1
|
Baroom HM, Alkenani NA, Al-Johny BO, Almohimeed AA, Mohammed MS, Alshehri LA, Althobaiti SS, Omar RI, Alshaeri MA, Al-Mmaqar SM. Molecular detection of Coxiella burnetii infection (Q fever) in livestock in Makkah Province, Saudi Arabia. Z NATURFORSCH C 2025; 80:275-284. [PMID: 39438143 DOI: 10.1515/znc-2024-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
The study aims to investigate the prevalence of Q fever in livestock and ticks in Makkah Province, Saudi Arabia, by molecular methods. Using DNA obtained from (40) blood samples, (60) vaginal swabs and ticks (120) samples. Real-time PCR was used to detect the IS1111 insertion sequence of Coxiella burnetii in aborted animals. Among 40 blood samples only one sample of the camel was found to be infected with an overall prevalence of 2.5 %. The highest prevalence (10 %) was recorded in AL-Laith in one camel blood sample out of 10 samples examined. Of 60 vaginal swabs examined for C. burnetii DNA, four samples were found to be infected with an overall prevalence of 6.6 %. The highest prevalence (10 %) was recorded in Makkah in two camel vaginal swabs out of 20 samples, followed by Jeddah and AL-Laith with a prevalence of (5.6 %) by detection of one sample positive out of 18 samples on each of them, while vaginal swabs from AL-Kamil were negative. Three types of ticks were identified Hyalomma dromedarii, Hyalomma anatolicum, and Hyalomma excavatum. H. dromedarii tick is the most common in aborted camels with a prevalence (6.7 %) in Makkah followed by Jeddah (5 %). The findings of this study revealed that C. burnetii infection is prevalent in agricultural animals especially camels and ticks maintained at livestock farms in Makkah Province. However, these animals and ticks may pass on C. burnetii infections to nearby people and other animals in the study area.
Collapse
Affiliation(s)
- Hassan M Baroom
- Department of Biological Sciences, Faculty of Science, 37848 King Abdulaziz University , P.O. Box: 80203, Jeddah, 21589, Saudi Arabia
- Department of Microbiology, Faculty of Science Um Alqura University, Makkah, Saudi Arabia
| | - Naser A Alkenani
- Department of Biological Sciences, Faculty of Science, 37848 King Abdulaziz University , P.O. Box: 80203, Jeddah, 21589, Saudi Arabia
- Faculty of Sciences, Environmental Protection and Sustainability Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bassam O Al-Johny
- Department of Biological Sciences, Faculty of Science, 37848 King Abdulaziz University , P.O. Box: 80203, Jeddah, 21589, Saudi Arabia
- Faculty of Sciences, Environmental Protection and Sustainability Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adi A Almohimeed
- Department of Microbiology, Jeddah Islamic Port Veterinary Diagnostic Laboratory, Ministry of Agriculture, Jeddah, Saudi Arabia
| | - Mohammed S Mohammed
- Department of Parasitology, Jeddah Islamic Port Veterinary Diagnostic Laboratory, Ministry of Agriculture, Jeddah, Saudi Arabia
| | - Layla A Alshehri
- Department of Parasitology, Jeddah Islamic Port Veterinary Diagnostic Laboratory, Ministry of Agriculture, Jeddah, Saudi Arabia
| | - Shaker S Althobaiti
- Department of Molecular Biology, Jeddah Islamic Port Veterinary Diagnostic Laboratory, Ministry of Agriculture, Jeddah, Saudi Arabia
| | - Raga I Omar
- Department of Science and Technology, University College of Nairiyah, Hafr Al-Batin University, Nairiyah, 31991, Saudi Arabia
| | - Majed A Alshaeri
- Department of Biological Sciences, Faculty of Science, 37848 King Abdulaziz University , P.O. Box: 80203, Jeddah, 21589, Saudi Arabia
- Faculty of Sciences, Environmental Protection and Sustainability Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh M Al-Mmaqar
- Department of Biological Sciences, Faculty of Science, 37848 King Abdulaziz University , P.O. Box: 80203, Jeddah, 21589, Saudi Arabia
- Department of Biology, Faculty of Education, Albaydha University, Al-Baydha, Yemen
| |
Collapse
|
2
|
Stuart WS, Jenkins CH, Ireland PM, Isupov MN, Norville IH, Harmer NJ. Structure and catalytic mechanism of methylisocitrate lyase, a potential drug target against Coxiella burnetii. J Biol Chem 2025; 301:108517. [PMID: 40250561 DOI: 10.1016/j.jbc.2025.108517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025] Open
Abstract
We present a comprehensive investigation into the catalytic mechanism of methylisocitrate lyase, a potential drug target candidate against the zoonotic pathogen Coxiella burnetii, the causative agent of Q fever and a federal select agent. Current treatment regimens are prolonged, often with incomplete clearance of the pathogen. We utilized a structure-based bioinformatics pipeline to identify methylisocitrate lyase as a candidate therapeutic target against C. burnetii from a list of essential genes. WT C. burnetii methylisocitrate lyase has a kcat of 13.8 s-1 (compared to 105 s-1 for Salmonella enterica), and isocitrate inhibits with a KI of 11 mM. We have determined the previously uncharacterized substrate-bound structure of this enzyme family, alongside product and inhibitor-bound structures. These structures of WT enzyme reveal that in the active state the catalytic C118 is positioned 2.98 Å from O5 of methylisocitrate and Arg152 moves toward the substrate relative to the inhibitor bound structure. Analysis of structure-based mutants reveals that Arg152 and Glu110 are both essential for catalysis. We suggest that Arg152 acts as the catalytic base that initiates the methylisocitrate lyase reaction. These results deepen our understanding of the catalytic mechanism of methylisocitrate lyase and could aid the development of new therapeutics against C. burnetii.
Collapse
Affiliation(s)
- William S Stuart
- Living Systems Institute, University of Exeter, Exeter, UK; Department of Biosciences, University of Exeter, Exeter, UK
| | - Christopher H Jenkins
- Human and Biological Advantage Department, Dstl Porton Down, Salisbury, Wiltshire, UK
| | - Philip M Ireland
- Human and Biological Advantage Department, Dstl Porton Down, Salisbury, Wiltshire, UK
| | | | - Isobel H Norville
- Department of Biosciences, University of Exeter, Exeter, UK; Human and Biological Advantage Department, Dstl Porton Down, Salisbury, Wiltshire, UK
| | - Nicholas J Harmer
- Living Systems Institute, University of Exeter, Exeter, UK; Department of Biosciences, University of Exeter, Exeter, UK.
| |
Collapse
|
3
|
Ren Q, Lim YY, Teo CH. Genome-wide identification and expression analysis of orphan genes in twelve Musa (sub)species. 3 Biotech 2025; 15:41. [PMID: 39822754 PMCID: PMC11732818 DOI: 10.1007/s13205-025-04213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025] Open
Abstract
Orphan genes (OGs), also known as lineage-specific genes, are species-specific genes that play a crucial role in species-specific adaptations to various stresses. Although OGs have been identified in several plant species, there is no information on OGs in banana genomes. This study aimed to systematically identify OGs in twelve banana (sub)species using comparative genomics. The results showed that OG content varied widely among these (sub)species, from 0.4% in Musa itinerans to 7.3% in Ensete glaucum. Genetic structure analysis showed that banana OGs have significantly shorter protein lengths, smaller molecular weight, fewer exons, and shorter exon lengths than non-orphan genes (NOGs). Subcellular localization predictions showed that banana OGs are mainly found in the chloroplast, nucleus, and cytosol, and are evenly distributed across chromosomes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses suggested that OGs may be involved in cellular processes, metabolic processes, and molecular transport. The transcriptome analysis of 9 AAA cultivars against 4 M. acuminata subspecies genomes showed the OGs content. Analysis of gene expression in M. acuminata subsp. malaccensis showed 75 differentially expressed (DE) OGs in response to abiotic stresses and 46 DE OGs related to biotic stresses, indicating that these OGs might play important roles in response to abiotic and biotic stresses. This study provides a foundation for further in-depth research into the functions of OGs in bananas. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04213-9.
Collapse
Affiliation(s)
- Qingwen Ren
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yat-Yuen Lim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chee How Teo
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Angara RK, Van Winkle PE, Gilk SD. Mechanisms of lipid homeostasis in the Coxiella Containing Vacuole. Biochem Soc Trans 2025; 53:59–68. [PMID: 39851196 DOI: 10.1042/bst20240899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/26/2025]
Abstract
Coxiella burnetii, the causative agent of human Q fever, is an obligate intracellular bacterial pathogen that replicates in a large, membrane-bound vacuole known as the Coxiella Containing Vacuole (CCV). The CCV is a unique, phagolysosome-derived vacuole with a sterol-rich membrane containing host and bacterial proteins. The CCV membrane itself serves as a barrier to protect the bacteria from the host's innate immune response, and the lipid and protein content directly influence both the CCV luminal environment and interactions between the CCV and host trafficking pathways. CCV membrane cholesterol is critical in regulating CCV pH, while CCV phosphatidylinositol phosphate species influence CCV fusion events and membrane dynamics. C. burnetii proteins directly target host lipid metabolism to regulate CCV membrane content and generate a source of lipids that support bacterial replication or influence the innate immune response. This review provides an overview of the diverse repertoire of lipids involved in CCV formation and maintenance, highlighting the pathogen-driven strategies to modify host lipid homeostasis.
Collapse
Affiliation(s)
- Rajendra K Angara
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A
| | - Peyton E Van Winkle
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A
| | - Stacey D Gilk
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A
| |
Collapse
|
5
|
Vinod VK, Malik SS, Sivaprasad MS, Malik C, Parmar N, Mathesh K, Kumar B, De UK, Sanjumon ES, Vergis J, Barbuddhe SB, Rawool DB. Coxiellosis in Dogs-A Hitherto Masked Zoonosis in India: An Insight From Seromolecular Investigation and Risk Factor Analysis. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2025; 2025:8642619. [PMID: 39872898 PMCID: PMC11772063 DOI: 10.1155/cjid/8642619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/26/2024] [Indexed: 01/30/2025]
Abstract
Coxiellaburnetii is an airborne bacterial zoonotic pathogen that causes Q fever/coxiellosis in humans and animals. Although dogs are suspected of transmitting Q fever to humans in past outbreaks, the prevalence of C. burnetii in the Indian dog population and risk factors for infection remain unknown. In this study, 452 dogs from pet clinics in three Indian states were screened for coxiellosis using molecular (Trans-PCR, Com 1-PCR) and serological (IFAT) tests. C. burnetii DNA was detected in 0.44% of blood samples using Trans-PCR, and pathogen-specific antibodies were found in 4.20% of sera using IFAT. Contact with stray dogs and ownership by farmers were identified as risk factors for canine coxiellosis. This study appears to be the first systematic assessment of coxiellosis and associated risk factors among dogs in India. A large-scale assessment of canine coxiellosis and its risk factors is warranted among pets and high-risk occupational groups in India.
Collapse
Affiliation(s)
- Valil Kunjukunju Vinod
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Satyaveer Singh Malik
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - M. S. Sivaprasad
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Chinmay Malik
- Pre-Med Scholar, College of Health Solutions, Arizona State University, 1151 S Forest Ave, Tempe, Arizona, USA
| | - Neha Parmar
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Karikalan Mathesh
- Centre for Wildlife, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Brijesh Kumar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Ujjwal Kumar De
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - E. S. Sanjumon
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Jess Vergis
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Kerala, India
| | | | - Deepak Bhiwa Rawool
- Meat Microbiology, ICAR-National Meat Research Institute, Hyderabad, Telangana, India
| |
Collapse
|
6
|
Passarelli-Araujo H, Venancio TM, Hanage WP. Relating ecological diversity to genetic discontinuity across bacterial species. Genome Biol 2025; 26:8. [PMID: 39794865 PMCID: PMC11720962 DOI: 10.1186/s13059-024-03443-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 11/21/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Genetic discontinuity represents abrupt breaks in genomic identity among species. Advances in genome sequencing have enhanced our ability to track and characterize genetic discontinuity in bacterial populations. However, exploring the degree to which bacterial diversity exists as a continuum or sorted into discrete and readily defined species remains a challenge in microbial ecology. Here, we aim to quantify the genetic discontinuity ( δ ) and investigate how this metric is related to ecology. RESULTS We harness a dataset comprising 210,129 genomes to systematically explore genetic discontinuity patterns across several distantly related species, finding clear breakpoints which vary depending on the taxa in question. By delving into pangenome characteristics, we uncover a significant association between pangenome saturation and genetic discontinuity. Closed pangenomes are associated with more pronounced breaks, exemplified by Mycobacterium tuberculosis. Additionally, through a machine learning approach, we detect key features such as gene conservation patterns and functional annotations that significantly impact genetic discontinuity prediction. CONCLUSIONS Our study clarifies bacterial genetic patterns and their ecological impacts, enhancing the delineation of species boundaries and deepening our understanding of microbial diversity.
Collapse
Affiliation(s)
- Hemanoel Passarelli-Araujo
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA.
- Departamento de Bioquímica E Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos Dos Goytacazes, RJ, Brazil.
| | - William P Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
7
|
Steiner S, Roy CR. CRISPR-Cas9-based approaches for genetic analysis and epistatic interaction studies in Coxiella burnetii. mSphere 2024; 9:e0052324. [PMID: 39560384 DOI: 10.1128/msphere.00523-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterial pathogen that replicates to high numbers in an acidified lysosome-derived vacuole. Intracellular replication requires the Dot/Icm type IVB secretion system, which translocates over 100 different effector proteins into the host cell. Screens employing random transposon mutagenesis have identified several C. burnetii effectors that play an important role in intracellular replication; however, the difficulty in conducting directed mutagenesis has been a barrier to the systematic analysis of effector mutants and to the construction of double mutants to assess epistatic interactions between effectors. Here, two CRISPR-Cas9 technology-based approaches were developed to study C. burnetii phenotypes resulting from targeted gene disruptions. CRISPRi was used to silence gene expression and demonstrated that silencing of effectors or Dot/Icm system components resulted in phenotypes similar to those of transposon insertion mutants. A CRISPR-Cas9-mediated cytosine base editing protocol was developed to generate targeted loss-of-function mutants through the introduction of premature stop codons into C. burnetii genes. Cytosine base editing successfully generated double mutants in a single step. A double mutant deficient in both cig57 and cig2 had a robust and additive intracellular replication defect when compared to either single mutant, which is consistent with Cig57 and Cig2 functioning in independent pathways that both contribute to a vacuole that supports C. burnetii replication. Thus, CRISPR-Cas9-based technologies expand the genetic toolbox for C. burnetii and will facilitate genetic studies aimed at investigating the mechanisms this pathogen uses to replicate inside host cells. IMPORTANCE Understanding the genetic mechanisms that enable C. burnetii to replicate in mammalian host cells has been hampered by the difficulty in making directed mutations. Here, a reliable and efficient system for generating targeted loss-of-function mutations in C. burnetii using a CRISPR-Cas9-assisted base editing approach is described. This technology was applied to make double mutants in C. burnetii that enabled the genetic analysis of two genes that play independent roles in promoting the formation of vacuoles that support intracellular replication. This advance will accelerate the discovery of mechanisms important for C. burnetii host infection and disease.
Collapse
Affiliation(s)
- Samuel Steiner
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Craig R Roy
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Marena Guzman R, Voth DE. Embracing multiple infection models to tackle Q fever: A review of in vitro, in vivo, and lung ex vivo models. Cell Immunol 2024; 405-406:104880. [PMID: 39357100 DOI: 10.1016/j.cellimm.2024.104880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Multiple animal and cell culture models are employed to study pathogenesis of Coxiella burnetii, the causative agent of acute and chronic human Q fever. C. burnetii is a lung pathogen that is aerosolized in contaminated products and inhaled by humans to cause acute disease that can disseminate to other organs and establish chronic infection. Cellular models of Q fever include a variety of tissue-derived cell lines from mice and humans such as lung alveolar ex vivo cells. These models have the advantage of being cost-effective and reproducible. Similarly, animal models including mice and guinea pigs are cost-effective, although only immunocompromised SCID mice display a severe disease phenotype in response to Nine Mile I and Nine Mile II isolates of C. burnetii while immunocompetent guinea pigs display human-like symptoms and robust immune responses. Non-human primates such as macaques and marmosets are the closest model of human disease but are costly and largely used for adaptive immune response studies. All animal models are used for vaccine development but many differences exist in the pathogen's ability to establish lung infection when considering infection routes, bacterial isolates, and host genetic background. Similarly, while cellular models are useful for characterization of host-pathogen mechanisms, future developments should include use of a lung infection platform to draw appropriate conclusions. Here, we summarize the current state of the C. burnetii lung pathogenesis field by discussing the contribution of different animal and cell culture models and include suggestions for continuing to move the field forward.
Collapse
Affiliation(s)
- R Marena Guzman
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Daniel E Voth
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
9
|
Ai L, Qi Y, Hu Y, Zhu C, Liu K, Li F, Ye F, Dai H, Wu Y, Kuai Q, Nie D, Shan L, Zhang Y, Wang C, Tan W. The epidemiological and infectious characteristics of novel types of Coxiella burnetii co-infected with Coxiella-like microorganisms from Xuyi County, Jiangsu province, China. BMC Infect Dis 2024; 24:1041. [PMID: 39333956 PMCID: PMC11430510 DOI: 10.1186/s12879-024-09924-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Coxiella burnetii (C. burnetii) is the causative agent of Q fever, a type of zoonoses withwidespread distribution. In 2019, a case of Q fever was diagnosed by metagenomic next-generation sequencing (mNGS) method in Xuyi County (Jiangsu province, China). The seroprevalence of previous fever patients and the molecular epidemiology of Coxiella in wild hedgehogs and harbouring ticks around the confirmed patient were detected to reveal the genetic characteristics and pathogenicity of the Coxiella strains. Four of the 90 serum samples (4.44%) were positive for specific C. burnetii IgM antibody, suggesting that local humans are at risk of Q fever. The positive rates of C. burnetii in hedgehogs and ticks were 21.9% (7/32) and 70.5% (122/173), respectively. At least 3 strains of Coxiella were found prevalent in the investigated area, including one new genotype of pathogenic C. burnetii (XYHT29) and two non-pathogenic Coxiella-like organisms (XYHT19 and XYHT3). XYHT29 carried by ticks and wild hedgehogs successfully infected mice, imposing a potential threat to local humans. XYHT19, a novel Coxiella-like microorganism, was first discovered in the world to co-infect with C. burnetii in Haemaphysalis flava. The study provided significant epidemic information that could be used for prevention and control strategies against Q fever for local public health departments and medical institutions.
Collapse
Affiliation(s)
- Lele Ai
- Nanjing Bioengineer (Gene) Center for Medicines, Nanjing, China
| | - Yong Qi
- Nanjing Bioengineer (Gene) Center for Medicines, Nanjing, China
| | - Yue Hu
- Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Changqiang Zhu
- Nanjing Bioengineer (Gene) Center for Medicines, Nanjing, China
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Kangle Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Feng Li
- Yancheng Center for Disease Control and Prevention, Yancheng, China
| | - Fuqiang Ye
- Nanjing Bioengineer (Gene) Center for Medicines, Nanjing, China
| | - Han Dai
- Eastern Theater General Hospital, Nanjing, China
| | - Yifan Wu
- Nanjing Bioengineer (Gene) Center for Medicines, Nanjing, China
| | - Qiyuan Kuai
- Nanjing Bioengineer (Gene) Center for Medicines, Nanjing, China
| | - Danyue Nie
- Nanjing Bioengineer (Gene) Center for Medicines, Nanjing, China
| | - Laiyou Shan
- Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Yan Zhang
- Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Changjun Wang
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Weilong Tan
- Nanjing Bioengineer (Gene) Center for Medicines, Nanjing, China.
| |
Collapse
|
10
|
Khademi P, Tukmechi A, Sgroi G, Ownagh A, Enferadi A, Khalili M, Mardani K. Molecular and genotyping techniques in diagnosis of Coxiella burnetii: An overview. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105655. [PMID: 39116951 DOI: 10.1016/j.meegid.2024.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Although we live in the genomic era, the accessibility of the complete genome sequence of Coxiella burnetii, the etiological agent of Q fever, has increased knowledge in the field of genomic diversity of this agent However, it is still somewhat of a "question" microorganism. The epidemiology of Q fever is intricate due to its global distribution, repository and vector variety, as well as absence of surveys defining the dynamic interaction among these factors. Moreover, C. burnetii is a microbial agent that can be utilized as a bioterror weapon. Therefore, typing techniques used to recognize the strains can also be used to trace infections back to their source which is of great significance. In this paper, the latest and current typing techniques of C. burnetii spp. are reviewed illustrating their advantages and constraints. Recently developed multi locus VNTR analysis (MLVA) and single-nucleotide polymorphism (SNP) typing methods are promising in improving diagnostic capacity and enhancing the application of genotyping techniques for molecular epidemiologic surveys of the challenging pathogen. However, most of these studies did not differentiate between C. burnetii and Coxiella-like endosymbionts making it difficult to estimate the potential role that ticks play in the epidemiology of Q fever. Therefore, it is necessary to analyze the vector competence of different tick species to transmit C. burnetii. Knowledge of the vector and reservoir competence of ticks is important for taking adequate preventive measures to limit infection risks. The significant prevalence observed for the IS1111 gene underscores its substantial presence, while other genes display comparatively lower prevalence rates. Methodological variations, particularly between commercial and non-commercial kit-based methods, result in different prevalence outcomes. Variations in sample processing procedures also lead to significant differences in prevalence rates between mechanical and non-mechanical techniques.
Collapse
Affiliation(s)
- Peyman Khademi
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran; Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Amir Tukmechi
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Giovanni Sgroi
- Department of Animal Health, Experimental Zooprophylactic Institute of southern Italy, Portici, Naples, Italy
| | - Abdulghaffar Ownagh
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Ahmad Enferadi
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Mohammad Khalili
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Karim Mardani
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
11
|
Christodoulou MK, Tsaras K, Billinis C, Gourgoulianis KI, Papagiannis D. Q Fever in Greece and Factors of Exposure: A Multiregional Seroprevalence Study. Cureus 2024; 16:e69501. [PMID: 39416568 PMCID: PMC11480880 DOI: 10.7759/cureus.69501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2024] [Indexed: 10/19/2024] Open
Abstract
INTRODUCTION The epidemiology of Q fever, caused by Coxiella burnetii, varies significantly worldwide. This study aimed to document the prevalence of Coxiella burnetii in Greece by measuring specific IgG antibody levels in serum samples from the general population and high-risk groups, including farmers, veterinarians, and laboratory workers. METHODOLOGY A multiregional, stratified sampling design was employed, with 1,345 participants from Thessaly and Central Macedonia. Serum samples were tested for Coxiella burnetii IgG antibodies, and multivariate analysis was conducted to identify factors associated with seroprevalence. RESULTS Overall, 8.1% of participants tested positive for Coxiella burnetii antibodies, with the highest seroprevalence in Larissa (22.2%) and Karditsa (16.1%). High-risk occupational groups, particularly those with direct animal contact, showed a higher seroprevalence (13.6%). Multivariate analysis identified significant associations between seroprevalence and factors such as geographic region, occupation, and gender. CONCLUSION The study reveals regional and occupational disparities in Q fever seroprevalence in Greece, particularly in rural areas. These findings underscore the need for targeted public health measures, including heightened surveillance and preventive interventions for high-risk groups.
Collapse
|
12
|
Getachew S, Kumsa B, Getachew Y, Kinfe G, Gumi B, Rufael T, Megersa B. Seroprevalence of Coxiella burnetii and potential tick vectors infesting domestic ruminants and community perception of the disease in pastoral areas of south Omo zone, southern Ethiopia. Parasite Epidemiol Control 2024; 26:e00369. [PMID: 39131796 PMCID: PMC11314887 DOI: 10.1016/j.parepi.2024.e00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/14/2024] [Accepted: 07/13/2024] [Indexed: 08/13/2024] Open
Abstract
Background Q fever is a worldwide occurring neglected zoonotic disease with great economic importance. The etiological agent, Coxiella burnetii, is a bacterium usually associated with subclinical infections in livestock, but may also cause reproductive pathology and spontaneous abortions in artiodactyl species including goats, sheep and cattle which are deemed to be the primary reservoirs of this disease. Aims The present cross-sectional and questionnaire survey was undertaken in three districts of the South Omo zone with the aims to comprehend the community perception of livestock keepers and professionals about the disease, estimate the seroprevalence of Coxiella burnetii (C. burnetii) in cattle and small ruminants and to determine the species of potential tick vectors of C. burnetii infesting cattle, sheep and goats. Methods A standard questionnaire was used to assess the community perception of livestock keepers and animal health professionals in the area about Q fever. Sera samples were collected from 1350 ruminants comprising 450 cattle, 450 goats and 450 sheep to detect C. burnetii antibodies using the ELISA technique. Furthermore, a total of 279 cattle, 197 goats and 73 sheep were examined for the presence of ticks, and overall, 2720 ticks were collected (1299 from cattle, 1020 from goats and 401 from sheep) and identified to the species level using morphologically identification keys. Results Findings of the study indicated that 43% of animal owners were aware of the main symptoms of the disease while the remaining 57% did not notice these symptoms in their animals. Additionally, majority of animal health professionals 76.2% in the area reported they were familiar with the causative agent of Q fever, while 23.8% expressed uncertainty regarding the cause of coxiellosis. An overall seroprevalence of C. burnetii of 37.6% in cattle (37.4% in female and 37.8% in male cattle) and 28.7% in small ruminants was recorded (which is significantly higher in goats than in sheep). The study indicated statistically significantly higher seroprevalence of C. burnetii (49.8%) in cattle infested with ticks than in those cattle free of ticks (24.2%), with three times higher seropositivity (OR = 2.97, p = 0.000) as compared to those cattle free of ticks (24.2%). Similarly, statistically significantly higher seroprevalence of C. burnetii was recorded in both sheep and goats infested with ticks (43.6%) as compared to those animals without ticks (22.9%), with the former being twice as likely to test seropositive (OR = 2.15, p = 0.000). A total of nine different tick species were identified, namely Amblyomma variegatum (Am. variegatum) with 26.3% (342; 217 males, 101 females and 24 nymphs), Amblyomma cohaerens (Am. cohaerens) with 47.96% (370 males, 253 females), Amblyomma gemma (Am. gemma) with 4.00% (52; 29 males, 23 female), Rhipicephalus pulchellus (Rh. pulchellus) with 10.6% (138; 87 males, 51 females), Rhipicephalus pravus (Rh. pravus) with 0.2% (3; 2 males, 1 females), Rhipicephalus evertsi (Rh. evertsi) with 4.7% (61; 39 males, 22 females), Rhipicephalus praetextatus (Rh. praetextatus) with 0.8% (10; 7 males, 3 females), Rhipicephalus decoloratus (Rh decoloratus) with 2.9% (38; 4 males, 34 females) and Hyalomma truncatum (Hy. truncatum) with 2.5% (32 females). Conclusion The present study highlighted the significance of Q fever in ruminants and compiled information about the community perception of livestock keepers and veterinary professionals of the study areas. The role of ruminants and their ticks in the epidemiology of C. burnetii requires further research using molecular tools to better understand appropriate method of intervention that will help to reduce negative impacts on the productivities of livestock and the health of humans in Ethiopia.
Collapse
Affiliation(s)
- Senait Getachew
- Jinka Agricultural Research Center, Jinka, P.O. Box 96, Ethiopia
| | - Bersissa Kumsa
- Department of Veterinary Parasitology and Pathology, College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Ethiopia
| | - Yitbarek Getachew
- Department of Veterinary Clinical Studies, College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Ethiopia
| | | | - Balako Gumi
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa 1178, Ethiopia
| | | | - Bekele Megersa
- Department of Microbiology, Immunology and Veterinary Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, P.O. Box 34, Ethiopia
| |
Collapse
|
13
|
Pires H, Santos-Silva S, Cruz AVS, Cardoso L, Lopes AP, Pereira MA, Nóbrega C, Mega AC, Santos C, Cruz R, Esteves F, Vala H, Matos AC, Barradas PF, Coelho AC, Mesquita JR. Molecular evidence of sporadic Coxiella burnetii excretion in sheep milk, central Portugal. Vet Res Commun 2024; 48:2713-2719. [PMID: 38656656 PMCID: PMC11315700 DOI: 10.1007/s11259-024-10389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Coxiella burnetii is the etiologic agent of Q fever, a worldwide zoonosis. Cattle, sheep and goats are considered the main reservoirs of the disease. Transmission to humans occurs mainly through the inhalation of infectious aerosols from milk, faeces, urine, and birth products from infected ruminants. In this study, a 2-year longitudinal approach was performed to ascertain the excretion of C. burnetii in bulk tank milk samples of sheep from a mountain plateau in central Portugal, with sampling conducted during the years 2015 and 2016. From a total of 156 bulk tank milk samples tested by qPCR, only one showed to be positive for C. burnetii (1.28% [95%CI: 0.03-6.94]), from 2015, the first year of collection. Bidirectional sequencing and phylogenetic analysis of IS1111 transposase partial region confirmed the presence of C. burnetii DNA. The presence of C. burnetii in raw milk samples highlights the necessity for additional research to determine if raw milk is a potential source for human infection. Animal health surveillance and prevention measures against this zoonotic disease should be considered.
Collapse
Affiliation(s)
- Humberto Pires
- Polytechnic Institute of Castelo Branco, Castelo Branco, 6001-909, Portugal
| | - Sérgio Santos-Silva
- ICBAS - School of Medicine and Biomedical Sciences, Porto University, Porto, 4050-313, Portugal
| | - Andreia V S Cruz
- ICBAS - School of Medicine and Biomedical Sciences, Porto University, Porto, 4050-313, Portugal
| | - Luís Cardoso
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, 5000-801, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, 5000-801, Portugal
| | - Ana Patrícia Lopes
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, 5000-801, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, 5000-801, Portugal
| | - Maria A Pereira
- Instituto Politécnico de Viseu, Escola Superior Agrária de Viseu, Campus Politécnico, Viseu, 3504-510, Portugal
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, GHTM, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, Lisboa, 1349-008, Portugal
- CERNAS-Research Centre for Natural Resources, Environment and Society, ESAV, Instituto Politécnico de Viseu, Viseu, 3500-606, Portugal
| | - Carmen Nóbrega
- Instituto Politécnico de Viseu, Escola Superior Agrária de Viseu, Campus Politécnico, Viseu, 3504-510, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, 5001-801, Portugal
| | - Ana Cristina Mega
- Instituto Politécnico de Viseu, Escola Superior Agrária de Viseu, Campus Politécnico, Viseu, 3504-510, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, 5001-801, Portugal
| | - Carla Santos
- Instituto Politécnico de Viseu, Escola Superior Agrária de Viseu, Campus Politécnico, Viseu, 3504-510, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, 5001-801, Portugal
| | - Rita Cruz
- Instituto Politécnico de Viseu, Escola Superior Agrária de Viseu, Campus Politécnico, Viseu, 3504-510, Portugal
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, Porto, 4050-091, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, 4050- 600, Portugal
| | - Fernando Esteves
- Instituto Politécnico de Viseu, Escola Superior Agrária de Viseu, Campus Politécnico, Viseu, 3504-510, Portugal
- CERNAS-Research Centre for Natural Resources, Environment and Society, ESAV, Instituto Politécnico de Viseu, Viseu, 3500-606, Portugal
| | - Helena Vala
- Instituto Politécnico de Viseu, Escola Superior Agrária de Viseu, Campus Politécnico, Viseu, 3504-510, Portugal
- CERNAS-Research Centre for Natural Resources, Environment and Society, ESAV, Instituto Politécnico de Viseu, Viseu, 3500-606, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, 5001-801, Portugal
| | - Ana Cristina Matos
- Polytechnic Institute of Castelo Branco, Castelo Branco, 6001-909, Portugal
- Research Center for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco, Castelo Branco, 6001-909, Portugal
- Quality of Life in the Rural World (Q-RURAL), Polytechnic Institute of Castelo Branco, Castelo Branco, 6001- 909, Portugal
| | - Patrícia F Barradas
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, Porto, 4050-091, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, 4050- 600, Portugal
- Department of Sciences, CESPU, CRL, University Institute of Health Sciences (IUCS), Gandra, Portugal
| | - Ana Cláudia Coelho
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, 5000-801, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, 5000-801, Portugal
| | - João R Mesquita
- ICBAS - School of Medicine and Biomedical Sciences, Porto University, Porto, 4050-313, Portugal.
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, Porto, 4050-091, Portugal.
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, 4050- 600, Portugal.
| |
Collapse
|
14
|
Delahaye A, Eldin C, Bleibtreu A, Djossou F, Marrie TJ, Ghanem-Zoubi N, Roeden S, Epelboin L. Treatment of persistent focalized Q fever: time has come for an international randomized controlled trial. J Antimicrob Chemother 2024; 79:1725-1747. [PMID: 38888195 DOI: 10.1093/jac/dkae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/15/2024] [Indexed: 06/20/2024] Open
Abstract
Q fever is a worldwide zoonosis due to Coxiella burnetii, responsible for endocarditis and endovascular infections. Since the 1990s, the combination hydroxychloroquine + doxycycline has constituted the curative and prophylactic treatment in persistent focalized Q fever. This combination appears to have significantly reduced the treatment's duration (from 60 to 26 months), yet substantial evidence of effectiveness remains lacking. Data are mostly based on in vitro and observational studies. We conducted a literature review to assess the effectiveness of this therapy, along with potential alternatives. The proposed in vitro mechanism of action describes the inhibition of Coxiella replication by doxycycline through the restoration of its bactericidal activity (inhibited in acidic environment) by alkalinization of phagolysosome-like vacuoles with hydroxychloroquine. So far, the rarity and heterogeneous presentation of cases have made it challenging to design prospective studies with statistical power. The main studies supporting this treatment are retrospective cohorts, dating back to the 1990s-2000s. Retrospective studies from the large Dutch outbreak of Q fever (>4000 cases between 2007 and 2010) did not corroborate a clear benefit of this combination, notably in comparison with other regimens. Thus, there is still no consensus among the medical community on this issue. However insufficient the evidence, today the doxycycline + hydroxychloroquine combination remains the regimen with the largest clinical experience in the treatment of 'chronic' Q fever. Reinforcing the guidelines' level of evidence is critical. We herein propose the creation of an extensive international registry, followed by a prospective cohort or ideally a randomized controlled trial.
Collapse
Affiliation(s)
- Audrey Delahaye
- Department of Infectious and Tropical Diseases, Andrée Rosemon Hospital, Cayenne, French Guiana
| | - Carole Eldin
- UMR UVE, Aix Marseille University, IRD 190 Inserm, 1207 EFS-IRBA, Marseille, France
| | - Alexandre Bleibtreu
- Department of Infectious and Tropical Diseases, University Hospitals Pitié Salpêtrière-Charles Foix, AP-HP, Paris, France
| | - Félix Djossou
- Infectious Diseases Institute, Rambam Health Care Campus, Haifa, Israel
| | - Thomas J Marrie
- Faculty of Medicine, Dalhousie University, 1459 Oxford Street, Halifax, NS B3H 4R2, Canada
| | - Nesrin Ghanem-Zoubi
- Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Sonja Roeden
- Internal Medicine and Dermatology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Loïc Epelboin
- Department of Infectious and Tropical Diseases, Andrée Rosemon Hospital, Cayenne, French Guiana
- Clinical Investigation Center Antilles Guyane, Inserm 1424, Centre Hospitalier de Cayenne Andrée Rosemon, Cayenne, French Guiana
| |
Collapse
|
15
|
Osbron CA, Lawson C, Hanna N, Koehler HS, Goodman AG. Caspase-8 activity mediates TNFα production and restricts Coxiella burnetii replication during murine macrophage infection. Infect Immun 2024; 92:e0005324. [PMID: 38837340 PMCID: PMC11238558 DOI: 10.1128/iai.00053-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024] Open
Abstract
Coxiella burnetii is an obligate intracellular bacteria that causes the global zoonotic disease Q Fever. Treatment options for chronic infection are limited, and the development of novel therapeutic strategies requires a greater understanding of how C. burnetii interacts with immune signaling. Cell death responses are known to be manipulated by C. burnetii, but the role of caspase-8, a central regulator of multiple cell death pathways, has not been investigated. In this research, we studied bacterial manipulation of caspase-8 signaling and the significance of caspase-8 to C. burnetii infection, examining bacterial replication, cell death induction, and cytokine signaling. We measured caspase, RIPK, and MLKL activation in C. burnetii-infected tumor necrosis factor alpha (TNFα)/cycloheximide-treated THP-1 macrophage-like cells and TNFα/ZVAD-treated L929 cells to assess apoptosis and necroptosis signaling. Additionally, we measured C. burnetii replication, cell death, and TNFα induction over 12 days in RIPK1-kinase-dead, RIPK3-kinase-dead, or RIPK3-kinase-dead-caspase-8-/- bone marrow-derived macrophages (BMDMs) to understand the significance of caspase-8 and RIPK1/3 during infection. We found that caspase-8 is inhibited by C. burnetii, coinciding with inhibition of apoptosis and increased susceptibility to necroptosis. Furthermore, C. burnetii replication was increased in BMDMs lacking caspase-8, but not in those lacking RIPK1/3 kinase activity, corresponding with decreased TNFα production and reduced cell death. As TNFα is associated with the control of C. burnetii, this lack of a TNFα response may allow for the unchecked bacterial growth we saw in caspase-8-/- BMDMs. This research identifies and explores caspase-8 as a key regulator of C. burnetii infection, opening novel therapeutic doors.
Collapse
Affiliation(s)
- Chelsea A. Osbron
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Crystal Lawson
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Nolan Hanna
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Heather S. Koehler
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
16
|
Abbiw RK, Mensah GI, Adabie-Gomez DA, Asare-Dompreh K, Clement-Owusu S, Adjei VY, Simpson SV, Ahmed MA, Johnson SA. Seroprevalence of Q fever ( Coxiella burnetii) in sheep in the Kwahu West municipality, Eastern Region, Ghana. Heliyon 2024; 10:e33009. [PMID: 38988589 PMCID: PMC11234003 DOI: 10.1016/j.heliyon.2024.e33009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Query fever, also known as Q fever, is a zoonotic disease caused by Coxiella burnetii. It is a cause of abortion in livestock and presents as a febrile illness in humans. A correlation between the incidence of the disease in humans and abortion in goats and sheep farms has been reported in countries such as the Netherlands and Australia. In Ghana, the occurrence of Q fever in both livestock and humans has not been fully explored. This study sought to determine the seroprevalence of Q fever in livestock in Nkawkaw, in the Eastern Region of Ghana. Sera obtained from 92 sheep from 12 farms were tested using the indirect multi-species ELISA for the detection of anti-Coxiella burnetii antibodies. Animal demographics, farms' proximity to human settlement and history of abortion in relation to the Q fever status were assessed. The overall prevalence of Q fever was 13.0 % [95 % CI 6.9-21.6] (12/92). Both sexes were equally affected, with a sex-specific prevalence of 13.0 % each. The farm-specific prevalence was 50 %. Abortions were reported on eight (8) of the 12 farms, and all farms were located less than 200 m from human habitation. Only proximity of farm to human settlement showed statistical significance. Q fever is prevalent in Nkawkaw and requires the attention of both animal and health authorities, using the One- Health approach to nip any future epidemics in its bud.
Collapse
Affiliation(s)
- Richard Kwamena Abbiw
- School of Veterinary Medicine, University of Ghana, Legon, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana
| | - Gloria Ivy Mensah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | | | | | | | - Vida Yirenkyiwaa Adjei
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | | | | | | |
Collapse
|
17
|
Cohen-Gihon I, Israeli O, Bilinsky G, Vasker B, Lazar S, Beth-Din A, Zvi A, Ghanem-Zoubi N, Atiya-Nasagi Y. Insights from genomic analysis of a novel Coxiella burnetii strain isolated in Israel. New Microbes New Infect 2024; 59:101242. [PMID: 38577384 PMCID: PMC10993178 DOI: 10.1016/j.nmni.2024.101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
The diagnosis of Q fever is challenging due to nonspecific symptoms and negative standard blood culture results. Serological testing through immunofluorescence assay (IFA) is the most commonly used method for diagnosing this disease. Polymerase chain reaction (PCR) tests can also be used to detect bacterial DNA if taken at an appropriate time. Once the presence of bacteria is confirmed in a sample, an enrichment step is required before characterizing it through sequencing. Cultivating C. burnetii is challenging as it can only be isolated by inoculation into cell culture, embryonated eggs, or animals. In this article, we describe the isolation of C. burnetii from a valve specimen in Vero cells. We conducted genome sequencing and taxonomy profiling of this isolate and were able to determine its taxonomic affiliation. Furthermore, Multispacer sequence typing (MST) analysis suggests that the infection originated from a local strain of C. burnetii found around northern Israel and Lebanon. This novel strain belongs to a previously described genotype MST6, harboring the QpRS plasmid, never reported in Israel.
Collapse
Affiliation(s)
- Inbar Cohen-Gihon
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ofir Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Gal Bilinsky
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Barak Vasker
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shirley Lazar
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Adi Beth-Din
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Anat Zvi
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | | | - Yafit Atiya-Nasagi
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| |
Collapse
|
18
|
Pogoreutz C, Ziegler M. Frenemies on the reef? Resolving the coral-Endozoicomonas association. Trends Microbiol 2024; 32:422-434. [PMID: 38216372 DOI: 10.1016/j.tim.2023.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 01/14/2024]
Abstract
Stony corals are poster child holobionts due to their intimate association with diverse microorganisms from all domains of life. We are only beginning to understand the diverse functions of most of these microbial associates, including potential main contributors to holobiont health and resilience. Among these, bacteria of the elusive genus Endozoicomonas are widely perceived as beneficial symbionts based on their genomic potential and their high prevalence and ubiquitous presence in coral tissues. Simultaneously, evidence of pathogenic and parasitic Endozoicomonas lineages in other marine animals is emerging. Synthesizing the current knowledge on the association of Endozoicomonas with marine holobionts, we challenge the perception of a purely mutualistic coral-Endozoicomonas relationship and propose directions to elucidate its role along the symbiotic spectrum.
Collapse
Affiliation(s)
- Claudia Pogoreutz
- EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France.
| | - Maren Ziegler
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32 (IFZ), 35392, Giessen, Germany.
| |
Collapse
|
19
|
Felipe Benites L, Stephens TG, Van Etten J, James T, Christian WC, Barry K, Grigoriev IV, McDermott TR, Bhattacharya D. Hot springs viruses at Yellowstone National Park have ancient origins and are adapted to thermophilic hosts. Commun Biol 2024; 7:312. [PMID: 38594478 PMCID: PMC11003980 DOI: 10.1038/s42003-024-05931-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/16/2024] [Indexed: 04/11/2024] Open
Abstract
Geothermal springs house unicellular red algae in the class Cyanidiophyceae that dominate the microbial biomass at these sites. Little is known about host-virus interactions in these environments. We analyzed the virus community associated with red algal mats in three neighboring habitats (creek, endolithic, soil) at Lemonade Creek, Yellowstone National Park (YNP), USA. We find that despite proximity, each habitat houses a unique collection of viruses, with the giant viruses, Megaviricetes, dominant in all three. The early branching phylogenetic position of genes encoded on metagenome assembled virus genomes (vMAGs) suggests that the YNP lineages are of ancient origin and not due to multiple invasions from mesophilic habitats. The existence of genomic footprints of adaptation to thermophily in the vMAGs is consistent with this idea. The Cyanidiophyceae at geothermal sites originated ca. 1.5 Bya and are therefore relevant to understanding biotic interactions on the early Earth.
Collapse
Affiliation(s)
- L Felipe Benites
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Julia Van Etten
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Graduate Program in Ecology and Evolution, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Timeeka James
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - William C Christian
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Timothy R McDermott
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
20
|
Mandel CG, Sanchez SE, Monahan CC, Phuklia W, Omsland A. Metabolism and physiology of pathogenic bacterial obligate intracellular parasites. Front Cell Infect Microbiol 2024; 14:1284701. [PMID: 38585652 PMCID: PMC10995303 DOI: 10.3389/fcimb.2024.1284701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/01/2024] [Indexed: 04/09/2024] Open
Abstract
Bacterial obligate intracellular parasites (BOIPs) represent an exclusive group of bacterial pathogens that all depend on invasion of a eukaryotic host cell to reproduce. BOIPs are characterized by extensive adaptation to their respective replication niches, regardless of whether they replicate within the host cell cytoplasm or within specialized replication vacuoles. Genome reduction is also a hallmark of BOIPs that likely reflects streamlining of metabolic processes to reduce the need for de novo biosynthesis of energetically costly metabolic intermediates. Despite shared characteristics in lifestyle, BOIPs show considerable diversity in nutrient requirements, metabolic capabilities, and general physiology. In this review, we compare metabolic and physiological processes of prominent pathogenic BOIPs with special emphasis on carbon, energy, and amino acid metabolism. Recent advances are discussed in the context of historical views and opportunities for discovery.
Collapse
Affiliation(s)
- Cameron G. Mandel
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Savannah E. Sanchez
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Colleen C. Monahan
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Weerawat Phuklia
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
| | - Anders Omsland
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
21
|
Osbron CA, Lawson C, Hanna N, Koehler HS, Goodman AG. Caspase-8 activity mediates TNFα production and restricts Coxiella burnetii replication during murine macrophage infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578698. [PMID: 38352389 PMCID: PMC10862817 DOI: 10.1101/2024.02.02.578698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Coxiella burnetii is an obligate intracellular bacteria which causes the global zoonotic disease Q Fever. Treatment options for infection are limited, and development of novel therapeutic strategies requires a greater understanding of how C. burnetii interacts with immune signaling. Cell death responses are known to be manipulated by C. burnetii, but the role of caspase-8, a central regulator of multiple cell death pathways, has not been investigated. In this research, we studied bacterial manipulation of caspase-8 signaling and the significance of caspase-8 to C. burnetii infection, examining bacterial replication, cell death induction, and cytokine signaling. We measured caspase, RIPK, and MLKL activation in C. burnetii-infected TNFα/CHX-treated THP-1 macrophage-like cells and TNFα/ZVAD-treated L929 cells to assess apoptosis and necroptosis signaling. Additionally, we measured C. burnetii replication, cell death, and TNFα induction over 12 days in RIPK1-kinase-dead, RIPK3-kinase-dead, or RIPK3-kinase-dead-caspase-8-/- BMDMs to understand the significance of caspase-8 and RIPK1/3 during infection. We found that caspase-8 is inhibited by C. burnetii, coinciding with inhibition of apoptosis and increased susceptibility to necroptosis. Furthermore, C. burnetii replication was increased in BMDMs lacking caspase-8, but not in those lacking RIPK1/3 kinase activity, corresponding with decreased TNFα production and reduced cell death. As TNFα is associated with the control of C. burnetii, this lack of a TNFα response may allow for the unchecked bacterial growth we saw in caspase-8-/- BMDMs. This research identifies and explores caspase-8 as a key regulator of C. burnetii infection, opening novel therapeutic doors.
Collapse
Affiliation(s)
- Chelsea A. Osbron
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Crystal Lawson
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Nolan Hanna
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Heather S. Koehler
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
22
|
Kodori M, Amani J, Ahmadi A. Unveiling promising immunogenic targets in Coxiella burnetii through in silico analysis: paving the way for novel vaccine strategies. BMC Infect Dis 2023; 23:902. [PMID: 38129801 PMCID: PMC10740251 DOI: 10.1186/s12879-023-08904-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Coxiella burnetii, an intracellular pathogen, serves as the causative agent of zoonotic Q fever. This pathogen presents a significant threat due to its potential for airborne transmission, environmental persistence, and pathogenicity. The current whole-cell vaccine (WCV) utilized in Australia to combat Q fever exhibits notable limitations, including severe adverse reactions and limited regulatory approval for human use. This research employed the reverse vaccinology (RV) approach to uncover antigenic proteins and epitopes of C. burnetii, facilitating the development of more potent vaccine candidates. METHODS The potential immunogenic proteins derived from C. burnetii RSA493/Nine Mile phase I (NMI) were extracted through manual, automated RV, and virulence factor database (VFDB) methods. Web tools and bioinformatics were used to evaluate physiochemical attributes, subcellular localization, antigenicity, allergenicity, human homology, B-cell epitopes, MHC I and II binding ratios, functional class scores, adhesion probabilities, protein-protein interactions, and molecular docking. RESULTS Out of the 1850 proteins encoded by RSA493/NMI, a subset of 178 demonstrated the potential for surface or membrane localization. Following a series of analytical iterations, 14 putative immunogenic proteins emerged. This collection included nine proteins (57.1%) intricately involved in cell wall/membrane/envelope biogenesis processes (CBU_0197 (Q83EW1), CBU_0311 (Q83EK8), CBU_0489 (Q83E43), CBU_0939 (Q83D08), CBU_1190 (P39917), CBU_1829 (Q83AQ2), CBU_1412 (Q83BU0), CBU_1414 (Q83BT8), and CBU_1600 (Q83BB2)). The CBU_1627 (Q83B86 ) (7.1%) implicated in intracellular trafficking, secretion, and vesicular transport, and CBU_0092 (Q83F57) (7.1%) contributing to cell division. Additionally, three proteins (21.4%) displayed uncharacterized functions (CBU_0736 (Q83DJ4), CBU_1095 (Q83CL9), and CBU_2079 (Q83A32)). The congruent results obtained from molecular docking and immune response stimulation lend support to the inclusion of all 14 putative proteins as potential vaccine candidates. Notably, seven proteins with well-defined functions stand out among these candidates. CONCLUSIONS The outcomes of this study introduce promising proteins and epitopes for the forthcoming formulation of subunit vaccines against Q fever, with a primary emphasis on cellular processes and the virulence factors of C. burnetii.
Collapse
Affiliation(s)
- Mansoor Kodori
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Non Communicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Höpfner D, Cichy A, Pogenberg V, Krisp C, Mezouar S, Bach NC, Grotheer J, Zarza SM, Martinez E, Bonazzi M, Feige MJ, Sieber SA, Schlüter H, Itzen A. The DNA-binding induced (de)AMPylation activity of a Coxiella burnetii Fic enzyme targets Histone H3. Commun Biol 2023; 6:1124. [PMID: 37932372 PMCID: PMC10628234 DOI: 10.1038/s42003-023-05494-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
The intracellular bacterial pathogen Coxiella burnetii evades the host response by secreting effector proteins that aid in establishing a replication-friendly niche. Bacterial filamentation induced by cyclic AMP (Fic) enzymes can act as effectors by covalently modifying target proteins with the posttranslational AMPylation by transferring adenosine monophosphate (AMP) from adenosine triphosphate (ATP) to a hydroxyl-containing side chain. Here we identify the gene product of C. burnetii CBU_0822, termed C. burnetii Fic 2 (CbFic2), to AMPylate host cell histone H3 at serine 10 and serine 28. We show that CbFic2 acts as a bifunctional enzyme, both capable of AMPylation as well as deAMPylation, and is regulated by the binding of DNA via a C-terminal helix-turn-helix domain. We propose that CbFic2 performs AMPylation in its monomeric state, switching to a deAMPylating dimer upon DNA binding. This study unveils reversible histone modification by a specific enzyme of a pathogenic bacterium.
Collapse
Affiliation(s)
- Dorothea Höpfner
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Adam Cichy
- Center for Integrated Protein Science Munich (CIPSM), Department Chemistry, Group of Proteinchemistry, Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Vivian Pogenberg
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Christoph Krisp
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Soraya Mezouar
- Aix-Marseille University, Institut de Recherche pour la Développement (IRD), Assistance Publique-Hôpitaux de Marseille (APHM), Microbes Evolution Phylogeny and Infections (MEPHI), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Boulevard Jean Moulin, 13005, Marseille, France
| | - Nina C Bach
- Technical University of Munich (TUM), TUM School of Natural Sciences, Department of Biosciences, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Ernst-Otto-Fischer Straße 8, 85748, Garching, Germany
| | - Jan Grotheer
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Sandra Madariaga Zarza
- Aix-Marseille University, Institut de Recherche pour la Développement (IRD), Assistance Publique-Hôpitaux de Marseille (APHM), Microbes Evolution Phylogeny and Infections (MEPHI), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Boulevard Jean Moulin, 13005, Marseille, France
| | - Eric Martinez
- Cellular and Molecular Biology of Bacterial Infections, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, UMR 9004 - Centre national de la recherche scientifique (CNRS), 1919 Route de Mende, 34293, Montpellier, France
| | - Matteo Bonazzi
- Cellular and Molecular Biology of Bacterial Infections, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, UMR 9004 - Centre national de la recherche scientifique (CNRS), 1919 Route de Mende, 34293, Montpellier, France
| | - Matthias J Feige
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Stephan A Sieber
- Technical University of Munich (TUM), TUM School of Natural Sciences, Department of Biosciences, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Ernst-Otto-Fischer Straße 8, 85748, Garching, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Aymelt Itzen
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany.
- Center for Structural Systems Biology (CSSB), University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
24
|
Perfilyeva YV, Berdygulova ZA, Mashzhan AS, Zhigailov AV, Ostapchuk YO, Naizabayeva DA, Cherusheva AS, Bissenbay AO, Kuatbekova SA, Abdolla N, Nizkorodova AS, Kulemin MV, Shapiyeva ZZ, Sayakova ZZ, Perfilyeva AV, Akhmetollayev IA, Maltseva ER, Skiba YA, Mamadaliyev SM, Dmitrovskiy AM. Molecular and seroepidemiological investigation of Сoxiella burnetii and spotted fever group rickettsiae in the southern region of Kazakhstan. Ticks Tick Borne Dis 2023; 14:102240. [PMID: 37647811 DOI: 10.1016/j.ttbdis.2023.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
Ticks are involved in the circulation of a number of human pathogens, including spotted fever group (SFG) Rickettsia spp. and Coxiella burnetii. Little is known about the occurrence of these microorganisms in the southern region of Kazakhstan. In 2018-2022, a total of 726 ticks were collected from bitten humans, livestock, and vegetation in four oblasts of the southern region of Kazakhstan and subjected to DNA extraction. The overall infection rate of Coxiella spp. and Rickettsia spp. in the ticks was 3.3% (24/726) and 69.9% (300/429), respectively. Phylogenetic analysis of ompA and gltA genes revealed the presence of three pathogenic SFG rickettsiae: Candidatus R. tarasevichiae, R. aeschlimannii and R. raoultii in ticks collected from bitten humans. In addition, Candidatus R. barbariae was detected in six Rhipicephalus turanicus ticks for the first time in Kazakhstan. To determine the seroprevalence of C. burnetii infection, we performed a serological analysis of samples collected from 656 domestic ruminants (cattle, sheep, and goats) in the region. Overall, 23.5% (154/656) of the animals tested were positive for IgG against C. burnetii. Seroprevalence at the herd level was 54% (28/52). Goats (43%; 12/28; odds ratio (OD) = 28.9, p < 0.05) and sheep (31.9%; 137/430; OD = 18.1, p < 0.05) had higher seroprevalence than cattle (2.5%; 5/198). Among the risk factors considered in this study, age (p = 0.003) and the oblast in which the animals were sampled (p = 0.049) were statistically associated with seropostivity for Q fever in sheep, according to the results of multivariate logistic regression analysis. Seroprevalence ranged from 0% to 55.5% in animals in different districts of the southern region of Kazakhstan. Active C. burnetii bacteremia was detected in four of 154 (2.6%) seropositive animals. The data obtained provide strong evidence of the presence of pathogenic rickettsiae and C. burnetii in the southern region of Kazakhstan and emphasize the need to improve epidemiological surveillance in the region.
Collapse
Affiliation(s)
- Yuliya V Perfilyeva
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Zhanna A Berdygulova
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan.
| | - Akzhigit S Mashzhan
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan.
| | - Andrey V Zhigailov
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Yekaterina O Ostapchuk
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Dinara A Naizabayeva
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Alena S Cherusheva
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | - Akerke O Bissenbay
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Saltanat A Kuatbekova
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | - Nurshat Abdolla
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Anna S Nizkorodova
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Maxim V Kulemin
- Anti-Plague Station, 114 Dulati St., Shymkent 160013, Kazakhstan
| | - Zhanna Zh Shapiyeva
- Scientific Practical Center of Sanitary-Epidemiological Expertise and Monitoring, 84 Auezov St., Almaty 050008, Kazakhstan
| | - Zaure Z Sayakova
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; M. Aikimbayev National Scientific Center for Especially Dangerous Infections, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | | | | | - Elina R Maltseva
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Tethys Scientific Society, 9 Microdisctrict 1/72, Almaty 050036, Kazakhstan
| | - Yuriy A Skiba
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Tethys Scientific Society, 9 Microdisctrict 1/72, Almaty 050036, Kazakhstan
| | - Seidigapbar M Mamadaliyev
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | - Andrey M Dmitrovskiy
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; M. Aikimbayev National Scientific Center for Especially Dangerous Infections, 14 Zhahanger St., Almaty 050054, Kazakhstan
| |
Collapse
|
25
|
Redden P, Parker K, Henderson S, Fourie P, Agnew L, Stenos J, Graves S, Govan B, Norton R, Ketheesan N. Q fever - immune responses and novel vaccine strategies. Future Microbiol 2023; 18:1185-1196. [PMID: 37850346 DOI: 10.2217/fmb-2023-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/07/2023] [Indexed: 10/19/2023] Open
Abstract
Q fever is a zoonotic disease caused by the bacterium Coxiella burnetii. It is an occupational risk for employees of animal industries and is associated with contact with wildlife and domestic animals. Although Q fever infection may be asymptomatic, chronic sequelae such as endocarditis occur in 5% of symptomatic individuals. Disease outcomes may be predicted through measurement of immune correlates. Vaccination is the most efficient method to prevent Q fever. Currently, Q-VAX is the only licenced human vaccine. Q-VAX is highly effective; however, individuals previously exposed to C. burnetii are at risk of adverse reactions. This review examines the immunological responses of acute and chronic Q fever and the efforts to provide a safer and cost-effective Q fever vaccine.
Collapse
Affiliation(s)
- Patricia Redden
- School of Science & Technology, University of New England, New South Wales, 2351, Australia
| | - Kaitland Parker
- School of Science & Technology, University of New England, New South Wales, 2351, Australia
| | - Sinead Henderson
- School of Science & Technology, University of New England, New South Wales, 2351, Australia
| | - Phillip Fourie
- School of Science & Technology, University of New England, New South Wales, 2351, Australia
| | - Linda Agnew
- School of Science & Technology, University of New England, New South Wales, 2351, Australia
- Griffith Health Group, Griffith University, Queensland, 4222, Australia
| | - John Stenos
- Australian Rickettsial Reference Laboratory, Barwon Health, Geelong, Victoria, 3220, Australia
| | - Stephen Graves
- Australian Rickettsial Reference Laboratory, Barwon Health, Geelong, Victoria, 3220, Australia
| | - Brenda Govan
- College of Public Health, Medicine & Vet Sciences, James Cook University, Queensland, 4811, Australia
| | - Robert Norton
- Pathology Queensland, Queensland Health, Townsville Hospital, Queensland, 4814, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Natkunam Ketheesan
- School of Science & Technology, University of New England, New South Wales, 2351, Australia
- Griffith Health Group, Griffith University, Queensland, 4222, Australia
| |
Collapse
|
26
|
Onyiche TE, MacLeod ET. Hard ticks (Acari: Ixodidae) and tick-borne diseases of sheep and goats in Africa: A review. Ticks Tick Borne Dis 2023; 14:102232. [PMID: 37531888 DOI: 10.1016/j.ttbdis.2023.102232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
Ticks are leading vectors of economically important pathogens that affect small ruminants due to favourable climatic conditions across different regions of the African continent. They are responsible for both direct and indirect economic losses in the livestock industry. This review focuses on the species diversity of hard ticks, their biology, tick-borne diseases of sheep and goats including non-infectious disease, and risk factors to tick infestation in Africa. Furthermore, our review provides recent updates on distribution of ticks and tick-borne pathogens of small ruminants in Africa. It was observed that several species and subspecies of hard ticks belonging to the genera Hyalomma (Hy), Rhipicephalus (Rh), Ixodes (I) and Amblyomma (Am) were found infesting small ruminants across the different regions of the continent. Of these genera, Rhipicephalus ticks accounts for the majority of the registered species, with exactly 27 different species infesting small ruminant stocks comprising of different developmental instars and adults of the tick. Rhipicephalus decolaratus, Rh. e. evertsi and Rh. appendiculatus were the three most common Rhipicephalus species reported. Both protozoal (Babesia and Theileria) and bacterial (Anaplasma, Rickettsia, Ehrlichia, Coxiella and Mycoplasma) pathogens have being reported to be amplified in several hard tick species and/or small ruminant hosts. Furthermore, tick paralysis and lameness were non-infectious conditions attributed to tick infestations. Amblyomma hebraeum and Rh. glabroscutatum may cause lameness in goats, while Hy. rufipes is responsible for the same condition in Merino sheep. Host paralysis due to a neurotoxin released by female Rh. e. evertsi and I. rubicundus has been documented within the continent. We therefore advocate for the need of integrated control measures against tick-borne pathogens (TBPs) including their arthropod vectors, to be performed simultaneously to ease the burden of vector-borne diseases in small ruminant production.
Collapse
Affiliation(s)
- ThankGod E Onyiche
- Deanery of Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK; Department of Veterinary Parasitology and Entomology, University of Maiduguri, P. M. B. 1069, Maiduguri, Nigeria; Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Ewan Thomas MacLeod
- Deanery of Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK
| |
Collapse
|
27
|
Shepherd DC, Kaplan M, Vankadari N, Kim KW, Larson CL, Dutka P, Beare PA, Krzymowski E, Heinzen RA, Jensen GJ, Ghosal D. Morphological remodeling of Coxiella burnetii during its biphasic developmental cycle revealed by cryo-electron tomography. iScience 2023; 26:107210. [PMID: 37485371 PMCID: PMC10362272 DOI: 10.1016/j.isci.2023.107210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Coxiella burnetii is an obligate zoonotic bacterium that targets macrophages causing a disease called Q fever. It has a biphasic developmental life cycle where the extracellular and metabolically inactive small cell variant (SCV) transforms inside the host into the vegetative large cell variant (LCV). However, details about the morphological and structural changes of this transition are still lacking. Here, we used cryo-electron tomography to image both SCV and LCV variants grown either under axenic conditions or purified directly from host cells. We show that SCVs are characterized by equidistant stacks of inner membrane that presumably facilitate the transition to LCV, a transition coupled with the expression of the Dot/Icm type IVB secretion system (T4BSS). A class of T4BSS particles were associated with extracellular densities possibly involved in host infection. Also, SCVs contained spherical multilayered membrane structures of different sizes and locations suggesting no connection to sporulation as once assumed.
Collapse
Affiliation(s)
- Doulin C. Shepherd
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Mohammed Kaplan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Naveen Vankadari
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Ki Woo Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- School of Ecology and Environmental System, Kyungpook National University, Sangju, Korea
| | - Charles L. Larson
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Przemysław Dutka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Division od Chemistry and Chemical Engineering, California Institute of Technology, 1200 California Boulevard, Pasadena, CA 91125, USA
| | - Paul A. Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Edward Krzymowski
- Department of Physics and Astronomy, Brigham Young University, Provo, UT 84604, USA
| | - Robert A. Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Grant J. Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84604, USA
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
28
|
Jan S, Fratzke AP, Felgner J, Hernandez-Davies JE, Liang L, Nakajima R, Jasinskas A, Supnet M, Jain A, Felgner PL, Davies DH, Gregory AE. Multivalent vaccines demonstrate immunogenicity and protect against Coxiella burnetii aerosol challenge. Front Immunol 2023; 14:1192821. [PMID: 37533862 PMCID: PMC10390735 DOI: 10.3389/fimmu.2023.1192821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/16/2023] [Indexed: 08/04/2023] Open
Abstract
Vaccines are among the most cost-effective public health measures for controlling infectious diseases. Coxiella burnetii is the etiological agent of Q fever, a disease with a wide clinical spectrum that ranges from mild symptoms, such as fever and fatigue, to more severe disease, such as pneumonia and endocarditis. The formalin-inactivated whole-cell vaccine Q-VAX® contains hundreds of antigens and confers lifelong protection in humans, but prior sensitization from infection or vaccination can result in deleterious reactogenic responses to vaccination. Consequently, there is great interest in developing non-reactogenic alternatives based on adjuvanted recombinant proteins. In this study, we aimed to develop a multivalent vaccine that conferred protection with reduced reactogenicity. We hypothesized that a multivalent vaccine consisting of multiple antigens would be more immunogenic and protective than a monovalent vaccine owing to the large number of potential protective antigens in the C. burnetii proteome. To address this, we identified immunogenic T and B cell antigens, and selected proteins were purified to evaluate with a combination adjuvant (IVAX-1), with or without C. burnetii lipopolysaccharide (LPS) in immunogenicity studies in vivo in mice and in a Hartley guinea pig intratracheal aerosol challenge model using C. burnetii strain NMI RSA 493. The data showed that multivalent vaccines are more immunogenic than monovalent vaccines and more closely emulate the protection achieved by Q-VAX. Although six antigens were the most immunogenic, we also discovered that multiplexing beyond four antigens introduces detectable reactogenicity, indicating that there is an upper limit to the number of antigens that can be safely included in a multivalent Q-fever vaccine. C. burnetii LPS also demonstrates efficacy as a vaccine antigen in conferring protection in an otherwise monovalent vaccine formulation, suggesting that its addition in multivalent vaccines, as demonstrated by a quadrivalent formulation, would improve protective responses.
Collapse
Affiliation(s)
- Sharon Jan
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Alycia P. Fratzke
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, United States
- Department of Pathology, Charles River Laboratories, Reno, NV, United States
| | - Jiin Felgner
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Jenny E. Hernandez-Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Li Liang
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Rie Nakajima
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Algimantas Jasinskas
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Medalyn Supnet
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Aarti Jain
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Philip L. Felgner
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - D. Huw Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Anthony E. Gregory
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
29
|
Debowski AW, Bzdyl NM, Thomas DR, Scott NE, Jenkins CH, Iwasaki J, Kibble EA, Khoo CA, Scheuplein NJ, Seibel PM, Lohr T, Metters G, Bond CS, Norville IH, Stubbs KA, Harmer NJ, Holzgrabe U, Newton HJ, Sarkar-Tyson M. Macrophage infectivity potentiator protein, a peptidyl prolyl cis-trans isomerase, essential for Coxiella burnetii growth and pathogenesis. PLoS Pathog 2023; 19:e1011491. [PMID: 37399210 DOI: 10.1371/journal.ppat.1011491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
Coxiella burnetii is a Gram-negative intracellular pathogen that causes the debilitating disease Q fever, which affects both animals and humans. The only available human vaccine, Q-Vax, is effective but has a high risk of severe adverse reactions, limiting its use as a countermeasure to contain outbreaks. Therefore, it is essential to identify new drug targets to treat this infection. Macrophage infectivity potentiator (Mip) proteins catalyse the folding of proline-containing proteins through their peptidyl prolyl cis-trans isomerase (PPIase) activity and have been shown to play an important role in the virulence of several pathogenic bacteria. To date the role of the Mip protein in C. burnetii pathogenesis has not been investigated. This study demonstrates that CbMip is likely to be an essential protein in C. burnetii. The pipecolic acid derived compounds, SF235 and AN296, which have shown utility in targeting other Mip proteins from pathogenic bacteria, demonstrate inhibitory activities against CbMip. These compounds were found to significantly inhibit intracellular replication of C. burnetii in both HeLa and THP-1 cells. Furthermore, SF235 and AN296 were also found to exhibit antibiotic properties against both the virulent (Phase I) and avirulent (Phase II) forms of C. burnetii Nine Mile Strain in axenic culture. Comparative proteomics, in the presence of AN296, revealed alterations in stress responses with H2O2 sensitivity assays validating that Mip inhibition increases the sensitivity of C. burnetii to oxidative stress. In addition, SF235 and AN296 were effective in vivo and significantly improved the survival of Galleria mellonella infected with C. burnetii. These results suggest that unlike in other bacteria, Mip in C. burnetii is required for replication and that the development of more potent inhibitors against CbMip is warranted and offer potential as novel therapeutics against this pathogen.
Collapse
Affiliation(s)
- Aleksandra W Debowski
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nicole M Bzdyl
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - David R Thomas
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | | | - Jua Iwasaki
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
- Centre for Child Health Research, University of Western Australia, Perth, Western Australia, Australia
| | - Emily A Kibble
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
- DMTC Limited, Level 1, Kew, Australia
| | - Chen Ai Khoo
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Nicolas J Scheuplein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Pamela M Seibel
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Theresa Lohr
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Georgie Metters
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, United Kingdom
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Isobel H Norville
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, United Kingdom
| | - Keith A Stubbs
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nicholas J Harmer
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, United Kingdom
- Living Systems Institute, Stocker Road Exeter, United Kingdom
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Hayley J Newton
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
30
|
Osman IO, Caputo A, Pinault L, Mege JL, Levasseur A, Devaux CA. Identification and Characterization of an HtrA Sheddase Produced by Coxiella burnetii. Int J Mol Sci 2023; 24:10904. [PMID: 37446087 PMCID: PMC10342153 DOI: 10.3390/ijms241310904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Having previously shown that soluble E-cadherin (sE-cad) is found in sera of Q fever patients and that infection of BeWo cells by C. burnetii leads to modulation of the E-cad/β-cat pathway, our purpose was to identify which sheddase(s) might catalyze the cleavage of E-cad. Here, we searched for a direct mechanism of cleavage initiated by the bacterium itself, assuming the possible synthesis of a sheddase encoded in the genome of C. burnetii or an indirect mechanism based on the activation of a human sheddase. Using a straightforward bioinformatics approach to scan the complete genomes of four laboratory strains of C. burnetii, we demonstrate that C. burnetii encodes a 451 amino acid sheddase (CbHtrA) belonging to the HtrA family that is differently expressed according to the bacterial virulence. An artificial CbHtrA gene (CoxbHtrA) was expressed, and the CoxbHtrA recombinant protein was found to have sheddase activity. We also found evidence that the C. burnetii infection triggers an over-induction of the human HuHtrA gene expression. Finally, we demonstrate that cleavage of E-cad by CoxbHtrA on macrophages-THP-1 cells leads to an M2 polarization of the target cells and the induction of their secretion of IL-10, which "disarms" the target cells and improves C. burnetii replication. Taken together, these results demonstrate that the genome of C. burnetii encodes a functional HtrA sheddase and establishes a link between the HtrA sheddase-induced cleavage of E-cad, the M2 polarization of the target cells and their secretion of IL-10, and the intracellular replication of C. burnetii.
Collapse
Affiliation(s)
- Ikram Omar Osman
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
| | - Aurelia Caputo
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
| | - Lucile Pinault
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
| | - Jean-Louis Mege
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
- Laboratory of Immunology, Assitance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Anthony Levasseur
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
| | - Christian A. Devaux
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
- Centre National de la Recherche Scientifique (CNRS), 13009 Marseille, France
| |
Collapse
|
31
|
Gardner BR, Bachmann NL, Polkinghorne A, Hufschmid J, Tadepalli M, Marenda M, Graves S, Arnould JPY, Stenos J. A Novel Marine Mammal Coxiella burnetii-Genome Sequencing Identifies a New Genotype with Potential Virulence. Pathogens 2023; 12:893. [PMID: 37513739 PMCID: PMC10386718 DOI: 10.3390/pathogens12070893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The obligate intracellular bacterial pathogen Coxiella burnetii has been identified in a few species of marine mammals, some of which are showing population declines. It has been hypothesized that C. burnetii in marine mammals is a distinct genotype that varies significantly from the typical terrestrial genotypes. It appears to lack an IS1111. Isolates originating from Australian marine animals have a distinctly non-Australian profile of multiple-locus variable-number tandem-repeat analysis (MLVA). Extracted Coxiella DNA of Australian fur seal placental origin was sequenced using the Novaseq platform. Illumina 150 bp paired-end reads were filtered and trimmed with Trimgalore. The microbial community present in the sequenced genome was evaluated with Kraken and Bracken software using the NCBI database. A phylogenetic analysis was performed using 1131 core genes. Core genes were identified using Panaroo and inputted into Iqtree to determine the maximum-likelihood tree. A second phylogenetic tree was created using Rickettsiella grylii and using seven housekeeping genes. Results were compared with the C. burnetii Nine Mile RSA439 virulent genome. This new Australian marine mammal isolate of Coxiella (PG457) appears to be a novel genotype that lacks IS1111 and has a distinct MLVA signature (ms26, ms27, ms28, ms30, and ms31). The presence of genes for multiple virulence factors appears to give this genotype sufficient pathogenicity for it to be considered a possible causative agent of abortion in Australian fur seals as well as a potential zoonotic risk.
Collapse
Affiliation(s)
- Brett R Gardner
- Melbourne Veterinary School, The University of Melbourne, Werribee, VIC 3030, Australia
| | | | | | - Jasmin Hufschmid
- Melbourne Veterinary School, The University of Melbourne, Werribee, VIC 3030, Australia
| | - Mythili Tadepalli
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, VIC 3220, Australia
| | - Marc Marenda
- Melbourne Veterinary School, The University of Melbourne, Werribee, VIC 3030, Australia
| | - Stephen Graves
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, VIC 3220, Australia
| | - John P Y Arnould
- School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - John Stenos
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, VIC 3220, Australia
| |
Collapse
|
32
|
Fisher DJ, Beare PA. Recent advances in genetic systems in obligate intracellular human-pathogenic bacteria. Front Cell Infect Microbiol 2023; 13:1202245. [PMID: 37404720 PMCID: PMC10315504 DOI: 10.3389/fcimb.2023.1202245] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/22/2023] [Indexed: 07/06/2023] Open
Abstract
The ability to genetically manipulate a pathogen is fundamental to discovering factors governing host-pathogen interactions at the molecular level and is critical for devising treatment and prevention strategies. While the genetic "toolbox" for many important bacterial pathogens is extensive, approaches for modifying obligate intracellular bacterial pathogens were classically limited due in part to the uniqueness of their obligatory lifestyles. Many researchers have confronted these challenges over the past two and a half decades leading to the development of multiple approaches to construct plasmid-bearing recombinant strains and chromosomal gene inactivation and deletion mutants, along with gene-silencing methods enabling the study of essential genes. This review will highlight seminal genetic achievements and recent developments (past 5 years) for Anaplasma spp., Rickettsia spp., Chlamydia spp., and Coxiella burnetii including progress being made for the still intractable Orientia tsutsugamushi. Alongside commentary of the strengths and weaknesses of the various approaches, future research directions will be discussed to include methods for C. burnetii that should have utility in the other obligate intracellular bacteria. Collectively, the future appears bright for unraveling the molecular pathogenic mechanisms of these significant pathogens.
Collapse
Affiliation(s)
- Derek J. Fisher
- School of Biological Sciences, Southern Illinois University, Carbondale, IL, United States
| | - Paul A. Beare
- Rocky Mountain Laboratory, National Institute of Health, Hamilton, MT, United States
| |
Collapse
|
33
|
Larson CL, Pullman W, Beare PA, Heinzen RA. Identification of Type 4B Secretion System Substrates That Are Conserved among Coxiella burnetii Genomes and Promote Intracellular Growth. Microbiol Spectr 2023; 11:e0069623. [PMID: 37199620 PMCID: PMC10269450 DOI: 10.1128/spectrum.00696-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023] Open
Abstract
Coxiella burnetii is a Gram-negative pathogen that infects a variety of mammalian hosts. Infection of domesticated ewes can cause fetal abortion, whereas acute human infection normally manifests as the flu-like illness Q fever. Successful host infection requires replication of the pathogen within the lysosomal Coxiella-containing vacuole (CCV). The bacterium encodes a type 4B secretion system (T4BSS) that delivers effector proteins into the host cell. Disruption of C. burnetii T4BSS effector export abrogates CCV biogenesis and bacterial replication. Over 150 C. burnetii T4BSS substrates have been designated often based on heterologous protein translocation by the Legionella pneumophila T4BSS. Cross-genome comparisons predict that many of these T4BSS substrates are truncated or absent in the acute-disease reference strain C. burnetii Nine Mile. This study investigated the function of 32 proteins conserved among diverse C. burnetii genomes that are reported to be T4BSS substrates. Despite being previously designated T4BSS substrates, many of the proteins were not translocated by C. burnetii when expressed fused to the CyaA or BlaM reporter tags. CRISPR interference (CRISPRi) indicated that of the validated C. burnetii T4BSS substrates, CBU0122, CBU1752, CBU1825, and CBU2007 promote C. burnetii replication in THP-1 cells and CCV biogenesis in Vero cells. When expressed in HeLa cells tagged at its C or N terminus with mCherry, CBU0122 localized to the CCV membrane and the mitochondria, respectively. Collectively, these data further define the repertoire of bona fide C. burnetii T4BSS substrates. IMPORTANCE Coxiella burnetii secretes effector proteins via a T4BSS that are required for successful infection. Over 150 C. burnetii proteins are reported to be T4BSS substrates and often by default considered putative effectors, but few have assigned functions. Many C. burnetii proteins were designated T4BSS substrates using heterologous secretion assays in L. pneumophila and/or have coding sequences that are absent or pseudogenized in clinically relevant C. burnetii strains. This study examined 32 previously reported T4BSS substrates that are conserved among C. burnetii genomes. Of the proteins tested that were previously designated T4BSS substrates using L. pneumophila, most were not exported by C. burnetii. Several T4BSS substrates that were validated in C. burnetii also promoted pathogen intracellular replication and one trafficked to late endosomes and the mitochondria in a manner suggestive of effector activity. This study identified several bona fide C. burnetii T4BSS substrates and further refined the methodological criteria for their designation.
Collapse
Affiliation(s)
- Charles L. Larson
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
- Innate Immunity and Pathogenesis Section, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Willis Pullman
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Paul A. Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
- Genomics Research Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Robert A. Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
34
|
Riffaud CM, Rucks EA, Ouellette SP. Persistence of obligate intracellular pathogens: alternative strategies to overcome host-specific stresses. Front Cell Infect Microbiol 2023; 13:1185571. [PMID: 37284502 PMCID: PMC10239878 DOI: 10.3389/fcimb.2023.1185571] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
In adapting to the intracellular niche, obligate intracellular bacteria usually undergo a reduction of genome size by eliminating genes not needed for intracellular survival. These losses can include, for example, genes involved in nutrient anabolic pathways or in stress response. Living inside a host cell offers a stable environment where intracellular bacteria can limit their exposure to extracellular effectors of the immune system and modulate or outright inhibit intracellular defense mechanisms. However, highlighting an area of vulnerability, these pathogens are dependent on the host cell for nutrients and are very sensitive to conditions that limit nutrient availability. Persistence is a common response shared by evolutionarily divergent bacteria to survive adverse conditions like nutrient deprivation. Development of persistence usually compromises successful antibiotic therapy of bacterial infections and is associated with chronic infections and long-term sequelae for the patients. During persistence, obligate intracellular pathogens are viable but not growing inside their host cell. They can survive for a long period of time such that, when the inducing stress is removed, reactivation of their growth cycles resumes. Given their reduced coding capacity, intracellular bacteria have adapted different response mechanisms. This review gives an overview of the strategies used by the obligate intracellular bacteria, where known, which, unlike model organisms such as E. coli, often lack toxin-antitoxin systems and the stringent response that have been linked to a persister phenotype and amino acid starvation states, respectively.
Collapse
|
35
|
Xiao Y, Beare PA, Best SM, Morens DM, Bloom ME, Taubenberger JK. Genetic sequencing of a 1944 Rocky Mountain spotted fever vaccine. Sci Rep 2023; 13:4687. [PMID: 36949107 PMCID: PMC10031714 DOI: 10.1038/s41598-023-31894-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/20/2023] [Indexed: 03/24/2023] Open
Abstract
Rocky Mountain spotted fever (RMSF) is a rapidly progressive and often fatal tick-borne disease caused by Rickettsia rickettsii. Its discovery and characterization by Howard Ricketts has been hailed as a remarkable historical example of detection and control of an emerging infectious disease, and subsequently led to the establishment of the Rocky Mountain Laboratories (RML). Here, we examined an unopened bottle of a vaccine, labeled as containing RMSF inactivated by phenol-formalin of infected ticks, developed prior to 1944 at RML by DNA analysis using Illumina high throughput sequencing technology. We found that it contains DNA from the Rocky Mountain wood tick (Dermacentor andersoni), the vector of RMSF, the complete genome of Rickettsia rickettsii, the pathogen of RMSF, as well as the complete genome of Coxiella burnetii, the pathogen of Q-fever. In addition to genomic reads of Rickettsia rickettsii and Coxiella burnetii, smaller percentages of the reads are from Rickettsia rhipicephali and Arsenophonus nasoniae, suggesting that the infected ticks used to prepare the vaccine carried more than one pathogen. Together, these findings suggest that this early vaccine was likely a bivalent vaccine for RMSF and Q-fever. This study is the among the first molecular level examinations of an historically important vaccine.
Collapse
Affiliation(s)
- Yongli Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive MSC 3203, Bethesda, MD, 20892-3203, USA.
| | - Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Sonja M Best
- Innate Immunity and Pathogenesis Section, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - David M Morens
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marshall E Bloom
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive MSC 3203, Bethesda, MD, 20892-3203, USA
| |
Collapse
|
36
|
Wachter S, Larson CL, Virtaneva K, Kanakabandi K, Darwitz B, Crews B, Storrud K, Heinzen RA, Beare PA. A Survey of Two-Component Systems in Coxiella burnetii Reveals Redundant Regulatory Schemes and a Requirement for an Atypical PhoBR System in Mammalian Cell Infection. J Bacteriol 2023; 205:e0041622. [PMID: 36847507 PMCID: PMC10029714 DOI: 10.1128/jb.00416-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/20/2022] [Indexed: 03/01/2023] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterium and the etiological agent of Q fever in humans. C. burnetii transitions between a replicative, metabolically active large-cell variant (LCV) and a spore-like, quiescent small-cell variant (SCV) as a likely mechanism to ensure survival between host cells and mammalian hosts. C. burnetii encodes three canonical two-component systems, four orphan hybrid histidine kinases, five orphan response regulators, and a histidine phosphotransfer protein, which have been speculated to play roles in the signaling required for C. burnetii morphogenesis and virulence. However, very few of these systems have been characterized. By employing a CRISPR interference system for genetic manipulation of C. burnetii, we created single- and multigene transcriptional knockdown strains targeting most of these signaling genes. Through this, we revealed a role for the C. burnetii PhoBR canonical two-component system in virulence, regulation of [Pi] maintenance, and Pi transport. We also outline a novel mechanism by which PhoBR function may be regulated by an atypical PhoU-like protein. We also determined that the GacA.2/GacA.3/GacA.4/GacS orphan response regulators coordinately and disparately regulate expression of SCV-associated genes in C. burnetii LCVs. These foundational results will inform future studies on the role of C. burnetii two-component systems in virulence and morphogenesis. IMPORTANCE C. burnetii is an obligate intracellular bacterium with a spore-like stability allowing it to survive long periods of time in the environment. This stability is likely due to its biphasic developmental cycle, whereby it can transition from an environmentally stable small-cell variant (SCV) to a metabolically active large-cell variant (LCV). Here, we define the role of two-component phosphorelay systems (TCS) in C. burnetii's ability to survive within the harsh environment contained in the phagolysosome of host cells. We show that the canonical PhoBR TCS has an important role in C. burnetii virulence and phosphate sensing. Further examination of the regulons controlled by orphan regulators indicated a role in modulating gene expression of SCV-associated genes, including genes essential for cell wall remodeling.
Collapse
Affiliation(s)
- Shaun Wachter
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
- Vaccine and Infectious Disease Organization, Saskatoon, Saskatchewan, Canada
| | - Charles L. Larson
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Kimmo Virtaneva
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Kishore Kanakabandi
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Benjamin Darwitz
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ben Crews
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Keelee Storrud
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Robert A. Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Paul A. Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| |
Collapse
|
37
|
Thomas DR, Newton HJ. Complex Signaling Networks Control Coxiella burnetii. J Bacteriol 2023; 205:e0001323. [PMID: 36847508 PMCID: PMC10029709 DOI: 10.1128/jb.00013-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
A recent study by S. Wachter, C. L. Larson, K. Virtaneva, K. Kanakabandi, et al. (J Bacteriol 205:e00416-22, 2023, https://doi.org/10.1128/JB.00416-22) utilizes new technologies to examine the role of two-component systems in Coxiella burnetii. This research demonstrates that the zoonotic pathogen C. burnetii mediates complex transcriptional control, throughout different bacterial phases and environmental conditions, with relatively few regulatory elements.
Collapse
Affiliation(s)
- David R. Thomas
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Hayley J. Newton
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
38
|
Cheng A, Wan D, Ghatak A, Wang C, Feng D, Fondell JD, Ebright RH, Fan H. Identification and Structural Modeling of the RNA Polymerase Omega Subunits in Chlamydiae and Other Obligate Intracellular Bacteria. mBio 2023; 14:e0349922. [PMID: 36719197 PMCID: PMC9973325 DOI: 10.1128/mbio.03499-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Gene transcription in bacteria is carried out by the multisubunit RNA polymerase (RNAP), which is composed of a catalytic core enzyme and a promoter-recognizing σ factor. The core enzyme comprises two α subunits, one β subunit, one β' subunit, and one ω subunit. The ω subunit plays critical roles in the assembly of the core enzyme and other cellular functions, including the regulation of bacterial growth, the stress response, and biofilm formation. However, the identity of an ω subunit for the obligate intracellular bacterium Chlamydia has not previously been determined. Here, we report the identification of the hypothetical protein CTL0286 as the probable chlamydial ω subunit based on sequence, synteny, and AlphaFold and AlphaFold-Multimer three-dimensional-structure predictions. Our findings indicate that CTL0286 functions as the missing ω subunit of chlamydial RNAP. Our extended analysis also indicates that all obligate intracellular bacteria have ω orthologs. IMPORTANCE Chlamydiae are obligate intracellular bacteria that replicate only inside eukaryotic cells. Previously, it has not been possible to identify a candidate gene encoding the chlamydial RNA polymerase ω subunit, and it has been hypothesized that the chlamydial RNA polymerase ω subunit was lost in the evolutionary process through which Chlamydiae reduced their genome size and proteome sizes to adapt to an obligate intracellular lifestyle. Here, we report the identification of the chlamydial RNA polymerase ω subunit, based on conserved sequence, conserved synteny, AlphaFold-predicted conserved three-dimensional structure, and AlfaFold-Multimer-predicted conserved interactions. Our identification of the previously elusive chlamydial RNA polymerase ω subunit sets the stage for investigation of its roles in regulation of gene expression during chlamydial growth, development, and stress responses, and sets the stage for preparation and study of the intact chlamydial RNA polymerase and its interactions with inhibitors.
Collapse
Affiliation(s)
- Andrew Cheng
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Danny Wan
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
- Graduate Program in Physiology and Integrative Biology, Rutgers School of Graduate Studies, Piscataway, New Jersey, USA
| | - Arkaprabha Ghatak
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Chengyuan Wang
- Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Deyu Feng
- Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Joseph D. Fondell
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Richard H. Ebright
- Waksman Institute, Rutgers University, Piscataway, New Jersey, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Huizhou Fan
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
39
|
Yadav A, Brewer MN, Elshahed MS, Shaw EI. Comparative Transcriptomics and Genomics from Continuous Axenic Media Growth Identifies Coxiella burnetii Intracellular Survival Strategies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527305. [PMID: 36798183 PMCID: PMC9934583 DOI: 10.1101/2023.02.06.527305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Coxiella burnetii (Cb) is an obligate intracellular pathogen in nature and the causative agent of acute Q fever as well as chronic diseases. In an effort to identify genes and proteins crucial to their normal intracellular growth lifestyle, we applied a "Reverse evolution" approach where the avirulent Nine Mile Phase II strain of Cb was grown for 67 passages in chemically defined ACCM-D media and gene expression patterns and genome integrity from various passages was compared to passage number one following intracellular growth. Transcriptomic analysis identified a marked downregulation of the structural components of the type 4B secretion system (T4BSS), the general secretory (sec) pathway, as well as 14 out of 118 previously identified genes encoding effector proteins. Additional downregulated pathogenicity determinants genes included several chaperones, LPS, and peptidoglycan biosynthesis. A general marked downregulation of central metabolic pathways was also observed, which was balanced by a marked upregulation of genes encoding transporters. This pattern reflected the richness of the media and diminishing anabolic and ATP-generation needs. Finally, genomic sequencing and comparative genomic analysis demonstrated an extremely low level of mutation across passages, despite the observed Cb gene expression changes following acclimation to axenic media.
Collapse
Affiliation(s)
- Archana Yadav
- Department of Microbiology and Molecular Genetics. Oklahoma State University. Stillwater, OK.USA
| | - Melissa N. Brewer
- Department of Microbiology and Molecular Genetics. Oklahoma State University. Stillwater, OK.USA
- Biological Sciences. Southeastern Oklahoma State University. Durant, OK. USA
| | - Mostafa S. Elshahed
- Department of Microbiology and Molecular Genetics. Oklahoma State University. Stillwater, OK.USA
| | - Edward I. Shaw
- Department of Microbiology and Molecular Genetics. Oklahoma State University. Stillwater, OK.USA
- Department of Biomedical Sciences. Philadelphia College of Osteopathic Medicine. Moultrie, GA. USA
| |
Collapse
|
40
|
Metters G, Hemsley C, Norville I, Titball R. Identification of essential genes in Coxiella burnetii. Microb Genom 2023; 9:mgen000944. [PMID: 36723494 PMCID: PMC9997736 DOI: 10.1099/mgen.0.000944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Coxiella burnetii is an intracellular pathogen responsible for causing Q fever in humans, a disease with varied presentations ranging from a mild flu-like sickness to a debilitating illness that can result in endocarditis. The intracellular lifestyle of C. burnetii is unique, residing in an acidic phagolysosome-like compartment within host cells. An understanding of the core molecular biology of C. burnetii will greatly increase our understanding of C. burnetii growth, survival and pathogenesis. We used transposon-directed insertion site sequencing (TraDIS) to reveal C. burnetii Nine Mile Phase II genes fundamental for growth and in vitro survival. Screening a transposon library containing >10 000 unique transposon mutants revealed 512 predicted essential genes. Essential routes of synthesis were identified for the mevalonate pathway, as well as peptidoglycan and biotin synthesis. Some essential genes identified (e.g. predicted type IV secretion system effector genes) are typically considered to be associated with C. burnetii virulence, a caveat concerning the axenic media used in the study. Investigation into the conservation of the essential genes identified revealed that 78 % are conserved across all C. burnetii strains sequenced to date, which probably play critical functions. This is the first report of a whole genome transposon screen in C. burnetii that has been undertaken for the identification of essential genes.
Collapse
Affiliation(s)
- Georgie Metters
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.,Defence Science and Technology Laboratories, CBR Division, Porton Down, Salisbury SP4 0JQ, UK
| | - Claudia Hemsley
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.,Present address: Molecular Microbiology Division, School of Life Sciences, University of Dundee, Dundee, DD1 5AA, UK
| | - Isobel Norville
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.,Defence Science and Technology Laboratories, CBR Division, Porton Down, Salisbury SP4 0JQ, UK
| | - Richard Titball
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
41
|
Yadav A, Brewer MN, Elshahed MS, Shaw EI. Comparative transcriptomics and genomics from continuous axenic media growth identifies Coxiella burnetii intracellular survival strategies. Pathog Dis 2023; 81:ftad009. [PMID: 37193663 PMCID: PMC10237335 DOI: 10.1093/femspd/ftad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Accepted: 05/15/2023] [Indexed: 05/18/2023] Open
Abstract
Coxiella burnetii (Cb) is an obligate intracellular pathogen in nature and the causative agent of acute Q fever as well as chronic diseases. In an effort to identify genes and proteins crucial to their normal intracellular growth lifestyle, we applied a 'reverse evolution' approach where the avirulent Nine Mile Phase II strain of Cb was grown for 67 passages in chemically defined ACCM-D media and gene expression patterns and genome integrity from various passages was compared to passage number one following intracellular growth. Transcriptomic analysis identified a marked downregulation of the structural components of the type 4B secretion system (T4BSS), the general secretory (Sec) pathway, as well as 14 out of 118 previously identified genes encoding effector proteins. Additional downregulated pathogenicity determinants genes included several chaperones, LPS, and peptidoglycan biosynthesis. A general marked downregulation of central metabolic pathways was also observed, which was balanced by a marked upregulation of genes encoding transporters. This pattern reflected the richness of the media and diminishing anabolic, and ATP-generation needs. Finally, genomic sequencing and comparative genomic analysis demonstrated an extremely low level of mutation across passages, despite the observed Cb gene expression changes following acclimation to axenic media.
Collapse
Affiliation(s)
- Archana Yadav
- Department of Microbiology and Molecular Genetics, Oklahoma State University,, 74078 Stillwater, OK, United States
| | - Melissa N Brewer
- Department of Microbiology and Molecular Genetics, Oklahoma State University,, 74078 Stillwater, OK, United States
- Biological Sciences, Southeastern Oklahoma State University, 74078 Durant, OK, United States
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University,, 74078 Stillwater, OK, United States
| | - Edward I Shaw
- Department of Microbiology and Molecular Genetics, Oklahoma State University,, 74078 Stillwater, OK, United States
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, 74078 Moultrie, GA, United States
| |
Collapse
|
42
|
The inside scoop: Comparative genomics of two intranuclear bacteria, "Candidatus Berkiella cookevillensis" and "Candidatus Berkiella aquae". PLoS One 2022; 17:e0278206. [PMID: 36584052 PMCID: PMC9803151 DOI: 10.1371/journal.pone.0278206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/12/2022] [Indexed: 12/31/2022] Open
Abstract
"Candidatus Berkiella cookevillensis" (strain CC99) and "Candidatus Berkiella aquae" (strain HT99), belonging to the Coxiellaceae family, are gram-negative bacteria isolated from amoebae in biofilms present in human-constructed water systems. Both bacteria are obligately intracellular, requiring host cells for growth and replication. The intracellular bacteria-containing vacuoles of both bacteria closely associate with or enter the nuclei of their host cells. In this study, we analyzed the genome sequences of CC99 and HT99 to better understand their biology and intracellular lifestyles. The CC99 genome has a size of 2.9Mb (37.9% GC) and contains 2,651 protein-encoding genes (PEGs) while the HT99 genome has a size of 3.6Mb (39.4% GC) and contains 3,238 PEGs. Both bacteria encode high proportions of hypothetical proteins (CC99: 46.5%; HT99: 51.3%). The central metabolic pathways of both bacteria appear largely intact. Genes for enzymes involved in the glycolytic pathway, the non-oxidative branch of the phosphate pathway, the tricarboxylic acid pathway, and the respiratory chain were present. Both bacteria, however, are missing genes for the synthesis of several amino acids, suggesting reliance on their host for amino acids and intermediates. Genes for type I and type IV (dot/icm) secretion systems as well as type IV pili were identified in both bacteria. Moreover, both bacteria contain genes encoding large numbers of putative effector proteins, including several with eukaryotic-like domains such as, ankyrin repeats, tetratricopeptide repeats, and leucine-rich repeats, characteristic of other intracellular bacteria.
Collapse
|
43
|
Kohl L, Siddique MNAA, Bodendorfer B, Berger R, Preikschat A, Daniel C, Ölke M, Liebler‐Tenorio E, Schulze‐Luehrmann J, Mauermeir M, Yang K, Hayek I, Szperlinski M, Andrack J, Schleicher U, Bozec A, Krönke G, Murray PJ, Wirtz S, Yamamoto M, Schatz V, Jantsch J, Oefner P, Degrandi D, Pfeffer K, Mertens‐Scholz K, Rauber S, Bogdan C, Dettmer K, Lührmann A, Lang R. Macrophages inhibit Coxiella burnetii by the ACOD1-itaconate pathway for containment of Q fever. EMBO Mol Med 2022; 15:e15931. [PMID: 36479617 PMCID: PMC9906395 DOI: 10.15252/emmm.202215931] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Infection with the intracellular bacterium Coxiella (C.) burnetii can cause chronic Q fever with severe complications and limited treatment options. Here, we identify the enzyme cis-aconitate decarboxylase 1 (ACOD1 or IRG1) and its product itaconate as protective host immune pathway in Q fever. Infection of mice with C. burnetii induced expression of several anti-microbial candidate genes, including Acod1. In macrophages, Acod1 was essential for restricting C. burnetii replication, while other antimicrobial pathways were dispensable. Intratracheal or intraperitoneal infection of Acod1-/- mice caused increased C. burnetii burden, weight loss and stronger inflammatory gene expression. Exogenously added itaconate restored pathogen control in Acod1-/- mouse macrophages and blocked replication in human macrophages. In axenic cultures, itaconate directly inhibited growth of C. burnetii. Finally, treatment of infected Acod1-/- mice with itaconate efficiently reduced the tissue pathogen load. Thus, ACOD1-derived itaconate is a key factor in the macrophage-mediated defense against C. burnetii and may be exploited for novel therapeutic approaches in chronic Q fever.
Collapse
Affiliation(s)
- Lisa Kohl
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Md Nur A Alam Siddique
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Barbara Bodendorfer
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Raffaela Berger
- Institute of Functional GenomicsUniversity of RegensburgRegensburgGermany
| | - Annica Preikschat
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Christoph Daniel
- Department of NephropathologyUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Martha Ölke
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Elisabeth Liebler‐Tenorio
- Institute of Molecular Pathogenesis, Friedrich‐Loeffler‐Institut, Federal Research Institute for Animal HealthJenaGermany
| | - Jan Schulze‐Luehrmann
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Michael Mauermeir
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Kai‐Ting Yang
- Department of Medicine 3Universitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany,Deutsches Zentrum für Immuntherapie (DZI)Friedrich‐Alexander‐Universität Erlangen‐Nürnberg and Universitätsklinikum ErlangenErlangenGermany
| | - Inaya Hayek
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Manuela Szperlinski
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Jennifer Andrack
- Institute of Bacterial Infections and Zoonoses, Friedrich‐Loeffler‐Institut, Federal Research Institute for Animal HealthJenaGermany
| | - Ulrike Schleicher
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany,Medical Immunology Campus ErlangenFAU Erlangen‐NürnbergErlangenGermany
| | - Aline Bozec
- Department of Medicine 3Universitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany,Medical Immunology Campus ErlangenFAU Erlangen‐NürnbergErlangenGermany
| | - Gerhard Krönke
- Department of Medicine 3Universitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany,Medical Immunology Campus ErlangenFAU Erlangen‐NürnbergErlangenGermany
| | | | - Stefan Wirtz
- Deutsches Zentrum für Immuntherapie (DZI)Friedrich‐Alexander‐Universität Erlangen‐Nürnberg and Universitätsklinikum ErlangenErlangenGermany,Medical Immunology Campus ErlangenFAU Erlangen‐NürnbergErlangenGermany,Department of Medicine 1Universitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | | | - Valentin Schatz
- Institute of Clinical MicrobiologyUniversity Hospital RegensburgRegensburgGermany
| | - Jonathan Jantsch
- Institute of Clinical MicrobiologyUniversity Hospital RegensburgRegensburgGermany,Present address:
Institute for Medical Microbiology, Immunology and HygieneUniversity Hospital Cologne and Faculty of Medicine, University of CologneCologneGermany
| | - Peter Oefner
- Institute of Functional GenomicsUniversity of RegensburgRegensburgGermany
| | - Daniel Degrandi
- Institute of Medical MicrobiologyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Klaus Pfeffer
- Institute of Medical MicrobiologyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Katja Mertens‐Scholz
- Institute of Bacterial Infections and Zoonoses, Friedrich‐Loeffler‐Institut, Federal Research Institute for Animal HealthJenaGermany
| | - Simon Rauber
- Department of Medicine 3Universitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany,Deutsches Zentrum für Immuntherapie (DZI)Friedrich‐Alexander‐Universität Erlangen‐Nürnberg and Universitätsklinikum ErlangenErlangenGermany
| | - Christian Bogdan
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany,Medical Immunology Campus ErlangenFAU Erlangen‐NürnbergErlangenGermany
| | - Katja Dettmer
- Institute of Functional GenomicsUniversity of RegensburgRegensburgGermany
| | - Anja Lührmann
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany,Medical Immunology Campus ErlangenFAU Erlangen‐NürnbergErlangenGermany
| | - Roland Lang
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany,Medical Immunology Campus ErlangenFAU Erlangen‐NürnbergErlangenGermany
| |
Collapse
|
44
|
Anastácio S, de Sousa SR, Saavedra MJ, da Silva GJ. Role of Goats in the Epidemiology of Coxiella burnetii. BIOLOGY 2022; 11:biology11121703. [PMID: 36552213 PMCID: PMC9774940 DOI: 10.3390/biology11121703] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Since its first description in the late 1930s, Q fever has raised many questions. Coxiella burnetii, the causative agent, is a zoonotic pathogen affecting a wide range of hosts. This airborne organism leads to an obligate, intracellular lifecycle, during which it multiplies in the mononuclear cells of the immune system and in the trophoblasts of the placenta in pregnant females. Although some issues about C. burnetii and its pathogenesis in animals remain unclear, over the years, some experimental studies on Q fever have been conducted in goats given their excretion pattern. Goats play an important role in the epidemiology and economics of C. burnetii infections, also being the focus of several epidemiological studies. Additionally, variants of the agent implicated in human long-term disease have been found circulating in goats. The purpose of this review is to summarize the latest research on C. burnetii infection and the role played by goats in the transmission of the infection to humans.
Collapse
Affiliation(s)
- Sofia Anastácio
- Vasco da Gama Research Centre (CIVG), Department of Veterinary Sciences, Vasco da Gama University School, Avenida José R. Sousa Fernandes 197 Lordemão, 3020-210 Coimbra, Portugal
- Center of Neurosciences and Cell Biology, Health Science Campus, 3000-548 Coimbra, Portugal
- Correspondence:
| | - Sérgio Ramalho de Sousa
- Vasco da Gama Research Centre (CIVG), Department of Veterinary Sciences, Vasco da Gama University School, Avenida José R. Sousa Fernandes 197 Lordemão, 3020-210 Coimbra, Portugal
| | - Maria José Saavedra
- Laboratory Medical Microbiology—Antimicrobials, Biocides and Biofilms Unit, Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Centre for the Research and Technology Agro-Environmental and Biological Sciences and Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
| | - Gabriela Jorge da Silva
- Center of Neurosciences and Cell Biology, Health Science Campus, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
45
|
Abou Abdallah R, Million M, Delerce J, Anani H, Diop A, Caputo A, Zgheib R, Rousset E, Sidi Boumedine K, Raoult D, Fournier PE. Pangenomic analysis of Coxiella burnetii unveils new traits in genome architecture. Front Microbiol 2022; 13:1022356. [PMID: 36478861 PMCID: PMC9721466 DOI: 10.3389/fmicb.2022.1022356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 08/25/2023] Open
Abstract
Coxiella burnetii is the etiological agent of Q fever, a worldwide zoonosis able to cause large outbreaks. The disease is polymorphic. Symptomatic primary infection is named acute Q fever and is associated with hepatitis, pneumonia, fever, and auto-immune complications while persistent focalized infections, mainly endocarditis, and vascular infections, occur in a minority of patients but are potentially lethal. In order to evaluate the genomic features, genetic diversity, evolution, as well as genetic determinants of antibiotic resistance, pathogenicity, and ability to cause outbreaks of Q fever, we performed a pangenomic analysis and genomic comparison of 75 C. burnetii strains including 63 newly sequenced genomes. Our analysis demonstrated that C. burnetii has an open pangenome, unique genes being found in many strains. In addition, pathogenicity islands were detected in all genomes. In consequence C. burnetii has a high genomic plasticity, higher than that of other intracellular bacteria. The core- and pan-genomes are made of 1,211 and 4,501 genes, respectively (ratio 0.27). The core gene-based phylogenetic analysis matched that obtained from multi-spacer typing and the distribution of plasmid types. Genomic characteristics were associated to clinical and epidemiological features. Some genotypes were associated to specific clinical forms and countries. MST1 genotype strains were associated to acute Q fever. A significant association was also found between clinical forms and plasmids. Strains harboring the QpRS plasmid were never found in acute Q fever and were only associated to persistent focalized infections. The QpDV and QpH1 plasmids were associated to acute Q fever. In addition, the Guyanese strain CB175, the most virulent strain to date, exhibited a unique MST genotype, a distinct COG profile and an important variation in gene number that may explain its unique pathogenesis. Therefore, strain-specific factors play an important role in determining the epidemiological and clinical manifestations of Q fever alongside with host-specific factors (valvular and vascular defects notably).
Collapse
Affiliation(s)
- Rita Abou Abdallah
- Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Service de Santé des Armées, AP-HM, UMR Vecteurs Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Matthieu Million
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Jeremy Delerce
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Hussein Anani
- Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Service de Santé des Armées, AP-HM, UMR Vecteurs Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Awa Diop
- Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Service de Santé des Armées, AP-HM, UMR Vecteurs Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Aurelia Caputo
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Rita Zgheib
- Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Service de Santé des Armées, AP-HM, UMR Vecteurs Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Elodie Rousset
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Sophia Antipolis Laboratory, Animal Q Fever Unit, Sophia Antipolis, France
| | - Karim Sidi Boumedine
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Sophia Antipolis Laboratory, Animal Q Fever Unit, Sophia Antipolis, France
| | - Didier Raoult
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Pierre-Edouard Fournier
- Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Service de Santé des Armées, AP-HM, UMR Vecteurs Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
46
|
Hodosi R, Kazimirova M, Soltys K. What do we know about the microbiome of I. ricinus? Front Cell Infect Microbiol 2022; 12:990889. [PMID: 36467722 PMCID: PMC9709289 DOI: 10.3389/fcimb.2022.990889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/17/2022] [Indexed: 10/07/2023] Open
Abstract
I. ricinus is an obligate hematophagous parasitic arthropod that is responsible for the transmission of a wide range of zoonotic pathogens including spirochetes of the genus Borrelia, Rickettsia spp., C. burnetii, Anaplasma phagocytophilum and Francisella tularensis, which are part the tick´s microbiome. Most of the studies focus on "pathogens" and only very few elucidate the role of "non-pathogenic" symbiotic microorganisms in I. ricinus. While most of the members of the microbiome are leading an intracellular lifestyle, they are able to complement tick´s nutrition and stress response having a great impact on tick´s survival and transmission of pathogens. The composition of the tick´s microbiome is not consistent and can be tied to the environment, tick species, developmental stage, or specific organ or tissue. Ovarian tissue harbors a stable microbiome consisting mainly but not exclusively of endosymbiotic bacteria, while the microbiome of the digestive system is rather unstable, and together with salivary glands, is mostly comprised of pathogens. The most prevalent endosymbionts found in ticks are Rickettsia spp., Ricketsiella spp., Coxiella-like and Francisella-like endosymbionts, Spiroplasma spp. and Candidatus Midichloria spp. Since microorganisms can modify ticks' behavior, such as mobility, feeding or saliva production, which results in increased survival rates, we aimed to elucidate the potential, tight relationship, and interaction between bacteria of the I. ricinus microbiome. Here we show that endosymbionts including Coxiella-like spp., can provide I. ricinus with different types of vitamin B (B2, B6, B7, B9) essential for eukaryotic organisms. Furthermore, we hypothesize that survival of Wolbachia spp., or the bacterial pathogen A. phagocytophilum can be supported by the tick itself since coinfection with symbiotic Spiroplasma ixodetis provides I. ricinus with complete metabolic pathway of folate biosynthesis necessary for DNA synthesis and cell division. Manipulation of tick´s endosymbiotic microbiome could present a perspective way of I. ricinus control and regulation of spread of emerging bacterial pathogens.
Collapse
Affiliation(s)
- Richard Hodosi
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
47
|
Case EDR, Mahapatra S, Hoffpauir CT, Konganti K, Hillhouse AE, Samuel JE, Van Schaik EJ. Primary Murine Macrophages as a Tool for Virulence Factor Discovery in Coxiella burnetii. Microbiol Spectr 2022; 10:e0248421. [PMID: 35913176 PMCID: PMC9430109 DOI: 10.1128/spectrum.02484-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
Coxiella burnetii requires a type IVB secretion system (T4SS) to promote intracellular replication and virulence. We hypothesized that Coxiella employs its T4SS to secrete effectors that enable stealthy colonization of immune cells. To address this, we used RNA sequencing to compare the transcriptional response of murine bone marrow-derived macrophages (BMDM) infected with those of wild-type Coxiella and a T4SS-null mutant at 8 and 24 h postinfection. We found a T4SS-independent upregulation of proinflammatory transcripts which was consistent with a proinflammatory polarization phenotype. Despite this, infected BMDM failed to completely polarize, as evidenced by modest surface expression of CD38 and CD11c, nitrate production, and reduced proinflammatory cytokine and chemokine secretion compared to positive controls. As these BMDM permitted replication of C. burnetii, we employed them to identify T4SS effectors that are essential in the specific cellular context of a primary macrophage. We found five Himar1 transposon mutants in T4SS effectors that had a replication defect in BMDM but not J774A.1 cells. The mutants were also attenuated in a SCID mouse model of infection. Among these candidate virulence factors, we found that CBU1639 contributed to the inhibition of macrophage proinflammatory responses to Coxiella infection. These data demonstrate that while T4SS is dispensable for the stealthy invasion of primary macrophages, Coxiella has evolved multiple T4SS effectors that specifically target macrophage function to proliferate within that specific cellular context. IMPORTANCE Coxiella burnetii, the causative agent of Q fever, preferentially infects macrophages of the respiratory tract when causing human disease. This work describes how primary macrophages respond to C. burnetii at the earliest stages of infection, before bacterial replication. We found that while infected macrophages increase expression of proinflammatory genes after bacterial entry, they fail to activate the accompanying antibacterial functions that might ultimately control the infection. This disconnect between initial response and downstream function was not mediated by the bacterium's type IVB secretion system, suggesting that Coxiella has other virulence factors that dampen host responses early in the infection process. Nevertheless, we were able to identify several type IVB secreted effectors that were specifically required for survival in macrophages and mice. This work is the first to identify type IVB secretion effectors that are specifically required for infection and replication within primary macrophages.
Collapse
Affiliation(s)
| | - Saugata Mahapatra
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Caitlyn T. Hoffpauir
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Kranti Konganti
- Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas, USA
| | - Andrew E. Hillhouse
- Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas, USA
| | - James E. Samuel
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Erin J. Van Schaik
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, USA
| |
Collapse
|
48
|
The microbiome of a bacterivorous marine choanoflagellate contains a resource-demanding obligate bacterial associate. Nat Microbiol 2022; 7:1466-1479. [PMID: 35970961 PMCID: PMC9418006 DOI: 10.1038/s41564-022-01174-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/14/2022] [Indexed: 11/08/2022]
Abstract
Microbial predators such as choanoflagellates are key players in ocean food webs. Choanoflagellates, which are the closest unicellular relatives of animals, consume bacteria and also exhibit marked biological transitions triggered by bacterial compounds, yet their native microbiomes remain uncharacterized. Here we report the discovery of a ubiquitous, uncultured bacterial lineage we name Candidatus Comchoanobacterales ord. nov., related to the human pathogen Coxiella and physically associated with the uncultured marine choanoflagellate Bicosta minor. We analyse complete ‘Comchoano’ genomes acquired after sorting single Bicosta cells, finding signatures of obligate host-dependence, including reduction of pathways encoding glycolysis, membrane components, amino acids and B-vitamins. Comchoano encode the necessary apparatus to import energy and other compounds from the host, proteins for host-cell associations and a type IV secretion system closest to Coxiella’s that is expressed in Pacific Ocean metatranscriptomes. Interactions between choanoflagellates and their microbiota could reshape the direction of energy and resource flow attributed to microbial predators, adding complexity and nuance to marine food webs. Choanoflagellates are the closest living unicellular relatives of animals and are important bacterivorous predators in the ocean. Here the authors show that the microbiome of this predator includes an obligate, host resource-dependent bacterial associate.
Collapse
|
49
|
Ullah Q, Jamil T, Saqib M, Iqbal M, Neubauer H. Q Fever—A Neglected Zoonosis. Microorganisms 2022; 10:microorganisms10081530. [PMID: 36013948 PMCID: PMC9416428 DOI: 10.3390/microorganisms10081530] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 01/09/2023] Open
Abstract
Q fever remains a neglected zoonosis in many developing countries including Pakistan. The causing agent Coxiella (C.) burnetii is resistant to environmental factors (such as drying, heat and many disinfectants), resulting in a long-lasting infection risk for both human and animals. As the infection is usually asymptomatic, it mostly remains undiagnosed in animals until and unless adverse pregnancy outcomes occur in a herd. In humans, the infection leads to severe endocarditis and vascular infection in chronic cases. Limited data are available on molecular epidemiology and evolution of this pathogen, especially in ruminants. Genomic studies will help speculating outbreak relationships in this scenario. Likewise, pathogenesis of C. burnetii needs to be explored by molecular studies. Awareness programs and ensuring pasteurization of the dairy milk before human consumption would help preventing Q fever zoonosis.
Collapse
Affiliation(s)
- Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan 29111, Pakistan
- Correspondence: (Q.U.); (T.J.); (M.S.)
| | - Tariq Jamil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany;
- Correspondence: (Q.U.); (T.J.); (M.S.)
| | - Muhammad Saqib
- Department of Clinical Medicine and Surgery, Faculty of Veterinary Science, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
- Correspondence: (Q.U.); (T.J.); (M.S.)
| | - Mudassar Iqbal
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany;
| |
Collapse
|
50
|
Abstract
Coxiella burnetii replicates in a phagolysosome-like vacuole called the Coxiella-containing vacuole (CCV). While host cholesterol readily traffics to the CCV, cholesterol accumulation leads to CCV acidification and bacterial death. Thus, bacterial regulation of CCV cholesterol content is essential for Coxiella pathogenesis. Coxiella expresses a sterol-modifying protein, Stmp1, that may function to lower CCV cholesterol through enzymatic modification. Using an Stmp1 knockout (Δstmp1), we determined that Stmp1 is not essential for axenic growth. Inside host cells, however, Δstmp1 mutant bacteria form smaller CCVs which accumulate cholesterol, preferentially fuse with lysosomes, and become more acidic, correlating with a significant growth defect. However, in cholesterol-free cells, Δstmp1 mutant bacteria grow similarly to wild-type bacteria but are hypersensitive to cholesterol supplementation. To better understand the underlying mechanism behind the Δstmp1 mutant phenotype, we performed sterol profiling. Surprisingly, we found that Δstmp1 mutant-infected macrophages accumulated the potent cholesterol homeostasis regulator 25-hydroxycholesterol (25-HC). We next determined whether dysregulated 25-HC alters Coxiella infection by treating wild-type Coxiella-infected cells with 25-HC. Similar to the Δstmp1 mutant phenotype, 25-HC increased CCV proteolytic activity and inhibited bacterial growth. Collectively, these data indicate that Stmp1 alters host cholesterol metabolism and is essential to establish a mature CCV which supports Coxiella growth. IMPORTANCE Coxiella burnetii is the causative agent of human Q fever, an emerging infectious disease and significant cause of culture-negative endocarditis. Acute infections are often undiagnosed, there are no licensed vaccines in the United States, and chronic Q fever requires a prolonged antibiotic treatment. Therefore, new treatment and preventive options are critically needed. Coxiella is an obligate intracellular bacterium that replicates within a large acidic phagolysosome-like compartment, the Coxiella-containing vacuole (CCV). We previously discovered that cholesterol accumulation in the CCV increases its acidification, leading to bacterial death. Therefore, in order to survive in this harsh environment, Coxiella likely regulates CCV cholesterol levels. Here, we found that Coxiella sterol modifying protein (Stmp1) facilitates bacterial growth by reducing CCV cholesterol and host cell 25-hydroxycholesterol (25-HC) levels, which prevents excessive CCV fusion with host lysosomes and CCV acidification. This study establishes that Stmp1-mediated regulation of host cholesterol homeostasis is essential for Coxiella intracellular survival.
Collapse
|