sanam Chekuri
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xiaoli Wei
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ashley V Kroll
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chun Lai Yu
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yaou Duan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
15
|
Jiang Y, Krishnan N, Zhou J, Chekuri S, Wei X, Kroll AV, Yu CL, Duan Y, Gao W, Fang RH, Zhang L. Engineered Cell-Membrane-Coated Nanoparticles Directly Present Tumor Antigens to Promote Anticancer Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020. [PMID: 32538494 DOI: 10.1002/adma.v32.3010.1002/adma.202001808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The recent success of immunotherapies has highlighted the power of leveraging the immune system in the fight against cancer. In order for most immune-based therapies to succeed, T cell subsets with the correct tumor-targeting specificities must be mobilized. When such specificities are lacking, providing the immune system with tumor antigen material for processing and presentation is a common strategy for stimulating antigen-specific T cell populations. While straightforward in principle, experience has shown that manipulation of the antigen presentation process can be incredibly complex, necessitating sophisticated strategies that are difficult to translate. Herein, the design of a biomimetic nanoparticle platform is reported that can be used to directly stimulate T cells without the need for professional antigen-presenting cells. The nanoparticles are fabricated using a cell membrane coating derived from cancer cells engineered to express a co-stimulatory marker. Combined with the peptide epitopes naturally presented on the membrane surface, the final formulation contains the necessary signals to promote tumor antigen-specific immune responses, priming T cells that can be used to control tumor growth. The reported approach represents an emerging strategy that can be used to develop multiantigenic, personalized cancer immunotherapies.
Collapse
Affiliation(s)
- Yao Jiang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sanam Chekuri
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xiaoli Wei
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ashley V Kroll
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chun Lai Yu
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yaou Duan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
16
|
Kim YC, Hsueh HT, Kim N, Rodriguez J, Leo KT, Rao D, West NE, Hanes J, Suk JS. Strategy to Enhance Dendritic Cell‐Mediated DNA Vaccination in the Lung. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yoo C. Kim
- Center for Nanomedicine at the Wilmer Eye Institute Johns Hopkins University School of Medicine Baltimore MD 21231 USA
- Department of Ophthalmology Johns Hopkins University School of Medicine Baltimore MD 21231 USA
| | - Henry T. Hsueh
- Center for Nanomedicine at the Wilmer Eye Institute Johns Hopkins University School of Medicine Baltimore MD 21231 USA
- Department of Chemical & Biomolecular Engineering Johns Hopkins University Baltimore MD 21218 USA
| | - Namho Kim
- Center for Nanomedicine at the Wilmer Eye Institute Johns Hopkins University School of Medicine Baltimore MD 21231 USA
- Department of Chemical & Biomolecular Engineering Johns Hopkins University Baltimore MD 21218 USA
| | - Jason Rodriguez
- Center for Nanomedicine at the Wilmer Eye Institute Johns Hopkins University School of Medicine Baltimore MD 21231 USA
| | - Kirby T. Leo
- Center for Nanomedicine at the Wilmer Eye Institute Johns Hopkins University School of Medicine Baltimore MD 21231 USA
- Department of Biomedical Engineering Johns Hopkins University Baltimore MD 21218 USA
| | - Divya Rao
- Center for Nanomedicine at the Wilmer Eye Institute Johns Hopkins University School of Medicine Baltimore MD 21231 USA
- Department of Chemical & Biomolecular Engineering Johns Hopkins University Baltimore MD 21218 USA
| | - Natalie E. West
- Division of Pulmonary and Critical Care Medicine Department of Medicine Johns Hopkins University School of Medicine Baltimore MD 21287 USA
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute Johns Hopkins University School of Medicine Baltimore MD 21231 USA
- Department of Ophthalmology Johns Hopkins University School of Medicine Baltimore MD 21231 USA
- Department of Chemical & Biomolecular Engineering Johns Hopkins University Baltimore MD 21218 USA
- Department of Biomedical Engineering Johns Hopkins University Baltimore MD 21218 USA
| | - Jung Soo Suk
- Center for Nanomedicine at the Wilmer Eye Institute Johns Hopkins University School of Medicine Baltimore MD 21231 USA
- Department of Ophthalmology Johns Hopkins University School of Medicine Baltimore MD 21231 USA
- Department of Chemical & Biomolecular Engineering Johns Hopkins University Baltimore MD 21218 USA
| |
Collapse
|
17
|
Mendez F, Kadiyala P, Nunez FJ, Carney S, Nunez FM, Gauss JC, Ravindran R, Pawar S, Edwards M, Garcia-Fabiani MB, Haase S, Lowenstein PR, Castro MG. Therapeutic Efficacy of Immune Stimulatory Thymidine Kinase and fms-like Tyrosine Kinase 3 Ligand (TK/Flt3L) Gene Therapy in a Mouse Model of High-Grade Brainstem Glioma. Clin Cancer Res 2020; 26:4080-4092. [PMID: 32332014 DOI: 10.1158/1078-0432.ccr-19-3714] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/19/2020] [Accepted: 04/21/2020] [Indexed: 01/05/2023]
Abstract
PURPOSE Diffuse intrinsic pontine glioma (DIPG) bears a dismal prognosis. A genetically engineered brainstem glioma model harboring the recurrent DIPG mutation, Activin A receptor type I (ACVR1)-G328V (mACVR1), was developed for testing an immune-stimulatory gene therapy. EXPERIMENTAL DESIGN We utilized the Sleeping Beauty transposase system to generate an endogenous mouse model of mACVR1 brainstem glioma. Histology was used to characterize and validate the model. We performed RNA-sequencing analysis on neurospheres harboring mACVR1. mACVR1 neurospheres were implanted into the pons of immune-competent mice to test the therapeutic efficacy and toxicity of immune-stimulatory gene therapy using adenoviruses expressing thymidine kinase (TK) and fms-like tyrosine kinase 3 ligand (Flt3L). mACVR1 neurospheres expressing the surrogate tumor antigen ovalbumin were generated to investigate whether TK/Flt3L treatment induces the recruitment of tumor antigen-specific T cells. RESULTS Histologic analysis of mACVR1 tumors indicates that they are localized in the brainstem and have increased downstream signaling of bone morphogenetic pathway as demonstrated by increased phospho-smad1/5 and Id1 levels. Transcriptome analysis of mACVR1 neurosphere identified an increase in the TGFβ signaling pathway and the regulation of cell differentiation. Adenoviral delivery of TK/Flt3L in mice bearing brainstem gliomas resulted in antitumor immunity, recruitment of antitumor-specific T cells, and increased median survival (MS). CONCLUSIONS This study provides insights into the phenotype and function of the tumor immune microenvironment in a mouse model of brainstem glioma harboring mACVR1. Immune-stimulatory gene therapy targeting the hosts' antitumor immune response inhibits tumor progression and increases MS of mice bearing mACVR1 tumors.
Collapse
Affiliation(s)
- Flor Mendez
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Padma Kadiyala
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Felipe J Nunez
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Stephen Carney
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Fernando M Nunez
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jessica C Gauss
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Ramya Ravindran
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Sheeba Pawar
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | | | - Maria Belen Garcia-Fabiani
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Santiago Haase
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Pedro R Lowenstein
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria G Castro
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan. .,Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
18
|
Blagih J, Zani F, Chakravarty P, Hennequart M, Pilley S, Hobor S, Hock AK, Walton JB, Morton JP, Gronroos E, Mason S, Yang M, McNeish I, Swanton C, Blyth K, Vousden KH. Cancer-Specific Loss of p53 Leads to a Modulation of Myeloid and T Cell Responses. Cell Rep 2020; 30:481-496.e6. [PMID: 31940491 PMCID: PMC6963783 DOI: 10.1016/j.celrep.2019.12.028] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/19/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Loss of p53 function contributes to the development of many cancers. While cell-autonomous consequences of p53 mutation have been studied extensively, the role of p53 in regulating the anti-tumor immune response is still poorly understood. Here, we show that loss of p53 in cancer cells modulates the tumor-immune landscape to circumvent immune destruction. Deletion of p53 promotes the recruitment and instruction of suppressive myeloid CD11b+ cells, in part through increased expression of CXCR3/CCR2-associated chemokines and macrophage colony-stimulating factor (M-CSF), and attenuates the CD4+ T helper 1 (Th1) and CD8+ T cell responses in vivo. p53-null tumors also show an accumulation of suppressive regulatory T (Treg) cells. Finally, we show that two key drivers of tumorigenesis, activation of KRAS and deletion of p53, cooperate to promote immune tolerance.
Collapse
Affiliation(s)
- Julianna Blagih
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Fabio Zani
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Marc Hennequart
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Steven Pilley
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Andreas K Hock
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK; Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge CB4 0WG, UK
| | - Josephine B Walton
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Eva Gronroos
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Susan Mason
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Ming Yang
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Iain McNeish
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK; Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Charles Swanton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Karen H Vousden
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
19
|
Wang Y, Lin YX, Wang J, Qiao SL, Liu YY, Dong WQ, Wang J, An HW, Yang C, Mamuti M, Wang L, Huang B, Wang H. In Situ Manipulation of Dendritic Cells by an Autophagy-Regulative Nanoactivator Enables Effective Cancer Immunotherapy. ACS NANO 2019; 13:7568-7577. [PMID: 31260255 DOI: 10.1021/acsnano.9b00143] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Cellular immunotherapeutics aim to employ immune cells as anticancer agents. Ex vivo engineering of dendritic cells (DCs), the initial role of an immune response, benefits tumor elimination by boosting specific antitumor responses. However, directly activating DCs in vivo is less efficient and therefore quite challenging. Here, we designed a nanoactivator that manufactures DCs through autophagy upregulating in vivo directly, which lead to a high-efficiency antigen presention of DCs and antigen-specific T cells generation. The nanoactivator significantly enhances tumor antigen cross-presentation and subsequent T cell priming. Consequently, in vivo experiments show that the nanoactivators successfully reduce tumor growth and prolong murine survival. Taken together, these results indicate in situ DCs manipulation by autophagy induction is a promising strategy for antigen presentation enhancement and tumor elimination.
Collapse
Affiliation(s)
- Yi Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Yao-Xin Lin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P.R. China
- Center for Nanomedicine and Department of Anesthesiology , Brigham and Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Jie Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Sheng-Lin Qiao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Yu-Ying Liu
- National Key Laboratory of Medical Molecular Biology and Department of Immunology , Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences , Beijing 100005 , P.R. China
| | - Wen-Qian Dong
- National Key Laboratory of Medical Molecular Biology and Department of Immunology , Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences , Beijing 100005 , P.R. China
| | - Junqing Wang
- Center for Nanomedicine and Department of Anesthesiology , Brigham and Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P.R. China
- Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100149 , P.R. China
| | - Chao Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P.R. China
| | - Muhetaerjiang Mamuti
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P.R. China
| | - Bo Huang
- National Key Laboratory of Medical Molecular Biology and Department of Immunology , Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences , Beijing 100005 , P.R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| |
Collapse
|
20
|
Priego N, Valiente M. The Potential of Astrocytes as Immune Modulators in Brain Tumors. Front Immunol 2019; 10:1314. [PMID: 31244853 PMCID: PMC6579886 DOI: 10.3389/fimmu.2019.01314] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
The neuro-immune axis has emerged as a key aspect to understand the normal function of the Central Nervous System (CNS) as well as the pathophysiology of many brain disorders. As such, it may represent a promising source for novel therapeutic targets. Glial cells, and in particular the extensively studied microglia, play important roles in brain disorders. Astrocytes, in their reactive state, have been shown to positively and negatively modulate the progression of multiple CNS disorders. These seemingly opposing effects, might stem from their underlying heterogeneity, an aspect that has recently come to light. In this article we will discuss the link between reactive astrocytes and the neuro-immune axis with a perspective on their potential importance in brain tumors. Based on the gained knowledge from studies in other CNS disorders, reactive astrocytes are undoubtfully emerging as a key component of the neuro-immune axis, with ability to modulate both the innate and adaptive branches of the immune system. Lastly, we will discuss how we can exploit our improved understanding of the basic biology of astrocytes to further enhance the efficacy of emerging immune-based therapies in primary brain tumors and brain metastasis.
Collapse
Affiliation(s)
- Neibla Priego
- Brain Metastasis Group, Molecular Oncology Programme, National Cancer Research Center (CNIO), Madrid, Spain
| | - Manuel Valiente
- Brain Metastasis Group, Molecular Oncology Programme, National Cancer Research Center (CNIO), Madrid, Spain
| |
Collapse
|
21
|
Alghamri MS, Núñez FJ, Kamran N, Carney S, Altshuler D, Lowenstein PR, Castro MG. Functional characterization of tumor antigen-specific T-cells isolated from the tumor microenvironment of sleeping beauty induced murine glioma models. Methods Enzymol 2019; 631:91-106. [PMID: 31948569 PMCID: PMC7021207 DOI: 10.1016/bs.mie.2019.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2024]
Abstract
Diffuse Gliomas represent 80% of brain tumors with an average survival of the most aggressive form glioblastoma (GBM) 15-22 months from the time of diagnosis. The current standard of care includes tumor resection, chemotherapy and radiation, nevertheless, the incidence of recurrence remains high and there is a critical need for developing new therapeutic strategies. T-cell mediated immunotherapy that triggers an anti-tumor T cell-mediated memory response is a promising approach since it will not only attack the primary tumor but also prevent recurrence. Multiple immunotherapeutic strategies against glioma are currently being tested in clinical trials. We have developed an immune-mediated gene therapy (Thymidine kinase plus Fms-like tyrosine kinase 3 ligand: TK/Flt3L) which induces a robust anti-tumor T cell response leading to tumor regression, long-term survival and immunological memory in GBM models. Efficacy of the anti-glioma T cell therapy is determined by anti-tumor specific effector T cells. Therefore, assessing effector T cell activation status and function are critical readouts for determining the effectiveness of the therapy. Here, we detail methodologies to evaluate tumor specific T-cell responses using a genetically engineered Sleeping Beauty transposase-mediated glioma model. We first describe the glioma model and the generation of neurospheres (NS) that express the surrogate antigen cOVA. Then, we describe functional assays to determine anti-tumor T-cell response.
Collapse
Affiliation(s)
- Mahmoud S Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Felipe J Núñez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Neha Kamran
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephen Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - David Altshuler
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
22
|
Tsukamoto H, Kozakai S, Kobayashi Y, Takanashi R, Aoyagi T, Numasaki M, Ohta S, Tomioka Y. Impaired antigen-specific lymphocyte priming in mice after Toll-like receptor 4 activation via induction of monocytic myeloid-derived suppressor cells. Eur J Immunol 2019; 49:546-563. [PMID: 30671932 DOI: 10.1002/eji.201847805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/22/2022]
Abstract
In sepsis, the pathology involves a shift from a proinflammatory state toward an immunosuppressive phase. We previously showed that an agonistic anti-TLR4 antibody induced long-term endotoxin tolerance and suppressed antigen-specific secondary IgG production when primed prior to immunization with antigen. These findings led us to speculate that TLR4-induced innate tolerance due to primary infection causes an immunosuppressive pathology in sepsis. Therefore, the mechanism underlying impaired antigen-specific humoral immunity by the TLR4 antibody was investigated. We showed, in a mouse model, that primary antigen-specific IgG responses were impaired in TLR4 antibody-induced tolerized mice, which was the result of reduced numbers of antigen-specific GC B cells and plasma cells. Ovalbumin-specific CD4 and CD8 T-cell responses were impaired in TLR4 antibody-injected OT-I and -II transgenic mice ex vivo. Adoptive transfer studies demonstrated suppression of OVA-specific CD4 and CD8 T-cell responses by the TLR4 antibody in vivo. The TLR4 antibody induced Gr1+ CD11b+ myeloid-derived suppressor cell (MDSC) expansion with suppression of T-cell activation. Monocytic MDSCs were more suppressive and exhibited higher expression of PD-L1 and inducible nitric oxidase compared with granulocytic MDSCs. In conclusion, immune tolerance conferred by TLR4 activation induces the expansion of monocytic MDSCs, which impairs antigen-specific T-cell priming and IgG production.
Collapse
Affiliation(s)
- Hiroki Tsukamoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Sendai, Japan
| | - Sao Kozakai
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Sendai, Japan
| | - Yohei Kobayashi
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Sendai, Japan
| | - Risako Takanashi
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Sendai, Japan
| | - Takuya Aoyagi
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Sendai, Japan
| | - Muneo Numasaki
- Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Shoichiro Ohta
- Department of Medical Technology and Sciences School of Health Sciences at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, Japan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Sendai, Japan
| |
Collapse
|
23
|
Díaz LR, Saavedra-López E, Romarate L, Mitxitorena I, Casanova PV, Cribaro GP, Gallego JM, Pérez-Vallés A, Forteza-Vila J, Alfaro-Cervello C, García-Verdugo JM, Barcia C, Barcia C. Imbalance of immunological synapse-kinapse states reflects tumor escape to immunity in glioblastoma. JCI Insight 2018; 3:120757. [PMID: 30232280 DOI: 10.1172/jci.insight.120757] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/17/2018] [Indexed: 12/19/2022] Open
Abstract
Since the proper activation of T cells requires the physical interaction with target cells through the formation of immunological synapses (IS), an alteration at this level could be a reason why tumors escape the immune response. As part of their life cycle, it is thought that T cells alternate between a static phase, the IS, and a dynamic phase, the immunological kinapse (IK), depending on high or low antigen sensing. Our investigation performed in tissue samples of human glioma shows that T cells are able to establish synapsing interactions not only with glioma tumorigenic cells, but also with stromal myeloid cells. Particularly, the IS displaying a T cell receptor-rich (TCR-rich) central supramolecular activation cluster (cSMAC) is preferentially established with stromal cells, as opposed to malignant cells. Conversely, T cells in the malignant areas showed distinct morphometric parameters compared with nonneoplastic tissue - the former characterized by an elongated shape, well-suited to kinaptic dynamics. Importantly, high-resolution 3-dimensional analyses demonstrated the existence of bona-fide IK preferentially arranged in malignant areas of the tumor. This imbalance of IS/IK states between these 2 microenvironments reveals the low antigenic sensing of T cells when patrolling tumorigenic cells and reflects the immunoevasive environment of the tumor.
Collapse
Affiliation(s)
- Laura R Díaz
- Department of Biochemistry and Molecular Biology, School of Medicine, and.,Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Elena Saavedra-López
- Department of Biochemistry and Molecular Biology, School of Medicine, and.,Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Leire Romarate
- Department of Biochemistry and Molecular Biology, School of Medicine, and.,Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Izaskun Mitxitorena
- Department of Biochemistry and Molecular Biology, School of Medicine, and.,Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Paola V Casanova
- Department of Biochemistry and Molecular Biology, School of Medicine, and.,Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - George P Cribaro
- Department of Biochemistry and Molecular Biology, School of Medicine, and.,Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | | | - Ana Pérez-Vallés
- Department of Pathology, Valencia General Hospital, Valencia, Spain
| | - Jerónimo Forteza-Vila
- Unidad Mixta CIPF/UCV de Investigación Oncológica, Instituto Valenciano de Patología, Universidad Católica de Valencia, Valencia, Spain
| | - Clara Alfaro-Cervello
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universitat de València, CIBERNED, Valencia, Spain
| | - José M García-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universitat de València, CIBERNED, Valencia, Spain
| | | | - Carlos Barcia
- Department of Biochemistry and Molecular Biology, School of Medicine, and.,Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
24
|
Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat Immunol 2017; 18:1332-1341. [PMID: 29083399 DOI: 10.1038/ni.3868] [Citation(s) in RCA: 540] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/05/2017] [Indexed: 12/13/2022]
Abstract
Live regulatory T cells (Treg cells) suppress antitumor immunity, but how Treg cells behave in the metabolically abnormal tumor microenvironment remains unknown. Here we show that tumor Treg cells undergo apoptosis, and such apoptotic Treg cells abolish spontaneous and PD-L1-blockade-mediated antitumor T cell immunity. Biochemical and functional analyses show that adenosine, but not typical suppressive factors such as PD-L1, CTLA-4, TGF-β, IL-35, and IL-10, contributes to apoptotic Treg-cell-mediated immunosuppression. Mechanistically, apoptotic Treg cells release and convert a large amount of ATP to adenosine via CD39 and CD73, and mediate immunosuppression via the adenosine and A2A pathways. Apoptosis in Treg cells is attributed to their weak NRF2-associated antioxidant system and high vulnerability to free oxygen species in the tumor microenvironment. Thus, the data support a model wherein tumor Treg cells sustain and amplify their suppressor capacity through inadvertent death via oxidative stress. This work highlights the oxidative pathway as a metabolic checkpoint that controls Treg cell behavior and affects the efficacy of therapeutics targeting cancer checkpoints.
Collapse
|
25
|
Uchida S, Yoshinaga N, Yanagihara K, Yuba E, Kataoka K, Itaka K. Designing immunostimulatory double stranded messenger RNA with maintained translational activity through hybridization with poly A sequences for effective vaccination. Biomaterials 2017; 150:162-170. [PMID: 29031816 DOI: 10.1016/j.biomaterials.2017.09.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022]
Abstract
Messenger (m)RNA vaccines require a safe and potent immunostimulatory adjuvant. In this study, we introduced immunostimulatory properties directly into mRNA molecules by hybridizing them with complementary RNA to create highly immunogenic double stranded (ds)RNAs. These dsRNA formulations, comprised entirely of RNA, are expected to be safe and highly efficient due to antigen expression and immunostimulation occurring simultaneously in the same antigen presenting cells. In this strategy, design of dsRNA is important. Indeed, hybridization using full-length antisense (as)RNA drastically reduced translational efficiency. In contrast, by limiting the hybridized portion to the mRNA poly A region, efficient translation and intense immunostimulation was simultaneously obtained. The immune response to the poly U-hybridized mRNAs (mRNA:pU) was mediated through Toll-like receptor (TLR)-3 and retinoic acid-inducible gene (RIG)-I. We also demonstrated that mRNA:pU activation of mouse and human dendritic cells was significantly more effective than activation using single stranded mRNA. In vivo mouse immunization experiments using ovalbumin showed that mRNA:pU significantly enhanced the intensity of specific cellular and humoral immune responses, compared to single stranded mRNA. Our novel mRNA:pU formulation can be delivered using a variety of mRNA carriers depending on the purpose and delivery route, providing a versatile platform for improving mRNA vaccine efficiency.
Collapse
Affiliation(s)
- Satoshi Uchida
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan; Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan.
| | - Naoto Yoshinaga
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan; Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan
| | - Kayoko Yanagihara
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Policy Alternatives Research Institute, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Keiji Itaka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda, Tokyo 101-0062, Japan.
| |
Collapse
|
26
|
Bassoy EY, Kasahara A, Chiusolo V, Jacquemin G, Boydell E, Zamorano S, Riccadonna C, Pellegatta S, Hulo N, Dutoit V, Derouazi M, Dietrich PY, Walker PR, Martinvalet D. ER-mitochondria contacts control surface glycan expression and sensitivity to killer lymphocytes in glioma stem-like cells. EMBO J 2017; 36:1493-1512. [PMID: 28283580 DOI: 10.15252/embj.201695429] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma is a highly heterogeneous aggressive primary brain tumor, with the glioma stem-like cells (GSC) being more sensitive to cytotoxic lymphocyte-mediated killing than glioma differentiated cells (GDC). However, the mechanism behind this higher sensitivity is unclear. Here, we found that the mitochondrial morphology of GSCs modulates the ER-mitochondria contacts that regulate the surface expression of sialylated glycans and their recognition by cytotoxic T lymphocytes and natural killer cells. GSCs displayed diminished ER-mitochondria contacts compared to GDCs. Forced ER-mitochondria contacts in GSCs increased their cell surface expression of sialylated glycans and reduced their susceptibility to cytotoxic lymphocytes. Therefore, mitochondrial morphology and dynamism dictate the ER-mitochondria contacts in order to regulate the surface expression of certain glycans and thus play a role in GSC recognition and elimination by immune effector cells. Targeting the mitochondrial morphology, dynamism, and contacts with the ER could be an innovative strategy to deplete the cancer stem cell compartment to successfully treat glioblastoma.
Collapse
Affiliation(s)
- Esen Yonca Bassoy
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Atsuko Kasahara
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Valentina Chiusolo
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Guillaume Jacquemin
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Emma Boydell
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Sebastian Zamorano
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Cristina Riccadonna
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Serena Pellegatta
- Department of Molecular Neuro-Oncology, Fondazione I.R.C.C.S. Istituto Neurologico C. Besta, Milan, Italy
| | - Nicolas Hulo
- Biomathematical and Biostatistical Analysis, Institute of Genetics and Genomics University of Geneva, Geneva, Switzerland
| | - Valérie Dutoit
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Madiha Derouazi
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Amal Therapeutics, Geneva, Switzerland
| | - Pierre Yves Dietrich
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Paul R Walker
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Denis Martinvalet
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
27
|
Abstract
In this chapter, we describe the technical details to visualize and analyze effector immunological synapses between T cells and astrocytes in the brain with high-resolution confocal imaging. This procedure is critical for the optimal and even penetration of labeling antibodies within the nerve tissue to obtain accurate staining and allow a uniform three-dimensional analysis of the T cell-astrocyte interactions. We emphasize here the comprehensive exploration of the tissue and analysis with confocal microscope as well as the display of microanatomical details of the three-dimensional reconstruction for interface visualization (including peripheral and central supramolecular activation clusters, effector molecules, and other organelles such as microtubule organizing centers (MTOCs) and Golgi apparatus).
Collapse
|
28
|
Kamran N, Kadiyala P, Saxena M, Candolfi M, Li Y, Moreno-Ayala MA, Raja N, Shah D, Lowenstein PR, Castro MG. Immunosuppressive Myeloid Cells' Blockade in the Glioma Microenvironment Enhances the Efficacy of Immune-Stimulatory Gene Therapy. Mol Ther 2017; 25:232-248. [PMID: 28129117 DOI: 10.1016/j.ymthe.2016.10.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 12/25/2022] Open
Abstract
Survival of glioma (GBM) patients treated with the current standard of care remains dismal. Immunotherapeutic approaches that harness the cytotoxic and memory potential of the host immune system have shown great benefit in other cancers. GBMs have developed multiple strategies, including the accumulation of myeloid-derived suppressor cells (MDSCs) to induce immunosuppression. It is therefore imperative to develop multipronged approaches when aiming to generate a robust anti-tumor immune response. Herein, we tested whether combining MDSC depletion or checkpoint blockade would augment the efficacy of immune-stimulatory herpes simplex type-I thymidine kinase (TK) plus Fms-like tyrosine kinase ligand (Flt3L)-mediated immune stimulatory gene therapy. Our results show that MDSCs constitute >40% of the tumor-infiltrating immune cells. These cells express IL-4Rα, inducible nitric oxide synthase (iNOS), arginase, programmed death ligand 1 (PDL1), and CD80, molecules that are critically involved in antigen-specific T cell suppression. Depletion of MDSCs strongly enhanced the TK/Flt3L gene therapy-induced tumor-specific CD8 T cell response, which lead to increased median survival and percentage of long-term survivors. Also, combining PDL1 or CTLA-4 immune checkpoint blockade greatly improved the efficacy of TK/Flt3L gene therapy. Our results, therefore, indicate that blocking MDSC-mediated immunosuppression holds great promise for increasing the efficacy of gene therapy-mediated immunotherapies for GBM.
Collapse
Affiliation(s)
- Neha Kamran
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA; Department of Cell and Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| | - Padma Kadiyala
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA; Department of Cell and Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| | - Meghna Saxena
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA; Department of Cell and Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, 1053 Buenos Aires, Argentina
| | - Youping Li
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA; Department of Cell and Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| | - Mariela A Moreno-Ayala
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA; Department of Cell and Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA; Instituto de Investigaciones Biomédicas (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, 1053 Buenos Aires, Argentina
| | - Nicholas Raja
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA; Department of Cell and Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| | - Diana Shah
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA; Department of Cell and Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA; Department of Cell and Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| | - Maria G Castro
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA; Department of Cell and Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA.
| |
Collapse
|
29
|
Daley D, Zambirinis CP, Seifert L, Akkad N, Mohan N, Werba G, Barilla R, Torres-Hernandez A, Hundeyin M, Mani VRK, Avanzi A, Tippens D, Narayanan R, Jang JE, Newman E, Pillarisetty VG, Dustin ML, Bar-Sagi D, Hajdu C, Miller G. γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation. Cell 2016; 166:1485-1499.e15. [PMID: 27569912 PMCID: PMC5017923 DOI: 10.1016/j.cell.2016.07.046] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 02/16/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023]
Abstract
Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4(+) and CD8(+) T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk.
Collapse
Affiliation(s)
- Donnele Daley
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA; Department of Cell Biology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Constantinos Pantelis Zambirinis
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA; Department of Cell Biology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Lena Seifert
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA; Department of Cell Biology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Neha Akkad
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Navyatha Mohan
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Gregor Werba
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Rocky Barilla
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Alejandro Torres-Hernandez
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Mautin Hundeyin
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Vishnu Raj Kumar Mani
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Antonina Avanzi
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Daniel Tippens
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Rajkishen Narayanan
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Jung-Eun Jang
- Department of Biochemistry, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Elliot Newman
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Venu Gopal Pillarisetty
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Michael Loran Dustin
- Department of Pathology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA; The Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington Oxford OX3 7FY, UK
| | - Dafna Bar-Sagi
- Department of Biochemistry, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Cristina Hajdu
- Department of Pathology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - George Miller
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA; Department of Cell Biology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA.
| |
Collapse
|
30
|
Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc Natl Acad Sci U S A 2016; 113:E4133-42. [PMID: 27382155 DOI: 10.1073/pnas.1600299113] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vaccines have had broad medical impact, but existing vaccine technologies and production methods are limited in their ability to respond rapidly to evolving and emerging pathogens, or sudden outbreaks. Here, we develop a rapid-response, fully synthetic, single-dose, adjuvant-free dendrimer nanoparticle vaccine platform wherein antigens are encoded by encapsulated mRNA replicons. To our knowledge, this system is the first capable of generating protective immunity against a broad spectrum of lethal pathogen challenges, including H1N1 influenza, Toxoplasma gondii, and Ebola virus. The vaccine can be formed with multiple antigen-expressing replicons, and is capable of eliciting both CD8(+) T-cell and antibody responses. The ability to generate viable, contaminant-free vaccines within days, to single or multiple antigens, may have broad utility for a range of diseases.
Collapse
|
31
|
Glioma Stemlike Cells Enhance the Killing of Glioma Differentiated Cells by Cytotoxic Lymphocytes. PLoS One 2016; 11:e0153433. [PMID: 27073883 PMCID: PMC4830556 DOI: 10.1371/journal.pone.0153433] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/29/2016] [Indexed: 01/16/2023] Open
Abstract
Glioblastoma multiforme, the most aggressive primary brain tumor, is maintained by a subpopulation of glioma cells with self-renewal properties that are able to recapitulate the entire tumor even after surgical resection or chemo-radiotherapy. This typifies the vast heterogeneity of this tumor with the two extremes represented on one end by the glioma stemlike cells (GSC) and on the other by the glioma differentiated cells (GDC). Interestingly, GSC are more sensitive to immune effector cells than the GDC counterpart. However, how GSC impact on the killing on the GDC and vice versa is not clear. Using a newly developed cytotoxicity assay allowing to simultaneously monitor cytotoxic lymphocytes-mediated killing of GSC and GDC, we found that although GSC were always better killed and that their presence enhanced the killing of GDC. In contrast, an excess of GDC had a mild protective effect on the killing of GSC, depending on the CTL type. Overall, our results suggest that during combination therapy, immunotherapy would be the most effective after prior treatment with conventional therapies.
Collapse
|
32
|
Renner DN, Jin F, Litterman AJ, Balgeman AJ, Hanson LM, Gamez JD, Chae M, Carlson BL, Sarkaria JN, Parney IF, Ohlfest JR, Pirko I, Pavelko KD, Johnson AJ. Effective Treatment of Established GL261 Murine Gliomas through Picornavirus Vaccination-Enhanced Tumor Antigen-Specific CD8+ T Cell Responses. PLoS One 2015; 10:e0125565. [PMID: 25933216 PMCID: PMC4416934 DOI: 10.1371/journal.pone.0125565] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/25/2015] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma (GBM) is among the most invasive and lethal of cancers, frequently infiltrating surrounding healthy tissue and giving rise to rapid recurrence. It is therefore critical to establish experimental model systems and develop therapeutic approaches that enhance anti-tumor immunity. In the current study, we have employed a newly developed murine glioma model to assess the efficacy of a novel picornavirus vaccination approach for the treatment of established tumors. The GL261-Quad system is a variation of the GL261 syngeneic glioma that has been engineered to expresses model T cell epitopes including OVA257-264. MRI revealed that both GL261 and GL261-Quad tumors display characteristic features of human gliomas such as heterogeneous gadolinium leakage and larger T2 weighted volumes. Analysis of brain-infiltrating immune cells demonstrated that GL261-Quad gliomas generate detectable CD8+ T cell responses toward the tumor-specific Kb:OVA257-264 antigen. Enhancing this response via a single intracranial or peripheral vaccination with picornavirus expressing the OVA257-264 antigen increased anti-tumor CD8+ T cells infiltrating the brain, attenuated progression of established tumors, and extended survival of treated mice. Importantly, the efficacy of the picornavirus vaccination is dependent on functional cytotoxic activity of CD8+ T cells, as the beneficial response was completely abrogated in mice lacking perforin expression. Therefore, we have developed a novel system for evaluating mechanisms of anti-tumor immunity in vivo, incorporating the GL261-Quad model, 3D volumetric MRI, and picornavirus vaccination to enhance tumor-specific cytotoxic CD8+ T cell responses and track their effectiveness at eradicating established gliomas in vivo.
Collapse
Affiliation(s)
- Danielle N. Renner
- Neurobiology of Disease Graduate Program, Mayo Clinic, Rochester, MN, United States of America
- Department of Immunology, Mayo Clinic, Rochester, MN, United States of America
| | - Fang Jin
- Department of Immunology, Mayo Clinic, Rochester, MN, United States of America
| | - Adam J. Litterman
- Department of Neurosurgery, University of Minnesota, Minneapolis MN, United States of America
| | - Alexis J. Balgeman
- Summer Undergraduate Research Fellowship, Mayo Clinic, Rochester, MN, United States of America
| | - Lisa M. Hanson
- Department of Immunology, Mayo Clinic, Rochester, MN, United States of America
| | - Jeffrey D. Gamez
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Michael Chae
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States of America
| | - Brett L. Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States of America
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States of America
| | - Ian F. Parney
- Department of Immunology, Mayo Clinic, Rochester, MN, United States of America
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States of America
| | - John R. Ohlfest
- Department of Neurosurgery, University of Minnesota, Minneapolis MN, United States of America
| | - Istvan Pirko
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Kevin D. Pavelko
- Department of Immunology, Mayo Clinic, Rochester, MN, United States of America
- * E-mail: (AJJ); (KDP)
| | - Aaron J. Johnson
- Department of Immunology, Mayo Clinic, Rochester, MN, United States of America
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
- * E-mail: (AJJ); (KDP)
| |
Collapse
|
33
|
Abdelaal HM, Kim HO, Wagstaff R, Sawahata R, Southern PJ, Skinner PJ. Comparison of Vibratome and Compresstome sectioning of fresh primate lymphoid and genital tissues for in situ MHC-tetramer and immunofluorescence staining. Biol Proced Online 2015; 17:2. [PMID: 25657614 PMCID: PMC4318225 DOI: 10.1186/s12575-014-0012-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/29/2014] [Indexed: 11/10/2022] Open
Abstract
Background For decades, the Vibratome served as a standard laboratory resource for sectioning fresh and fixed tissues. In skilled hands, high quality and consistent fresh unfixed tissue sections can be produced using a Vibratome but the sectioning procedure is extremely time consuming. In this study, we conducted a systematic comparison between the Vibratome and a new approach to section fresh unfixed tissues using a Compresstome. We used a Vibratome and a Compresstome to cut fresh unfixed lymphoid and genital non-human primate tissues then used in situ tetramer staining to label virus-specific CD8 T cells and immunofluorescent counter-staining to label B and T cells. We compared the Vibratome and Compresstome in five different sectioning parameters: speed of cutting, chilling capability, specimen stabilization, size of section, and section/staining quality. Results Overall, the Compresstome and Vibratome both produced high quality sections from unfixed spleen, lymph node, vagina, cervix, and uterus, and subsequent immunofluorescent staining was equivalent. The Compresstome however, offered distinct advantages; producing sections approximately 5 times faster than the Vibratome, cutting tissue sections more easily, and allowing production of larger sections. Conclusions A Compresstome can be used to generate fresh unfixed primate lymph node, spleen, vagina, cervix and uterus sections, and is superior to a Vibratome in cutting these fresh tissues.
Collapse
Affiliation(s)
- Hadia M Abdelaal
- Department of Veterinary and Biomedical Sciences, college of veterinary medicine, University of Minnesota, St. Paul, 1971 Commonwealth Avenue, Minnesota, MN 55108 USA ; Departments of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519 Egypt
| | - Hyeon O Kim
- Department of Veterinary and Biomedical Sciences, college of veterinary medicine, University of Minnesota, St. Paul, 1971 Commonwealth Avenue, Minnesota, MN 55108 USA
| | - Reece Wagstaff
- Department of Veterinary and Biomedical Sciences, college of veterinary medicine, University of Minnesota, St. Paul, 1971 Commonwealth Avenue, Minnesota, MN 55108 USA
| | - Ryoko Sawahata
- Department of Veterinary and Biomedical Sciences, college of veterinary medicine, University of Minnesota, St. Paul, 1971 Commonwealth Avenue, Minnesota, MN 55108 USA
| | - Peter J Southern
- Departments of Microbiology, MMC 196, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455 USA
| | - Pamela J Skinner
- Department of Veterinary and Biomedical Sciences, college of veterinary medicine, University of Minnesota, St. Paul, 1971 Commonwealth Avenue, Minnesota, MN 55108 USA
| |
Collapse
|
34
|
Intrinsic transgene immunogenicity gears CD8(+) T-cell priming after rAAV-mediated muscle gene transfer. Mol Ther 2014; 23:697-706. [PMID: 25492560 DOI: 10.1038/mt.2014.235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/02/2014] [Indexed: 01/18/2023] Open
Abstract
Antitransgene CD8(+) T-cell responses are an important hurdle after recombinant adeno-associated virus (rAAV) vector-mediated gene transfer. Indeed, depending on the mutational genotype of the host, transgene amino-acid sequences of foreign origin can elicit deleterious cellular and humoral responses. We compared here two different major histocompatibility complex (MHC) class I epitopes of an engineered ovalbumin transgene delivered in muscle tissue by rAAV1 vector and found very different strength of CD8 responses, muscle destruction being correlated with the course of the immunodominant response. We further demonstrate that robust CD8(+) T-cell priming can occur through the cross-presentation pathway but requires the presence of either a strong MHC class II epitope or antibodies to the transgene product. Finally, manipulating transgene subcellular localization, we found that provided we avoid transgene expression in antigen presenting cells, the poorly accessible cytosolic form of ovalbumin transgene lacking strong MHC II epitope, evades CD8(+) T-cell priming and remains permanently expressed in muscle with no immune cell infiltration. Our results demonstrate that the intrinsic immunogenicity of transgenes delivered with rAAV vector in muscle can be manipulated in a rational manner to avoid adverse immune responses.
Collapse
|
35
|
Jones CH, Chen M, Ravikrishnan A, Reddinger R, Zhang G, Hakansson AP, Pfeifer BA. Mannosylated poly(beta-amino esters) for targeted antigen presenting cell immune modulation. Biomaterials 2014; 37:333-44. [PMID: 25453962 DOI: 10.1016/j.biomaterials.2014.10.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/02/2014] [Indexed: 11/17/2022]
Abstract
Given the rise of antibiotic resistance and other difficult-to-treat diseases, genetic vaccination is a promising preventative approach that can be tailored and scaled according to the vector chosen for gene delivery. However, most vectors currently utilized rely on ubiquitous delivery mechanisms that ineffectively target important immune effectors such as antigen presenting cells (APCs). As such, APC targeting allows the option for tuning the direction (humoral vs cell-mediated) and strength of the resulting immune responses. In this work, we present the development and assessment of a library of mannosylated poly(beta-amino esters) (PBAEs) that represent a new class of easily synthesized APC-targeting cationic polymers. Polymeric characterization and assessment methodologies were designed to provide a more realistic physiochemical profile prior to in vivo evaluation. Gene delivery assessment in vitro showed significant improvement upon PBAE mannosylation and suggested that mannose-mediated uptake and processing influence the magnitude of gene delivery. Furthermore, mannosylated PBAEs demonstrated a strong, efficient, and safe in vivo humoral immune response without use of adjuvants when compared to genetic and protein control antigens. In summary, the gene delivery effectiveness provided by mannosylated PBAE vectors offers specificity and potency in directing APC activation and subsequent immune responses.
Collapse
Affiliation(s)
- Charles H Jones
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Mingfu Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Anitha Ravikrishnan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Ryan Reddinger
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Guojian Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Anders P Hakansson
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA; The Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA.
| |
Collapse
|
36
|
Kupfer-type immunological synapses in vivo: Raison D'être of SMAC. Immunol Cell Biol 2014; 93:51-6. [PMID: 25267483 DOI: 10.1038/icb.2014.80] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 08/01/2014] [Accepted: 08/03/2014] [Indexed: 01/04/2023]
Abstract
T cells engage with antigen-presenting cells to form immunological synapses. These intimate contacts are characterized by the complex arrangement of molecules at the intercellular interface, which has been described as the supramolecular activation cluster (SMAC). However, due to T cells functioning without SMAC formation and the difficulties of studying these complex arrangements in vivo, its biological importance has been questioned. In light of recent data, we focus this review on the putative functionality of SMACs in T-cell synaptic contacts in vivo and emphasize the therapeutic potential of SMAC manipulation in immune-driven diseases.
Collapse
|
37
|
He P, Takeshima SN, Tada S, Akaike T, Ito Y, Aida Y. pH-sensitive carbonate apatite nanoparticles as DNA vaccine carriers enhance humoral and cellular immunity. Vaccine 2014; 32:6199-205. [PMID: 25261380 DOI: 10.1016/j.vaccine.2014.09.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/09/2014] [Accepted: 09/13/2014] [Indexed: 10/24/2022]
Abstract
To demonstrate the potential of pH-sensitive carbonate apatite (CO₃Ap) nanoparticles as DNA vaccine carriers to enhance vaccination efficacy, we examined the humoral and cellular immune responses of C57BL/6 mice immunized with the plasmid expression vector pCI-neo encoding the full-length soluble ovalbumin (OVA) (pCI-neo-sOVA), pCI-neo-sOVA/CO₃Ap complexes, or pCI-neo/CO₃Ap complexes as a control. Mice immunized with a low dose of pCI-neo-sOVA-loaded CO₃Ap (10 μg) produced ex vivo splenocyte proliferation after stimulation with CD8 T-cell but not CD4 T-cell epitopes and a delayed-type-hypersensitivity reaction more efficiently than mice in the other groups. Furthermore, mice receiving this immunization generated the same levels of OVA-specific antibodies and interferon (IFN)-γ secretion after CD8 T-cell and CD4 T-cell epitope challenges as those in mice treated with 100 μg of free pCI-neo-sOVA, whereas mice injected with a high dose of pCI-neo-sOVA-loaded CO₃Ap (100 μg) or with control plasmids produced negligible levels of OVA-specific antibodies or IFN-γ. Therefore, our results showed that 10 μg of pCI-neo-sOVA delivered by CO₃Ap strongly elicited humoral and cellular immune responses. This study is the first to demonstrate the promising potential of CO₃Ap nanoparticles for DNA vaccine delivery.
Collapse
Affiliation(s)
- Pan He
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | - Seiichi Tada
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Toshihiro Akaike
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4252 Nagatsuka-cho, Midoriku, Yokohama 226-8501, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
38
|
Mineharu Y, Kamran N, Lowenstein PR, Castro MG. Blockade of mTOR signaling via rapamycin combined with immunotherapy augments antiglioma cytotoxic and memory T-cell functions. Mol Cancer Ther 2014; 13:3024-36. [PMID: 25256739 DOI: 10.1158/1535-7163.mct-14-0400] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The success of immunotherapeutic approaches targeting glioblastoma multiforme (GBM) demands a robust antiglioma T-cell cytotoxic and memory response. Recent evidence suggests that rapamycin regulates T-cell differentiation. Herein, we tested whether administration of rapamycin could enhance the efficacy of immunotherapy utilizing Fms-like tyrosine kinase 3 ligand (Ad-Flt3L) and thymidine kinase/ganciclovir (Ad-TK/GCV). Using the refractory rat RG2 glioma model, we demonstrate that administration of rapamycin with Ad-Flt3L + Ad-TK/GCV immunotherapy enhanced the cytotoxic activity of antitumor CD8(+) T cells. Rats treated with rapamycin + Ad-Flt3L + Ad-TK/GCV exhibited massive reduction in the tumor volume and extended survival. Rapamycin administration also prolonged the survival of Ad-Flt3L + Ad-TK/GCV-treated GL26 tumor-bearing mice, associated with an increase in the frequency of tumor-specific and IFNγ(+) CD8(+) T cells. More importantly, rapamycin administration, even for a short interval, elicited a potent long-lasting central memory CD8(+) T-cell response. The enhanced memory response translated to an increased frequency of tumor-specific CD8(+) T cells within the tumor and IFNγ release, providing the mice with long-term survival advantage in response to tumor rechallenge. Our data, therefore, point to rapamycin as an attractive adjuvant to be used in combination with immunotherapy in a phase I clinical trial for GBM.
Collapse
Affiliation(s)
- Yohei Mineharu
- Department of Neurosurgery, The University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Neha Kamran
- Department of Neurosurgery, The University of Michigan School of Medicine, Ann Arbor, Michigan. Department of Cell and Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Pedro R Lowenstein
- Department of Neurosurgery, The University of Michigan School of Medicine, Ann Arbor, Michigan. Department of Cell and Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Maria G Castro
- Department of Neurosurgery, The University of Michigan School of Medicine, Ann Arbor, Michigan. Department of Cell and Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, Michigan.
| |
Collapse
|
39
|
Sierra RA, Thevenot P, Raber PL, Cui Y, Parsons C, Ochoa AC, Trillo-Tinoco J, Del Valle L, Rodriguez PC. Rescue of notch-1 signaling in antigen-specific CD8+ T cells overcomes tumor-induced T-cell suppression and enhances immunotherapy in cancer. Cancer Immunol Res 2014; 2:800-811. [PMID: 24830414 PMCID: PMC4125513 DOI: 10.1158/2326-6066.cir-14-0021] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An impaired antitumor immunity is found in patients with cancer and represents a major obstacle in the successful development of different forms of immunotherapy. Signaling through Notch receptors regulates the differentiation and function of many cell types, including immune cells. However, the effect of Notch in CD8(+) T-cell responses in tumors remains unclear. Thus, we aimed to determine the role of Notch signaling in CD8(+) T cells in the induction of tumor-induced suppression. Our results using conditional knockout mice show that Notch-1 and Notch-2 were critical for the proliferation and IFNγ production of activated CD8(+) T cells and were significantly decreased in tumor-infiltrating T cells. Conditional transgenic expression of Notch-1 intracellular domain (N1IC) in antigen-specific CD8(+) T cells did not affect activation or proliferation of CD8(+) T cells, but induced a central memory phenotype and increased cytotoxicity effects and granzyme B levels. Consequently, a higher antitumor response and resistance to tumor-induced tolerance were found after adoptive transfer of N1IC-transgenic CD8(+) T cells into tumor-bearing mice. Additional results showed that myeloid-derived suppressor cells (MDSC) blocked the expression of Notch-1 and Notch-2 in T cells through nitric oxide-dependent mechanisms. Interestingly, N1IC overexpression rendered CD8(+) T cells resistant to the tolerogenic effect induced by MDSC in vivo. Together, the results suggest the key role of Notch in the suppression of CD8(+) T-cell responses in tumors and the therapeutic potential of N1IC in antigen-specific CD8(+) T cells to reverse T-cell suppression and increase the efficacy of T cell-based immunotherapies in cancer.
Collapse
Affiliation(s)
| | | | - Patrick L Raber
- Stanley S. Scott Cancer Center; Departments of Microbiology, Immunology and Parasitology and
| | - Yan Cui
- Stanley S. Scott Cancer Center; Departments of Microbiology, Immunology and Parasitology and
| | - Chris Parsons
- Stanley S. Scott Cancer Center; Departments of Microbiology, Immunology and Parasitology and
| | - Augusto C Ochoa
- Stanley S. Scott Cancer Center; Departments of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | | | | | - Paulo C Rodriguez
- Stanley S. Scott Cancer Center; Departments of Microbiology, Immunology and Parasitology and
| |
Collapse
|
40
|
Abstract
The fate of T lymphocytes revolves around a continuous stream of interactions between the T-cell receptor (TCR) and peptide-major histocompatibility complex (MHC) molecules. Beginning in the thymus and continuing into the periphery, these interactions, refined by accessory molecules, direct the expansion, differentiation, and function of T-cell subsets. The cellular context of T-cell engagement with antigen-presenting cells, either in lymphoid or non-lymphoid tissues, plays an important role in determining how these cells respond to antigen encounters. CD8(+) T cells are essential for clearance of a lymphocytic choriomeningitis virus (LCMV) infection, but the virus can present a number of unique challenges that antiviral T cells must overcome. Peripheral LCMV infection can lead to rapid cytolytic clearance or chronic viral persistence; central nervous system infection can result in T-cell-dependent fatal meningitis or an asymptomatic carrier state amenable to immunotherapeutic clearance. These diverse outcomes all depend on interactions that require TCR engagement of cognate peptide-MHC complexes. In this review, we explore the diversity in antiviral T-cell behaviors resulting from TCR engagement, beginning with an overview of the immunological synapse and progressing to regulators of TCR signaling that shape the delicate balance between immunopathology and viral clearance.
Collapse
Affiliation(s)
- E. Ashley Moseman
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| | - Dorian B. McGavern
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
41
|
Puntel M, A K M GM, Farrokhi C, Vanderveen N, Paran C, Appelhans A, Kroeger KM, Salem A, Lacayo L, Pechnick RN, Kelson KR, Kaur S, Kennedy S, Palmer D, Ng P, Liu C, Krasinkiewicz J, Lowenstein PR, Castro MG. Safety profile, efficacy, and biodistribution of a bicistronic high-capacity adenovirus vector encoding a combined immunostimulation and cytotoxic gene therapy as a prelude to a phase I clinical trial for glioblastoma. Toxicol Appl Pharmacol 2013; 268:318-30. [PMID: 23403069 PMCID: PMC3641940 DOI: 10.1016/j.taap.2013.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 12/12/2022]
Abstract
Adenoviral vectors (Ads) are promising gene delivery vehicles due to their high transduction efficiency; however, their clinical usefulness has been hampered by their immunogenicity and the presence of anti-Ad immunity in humans. We reported the efficacy of a gene therapy approach for glioma consisting of intratumoral injection of Ads encoding conditionally cytotoxic herpes simplex type 1 thymidine kinase (Ad-TK) and the immunostimulatory cytokine fms-like tyrosine kinase ligand 3 (Ad-Flt3L). Herein, we report the biodistribution, efficacy, and neurological and systemic effects of a bicistronic high-capacity Ad, i.e., HC-Ad-TK/TetOn-Flt3L. HC-Ads elicit sustained transgene expression, even in the presence of anti-Ad immunity, and can encode large therapeutic cassettes, including regulatory elements to enable turning gene expression "on" or "off" according to clinical need. The inclusion of two therapeutic transgenes within a single vector enables a reduction of the total vector load without adversely impacting efficacy. Because clinically the vectors will be delivered into the surgical cavity, normal regions of the brain parenchyma are likely to be transduced. Thus, we assessed any potential toxicities elicited by escalating doses of HC-Ad-TK/TetOn-Flt3L (1×10(8), 1×10(9), or 1×10(10) viral particles [vp]) delivered into the rat brain parenchyma. We assessed neuropathology, biodistribution, transgene expression, systemic toxicity, and behavioral impact at acute and chronic time points. The results indicate that doses up to 1×10(9) vp of HC-Ad-TK/TetOn-Flt3L can be safely delivered into the normal rat brain and underpin further developments for its implementation in a phase I clinical trial for glioma.
Collapse
Affiliation(s)
- Mariana Puntel
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Barcia C, Mitxitorena I, Carrillo-de Sauvage MA, Gallego JM, Pérez-Vallés A, Barcia C. Imaging the microanatomy of astrocyte-T-cell interactions in immune-mediated inflammation. Front Cell Neurosci 2013; 7:58. [PMID: 23641198 PMCID: PMC3639405 DOI: 10.3389/fncel.2013.00058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/15/2013] [Indexed: 11/19/2022] Open
Abstract
The role of astrocytes in the immune-mediated inflammatory response in the brain is more prominent than previously thought. Astrocytes become reactive in response to neuro-inflammatory stimuli through multiple pathways, contributing significantly to the machinery that modifies the parenchymal environment. In particular, astrocytic signaling induces the establishment of critical relationships with infiltrating blood cells, such as lymphocytes, which is a fundamental process for an effective immune response. The interaction between astrocytes and T-cells involves complex modifications to both cell types, which undergo micro-anatomical changes and the redistribution of their binding and secretory domains. These modifications are critical for different immunological responses, such as for the effectiveness of the T-cell response, for the specific infiltration of these cells and their homing in the brain parenchyma, and for their correct apposition with antigen-presenting cells (APCs) to form immunological synapses (ISs). In this article, we review the current knowledge of the interactions between T-cells and astrocytes in the context of immune-mediated inflammation in the brain, based on the micro-anatomical imaging of these appositions by high-resolution confocal microscopy and three-dimensional rendering. The study of these dynamic interactions using detailed technical approaches contributes to understanding the function of astrocytes in inflammatory responses and paves the way for new therapeutic strategies.
Collapse
Affiliation(s)
- Carlos Barcia
- Department of Neurosurgery, Hospital General Universitari de València València, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Zirger JM, Puntel M, Bergeron J, Wibowo M, Moridzadeh R, Bondale N, Barcia C, Kroeger KM, Liu C, Castro MG, Lowenstein PR. Immune-mediated loss of transgene expression from virally transduced brain cells is irreversible, mediated by IFNγ, perforin, and TNFα, and due to the elimination of transduced cells. Mol Ther 2012; 20:808-19. [PMID: 22233583 PMCID: PMC3321600 DOI: 10.1038/mt.2011.243] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/13/2011] [Indexed: 01/12/2023] Open
Abstract
The adaptive immune response to viral vectors reduces vector-mediated transgene expression from the brain. It is unknown, however, whether this loss is caused by functional downregulation of transgene expression or death of transduced cells. Herein, we demonstrate that during the elimination of transgene expression, the brain becomes infiltrated with CD4(+) and CD8(+) T cells and that these T cells are necessary for transgene elimination. Further, the loss of transgene-expressing brain cells fails to occur in the absence of IFNγ, perforin, and TNFα receptor. Two methods to induce severe immune suppression in immunized animals also fail to restitute transgene expression, demonstrating the irreversibility of this process. The need for cytotoxic molecules and the irreversibility of the reduction in transgene expression suggested to us that elimination of transduced cells is responsible for the loss of transgene expression. A new experimental paradigm that discriminates between downregulation of transgene expression and the elimination of transduced cells demonstrates that transduced cells are lost from the brain upon the induction of a specific antiviral immune response. We conclude that the anti-adenoviral immune response reduces transgene expression in the brain through loss of transduced cells.
Collapse
Affiliation(s)
- Jeffrey M Zirger
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mariana Puntel
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Josee Bergeron
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mia Wibowo
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Rameen Moridzadeh
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Niyati Bondale
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Carlos Barcia
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kurt M Kroeger
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Deceased
| | - Chunyan Liu
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Maria G Castro
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Current address: Department of Neurosurgery, The University of Michigan, Medical School, Ann Arbor, Michigan, USA
- Current address: Department of Cell and Developmental Biology, The University of Michigan, Medical School, Ann Arbor, Michigan, USA
| | - Pedro R Lowenstein
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Current address: Department of Neurosurgery, The University of Michigan, Medical School, Ann Arbor, Michigan, USA
- Current address: Department of Cell and Developmental Biology, The University of Michigan, Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
44
|
B cells are critical to T-cell-mediated antitumor immunity induced by a combined immune-stimulatory/conditionally cytotoxic therapy for glioblastoma. Neoplasia 2012; 13:947-60. [PMID: 22028620 DOI: 10.1593/neo.11024] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/19/2011] [Accepted: 08/23/2011] [Indexed: 12/25/2022] Open
Abstract
We have demonstrated that modifying the tumor microenvironment through intratumoral administration of adenoviral vectors (Ad) encoding the conditional cytotoxic molecule, i.e., HSV1-TK and the immune-stimulatory cytokine, i.e., fms-like tyrosine kinase 3 ligand (Flt3L) leads to T-cell-dependent tumor regression in rodent models of glioblastoma. We investigated the role of B cells during immune-mediated glioblastoma multiforme regression. Although treatment with Ad-TK+Ad-Flt3L induced tumor regression in 60% of wild-type (WT) mice, it completely failed in B-cell-deficient Igh6(-/-) mice. Tumor-specific T-cell precursors were detected in Ad-TK+Ad-Flt3L-treated WT mice but not in Igh6(-/-) mice. The treatment also failed in WT mice depleted of total B cells or marginal zone B cells. Because we could not detect circulating antibodies against tumor cells and the treatment was equally efficient in WT mice and in mice with B-cell-specific deletion of Prdm 1 (encoding Blimp-1), in which B cells are present but unable to fully differentiate into antibody-secreting plasma cells, tumor regression in this model is not dependent on B cells' production of tumor antigen-specific immunoglobulins. Instead, B cells seem to play a role as antigen-presenting cells (APCs). Treatment with Ad-TK+Ad-Flt3L led to an increase in the number of B cells in the cervical lymph nodes, which stimulated the proliferation of syngeneic T cells and induced clonal expansion of antitumor T cells. Our data show that B cells act as APCs, playing a critical role in clonal expansion of tumor antigen-specific T cells and brain tumor regression.
Collapse
|
45
|
Combined Flt3L/TK gene therapy induces immunological surveillance which mediates an immune response against a surrogate brain tumor neoantigen. Mol Ther 2011; 19:1793-801. [PMID: 21505426 DOI: 10.1038/mt.2011.77] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a primary brain tumor with a median survival of 14.6 months postdiagnosis. The infiltrative nature of GBM prevents complete resection and residual brain tumor cells give rise to recurrent GBM, a hallmark of this disease. Recurrent GBMs are known to harbor numerous mutations/gene rearrangements when compared to the primary tumor, which leads to the potential expression of novel proteins that could serve as tumor neoantigens. We have developed a combined immune-based gene therapeutic approach for GBM using adenoviral (Ads) mediated gene delivery of Herpes Simplex Virus Type 1-thymidine kinase (TK) into the tumor mass to induce tumor cells' death combined with an adenovirus expressing fms-like tyrosine kinase 3 ligand (Flt3L) to recruit dendritic cells (DCs) into the tumor microenvironment. This leads to the induction of specific anti-brain tumor immunity and immunological memory. In a model of GBM recurrence, we demonstrate that Flt3L/TK mediated immunological memory is capable of recognizing brain tumor neoantigens absent from the original treated tumor. These data demonstrate that the Flt3L/TK gene therapeutic approach can induce systemic immunological memory capable of recognizing a brain tumor neoantigen in a model of recurrent GBM.
Collapse
|
46
|
Puntel M, Muhammad AKMG, Candolfi M, Salem A, Yagiz K, Farrokhi C, Kroeger KM, Xiong W, Curtin JF, Liu C, Bondale NS, Lerner J, Pechnick RN, Palmer D, Ng P, Lowenstein PR, Castro MG. A novel bicistronic high-capacity gutless adenovirus vector that drives constitutive expression of herpes simplex virus type 1 thymidine kinase and tet-inducible expression of Flt3L for glioma therapeutics. J Virol 2010; 84:6007-17. [PMID: 20375153 PMCID: PMC2876634 DOI: 10.1128/jvi.00398-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 03/29/2010] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a deadly primary brain tumor. Conditional cytotoxic/immune-stimulatory gene therapy (Ad-TK and Ad-Flt3L) elicits tumor regression and immunological memory in rodent GBM models. Since the majority of patients enrolled in clinical trials would exhibit adenovirus immunity, which could curtail transgene expression and therapeutic efficacy, we used high-capacity adenovirus vectors (HC-Ads) as a gene delivery platform. Herein, we describe for the first time a novel bicistronic HC-Ad driving constitutive expression of herpes simplex virus type 1 thymidine kinase (HSV1-TK) and inducible Tet-mediated expression of Flt3L within a single-vector platform. We achieved anti-GBM therapeutic efficacy with no overt toxicities using this bicistronic HC-Ad even in the presence of systemic Ad immunity. The bicistronic HC-Ad-TK/TetOn-Flt3L was delivered into intracranial gliomas in rats. Survival, vector biodistribution, neuropathology, systemic toxicity, and neurobehavioral deficits were assessed for up to 1 year posttreatment. Therapeutic efficacy was also assessed in animals preimmunized against Ads. We demonstrate therapeutic efficacy, with vector genomes being restricted to the brain injection site and an absence of overt toxicities. Importantly, antiadenoviral immunity did not inhibit therapeutic efficacy. These data represent the first report of a bicistronic vector platform driving the expression of two therapeutic transgenes, i.e., constitutive HSV1-TK and inducible Flt3L genes. Further, our data demonstrate no promoter interference and optimum gene delivery and expression from within this single-vector platform. Analysis of the efficacy, safety, and toxicity of this bicistronic HC-Ad vector in an animal model of GBM strongly supports further preclinical testing and downstream process development of HC-Ad-TK/TetOn-Flt3L for a future phase I clinical trial for GBM.
Collapse
Affiliation(s)
- Mariana Puntel
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - A. K. M. G. Muhammad
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Marianela Candolfi
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Alireza Salem
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Kader Yagiz
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Catherine Farrokhi
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Kurt M. Kroeger
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Weidong Xiong
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - James F. Curtin
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Chunyan Liu
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Niyati S. Bondale
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Jonathan Lerner
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Robert N. Pechnick
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Donna Palmer
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Philip Ng
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Pedro R. Lowenstein
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Maria G. Castro
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|