1
|
Fiumara M, Ferrari S, Omer-Javed A, Beretta S, Albano L, Canarutto D, Varesi A, Gaddoni C, Brombin C, Cugnata F, Zonari E, Naldini MM, Barcella M, Gentner B, Merelli I, Naldini L. Genotoxic effects of base and prime editing in human hematopoietic stem cells. Nat Biotechnol 2024; 42:877-891. [PMID: 37679541 PMCID: PMC11180610 DOI: 10.1038/s41587-023-01915-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/26/2023] [Indexed: 09/09/2023]
Abstract
Base and prime editors (BEs and PEs) may provide more precise genetic engineering than nuclease-based approaches because they bypass the dependence on DNA double-strand breaks. However, little is known about their cellular responses and genotoxicity. Here, we compared state-of-the-art BEs and PEs and Cas9 in human hematopoietic stem and progenitor cells with respect to editing efficiency, cytotoxicity, transcriptomic changes and on-target and genome-wide genotoxicity. BEs and PEs induced detrimental transcriptional responses that reduced editing efficiency and hematopoietic repopulation in xenotransplants and also generated DNA double-strand breaks and genotoxic byproducts, including deletions and translocations, at a lower frequency than Cas9. These effects were strongest for cytidine BEs due to suboptimal inhibition of base excision repair and were mitigated by tailoring delivery timing and editor expression through optimized mRNA design. However, BEs altered the mutational landscape of hematopoietic stem and progenitor cells across the genome by increasing the load and relative proportions of nucleotide variants. These findings raise concerns about the genotoxicity of BEs and PEs and warrant further investigation in view of their clinical application.
Collapse
Affiliation(s)
- Martina Fiumara
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Attya Omer-Javed
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luisa Albano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniele Canarutto
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelica Varesi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Gaddoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Brombin
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Cugnata
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Erika Zonari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Maria Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Barcella
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- National Research Council, Institute for Biomedical Technologies, Segrate, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
2
|
Sobol RW. Mouse models to explore the biological and organismic role of DNA polymerase beta. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 1:57-71. [PMID: 38619421 PMCID: PMC11027944 DOI: 10.1002/em.22593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
Gene knock-out (KO) mouse models for DNA polymerase beta (Polβ) revealed that loss of Polβ leads to neonatal lethality, highlighting the critical organismic role for this DNA polymerase. While biochemical analysis and gene KO cell lines have confirmed its biochemical role in base excision repair and in TET-mediated demethylation, more long-lived mouse models continue to be developed to further define its organismic role. The Polb-KO mouse was the first of the Cre-mediated tissue-specific KO mouse models. This technology was exploited to investigate roles for Polβ in V(D)J recombination (variable-diversity-joining rearrangement), DNA demethylation, gene complementation, SPO11-induced DNA double-strand break repair, germ cell genome stability, as well as neuronal differentiation, susceptibility to genotoxin-induced DNA damage, and cancer onset. The revolution in knock-in (KI) mouse models was made possible by CRISPR/cas9-mediated gene editing directly in C57BL/6 zygotes. This technology has helped identify phenotypes associated with germline or somatic mutants of Polβ. Such KI mouse models have helped uncover the importance of key Polβ active site residues or specific Polβ enzyme activities, such as the PolbY265C mouse that develops lupus symptoms. More recently, we have used this KI technology to mutate the Polb gene with two codon changes, yielding the PolbL301R/V303R mouse. In this KI mouse model, the expressed Polβ protein cannot bind to its obligate heterodimer partner, Xrcc1. Although the expressed mutant Polβ protein is proteolytically unstable and defective in recruitment to sites of DNA damage, the homozygous PolbL301R/V303R mouse is viable and fertile, yet small in stature. We expect that this and additional targeted mouse models under development are poised to reveal new biological and organismic roles for Polβ.
Collapse
Affiliation(s)
- Robert W. Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
| |
Collapse
|
3
|
Afshari N, Koturbash I, Boerma M, Newhauser W, Kratz M, Willey J, Williams J, Chancellor J. A Review of Numerical Models of Radiation Injury and Repair Considering Subcellular Targets and the Extracellular Microenvironment. Int J Mol Sci 2024; 25:1015. [PMID: 38256089 PMCID: PMC10816679 DOI: 10.3390/ijms25021015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Astronauts in space are subject to continuous exposure to ionizing radiation. There is concern about the acute and late-occurring adverse health effects that astronauts could incur following a protracted exposure to the space radiation environment. Therefore, it is vital to consider the current tools and models used to describe and study the organic consequences of ionizing radiation exposure. It is equally important to see where these models could be improved. Historically, radiobiological models focused on how radiation damages nuclear deoxyribonucleic acid (DNA) and the role DNA repair mechanisms play in resulting biological effects, building on the hypotheses of Crowther and Lea from the 1940s and 1960s, and they neglected other subcellular targets outside of nuclear DNA. The development of these models and the current state of knowledge about radiation effects impacting astronauts in orbit, as well as how the radiation environment and cellular microenvironment are incorporated into these radiobiological models, aid our understanding of the influence space travel may have on astronaut health. It is vital to consider the current tools and models used to describe the organic consequences of ionizing radiation exposure and identify where they can be further improved.
Collapse
Affiliation(s)
- Nousha Afshari
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA; (N.A.); (W.N.)
| | - Igor Koturbash
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Wayne Newhauser
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA; (N.A.); (W.N.)
| | - Maria Kratz
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Jeffrey Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Jacqueline Williams
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Jeffery Chancellor
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA; (N.A.); (W.N.)
- Department of Preventive Medicine and Population Health, University of Texas Medical Branch, Galveston, TX 77555, USA
- Outer Space Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
4
|
Jang S, Kumar N, Schaich MA, Zhong Z, van Loon B, Watkins S, Van Houten B. Cooperative interaction between AAG and UV-DDB in the removal of modified bases. Nucleic Acids Res 2022; 50:12856-12871. [PMID: 36511855 PMCID: PMC9825174 DOI: 10.1093/nar/gkac1145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 11/05/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
UV-DDB is a DNA damage recognition protein recently discovered to participate in the removal of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxoG) by stimulating multiple steps of base excision repair (BER). In this study, we examined whether UV-DDB has a wider role in BER besides oxidized bases and found it has specificity for two known DNA substrates of alkyladenine glycosylase (AAG)/N-methylpurine DNA glycosylase (MPG): 1, N6-ethenoadenine (ϵA) and hypoxanthine. Gel mobility shift assays show that UV-DDB recognizes these two lesions 4-5 times better than non-damaged DNA. Biochemical studies indicated that UV-DDB stimulated AAG activity on both substrates by 4- to 5-fold. Native gels indicated UV-DDB forms a transient complex with AAG to help facilitate release of AAG from the abasic site product. Single molecule experiments confirmed the interaction and showed that UV-DDB can act to displace AAG from abasic sites. Cells when treated with methyl methanesulfonate resulted in foci containing AAG and UV-DDB that developed over the course of several hours after treatment. While colocalization did not reach 100%, foci containing AAG and UV-DDB reached a maximum at three hours post treatment. Together these data indicate that UV-DDB plays an important role in facilitating the repair of AAG substrates.
Collapse
Affiliation(s)
- Sunbok Jang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA 15261, USA
- UPMC Hillman Cancer Center, PA 15213, USA
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Namrata Kumar
- UPMC Hillman Cancer Center, PA 15213, USA
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, PA 15261, USA
| | - Mathew A Schaich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA 15261, USA
- UPMC Hillman Cancer Center, PA 15213, USA
| | - Zhou Zhong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA 15261, USA
- UPMC Hillman Cancer Center, PA 15213, USA
| | - Barbara van Loon
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh, PA 15261, USA
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA 15261, USA
- UPMC Hillman Cancer Center, PA 15213, USA
| |
Collapse
|
5
|
Polβ modulates the expression of type I interferon via STING pathway. Biochem Biophys Res Commun 2022; 621:137-143. [DOI: 10.1016/j.bbrc.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/18/2022]
|
6
|
Vickridge E, Faraco CCF, Nepveu A. Base excision repair accessory factors in senescence avoidance and resistance to treatments. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:703-720. [PMID: 36176767 PMCID: PMC9511810 DOI: 10.20517/cdr.2022.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 06/16/2023]
Abstract
Cancer cells, in which the RAS and PI3K pathways are activated, produce high levels of reactive oxygen species (ROS), which cause oxidative DNA damage and ultimately cellular senescence. This process has been documented in tissue culture, mouse models, and human pre-cancerous lesions. In this context, cellular senescence functions as a tumour suppressor mechanism. Some rare cancer cells, however, manage to adapt to avoid senescence and continue to proliferate. One well-documented mode of adaptation involves increased production of antioxidants often associated with inactivation of the KEAP1 tumour suppressor gene and the resulting upregulation of the NRF2 transcription factor. In this review, we detail an alternative mode of adaptation to oxidative DNA damage induced by ROS: the increased activity of the base excision repair (BER) pathway, achieved through the enhanced expression of BER enzymes and DNA repair accessory factors. These proteins, exemplified here by the CUT domain proteins CUX1, CUX2, and SATB1, stimulate the activity of BER enzymes. The ensued accelerated repair of oxidative DNA damage enables cancer cells to avoid senescence despite high ROS levels. As a by-product of this adaptation, these cancer cells exhibit increased resistance to genotoxic treatments including ionizing radiation, temozolomide, and cisplatin. Moreover, considering the intrinsic error rate associated with DNA repair and translesion synthesis, the elevated number of oxidative DNA lesions caused by high ROS leads to the accumulation of mutations in the cancer cell population, thereby contributing to tumour heterogeneity and eventually to the acquisition of resistance, a major obstacle to clinical treatment.
Collapse
Affiliation(s)
- Elise Vickridge
- Goodman Cancer Institute, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- These authors contributed equally to this work
| | - Camila C. F. Faraco
- Goodman Cancer Institute, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- Departments of Biochemistry, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- These authors contributed equally to this work
| | - Alain Nepveu
- Goodman Cancer Institute, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- Departments of Biochemistry, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- Medicine, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- Oncology, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
| |
Collapse
|
7
|
Qin L, Huiwen M, Wang J, Wang Y, Khan SA, Zhang Y, Qiu H, Jiang L, He L, Zhang Y, Jia S. A novel polymerase β inhibitor from phage displayed peptide library augments the anti-tumour effects of temozolomide on colorectal cancer. J Chemother 2021; 34:391-400. [PMID: 34870566 DOI: 10.1080/1120009x.2021.2009987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The therapeutic efficacy of TMZ, a common used drug for chemotherapy, is limited by the resistance from colorectal cancer cells. Base excision repair (BER) pathway has been identified as one of the reasons for drug resistance. By blocking Polβ-dependent BER (Base Excision Repair) pathway, the efficacy of TMZ treatment can be improved greatly. Several Polβ inhibitors that have been identified could not become approved drugs due to lack of potency or specificity. To find therapeutic candidates with exquisite specificity and high affinity to Polβ, phage display technology was used in the current research. We screened out a candidate Polβ inhibitor, 10 D, that can inhibit the activity of Polβand SP-BER (Short-Patch Base excision Repair) pathway. Co-treatment with 10 D enhanced the sensitivity of colorectal cancer (CRC) cells to TMZ both in vitro and in vivo. Our data suggested that the novel Polβ inhibitor we identified can improve TMZ efficacy and optimize CRC chemotherapy.
Collapse
Affiliation(s)
- Lihong Qin
- Changzhou No. 7 People's Hospital, Changzhou, China
| | - Mao Huiwen
- Shuyang Hospital of Traditional Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Shuyang, China
| | - Jianguo Wang
- Shuyang Hospital of Traditional Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Shuyang, China
| | - Yuanyaun Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Salman A Khan
- Shuyang Hospital of Traditional Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Shuyang, China
| | - Ying Zhang
- Qinhuai Medical District, Jinlin Hospital of Nanjing University, Nanjing, China
| | - Hong Qiu
- Qinhuai Medical District, Jinlin Hospital of Nanjing University, Nanjing, China
| | - Longwei Jiang
- Qinhuai Medical District, Jinlin Hospital of Nanjing University, Nanjing, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yan Zhang
- Qinhuai Medical District, Jinlin Hospital of Nanjing University, Nanjing, China
| | - Shaochang Jia
- Qinhuai Medical District, Jinlin Hospital of Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Ge J, Ngo LP, Kaushal S, Tay IJ, Thadhani E, Kay JE, Mazzucato P, Chow DN, Fessler JL, Weingeist DM, Sobol RW, Samson LD, Floyd SR, Engelward BP. CometChip enables parallel analysis of multiple DNA repair activities. DNA Repair (Amst) 2021; 106:103176. [PMID: 34365116 PMCID: PMC8439179 DOI: 10.1016/j.dnarep.2021.103176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 12/28/2022]
Abstract
DNA damage can be cytotoxic and mutagenic, and it is directly linked to aging, cancer, and other diseases. To counteract the deleterious effects of DNA damage, cells have evolved highly conserved DNA repair pathways. Many commonly used DNA repair assays are relatively low throughput and are limited to analysis of one protein or one pathway. Here, we have explored the capacity of the CometChip platform for parallel analysis of multiple DNA repair activities. Taking advantage of the versatility of the traditional comet assay and leveraging micropatterning techniques, the CometChip platform offers increased throughput and sensitivity compared to the traditional comet assay. By exposing cells to DNA damaging agents that create substrates of Base Excision Repair, Nucleotide Excision Repair, and Non-Homologous End Joining, we show that the CometChip is an effective method for assessing repair deficiencies in all three pathways. With these applications of the CometChip platform, we expand the utility of the comet assay for precise, high-throughput, parallel analysis of multiple DNA repair activities.
Collapse
Affiliation(s)
- Jing Ge
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Le P Ngo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Simran Kaushal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, United States
| | - Ian J Tay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elina Thadhani
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Jennifer E Kay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Patrizia Mazzucato
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Danielle N Chow
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Jessica L Fessler
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - David M Weingeist
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Robert W Sobol
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, United States; University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, United States
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Scott R Floyd
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27514, United States
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
9
|
Guo J, Bai Y, Chen Z, Mo J, Li Q, Sun H, Zhang Q. Transcriptomic analysis suggests the inhibition of DNA damage repair in green alga Raphidocelis subcapitata exposed to roxithromycin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110737. [PMID: 32505758 DOI: 10.1016/j.ecoenv.2020.110737] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Macrolide antibiotics are common contaminants in the aquatic environment. They are toxic to a wide range of primary producers, inhibiting the algal growth and further hindering the delivery of several ecosystem services. Yet the molecular mechanisms of macrolides in algae remain undetermined. The objectives of this study were therefore to: 1. evaluate whether macrolides at the environmentally relevant level inhibit the growth of algae; and 2. test the hypothesis that macrolides bind to ribosome and inhibit protein translocation in algae, as it does in bacteria. In this study, transcriptomic analysis was applied to elucidate the toxicological mechanism in a model green alga Raphidocelis subcapitata treated with 5 and 90 μg L-1 of a typical macrolide roxithromycin (ROX). While exposure to ROX at 5 μg L-1 for 7 days did not affect algal growth and the transciptome, ROX at 90 μg L-1 resulted in 45% growth inhibition and 2306 (983 up- and 1323 down-regulated) DEGs, which were primarily enriched in the metabolism of energy, lipid, vitamins, and DNA replication and repair pathways. Nevertheless, genes involved in pathways in relation to translation and protein translocation and processing were dysregulated. Surprisingly, we found that genes involved in the base excision repair process were mostly repressed, suggesting that ROX may be genotoxic and cause DNA damage in R. subcapitata. Taken together, ROX was unlikely to pose a threat to green algae in the environment and the mode of action of macrolides in bacteria may not be directly extrapolated to green algae.
Collapse
Affiliation(s)
- Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Yi Bai
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Jiezhang Mo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Qi Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Haotian Sun
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
10
|
Ibrahim MA, Yasui M, Saha LK, Sasanuma H, Honma M, Takeda S. Enhancing the sensitivity of the thymidine kinase assay by using DNA repair-deficient human TK6 cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:602-610. [PMID: 32243652 PMCID: PMC7384079 DOI: 10.1002/em.22371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 05/17/2023]
Abstract
The OECD guidelines define the bioassays of identifying mutagenic chemicals, including the thymidine kinase (TK) assay, which specifically detects the mutations that inactivate the TK gene in the human TK6 lymphoid line. However, the sensitivity of this assay is limited because it detects mutations occurring only in the TK gene but not any other genes. Moreover, the limited sensitivity of the conventional TK assay is caused by the usage of DNA repair-proficient wild-type cells, which are capable of accurately repairing DNA damage induced by chemicals. Mutagenic chemicals produce a variety of DNA lesions, including base lesions, sugar damage, crosslinks, and strand breaks. Base damage causes point mutations and is repaired by the base excision repair (BER) and nucleotide excision repair (NER) pathways. To increase the sensitivity of TK assay, we simultaneously disrupted two genes encoding XRCC1, an important BER factor, and XPA, which is essential for NER, generating XRCC1 -/- /XPA -/- cells from TK6 cells. We measured the mutation frequency induced by four typical mutagenic agents, methyl methane sulfonate (MMS), cis-diamminedichloro-platinum(II) (cisplatin, CDDP), mitomycin-C (MMC), and cyclophosphamide (CP) by the conventional TK assay using wild-type TK6 cells and also by the TK assay using XRCC1 -/- /XPA -/- cells. The usage of XRCC1 -/- /XPA -/- cells increased the sensitivity of detecting the mutagenicity by 8.6 times for MMC, 8.5 times for CDDP, and 2.6 times for MMS in comparison with the conventional TK assay. In conclusion, the usage of XRCC1 -/- /XPA -/- cells will significantly improve TK assay.
Collapse
Affiliation(s)
| | - Manabu Yasui
- Division of Genetics and MutagenesisNational Institute of Health SciencesKawasakiKanagawaJapan
| | - Liton Kumar Saha
- Department of Radiation GeneticsKyoto University, Graduate School of MedicineKyotoJapan
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Hiroyuki Sasanuma
- Department of Radiation GeneticsKyoto University, Graduate School of MedicineKyotoJapan
| | - Masamitsu Honma
- Division of Genetics and MutagenesisNational Institute of Health SciencesKawasakiKanagawaJapan
| | - Shunichi Takeda
- Department of Radiation GeneticsKyoto University, Graduate School of MedicineKyotoJapan
| |
Collapse
|
11
|
Androgen receptor-binding sites are highly mutated in prostate cancer. Nat Commun 2020; 11:832. [PMID: 32047165 PMCID: PMC7012874 DOI: 10.1038/s41467-020-14644-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/20/2020] [Indexed: 12/20/2022] Open
Abstract
Androgen receptor (AR) signalling is essential in nearly all prostate cancers. Any alterations to AR-mediated transcription can have a profound effect on carcinogenesis and tumor growth. While mutations of the AR protein have been extensively studied, little is known about those somatic mutations that occur at the non-coding regions where AR binds DNA. Using clinical whole genome sequencing, we show that AR binding sites have a dramatically increased rate of mutations that is greater than any other transcription factor and specific to only prostate cancer. Demonstrating this may be common to lineage-specific transcription factors, estrogen receptor binding sites were also found to have elevated rate of mutations in breast cancer. We provide evidence that these mutations at AR binding sites, and likely other related transcription factors, are caused by faulty repair of abasic sites. Overall, this work demonstrates that non-coding AR binding sites are frequently mutated in prostate cancer and can impact enhancer activity.
Collapse
|
12
|
Ahmed AA, Smoczer C, Pace B, Patterson D, Cress Cabelof D. Loss of DNA polymerase β induces cellular senescence. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:603-612. [PMID: 29968395 PMCID: PMC6203593 DOI: 10.1002/em.22206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 06/01/2023]
Abstract
We aim to establish that accelerated aging and premature cellular senescence seen in individuals with Down syndrome is related to reduced DNA polymeraseβ. We report here that primary fibroblasts from Down syndrome individuals exhibit greater SA-β-gal staining (fourfold increase, P < 0.001), increased p16 transcript abundance (threefold increase, P < 0.01), and reduced HMGB1 nuclear localization (1.5-fold lower, P < 0.01). We also find that DNA polymerase β expression is significantly reduced in Down syndrome primary fibroblasts (53% decline, P < 0.01). To evaluate whether DNA polymerase β might be causative in senescence induction, we evaluated the impact of murine DNA polymerase β nullizygosity on senescence. We find that unexposed DNA polymerase β -null primary fibroblasts exhibit a robust increase in the number of senescent cells compared to wild-type (11-fold, P < 0.001), demonstrating that loss DNA polymerase β is sufficient to induce senescence. We also see an additional increase in response to hydroxyurea (threefold greater than WT-HU, P < 0.05). These data demonstrate that loss of DNA polymerase β is sufficient to induce senescence. Additionally, we report a significant induction in spontaneous DNA double strand breaks in DNA polymerase β null MEFs (fivefold increase from wild-type, P < 0.0001). Our findings strongly suggest that DNA polymerase β is causative in senescence induction, reasonably pointing to DNA polymerase β as a likely factor driving the premature senescence in Down syndrome. Environ. Mol. Mutagen. 59:603-612, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aqila A. Ahmed
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI, United States
| | - Cristine Smoczer
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI, United States
| | - Brianna Pace
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI, United States
| | - David Patterson
- Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, United States
- Knoebel Institute for Healthy Aging and Department of Biological Sciences, University of Denver, Denver, Colorado, United States
| | - Diane Cress Cabelof
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI, United States
| |
Collapse
|
13
|
Cao X, Zhou Y, Sun H, Xu M, Bi X, Zhao Z, Shen B, Wan F, Hong Z, Lan L, Luo L, Guo Z, Yin Z. EGFR-TKI-induced HSP70 degradation and BER suppression facilitate the occurrence of the EGFR T790 M resistant mutation in lung cancer cells. Cancer Lett 2018. [PMID: 29524558 DOI: 10.1016/j.canlet.2018.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Non-small cell lung cancer (NSCLC) patients harboring EGFR-activating mutations initially respond to EGFR tyrosine kinase inhibitors (EGFR-TKIs) and have shown favorable outcomes. However, acquired drug resistance to EGFR-TKIs develops in almost all patients mainly due to the EGFR T790 M mutation. Here, we show that treatment with low-dose EGFR-TKI results in the emergence of the EGFR T790 M mutation and in the reduction of HSP70 protein levels in HCC827 cells. Erlotinib treatment inhibits HSP70 phosphorylation at tyrosine 41 and increases HSP70 ubiquitination, resulting in HSP70 degradation. We show that EGFR-TKI treatment causes increased DNA damage and enhanced gene mutation rates, which are secondary to the EGFR-TKI-induced reduction of HSP70 protein. Importantly, HSP70 overexpression delays the occurrence of Erlotinib-induced EGFR T790 M mutation. We further demonstrate that HSP70 interacts with multiple enzymes in the base excision repair (BER) pathway and promotes not only the efficiency but also the fidelity of BER. Collectively, our findings show that EGFR-TKI treatment facilitates gene mutation and the emergence of EGFR T790 M secondary mutation by the attenuation of BER via induction of HSP70 protein degradation.
Collapse
Affiliation(s)
- Xiang Cao
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China
| | - Yi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China
| | - Hongfang Sun
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China
| | - Miao Xu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China
| | - Xiaowen Bi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China
| | - Zhihui Zhao
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China
| | - Binghui Shen
- Department of Radiation Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, 91010, USA
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Zhuan Hong
- Jiangsu Cancer Hospital, Nanjing, 210009, Jiangsu, PR China
| | - Lei Lan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China.
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, Jiangsu, PR China.
| | - Zhigang Guo
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China.
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China.
| |
Collapse
|
14
|
Sykora P, Witt KL, Revanna P, Smith-Roe SL, Dismukes J, Lloyd DG, Engelward BP, Sobol RW. Next generation high throughput DNA damage detection platform for genotoxic compound screening. Sci Rep 2018; 8:2771. [PMID: 29426857 PMCID: PMC5807538 DOI: 10.1038/s41598-018-20995-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/29/2018] [Indexed: 11/23/2022] Open
Abstract
Methods for quantifying DNA damage, as well as repair of that damage, in a high-throughput format are lacking. Single cell gel electrophoresis (SCGE; comet assay) is a widely-used method due to its technical simplicity and sensitivity, but the standard comet assay has limitations in reproducibility and throughput. We have advanced the SCGE assay by creating a 96-well hardware platform coupled with dedicated data processing software (CometChip Platform). Based on the original cometchip approach, the CometChip Platform increases capacity ~200 times over the traditional slide-based SCGE protocol, with excellent reproducibility. We tested this platform in several applications, demonstrating a broad range of potential uses including the routine identification of DNA damaging agents, using a 74-compound library provided by the National Toxicology Program. Additionally, we demonstrated how this tool can be used to evaluate human populations by analysis of peripheral blood mononuclear cells to characterize susceptibility to genotoxic exposures, with implications for epidemiological studies. In summary, we demonstrated a high level of reproducibility and quantitative capacity for the CometChip Platform, making it suitable for high-throughput screening to identify and characterize genotoxic agents in large compound libraries, as well as for human epidemiological studies of genetic diversity relating to DNA damage and repair.
Collapse
Affiliation(s)
- Peter Sykora
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
| | - Kristine L Witt
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Pooja Revanna
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
| | - Stephanie L Smith-Roe
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Jonathan Dismukes
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
| | | | - Bevin P Engelward
- Department of Biological Engineering, MIT, Cambridge, MA, 02139, USA
| | - Robert W Sobol
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA.
| |
Collapse
|
15
|
Azambuja DB, Leguisamo NM, Gloria HC, Kalil AN, Rhoden E, Saffi J. Prognostic impact of changes in base excision repair machinery in sporadic colorectal cancer. Pathol Res Pract 2018; 214:64-71. [DOI: 10.1016/j.prp.2017.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/03/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023]
|
16
|
Stephenson AA, Taggart DJ, Suo Z. Noncatalytic, N-terminal Domains of DNA Polymerase Lambda Affect Its Cellular Localization and DNA Damage Response. Chem Res Toxicol 2017; 30:1240-1249. [PMID: 28380295 DOI: 10.1021/acs.chemrestox.7b00067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Specialized DNA polymerases, such as DNA polymerase lambda (Polλ), are important players in DNA damage tolerance and repair pathways. Knowing how DNA polymerases are regulated and recruited to sites of DNA damage is imperative to understanding these pathways. Recent work has suggested that Polλ plays a role in several distinct DNA damage tolerance and repair pathways. In this paper, we report previously unknown roles of the N-terminal domains of human Polλ for modulating its involvement in DNA damage tolerance and repair. By using Western blot analysis, fluorescence microscopy, and cell survival assays, we found that the BRCA1 C-terminal (BRCT) and proline/serine-rich (PSR) domains of Polλ affect its cellular localization and DNA damage responses. The nuclear localization signal (NLS) of Polλ was necessary to overcome the impediment of its nuclear localization caused by its BRCT and PSR domains. Induction of DNA damage resulted in recruitment of Polλ to chromatin, which was controlled by its BRCT and PSR domains. In addition, the presence of both domains was required for Polλ-mediated tolerance of oxidative DNA damage but not DNA methylation damage. These findings suggest that the N-terminal domains of Polλ are important for regulating its responses to DNA damage.
Collapse
Affiliation(s)
- Anthony A Stephenson
- Department of Chemistry and Biochemistry and ‡The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - David J Taggart
- Department of Chemistry and Biochemistry and ‡The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Zucai Suo
- Department of Chemistry and Biochemistry and ‡The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
17
|
Dakup P, Gaddameedhi S. Impact of the Circadian Clock on UV-Induced DNA Damage Response and Photocarcinogenesis. Photochem Photobiol 2016; 93:296-303. [PMID: 27861965 DOI: 10.1111/php.12662] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022]
Abstract
The skin is in constant exposure to various external environmental stressors, including solar ultraviolet (UV) radiation. Various wavelengths of UV light are absorbed by the DNA and other molecules in the skin to cause DNA damage and induce oxidative stress. The exposure to excessive ultraviolet (UV) radiation and/or accumulation of damage over time can lead to photocarcinogenesis and photoaging. The nucleotide excision repair (NER) system is the sole mechanism for removing UV photoproduct damage from DNA, and genetic disruption of this repair pathway leads to the photosensitive disorder xeroderma pigmentosum (XP). Interestingly, recent work has shown that NER is controlled by the circadian clock, the body's natural time-keeping mechanism, through regulation of the rate-limiting repair factor xeroderma pigmentosum group A (XPA). Studies have shown reduced UV-induced skin cancer after UV exposure in the evening compared to the morning, which corresponds with times of high and low repair capacities, respectively. However, most studies of the circadian clock-NER connection have utilized murine models, and it is therefore important to translate these findings to humans to improve skin cancer prevention and chronotherapy.
Collapse
Affiliation(s)
- Panshak Dakup
- Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA
| | - Shobhan Gaddameedhi
- Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA.,Sleep and Performance Research Center, Washington State University, Spokane, WA
| |
Collapse
|
18
|
Prasad R, Poltoratsky V, Hou EW, Wilson SH. Rev1 is a base excision repair enzyme with 5'-deoxyribose phosphate lyase activity. Nucleic Acids Res 2016; 44:10824-10833. [PMID: 27683219 PMCID: PMC5159550 DOI: 10.1093/nar/gkw869] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 12/28/2022] Open
Abstract
Rev1 is a member of the Y-family of DNA polymerases and is known for its deoxycytidyl transferase activity that incorporates dCMP into DNA and its ability to function as a scaffold factor for other Y-family polymerases in translesion bypass events. Rev1 also is involved in mutagenic processes during somatic hypermutation of immunoglobulin genes. In light of the mutation pattern consistent with dCMP insertion observed earlier in mouse fibroblast cells treated with a base excision repair-inducing agent, we questioned whether Rev1 could also be involved in base excision repair (BER). Here, we uncovered a weak 5′-deoxyribose phosphate (5′-dRP) lyase activity in mouse Rev1 and demonstrated the enzyme can mediate BER in vitro. The full-length Rev1 protein and its catalytic core domain are similar in their ability to support BER in vitro. The dRP lyase activity in both of these proteins was confirmed by NaBH4 reduction of the Schiff base intermediate and kinetics studies. Limited proteolysis, mass spectrometry and deletion analysis localized the dRP lyase active site to the C-terminal segment of Rev1's catalytic core domain. These results suggest that Rev1 could serve as a backup polymerase in BER and could potentially contribute to AID-initiated antibody diversification through this activity.
Collapse
Affiliation(s)
- Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F3-01, Research Triangle Park, NC 27709, USA
| | - Vladimir Poltoratsky
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F3-01, Research Triangle Park, NC 27709, USA
| | - Esther W Hou
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F3-01, Research Triangle Park, NC 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F3-01, Research Triangle Park, NC 27709, USA
| |
Collapse
|
19
|
Okamura M, Moto M, Muguruma M, Ito T, Jin M, Kashida Y, Mitsumori K. A 26-Week Carcinogenicity Study of 2-Amino-3-Methylimidazo[4,5-f]Quinoline in rasH2 Mice. Toxicol Pathol 2016; 34:199-205. [PMID: 16537296 DOI: 10.1080/01926230600640058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
To evaluate the carcinogenic susceptibility of rasH2 mice to 2-amino-3-methylimidazo[4,5- f ]quinoline (IQ), 7-week-old rasH2 mice and their wild-type littermates (non-Tg mice) of both the sexes were fed a diet containing 0 or 300 ppm IQ for 26 weeks. Microscopical examinations revealed that the proliferative lesions of the forestomach, including squamous cell hyperplasias, papillomas, and carcinomas, were frequently encountered in male and female rasH2 mice fed with IQ. In non-Tg mice, no significant differences in the incidence of forestomach lesions were observed between the 0 ppm and 300 ppm groups. Histopathological changes such as periportal hepatocellular hypertrophy and oval cell proliferation in the liver were more apparent in female rasH2 and non-Tg mice than in males, and the incidence of hepatocellular altered foci significantly increased in female rasH2 mice in the 300 ppm group as compared to that in the 0 ppm group. These results suggest that the carcinogenic potential of IQ can be detected in rasH2 mice by a 26-week, short-term carcinogenicity test.
Collapse
Affiliation(s)
- Miwa Okamura
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu City, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Thomas AD, Fahrer J, Johnson GE, Kaina B. Theoretical considerations for thresholds in chemical carcinogenesis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 765:56-67. [PMID: 26281768 DOI: 10.1016/j.mrrev.2015.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 02/08/2023]
Abstract
There is increasing evidence for non-linear relationships for gene mutations, chromosomal aberrations and even tumor incidences in response to low doses of genotoxic carcinogens. To attain the biological relevance of such non-linear responses, there is a need to identify the underlying defense mechanisms that allow tolerance to low doses of genotoxicants. This communication discusses presumptive cancer prevention mechanisms that may contribute to thresholds, i.e. points of departure, for each endpoint, from initial DNA lesion to tumor formation. We discuss a sequential order of genome protection during carcinogenesis where genotoxicant scavenging, cellular efflux, DNA repair, elimination of damaged cells by apoptosis, autophagy, silencing by DNA damage-triggered replicative senescence, and finally, elimination of transformed (premalignant) cells by the immune system are thought to be responsible for a threshold in tumor formation. We highlight DNA repair, for which experimental evidence has been recently provided to dictate a role in PoDs. In conclusion, from a theoretical perspective it is reasonable to posit that tolerance to low dose levels exists for each requisite step of tumor formation and these tolerance mechanisms are critical in determining thresholds in chemical carcinogenesis.
Collapse
Affiliation(s)
- Adam D Thomas
- Institute of Toxicology, University Medical Centre, Mainz, Germany
| | - Jörg Fahrer
- Institute of Toxicology, University Medical Centre, Mainz, Germany
| | - George E Johnson
- Institue of Life Science, College of Medicine, Swansea, Wales, United Kingdom
| | - Bernd Kaina
- Institute of Toxicology, University Medical Centre, Mainz, Germany.
| |
Collapse
|
21
|
Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol Biol 2014; 1105:419-37. [PMID: 24623245 DOI: 10.1007/978-1-62703-739-6_31] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this chapter, we describe a gene-specific quantitative PCR (QPCR)-based assay for the measurement of DNA damage, using amplification of long DNA targets. This assay has been used extensively to measure the integrity of both nuclear and mitochondrial genomes exposed to different genotoxins and has proven to be particularly valuable in identifying reactive oxygen species-mediated mitochondrial DNA damage. QPCR can be used to quantify both the formation of DNA damage as well as the kinetics of damage removal. One of the main strengths of the assay is that it permits monitoring the integrity of mtDNA directly from total cellular DNA without the need for isolating mitochondria or a separate step of mitochondrial DNA purification. Here we discuss advantages and limitations of using QPCR to assay DNA damage in mammalian cells. In addition, we give a detailed protocol of the QPCR assay that helps facilitate its successful deployment in any molecular biology laboratory.
Collapse
|
22
|
Terrell AN, Huynh M, Grill AE, Kovi RC, O'Sullivan MG, Guttenplan JB, Ho YY, Peterson LA. Mutagenicity of furan in female Big Blue B6C3F1 mice. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 770:46-54. [PMID: 25344163 PMCID: PMC4209239 DOI: 10.1016/j.mrgentox.2014.04.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 03/12/2014] [Accepted: 04/10/2014] [Indexed: 11/22/2022]
Abstract
Furan is an abundant food and environmental contaminant that is a potent liver carcinogen in rodent models. To determine if furan is genotoxic in vivo, female B6C3F1 Big Blue transgenic mice were treated with 15 mg/kg bw furan by gavage 5 days a week for 6 weeks, or once weekly for 3 weeks. Liver cII transgene mutation-frequency and mutation spectra were determined. Furan did not increase the mutation frequency under either treatment condition. In the 6-week treatment regimen, there was a change in the cII transgene mutation-spectrum, with the fraction of GC to AT transitions significantly reduced. The only other significant change was an increase in GC to CG transversions; these represented a minor contribution to the overall mutation spectrum. A much larger furan-dependent shift was observed in the 3-week study. There was a significant increase in transversion mutations, predominantly GC to TA transversions as well as smaller non-significant changes in GC to CG and AT to TA transversions. To determine if these mutations were caused by cis-2-butene-1,4-dial (BDA), a reactive metabolite of furan, the mutagenic activity and the mutation spectrum of BDA was determined in vitro, in Big Blue mouse embryonic fibroblasts. This compound did not increase the cII gene mutation-frequency but caused a substantial increase in AT to CG transversions. This increase, however, lost statistical significance when adjusted for multiple comparisons. Together, these findings suggest that BDA may not be directly responsible for the in-vivo effects of furan on mutational spectra. Histopathological analysis of livers from furan-treated mice revealed that furan induced multifocal, hepatocellular necrosis admixed with reactive leukocytes and pigment-laden Kupffer cells, enhanced oval-cell hyperplasia, and increased hepatocyte mitoses, some of which were atypical. An indirect mechanism of genotoxicity is proposed in which chronic toxicity followed by inflammation and secondary cell proliferation triggers cancer development in furan-exposed rodents.
Collapse
Affiliation(s)
- Ashley N Terrell
- Division of Environmental Health Sciences and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Mailee Huynh
- Division of Environmental Health Sciences and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Alex E Grill
- Division of Environmental Health Sciences and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Ramesh C Kovi
- Masonic Cancer Center Comparative Pathology Shared Resource, University of Minnesota, St. Paul, MN 55108, United States.
| | - M Gerard O'Sullivan
- Masonic Cancer Center Comparative Pathology Shared Resource, University of Minnesota, St. Paul, MN 55108, United States.
| | - Joseph B Guttenplan
- Department of Basic Science and Craniofacial Biology, and Environmental Medicine, New York University Dental and Medical Schools, New York, NY 10010, United States.
| | - Yen-Yi Ho
- Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Lisa A Peterson
- Division of Environmental Health Sciences and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
23
|
An C, Beard WA, Chen D, Wilson SH, Makridakis NM. Understanding the loss-of-function in a triple missense mutant of DNA polymerase β found in prostate cancer. Int J Oncol 2013; 43:1131-40. [PMID: 23877444 PMCID: PMC3981039 DOI: 10.3892/ijo.2013.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/07/2013] [Indexed: 11/06/2022] Open
Abstract
Human DNA polymerase (pol) β is essential for base excision repair. We previously reported a triple somatic mutant of pol β (p.P261L/T292A/I298T) found in an early onset prostate tumor. This mutation abolishes polymerase activity, and the wild-type allele was not present in the tumor, indicating a complete deficiency in pol β function. The effect on polymerase activity is unexpected because the point mutations that comprise the triple mutant are not part of the active site. Herein, we demonstrate the mechanism of this loss-of-function. In order to understand the effect of the individual point mutations we biochemically analyzed all single and double mutants that comprise the triple mutant. We found that the p.I298T mutation is responsible for a marked instability of the triple mutant protein at 37°C. At room temperature the triple mutant’s low efficiency is also due to a decrease in the apparent binding affinity for the dNTP substrate, which is due to the p.T292A mutation. Furthermore, the triple mutant displays lower fidelity for transversions in vitro, due to the p.T292A mutation. We conclude that distinct mutations of the triple pol β mutant are responsible for the loss of activity, lower fidelity, and instability observed in vitro.
Collapse
Affiliation(s)
- Changlong An
- Department of Epidemiology and Tulane Cancer Center, Tulane University, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
24
|
Parsons JL, Nicolay NH, Sharma RA. Biological and therapeutic relevance of nonreplicative DNA polymerases to cancer. Antioxid Redox Signal 2013; 18:851-73. [PMID: 22794079 PMCID: PMC3557440 DOI: 10.1089/ars.2011.4203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Apart from surgical approaches, the treatment of cancer remains largely underpinned by radiotherapy and pharmacological agents that cause damage to cellular DNA, which ultimately causes cancer cell death. DNA polymerases, which are involved in the repair of cellular DNA damage, are therefore potential targets for inhibitors for improving the efficacy of cancer therapy. They can be divided, according to their main function, into two groups, namely replicative and nonreplicative enzymes. At least 15 different DNA polymerases, including their homologs, have been discovered to date, which vary considerably in processivity and fidelity. Many of the nonreplicative (specialized) DNA polymerases replicate DNA in an error-prone fashion, and they have been shown to participate in multiple DNA damage repair and tolerance pathways, which are often aberrant in cancer cells. Alterations in DNA repair pathways involving DNA polymerases have been linked with cancer survival and with treatment response to radiotherapy or to classes of cytotoxic drugs routinely used for cancer treatment, particularly cisplatin, oxaliplatin, etoposide, and bleomycin. Indeed, there are extensive preclinical data to suggest that DNA polymerase inhibition may prove to be a useful approach for increasing the effectiveness of therapies in patients with cancer. Furthermore, specialized DNA polymerases warrant examination of their potential use as clinical biomarkers to select for particular cancer therapies, to individualize treatment for patients.
Collapse
Affiliation(s)
- Jason L Parsons
- Cancer Research UK-Medical Research Council, Oncology Department, Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
25
|
Kothandapani A, Patrick SM. Evidence for base excision repair processing of DNA interstrand crosslinks. Mutat Res 2012; 743-744:44-52. [PMID: 23219605 DOI: 10.1016/j.mrfmmm.2012.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/19/2012] [Accepted: 11/24/2012] [Indexed: 12/30/2022]
Abstract
Many bifunctional alkylating agents and anticancer drugs exert their cytotoxicity by producing cross links between the two complementary strands of DNA, termed interstrand crosslinks (ICLs). This blocks the strand separating processes during DNA replication and transcription, which can lead to cell cycle arrest and apoptosis. Cells use multiple DNA repair systems to eliminate the ICLs. Concerted action of repair proteins involved in Nucleotide Excision Repair and Homologous Recombination pathways are suggested to play a key role in the ICL repair. However, recent studies indicate a possible role for Base Excision Repair (BER) in mediating the cytotoxicity of ICL inducing agents in mammalian cells. Elucidating the mechanism of BER mediated modulation of ICL repair would help in understanding the recognition and removal of ICLs and aid in the development of potential therapeutic agents. In this review, the influence of BER proteins on ICL DNA repair and the possible mechanisms of action are discussed.
Collapse
Affiliation(s)
- Anbarasi Kothandapani
- Department of Biochemistry and Cancer Biology, University of Toledo - Health Science Campus, Toledo, OH 43614, USA.
| | - Steve M Patrick
- Department of Biochemistry and Cancer Biology, University of Toledo - Health Science Campus, Toledo, OH 43614, USA.
| |
Collapse
|
26
|
Small-molecule inhibitors of DNA damage-repair pathways: an approach to overcome tumor resistance to alkylating anticancer drugs. Future Med Chem 2012; 4:1093-111. [PMID: 22709253 DOI: 10.4155/fmc.12.58] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A major challenge in the future development of cancer therapeutics is the identification of biological targets and pathways, and the subsequent design of molecules to combat the drug-resistant cells hiding in virtually all cancers. This therapeutic approach is justified based upon the limited advances in cancer cures over the past 30 years, despite the development of many novel chemotherapies and earlier detection, which often fail due to drug resistance. Among the various targets to overcome tumor resistance are the DNA repair systems that can reverse the cytotoxicity of many clinically used DNA-damaging agents. Some progress has already been made but much remains to be done. We explore some components of the DNA-repair process, which are involved in repair of alkylation damage of DNA, as targets for the development of novel and effective molecules designed to improve the efficacy of existing anticancer drugs.
Collapse
|
27
|
Luo Q, Lai Y, Liu S, Wu M, Liu Y, Zhang Z. Deregulated expression of DNA polymerase β is involved in the progression of genomic instability. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:325-333. [PMID: 22576475 PMCID: PMC3544969 DOI: 10.1002/em.21697] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 03/28/2012] [Accepted: 04/03/2012] [Indexed: 05/31/2023]
Abstract
Deregulated expression of DNA polymerase beta (pol β) has been implicated in genomic instability that leads to tumorigenesis, yet the mechanisms underlying the pol β-mediated genetic instability remain elusive. In this study, we investigated the roles of deregulated expression of pol β in spontaneous and xenobiotic-induced genetic instability using mouse embryonic fibroblasts (MEFs) that express distinct pol β levels (wild-type, null, and overexpression) as a model system. Three genetic instability endpoints, DNA strand breaks, chromosome breakage, and gene mutation, were examined under various expression levels of pol β by comet assay, micronuclei test, and hprt mutation assay. Our results demonstrate that neither pol β deficiency nor pol β overexpression is sufficient for accumulation of spontaneous DNA damage that promotes a hyperproliferation phenotype. However, pol β null cells exhibit increased sensitivity to exogenous DNA damaging agents with increased genomic instability compared with pol β wild-type and overexpression cells. This finding suggests that a pol β deficiency may underlie genomic instability induced by exogenous DNA damaging agents. Interestingly, pol β overexpression cells exhibit less chromosomal or DNA damage, but display a higher hprt mutation frequency upon methyl methanesulfonate exposure compared with the other two cell types. Our results therefore indicate that an excessive amount of pol β may promote genomic instability, presumably through an error-prone repair response, although it enhances overall BER capacity for induced DNA damage.
Collapse
Affiliation(s)
- Qingying Luo
- Department of Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yanhao Lai
- Department of Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, USA
| | - Shukun Liu
- Department of Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Mei Wu
- Department of Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, USA
| | - Zunzhen Zhang
- Department of Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
28
|
Abstract
Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity.
Collapse
Affiliation(s)
- Dragony Fu
- Departments of Biological Engineering and Biology, Center for Environmental Health Sciences, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Jennifer A. Calvo
- Departments of Biological Engineering and Biology, Center for Environmental Health Sciences, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Leona D Samson
- Departments of Biological Engineering and Biology, Center for Environmental Health Sciences, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
29
|
Goellner EM, Svilar D, Almeida KH, Sobol RW. Targeting DNA polymerase ß for therapeutic intervention. Curr Mol Pharmacol 2012; 5:68-87. [PMID: 22122465 PMCID: PMC3894524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 01/10/2011] [Accepted: 01/15/2011] [Indexed: 05/31/2023]
Abstract
DNA damage plays a causal role in numerous disease processes. Hence, it is suggested that DNA repair proteins, which maintain the integrity of the nuclear and mitochondrial genomes, play a critical role in reducing the onset of multiple diseases, including cancer, diabetes and neurodegeneration. As the primary DNA polymerase involved in base excision repair, DNA polymerase ß (Polß) has been implicated in multiple cellular processes, including genome maintenance and telomere processing and is suggested to play a role in oncogenic transformation, cell viability following stress and the cellular response to radiation, chemotherapy and environmental genotoxicants. Therefore, Polß inhibitors may prove to be effective in cancer treatment. However, Polß has a complex and highly regulated role in DNA metabolism. This complicates the development of effective Polß-specific inhibitors useful for improving chemotherapy and radiation response without impacting normal cellular function. With multiple enzymatic activities, numerous binding partners and complex modes of regulation from post-translational modifications, there are many opportunities for Polß inhibition that have yet to be resolved. To shed light on the varying possibilities and approaches of targeting Polß for potential therapeutic intervention, we summarize the reported small molecule inhibitors of Polß and discuss the genetic, biochemical and chemical studies that implicate additional options for Polß inhibition. Further, we offer suggestions on possible inhibitor combinatorial approaches and the potential for tumor specificity for Polß-inhibitors.
Collapse
Affiliation(s)
- Eva M. Goellner
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - David Svilar
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Karen H. Almeida
- Department of Physical Sciences, Rhode Island College, 600 Mt. Pleasant Ave, Providence, RI 02908-1991, USA
| | - Robert W. Sobol
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| |
Collapse
|
30
|
Knobel PA, Marti TM. Translesion DNA synthesis in the context of cancer research. Cancer Cell Int 2011; 11:39. [PMID: 22047021 PMCID: PMC3224763 DOI: 10.1186/1475-2867-11-39] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/02/2011] [Indexed: 11/17/2022] Open
Abstract
During cell division, replication of the genomic DNA is performed by high-fidelity DNA polymerases but these error-free enzymes can not synthesize across damaged DNA. Specialized DNA polymerases, so called DNA translesion synthesis polymerases (TLS polymerases), can replicate damaged DNA thereby avoiding replication fork breakdown and subsequent chromosomal instability. We focus on the involvement of mammalian TLS polymerases in DNA damage tolerance mechanisms. In detail, we review the discovery of TLS polymerases and describe the molecular features of all the mammalian TLS polymerases identified so far. We give a short overview of the mechanisms that regulate the selectivity and activity of TLS polymerases. In addition, we summarize the current knowledge how different types of DNA damage, relevant either for the induction or treatment of cancer, are bypassed by TLS polymerases. Finally, we elucidate the relevance of TLS polymerases in the context of cancer therapy.
Collapse
Affiliation(s)
- Philip A Knobel
- Laboratory of Molecular Oncology, Clinic and Polyclinic of Oncology, University Hospital Zürich, Häldeliweg 4, CH-8044 Zürich, Switzerland.
| | | |
Collapse
|
31
|
Patterson D, Cabelof DC. Down syndrome as a model of DNA polymerase beta haploinsufficiency and accelerated aging. Mech Ageing Dev 2011; 133:133-7. [PMID: 22019846 DOI: 10.1016/j.mad.2011.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 09/20/2011] [Accepted: 10/06/2011] [Indexed: 02/07/2023]
Abstract
Down syndrome is a condition of intellectual disability characterized by accelerated aging. As with other aging syndromes, evidence accumulated over the past several decades points to a DNA repair defect inherent in Down syndrome. This evidence has led us to suggest that Down syndrome results in reduced DNA base excision repair (BER) capacity, and that this contributes to the genomic instability and the aging phenotype of Down syndrome. We propose important roles for microRNA and/or folate metabolism and oxidative stress in the dysregulation of BER in Down syndrome. Further, we suggest these pathways are involved in the leukemogenesis of Down syndrome. We have reviewed the role of BER in the processing of oxidative stress, and the impact of folate depletion on BER capacity. Further, we have reviewed the role that loss of BER, specifically DNA polymerase beta, plays in accelerating the rate of aging. Like that seen in the DNA polymerase beta heterozygous mouse, the aging phenotype of Down syndrome is subtle, unlike the aging phenotypes seen in the classical progeroid syndromes and mouse models of aging. As such, Down syndrome may provide a model for elucidating some of the basic mechanisms of aging.
Collapse
Affiliation(s)
- David Patterson
- Eleanor Roosevelt Institute, University of Denver, Denver, CO, USA
| | | |
Collapse
|
32
|
Dianov GL. Base excision repair targets for cancer therapy. Am J Cancer Res 2011; 1:845-851. [PMID: 22016832 PMCID: PMC3196283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/03/2011] [Indexed: 05/31/2023] Open
Abstract
Cellular DNA repair is a frontline system that is responsible for maintaining genome integrity and thus preventing premature aging and cancer by repairing DNA lesions and strand breaks caused by endogenous and exogenous mutagens. However, it is also the principal cellular system in cancer cells that counteracts the killing effect of the major cancer treatments e.g. chemotherapy and ionizing radiation. The major goal of this review is to critically exam the base excision repair pathway and mechanisms regulating base excision repair capacity as a potential targets for improving cancer therapy.
Collapse
Affiliation(s)
- Grigory L Dianov
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building Roosevelt Drive, Oxford 0X3 7DQ, UK
| |
Collapse
|
33
|
Kidane D, Dalal S, Keh A, Liu Y, Zelterman D, Sweasy JB. DNA polymerase beta is critical for genomic stability of sperm cells. DNA Repair (Amst) 2011; 10:390-7. [PMID: 21333614 PMCID: PMC3255305 DOI: 10.1016/j.dnarep.2011.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 01/03/2011] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
Maintaining genome integrity in germ cells is important, given that the germ cells produce the next generation of offspring. Base excision repair is a DNA repair pathway that is responsible for the repair of most endogenous DNA damage. A key enzyme that functions in this repair pathway is DNA polymerase beta (Pol β). We previously used conditional gene targeting to engineer mice with sperm deleted of the Pol B gene, which encodes Pol β. We characterized mutagenesis in the sperm of these mice and compared it to wild-type and mice heterozygous for the Pol B gene. We found that sperm obtained that were heterozygously or homozygously deleted of the Pol B gene exhibited increased mutation frequencies compared to wild-type sperm. We identified an increase in transition mutations in both heterozygously and homozygously deleted sperm, and the types of mutations induced suggest that a polymerase other than Pol β functions in its absence. Interestingly, most of the transversions we observed were induced only in heterozygous, compared with wild-type sperm. Our results suggest that haploinsufficiency of Pol β leads to increased frequencies and varieties of mutations. Our study also shows that Pol β is critical for genome stability in the germline.
Collapse
Affiliation(s)
- Dawit Kidane
- Departments of Therapeutic Radiology and Genetics, 333 Cedar Street, New Haven, CT 06520
| | - Shibani Dalal
- Departments of Therapeutic Radiology and Genetics, 333 Cedar Street, New Haven, CT 06520
| | - Agnes Keh
- Departments of Therapeutic Radiology and Genetics, 333 Cedar Street, New Haven, CT 06520
| | - Yanfeng Liu
- Departments of Therapeutic Radiology and Genetics, 333 Cedar Street, New Haven, CT 06520
| | - Daniel Zelterman
- The Yale Comprehensive Cancer Center, 333 Cedar Street, New Haven, CT 06520
| | - Joann B. Sweasy
- Departments of Therapeutic Radiology and Genetics, 333 Cedar Street, New Haven, CT 06520
- The Yale Comprehensive Cancer Center, 333 Cedar Street, New Haven, CT 06520
| |
Collapse
|
34
|
Dianov GL, Meisenberg C, Parsons JL. Regulation of DNA repair by ubiquitylation. BIOCHEMISTRY. BIOKHIMIIA 2011; 76:69-79. [PMID: 21568841 DOI: 10.1134/s0006297911010093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cellular DNA repair is a frontline system that is responsible for maintaining genome integrity and thus preventing premature aging and cancer by repairing DNA lesions and strand breaks caused by endogenous and exogenous mutagens. However, it is also the principal cellular system in cancer cells that counteracts the killing effect of the major cancer treatments, e.g. chemotherapy and ionizing radiation. Although it is clear that an individual's DNA repair capacity varies, the mechanisms involved in the regulation of repair systems that are responsible for such variations are only just emerging. This knowledge gap is impeding the finding of new cancer therapy targets and the development of novel treatment strategies. In recent years the vital role of post-translational modifications of DNA repair proteins, including ubiquitylation and phosphorylation, has been uncovered. This review will cover recent progress in our understanding of the role of ubiquitylation in the regulation of DNA repair.
Collapse
Affiliation(s)
- G L Dianov
- Gray Institute for Radiation Oncology and Biology, University of Oxford, UK.
| | | | | |
Collapse
|
35
|
Luke AM, Chastain PD, Pachkowski BF, Afonin V, Takeda S, Kaufman DG, Swenberg JA, Nakamura J. Accumulation of true single strand breaks and AP sites in base excision repair deficient cells. Mutat Res 2010; 694:65-71. [PMID: 20851134 PMCID: PMC2992575 DOI: 10.1016/j.mrfmmm.2010.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 08/27/2010] [Accepted: 08/31/2010] [Indexed: 12/29/2022]
Abstract
Single strand breaks (SSBs) are one of the most frequent DNA lesions caused by endogenous and exogenous agents. The most utilized alkaline-based assays for SSB detection frequently give false positive results due to the presence of alkali-labile sites that are converted to SSBs. Methoxyamine, an acidic O-hydroxylamine, has been utilized to measure DNA damage in cells. However, the neutralization of methoxyamine is required prior to usage. Here we developed a convenient, specific SSB assay using alkaline gel electrophoresis (AGE) coupled with a neutral O-hydroxylamine, O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (OTX). OTX stabilizes abasic sites (AP sites) to prevent their alkaline incision while still allowing for strong alkaline DNA denaturation. DNA from DT40 and isogenic polymerase β null cells exposed to methyl methanesulfonate were applied to the OTX-coupled AGE (OTX-AGE) assay. Time-dependent increases in SSBs were detected in each cell line with more extensive SSB formation in the null cells. These findings were supported by an assay that indirectly detects SSBs through measuring NAD(P)H depletion. An ARP-slot blot assay demonstrated a significant time-dependent increase in AP sites in both cell lines by 1mM MMS compared to control. Furthermore, the Pol β-null cells displayed greater AP site formation than the parental DT40 cells. OTX use represents a facile approach for assessing SSB formation, whose benefits can also be applied to other established SSB assays.
Collapse
Affiliation(s)
- April M. Luke
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, USA
| | - Paul D. Chastain
- Department of Pathology and Lab Medicine, University of North Carolina, Chapel Hill, USA
| | - Brian F. Pachkowski
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, USA
| | - Valeriy Afonin
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, USA
| | - Shunichi Takeda
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - David G. Kaufman
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, USA
- Department of Pathology and Lab Medicine, University of North Carolina, Chapel Hill, USA
| | - James A. Swenberg
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, USA
- Department of Pathology and Lab Medicine, University of North Carolina, Chapel Hill, USA
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, USA
| | - Jun Nakamura
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, USA
| |
Collapse
|
36
|
Kondo N, Takahashi A, Ono K, Ohnishi T. DNA damage induced by alkylating agents and repair pathways. J Nucleic Acids 2010; 2010:543531. [PMID: 21113301 PMCID: PMC2989456 DOI: 10.4061/2010/543531] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/26/2010] [Accepted: 10/12/2010] [Indexed: 12/11/2022] Open
Abstract
The cytotoxic effects of alkylating agents are strongly attenuated by cellular DNA repair processes, necessitating a clear understanding of the repair mechanisms. Simple methylating agents form adducts at N- and O-atoms. N-methylations are removed by base excision repair, AlkB homologues, or nucleotide excision repair (NER). O6-methylguanine (MeG), which can eventually become cytotoxic and mutagenic, is repaired by O6-methylguanine-DNA methyltransferase, and O6MeG:T mispairs are recognized by the mismatch repair system (MMR). MMR cannot repair the O6MeG/T mispairs, which eventually lead to double-strand breaks. Bifunctional alkylating agents form interstrand cross-links (ICLs) which are more complex and highly cytotoxic. ICLs are repaired by complex of NER factors (e.g., endnuclease xeroderma pigmentosum complementation group F-excision repair cross-complementing rodent repair deficiency complementation group 1), Fanconi anemia repair, and homologous recombination. A detailed understanding of how cells cope with DNA damage caused by alkylating agents is therefore potentially useful in clinical medicine.
Collapse
Affiliation(s)
- Natsuko Kondo
- Particle Radiation Oncology Research Center, Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | | | | | | |
Collapse
|
37
|
Poltoratsky V, Heacock M, Kissling GE, Prasad R, Wilson SH. Mutagenesis dependent upon the combination of activation-induced deaminase expression and a double-strand break. Mol Immunol 2010; 48:164-70. [PMID: 20828826 PMCID: PMC3023910 DOI: 10.1016/j.molimm.2010.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/02/2010] [Accepted: 08/16/2010] [Indexed: 12/21/2022]
Abstract
We explored DNA metabolic events potentially relevant to somatic hypermutation (SHM) of immunoglobulin genes using a yeast model system. Double-strand break (DSB) formation has been discussed as a possible component of the SHM process during immunoglobulin gene maturation. Yet, possible mechanisms linking DSB formation with mutagenesis have not been well understood. In the present study, a linkage between mutagenesis in a reporter gene and a double-strand break at a distal site was examined as a function of activation-induced deaminase (AID) expression. Induction of the DSB was found to be associated with mutagenesis in a genomic marker gene located 7 kb upstream of the break site: mutagenesis was strongest with the combination of AID expression and DSB induction. The mutation spectrum of this DSB and AID-mediated mutagenesis was characteristic of replicative bypass of uracil in one strand and was dependent on expression of DNA polymerase delta (Polδ). These results in a yeast model system illustrate that the combination of DSB induction and AID expression could be associated with mutagenesis observed in SHM. Implications of these findings for SHM of immunoglobulin genes in human B cells are discussed.
Collapse
Affiliation(s)
- Vladimir Poltoratsky
- Laboratory of Structural Biology, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F1-12, Research Triangle Park, North Carolina 27709 USA
| | - Michelle Heacock
- Laboratory of Structural Biology, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F1-12, Research Triangle Park, North Carolina 27709 USA
| | - Grace E. Kissling
- Biostatistics Branch, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F1-12, Research Triangle Park, North Carolina 27709 USA
| | - Rajendra Prasad
- Laboratory of Structural Biology, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F1-12, Research Triangle Park, North Carolina 27709 USA
| | - Samuel H. Wilson
- Laboratory of Structural Biology, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F1-12, Research Triangle Park, North Carolina 27709 USA
| |
Collapse
|
38
|
Kovalenko OA, Caron MJ, Ulema P, Medrano C, Thomas AP, Kimura M, Bonini MG, Herbig U, Santos JH. A mutant telomerase defective in nuclear-cytoplasmic shuttling fails to immortalize cells and is associated with mitochondrial dysfunction. Aging Cell 2010; 9:203-19. [PMID: 20089117 DOI: 10.1111/j.1474-9726.2010.00551.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Telomerase is a reverse transcriptase specialized in telomere synthesis. The enzyme is primarily nuclear where it elongates telomeres, but many reports show that the catalytic component of telomerase (in humans called hTERT) also localizes outside of the nucleus, including in mitochondria. Shuttling of hTERT between nucleus and cytoplasm and vice versa has been reported, and different proteins shown to regulate such translocation. Exactly why telomerase moves between subcellular compartments is still unclear. In this study we report that mutations that disrupt the nuclear export signal (NES) of hTERT render it nuclear but unable to immortalize cells despite retention of catalytic activity in vitro. Overexpression of the mutant protein in primary fibroblasts is associated with telomere-based cellular senescence, multinucleated cells and the activation of the DNA damage response genes ATM, Chk2 and p53. Mitochondria function is also impaired in the cells. We find that cells expressing the mutant hTERT produce high levels of mitochondrial reactive oxygen species and have damage in telomeric and extratelomeric DNA. Dysfunctional mitochondria are also observed in an ALT (alternative lengthening of telomeres) cell line that is insensitive to growth arrest induced by the mutant hTERT showing that mitochondrial impairment is not a consequence of the growth arrest. Our data indicate that mutations involving the NES of hTERT are associated with defects in telomere maintenance, mitochondrial function and cellular growth, and suggest targeting this region of hTERT as a potential new strategy for cancer treatment.
Collapse
Affiliation(s)
- Olga A Kovalenko
- Department of Pharmacology and Physiology, National Institute of Environmental and Health Sciences, 111 TW Alexander dr, MD F0-02, Durham, NC 27709, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Tang JB, Goellner EM, Wang XH, Trivedi RN, St Croix CM, Jelezcova E, Svilar D, Brown AR, Sobol RW. Bioenergetic metabolites regulate base excision repair-dependent cell death in response to DNA damage. Mol Cancer Res 2010; 8:67-79. [PMID: 20068071 DOI: 10.1158/1541-7786.mcr-09-0411] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Base excision repair (BER) protein expression is important for resistance to DNA damage-induced cytotoxicity. Conversely, BER imbalance [DNA polymerase beta (Polbeta) deficiency or repair inhibition] enhances cytotoxicity of radiation and chemotherapeutic DNA-damaging agents. Whereas inhibition of critical steps in the BER pathway result in the accumulation of cytotoxic DNA double-strand breaks, we report that DNA damage-induced cytotoxicity due to deficiency in the BER protein Polbeta triggers cell death dependent on poly(ADP-ribose) (PAR) polymerase activation yet independent of PAR-mediated apoptosis-inducing factor nuclear translocation or PAR glycohydrolase, suggesting that cytotoxicity is not from PAR or PAR catabolite signaling. Cell death is rescued by the NAD(+) metabolite beta-nicotinamide mononucleotide and is synergistic with inhibition of NAD(+) biosynthesis, showing that DNA damage-induced cytotoxicity mediated via BER inhibition is primarily dependent on cellular metabolite bioavailability. We offer a mechanistic justification for the elevated alkylation-induced cytotoxicity of Polbeta-deficient cells, suggesting a linkage between DNA repair, cell survival, and cellular bioenergetics.
Collapse
Affiliation(s)
- Jiang-bo Tang
- Hillman Cancer Center, University of Pittsburgh Cancer Institute, Research Pavilion, Suite 2.6a, 5117 Centre Avenue, Pittsburgh, PA 15213-1863, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kovalenko OA, Santos JH. Analysis of oxidative damage by gene-specific quantitative PCR. ACTA ACUST UNITED AC 2009; Chapter 19:Unit 19.1. [PMID: 19582765 DOI: 10.1002/0471142905.hg1901s62] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This unit describes the gene-specific quantitative PCR-based (QPCR) assay, which is used to measure DNA integrity of both nuclear and mitochondrial genomes based on amplification of long DNA targets. QPCR can be used to quantify the formation of DNA damage and the kinetics of DNA repair by following restoration of amplification of the target DNA over time after removal of the damaging agent. A detailed protocol to set up QPCR in any laboratory, highlighting critical parameters for successful establishment of the assay and interpretation of the results, is provided here. Advantages (e.g., the use of nanogram amounts of DNA) and limitations (e.g., the inability to define the specific type of lesion present on the DNA) of using QPCR to assay DNA damage in human cells are also described.
Collapse
Affiliation(s)
- Olga A Kovalenko
- University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| | | |
Collapse
|
42
|
Yoshizawa K, Jelezcova E, Brown AR, Foley JF, Nyska A, Cui X, Hofseth LJ, Maronpot RM, Wilson SH, Sepulveda AR, Sobol RW. Gastrointestinal hyperplasia with altered expression of DNA polymerase beta. PLoS One 2009; 4:e6493. [PMID: 19654874 PMCID: PMC2716528 DOI: 10.1371/journal.pone.0006493] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 07/07/2009] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Altered expression of DNA polymerase beta (Pol beta) has been documented in a large percentage of human tumors. However, tumor prevalence or predisposition resulting from Pol beta over-expression has not yet been evaluated in a mouse model. METHODOLOGY/PRINCIPAL FINDINGS We have recently developed a novel transgenic mouse model that over-expresses Pol beta. These mice present with an elevated incidence of spontaneous histologic lesions, including cataracts, hyperplasia of Brunner's gland and mucosal hyperplasia in the duodenum. In addition, osteogenic tumors in mice tails, such as osteoma and osteosarcoma were detected. This is the first report of elevated tumor incidence in a mouse model of Pol beta over-expression. These findings prompted an evaluation of human gastrointestinal tumors with regard to Pol beta expression. We observed elevated expression of Pol beta in stomach adenomas and thyroid follicular carcinomas, but reduced Pol beta expression in esophageal adenocarcinomas and squamous carcinomas. CONCLUSIONS/SIGNIFICANCE These data support the hypothesis that balanced and proficient base excision repair protein expression and base excision repair capacity is required for genome stability and protection from hyperplasia and tumor formation.
Collapse
Affiliation(s)
- Katsuhiko Yoshizawa
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- Department of Pathology II, Kansai Medical University, Moriguchi, Osaka, Japan
| | - Elena Jelezcova
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine & University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Ashley R. Brown
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine & University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Julie F. Foley
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Abraham Nyska
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Xiangli Cui
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
| | - Lorne J. Hofseth
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
| | - Robert M. Maronpot
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Samuel H. Wilson
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Antonia R. Sepulveda
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert W. Sobol
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine & University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
43
|
Ma W, Panduri V, Sterling JF, Van Houten B, Gordenin DA, Resnick MA. The transition of closely opposed lesions to double-strand breaks during long-patch base excision repair is prevented by the coordinated action of DNA polymerase delta and Rad27/Fen1. Mol Cell Biol 2009; 29:1212-21. [PMID: 19075004 PMCID: PMC2643827 DOI: 10.1128/mcb.01499-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 10/22/2008] [Accepted: 12/04/2008] [Indexed: 11/20/2022] Open
Abstract
DNA double-strand breaks can result from closely opposed breaks induced directly in complementary strands. Alternatively, double-strand breaks could be generated during repair of clustered damage, where the repair of closely opposed lesions has to be well coordinated. Using single and multiple mutants of Saccharomyces cerevisiae (budding yeast) that impede the interaction of DNA polymerase delta and the 5'-flap endonuclease Rad27/Fen1 with the PCNA sliding clamp, we show that the lack of coordination between these components during long-patch base excision repair of alkylation damage can result in many double-strand breaks within the chromosomes of nondividing haploid cells. This contrasts with the efficient repair of nonclustered methyl methanesulfonate-induced lesions, as measured by quantitative PCR and S1 nuclease cleavage of single-strand break sites. We conclude that closely opposed single-strand lesions are a unique threat to the genome and that repair of closely opposed strand damage requires greater spatial and temporal coordination between the participating proteins than does widely spaced damage in order to prevent the development of double-strand breaks.
Collapse
Affiliation(s)
- Wenjian Ma
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
44
|
Aag-initiated base excision repair drives alkylation-induced retinal degeneration in mice. Proc Natl Acad Sci U S A 2009; 106:888-93. [PMID: 19139400 DOI: 10.1073/pnas.0807030106] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vision loss affects >3 million Americans and many more people worldwide. Although predisposing genes have been identified their link to known environmental factors is unclear. In wild-type animals DNA alkylating agents induce photoreceptor apoptosis and severe retinal degeneration. Alkylation-induced retinal degeneration is totally suppressed in the absence of the DNA repair protein alkyladenine DNA glycosylase (Aag) in both differentiating and postmitotic retinas. Moreover, transgenic expression of Aag activity restores the alkylation sensitivity of photoreceptors in Aag null animals. Aag heterozygotes display an intermediate level of retinal degeneration, demonstrating haploinsufficiency and underscoring that Aag expression confers a dominant retinal degeneration phenotype.
Collapse
|
45
|
Allen D, Herbert DC, McMahan CA, Rotrekl V, Sobol RW, Wilson SH, Walter CA. Mutagenesis is elevated in male germ cells obtained from DNA polymerase-beta heterozygous mice. Biol Reprod 2008; 79:824-31. [PMID: 18650495 PMCID: PMC2679517 DOI: 10.1095/biolreprod.108.069104] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 03/30/2008] [Accepted: 07/01/2008] [Indexed: 12/23/2022] Open
Abstract
Gametes carry the DNA that will direct the development of the next generation. By compromising genetic integrity, DNA damage and mutagenesis threaten the ability of gametes to fulfill their biological function. DNA repair pathways function in germ cells and serve to ameliorate much DNA damage and prevent mutagenesis. High base excision repair (BER) activity is documented for spermatogenic cells. DNA polymerase-beta (POLB) is required for the short-patch BER pathway. Because mice homozygous null for the Polb gene die soon after birth, mice heterozygous for Polb were used to examine the extent to which POLB contributes to maintaining spermatogenic genomic integrity in vivo. POLB protein levels were reduced only in mixed spermatogenic cells. In vitro short-patch BER activity assays revealed that spermatogenic cell nuclear extracts obtained from Polb heterozygous mice had one third the BER activity of age-matched control mice. Polb heterozygosity had no effect on the BER activities of somatic tissues tested. The Polb heterozygous mouse line was crossed with the lacI transgenic Big Blue mouse line to assess mutant frequency. The spontaneous mutant frequency for mixed spermatogenic cells prepared from Polb heterozygous mice was 2-fold greater than that of wild-type controls, but no significant effect was found among the somatic tissues tested. These results demonstrate that normal POLB abundance is necessary for normal BER activity, which is critical in maintaining a low germline mutant frequency. Notably, spermatogenic cells respond differently than somatic cells to Polb haploinsufficiency.
Collapse
Affiliation(s)
- Diwi Allen
- Departments of Cellular and Structural Biology and Pathology, and The Barshop Center for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Damon C. Herbert
- Departments of Cellular and Structural Biology and Pathology, and The Barshop Center for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - C. Alex McMahan
- Departments of Cellular and Structural Biology and Pathology, and The Barshop Center for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Vladimir Rotrekl
- Departments of Cellular and Structural Biology and Pathology, and The Barshop Center for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Robert W. Sobol
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| | - Samuel H. Wilson
- The Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Christi A. Walter
- Departments of Cellular and Structural Biology and Pathology, and The Barshop Center for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- South Texas Veteran's Health Care System, Audie Murphy Memorial Veterans Affairs Hospital, San Antonio, Texas 78229
| |
Collapse
|
46
|
Parsons JL, Tait PS, Finch D, Dianova II, Allinson SL, Dianov GL. CHIP-mediated degradation and DNA damage-dependent stabilization regulate base excision repair proteins. Mol Cell 2008; 29:477-87. [PMID: 18313385 DOI: 10.1016/j.molcel.2007.12.027] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 08/24/2007] [Accepted: 12/03/2007] [Indexed: 11/24/2022]
Abstract
Base excision repair (BER) is the major pathway for processing of simple lesions in DNA, including single-strand breaks, base damage, and base loss. The scaffold protein XRCC1, DNA polymerase beta, and DNA ligase IIIalpha play pivotal roles in BER. Although all these enzymes are essential for development, their cellular levels must be tightly regulated because increased amounts of BER enzymes lead to elevated mutagenesis and genetic instability and are frequently found in cancer cells. Here we report that BER enzyme levels are linked to and controlled by the level of DNA lesions. We demonstrate that stability of BER enzymes increases after formation of a repair complex on damaged DNA and that proteins not involved in a repair complex are ubiquitylated by the E3 ubiquitin ligase CHIP and subsequently rapidly degraded. These data identify a molecular mechanism controlling cellular levels of BER enzymes and correspondingly the efficiency and capacity of BER.
Collapse
Affiliation(s)
- Jason L Parsons
- Medical Research Council Radiation Oncology and Biology Unit, University of Oxford, Oxfordshire OX1 3QU, UK
| | | | | | | | | | | |
Collapse
|
47
|
Ma W, Resnick MA, Gordenin DA. Apn1 and Apn2 endonucleases prevent accumulation of repair-associated DNA breaks in budding yeast as revealed by direct chromosomal analysis. Nucleic Acids Res 2008; 36:1836-46. [PMID: 18267974 PMCID: PMC2346603 DOI: 10.1093/nar/gkm1148] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Base excision repair (BER) provides relief from many DNA lesions. While BER enzymes have been characterized biochemically, BER functions within cells are much less understood, in part because replication bypass and double-strand break (DSB) repair can also impact resistance to base damage. To investigate BER in vivo, we examined the repair of methyl methanesulfonate (MMS) induced DNA damage in haploid G1 yeast cells, so that replication bypass and recombinational DSB repair cannot occur. Based on the heat-lability of MMS-induced base damage, an assay was developed that monitors secondary breaks in full-length yeast chromosomes where closely spaced breaks yield DSBs that are observed by pulsed-field gel electrophoresis. The assay detects damaged bases and abasic (AP) sites as heat-dependent breaks as well as intermediate heat-independent breaks that arise during BER. Using a circular chromosome, lesion frequency and repair kinetics could be easily determined. Monitoring BER in single and multiple glycosylase and AP-endonuclease mutants confirmed that Mag1 is the major enzyme that removes MMS-damaged bases. This approach provided direct physical evidence that Apn1 and Apn2 not only repair cellular base damage but also prevent break accumulation that can result from AP sites being channeled into other BER pathway(s).
Collapse
Affiliation(s)
- Wenjian Ma
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIH, DHHS), Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
48
|
Chakravarti D, Venugopal D, Mailander PC, Meza JL, Higginbotham S, Cavalieri EL, Rogan EG. The role of polycyclic aromatic hydrocarbon-DNA adducts in inducing mutations in mouse skin. Mutat Res 2008; 649:161-78. [PMID: 17931959 PMCID: PMC2254211 DOI: 10.1016/j.mrgentox.2007.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 08/17/2007] [Accepted: 08/31/2007] [Indexed: 11/29/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAH) form stable and depurinating DNA adducts in mouse skin to induce preneoplastic mutations. Some mutations transform cells, which then clonally expand to establish tumors. Strong clues about the mutagenic mechanism can be obtained if the PAH-DNA adducts can be correlated with both preneoplastic and tumor mutations. To this end, we studied mutagenesis in PAH-treated early preneoplastic skin (1 day after exposure) and in the induced papillomas in SENCAR mice. Papillomas were studied by PCR amplification of the H-ras gene and sequencing. For benzo[a]pyrene (BP), BP-7,8-dihydrodiol (BPDHD), 7,12-dimethylbenz[a]anthracene (DMBA) and dibenzo[a,l]pyrene (DB[a,l]P), the codon 13 (GGC to GTC) and codon 61 (CAA to CTA) mutations in papillomas corresponded to the relative levels of Gua and Ade-depurinating adducts, despite BP and BPDHD forming significant amounts of stable DNA adducts. Such a relationship was expected for DMBA and DB[a,l]P, as they formed primarily depurinating adducts. These results suggest that depurinating adducts play a major role in forming the tumorigenic mutations. To validate this correlation, preneoplastic skin mutations were studied by cloning H-ras PCR products and sequencing individual clones. DMBA- and DB[a,l]P-treated skin showed primarily A.T to G.C mutations, which correlated with the high ratio of the Ade/Gua-depurinating adducts. Incubation of skin DNA with T.G-DNA glycosylase eliminated most of these A.T to G.C mutations, indicating that they existed as G.T heteroduplexes, as would be expected if they were formed by errors in the repair of abasic sites generated by the depurinating adducts. BP and its metabolites induced mainly G.C to T.A mutations in preneoplastic skin. However, PCR over unrepaired anti-BPDE-N(2)dG adducts can generate similar mutations as artifacts of the study protocol, making it difficult to establish an adduct-mutation correlation for determining which BP-DNA adducts induce the early preneoplastic mutations. In conclusion, this study suggests that depurinating adducts play a major role in PAH mutagenesis.
Collapse
|
49
|
Dalal S, Chikova A, Jaeger J, Sweasy JB. The Leu22Pro tumor-associated variant of DNA polymerase beta is dRP lyase deficient. Nucleic Acids Res 2007; 36:411-22. [PMID: 18039710 PMCID: PMC2241857 DOI: 10.1093/nar/gkm1053] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Approximately 30% of human tumors characterized to date express DNA polymerase beta (pol beta) variant proteins. Two of the polymerase beta cancer-associated variants are sequence-specific mutators, and one of them binds to DNA but has no polymerase activity. The Leu22Pro (L22P) DNA polymerase beta variant was identified in a gastric carcinoma. Leu22 resides within the 8 kDa amino terminal domain of DNA polymerase beta, which exhibits dRP lyase activity. This domain catalyzes the removal of deoxyribose phosphate during short patch base excision repair. We show that this cancer-associated variant has very little dRP lyase activity but retains its polymerase activity. Although residue 22 has no direct contact with the DNA, we report here that the L22P variant has reduced DNA-binding affinity. The L22P variant protein is deficient in base excision repair. Molecular dynamics calculations suggest that alteration of Leu22 to Pro changes the local packing, the loop connecting helices 1 and 2 and the overall juxtaposition of the helices within the N-terminal domain. This in turn affects the shape of the binding pocket that is required for efficient dRP lyase catalysis.
Collapse
Affiliation(s)
- Shibani Dalal
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
50
|
Poltoratsky V, Prasad R, Horton JK, Wilson SH. Down-regulation of DNA polymerase beta accompanies somatic hypermutation in human BL2 cell lines. DNA Repair (Amst) 2007; 6:244-53. [PMID: 17127106 PMCID: PMC2121660 DOI: 10.1016/j.dnarep.2006.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 10/11/2006] [Accepted: 10/12/2006] [Indexed: 01/09/2023]
Abstract
Somatic hypermutation (SHM) is a fundamental process in immunoglobulin gene maturation that results in increased affinity of antibodies toward antigens. In one hypothesis explaining SHM in human B cells, the process is initiated by enzymatic deamination of cytosine to uracil in the immunoglobulin gene V-region and this in turn triggers mutation-prone forms of uracil-DNA base excision repair (BER). Yet, an uncertainty with this model is that BER of uracil-DNA in mammalian cells is generally error-free, wherein DNA polymerase beta (pol beta) conducts gap-filling synthesis by insertion of bases according to Watson-Crick rules. To evaluate this inconsistency, we examined pol beta expression in various SHM proficient human BL2 cell line subclones. We report that expression of pol beta in SHM proficient cell lines was strongly down-regulated. In contrast, in other BL2 subclones, we found that SHM was deficient and that pol beta expression was much higher than in the SHM proficient subclones. We also found that overexpression of recombinant human pol beta in a SHM proficient subclone abrogated its capacity for SHM. These results suggest that down-regulation of the normal BER gap-filling DNA polymerase, pol beta, accompanies induced SHM in BL2 cells. This is consistent with the hypothesis that normal error-free BER must be silenced to make way for an error-prone BER process that may be required during somatic hypermutation.
Collapse
Affiliation(s)
- Vladimir Poltoratsky
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, P.O. Box 12233, MD B2-06, Research Triangle Park, NC 27709, USA
| | - Rajendra Prasad
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, P.O. Box 12233, MD B2-06, Research Triangle Park, NC 27709, USA
| | - Julie K. Horton
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, P.O. Box 12233, MD B2-06, Research Triangle Park, NC 27709, USA
| | - Samuel H. Wilson
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, P.O. Box 12233, MD B2-06, Research Triangle Park, NC 27709, USA
| |
Collapse
|