1
|
Yuan Z, Pavel MA, Hansen SB. GABA and astrocytic cholesterol determine the lipid environment of GABA AR in cultured cortical neurons. Commun Biol 2025; 8:647. [PMID: 40263458 PMCID: PMC12015214 DOI: 10.1038/s42003-025-08026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/01/2025] [Indexed: 04/24/2025] Open
Abstract
The γ-aminobutyric acid (GABA) type A receptor (GABAAR), a GABA activated pentameric chloride channel, mediates fast inhibitory neurotransmission in the brain. The lipid environment is critical for GABAAR function. How lipids regulate the channel in the cell membrane is not fully understood. Here we employed super resolution imaging of lipids to demonstrate that the agonist GABA induces a rapid and reversible membrane translocation of GABAAR to phosphatidylinositol 4,5-bisphosphate (PIP2) clusters in mouse primary cortical neurons. This translocation relies on nanoscopic separation of PIP2 clusters and lipid rafts (cholesterol-dependent ganglioside clusters). In a resting state, the GABAAR associates with lipid rafts and this colocalization is enhanced by uptake of astrocytic secretions. These astrocytic secretions delay desensitization and enhance maximum current. In an Alzheimer's Disease (AD) mouse model with high brain cholesterol, GABAAR shifts into lipid rafts. Our findings suggest cholesterol is a signaling molecule and astrocytes regulates GABAARs in neurons by secreting cholesterol. The findings have implications for treating mood disorders and AD associated with altered brain lipids.
Collapse
Affiliation(s)
- Zixuan Yuan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458, USA
- Scripps Research Skaggs Graduate School of Chemical and Biological Science, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Mahmud Arif Pavel
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Scott B Hansen
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA.
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458, USA.
- Scripps Research Skaggs Graduate School of Chemical and Biological Science, The Scripps Research Institute, Jupiter, FL, 33458, USA.
- Institute of Medical Physiology, Chinese Institutes for Medical Research (CIMR), Beijing, 100069, China.
- Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Bolland W, Marechal I, Petiot C, Porrot F, Guivel-Benhassine F, Brelot A, Casartelli N, Schwartz O, Buchrieser J. SARS-CoV-2 entry and fusion are independent of ACE2 localization to lipid rafts. J Virol 2025; 99:e0182324. [PMID: 39570043 PMCID: PMC11784143 DOI: 10.1128/jvi.01823-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
Membrane fusion occurs at the early stages of SARS-CoV-2 replication, during entry of the virus, and later during the formation of multinucleated cells called syncytia. Fusion is mediated by the binding of the viral Spike protein to its receptor ACE2. Lipid rafts are dynamic nanodomains enriched in cholesterol and sphingolipids. Rafts can act as platforms for entry of different viruses by localizing virus receptors, and attachment factors to the same membrane domains. Here, we first demonstrate that cholesterol depletion by methyl-beta-cyclodextrin inhibits Spike-mediated fusion and entry. To further study the role of ACE2 lipid raft localization in SARS-CoV-2 fusion and entry, we designed a GPI-anchored ACE2 construct. Both ACE2 and ACE2-GPI proteins were similarly expressed at the plasma membrane. Through membrane flotation assays, we show that in different cell lines, ACE2-GPI localizes predominantly to raft domains of the plasma membrane while ACE2 is non-raft associated. We then compare the ability of ACE2 and ACE2-GPI to permit SARS-CoV-2 entry, replication, and syncytia formation of different viral variants. We find little difference in the two proteins. Our results demonstrate that SARS-CoV-2 entry and fusion are cholesterol-dependent and raft-independent processes.IMPORTANCERafts are often exploited by viruses and used as platforms to enhance their entry into the cell or spread from cell to cell. The membrane localization of ACE2 and the role of lipid rafts in SARS-CoV-2 entry and cell-to-cell spread are poorly understood. The function of lipid rafts in viral fusion is often studied through their disruption by cholesterol-depleting agents. However, this process may have off-target impacts on viral fusion independently of lipid-raft disruption. Therefore, we created an ACE2 construct that localizes to lipid rafts using a GPI anchor. Conversely, wild-type ACE2 was non-raft associated. We find that the localization of ACE2 to lipid rafts does not modify the fusion dynamics of SARS-CoV-2.
Collapse
Affiliation(s)
- William Bolland
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Université Paris Cité, Paris, France
| | - Inès Marechal
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Chloé Petiot
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Françoise Porrot
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | | | - Anne Brelot
- Dynamic of Host-Pathogen Interactions Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3691, Paris, France
| | - Nicoletta Casartelli
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Julian Buchrieser
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| |
Collapse
|
3
|
Cheng S, Zhang J, Zhang Y, Wang H, Wang H. In Situ Synthesis and Visualization of Membrane SNAP25 Nano-Organization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20977-20985. [PMID: 39330215 DOI: 10.1021/acs.langmuir.4c02231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Cryo-electron tomography (cryo-ET) can provide insights into the structure and states of natural membrane environments to explore the role of SNARE proteins at membrane fusion and understand the relationship between their subcellular localization/formation and action mechanism. Nevertheless, the identification of individual molecules in crowded and low signal-to-noise ratio membrane environments remains a significant challenge. In this study, cryo-ET is employed to image near-physiological state 293T cell membranes, specifically utilizing in situ synthesized gold nanoparticles (AuNPs) bound with cysteine-rich protein tags to single-molecularly labeled synaptosomal-associated protein 25 (SNAP25) on the membrane surface. The high-resolution images reveal that SNAP25 is predominantly located in regions of high molecular density within the cell membrane and aggregates into smaller clusters, which may increase the fusion efficiency. Remarkably, a zigzag arrangement of SNAP25 is observed on the cell membrane. These findings provide valuable insights into the functional mechanisms of SNARE proteins.
Collapse
Affiliation(s)
- Sihang Cheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Jinrui Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Yaxuan Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Huili Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, P. R. China
| |
Collapse
|
4
|
Suhaiman L, Belmonte SA. Lipid remodeling in acrosome exocytosis: unraveling key players in the human sperm. Front Cell Dev Biol 2024; 12:1457638. [PMID: 39376630 PMCID: PMC11456524 DOI: 10.3389/fcell.2024.1457638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
It has long been thought that exocytosis was driven exclusively by well-studied fusion proteins. Some decades ago, the role of lipids became evident and escalated interest in the field. Our laboratory chose a particular cell to face this issue: the human sperm. What makes this cell special? Sperm, as terminal cells, are characterized by their scarcity of organelles and the complete absence of transcriptional and translational activities. They are specialized for a singular membrane fusion occurrence: the exocytosis of the acrosome. This unique trait makes them invaluable for the study of exocytosis in isolation. We will discuss the lipids' role in human sperm acrosome exocytosis from various perspectives, with a primary emphasis on our contributions to the field. Sperm cells have a unique lipid composition, very rare and not observed in many cell types, comprising a high content of plasmalogens, long-chain, and very-long-chain polyunsaturated fatty acids that are particular constituents of some sphingolipids. This review endeavors to unravel the impact of membrane lipid composition on the proper functioning of the exocytic pathway in human sperm and how this lipid dynamic influences its fertilizing capability. Evidence from our and other laboratories allowed unveiling the role and importance of multiple lipids that drive exocytosis. This review highlights the role of cholesterol, diacylglycerol, and particular phospholipids like phosphatidic acid, phosphatidylinositol 4,5-bisphosphate, and sphingolipids in driving sperm acrosome exocytosis. Furthermore, we provide a comprehensive overview of the factors and enzymes that regulate lipid turnover during the exocytic course. A more thorough grasp of the role played by lipids transferred from sperm can provide insights into certain causes of male infertility. It may lead to enhancements in diagnosing infertility and techniques like assisted reproductive technology (ART).
Collapse
Affiliation(s)
- Laila Suhaiman
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU)-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Silvia A. Belmonte
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
5
|
Lee S, Bak JH, Lee Y, Jeong DW, Lee J, Lee KK, Cho H, Lee HH, Hyeon C, Choi MC. Water Hydrogen-Bond Mediated Layer by Layer Alignment of Lipid Rafts as a Precursor of Intermembrane Processes. J Am Chem Soc 2024; 146:13846-13853. [PMID: 38652033 DOI: 10.1021/jacs.4c00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Lipid rafts, which are dynamic nanodomains in the plasma membrane, play a crucial role in intermembrane processes by clustering together and growing in size within the plane of the membrane while also aligning with each other across different membranes. However, the physical origin of layer by layer alignment of lipid rafts remains to be elucidated. Here, by using fluorescence imaging and synchrotron X-ray reflectivity in a phase-separated multilayer system, we find that the alignment of raft-mimicking Lo domains is regulated by the distance between bilayers. Molecular dynamics simulations reveal that the aligned state is energetically preferred when the intermembrane distance is small due to its ability to minimize the volume of surface water, which has fewer water hydrogen bonds (HBs) compared to bulk water. Our results suggest that water HB-driven alignment of lipid rafts plays a role as a precursor of intermembrane processes such as cell-cell fusion, virus entry, and signaling.
Collapse
Affiliation(s)
- Suho Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea
| | - Ji Hyun Bak
- School of Computational Science, Korea Institute for Advanced Study, Seoul 02455, Korea
| | - Yuno Lee
- School of Computational Science, Korea Institute for Advanced Study, Seoul 02455, Korea
| | - Dae-Woong Jeong
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea
| | - Jaehee Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea
| | - KeunMin Ken Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea
| | - Hasaeam Cho
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea
| | - Hyun Hwi Lee
- Pohang Accelerator Lab, POSTECH, Pohang 37673, Korea
| | - Changbong Hyeon
- School of Computational Science, Korea Institute for Advanced Study, Seoul 02455, Korea
| | - Myung Chul Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
6
|
Orlikowska-Rzeznik H, Krok E, Domanska M, Setny P, Lągowska A, Chattopadhyay M, Piatkowski L. Dehydration of Lipid Membranes Drives Redistribution of Cholesterol Between Lateral Domains. J Phys Chem Lett 2024; 15:4515-4522. [PMID: 38634827 PMCID: PMC11056968 DOI: 10.1021/acs.jpclett.4c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Cholesterol-rich lipid rafts are found to facilitate membrane fusion, central to processes like viral entry, fertilization, and neurotransmitter release. While the fusion process involves local, transient membrane dehydration, the impact of reduced hydration on cholesterol's structural organization in biological membranes remains unclear. Here, we employ confocal fluorescence microscopy and atomistic molecular dynamics simulations to investigate cholesterol behavior in phase-separated lipid bilayers under controlled hydration. We unveiled that dehydration prompts cholesterol release from raft-like domains into the surrounding fluid phase. Unsaturated phospholipids undergo more significant dehydration-induced structural changes and lose more hydrogen bonds with water than sphingomyelin. The results suggest that cholesterol redistribution is driven by the equalization of biophysical properties between phases and the need to satisfy lipid hydrogen bonds. This underscores the role of cholesterol-phospholipid-water interplay in governing cholesterol affinity for a specific lipid type, providing a new perspective on the regulatory role of cell membrane heterogeneity during membrane fusion.
Collapse
Affiliation(s)
- Hanna Orlikowska-Rzeznik
- Faculty of
Materials Engineering and Technical Physics, Poznan University of Technology, 60-965 Poznan, Poland
| | - Emilia Krok
- Faculty of
Materials Engineering and Technical Physics, Poznan University of Technology, 60-965 Poznan, Poland
| | - Maria Domanska
- Biomolecular
Modelling Group, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Piotr Setny
- Biomolecular
Modelling Group, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Anna Lągowska
- Faculty of
Materials Engineering and Technical Physics, Poznan University of Technology, 60-965 Poznan, Poland
| | - Madhurima Chattopadhyay
- Faculty of
Materials Engineering and Technical Physics, Poznan University of Technology, 60-965 Poznan, Poland
| | - Lukasz Piatkowski
- Faculty of
Materials Engineering and Technical Physics, Poznan University of Technology, 60-965 Poznan, Poland
| |
Collapse
|
7
|
Jahn R, Cafiso DC, Tamm LK. Mechanisms of SNARE proteins in membrane fusion. Nat Rev Mol Cell Biol 2024; 25:101-118. [PMID: 37848589 PMCID: PMC11578640 DOI: 10.1038/s41580-023-00668-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/19/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are a family of small conserved eukaryotic proteins that mediate membrane fusion between organelles and with the plasma membrane. SNAREs are directly or indirectly anchored to membranes. Prior to fusion, complementary SNAREs assemble between membranes with the aid of accessory proteins that provide a scaffold to initiate SNARE zippering, pulling the membranes together and mediating fusion. Recent advances have enabled the construction of detailed models describing bilayer transitions and energy barriers along the fusion pathway and have elucidated the structures of SNAREs complexed in various states with regulatory proteins. In this Review, we discuss how these advances are yielding an increasingly detailed picture of the SNARE-mediated fusion pathway, leading from first contact between the membranes via metastable non-bilayer intermediates towards the opening and expansion of a fusion pore. We describe how SNARE proteins assemble into complexes, how this assembly is regulated by accessory proteins and how SNARE complexes overcome the free energy barriers that prevent spontaneous membrane fusion.
Collapse
Affiliation(s)
- Reinhard Jahn
- Laboratory of Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - David C Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
8
|
Weisgerber AW, Otruba Z, Knowles MK. Syntaxin clusters and cholesterol affect the mobility of Syntaxin1a. Biophys J 2024:S0006-3495(24)00028-6. [PMID: 38221759 DOI: 10.1016/j.bpj.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/02/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024] Open
Abstract
Syntaxin1a (Syx1a) is essential for stimulated exocytosis in neuroendocrine cells. The vesicle docking process involves the formation of nanoscale Syx1a domains on the plasma membrane and the Syx1a clusters disintegrate during the fusion process. Syx1a nanodomains are static yet Syx1a molecules dynamically enter and leave the domains; the process by which these clusters maintain this balance is unclear. In this work, the dynamics of the Syx1a molecules is elucidated relative to the cluster position through a labeling strategy that allows both the bulk position of the Syx clusters to be visualized concurrent with the trajectories of single Syx1a molecules on the surface of PC12 cells. Single Syx1a molecules were tracked in time relative to cluster positions to decipher how Syx1a moves within a cluster and when clusters are not present. Syx1a is mobile on the plasma membrane, more mobile at the center of clusters, and less mobile near the edges of clusters; this depends on the presence of the N-terminal Habc domain and cholesterol, which are essential for proper exocytosis. Simulations of the dynamics observed at clusters support a model where clusters are maintained by a large cage (r = 100 nm) within which Syx1a remains highly mobile within the cluster (r = 50 nm). The depletion of cholesterol dramatically reduces the mobility of Syx1a within clusters and less so over the rest of the plasma membrane. This suggests that fluidity of Syx1a supramolecular clusters is needed for function.
Collapse
Affiliation(s)
- Alan W Weisgerber
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado
| | - Zdeněk Otruba
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado
| | - Michelle K Knowles
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado.
| |
Collapse
|
9
|
Kersten N, Farías GG. A voyage from the ER: spatiotemporal insights into polarized protein secretion in neurons. Front Cell Dev Biol 2023; 11:1333738. [PMID: 38188013 PMCID: PMC10766823 DOI: 10.3389/fcell.2023.1333738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
To function properly, neurons must maintain a proteome that differs in their somatodendritic and axonal domain. This requires the polarized sorting of newly synthesized secretory and transmembrane proteins into different vesicle populations as they traverse the secretory pathway. Although the trans-Golgi-network is generally considered to be the main sorting hub, this sorting process may already begin at the ER and continue through the Golgi cisternae. At each step in the sorting process, specificity is conferred by adaptors, GTPases, tethers, and SNAREs. Besides this, local synthesis and unconventional protein secretion may contribute to the polarized proteome to enable rapid responses to stimuli. For some transmembrane proteins, some of the steps in the sorting process are well-studied. These will be highlighted here. The universal rules that govern polarized protein sorting remain unresolved, therefore we emphasize the need to approach this problem in an unbiased, top-down manner. Unraveling these rules will contribute to our understanding of neuronal development and function in health and disease.
Collapse
Affiliation(s)
- Noortje Kersten
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Ginny G Farías
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
10
|
Obeid S, Berbel-Manaia E, Nicolas V, Dennemont I, Barbier J, Cintrat JC, Gillet D, Loiseau PM, Pomel S. Deciphering the mechanism of action of VP343, an antileishmanial drug candidate, in Leishmania infantum. iScience 2023; 26:108144. [PMID: 37915600 PMCID: PMC10616420 DOI: 10.1016/j.isci.2023.108144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/25/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Antileishmanial chemotherapy is currently limited due to severe toxic side effects and drug resistance. Hence, new antileishmanial compounds based on alternative approaches, mainly to avoid the emergence of drug resistance, are needed. The present work aims to decipher the mechanism of action of an antileishmanial drug candidate, named VP343, inhibiting intracellular Leishmania infantum survival via the host cell. Cell imaging showed that VP343 interferes with the fusion of parasitophorous vacuoles and host cell late endosomes and lysosomes, leading to lysosomal cholesterol accumulation and ROS overproduction within host cells. Proteomic analyses showed that VP343 perturbs host cell vesicular trafficking as well as cholesterol synthesis/transport pathways. Furthermore, a knockdown of two selected targets involved in vesicle-mediated transport, Pik3c3 and Sirt2, resulted in similar antileishmanial activity to VP343 treatment. This work revealed potential host cell pathways and targets altered by VP343 that would be of interest for further development of host-directed antileishmanial drugs.
Collapse
Affiliation(s)
- Sameh Obeid
- Université Paris-Saclay, CNRS BioCIS, 91400 Orsay, France
| | | | - Valérie Nicolas
- Université Paris-Saclay, UMS-IPSIT, Microscopy Facility, 92019 Châtenay-Malabry, France
| | | | - Julien Barbier
- Université Paris-Saclay, UMS-IPSIT, Microscopy Facility, 92019 Châtenay-Malabry, France
| | - Jean-Christophe Cintrat
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Daniel Gillet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France
| | | | | |
Collapse
|
11
|
Neuhaus M, Fryklund C, Taylor H, Borreguero-Muñoz A, Kopietz F, Ardalani H, Rogova O, Stirrat L, Bremner SK, Spégel P, Bryant NJ, Gould GW, Stenkula KG. EHD2 regulates plasma membrane integrity and downstream insulin receptor signaling events. Mol Biol Cell 2023; 34:ar124. [PMID: 37703099 PMCID: PMC10846623 DOI: 10.1091/mbc.e23-03-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023] Open
Abstract
Adipocyte dysfunction is a crucial driver of insulin resistance and type 2 diabetes. We identified EH domain-containing protein 2 (EHD2) as one of the most highly upregulated genes at the early stage of adipose-tissue expansion. EHD2 is a dynamin-related ATPase influencing several cellular processes, including membrane recycling, caveolae dynamics, and lipid metabolism. Here, we investigated the role of EHD2 in adipocyte insulin signaling and glucose transport. Using C57BL6/N EHD2 knockout mice under short-term high-fat diet conditions and 3T3-L1 adipocytes we demonstrate that EHD2 deficiency is associated with deterioration of insulin signal transduction and impaired insulin-stimulated GLUT4 translocation. Furthermore, we show that lack of EHD2 is linked with altered plasma membrane lipid and protein composition, reduced insulin receptor expression, and diminished insulin-dependent SNARE protein complex formation. In conclusion, these data highlight the importance of EHD2 for the integrity of the plasma membrane milieu, insulin receptor stability, and downstream insulin receptor signaling events, involved in glucose uptake and ultimately underscore its role in insulin resistance and obesity.
Collapse
Affiliation(s)
- Mathis Neuhaus
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Claes Fryklund
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Holly Taylor
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | | | - Franziska Kopietz
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Hamidreza Ardalani
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, 22241 Lund, Sweden
| | - Oksana Rogova
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, 22241 Lund, Sweden
| | - Laura Stirrat
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Shaun K. Bremner
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Peter Spégel
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, 22241 Lund, Sweden
| | - Nia J. Bryant
- Department of Biology and York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Gwyn W. Gould
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Karin G. Stenkula
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| |
Collapse
|
12
|
Leinung N, Mentrup T, Patel M, Gallagher T, Schröder B. Dynamic association of the intramembrane proteases SPPL2a/b and their substrates with tetraspanin-enriched microdomains. iScience 2023; 26:107819. [PMID: 37736044 PMCID: PMC10509304 DOI: 10.1016/j.isci.2023.107819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/21/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
Signal peptide peptidase-like 2a and b (SPPL2a/b) are aspartyl intramembrane proteases and cleave tail-anchored proteins as well as N-terminal fragments (NTFs) derived from type II-oriented transmembrane proteins. How these proteases recruit substrates and cleavage is regulated, is still incompletely understood. We found that SPPL2a/b localize to detergent-resistant membrane (DRM) domains with the characteristics of tetraspanin-enriched microdomains (TEMs). Based on this, association with several tetraspanins was evaluated. We demonstrate that not only SPPL2a/b but also their substrates tumor necrosis factor (TNF) and CD74 associate with tetraspanins like CD9, CD81, and CD82 and/or TEMs and analyze the stability of these complexes in different detergents. CD9 and CD81 deficiency has protease- and substrate-selective effects on SPPL2a/b function. Our findings suggest that reciprocal interactions with tetraspanins may assist protease-substrate encounters of SPPL2a/b within the membrane. Beyond SPP/SPPL proteases, this supports previous concepts that tetraspanins facilitate membrane-embedded proteolytic processes.
Collapse
Affiliation(s)
- Nadja Leinung
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Torben Mentrup
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Mehul Patel
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Bernd Schröder
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
13
|
Abstract
The formation of membrane vesicles is a common feature in all eukaryotes. Lipid rafts are the best-studied example of membrane domains for both eukaryotes and prokaryotes, and their existence also is suggested in Archaea membranes. Lipid rafts are involved in the formation of transport vesicles, endocytic vesicles, exocytic vesicles, synaptic vesicles and extracellular vesicles, as well as enveloped viruses. Two mechanisms of how rafts are involved in vesicle formation have been proposed: first, that raft proteins and/or lipids located in lipid rafts associate with coat proteins that form a budding vesicle, and second, vesicle budding is triggered by enzymatic generation of cone-shaped ceramides and inverted cone-shaped lyso-phospholipids. In both cases, induction of curvature is also facilitated by the relaxation of tension in the raft domain. In this Review, we discuss the role of raft-derived vesicles in several intracellular trafficking pathways. We also highlight their role in different pathways of endocytosis, and in the formation of intraluminal vesicles (ILVs) through budding inwards from the multivesicular body (MVB) membrane, because rafts inside MVB membranes are likely to be involved in loading RNA into ILVs. Finally, we discuss the association of glycoproteins with rafts via the glycocalyx.
Collapse
Affiliation(s)
- Karolina Sapoń
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| | - Rafał Mańka
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| | - Teresa Janas
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| | - Tadeusz Janas
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| |
Collapse
|
14
|
Ali Moussa HY, Shin KC, Ponraj J, Kim SJ, Ryu J, Mansour S, Park Y. Requirement of Cholesterol for Calcium-Dependent Vesicle Fusion by Strengthening Synaptotagmin-1-Induced Membrane Bending. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206823. [PMID: 37058136 PMCID: PMC10214243 DOI: 10.1002/advs.202206823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/09/2023] [Indexed: 05/27/2023]
Abstract
Cholesterol is essential for neuronal activity and function. Cholesterol depletion in the plasma membrane impairs synaptic transmission. However, the molecular mechanisms by which cholesterol deficiency leads to defects in vesicle fusion remain poorly understood. Here, it is shown that cholesterol is required for Ca2+ -dependent native vesicle fusion using the in vitro reconstitution of fusion and amperometry to monitor exocytosis in chromaffin cells. Purified native vesicles are crucial for the reconstitution of physiological Ca2+ -dependent fusion, because vesicle-mimicking liposomes fail to reproduce the cholesterol effect. Intriguingly, cholesterol has no effect on the membrane binding of synaptotagmin-1, a Ca2+ sensor for ultrafast fusion. Cholesterol strengthens local membrane deformation and bending induced by synaptotagmin-1, thereby lowering the energy barrier for Ca2+ -dependent fusion to occur. The data provide evidence that cholesterol depletion abolishes Ca2+ -dependent vesicle fusion by disrupting synaptotagmin-1-induced membrane bending, and suggests that cholesterol is an essential lipid regulator for Ca2+ -dependent fusion.
Collapse
Affiliation(s)
- Houda Yasmine Ali Moussa
- Neurological Disorders Research CenterQatar Biomedical Research Institute (QBRI)Hamad Bin Khalifa University (HBKU)Qatar FoundationDohaQatar
| | - Kyung Chul Shin
- Neurological Disorders Research CenterQatar Biomedical Research Institute (QBRI)Hamad Bin Khalifa University (HBKU)Qatar FoundationDohaQatar
| | | | - Soo Jin Kim
- Division of Molecular and Life SciencesPohang University of Science and TechnologyPohang790‐784Republic of Korea
| | - Je‐Kyung Ryu
- Department of Physics & AstronomySeoul National University. 1 Gwanak‐roGwanak‐guSeoul08826South Korea
| | - Said Mansour
- HBKU Core LabsHamad Bin Khalifa University (HBKU)DohaQatar
| | - Yongsoo Park
- Neurological Disorders Research CenterQatar Biomedical Research Institute (QBRI)Hamad Bin Khalifa University (HBKU)Qatar FoundationDohaQatar
- College of Health & Life Sciences (CHLS)Hamad Bin Khalifa University (HBKU)Qatar FoundationDohaQatar
| |
Collapse
|
15
|
Akefe IO, Osborne SL, Matthews B, Wallis TP, Meunier FA. Lipids and Secretory Vesicle Exocytosis. ADVANCES IN NEUROBIOLOGY 2023; 33:357-397. [PMID: 37615874 DOI: 10.1007/978-3-031-34229-5_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
In recent years, the number of studies implicating lipids in the regulation of synaptic vesicle exocytosis has risen considerably. It has become increasingly clear that lipids such as phosphoinositides, lysophospholipids, cholesterol, arachidonic acid and myristic acid play critical regulatory roles in the processes leading up to exocytosis. Lipids may affect membrane fusion reactions by altering the physical properties of the membrane, recruiting key regulatory proteins, concentrating proteins into exocytic "hotspots" or by modulating protein functions allosterically. Discrete changes in phosphoinositides concentration are involved in multiple trafficking events including exocytosis and endocytosis. Lipid-modifying enzymes such as the DDHD2 isoform of phospholipase A1 were recently shown to contribute to memory acquisition via dynamic modifications of the brain lipid landscape. Considering the increasing reports on neurodegenerative disorders associated with aberrant intracellular trafficking, an improved understanding of the control of lipid pathways is physiologically and clinically significant and will afford unique insights into mechanisms and therapeutic methods for neurodegenerative diseases. Consequently, this chapter will discuss the different classes of lipids, phospholipase enzymes, the evidence linking them to synaptic neurotransmitter release and how they act to regulate key steps in the multi-step process leading to neuronal communication and memory acquisition.
Collapse
Affiliation(s)
- Isaac O Akefe
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Shona L Osborne
- ARC Training Centre for Innovation in Biomedical Imaging Technology (CIBIT), The University of Queensland, St Lucia, QLD, Australia
| | - Benjamin Matthews
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
16
|
Galper J, Kim WS, Dzamko N. LRRK2 and Lipid Pathways: Implications for Parkinson's Disease. Biomolecules 2022; 12:1597. [PMID: 36358947 PMCID: PMC9687231 DOI: 10.3390/biom12111597] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 04/10/2024] Open
Abstract
Genetic alterations in the LRRK2 gene, encoding leucine-rich repeat kinase 2, are a common risk factor for Parkinson's disease. How LRRK2 alterations lead to cell pathology is an area of ongoing investigation, however, multiple lines of evidence suggest a role for LRRK2 in lipid pathways. It is increasingly recognized that in addition to being energy reservoirs and structural entities, some lipids, including neural lipids, participate in signaling cascades. Early investigations revealed that LRRK2 localized to membranous and vesicular structures, suggesting an interaction of LRRK2 and lipids or lipid-associated proteins. LRRK2 substrates from the Rab GTPase family play a critical role in vesicle trafficking, lipid metabolism and lipid storage, all processes which rely on lipid dynamics. In addition, LRRK2 is associated with the phosphorylation and activity of enzymes that catabolize plasma membrane and lysosomal lipids. Furthermore, LRRK2 knockout studies have revealed that blood, brain and urine exhibit lipid level changes, including alterations to sterols, sphingolipids and phospholipids, respectively. In human LRRK2 mutation carriers, changes to sterols, sphingolipids, phospholipids, fatty acyls and glycerolipids are reported in multiple tissues. This review summarizes the evidence regarding associations between LRRK2 and lipids, and the functional consequences of LRRK2-associated lipid changes are discussed.
Collapse
Affiliation(s)
- Jasmin Galper
- Charles Perkins Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Woojin S Kim
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Nicolas Dzamko
- Charles Perkins Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
17
|
Rezende L, Couto NFD, Fernandes-Braga W, Epshtein Y, Alvarez-Leite JI, Levitan I, Andrade LDO. OxLDL induces membrane structure rearrangement leading to biomechanics alteration and migration deficiency in macrophage. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183951. [PMID: 35504320 DOI: 10.1016/j.bbamem.2022.183951] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
Cholesterol sequestration from plasma membrane has been shown to induce lipid packing disruption, causing actin cytoskeleton reorganization and polymerization, increasing cell stiffness and inducing lysosomal exocytosis in non-professional phagocytes. Similarly, oxidized form of low-density lipoprotein (oxLDL) has also been shown to disrupt lipid organization and packing in endothelial cells, leading to biomechanics alterations that interfere with membrane injury and repair. For macrophages, much is known about oxLDL effects in cell activation, cytokine production and foam cell formation. However, little is known about its impact in the organization of macrophage membrane structured domains and cellular mechanics, the focus of the present study. Treatment of bone marrow-derived macrophages (BMDM) with oxLDL not only altered membrane structure, and potentially the distribution of raft domains, but also induced actin rearrangement, diffuse integrin distribution and cell shrinkage, similarly to observed upon treatment of these cells with MβCD. Those alterations led to decreased migration efficiency. For both treatments, higher co-localization of actin cytoskeleton and GM1 was observed, indicating a similar mechanism of action involving raft-like domain dynamics. Lastly, like MβCD treatment, oxLDL also induced lysosomal spreading in BMDM. We propose that OxLDL induced re-organization of membrane/cytoskeleton complex in macrophages can be attributed to the insertion of oxysterols into the membrane, which lead to changes in lipid organization and disruption of membrane structure, similar to the effect of cholesterol depletion by MβCD treatment. These results indicate that oxLDL can induce physical alterations in the complex membrane/cytoskeleton of macrophages, leading to significant biomechanical changes that compromise cell behavior.
Collapse
Affiliation(s)
- Luisa Rezende
- Department of Morphology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Natalia Fernanda Do Couto
- Department of Morphology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Medicine, University of Illinois at Chicago, Chicago, USA
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Yulia Epshtein
- Department of Medicine, University of Illinois at Chicago, Chicago, USA
| | | | - Irena Levitan
- Department of Medicine, University of Illinois at Chicago, Chicago, USA
| | | |
Collapse
|
18
|
Free Cholesterol Affects the Function and Localization of Human Na +/Taurocholate Cotransporting Polypeptide (NTCP) and Organic Cation Transporter 1 (OCT1). Int J Mol Sci 2022; 23:ijms23158457. [PMID: 35955590 PMCID: PMC9368832 DOI: 10.3390/ijms23158457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are associated with obesity. They are accompanied by increased levels of free cholesterol in the liver. Most free cholesterol resides within the plasma membrane. We assessed the impact of adding or removing free cholesterol on the function and localization of two hepatocellular uptake transporters: the Na+/taurocholate cotransporting polypeptide (NTCP) and the organic cation transporter 1 (OCT1). We used a cholesterol-MCD complex (cholesterol) to add cholesterol and methyl-β-cyclodextrin (MCD) to remove cholesterol. Our results demonstrate that adding cholesterol decreases NTCP capacity from 132 ± 20 to 69 ± 37 µL/mg/min and OCT1 capacity from 209 ± 66 to 125 ± 26 µL/mg/min. Removing cholesterol increased NTCP and OCT1 capacity to 224 ± 65 and 279 ± 20 µL/mg/min, respectively. In addition, adding cholesterol increased the localization of NTCP within lipid rafts, while adding or removing cholesterol increased OCT1 localization in lipid rafts. These results demonstrate that increased cholesterol levels can impair NTCP and OCT1 function, suggesting that the free cholesterol content of the liver can alter bile acid and drug uptake into the liver. This could explain the increased plasma bile acid levels in NAFLD and NASH patients and potentially lead to altered drug disposition.
Collapse
|
19
|
Vardar G, Salazar-Lázaro A, Zobel S, Trimbuch T, Rosenmund C. Syntaxin-1A modulates vesicle fusion in mammalian neurons via juxtamembrane domain dependent palmitoylation of its transmembrane domain. eLife 2022; 11:78182. [PMID: 35638903 PMCID: PMC9183232 DOI: 10.7554/elife.78182] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
SNAREs are undoubtedly one of the core elements of synaptic transmission. Contrary to the well characterized function of their SNARE domains bringing the plasma and vesicular membranes together, the level of contribution of their juxtamembrane domain (JMD) and the transmembrane domain (TMD) to the vesicle fusion is still under debate. To elucidate this issue, we analyzed three groups of STX1A mutations in cultured mouse hippocampal neurons: (1) elongation of STX1A’s JMD by three amino acid insertions in the junction of SNARE-JMD or JMD-TMD; (2) charge reversal mutations in STX1A’s JMD; and (3) palmitoylation deficiency mutations in STX1A’s TMD. We found that both JMD elongations and charge reversal mutations have position-dependent differential effects on Ca2+-evoked and spontaneous neurotransmitter release. Importantly, we show that STX1A’s JMD regulates the palmitoylation of STX1A’s TMD and loss of STX1A palmitoylation either through charge reversal mutation K260E or by loss of TMD cysteines inhibits spontaneous vesicle fusion. Interestingly, the retinal ribbon specific STX3B has a glutamate in the position corresponding to the K260E mutation in STX1A and mutating it with E259K acts as a molecular on-switch. Furthermore, palmitoylation of post-synaptic STX3A can be induced by the exchange of its JMD with STX1A’s JMD together with the incorporation of two cysteines into its TMD. Forced palmitoylation of STX3A dramatically enhances spontaneous vesicle fusion suggesting that STX1A regulates spontaneous release through two distinct mechanisms: one through the C-terminal half of its SNARE domain and the other through the palmitoylation of its TMD.
Collapse
Affiliation(s)
- Gülçin Vardar
- Department of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea Salazar-Lázaro
- Department of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sina Zobel
- Department of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thorsten Trimbuch
- Department of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Rosenmund
- Department of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
20
|
Kulkarni R, Wiemer EAC, Chang W. Role of Lipid Rafts in Pathogen-Host Interaction - A Mini Review. Front Immunol 2022; 12:815020. [PMID: 35126371 PMCID: PMC8810822 DOI: 10.3389/fimmu.2021.815020] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Lipid rafts, also known as microdomains, are important components of cell membranes and are enriched in cholesterol, glycophospholipids and receptors. They are involved in various essential cellular processes, including endocytosis, exocytosis and cellular signaling. Receptors are concentrated at lipid rafts, through which cellular signaling can be transmitted. Pathogens exploit these signaling mechanisms to enter cells, proliferate and egress. However, lipid rafts also play an important role in initiating antimicrobial responses by sensing pathogens via clustered pathogen-sensing receptors and triggering downstream signaling events such as programmed cell death or cytokine production for pathogen clearance. In this review, we discuss how both host and pathogens use lipid rafts and associated proteins in an arms race to survive. Special attention is given to the involvement of the major vault protein, the main constituent of a ribonucleoprotein complex, which is enriched in lipid rafts upon infection with vaccinia virus.
Collapse
Affiliation(s)
- Rakesh Kulkarni
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center, Academia Sinica and Graduate Institute of Life Science, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Rakesh Kulkarni, ; Wen Chang,
| | - Erik A. C. Wiemer
- Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Rakesh Kulkarni, ; Wen Chang,
| |
Collapse
|
21
|
Shi Y, Ye Z, Lu G, Yang N, Zhang J, Wang L, Cui J, del Pozo MA, Wu Y, Xia D, Shen HM. Cholesterol-enriched membrane micro-domaindeficiency induces doxorubicin resistancevia promoting autophagy in breast cancer. Mol Ther Oncolytics 2021; 23:311-329. [PMID: 34786475 PMCID: PMC8573103 DOI: 10.1016/j.omto.2021.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/26/2021] [Accepted: 10/07/2021] [Indexed: 10/27/2022] Open
Abstract
Drug resistance has become one of the largest challenges for cancer chemotherapies. Under certain conditions, cancer cells hijack autophagy to cope with therapeutic stress, which largely undermines the chemo-therapeutic efficacy. Currently, biomarkers indicative of autophagy-derived drug resistance remain largely inclusive. Here, we report a novel role of lipid rafts/cholesterol-enriched membrane micro-domains (CEMMs) in autophagosome biogenesis and doxorubicin resistance in breast tumors. We showed that CEMMs are required for the interaction of VAMP3 with syntaxin 6 (STX6, a cholesterol-binding SNARE protein). Upon disruption of CEMM, VAMP3 is released from STX6, resulting in the trafficking of ATG16L1-containing vesicles to recycling endosomes and subsequent autophagosome biogenesis. Furthermore, we found that CEMM marker CAV1 is decreased in breast cancer patients and that the CEMM deficiency-induced autophagy is related to doxorubicin resistance, which is overcome by autophagy inhibition. Taken together, we propose a novel model whereby CEMMs in recycling endosomes support the VAMP3 and STX6 interaction and function as barriers to limit the activity of VAMP3 in autophagic vesicle fusion, thus CEMM deficiency promotes autophagosome biogenesis and doxorubicin resistance in breast tumors.
Collapse
Affiliation(s)
- Yin Shi
- Department of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
| | - Zu Ye
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston 77030, USA
| | - Guang Lu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
| | - Naidi Yang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, Jiangsu Province 211800, China
| | - Jianbin Zhang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
| | - Liming Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
- School of Biomedical Science, Hunan University, Changsha, Hunan, China
| | - Jianzhou Cui
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
| | - Miguel A. del Pozo
- Integrin Signaling Laboratory, Vascular Biology and Inflammation Department, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Yihua Wu
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| |
Collapse
|
22
|
Membrane Domain Localization and Interaction of the Prion-Family Proteins, Prion and Shadoo with Calnexin. MEMBRANES 2021; 11:membranes11120978. [PMID: 34940479 PMCID: PMC8704586 DOI: 10.3390/membranes11120978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
The cellular prion protein (PrPC) is renowned for its infectious conformational isoform PrPSc, capable of templating subsequent conversions of healthy PrPCs and thus triggering the group of incurable diseases known as transmissible spongiform encephalopathies. Besides this mechanism not being fully uncovered, the protein’s physiological role is also elusive. PrPC and its newest, less understood paralog Shadoo are glycosylphosphatidylinositol-anchored proteins highly expressed in the central nervous system. While they share some attributes and neuroprotective actions, opposing roles have also been reported for the two; however, the amount of data about their exact functions is lacking. Protein–protein interactions and membrane microdomain localizations are key determinants of protein function. Accurate identification of these functions for a membrane protein, however, can become biased due to interactions occurring during sample processing. To avoid such artifacts, we apply a non-detergent-based membrane-fractionation approach to study the prion protein and Shadoo. We show that the two proteins occupy similarly raft and non-raft membrane fractions when expressed in N2a cells and that both proteins pull down the chaperone calnexin in both rafts and non-rafts. These indicate their possible binding to calnexin in both types of membrane domains, which might be a necessary requisite to aid the inherently unstable native conformation during their lifetime.
Collapse
|
23
|
Caveolin-1 deficiency impairs synaptic transmission in hippocampal neurons. Mol Brain 2021; 14:53. [PMID: 33726791 PMCID: PMC7962241 DOI: 10.1186/s13041-021-00764-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/25/2021] [Indexed: 11/10/2022] Open
Abstract
In addition to providing structural support, caveolin-1 (Cav1), a component of lipid rafts, including caveolae, in the plasma membrane, is involved in various cellular mechanisms, including signal transduction. Although pre-synaptic membrane dynamics and trafficking are essential cellular processes during synaptic vesicle exocytosis/synaptic transmission and synaptic vesicle endocytosis/synaptic retrieval, little is known about the involvement of Cav1 in synaptic vesicle dynamics. Here we demonstrate that synaptic vesicle exocytosis is significantly impaired in Cav1-knockdown (Cav1-KD) neurons. Specifically, the size of the synaptic recycled vesicle pool is modestly decreased in Cav1-KD synapses and the kinetics of synaptic vesicle endocytosis are somewhat slowed. Notably, neurons rescued by triple mutants of Cav1 lacking palmitoylation sites mutants show impairments in both synaptic transmission and retrieval. Collectively, our findings implicate Cav1 in activity-driven synaptic vesicle dynamics-both exocytosis and endocytosis-and demonstrate that palmitoylation of Cav1 is important for this activity.
Collapse
|
24
|
Sundaram RVK, Jin H, Li F, Shu T, Coleman J, Yang J, Pincet F, Zhang Y, Rothman JE, Krishnakumar SS. Munc13 binds and recruits SNAP25 to chaperone SNARE complex assembly. FEBS Lett 2021; 595:297-309. [PMID: 33222163 PMCID: PMC8068094 DOI: 10.1002/1873-3468.14006] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 11/10/2022]
Abstract
Synaptic vesicle fusion is mediated by SNARE proteins-VAMP2 on the vesicle and Syntaxin-1/SNAP25 on the presynaptic membrane. Chaperones Munc18-1 and Munc13-1 cooperatively catalyze SNARE assembly via an intermediate 'template' complex containing Syntaxin-1 and VAMP2. How SNAP25 enters this reaction remains a mystery. Here, we report that Munc13-1 recruits SNAP25 to initiate the ternary SNARE complex assembly by direct binding, as judged by bulk FRET spectroscopy and single-molecule optical tweezer studies. Detailed structure-function analyses show that the binding is mediated by the Munc13-1 MUN domain and is specific for the SNAP25 'linker' region that connects the two SNARE motifs. Consequently, freely diffusing SNAP25 molecules on phospholipid bilayers are concentrated and bound in ~ 1 : 1 stoichiometry by the self-assembled Munc13-1 nanoclusters.
Collapse
Affiliation(s)
- R Venkat Kalyana Sundaram
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Huaizhou Jin
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Feng Li
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Tong Shu
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Jeff Coleman
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Jie Yang
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Frederic Pincet
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
- Laboratoire de Physique de Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université de Paris 06, F-75005 Paris, France
| | - Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - James E. Rothman
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Shyam S. Krishnakumar
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, Queens Square House, London WC1 3BG, UK
| |
Collapse
|
25
|
Kiyoshi C, Tedeschi A. Axon growth and synaptic function: A balancing act for axonal regeneration and neuronal circuit formation in CNS trauma and disease. Dev Neurobiol 2020; 80:277-301. [PMID: 32902152 PMCID: PMC7754183 DOI: 10.1002/dneu.22780] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
Axons in the adult mammalian central nervous system (CNS) fail to regenerate inside out due to intrinsic and extrinsic neuronal determinants. During CNS development, axon growth, synapse formation, and function are tightly regulated processes allowing immature neurons to effectively grow an axon, navigate toward target areas, form synaptic contacts and become part of information processing networks that control behavior in adulthood. Not only immature neurons are able to precisely control the expression of a plethora of genes necessary for axon extension and pathfinding, synapse formation and function, but also non-neuronal cells such as astrocytes and microglia actively participate in sculpting the nervous system through refinement, consolidation, and elimination of synaptic contacts. Recent evidence indicates that a balancing act between axon regeneration and synaptic function may be crucial for rebuilding functional neuronal circuits after CNS trauma and disease in adulthood. Here, we review the role of classical and new intrinsic and extrinsic neuronal determinants in the context of CNS development, injury, and disease. Moreover, we discuss strategies targeting neuronal and non-neuronal cell behaviors, either alone or in combination, to promote axon regeneration and neuronal circuit formation in adulthood.
Collapse
Affiliation(s)
- Conrad Kiyoshi
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Andrea Tedeschi
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Discovery Theme on Chronic Brain Injury, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
26
|
Wang C, Tu J, Zhang S, Cai B, Liu Z, Hou S, Zhong Q, Hu X, Liu W, Li G, Liu Z, He L, Diao J, Zhu ZJ, Li D, Liu C. Different regions of synaptic vesicle membrane regulate VAMP2 conformation for the SNARE assembly. Nat Commun 2020; 11:1531. [PMID: 32210233 PMCID: PMC7093461 DOI: 10.1038/s41467-020-15270-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 02/25/2020] [Indexed: 01/16/2023] Open
Abstract
Vesicle associated membrane protein 2 (VAMP2/synaptobrevin2), a core SNARE protein residing on synaptic vesicles (SVs), forms helix bundles with syntaxin-1 and SNAP25 for the SNARE assembly. Prior to the SNARE assembly, the structure of VAMP2 is unclear. Here, by using in-cell NMR spectroscopy, we describe the dynamic membrane association of VAMP2 SNARE motif in mammalian cells, and the structural change of VAMP2 upon the change of intracellular lipid environment. We analyze the lipid compositions of the SV membrane by mass-spectrometry-based lipidomic profiling, and further reveal that VAMP2 forms distinctive conformations in different membrane regions. In contrast to the non-raft region, the membrane region of cholesterol-rich lipid raft markedly weakens the membrane association of VAMP2 SNARE motif, which releases the SNARE motif and facilitates the SNARE assembly. Our work reveals the regulation of different membrane regions on VAMP2 structure and sheds light on the spatial regulation of SNARE assembly.
Collapse
Affiliation(s)
- Chuchu Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia Tu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Bin Cai
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Zhenying Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shouqiao Hou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinglu Zhong
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiao Hu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Wenbin Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, ZhangJiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China. .,Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| |
Collapse
|
27
|
Egawa J, Zemljic-Harpf A, Mandyam CD, Niesman IR, Lysenko LV, Kleschevnikov AM, Roth DM, Patel HH, Patel PM, Head BP. Neuron-Targeted Caveolin-1 Promotes Ultrastructural and Functional Hippocampal Synaptic Plasticity. Cereb Cortex 2019; 28:3255-3266. [PMID: 28981594 DOI: 10.1093/cercor/bhx196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Indexed: 12/15/2022] Open
Abstract
A delicate interneuronal communication between pre- and postsynaptic membranes is critical for synaptic plasticity and the formation of memory. Evidence shows that membrane/lipid rafts (MLRs), plasma membrane microdomains enriched in cholesterol and sphingolipids, organize presynaptic proteins and postsynaptic receptors necessary for synaptic formation and signaling. MLRs establish a cell polarity that facilitates transduction of extracellular cues to the intracellular environment. Here we show that neuron-targeted overexpression of an MLR protein, caveolin-1 (SynCav1), in the adult mouse hippocampus increased the number of presynaptic vesicles per bouton, total excitatory type I glutamatergic synapses, number of same-dendrite multiple-synapse boutons, increased myelination, increased long-term potentiation, and increased MLR-localized N-methyl-d-aspartate receptor subunits (GluN1, GluN2A, and GluN2B). Immunogold electron microscopy revealed that Cav-1 localizes to both the pre- and postsynaptic membrane regions as well as in the synaptic cleft. These findings, which are consistent with a significant increase in ultrastructural and functional synaptic plasticity, provide a fundamental framework that underlies previously demonstrated improvements in learning and memory in adult and aged mice by SynCav1. Such observations suggest that Cav-1 and MLRs alter basic aspects of synapse biology that could serve as potential therapeutic targets to promote neuroplasticity and combat neurodegeneration in a number of neurological disorders.
Collapse
Affiliation(s)
- Junji Egawa
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Alice Zemljic-Harpf
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Chitra D Mandyam
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Larisa V Lysenko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | | | - David M Roth
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hemal H Patel
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Piyush M Patel
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Brian P Head
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
28
|
Sviridov D, Miller YI. Biology of Lipid Rafts: Introduction to the Thematic Review Series. J Lipid Res 2019; 61:598-600. [PMID: 31462515 DOI: 10.1194/jlr.in119000330] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipid rafts are organized plasma membrane microdomains, which provide a distinct level of regulation of cellular metabolism and response to extracellular stimuli, affecting a diverse range of physiologic and pathologic processes. This Thematic Review Series focuses on Biology of Lipid Rafts rather than on their composition or structure. The aim is to provide an overview of ideas on how lipid rafts are involved in regulation of different pathways and how they interact with other layers of metabolic regulation. Articles in the series will review the involvement of lipid rafts in regulation of hematopoiesis, production of extracellular vesicles, host interaction with infection, and the development and progression of cancer, neuroinflammation, and neurodegeneration, as well as the current outlook on therapeutic targeting of lipid rafts.
Collapse
Affiliation(s)
- Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
| | - Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
29
|
Gangliosides interact with synaptotagmin to form the high-affinity receptor complex for botulinum neurotoxin B. Proc Natl Acad Sci U S A 2019; 116:18098-18108. [PMID: 31431523 DOI: 10.1073/pnas.1908051116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Botulinum neurotoxin type B (BoNT/B) recognizes nerve terminals by binding to 2 receptor components: a polysialoganglioside, predominantly GT1b, and synaptotagmin 1/2. It is widely thought that BoNT/B initially binds to GT1b then diffuses in the plane of the membrane to interact with synaptotagmin. We have addressed the hypothesis that a GT1b-synaptotagmin cis complex forms the BoNT/B receptor. We identified a consensus glycosphingolipid-binding motif in the extracellular juxtamembrane domain of synaptotagmins 1/2 and confirmed by Langmuir monolayer, surface plasmon resonance, and circular dichroism that GT1b interacts with synaptotagmin peptides containing this sequence, inducing α-helical structure. Molecular modeling and tryptophan fluorescence spectroscopy were consistent with the intertwining of GT1b and synaptotagmin, involving cis interactions between the oligosaccharide and ceramide moieties of GT1b and the juxtamembrane and transmembrane domains of synaptotagmin, respectively. Furthermore, a point mutation on synaptotagmin, located outside of the BoNT/B-binding segment, inhibited GT1b binding and blocked GT1b-induced potentiation of BoNT/B binding to synaptotagmin-expressing cells. Our findings are consistent with a model in which a preassembled GT1b-synaptotagmin complex constitutes the high-affinity BoNT/B receptor.
Collapse
|
30
|
Biochemical studies of membrane fusion at the single-particle level. Prog Lipid Res 2019; 73:92-100. [PMID: 30611882 DOI: 10.1016/j.plipres.2019.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 01/21/2023]
Abstract
To study membrane fusion mediated by synaptic proteins, proteoliposomes have been widely used for in vitro ensemble measurements with limited insights into the fusion mechanism. Single-particle techniques have proven to be powerful in overcoming the limitations of traditional ensemble methods. Here, we summarize current single-particle methods in biophysical and biochemical studies of fusion mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and other synaptic proteins, together with their advantages and limitations.
Collapse
|
31
|
Younan P, Iampietro M, Santos RI, Ramanathan P, Popov VL, Bukreyev A. Disruption of Phosphatidylserine Synthesis or Trafficking Reduces Infectivity of Ebola Virus. J Infect Dis 2018; 218:S475-S485. [PMID: 30289506 PMCID: PMC6249599 DOI: 10.1093/infdis/jiy489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The outer leaflet of the viral membrane of Ebola virus (EBOV) virions is enriched with phosphatidylserine (PtdSer), which is thought to play a central role in viral tropism, entry, and virus-associated immune evasion. We investigated the effects of inhibiting synthesis and/or export of PtdSer to the cell surface of infected cells on viral infectivity. Knockdown of both PtdSer synthase enzymes, PTDSS1 and PTDSS2, effectively decreased viral production. Decreased PtdSer expression resulted in an accumulation of virions at the plasma membrane and adjacent of intracellular organelles, suggesting that virion budding is impaired. The addition of inhibitors that block normal cellular trafficking of PtdSer to the plasma membrane resulted in a similar accumulation of virions and reduced viral replication. These findings demonstrate that plasma membrane-associated PtdSer is required for efficient EBOV budding, increasing EBOV infectivity, and could constitute a potential therapeutic target for the development of future countermeasures against EBOV.
Collapse
Affiliation(s)
- Patrick Younan
- Departments of Pathology, Galveston, Texas
- Galveston National Laboratory, Galveston, Texas
- The University of Texas Medical Branch, Galveston, Texas
| | - Mathieu Iampietro
- Departments of Pathology, Galveston, Texas
- Galveston National Laboratory, Galveston, Texas
- The University of Texas Medical Branch, Galveston, Texas
| | - Rodrigo I Santos
- Departments of Pathology, Galveston, Texas
- Galveston National Laboratory, Galveston, Texas
- The University of Texas Medical Branch, Galveston, Texas
| | - Palaniappan Ramanathan
- Departments of Pathology, Galveston, Texas
- Galveston National Laboratory, Galveston, Texas
- The University of Texas Medical Branch, Galveston, Texas
| | - Vsevolod L Popov
- Departments of Pathology, Galveston, Texas
- The University of Texas Medical Branch, Galveston, Texas
| | - Alexander Bukreyev
- Departments of Pathology, Galveston, Texas
- Microbiology and Immunology, Galveston, Texas
- Galveston National Laboratory, Galveston, Texas
- The University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
32
|
Huang Y, Huang S, Di Scala C, Wang Q, Wandall HH, Fantini J, Zhang YQ. The glycosphingolipid MacCer promotes synaptic bouton formation in Drosophila by interacting with Wnt. eLife 2018; 7:38183. [PMID: 30355446 PMCID: PMC6202054 DOI: 10.7554/elife.38183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/09/2018] [Indexed: 01/05/2023] Open
Abstract
Lipids are structural components of cellular membranes and signaling molecules that are widely involved in development and diseases, but the underlying molecular mechanisms are poorly understood, partly because of the vast variety of lipid species and complexity of synthetic and turnover pathways. From a genetic screen, we identify that mannosyl glucosylceramide (MacCer), a species of glycosphingolipid (GSL), promotes synaptic bouton formation at the Drosophila neuromuscular junction (NMJ). Pharmacological and genetic analysis shows that the NMJ growth-promoting effect of MacCer depends on normal lipid rafts, which are known to be composed of sphingolipids, sterols and select proteins. MacCer positively regulates the synaptic level of Wnt1/Wingless (Wg) and facilitates presynaptic Wg signaling, whose activity is raft-dependent. Furthermore, a functional GSL-binding motif in Wg exhibiting a high affinity for MacCer is required for normal NMJ growth. These findings reveal a novel mechanism whereby the GSL MacCer promotes synaptic bouton formation via Wg signaling.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China
| | - Sheng Huang
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China.,Sino-Danish College, Sino-Danish Center for Education and Research, Chinese Academy of Sciences, Beijing, China
| | | | - Qifu Wang
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacques Fantini
- UNIS UMR_S 1072, INSERM, Aix-Marseille Université, Marseille, France
| | - Yong Q Zhang
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China
| |
Collapse
|
33
|
Ampah KK, Greaves J, Shun-Shion AS, Asnawi AW, Lidster JA, Chamberlain LH, Collins MO, Peden AA. S-acylation regulates the trafficking and stability of the unconventional Q-SNARE STX19. J Cell Sci 2018; 131:jcs.212498. [PMID: 30254024 DOI: 10.1242/jcs.212498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 09/17/2018] [Indexed: 12/19/2022] Open
Abstract
STX19 is an unusual Qa-SNARE as it lacks a C-terminal transmembrane domain. However, it is efficiently targeted to post-Golgi membranes. Here, we set out to determine the intracellular localisation of endogenous STX19 and elucidate the mechanism by which it is targeted to membranes. We have found that a pool of STX19 is localised to tubular recycling endosomes where it colocalises with MICAL-L1 and Rab8 (which has Rab8a and Rab8b forms). Using a combination of genetic, biochemical and cell-based approaches, we have identified that STX19 is S-acylated at its C-terminus and is a substrate for several Golgi-localised S-acyltransferases, suggesting that STX19 is initially S-acylated at the Golgi before trafficking to the plasma membrane and endosomes. Surprisingly, we have found that S-acylation is a key determinant in targeting STX19 to tubular recycling endosomes, suggesting that S-acylation may play a general role in directing proteins to this compartment. In addition, S-acylation also protects STX19 from proteosomal degradation, indicating that S-acylation regulates the function of STX19 at multiple levels.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Khamal K Ampah
- Department of Biomedical Science, Centre for Membrane Interactions and Dynamics, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | - Jennifer Greaves
- Faculty of Health and Life Sciences, Coventry University, Science and Health Building, 20 Whitefriars Street, Coventry CV1 2DS, UK
| | - Amber S Shun-Shion
- Department of Biomedical Science, Centre for Membrane Interactions and Dynamics, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | - Asral W Asnawi
- Department of Biomedical Science, Centre for Membrane Interactions and Dynamics, University of Sheffield, Firth Court, Sheffield S10 2TN, UK.,Faculty of Medicine and Health Sciences, University Sains Islam Malaysia, 55700 Kuala Lumpur, Malaysia
| | - Jessica A Lidster
- Department of Biomedical Science, Centre for Membrane Interactions and Dynamics, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | - Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Mark O Collins
- Department of Biomedical Science, Centre for Membrane Interactions and Dynamics, University of Sheffield, Firth Court, Sheffield S10 2TN, UK.,Faculty of Science, Mass Spectrometry Centre, University of Sheffield, Brook Hill Road, Sheffield S3 7HF, UK
| | - Andrew A Peden
- Department of Biomedical Science, Centre for Membrane Interactions and Dynamics, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| |
Collapse
|
34
|
Liu JJ, Hezghia A, Shaikh SR, Cenido JF, Stark RE, Mann JJ, Sublette ME. Regulation of monoamine transporters and receptors by lipid microdomains: implications for depression. Neuropsychopharmacology 2018; 43:2165-2179. [PMID: 30022062 PMCID: PMC6135777 DOI: 10.1038/s41386-018-0133-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/24/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022]
Abstract
Lipid microdomains ("rafts") are dynamic, nanoscale regions of the plasma membrane enriched in cholesterol and glycosphingolipids, that possess distinctive physicochemical properties including higher order than the surrounding membrane. Lipid microdomain integrity is thought to affect neurotransmitter signaling by regulating membrane-bound protein signaling. Among the proteins potentially affected are monoaminergic receptors and transporters. As dysfunction of monoaminergic neurotransmission is implicated in major depressive disorder and other neuropsychiatric conditions, interactions with lipid microdomains may be of clinical importance. This systematic review evaluates what is known about the molecular relationships of monoamine transporter and receptor regulation to lipid microdomains. The PubMed/MeSH database was searched for original studies published in English through August 2017 concerning relationships between lipid microdomains and serotonin, dopamine and norepinephrine transporters and receptors. Fifty-seven publications were identified and assessed. Strong evidence implicates lipid microdomains in the regulation of serotonin and norepinephrine transporters; serotonin 1A, 2A, 3A, and 7A receptors; and dopamine D1 and β2 adrenergic receptors. Results were conflicting or more complex regarding lipid microdomain associations with the dopamine transporter, D2, D3, and D5 receptors; and negative with respect to β1 adrenergic receptors. Indirect evidence suggests that antidepressants, lipid-lowering drugs, and polyunsaturated fatty acids may exert effects on depression and suicide by altering the lipid milieu, thereby affecting monoaminergic transporter and receptor signaling. The lipid composition of membrane subdomains is involved in localization and trafficking of specific monoaminergic receptors and transporters. Elucidating precise mechanisms whereby lipid microdomains modulate monoamine neurotransmission in clinical contexts can have critical implications for pharmacotherapeutic targeting.
Collapse
Affiliation(s)
- Joanne J Liu
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Chestnut Hill Hospital, Philadelphia, PA, USA
| | - Adrienne Hezghia
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joshua F Cenido
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Ruth E Stark
- Department of Chemistry and Biochemistry and CUNY Institute for Macromolecular Assemblies, The City College of New York, New York, NY, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - J John Mann
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
| | - M Elizabeth Sublette
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA.
- Department of Psychiatry, Columbia University, New York, NY, USA.
| |
Collapse
|
35
|
West RJH, Briggs L, Perona Fjeldstad M, Ribchester RR, Sweeney ST. Sphingolipids regulate neuromuscular synapse structure and function in Drosophila. J Comp Neurol 2018; 526:1995-2009. [PMID: 29761896 PMCID: PMC6175220 DOI: 10.1002/cne.24466] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/27/2022]
Abstract
Sphingolipids are found in abundance at synapses and have been implicated in regulation of synapse structure, function, and degeneration. Their precise role in these processes, however, remains obscure. Serine Palmitoyl-transferase (SPT) is the first enzymatic step for synthesis of sphingolipids. Analysis of the Drosophila larval neuromuscular junction (NMJ) revealed mutations in the SPT enzyme subunit, lace/SPTLC2 resulted in deficits in synaptic structure and function. Although NMJ length is normal in lace mutants, the number of boutons per NMJ is reduced to ∼50% of the wild type number. Synaptic boutons in lace mutants are much larger but show little perturbation to the general ultrastructure. Electrophysiological analysis of lace mutant synapses revealed strong synaptic transmission coupled with predominance of depression over facilitation. The structural and functional phenotypes of lace mirrored aspects of Basigin (Bsg), a small Ig-domain adhesion molecule also known to regulate synaptic structure and function. Mutant combinations of lace and Bsg generated large synaptic boutons, while lace mutants showed abnormal accumulation of Bsg at synapses, suggesting that Bsg requires sphingolipid to regulate structure of the synapse. In support of this, we found Bsg to be enriched in lipid rafts. Our data points to a role for sphingolipids in the regulation and fine-tuning of synaptic structure and function while sphingolipid regulation of synaptic structure may be mediated via the activity of Bsg.
Collapse
Affiliation(s)
- Ryan J. H. West
- Department of Biology and Hull York Medical SchoolUniversity of YorkHeslingtonYork YO10 5DDUK
| | - Laura Briggs
- Department of Biology and Hull York Medical SchoolUniversity of YorkHeslingtonYork YO10 5DDUK
| | - Maria Perona Fjeldstad
- Euan MacDonald Centre for Motor Neurone Disease Research and Centre for Discovery Brain SciencesUniversity of EdinburghEdinburgh EH8 9JZUK
| | - Richard R. Ribchester
- Euan MacDonald Centre for Motor Neurone Disease Research and Centre for Discovery Brain SciencesUniversity of EdinburghEdinburgh EH8 9JZUK
| | - Sean T. Sweeney
- Department of Biology and Hull York Medical SchoolUniversity of YorkHeslingtonYork YO10 5DDUK
| |
Collapse
|
36
|
Garcia-Martinez V, Gimenez-Molina Y, Villanueva J, Darios FD, Davletov B, Gutiérrez LM. Emerging evidence for the modulation of exocytosis by signalling lipids. FEBS Lett 2018; 592:3493-3503. [PMID: 29962039 PMCID: PMC6282582 DOI: 10.1002/1873-3468.13178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/01/2018] [Accepted: 06/27/2018] [Indexed: 01/22/2023]
Abstract
Membrane fusion is a key event in exocytosis of neurotransmitters and hormones stored in intracellular vesicles. In this process, soluble N‐ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins are essential components of the exocytotic molecular machinery, while lipids have been seen traditionally as structural elements. However, the so‐called signalling lipids, such as sphingosine and arachidonic acid, interact with SNAREs and directly modulate the frequency and mode of fusion events. Interestingly, recent work has proved that the sphingosine analogue FTY‐720, used in the treatment of multiple sclerosis, mimics the effects of signalling lipids. In the present Review, we discuss recent investigations suggesting that endogenous signalling lipids and synthetic analogues can modulate important physiological aspects of secretion, such as quantal release, vesicle recruitment into active sites, vesicle transport and even organelle fusion in the cytosol. Therefore, these compounds are far from being merely structural components of cellular membranes.
Collapse
Affiliation(s)
- Virginia Garcia-Martinez
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, Alicante, Spain
| | - Yolanda Gimenez-Molina
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, Alicante, Spain
| | - José Villanueva
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, Alicante, Spain
| | - Frederic D Darios
- Inserm, U1127, CNRS, UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Université, Paris, France
| | - Bazbek Davletov
- Department of Biomedical Sciences, University of Sheffield, UK
| | - Luis M Gutiérrez
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, Alicante, Spain
| |
Collapse
|
37
|
Nakaya N, Sultana A, Tomarev SI. Impaired AMPA receptor trafficking by a double knockout of zebrafish olfactomedin1a/b. J Neurochem 2017; 143:635-644. [PMID: 28975619 DOI: 10.1111/jnc.14231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/15/2017] [Accepted: 09/27/2017] [Indexed: 01/06/2023]
Abstract
The olfm1a and olfm1b genes in zebrafish encode conserved secreted glycoproteins. These genes are preferentially expressed in the brain and retina starting from 16 h post-fertilization until adulthood. Functions of the Olfm1 gene is still unclear. Here, we produced and analyzed a null zebrafish mutant of both olfm1a and olfm1b genes (olfm1 null). olfm1 null fish were born at a normal Mendelian ratio and showed normal body shape and fertility as well as no visible defects from larval stages to adult. Olfm1 proteins were preferentially localized in the synaptosomes of the adult brain. Olfm1 co-immunoprecipitated with GluR2 and soluble NSF attachment protein receptor complexes indicating participation of Olfm1 in both pre- and post-synaptic events. Phosphorylation of GluR2 was not changed while palmitoylation of GluR2 was decreased in the brain synaptosomal membrane fraction of olfm1 null compared with wt fish. The levels of GluR2, SNAP25, flotillin1, and VAMP2 were markedly reduced in the synaptic microdomain of olfm1 null brain compared with wt. The internalization of GluR2 in retinal cells and the localization of VAMP2 in brain synaptosome were modified by olfm1 null mutation. This indicates that Olfm1 may regulate receptor trafficking from the intracellular compartments to the synaptic membrane microdomain, partly through the alteration of post-translational GluR2 modifications such as palmitoylation. Olfm1 may be considered a novel regulator of the composition and function of the α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor complex.
Collapse
Affiliation(s)
- Naoki Nakaya
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Afia Sultana
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Stanislav I Tomarev
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
38
|
Merklinger E, Schloetel JG, Weber P, Batoulis H, Holz S, Karnowski N, Finke J, Lang T. The packing density of a supramolecular membrane protein cluster is controlled by cytoplasmic interactions. eLife 2017; 6. [PMID: 28722652 PMCID: PMC5536946 DOI: 10.7554/elife.20705] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 07/17/2017] [Indexed: 01/24/2023] Open
Abstract
Molecule clustering is an important mechanism underlying cellular self-organization. In the cell membrane, a variety of fundamentally different mechanisms drive membrane protein clustering into nanometre-sized assemblies. To date, it is unknown whether this clustering process can be dissected into steps differentially regulated by independent mechanisms. Using clustered syntaxin molecules as an example, we study the influence of a cytoplasmic protein domain on the clustering behaviour. Analysing protein mobility, cluster size and accessibility to myc-epitopes we show that forces acting on the transmembrane segment produce loose clusters, while cytoplasmic protein interactions mediate a tightly packed state. We conclude that the data identify a hierarchy in membrane protein clustering likely being a paradigm for many cellular self-organization processes. DOI:http://dx.doi.org/10.7554/eLife.20705.001
Collapse
Affiliation(s)
- Elisa Merklinger
- Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jan-Gero Schloetel
- Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Pascal Weber
- Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Helena Batoulis
- Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Sarah Holz
- Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Nora Karnowski
- Chemical Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jérôme Finke
- Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Thorsten Lang
- Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
39
|
Szilagyi JT, Vetrano AM, Laskin JD, Aleksunes LM. Localization of the placental BCRP/ABCG2 transporter to lipid rafts: Role for cholesterol in mediating efflux activity. Placenta 2017. [PMID: 28623970 DOI: 10.1016/j.placenta.2017.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The breast cancer resistance protein (BCRP/ABCG2) is an efflux transporter in the placental barrier. By transporting chemicals from the fetal to the maternal circulation, BCRP limits fetal exposure to a range of drugs, toxicants, and endobiotics such as bile acids and hormones. The purpose of the present studies was to 1) determine whether BCRP localizes to highly-ordered, cholesterol-rich lipid raft microdomains in placenta microvillous membranes, and 2) determine the impact of cholesterol on BCRP-mediated placental transport in vitro. METHODS BCRP expression was analyzed in lipid rafts isolated from placentas from healthy, term pregnancies and BeWo trophoblasts by density gradient ultracentrifugation. BeWo cells were also tested for their ability to efflux BCRP substrates after treatment with the cholesterol sequestrant methyl-β-cyclodextrin (MβCD, 5 mM, 1 h) or the cholesterol synthesis inhibitor pravastatin (200 μM, 48 h). RESULTS AND DISCUSSION BCRP was found to co-localize with lipid raft proteins in detergent-resistant, lipid raft-containing fractions from placental microvillous membranes and BeWo cells. Treatment of BeWo cells with MβCD redistributed BCRP protein into higher density non-lipid raft fractions. Repletion of the cells with cholesterol restored BCRP localization to lipid raft-containing fractions. Treatment of BeWo cells with MβCD or pravastatin increased cellular retention of two BCRP substrates, the fluorescent dye Hoechst 33342 and the mycotoxin zearalenone. Repletion with cholesterol restored BCRP transporter activity. Taken together, these data demonstrate that cholesterol may play a critical role in the post-translational regulation of BCRP in placental lipid rafts.
Collapse
Affiliation(s)
- John T Szilagyi
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, 170 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| | - Anna M Vetrano
- Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, 1 Robert Wood Johnson Place, New Brunswick, NJ 08901, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, 170 Frelinghuysen Rd, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ 08854, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd, Piscataway, NJ 08854, USA.
| |
Collapse
|
40
|
Gordon DE, Chia J, Jayawardena K, Antrobus R, Bard F, Peden AA. VAMP3/Syb and YKT6 are required for the fusion of constitutive secretory carriers with the plasma membrane. PLoS Genet 2017; 13:e1006698. [PMID: 28403141 PMCID: PMC5406017 DOI: 10.1371/journal.pgen.1006698] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/26/2017] [Accepted: 03/15/2017] [Indexed: 11/19/2022] Open
Abstract
The cellular machinery required for the fusion of constitutive secretory vesicles with the plasma membrane in metazoans remains poorly defined. To address this problem we have developed a powerful, quantitative assay for measuring secretion and used it in combination with combinatorial gene depletion studies in Drosophila cells. This has allowed us to identify at least three SNARE complexes mediating Golgi to PM transport (STX1, SNAP24/29 and Syb; STX1, SNAP24/29 and YKT6; STX4, SNAP24 and Syb). RNAi mediated depletion of YKT6 and VAMP3 in mammalian cells also blocks constitutive secretion suggesting that YKT6 has an evolutionarily conserved role in this process. The unexpected role of YKT6 in plasma membrane fusion may in part explain why RNAi and gene disruption studies have failed to produce the expected phenotypes in higher eukaryotes.
Collapse
Affiliation(s)
- David E. Gordon
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, United States of America
| | - Joanne Chia
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore
| | - Kamburpola Jayawardena
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, United Kingdom
| | - Frederic Bard
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore
| | - Andrew A. Peden
- Department of Biomedical Science & Centre for Membrane Interactions and Dynamics (CMIAD), The University of Sheffield, Western Bank, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Wang M, Uchiumi O, Ogiso H, Shui Y, Zou J, Hashizume C, Taniguchi M, Okazaki T, Kato N. Stressful learning paradigm precludes manifestation of cognitive ability in sphingomyelin synthase-2 knockout mice. Behav Brain Res 2016; 319:25-30. [PMID: 27840247 DOI: 10.1016/j.bbr.2016.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022]
Abstract
Sphingomyelin synthases (SMSs) are enzymes converting ceramide to sphingomyelin. The behavioral phenotype attributed to their disruption has not been well described. We examined learning ability and hippocampal synaptic plasticity in mice deficient in SMS2 (SMS2 KO). In context-dependent fear learning and novel object recognition test, no difference in learning ability was detected in SMS2 KO and wild-type (WT) mice. By contrast, achievement of the Morris water maze (MWM) test was deteriorated in SMS2 KO mice. In the hippocampal CA1, while the basic synaptic transmission was normal, both short- and long-term synaptic plasticity was moderately suppressed. We interpret that the MWM test taking place in wet environment may represent learning paradigm under more stressful condition than those performed in dry conditions, and that the learning ability of SMS2 KO mice failed to manifest itself fully in stressful situations. In agreement, forced swimming induced depression-like behavior more easily in SMS2 KO mice. Mass spectrometry suggested a slightly altered species distribution of ceramide in the hippocampus of SMS2 KO mice. These findings support the proposal that altered synthesis of ceramide, which is the substrate of SMS2 and therefore expected to be modified in SMS2 KO mice, is associated with depression-like tendency in animal models and depressive disorder in humans.
Collapse
Affiliation(s)
- Min Wang
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan; Medical Research Institute, Kanazawa Medical University, Ishikawa, 920-0293, Japan; Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Osamu Uchiumi
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Hideo Ogiso
- Department of Hematology-Immunology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Yuan Shui
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Jingyu Zou
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan; First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Chieko Hashizume
- Department of Hematology-Immunology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Makoto Taniguchi
- Department of Hematology-Immunology, Kanazawa Medical University, Ishikawa, 920-0293, Japan; Medical Research Institute, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Toshiro Okazaki
- Department of Hematology-Immunology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan.
| |
Collapse
|
42
|
Lee JH, Hsieh CF, Liu HW, Chen CY, Wu SC, Chen TW, Hsu CS, Liao YH, Yang CY, Shyu JF, Fischer WB, Lin CH. Lipid raft-associated stomatin enhances cell fusion. FASEB J 2016; 31:47-59. [PMID: 27663861 DOI: 10.1096/fj.201600643r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/07/2016] [Indexed: 01/25/2023]
Abstract
Membrane fusions that occur during vesicle transport, virus infection, and tissue development, involve receptors that mediate membrane contact and initiate fusion and effectors that execute membrane reorganization and fusion pore formation. Some of these fusogenic receptors/effectors are preferentially recruited to lipid raft membrane microdomains. Therefore, major constituents of lipid rafts, such as stomatin, may be involved in the regulation of cell-cell fusion. Stomatin produced in cells can be released to the extracellular environment, either through protein refolding to pass across lipid bilayer or through exosome trafficking. We report that cells expressing more stomatin or exposed to exogenous stomatin are more prone to undergoing cell fusion. During osteoclastogenesis, depletion of stomatin inhibited cell fusion but had little effect on tartrate-resistant acid phosphatase production. Moreover, in stomatin transgenic mice, increased cell fusion leading to enhanced bone resorption and subsequent osteoporosis were observed. With its unique molecular topology, stomatin forms molecular assembly within lipid rafts or on the appositional plasma membranes, and promotes membrane fusion by modulating fusogenic protein engagement.-Lee, J.-H., Hsieh, C.-F., Liu, H.-W., Chen, C.-Y., Wu, S.-C., Chen, T.-W., Hsu, C.-S., Liao, Y.-H., Yang, C.-Y., Shyu, J.-F., Fischer, W. B., Lin, C.-H. Lipid raft-associated stomatin enhances cell fusion.
Collapse
Affiliation(s)
- Jui-Hao Lee
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Microbiology and Immunology.,Institute of Biochemistry and Molecular Biology
| | | | - Hong-Wen Liu
- Institute of Microbiology and Immunology.,Chong Hin Loon Memorial Cancer and Biotherapy Research Center, and
| | - Chin-Yau Chen
- Institute of Microbiology and Immunology.,Department of Surgery, I-Lan, Taiwan
| | - Shao-Chin Wu
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Tung-Wei Chen
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | | | - Yu-Hsiu Liao
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yung Yang
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan; and
| | - Jia-Fwu Shyu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Wolfgang B Fischer
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Hung Lin
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan; .,Institute of Microbiology and Immunology.,Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
43
|
Najafinobar N, Mellander LJ, Kurczy ME, Dunevall J, Angerer TB, Fletcher JS, Cans AS. Cholesterol Alters the Dynamics of Release in Protein Independent Cell Models for Exocytosis. Sci Rep 2016; 6:33702. [PMID: 27650365 PMCID: PMC5030643 DOI: 10.1038/srep33702] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/01/2016] [Indexed: 11/25/2022] Open
Abstract
Neurons communicate via an essential process called exocytosis. Cholesterol, an abundant lipid in both secretory vesicles and cell plasma membrane can affect this process. In this study, amperometric recordings of vesicular dopamine release from two different artificial cell models created from a giant unilamellar liposome and a bleb cell plasma membrane, show that with higher membrane cholesterol the kinetics for vesicular release are decelerated in a concentration dependent manner. This reduction in exocytotic speed was consistent for two observed modes of exocytosis, full and partial release. Partial release events, which only occurred in the bleb cell model due to the higher tension in the system, exhibited amperometric spikes with three distinct shapes. In addition to the classic transient, some spikes displayed a current ramp or plateau following the maximum peak current. These post spike features represent neurotransmitter release from a dilated pore before constriction and show that enhancing membrane rigidity via cholesterol adds resistance to a dilated pore to re-close. This implies that the cholesterol dependent biophysical properties of the membrane directly affect the exocytosis kinetics and that membrane tension along with membrane rigidity can influence the fusion pore dynamics and stabilization which is central to regulation of neurochemical release.
Collapse
Affiliation(s)
- Neda Najafinobar
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Lisa J. Mellander
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Michael E. Kurczy
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Johan Dunevall
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Tina B. Angerer
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - John S. Fletcher
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Ann-Sofie Cans
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
44
|
Belmonte SA, Mayorga LS, Tomes CN. The Molecules of Sperm Exocytosis. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2016; 220:71-92. [PMID: 27194350 DOI: 10.1007/978-3-319-30567-7_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Exocytosis is a fundamental process used by eukaryotic cells to release biological compounds and to insert lipids and proteins in the plasma membrane. Specialized secretory cells undergo regulated exocytosis in response to physiological signals. Sperm exocytosis or acrosome reaction (AR) is essentially a regulated secretion with special characteristics. We will focus here on some of these unique features, covering the topology, kinetics, and molecular mechanisms that prepare, drive, and regulate membrane fusion during the AR. Last, we will compare acrosomal release with exocytosis in other model systems.
Collapse
Affiliation(s)
- Silvia A Belmonte
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Mendoza, Argentina
| | - Luis S Mayorga
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Mendoza, Argentina
| | - Claudia N Tomes
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Mendoza, Argentina.
| |
Collapse
|
45
|
Nagaraj V, Kazim AS, Helgeson J, Lewold C, Barik S, Buda P, Reinbothe TM, Wennmalm S, Zhang E, Renström E. Elevated Basal Insulin Secretion in Type 2 Diabetes Caused by Reduced Plasma Membrane Cholesterol. Mol Endocrinol 2016; 30:1059-1069. [PMID: 27533789 PMCID: PMC5045496 DOI: 10.1210/me.2016-1023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Elevated basal insulin secretion under fasting conditions together with insufficient stimulated insulin release is an important hallmark of type 2 diabetes, but the mechanisms controlling basal insulin secretion remain unclear. Membrane rafts exist in pancreatic islet cells and spatially organize membrane ion channels and proteins controlling exocytosis, which may contribute to the regulation of insulin secretion. Membrane rafts (cholesterol and sphingolipid containing microdomains) were dramatically reduced in human type 2 diabetic and diabetic Goto-Kakizaki (GK) rat islets when compared with healthy islets. Oxidation of membrane cholesterol markedly reduced microdomain staining intensity in healthy human islets, but was without effect in type 2 diabetic islets. Intriguingly, oxidation of cholesterol affected glucose-stimulated insulin secretion only modestly, whereas basal insulin release was elevated. This was accompanied by increased intracellular Ca2+ spike frequency and Ca2+ influx and explained by enhanced single Ca2+ channel activity. These results suggest that the reduced presence of membrane rafts could contribute to the elevated basal insulin secretion seen in type 2 diabetes.
Collapse
Affiliation(s)
- Vini Nagaraj
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Abdulla S Kazim
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Johan Helgeson
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Clemens Lewold
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Satadal Barik
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Pawel Buda
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Thomas M Reinbothe
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Stefan Wennmalm
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Enming Zhang
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Erik Renström
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| |
Collapse
|
46
|
Egawa J, Pearn ML, Lemkuil BP, Patel PM, Head BP. Membrane lipid rafts and neurobiology: age-related changes in membrane lipids and loss of neuronal function. J Physiol 2016; 594:4565-79. [PMID: 26332795 PMCID: PMC4983616 DOI: 10.1113/jp270590] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/13/2015] [Indexed: 12/15/2022] Open
Abstract
A better understanding of the cellular physiological role that plasma membrane lipids, fatty acids and sterols play in various cellular systems may yield more insight into how cellular and whole organ function is altered during the ageing process. Membrane lipid rafts (MLRs) within the plasma membrane of most cells serve as key organizers of intracellular signalling and tethering points of cytoskeletal components. MLRs are plasmalemmal microdomains enriched in sphingolipids, cholesterol and scaffolding proteins; they serve as a platform for signal transduction, cytoskeletal organization and vesicular trafficking. Within MLRs are the scaffolding and cholesterol binding proteins named caveolin (Cav). Cavs not only organize a multitude of receptors including neurotransmitter receptors (NMDA and AMPA receptors), signalling proteins that regulate the production of cAMP (G protein-coupled receptors, adenylyl cyclases, phosphodiesterases (PDEs)), and receptor tyrosine kinases involved in growth (Trk), but also interact with components that modulate actin and tubulin cytoskeletal dynamics (e.g. RhoGTPases and actin binding proteins). MLRs are essential for the regulation of the physiology of organs such as the brain, and age-related loss of cholesterol from the plasma membrane leads to loss of MLRs, decreased presynaptic vesicle fusion, and changes in neurotransmitter release, all of which contribute to different forms of neurodegeneration. Thus, MLRs provide an active membrane domain that tethers and reorganizes the cytoskeletal machinery necessary for membrane and cellular repair, and genetic interventions that restore MLRs to normal cellular levels may be exploited as potential therapeutic means to reverse the ageing and neurodegenerative processes.
Collapse
Affiliation(s)
- Junji Egawa
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Matthew L Pearn
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Brian P Lemkuil
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Piyush M Patel
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Brian P Head
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
47
|
Borroni MV, Vallés AS, Barrantes FJ. The lipid habitats of neurotransmitter receptors in brain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2662-2670. [PMID: 27424801 DOI: 10.1016/j.bbamem.2016.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/05/2016] [Accepted: 07/12/2016] [Indexed: 12/17/2022]
Abstract
Neurotransmitter receptors, the macromolecules specialized in decoding the chemical signals encrypted in the chemical signaling mechanism in the nervous system, occur either at the somatic cell surface of chemically excitable cells or at specialized subcellular structures, the synapses. Synapses have lipid compositions distinct from the rest of the cell membrane, suggesting that neurotransmitter receptors and their scaffolding and adaptor protein partners require specific lipid habitats for optimal operation. In this review we discuss some paradigmatic cases of neurotransmitter receptor-lipid interactions, highlighting the chemical nature of the intervening lipid species and providing examples of the receptor mechanisms affected by interaction with lipids. The focus is on the effects of cholesterol, glycerophospholipids and covalent fatty acid acylation on neurotransmitter receptors. We also briefly discuss the role of lipid phase states involving lateral heterogeneities of the host membrane known to modulate membrane transport, protein sorting and signaling. Modulation of neurotransmitter receptors by lipids occurs at multiple levels, affecting a wide span of activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, and recycling, among other important functional properties at the synapse.
Collapse
Affiliation(s)
- María Virginia Borroni
- Instituto de Tecnología en Polímeros y Nanotecnología (ITPN) Av. Las Heras 2214 C1127AAQ Buenos Aires Argentina
| | - Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, B8000FWB Bahía Blanca, Argentina
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, UCA-CONICET, Faculty of Medical Sciences, Catholic University of Argentina, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina.
| |
Collapse
|
48
|
Gabel M, Delavoie F, Vitale N, Bader MF, Chasserot-Golaz S. [Actin and annexin A2: essential partners for the control of neuroendocrine secretion]. Med Sci (Paris) 2016; 32:553-5. [PMID: 27406755 DOI: 10.1051/medsci/20163206008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Marion Gabel
- Institut des neurosciences cellulaires et intégratives, CNRS - UPR 3212 et université de Strasbourg, 5, rue Blaise Pascal, F-67084, Strasbourg, France
| | - Franck Delavoie
- Laboratoire de biologie moléculaire eucaryote, UMR5099 CNRS-université de Toulouse III Paul Sabatier, 118, route de Narbonne, F-31000, Toulouse, France
| | - Nicolas Vitale
- Institut des neurosciences cellulaires et intégratives, CNRS - UPR 3212 et université de Strasbourg, 5, rue Blaise Pascal, F-67084, Strasbourg, France
| | - Marie-France Bader
- Institut des neurosciences cellulaires et intégratives, CNRS - UPR 3212 et université de Strasbourg, 5, rue Blaise Pascal, F-67084, Strasbourg, France
| | - Sylvette Chasserot-Golaz
- Institut des neurosciences cellulaires et intégratives, CNRS - UPR 3212 et université de Strasbourg, 5, rue Blaise Pascal, F-67084, Strasbourg, France
| |
Collapse
|
49
|
Gabel M, Chasserot-Golaz S. Annexin A2, an essential partner of the exocytotic process in chromaffin cells. J Neurochem 2016; 137:890-6. [DOI: 10.1111/jnc.13628] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/09/2016] [Accepted: 03/30/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Marion Gabel
- INCI; UPR3212 CNRS; Université de Strasbourg; Strasbourg France
| | | |
Collapse
|
50
|
The role of cholesterol in membrane fusion. Chem Phys Lipids 2016; 199:136-143. [PMID: 27179407 DOI: 10.1016/j.chemphyslip.2016.05.003] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/07/2016] [Accepted: 05/10/2016] [Indexed: 12/21/2022]
Abstract
Cholesterol modulates the bilayer structure of biological membranes in multiple ways. It changes the fluidity, thickness, compressibility, water penetration and intrinsic curvature of lipid bilayers. In multi-component lipid mixtures, cholesterol induces phase separations, partitions selectively between different coexisting lipid phases, and causes integral membrane proteins to respond by changing conformation or redistribution in the membrane. But, which of these often overlapping properties are important for membrane fusion?-Here we review a range of recent experiments that elucidate the multiple roles that cholesterol plays in SNARE-mediated and viral envelope glycoprotein-mediated membrane fusion.
Collapse
|