1
|
Huang CY, Wang RC, Hsu TS, Hung TN, Shen MY, Chang CH, Wu HC. Developing an E. coli-Based Cell-Free Protein Synthesis System for Artificial Spidroin Production and Characterization. ACS Synth Biol 2025. [PMID: 40256795 DOI: 10.1021/acssynbio.5c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Spider silk spidroins, nature's advanced polymers, have long hampered efficient in vitro production due to their considerable size, repetitive sequences, and aggregation-prone nature. This study harnesses the power of a cell-free protein synthesis (CFPS) system, presenting the first successful in vitro production and detailed characterization of recombinant spider silk major ampullate spidroins (MaSps) utilizing a reformulated and optimizedEscherichia coli based CFPS system. Through systematic optimization, including cell strain engineering via knockout generation, energy sources, crowding agents, and amino acid supplementation, we effectively addressed the specific challenges associated with recombinant spidroin biosynthesis, resulting in high yields of 0.61 mg/mL for MaSp1 (69 kDa) and 0.52 mg/mL for MaSp2 (73 kDa). The synthesized spidroins self-assembled into micelles, facilitating efficient purification compared to in vivo methods, and were further processed into prototype silk fiber products. The functional characterization demonstrated that the purified spidroins maintain essential natural properties, such as phase separation and fiber formation triggered by pH and ions. This tailored CFPS platform also facilitates versatile cosynthesis and serves as an accessible platform for studying the supramolecular coassembly and dynamic interactions among spidroins. This CFPS platform offers a viable alternative to conventional in vivo methods, facilitating innovative approaches for silk protein engineering and biomaterial development in a high-throughput, efficient manner.
Collapse
Affiliation(s)
- Chang-Yen Huang
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (ROC)
| | - Ruei-Chi Wang
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (ROC)
| | - Tzy-Shyuan Hsu
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (ROC)
| | - Tzu-Ning Hung
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (ROC)
| | - Ming-Yan Shen
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (ROC)
| | - Chung-Heng Chang
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (ROC)
| | - Hsuan-Chen Wu
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (ROC)
| |
Collapse
|
2
|
Liu R, Yang L, Feng J, Zhang S, Wu L, Du Y, Kong D, Xu Y, Peng T. M2e/NP Dual Epitope-Displaying Nanoparticles Enhance Cross-Protection of Recombinant HA Influenza Vaccine: A Universal Boosting Strategy. Vaccines (Basel) 2025; 13:412. [PMID: 40333315 DOI: 10.3390/vaccines13040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025] Open
Abstract
Background/Objectives: Vaccination remains the most effective means of preventing influenza virus infections. However, the continuous antigenic drift and shift of influenza viruses lead to a reduced efficacy of the existing vaccines, necessitating vaccines capable of broad protection. Methods: To address this, we developed a modular vaccine strategy pairing a clinical-stage adjuvanted recombinant hemagglutinin (HA) vaccine (SCVC101) with OMN, a heptameric nanoparticle displaying conserved influenza A virus T-cell epitopes from nucleoprotein (NP) and matrix 2 ectodomain (M2e). Results: OMN induced cross-reactive M2e-specific antibodies, binding to diverse influenza A subtypes. Critically, the co-administration of OMN with SCVC101 enhanced cellular immunity and cross-protection without diminishing HA-induced humoral responses. Conclusions: This dual-antigen delivery system enables annual HA component updates, aligned with WHO recommendations, while the conserved OMN nanoparticle acts as a universal booster, leveraging existing production infrastructure. This approach offers a promising strategy for improving the influenza vaccine's efficacy against emerging viral variants.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Lejun Yang
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jin Feng
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- Guangdong South China Vaccine Co., Ltd., Guangzhou 510663, China
| | - Songchen Zhang
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Liping Wu
- Guangdong South China Vaccine Co., Ltd., Guangzhou 510663, China
| | - Yingying Du
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Dexin Kong
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuhua Xu
- Guangdong South China Vaccine Co., Ltd., Guangzhou 510663, China
| | - Tao Peng
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- Guangdong South China Vaccine Co., Ltd., Guangzhou 510663, China
| |
Collapse
|
3
|
Liu X, Roberts DS, Bingman CA, Jin S, Ge Y, Gellman SH. Rational design of a foldon-derived heterotrimer guided by quantitative native mass spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645370. [PMID: 40196687 PMCID: PMC11974886 DOI: 10.1101/2025.03.25.645370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Designing stable hetero-oligomeric protein complexes with defined inter-subunit stoichiometries remains a significant challenge. In this study, we report the design of a highly selective heterotrimeric assembly derived from the well-known foldon homotrimer. We generated an aab heterotrimer by introducing the Q11E modification to destabilize the homotrimer and a compensatory modification, either V14A or V14L, to stabilize the hydrophobic core of the heterotrimer. Native mass spectrometry (MS) was essential for guiding the design process, enabling precise characterization of oligomeric states and their equilibrium distributions. The heterotrimer structure was validated by x-ray crystallography. Our findings highlight the effectiveness of combining rational design with native MS to develop specific hetero-oligomeric assemblies.
Collapse
|
4
|
Sun JM, Zhang WQ, Li YJ, Guo TK, Zhang RR, Yang YL, Zhao Y, Yu LJ, Shi CW, Yang GL, Huang HB, Jiang YL, Wang JZ, Cao X, Wang N, Zeng Y, Yang WT, Wang CF. Recombinant probiotic Escherichia coli delivers the polymeric protein of swine influenza virus for protection. Vet Microbiol 2025; 302:110401. [PMID: 39862797 DOI: 10.1016/j.vetmic.2025.110401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/12/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Swine influenza virus invades the host through the respiratory mucosa, which severely restricts the development of the pig breeding industry. To construct monomeric and trimeric vaccines, we developed recombinant Escherichia coli Nissle 1917 (EcN) strains that express the receptor binding site (RBS) of the hemagglutinin (HA) antigen from H1N1 swine influenza virus. After the mucosal immunization of mice, we found that probiotics activated CD40 and CD86 in DCs and increased the levels of IL-4 and IFN-γ secretion by T cells. Furthermore, the probiotics improved the function of the mucosal immune system, increased the level of SIgA, level of IgG and number of B220+IgA+, and activated germinal center B cells. The challenge experiment revealed that the probiotics alleviated weight loss, reduced pathological injury to the lungs, and protected the mice from virus infection. We also observed that the serum neutralizing antibodies of immunized piglets significantly increased, which reduced the shedding frequency of swine influenza virus in the nose of the piglets and reduced the pathological damage by activating the T cell immune response in infected piglets. Thus, the constructed probiotics are promising candidates for effective non-traditional swine influenza vaccines.
Collapse
Affiliation(s)
- Jin-Mei Sun
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Wen-Qiang Zhang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yan-Jin Li
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Tian-Kui Guo
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Rong-Rong Zhang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yong-Lei Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Ying Zhao
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Ling-Jiao Yu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jian-Zhong Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
5
|
Siquenique S, Ackerman S, Schroeder A, Sarmento B. Bioengineering lipid-based synthetic cells for therapeutic protein delivery. Trends Biotechnol 2025; 43:348-363. [PMID: 39209601 DOI: 10.1016/j.tibtech.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/27/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Synthetic cells (SCs) offer a promising approach for therapeutic protein delivery, combining principles from synthetic biology and drug delivery. Engineered to mimic natural cells, SCs provide biocompatibility and versatility, with precise control over their architecture and composition. Protein production is essential in living cells, and SCs aim to replicate this process using compartmentalized cell-free protein synthesis systems within lipid bilayers. Lipid bilayers serve as favored membranes in SC design due to their similarity to the biological cell membrane. Moreover, engineering lipidic membranes enable tissue-specific targeting and immune evasion, while stimulus-responsive SCs allow for triggered protein production and release. This Review explores lipid-based SCs as platforms for therapeutic protein delivery, discussing their design principles, functional attributes, and translational challenges and potential.
Collapse
Affiliation(s)
- Sónia Siquenique
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Shanny Ackerman
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa, Israel
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa, Israel
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| |
Collapse
|
6
|
Wang WC, Sayedahmed EE, Alhashimi M, Elkashif A, Gairola V, Murala MST, Sambhara S, Mittal SK. Adenoviral Vector-Based Vaccine Expressing Hemagglutinin Stem Region with Autophagy-Inducing Peptide Confers Cross-Protection Against Group 1 and 2 Influenza A Viruses. Vaccines (Basel) 2025; 13:95. [PMID: 39852874 PMCID: PMC11769558 DOI: 10.3390/vaccines13010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: An effective universal influenza vaccine is urgently needed to overcome the limitations of current seasonal influenza vaccines, which are ineffective against mismatched strains and unable to protect against pandemic influenza. Methods: In this study, bovine and human adenoviral vector-based vaccine platforms were utilized to express various combinations of antigens. These included the H5N1 hemagglutinin (HA) stem region or HA2, the extracellular domain of matrix protein 2 of influenza A virus, HA signal peptide (SP), trimerization domain, excretory peptide, and the autophagy-inducing peptide C5 (AIP-C5). The goal was to identify the optimal combination for enhanced immune responses and cross-protection. Mice were immunized using a prime-boost strategy with heterologous adenoviral (Ad) vectors. Results: The heterologous Ad vectors induced robust HA stem-specific humoral and cellular immune responses in the immunized mice. Among the tested combinations, Ad vectors expressing SP + HA stem + AIP-C5 conferred significant protection against group 1 (H1N1 and H5N1) and group 2 (H3N2) influenza A viruses. This protection was demonstrated by lower lung viral titers and reduced morbidity and mortality. Conclusions: The findings support further investigation of heterologous Ad vaccine platforms expressing SP + HA stem + AIP-C5. This combination shows promise as a potential universal influenza vaccine, providing broader protection against influenza A viruses.
Collapse
Affiliation(s)
- Wen-Chien Wang
- Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.); (M.A.); (A.E.); (V.G.); (M.S.T.M.)
| | - Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.); (M.A.); (A.E.); (V.G.); (M.S.T.M.)
| | - Marwa Alhashimi
- Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.); (M.A.); (A.E.); (V.G.); (M.S.T.M.)
| | - Ahmed Elkashif
- Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.); (M.A.); (A.E.); (V.G.); (M.S.T.M.)
| | - Vivek Gairola
- Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.); (M.A.); (A.E.); (V.G.); (M.S.T.M.)
| | - Muralimanohara S. T. Murala
- Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.); (M.A.); (A.E.); (V.G.); (M.S.T.M.)
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.); (M.A.); (A.E.); (V.G.); (M.S.T.M.)
| |
Collapse
|
7
|
Zhu X, Luo Z, Leonard RA, Hamele CE, Spreng RL, Heaton NS. Administration of antigenically distinct influenza viral particle combinations as an influenza vaccine strategy. PLoS Pathog 2025; 21:e1012878. [PMID: 39841684 PMCID: PMC11753672 DOI: 10.1371/journal.ppat.1012878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025] Open
Abstract
One approach for developing a more universal influenza vaccine is to elicit strong immune responses against canonically immunosubdominant epitopes in the surface exposed viral glycoproteins. While standard vaccines typically induce responses directed primarily against mutable epitopes in the hemagglutinin (HA) head domain, there are generally limited or variable responses directed against epitopes in the relatively more conserved HA stalk domain and neuraminidase (NA) proteins. Here we describe a vaccine approach that utilizes a combination of wildtype (WT) influenza virus particles along with virus particles engineered to display a trimerized HA stalk in place of the full-length HA protein to elicit both responses simultaneously. After initially generating the "headless" HA-containing viral particles in the A/Hawaii/70/2019 (HI/19) genetic background and demonstrating the ability to elicit protective immune responses directed against the HA-stalk and NA, we co-formulated those virions with unmodified WT viral particles. The combination vaccine elicited "hybrid" and protective responses directed against the HA-head, HA-stalk, and NA proteins in both naïve and pre-immune mice and ferrets. Collectively, our results highlight a potentially generalizable method combining viral particles with differential antigenic compositions to elicit broader immune responses that may lead to more durable protection from influenza disease post-vaccination.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Zhaochen Luo
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Rebecca A. Leonard
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Cait E. Hamele
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Rachel L. Spreng
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
8
|
Ataca S, Sangesland M, de Paiva Fróes Rocha R, Torrents de la Peña A, Ronsard L, Boyoglu-Barnum S, Gillespie RA, Tsybovsky Y, Stephens T, Moin SM, Lederhofer J, Creanga A, Andrews SF, Barnes RM, Rohrer D, Lonberg N, Graham BS, Ward AB, Lingwood D, Kanekiyo M. Modulating the immunodominance hierarchy of immunoglobulin germline-encoded structural motifs targeting the influenza hemagglutinin stem. Cell Rep 2024; 43:114990. [PMID: 39580804 PMCID: PMC11672684 DOI: 10.1016/j.celrep.2024.114990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/05/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Antibodies targeting epitopes through germline-encoded motifs can be found in different individuals. While these public antibodies are often beneficial, they also pose hurdles for subdominant antibodies to emerge. Here, we use transgenic mice that reproduce the human IGHV1-69∗01 germline-encoded antibody response to the conserved stem epitope on group 1 hemagglutinin (HA) of influenza A virus to show that this germline-endowed response can be overridden by a subdominant yet cross-group reactive public antibody response. Immunization with a non-cognate group 2 HA stem enriched B cells harboring the IGHD3-9 gene, thereby switching from IGHV1-69- to IGHD3-9-encoded motif-dependent epitope recognition. These IGHD3-9 antibodies bound, neutralized, and conferred cross-group protection in mice against influenza A viruses. A cryoelectron microscopy (cryo-EM) structure of an IGHD3-9 antibody resembled the human broadly neutralizing antibody FI6v3, which uses IGHD3-9. Together, our findings offer insights into vaccine regimens that engage an immunoglobulin repertoire with broader cross-reactivity to influenza A viruses.
Collapse
Affiliation(s)
- Sila Ataca
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maya Sangesland
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | | | - Larance Ronsard
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Syed M Moin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julia Lederhofer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Nils Lonberg
- Bristol-Myers Squibb, Redwood City, CA 94063, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew B Ward
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel Lingwood
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Liu DJ, Zhong XQ, Ru YX, Zhao SL, Liu CC, Tang YB, Wu X, Zhang YS, Zhang HH, She JY, Wan MY, Li YW, Zheng HP, Deng L. Disulfide-stabilized trimeric hemagglutinin ectodomains provide enhanced heterologous influenza protection. Emerg Microbes Infect 2024; 13:2389095. [PMID: 39101691 PMCID: PMC11334750 DOI: 10.1080/22221751.2024.2389095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Influenza virus infection poses a continual menace to public health. Here, we developed soluble trimeric HA ectodomain vaccines by establishing interprotomer disulfide bonds in the stem region, which effectively preserve the native antigenicity of stem epitopes. The stable trimeric H1 ectodomain proteins exhibited higher thermal stabilities in comparison with unmodified HAs and showed strong binding activities towards a panel of anti-stem cross-reactive antibodies that recognize either interprotomer or intraprotomer epitopes. Negative stain transmission electron microscopy (TEM) analysis revealed the stable trimer architecture of the interprotomer disulfide-stapled WA11#5, NC99#2, and FLD#1 proteins as well as the irregular aggregation of unmodified HA molecules. Immunizations of mice with those trimeric HA ectodomain vaccines formulated with incomplete Freund's adjuvant elicited significantly more potent cross-neutralizing antibody responses and offered broader immuno-protection against lethal infections with heterologous influenza strains compared to unmodified HA proteins. Additionally, the findings of our study indicate that elevated levels of HA stem-specific antibody responses correlate with strengthened cross-protections. Our design strategy has proven effective in trimerizing HA ectodomains derived from both influenza A and B viruses, thereby providing a valuable reference for designing future influenza HA immunogens.
Collapse
Affiliation(s)
- De-Jian Liu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Xiu-Qin Zhong
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yan-Xia Ru
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Shi-Long Zhao
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Cui-Cui Liu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yi-Bo Tang
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Xuan Wu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yi-Shuai Zhang
- Bioinformatics Center, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Hui-Hui Zhang
- Bioinformatics Center, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Jia-Yue She
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Mu-Yang Wan
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yao-Wang Li
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - He-Ping Zheng
- Bioinformatics Center, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
- Beijing Weimiao Biotechnology Co., Ltd., Beijing, People’s Republic of China
| |
Collapse
|
10
|
Sookhoo JRV, Schiffman Z, Ambagala A, Kobasa D, Pardee K, Babiuk S. Protein Expression Platforms and the Challenges of Viral Antigen Production. Vaccines (Basel) 2024; 12:1344. [PMID: 39772006 PMCID: PMC11680109 DOI: 10.3390/vaccines12121344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Several protein expression platforms exist for a wide variety of biopharmaceutical needs. A substantial proportion of research and development into protein expression platforms and their optimization since the mid-1900s is a result of the production of viral antigens for use in subunit vaccine research. This review discusses the seven most popular forms of expression systems used in the past decade-bacterial, insect, mammalian, yeast, algal, plant and cell-free systems-in terms of advantages, uses and limitations for viral antigen production in the context of subunit vaccine research. Post-translational modifications, immunogenicity, efficacy, complexity, scalability and the cost of production are major points discussed. Examples of licenced and experimental vaccines are included along with images which summarize the processes involved.
Collapse
Affiliation(s)
- Jamie R. V. Sookhoo
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Zachary Schiffman
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (Z.S.); (D.K.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Aruna Ambagala
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (Z.S.); (D.K.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Keith Pardee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada;
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
11
|
Momajadi L, Khanahmad H, Mahnam K. Designing a multi-epitope influenza vaccine: an immunoinformatics approach. Sci Rep 2024; 14:25382. [PMID: 39455641 PMCID: PMC11512060 DOI: 10.1038/s41598-024-74438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Influenza continues to be one of the top public health problems since it creates annual epidemics and can start a worldwide pandemic. The virus's rapid evolution allows the virus to evade the host defense, and then seasonal vaccines need to be reformulated nearly annually. However, it takes almost half a year for the influenza vaccine to become accessible. This delay is especially concerning in the event of a pandemic breakout. By producing the vaccine through reverse vaccinology and phage display vaccines, this time can be reduced. In this study, epitopes of B lymphocytes, cytotoxic T lymphocytes, and helper T lymphocytes of HA, NA, NP, and M2 proteins from two strains of Influenza A were anticipated. We found two proper epitopes (ASFIYNGRL and LHLILWITDRLFFKC) in Influenza virus proteins for CTL and HTL cells, respectively. Optimal epitopes and linkers in silico were cloned into the N-terminal end of M13 protein III (pIII) to create a multi-epitope-pIII construct, i.e., phage display vaccine. Also, prediction of tertiary structure, molecular docking, molecular dynamics simulation, and immune simulation were performed and showed that the designed multi-epitope vaccine can bind to the receptors and stimulate the immune system response.
Collapse
Affiliation(s)
- Leila Momajadi
- Department of Genetics and Molecular Biology, Faculty of Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, Faculty of Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Karim Mahnam
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
12
|
Hamele CE, Luo Z, Leonard RA, Spurrier MA, Burke KN, Webb SR, Rountree W, Li Z, Heaton BE, Heaton NS. Headless hemagglutinin-containing influenza viral particles direct immune responses toward more conserved epitopes. J Virol 2024; 98:e0116624. [PMID: 39324791 PMCID: PMC11495035 DOI: 10.1128/jvi.01166-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Seasonal influenza vaccines provide mostly strain-specific protection due to the elicitation of antibody responses focused on evolutionarily plastic antigenic sites in the hemagglutinin head domain. To direct the humoral response toward more conserved epitopes, we generated an influenza virus particle where the full-length hemagglutinin protein was replaced with a membrane-anchored, "headless" variant while retaining the normal complement of other viral structural proteins such as the neuraminidase as well as viral RNAs. We found that a single administration of a headless virus particle-based vaccine elicited high titers of antibodies that recognized more conserved epitopes on the major viral glycoproteins. Furthermore, the vaccine could elicit these responses even in the presence of pre-existing, hemagglutinin (HA) head-focused influenza immunity. Importantly, these antibody responses mediated protective, but non-neutralizing functions such as neuraminidase inhibition and antibody-dependent cellular cytotoxicity. Additionally, we show the vaccine can provide protection from homologous and heterologous challenges in mouse models of severe influenza without any measurable HA head-directed antibody responses. Thus, headless hemagglutinin containing viral particles may represent a tool to drive the types of antibody responses predicted to increase influenza vaccine breadth and durability.IMPORTANCECurrent seasonal influenza vaccines provide incomplete protection from disease. This is partially the result of the antibody response being directed toward parts of the virus that are tolerant of mutations. Redirecting the immune response to more conserved regions of the virus has been a central strategy of next-generation vaccine designs and approaches. Here, we develop and test a vaccine based on a modified influenza virus particle that expresses a partially deleted hemagglutinin protein along with the other viral structural proteins. We demonstrate this vaccine elicits antibodies that recognize the more conserved viral epitopes of the hemagglutinin stalk and neuraminidase protein to facilitate protection against influenza viruses despite a lack of classical viral neutralization activity.
Collapse
Affiliation(s)
- Cait E. Hamele
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine Durham, Durham, North Carolina, USA
| | - Zhaochen Luo
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine Durham, Durham, North Carolina, USA
| | - Rebecca A. Leonard
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine Durham, Durham, North Carolina, USA
| | - M. Ariel Spurrier
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine Durham, Durham, North Carolina, USA
| | - Kaitlyn N. Burke
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine Durham, Durham, North Carolina, USA
| | - Stacy R. Webb
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine Durham, Durham, North Carolina, USA
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University School of Medicine Durham, Durham, North Carolina, USA
| | - Zongli Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Brook E. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine Durham, Durham, North Carolina, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine Durham, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University School of Medicine Durham, Durham, North Carolina, USA
| |
Collapse
|
13
|
Casazza JP, Hofstetter AR, Costner PJM, Holman LA, Hendel CS, Widge AT, Wu RL, Whalen WR, Cunningham J, Arthur A, Wang X, Ola A, Saunders J, Mendoza F, Novik L, Burgos Florez MC, Ortega-Villa AM, Apte PJ, Strom L, Wang L, Imam M, Basappa M, Naisan M, Castro M, Trost JF, Narpala SR, Vanderven HA, Yamshchikov GV, Berkowitz NM, Gordon IJ, Plummer SH, Wycuff DL, Vazquez S, Gillespie RA, Creanga A, Adams WC, Carlton K, Gall JG, McDermott AB, Serebryannyy LA, Houser KV, Koup RA, Graham BS, Ledgerwood JE, Mascola JR, Pierson TC, Andrews SF, Kanekiyo M, Dropulic LK. Phase 1 dose-escalation trial evaluating a group 2 influenza hemagglutinin stabilized stem nanoparticle vaccine. NPJ Vaccines 2024; 9:171. [PMID: 39289377 PMCID: PMC11408684 DOI: 10.1038/s41541-024-00959-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
The relative conservation of the influenza hemagglutinin (HA) stem compared to that of the immunodominant HA head makes the HA stem an attractive target for broadly protective influenza vaccines. Here we report the first-in-human, dose-escalation, open-label trial (NCT04579250) evaluating an unadjuvanted group 2 stabilized stem ferritin nanoparticle vaccine based on the H10 A/Jiangxi-Donghu/346/2013 influenza HA, H10ssF, in healthy adults. Participants received a single 20 mcg dose (n = 3) or two 60 mcg doses 16 weeks apart (n = 22). Vaccination with H10ssF was safe and well tolerated with only mild systemic and local reactogenicity reported. No serious adverse events occurred. Vaccination significantly increased homologous H10 HA stem binding and neutralizing antibodies at 2 weeks after both first and second vaccinations, and these responses remained above baseline at 40 weeks. Heterologous H3 and H7 binding antibodies also significantly increased after each vaccination and remained elevated throughout the study. These data indicate that the group 2 HA stem nanoparticle vaccine is safe and induces stem-directed binding and neutralizing antibodies.
Collapse
Affiliation(s)
- Joseph P Casazza
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amelia R Hofstetter
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pamela J M Costner
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - LaSonji A Holman
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cynthia S Hendel
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alicia T Widge
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard L Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
- U.S. Public Health Service Commissioned Corps, Rockville, MD, 20852, USA
| | - William R Whalen
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jennifer Cunningham
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anita Arthur
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaolin Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Abidemi Ola
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jamie Saunders
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Floreliz Mendoza
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Laura Novik
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria C Burgos Florez
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ana M Ortega-Villa
- Biostatistics Research Branch, Division of Clinical Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Preeti J Apte
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Larisa Strom
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marjaan Imam
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Manjula Basappa
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mursal Naisan
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mike Castro
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jessica F Trost
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sandeep R Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hillary A Vanderven
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, 4811, Australia
| | - Galina V Yamshchikov
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nina M Berkowitz
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ingelise J Gordon
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah H Plummer
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Diane L Wycuff
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sandra Vazquez
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - William C Adams
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kevin Carlton
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jason G Gall
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Leonid A Serebryannyy
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Katherine V Houser
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Theodore C Pierson
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lesia K Dropulic
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
14
|
Xu D, Carter JJ, Li C, Utz A, Weidenbacher PAB, Tang S, Sanyal M, Pulendran B, Barnes CO, Kim PS. Vaccine design via antigen reorientation. Nat Chem Biol 2024; 20:1012-1021. [PMID: 38225471 PMCID: PMC11247139 DOI: 10.1038/s41589-023-01529-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
A major challenge in creating universal influenza vaccines is to focus immune responses away from the immunodominant, variable head region of hemagglutinin (HA-head) and toward the evolutionarily conserved stem region (HA-stem). Here we introduce an approach to control antigen orientation via site-specific insertion of aspartate residues that facilitates antigen binding to alum. We demonstrate the generalizability of this approach with antigens from Ebola, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses and observe enhanced neutralizing antibody responses in all cases. We then reorient an H2 HA in an 'upside-down' configuration to increase the exposure and immunogenicity of HA-stem. The reoriented H2 HA (reoH2HA) on alum induced stem-directed antibodies that cross-react with both group 1 and group 2 influenza A subtypes. Electron microscopy polyclonal epitope mapping (EMPEM) revealed that reoH2HA (group 1) elicits cross-reactive antibodies targeting group 2 HA-stems. Our results highlight antigen reorientation as a generalizable approach for designing epitope-focused vaccines.
Collapse
Affiliation(s)
- Duo Xu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Joshua J Carter
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Chunfeng Li
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Ashley Utz
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Payton A B Weidenbacher
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Shaogeng Tang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Mrinmoy Sanyal
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher O Barnes
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Peter S Kim
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
15
|
Chen R, Kang Z, Li W, Xu T, Wang Y, Jiang Q, Wang Y, Huang Z, Xu X, Huang Z. Extracellular vesicle surface display of αPD-L1 and αCD3 antibodies via engineered late domain-based scaffold to activate T-cell anti-tumor immunity. J Extracell Vesicles 2024; 13:e12490. [PMID: 39051742 PMCID: PMC11270581 DOI: 10.1002/jev2.12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Extracellular vesicles (EVs) are emerging as promising carriers for the delivery of therapeutic biologics. Genetic engineering represents a robust strategy for loading proteins of interest into EVs. Identification of EV-enriched proteins facilitates protein cargo loading efficiency. Many EV-enriched proteins are sorted into EVs via an endosomal sorting complex required for transport (ESCRT)-dependent pathway. In parallel, viruses hijack this EV biosynthesis machinery via conserved late domain motifs to promote egress from host cells. Inspired by the similarity of biogenesis between EVs and viruses, we developed a synthetic, Late domain-based EV scaffold protein that enables the display of a set of single chain variable fragments (scFvs) on the EV surface. We named this scaffold the Late domain-based exosomal antibody surface display platform (LEAP). We applied the LEAP scaffold to reprogramme HEK293T cell-derived EVs to elicit T-cell anti-tumor immunity by simultaneously displaying αPD-L1 and αCD3 scFvs on the EV surface (denoted as αPD-L1×αCD3 bispecific T-cell engaging exosomes, BiTExos). We demonstrated that αPD-L1×αCD3 BiTExos actively redirected T cells to bind to PD-L1+ tumor cells, promoting T-cell activation, proliferation and tumoricidal cytokine production. Furthermore, the αPD-L1×αCD3 BiTExos promoted T-cell infiltration into the tumor microenvironment to mitigate the tumor burden in vivo. Our study suggested that the LEAP scaffold may serve as a platform for EV surface display and could be applied for a broad range of EV-based biomedical applications.
Collapse
Affiliation(s)
- Rui Chen
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongP.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongP.R. China
| | - Ziqin Kang
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongP.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongP.R. China
| | - Wenhao Li
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongP.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongP.R. China
| | - Tianshu Xu
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongP.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongP.R. China
| | - Yongqiang Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongP.R. China
- Medical Research CenterSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongP.R. China
| | - Qiming Jiang
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongP.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongP.R. China
| | - Yuepeng Wang
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongP.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongP.R. China
| | - Zixian Huang
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongP.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongP.R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongP.R. China
- Medical Research CenterSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongP.R. China
| | - Zhiquan Huang
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongP.R. China
| |
Collapse
|
16
|
Litvinova VR, Rudometov AP, Rudometova NB, Kisakov DN, Borgoyakova MB, Kisakova LA, Starostina EV, Fando AA, Yakovlev VA, Tigeeva EV, Ivanova KI, Gudymo AS, Ilyicheva TN, Marchenko VY, Sergeev AA, Ilyichev AA, Karpenko LI. DNA Vaccine Encoding a Modified Hemagglutinin Trimer of Avian Influenza A Virus H5N8 Protects Mice from Viral Challenge. Vaccines (Basel) 2024; 12:538. [PMID: 38793789 PMCID: PMC11126123 DOI: 10.3390/vaccines12050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The development of a safe and effective vaccine against avian influenza A virus (AIV) H5N8 is relevant due to the widespread distribution of this virus in the bird population and the existing potential risk of human infection, which can lead to significant public health concerns. Here, we developed an experimental pVAX-H5 DNA vaccine encoding a modified trimer of AIV H5N8 hemagglutinin. Immunization of BALB/c mice with pVAX-H5 using jet injection elicited high titer antibody response (the average titer in ELISA was 1 × 105), and generated a high level of neutralizing antibodies against H5N8 and T-cell response, as determined by ELISpot analysis. Both liquid and lyophilized forms of pVAX-H5 DNA vaccine provided 100% protection of immunized mice against lethal challenge with influenza A virus A/turkey/Stavropol/320-01/2020 (H5N8). The results obtained indicate that pVAX-H5 has good opportunities as a vaccine candidate against the influenza A virus (H5N8).
Collapse
Affiliation(s)
| | - Andrey P. Rudometov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia; (V.R.L.); (N.B.R.); (D.N.K.); (M.B.B.); (L.A.K.); (E.V.S.); (A.A.F.); (E.V.T.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.S.); (A.A.I.); (L.I.K.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li R, Chang Z, Liu H, Wang Y, Li M, Chen Y, Fan L, Wang S, Sun X, Liu S, Cheng A, Ding P, Zhang G. Double-layered N-S1 protein nanoparticle immunization elicits robust cellular immune and broad antibody responses against SARS-CoV-2. J Nanobiotechnology 2024; 22:44. [PMID: 38291444 PMCID: PMC10825999 DOI: 10.1186/s12951-024-02293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic is a persistent global threat to public health. As for the emerging variants of SARS-CoV-2, it is necessary to develop vaccines that can induce broader immune responses, particularly vaccines with weak cellular immunity. METHODS In this study, we generated a double-layered N-S1 protein nanoparticle (N-S1 PNp) that was formed by desolvating N protein into a protein nanoparticle as the core and crosslinking S1 protein onto the core surface against SARS-CoV-2. RESULTS Vaccination with N-S1 PNp elicited robust humoral and vigorous cellular immune responses specific to SARS-CoV-2 in mice. Compared to soluble protein groups, the N-S1 PNp induced a higher level of humoral response, as evidenced by the ability of S1-specific antibodies to block hACE2 receptor binding and neutralize pseudovirus. Critically, N-S1 PNp induced Th1-biased, long-lasting, and cross-neutralizing antibodies, which neutralized the variants of SARS-CoV-2 with minimal loss of activity. N-S1 PNp induced strong responses of CD4+ and CD8+ T cells, mDCs, Tfh cells, and GCs B cells in spleens. CONCLUSIONS These results demonstrate that N-S1 PNp vaccination is a practical approach for promoting protection, which has the potential to counteract the waning immune responses against SARS-CoV-2 variants and confer broad efficacy against future new variants. This study provides a new idea for the design of next-generation SARS-CoV-2 vaccines based on the B and T cells response coordination.
Collapse
Affiliation(s)
- Ruiqi Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- School of Advanced Agricultural Sciences , Peking University, Beijing, 100080, China
- Longhu Laboratory, Zhengzhou, 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zejie Chang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hongliang Liu
- School of Life Sciences , Zhengzhou University, Zhengzhou, 450001, China
| | - Yanan Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Minghui Li
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yilan Chen
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Lu Fan
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Siqiao Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Xueke Sun
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Siyuan Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Anchun Cheng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peiyang Ding
- School of Life Sciences , Zhengzhou University, Zhengzhou, 450001, China.
| | - Gaiping Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
- School of Advanced Agricultural Sciences , Peking University, Beijing, 100080, China.
- Longhu Laboratory, Zhengzhou, 450046, China.
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- School of Life Sciences , Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
18
|
Tawfik A, Kawaguchi T, Takahashi M, Setoh K, Yamaguchi I, Tabara Y, Van Steen K, Sakuntabhai A, Matsuda F. Transcriptomic Analysis Reveals Sixteen Potential Genes Associated with the Successful Differentiation of Antibody-Secreting Cells through the Utilization of Unfolded Protein Response Mechanisms in Robust Responders to the Influenza Vaccine. Vaccines (Basel) 2024; 12:136. [PMID: 38400120 PMCID: PMC10892001 DOI: 10.3390/vaccines12020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The seasonal influenza vaccine remains one of the vital recommended infection control measures for the elderly with chronic illnesses. We investigated the immunogenicity of a single dose of influenza vaccine in 123 seronegative participants and classified them into four distinct groups, determined by the promptness of vaccine response, the longevity of humoral immunity, and the likelihood of exhibiting cross-reactivity. Subsequently, we used transcriptional profiling and differential gene expression analysis to identify potential genes directly associated with the robust response to the vaccine. The group of exemplary vaccine responders differentially expressed 16 genes, namely: MZB1, MYDGF, TXNDC5, TXNDC11, HSP90B1, FKBP11, PDIA5, PRDX4, CD38, SDC1, TNFRSF17, TNFRSF13B, PAX5, POU2AF1, IRF4, and XBP1. Our findings point out a list of expressed proteins that are related to B cell proliferation, unfolded protein response, and cellular haemostasis, as well as a linkage of these expressions to the survival of long-lived plasma cells.
Collapse
Affiliation(s)
- Ahmed Tawfik
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, CNRS UMR2000, 75015 Paris, France;
- Pasteur International Unit at Center for Genomic Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan (I.Y.)
| | - Meiko Takahashi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan (I.Y.)
| | - Kazuya Setoh
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan (I.Y.)
| | - Izumi Yamaguchi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan (I.Y.)
| | - Yasuharu Tabara
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan (I.Y.)
| | - Kristel Van Steen
- BIO3—Laboratory for Systems Genetics, GIGA-R Medical Genomics, University of Liège, 4000 Liège, Belgium
- BIO3—Laboratory for Systems Genetics, GIGA-R Medical Genomics, University of Leuven, 3000 Leuven, Belgium
| | - Anavaj Sakuntabhai
- Pasteur International Unit at Center for Genomic Medicine, Kyoto University, Kyoto 606-8507, Japan
- Ecology and Emergence of Arthropod-Borne Pathogens Unit, Institut Pasteur, CNRS UMR2000, 75015 Paris, France
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan (I.Y.)
| |
Collapse
|
19
|
Rudometova NB, Fando AA, Kisakova LA, Kisakov DN, Borgoyakova MB, Litvinova VR, Yakovlev VA, Tigeeva EV, Vahitov DI, Sharabrin SV, Shcherbakov DN, Evseenko VI, Ivanova KI, Gudymo AS, Ilyicheva TN, Marchenko VY, Ilyichev AA, Rudometov AP, Karpenko LI. Immunogenic and Protective Properties of Recombinant Hemagglutinin of Influenza A (H5N8) Virus. Vaccines (Basel) 2024; 12:143. [PMID: 38400127 PMCID: PMC10893068 DOI: 10.3390/vaccines12020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, we characterized recombinant hemagglutinin (HA) of influenza A (H5N8) virus produced in Chinese hamster ovary cells (CHO-K1s). Immunochemical analysis showed that the recombinant hemagglutinin was recognized by the serum of ferrets infected with influenza A (H5N8) virus, indicating that its antigenic properties were retained. Two groups of Balb/c mice were immunized with intramuscular injection of recombinant hemagglutinin or propiolactone inactivated A/Astrakhan/3212/2020 (H5N8) influenza virus. The results demonstrated that both immunogens induced a specific antibody response as determined by ELISA. Virus neutralization assay revealed that sera of immunized animals were able to neutralize A/turkey/Stavropol/320-01/2020 (H5N8) influenza virus-the average neutralizing titer was 2560. Immunization with both recombinant HA/H5 hemagglutinin and inactivated virus gave 100% protection against lethal H5N8 virus challenge. This study shows that recombinant HA (H5N8) protein may be a useful antigen candidate for developing subunit vaccines against influenza A (H5N8) virus with suitable immunogenicity and protective efficacy.
Collapse
Affiliation(s)
- Nadezhda B. Rudometova
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Anastasia A. Fando
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Lyubov A. Kisakova
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Denis N. Kisakov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Mariya B. Borgoyakova
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Victoria R. Litvinova
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Vladimir A. Yakovlev
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Elena V. Tigeeva
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Danil I. Vahitov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Sergey V. Sharabrin
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Dmitriy N. Shcherbakov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Veronika I. Evseenko
- Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Novosibirsk Region, Russia;
| | - Ksenia I. Ivanova
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Andrei S. Gudymo
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Tatiana N. Ilyicheva
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Vasiliy Yu. Marchenko
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Alexander A. Ilyichev
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Andrey P. Rudometov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Larisa I. Karpenko
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| |
Collapse
|
20
|
Musunuri S, Weidenbacher PAB, Kim PS. Bringing immunofocusing into focus. NPJ Vaccines 2024; 9:11. [PMID: 38195562 PMCID: PMC10776678 DOI: 10.1038/s41541-023-00792-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
Immunofocusing is a strategy to create immunogens that redirect humoral immune responses towards a targeted epitope and away from non-desirable epitopes. Immunofocusing methods often aim to develop "universal" vaccines that provide broad protection against highly variant viruses such as influenza virus, human immunodeficiency virus (HIV-1), and most recently, severe acute respiratory syndrome coronavirus (SARS-CoV-2). We use existing examples to illustrate five main immunofocusing strategies-cross-strain boosting, mosaic display, protein dissection, epitope scaffolding, and epitope masking. We also discuss obstacles for immunofocusing like immune imprinting. A thorough understanding, advancement, and application of the methods we outline here will enable the design of high-resolution vaccines that protect against future viral outbreaks.
Collapse
Affiliation(s)
- Sriharshita Musunuri
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | - Payton A B Weidenbacher
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Peter S Kim
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA.
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
21
|
Newby ML, Allen JD, Crispin M. Influence of glycosylation on the immunogenicity and antigenicity of viral immunogens. Biotechnol Adv 2024; 70:108283. [PMID: 37972669 PMCID: PMC10867814 DOI: 10.1016/j.biotechadv.2023.108283] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
A key aspect of successful viral vaccine design is the elicitation of neutralizing antibodies targeting viral attachment and fusion glycoproteins that embellish viral particles. This observation has catalyzed the development of numerous viral glycoprotein mimetics as vaccines. Glycans can dominate the surface of viral glycoproteins and as such, the viral glycome can influence the antigenicity and immunogenicity of a candidate vaccine. In one extreme, glycans can form an integral part of epitopes targeted by neutralizing antibodies and are therefore considered to be an important feature of key immunogens within an immunization regimen. In the other extreme, the existence of peptide and bacterially expressed protein vaccines shows that viral glycosylation can be dispensable in some cases. However, native-like glycosylation can indicate native-like protein folding and the presence of conformational epitopes. Furthermore, going beyond native glycan mimicry, in either occupancy of glycosylation sites or the glycan processing state, may offer opportunities for enhancing the immunogenicity and associated protection elicited by an immunogen. Here, we review key determinants of viral glycosylation and how recombinant immunogens can recapitulate these signatures across a range of enveloped viruses, including HIV-1, Ebola virus, SARS-CoV-2, Influenza and Lassa virus. The emerging understanding of immunogen glycosylation and its control will help guide the development of future vaccines in both recombinant protein- and nucleic acid-based vaccine technologies.
Collapse
Affiliation(s)
- Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
22
|
Quezada A, Annapareddy A, Javanmardi K, Cooper J, Finkelstein IJ. Mammalian Antigen Display for Pandemic Countermeasures. Methods Mol Biol 2024; 2762:191-216. [PMID: 38315367 DOI: 10.1007/978-1-0716-3666-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Pandemic countermeasures require the rapid design of antigens for vaccines, profiling patient antibody responses, assessing antigen structure-function landscapes, and the surveillance of emerging viral lineages. Cell surface display of a viral antigen or its subdomains can facilitate these goals by coupling the phenotypes of protein variants to their DNA sequence. Screening surface-displayed proteins via flow cytometry also eliminates time-consuming protein purification steps. Prior approaches have primarily relied on yeast as a display chassis. However, yeast often cannot express large viral glycoproteins, requiring their truncation into subdomains. Here, we describe a method to design and express antigens on the surface of mammalian HEK293T cells. We discuss three use cases, including screening of stabilizing mutations, deep mutational scanning, and epitope mapping. The mammalian antigen display platform described herein will accelerate ongoing and future pandemic countermeasures.
Collapse
Affiliation(s)
- Andrea Quezada
- Department of Molecular BioSciences, University of Texas at Austin, Austin, TX, USA
| | - Ankur Annapareddy
- Department of Molecular BioSciences, University of Texas at Austin, Austin, TX, USA
| | - Kamyab Javanmardi
- Department of Molecular BioSciences, University of Texas at Austin, Austin, TX, USA
| | - John Cooper
- Department of Molecular BioSciences, University of Texas at Austin, Austin, TX, USA
| | - Ilya J Finkelstein
- Department of Molecular BioSciences, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
23
|
Peruzzi JA, Vu TQ, Gunnels TF, Kamat NP. Rapid Generation of Therapeutic Nanoparticles Using Cell-Free Expression Systems. SMALL METHODS 2023; 7:e2201718. [PMID: 37116099 PMCID: PMC10611898 DOI: 10.1002/smtd.202201718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/06/2023] [Indexed: 05/05/2023]
Abstract
The surface modification of membrane-based nanoparticles, such as liposomes, polymersomes, and lipid nanoparticles, with targeting molecules, such as binding proteins, is an important step in the design of therapeutic materials. However, this modification can be costly and time-consuming, requiring cellular hosts for protein expression and lengthy purification and conjugation steps to attach proteins to the surface of nanocarriers, which ultimately limits the development of effective protein-conjugated nanocarriers. Here, the use of cell-free protein synthesis systems to rapidly create protein-conjugated membrane-based nanocarriers is demonstrated. Using this approach, multiple types of functional binding proteins, including affibodies, computationally designed proteins, and scFvs, can be cell-free expressed and conjugated to liposomes in one-pot. The technique can be expanded further to other nanoparticles, including polymersomes and lipid nanoparticles, and is amenable to multiple conjugation strategies, including surface attachment to and integration into nanoparticle membranes. Leveraging these methods, rapid design of bispecific artificial antigen presenting cells and enhanced delivery of lipid nanoparticle cargo in vitro is demonstrated. It is envisioned that this workflow will enable the rapid generation of membrane-based delivery systems and bolster our ability to create cell-mimetic therapeutics.
Collapse
Affiliation(s)
- Justin A. Peruzzi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Timothy Q. Vu
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Taylor F. Gunnels
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Neha P. Kamat
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
24
|
Raman SNT, Zetner A, Hashem AM, Patel D, Wu J, Gravel C, Gao J, Zhang W, Pfeifle A, Tamming L, Parikh K, Cao J, Tam R, Safronetz D, Chen W, Johnston MJ, Wang L, Sauve S, Rosu-Myles M, Domselaar GV, Li X. Bivalent vaccines effectively protect mice against influenza A and respiratory syncytial viruses. Emerg Microbes Infect 2023; 12:2192821. [PMID: 36927227 PMCID: PMC10171128 DOI: 10.1080/22221751.2023.2192821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Influenza and Respiratory Syncytial virus (RSV) infections together contribute significantly to the burden of acute lower respiratory tract infections. Despite the disease burden, no approved RSV vaccine is available. While approved vaccines are available for influenza, seasonal vaccination is required to maintain protection. In addition to both being respiratory viruses, they follow a common seasonality, which warrants the necessity for a concerted vaccination approach. Here, we designed bivalent vaccines by utilizing highly conserved sequences, targeting both influenza A and RSV, as either a chimeric antigen or individual antigens separated by a ribosome skipping sequence. These vaccines were found to be effective in protecting the animals from challenge by either virus, with mechanisms of protection being substantially interrogated in this communication.
Collapse
Affiliation(s)
- Sathya N. Thulasi Raman
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Adrian Zetner
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Devina Patel
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Jianguo Wu
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Caroline Gravel
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Jun Gao
- Centre for Vaccines Clinical Trials and Biostatistics, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Wanyue Zhang
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Annabelle Pfeifle
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Levi Tamming
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Karan Parikh
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Jingxin Cao
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Roger Tam
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - David Safronetz
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, Canada
| | - Michael J.W. Johnston
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Chemistry, Carleton University, Ottawa, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Simon Sauve
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Michael Rosu-Myles
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Xuguang Li
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
25
|
Li L, Guo T, Yuan Y, Xiao J, Yang R, Wang H, Xu W, Yin Y, Zhang X. ΔA146Ply-HA stem protein immunization protects mice against influenza A virus infection and co-infection with Streptococcus pneumoniae. Mol Immunol 2023; 161:91-103. [PMID: 37531919 DOI: 10.1016/j.molimm.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Influenza virus (IV) is a common pathogen affecting the upper respiratory tract, that causes various diseases. Secondary bacterial pneumonia is a common complication and a major cause of death in influenza patients. Streptococcus pneumoniae (S. pneumoniae) is the predominant co-infected bacteria in the pandemic, which colonizes healthy people but can cause diseases in immunocompromised individuals. Vaccination is a crucial strategy for avoiding infection, however, no universal influenza vaccine (UIV) that is resistant to multiple influenza viruses is available. Despite its limited immunogenicity, the hemagglutinin (HA) stem is a candidate peptide for UIV. ΔA146Ply (pneumolysin with a single deletion of A146) not only retains the Toll-like receptor 4 agonist effect but also is a potential vaccine adjuvant and a candidate protein for the S. pneumoniae vaccine. We constructed the fusion protein ΔA146Ply-HA stem and studied its immunoprotective effect in mice infection models. The results showed that intramuscular immunization of ΔA146Ply-HA stem without adjuvant could induce specific antibodies against HA stem and specific CD4+ T and CD8+ T cellular immunity in BALB/c and C57BL/6 mice, which could improve the survival rate of mice infected with IAV and co-infected with S. pneumoniae, but the protective effect on BALB/c mice was better than that on C57BL/6 mice. ΔA146Ply-HA stem serum antibody could protect BALB/c and C57BL/6 mice from IAV, and recognized HA polypeptides of H3N2, H5N1, H7N9, and H9N2 viruses. Moreover, ΔA146Ply-HA stem intramuscular immunization had a high safety profile with no obvious toxic side effects. The results indicated that coupling ΔA146Ply with influenza protein as a vaccine was a safe and effective strategy against the IV and secondary S. pneumoniae infection.
Collapse
Affiliation(s)
- Lian Li
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Ting Guo
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yuan Yuan
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Jiangming Xiao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Rui Yang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Hanyi Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Wenlong Xu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
26
|
Liu Y, Zhao Z, Song Y, Yin Y, Wu F, Jiang H. Usage of Cell-Free Protein Synthesis in Post-Translational Modification of μ-Conopeptide PIIIA. Mar Drugs 2023; 21:421. [PMID: 37623702 PMCID: PMC10455749 DOI: 10.3390/md21080421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
The post-translational modifications of conopeptides are the most complicated modifications to date and are well-known and closely related to the activity of conopeptides. The hydroxylation of proline in conopeptides affects folding, structure, and biological activity, and prolyl 4 hydroxylase has been characterized in Conus literatus. However, the hydroxylation machinery of proline in conopeptides is still unclear. In order to address the hydroxylation mechanism of proline in μ-PIIIA, three recombinant plasmids encoding different hybrid precursors of μ-PIIIA were constructed and crossly combined with protein disulfide isomerase, prolyl 4 hydroxylase, and glutaminyl cyclase in a continuous exchange cell-free protein system. The findings showed that prolyl 4 hydroxylase might recognize the propeptide of μ-PIIIA to achieve the hydroxylation of proline, while the cyclization of glutamate was also formed. Additionally, in Escherichia coli, the co-expression plasmid encoding prolyl 4 hydroxylase and the precursor of μ-PIIIA containing pro and mature regions were used to validate the continuous exchange cell-free protein system. Surprisingly, in addition to the two hydroxyproline residues and one pyroglutamyl residue, three disulfide bridges were formed using Trx as a fusion tag, and the yield of the fusion peptide was approximately 20 mg/L. The results of electrophysiology analysis indicated that the recombinant μ-PIIIA without C-terminal amidate inhibited the current of hNaV1.4 with a 939 nM IC50. Our work solved the issue that it was challenging to quickly generate post-translationally modified conopeptides in vitro. This is the first study to demonstrate that prolyl 4 hydroxylase catalyzes the proline hydroxylation through recognition in the propeptide of μ-PIIIA, and it will provide a new way for synthesizing multi-modified conopeptides with pharmacological activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| |
Collapse
|
27
|
Yan X, Liu X, Zhao C, Chen GQ. Applications of synthetic biology in medical and pharmaceutical fields. Signal Transduct Target Ther 2023; 8:199. [PMID: 37169742 PMCID: PMC10173249 DOI: 10.1038/s41392-023-01440-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Synthetic biology aims to design or assemble existing bioparts or bio-components for useful bioproperties. During the past decades, progresses have been made to build delicate biocircuits, standardized biological building blocks and to develop various genomic/metabolic engineering tools and approaches. Medical and pharmaceutical demands have also pushed the development of synthetic biology, including integration of heterologous pathways into designer cells to efficiently produce medical agents, enhanced yields of natural products in cell growth media to equal or higher than that of the extracts from plants or fungi, constructions of novel genetic circuits for tumor targeting, controllable releases of therapeutic agents in response to specific biomarkers to fight diseases such as diabetes and cancers. Besides, new strategies are developed to treat complex immune diseases, infectious diseases and metabolic disorders that are hard to cure via traditional approaches. In general, synthetic biology brings new capabilities to medical and pharmaceutical researches. This review summarizes the timeline of synthetic biology developments, the past and present of synthetic biology for microbial productions of pharmaceutics, engineered cells equipped with synthetic DNA circuits for diagnosis and therapies, live and auto-assemblied biomaterials for medical treatments, cell-free synthetic biology in medical and pharmaceutical fields, and DNA engineering approaches with potentials for biomedical applications.
Collapse
Affiliation(s)
- Xu Yan
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, 101309, Beijing, China
| | - Cuihuan Zhao
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China.
- MOE Key Lab for Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
28
|
Frey SJ, Carreño JM, Bielak D, Arsiwala A, Altomare CG, Varner C, Rosen-Cheriyan T, Bajic G, Krammer F, Kane RS. Nanovaccines Displaying the Influenza Virus Hemagglutinin in an Inverted Orientation Elicit an Enhanced Stalk-Directed Antibody Response. Adv Healthc Mater 2023; 12:e2202729. [PMID: 36689343 PMCID: PMC10386890 DOI: 10.1002/adhm.202202729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Despite the availability of licensed vaccines, influenza causes considerable morbidity and mortality worldwide. Current influenza vaccines elicit an immune response that primarily targets the head domain of the viral glycoprotein hemagglutinin (HA). Influenza viruses, however, readily evade this response by acquiring mutations in the head domain. While vaccines that target the more conserved HA stalk may circumvent this problem, low levels of antistalk antibodies are elicited by vaccination, possibly due to the poor accessibility of the stalk domain to B cell receptors. In this work, it is demonstrated that nanoparticles presenting HA in an inverted orientation generate tenfold higher antistalk antibody titers after a prime immunization and fivefold higher antistalk titers after a boost than nanoparticles displaying HA in its regular orientation. Moreover, nanoparticles presenting HA in an inverted orientation elicit a broader antistalk response that reduces mouse weight loss and improves survival after challenge to a greater extent than nanoparticles displaying HA in a regular orientation. Refocusing the antibody response toward conserved epitopes by controlling antigen orientation may enable the design of broadly protective nanovaccines targeting influenza viruses and other pathogens with pandemic potential.
Collapse
Affiliation(s)
- Steven J Frey
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dominika Bielak
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ammar Arsiwala
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Clara G Altomare
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chad Varner
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Tania Rosen-Cheriyan
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ravi S Kane
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
29
|
Li Y, Yang M, Nan Y, Wang J, Wang S, Cui D, Guo J, He P, Dai W, Zhou S, Zhang Y, Ma W. SARS-CoV-2 spike host cell surface exposure promoted by a COPI sorting inhibitor. Acta Pharm Sin B 2023:S2211-3835(23)00123-5. [PMID: 37360012 PMCID: PMC10110937 DOI: 10.1016/j.apsb.2023.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/26/2023] [Accepted: 04/10/2023] [Indexed: 06/28/2023] Open
Abstract
Via an insufficient coat protein complex I (COPI) retrieval signal, the majority of SARS-CoV-2 spike (S) is resident in host early secretory organelles and a tiny amount is leaked out in cell surface. Only surface-exposed S can be recognized by B cell receptor (BCR) or anti-S therapeutic monoclonal antibodies (mAbs) that is the trigger step for B cell activation after S mRNA vaccination or infected cell clearance by S mAbs. Now, a drug strategy to promote S host surface exposure is absent. Here, we first combined structural and biochemical analysis to characterize S COPI sorting signals. A potent S COPI sorting inhibitor was then invented, evidently capable of promoting S surface exposure and facilitating infected cell clearance by S antibody-dependent cellular cytotoxicity (ADCC). Importantly, with the inhibitor as a probe, we revealed Omicron BA.1 S is less cell surface exposed than prototypes because of a constellation of S folding mutations, possibly corresponding to its ER chaperone association. Our findings not only suggest COPI is a druggable target against COVID-19, but also highlight SARS-CoV-2 evolution mechanism driven by S folding and trafficking mutations.
Collapse
Affiliation(s)
- Yiqun Li
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mingrui Yang
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yanan Nan
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiaming Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Sanjiao Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dongxiao Cui
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiajian Guo
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Pengfei He
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wenxin Dai
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shuqi Zhou
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wenfu Ma
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
30
|
Beal J, Clore A, Manthey J. Studying pathogens degrades BLAST-based pathogen identification. Sci Rep 2023; 13:5390. [PMID: 37012314 PMCID: PMC10068195 DOI: 10.1038/s41598-023-32481-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
As synthetic biology becomes increasingly capable and accessible, it is likewise increasingly critical to be able to make accurate biosecurity determinations regarding the pathogenicity or toxicity of particular nucleic acid or amino acid sequences. At present, this is typically done using the BLAST algorithm to determine the best match with sequences in the NCBI nucleic acid and protein databases. Neither BLAST nor any of the NCBI databases, however, are actually designed for biosafety determination. Critically, taxonomic errors or ambiguities in the NCBI nucleic acid and protein databases can also cause errors in BLAST-based taxonomic categorization. With heavily studied taxa and frequently used biotechnology tools, even low frequency taxonomic categorization issues can lead to high rates of errors in biosecurity decision-making. Here we focus on the implications for false positives, finding that BLAST against NCBI's protein database will now incorrectly categorize a number of commonly used biotechnology tool sequences as the pathogens or toxins with which they have been used. Paradoxically, this implies that problems are expected to be most acute for the pathogens and toxins of highest interest and for the most widely used biotechnology tools. We thus conclude that biosecurity tools should shift away from BLAST against general purpose databases and towards new methods that are specifically tailored for biosafety purposes.
Collapse
Affiliation(s)
- Jacob Beal
- Raytheon BBN, 10 Moulton Street, Cambridge, MA, 02138, USA.
| | - Adam Clore
- Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Jeff Manthey
- Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| |
Collapse
|
31
|
Raj S, Vishwakarma P, Saxena S, Kumar V, Khatri R, Kumar A, Singh M, Mishra S, Asthana S, Ahmed S, Samal S. Intradermal Immunization of Soluble Influenza HA Derived from a Lethal Virus Induces High Magnitude and Breadth of Antibody Responses and Provides Complete Protection In Vivo. Vaccines (Basel) 2023; 11:780. [PMID: 37112692 PMCID: PMC10141624 DOI: 10.3390/vaccines11040780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023] Open
Abstract
Immunogens mimicking the native-like structure of surface-exposed viral antigens are considered promising vaccine candidates. Influenza viruses are important zoonotic respiratory viruses with high pandemic potential. Recombinant soluble hemagglutinin (HA) glycoprotein-based protein subunit vaccines against Influenza have been shown to induce protective efficacy when administered intramuscularly. Here, we have expressed a recombinant soluble trimeric HA protein in Expi 293F cells and purified the protein derived from the Inf A/Guangdong-Maonan/ SWL1536/2019 virus which was found to be highly virulent in the mouse. The trimeric HA protein was found to be in the oligomeric state, highly stable, and the efficacy study in the BALB/c mouse challenge model through intradermal immunization with the prime-boost regimen conferred complete protection against a high lethal dose of homologous and mouse-adapted InfA/PR8 virus challenge. Furthermore, the immunogen induced high hemagglutinin inhibition (HI) titers and showed cross-protection against other Inf A and Inf B subtypes. The results are promising and warrant trimeric HA as a suitable vaccine candidate.
Collapse
Affiliation(s)
- Sneha Raj
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Preeti Vishwakarma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Shikha Saxena
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Varun Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Ritika Khatri
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Amit Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Mrityunjay Singh
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Surbhi Mishra
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Shailendra Asthana
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Shubbir Ahmed
- Centralized Core Research Facility (CCRF), All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| |
Collapse
|
32
|
Son S, Ahn SB, Kim G, Jang Y, Ko C, Kim M, Kim SJ. Identification of broad-spectrum neutralizing antibodies against influenza A virus and evaluation of their prophylactic efficacy in mice. Antiviral Res 2023; 213:105591. [PMID: 37003306 DOI: 10.1016/j.antiviral.2023.105591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Influenza A virus continuously infects humans, and the antigenic shifts of this respiratory virus enable it to cross the species barrier, threatening public health with the risk of pandemics. Broadly neutralizing antibodies (bnAbs) that target the antigenic surface glycoprotein, hemagglutinin (HA), of influenza A virus protect against various subtypes of the virus. Here, we screened a human scFv library, through phage display and panning against recombinant HA proteins, to discover human monoclonal antibodies (mAbs) that are broadly active. Consequently, two human mAbs, named G1 and G2, were identified, which target the HA proteins of the H1N1 and H3N2 subtypes, respectively. G1, was shown to have broad binding ability to different HA subtypes of group 1. By contrast, G2 had higher binding affinity but sensed exclusively H3 subtype-derived HAs. In a cell culture-based virus-neutralizing assay, both G1 and G2 efficiently suppressed infection of the parental influenza A viruses of H1N1 and H3N2 subtypes. Mode-of-action studies showed that the G1 antibody blocked HA2-mediated membrane fusion. Meanwhile, G2 inhibited HA1-mediated viral attachment to host cells. It is noteworthy that both antibodies elicited antibody-dependent cellular cytotoxicity (ADCC) activities by recruiting FcγRIIIA-expressing effector cells. In mouse challenge models, single-shot, intraperitoneal administration of chimeric G1 and G2 antibodies with the mouse IgG constant region completely protected mice from viral infections at doses above 10 and 1 mg/kg, respectively. The newly identified bnAbs, G1 and G2, could provide insight into the development of broad-spectrum antivirals against future pandemic influenza A virus involving group 1- or H3-subtyped strains.
Collapse
Affiliation(s)
- Sumin Son
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Soo Bin Ahn
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Geonyeong Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Yejin Jang
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Chunkyu Ko
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Sang Jick Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
33
|
Cell-free protein synthesis systems for vaccine design and production. Curr Opin Biotechnol 2023; 79:102888. [PMID: 36641905 DOI: 10.1016/j.copbio.2022.102888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023]
Abstract
Vaccines are vital for protection against existing and emergent diseases. Current vaccine production strategies are limited by long production times, risky viral material, weak immunogenicity, and poor stability, ultimately restricting the safe or rapid production of vaccines for widespread utilization. Cell-free protein synthesis (CFPS) systems, which use extracted transcriptional and translational machinery from cells, are promising tools for vaccine production because they can rapidly produce proteins without the constraints of living cells, have a highly optimizable open system, and can be used for on-demand biomanufacturing. Here, we review how CFPS systems have been explored for the production of subunit, conjugate, virus-like particle (VLP), and membrane-augmented vaccines and as a tool in vaccine design. We also discuss efforts to address potential limitations with CFPS such as the presence of endotoxins, poor protein folding, reaction stability, and glycosylation to enable promising future vaccine design and production.
Collapse
|
34
|
Tawfik A, Kawaguchi T, Takahashi M, Setoh K, Yamaguchi I, Tabara Y, Van Steen K, Sakuntabhai A, Matsuda F. Trivalent inactivated influenza vaccine response and immunogenicity assessment after one week and three months in repeatedly vaccinated adults. Expert Rev Vaccines 2023; 22:826-838. [PMID: 37747798 DOI: 10.1080/14760584.2023.2262563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND The influenza vaccine administrated every year is a recommended infection control procedure for individuals above the age of six months. However, the effectiveness of repeated annual vaccination is still an active research topic. Therefore, we investigated the vaccine immunogenicity in two independent groups: previously vaccinated versus non-vaccinated individuals at three time points; prior vaccination, one week and three months post vaccination. The assessment enabled us to evaluate the elicited immune responses and the durability of the induced protection in both groups. RESEARCH DESIGN AND METHODS A research study was conducted to assess the immunogenicity of a single dose of Trivalent Inactivated Influenza Vaccine (A/H1N1, A/H3N2, and B) in 278 healthy adults aged between 32 and 66 years. Almost half of the participants, 140 (50·36%), received influenza vaccination at least once precursor to past influenza seasons. One blood sample was taken prior to vaccination for complete blood analysis and baseline immunogenicity assessment. The selected study participants received a single vaccine dose on the first day, and then followed up for three months. Two blood samples were taken after one week and three months post vaccination, respectively, for vaccine immunogenicity assessment. RESULTS Before vaccination, the seroprotection, defined as a hemagglutination-inhibiting titer of =>1:40, was detected for the three vaccine virus strains in 20 previously vaccinated participants (14·29%) [8·95%, 21·2%]. We compared the overall vaccine response for the three virus strains using a normalized response score calculated from linearly transformed titer measurements; the score before vaccination was 84% higher in the previously vaccinated group and the mean difference between the two groups was statistically significant. Three months post-vaccination, we didn't find a significant difference in vaccine responses; the number of fully seroprotected individuals became 48 (34·29%) [26·48%, 42·77%] in the previously vaccinated group and 59 (42·75%) [34·37%, 51·45%] in the non-vaccinated group. The calculated response score was almost equal in both groups and the mean difference was no longer statistically significant. CONCLUSION Our findings suggest that a single dose of influenza vaccine is equally protective after three months for annually vaccinated adults and first-time vaccine receivers.
Collapse
Affiliation(s)
- Ahmed Tawfik
- Institut Pasteur, CNRS UMR2000, Functional Genetics of Infectious Diseases Unit, Paris, France
- Pasteur International Unit at Center for Genomic Medicine, Kyoto University, Kyoto, Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Meiko Takahashi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuya Setoh
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Izumi Yamaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kristel Van Steen
- BIO3 - Laboratory for Systems Genetics, GIGA-R Medical Genomics, University of Liège, Liège, Belgium
- BIO3 - Laboratory for Systems Medicine, Department of Human Genetics, Leuven, Leuven, KU, Belgium
| | - Anavaj Sakuntabhai
- Pasteur International Unit at Center for Genomic Medicine, Kyoto University, Kyoto, Japan
- Institut Pasteur, CNRS UMR2000, Ecology and Emergence of Arthropod-borne Pathogens Unit, Paris, France
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
35
|
Morshedi F, Nazeri E, Saleh M, Farahmand B. Fusion Protein Consisting of Hemagglutinin Small Subunit and Truncated Nucleoprotein as a Universal Influenza Vaccine Candidate: Starting In-Silico Evaluation Toward In Vitro Expression. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:57-62. [PMID: 37313538 PMCID: PMC10259740 DOI: 10.4103/jpbs.jpbs_114_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 12/29/2018] [Accepted: 09/11/2019] [Indexed: 06/15/2023] Open
Abstract
Background Influenza virus is a respiratory pathogen, which causes high degree of mortality and morbidity during seasonal epidemics and sporadic pandemics. By selecting conserved antigenic proteins, for example, hemagglutinin small subunit (HA2) and nucleoprotein (NP), we aimed to develop a vaccine based on a fusion protein leading to both cellular and humoral responses that are the most challenging aspects in designing a universal vaccine. Materials and Methods The bioinformatics analysis was performed for HA2-NP structure and function prediction. Primers for the antigenic part of NP were designed using bioinformatics tools. The desired product was amplified via polymerase chain reaction using the designed primers, which was then penetrated into T vector, followed by insertion into pET28a vector in order to construct pET28a/NP. The pET28a/HA2, previously generated in our lab, was digested with the same restriction enzymes as pET28a/NP (HindIII/Xhol). Then, NP was inserted to the downstream region of HA2 to construct pET28a/HA2. Results The generated pET28a/HA2-NP was transformed into Escherichia coli BL21 (DE3). The expression was induced by isopropyl β-d-l-thiogalactopyranoside. The results showed that the antigenic segment of NP was successfully cloned into pET28a/ HA2. The protein band of HA2-NP was observed on sodium dodecyl sulfate polyacrylamide gel electrophoresis, confirmed by Western blotting and purified with Ni-NTA purification system (QIAGEN, Germany). Conclusion As currently available vaccines can cause some allergic reactions, using a chimer protein based on the bioinformatics analysis is continual, safe, and affordable, thus stimulating both cellular and humoral immunity systems. Our construct could potentially provide a basis for a universal vaccine candidate.
Collapse
Affiliation(s)
- Fatemeh Morshedi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
- Faculty of Sciences, Azad University, Tehran, Iran
| | - Elaheh Nazeri
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Saleh
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Behrokh Farahmand
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
36
|
Xu D, Li C, Utz A, Weidenbacher PA, Tang S, Sanyal M, Pulendran B, Kim PS. Designing epitope-focused vaccines via antigen reorientation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.20.521291. [PMID: 36597536 PMCID: PMC9810212 DOI: 10.1101/2022.12.20.521291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A major challenge in vaccine development, especially against rapidly evolving viruses, is the ability to focus the immune response toward evolutionarily conserved antigenic regions to confer broad protection. For example, while many broadly neutralizing antibodies against influenza have been found to target the highly conserved stem region of hemagglutinin (HA-stem), the immune response to seasonal influenza vaccines is predominantly directed to the immunodominant but variable head region (HA-head), leading to narrow-spectrum efficacy. Here, we first introduce an approach to controlling antigen orientation based on the site-specific insertion of short stretches of aspartate residues (oligoD) that facilitates antigen-binding to alum adjuvants. We demonstrate the generalizability of this approach to antigens from the Ebola virus, SARS-CoV-2, and influenza and observe enhanced antibody responses following immunization in all cases. Next, we use this approach to reorient HA in an "upside down" configuration, which we envision increases HA-stem exposure, therefore also improving its immunogenicity compared to HA-head. When applied to HA of H2N2 A/Japan/305/1957, the reoriented H2 HA (reoH2HA) on alum induced a stem-directed antibody response that cross-reacted with both group 1 and 2 influenza A HAs. Our results demonstrate the possibility and benefits of antigen reorientation via oligoD insertion, which represents a generalizable immunofocusing approach readily applicable for designing epitope-focused vaccine candidates.
Collapse
Affiliation(s)
- Duo Xu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Chunfeng Li
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Ashley Utz
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Payton A.B. Weidenbacher
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Shaogeng Tang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Mrinmoy Sanyal
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Bali Pulendran
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter S. Kim
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
37
|
Xu D, Li C, Utz A, Weidenbacher PAB, Tang S, Sanyal M, Pulendran B, Kim PS. Designing epitope-focused vaccines via antigen reorientation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022. [PMID: 36597536 DOI: 10.1101/2022.09.08.507187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
UNLABELLED A major challenge in vaccine development, especially against rapidly evolving viruses, is the ability to focus the immune response toward evolutionarily conserved antigenic regions to confer broad protection. For example, while many broadly neutralizing antibodies against influenza have been found to target the highly conserved stem region of hemagglutinin (HA-stem), the immune response to seasonal influenza vaccines is predominantly directed to the immunodominant but variable head region (HA-head), leading to narrow-spectrum efficacy. Here, we first introduce an approach to controlling antigen orientation based on the site-specific insertion of short stretches of aspartate residues (oligoD) that facilitates antigen-binding to alum adjuvants. We demonstrate the generalizability of this approach to antigens from the Ebola virus, SARS-CoV-2, and influenza and observe enhanced antibody responses following immunization in all cases. Next, we use this approach to reorient HA in an "upside down" configuration, which we envision increases HA-stem exposure, therefore also improving its immunogenicity compared to HA-head. When applied to HA of H2N2 A/Japan/305/1957, the reoriented H2 HA (reoH2HA) on alum induced a stem-directed antibody response that cross-reacted with both group 1 and 2 influenza A HAs. Our results demonstrate the possibility and benefits of antigen reorientation via oligoD insertion, which represents a generalizable immunofocusing approach readily applicable for designing epitope-focused vaccine candidates. GRAPHICAL ABSTRACT Seasonal influenza vaccines induce a biased antibody response against the variable head of hemagglutinin, whereas conserved epitopes on the stem are a target for universal vaccines. Here we show that reorienting HA in an "upside-down" configuration sterically occludes the head and redirects the antibody response to the more exposed stem, thereby inducing broad cross-reactivity against hemagglutinins from diverse influenza strains.
Collapse
|
38
|
Hong SJ, Park E, Jang YH, Shim JY, Park Y, Jin S, Guo S, Kim YJ, Son MJ, Chen L, Lim KI, Jung YM. Probe-Free Identification of RNA Virus Variants with Point Mutations by Surface-Enhanced Raman Spectroscopy. Anal Chem 2022; 94:17422-17430. [PMID: 36454685 DOI: 10.1021/acs.analchem.2c02912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
As observed in the COVID-19 pandemic, RNA viruses continue to rapidly evolve through mutations. In the absence of effective therapeutics, early detection of new severely pathogenic viruses and quarantine of infected people are critical for reducing the spread of the viral infections. However, conventional detection methods require a substantial amount of time to develop probes specific to new viruses, thereby impeding immediate response to the emergence of viral pathogens. In this study, we identified multiple types of viruses by obtaining the spectral fingerprint of their surface proteins with probe-free surface-enhanced Raman scattering (SERS). In addition, the SERS-based method can remarkably distinguish influenza virus variants with several surface protein point mutations from their parental strain. Principal component analysis (PCA) of the SERS spectra systematically captured the key Raman bands to distinguish the variants. Our results show that the combination of SERS and PCA can be a promising tool for rapid detection of newly emerging mutant viruses without a virus-specific probe.
Collapse
Affiliation(s)
- Su-Jin Hong
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul 04310, South Korea
| | - Eungyeong Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, South Korea
| | - Yoon-Ha Jang
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul 04310, South Korea
| | - Ji-Yeon Shim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul 04310, South Korea
| | - Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, South Korea
| | - Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, South Korea
| | - Shuang Guo
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, South Korea
| | - Yeon-Ju Kim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul 04310, South Korea
| | - Min-Jeong Son
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul 04310, South Korea
| | - Lei Chen
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P.R. China
| | - Kwang-Il Lim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul 04310, South Korea
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, South Korea.,Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, South Korea
| |
Collapse
|
39
|
Moin SM, Boyington JC, Boyoglu-Barnum S, Gillespie RA, Cerutti G, Cheung CSF, Cagigi A, Gallagher JR, Brand J, Prabhakaran M, Tsybovsky Y, Stephens T, Fisher BE, Creanga A, Ataca S, Rawi R, Corbett KS, Crank MC, Karlsson Hedestam GB, Gorman J, McDermott AB, Harris AK, Zhou T, Kwong PD, Shapiro L, Mascola JR, Graham BS, Kanekiyo M. Co-immunization with hemagglutinin stem immunogens elicits cross-group neutralizing antibodies and broad protection against influenza A viruses. Immunity 2022; 55:2405-2418.e7. [PMID: 36356572 PMCID: PMC9772109 DOI: 10.1016/j.immuni.2022.10.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/19/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022]
Abstract
Current influenza vaccines predominantly induce immunity to the hypervariable hemagglutinin (HA) head, requiring frequent vaccine reformulation. Conversely, the immunosubdominant yet conserved HA stem harbors a supersite that is targeted by broadly neutralizing antibodies (bnAbs), representing a prime target for universal vaccines. Here, we showed that the co-immunization of two HA stem immunogens derived from group 1 and 2 influenza A viruses elicits cross-group protective immunity and neutralizing antibody responses in mice, ferrets, and nonhuman primates (NHPs). Immunized mice were protected from multiple group 1 and 2 viruses, and all animal models showed broad serum-neutralizing activity. A bnAb isolated from an immunized NHP broadly neutralized and protected against diverse viruses, including H5N1 and H7N9. Genetic and structural analyses revealed strong homology between macaque and human bnAbs, illustrating common biophysical constraints for acquiring cross-group specificity. Vaccine elicitation of stem-directed cross-group-protective immunity represents a step toward the development of broadly protective influenza vaccines.
Collapse
Affiliation(s)
- Syed M Moin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gabriele Cerutti
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Crystal Sao-Fong Cheung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Gallagher
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Brand
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Madhu Prabhakaran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Brian E Fisher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sila Ataca
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Audray K Harris
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
40
|
Song S, Kim H, Jang EY, Jeon H, Diao H, Khan MRI, Lee M, Lee YJ, Nam J, Kim S, Kim Y, Sohn E, Hwang I, Choi J. SARS-CoV-2 spike trimer vaccine expressed in Nicotiana benthamiana adjuvanted with Alum elicits protective immune responses in mice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2298-2312. [PMID: 36062974 PMCID: PMC9538723 DOI: 10.1111/pbi.13908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has spurred rapid development of vaccines as part of the public health response. However, the general strategy used to construct recombinant trimeric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) proteins in mammalian cells is not completely adaptive to molecular farming. Therefore, we generated several constructs of recombinant S proteins for high expression in Nicotiana benthamiana. Intramuscular injection of N. benthamiana-expressed Sct vaccine (NSct Vac) into Balb/c mice elicited both humoral and cellular immune responses, and booster doses increased neutralizing antibody titres. In human angiotensin-converting enzyme knock-in mice, two doses of NSct Vac induced anti-S and neutralizing antibodies, which cross-neutralized Alpha, Beta, Delta and Omicron variants. Survival rates after lethal challenge with SARS-CoV-2 were up to 80%, without significant body weight loss, and viral titres in lung tissue fell rapidly, with no infectious virus detectable at 7-day post-infection. Thus, plant-derived NSct Vac could be a candidate COVID-19 vaccine.
Collapse
Affiliation(s)
- Shi‐Jian Song
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Heeyeon Kim
- Division of Acute Viral Disease, Center for Emerging Virus ResearchNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| | - Eun Young Jang
- Division of Vaccine Research, Vaccine Research CenterNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| | - Hyungmin Jeon
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Hai‐Ping Diao
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Md Rezaul Islam Khan
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Mi‐Seon Lee
- Division of Infectious Diseases InspectionJeju Special Self‐Governing Province Institute of Environment ResearchJejuKorea
| | - Young Jae Lee
- Division of Vaccine Research, Vaccine Research CenterNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| | - Jeong‐hyun Nam
- Division of Vaccine Research, Vaccine Research CenterNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| | - Seong‐Ryeol Kim
- Division of Acute Viral Disease, Center for Emerging Virus ResearchNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| | - Young‐Jin Kim
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Eun‐Ju Sohn
- BioApplications Inc.Pohang Technopark ComplexPohangSouth Korea
| | - Inhwan Hwang
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Jang‐Hoon Choi
- Division of Acute Viral Disease, Center for Emerging Virus ResearchNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| |
Collapse
|
41
|
Pantaleo G, Correia B, Fenwick C, Joo VS, Perez L. Antibodies to combat viral infections: development strategies and progress. Nat Rev Drug Discov 2022; 21:676-696. [PMID: 35725925 PMCID: PMC9207876 DOI: 10.1038/s41573-022-00495-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 12/11/2022]
Abstract
Monoclonal antibodies (mAbs) are appealing as potential therapeutics and prophylactics for viral infections owing to characteristics such as their high specificity and their ability to enhance immune responses. Furthermore, antibody engineering can be used to strengthen effector function and prolong mAb half-life, and advances in structural biology have enabled the selection and optimization of potent neutralizing mAbs through identification of vulnerable regions in viral proteins, which can also be relevant for vaccine design. The COVID-19 pandemic has stimulated extensive efforts to develop neutralizing mAbs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with several mAbs now having received authorization for emergency use, providing not just an important component of strategies to combat COVID-19 but also a boost to efforts to harness mAbs in therapeutic and preventive settings for other infectious diseases. Here, we describe advances in antibody discovery and engineering that have led to the development of mAbs for use against infections caused by viruses including SARS-CoV-2, respiratory syncytial virus (RSV), Ebola virus (EBOV), human cytomegalovirus (HCMV) and influenza. We also discuss the rationale for moving from empirical to structure-guided strategies in vaccine development, based on identifying optimal candidate antigens and vulnerable regions within them that can be targeted by antibodies to result in a strong protective immune response.
Collapse
Affiliation(s)
- Giuseppe Pantaleo
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Lausanne, Switzerland
| | - Bruno Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Craig Fenwick
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Lausanne, Switzerland
| | - Victor S Joo
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Lausanne, Switzerland
| | - Laurent Perez
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Lausanne, Switzerland.
| |
Collapse
|
42
|
A Hemagglutinin Stem Vaccine Designed Rationally by AlphaFold2 Confers Broad Protection against Influenza B Infection. Viruses 2022; 14:v14061305. [PMID: 35746776 PMCID: PMC9229588 DOI: 10.3390/v14061305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
Two lineages of influenza B viruses (IBV) co-circulating in human beings have been posing a significant public health burden worldwide. A substantial number of broadly neutralizing antibodies (bnAbs) have been identified targeting conserved epitopes on hemagglutinin (HA) stem domain, posing great interest for universal influenza vaccine development. Various strategies to design immunogens that selectively present these conserved epitopes are being explored. However, it has been a challenge to retain native conformation of the HA stem region, especially for soluble expression in prokaryotic systems. Here, using a structure prediction tool AlphaFold2, we rationally designed a stable stem antigen “B60-Stem-8071”, an HA stem vaccine derived from B/Brisbane/60/2006 grafted with a CR8071 epitope as a linker. The B60-Stem-8071 exhibited better solubility and more stable expression in the E. coli system compared to the naïve HA stem antigen. Immunization with B60-Stem-8071 in mice generated cross-reactive antibodies and protected mice broadly against lethal challenge with Yamagata and Victoria lineages of influenza B virus. Notably, soluble expression of B60-stem-8071 in the E. coli system showed the potential to produce the influenza B vaccine in a low-cost way. This study represents a proof of concept for the rational design of HA stem antigen based on structure prediction and analysis.
Collapse
|
43
|
Carascal MB, Pavon RDN, Rivera WL. Recent Progress in Recombinant Influenza Vaccine Development Toward Heterosubtypic Immune Response. Front Immunol 2022; 13:878943. [PMID: 35663997 PMCID: PMC9162156 DOI: 10.3389/fimmu.2022.878943] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Flu, a viral infection caused by the influenza virus, is still a global public health concern with potential to cause seasonal epidemics and pandemics. Vaccination is considered the most effective protective strategy against the infection. However, given the high plasticity of the virus and the suboptimal immunogenicity of existing influenza vaccines, scientists are moving toward the development of universal vaccines. An important property of universal vaccines is their ability to induce heterosubtypic immunity, i.e., a wide immune response coverage toward different influenza subtypes. With the increasing number of studies and mounting evidence on the safety and efficacy of recombinant influenza vaccines (RIVs), they have been proposed as promising platforms for the development of universal vaccines. This review highlights the current progress and advances in the development of RIVs in the context of heterosubtypic immunity induction toward universal vaccine production. In particular, this review discussed existing knowledge on influenza and vaccine development, current hemagglutinin-based RIVs in the market and in the pipeline, other potential vaccine targets for RIVs (neuraminidase, matrix 1 and 2, nucleoprotein, polymerase acidic, and basic 1 and 2 antigens), and deantigenization process. This review also provided discussion points and future perspectives in looking at RIVs as potential universal vaccine candidates for influenza.
Collapse
Affiliation(s)
- Mark B Carascal
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines.,Clinical and Translational Research Institute, The Medical City, Pasig City, Philippines
| | - Rance Derrick N Pavon
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Windell L Rivera
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
44
|
Subbbiah J, Oh J, Kim KH, Shin CH, Park BR, Bhatnagar N, Jung YJ, Lee Y, Wang BZ, Seong BL, Kang SM. Thermostable H1 hemagglutinin stem with M2e epitopes provides broad cross-protection against group1 and 2 influenza A viruses. Mol Ther Methods Clin Dev 2022; 26:38-51. [PMID: 35755946 PMCID: PMC9198381 DOI: 10.1016/j.omtm.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
Hemagglutinin (HA) stem-based vaccines have limitations in providing broad and effective protection against cross-group influenza viruses, despite being a promising universal vaccine target. To overcome the limited cross-protection and low efficacy by HA stem vaccination, we genetically engineered a chimeric conjugate of thermostable H1 HA stem and highly conserved M2e repeat (M2e-H1stem), which was expressed at high yields in Escherichia coli. M2e-H1stem protein presented native-like epitopes reactive to antisera of live virus infection. M2e-H1stem protein vaccination of mice induced strong M2e- and HA stem-specific immune responses, conferring broadly effective cross-protection against both antigenically distinct group 1 (H1N1, H5N1, and H9N2 subtypes) and group 2 (H3N2 and H7N9 subtypes) seasonal and pandemic potential influenza viruses. M2e-H1stem vaccination generated CD4+ and CD8+ T cell responses and antibody-dependent cytotoxic cellular and humoral immunity, which contributed to enhancing cross-protection. Furthermore, comparable broad cross-group protection was observed in older aged mice after M2e-H1stem vaccination. This study provides evidence warranting further development of chimeric M2e-stem proteins as a promising universal influenza vaccine candidate in adult and aged populations.
Collapse
Affiliation(s)
- Jeeva Subbbiah
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, PSC 718 P.O. Box 5035, Atlanta, GA 30303, USA
| | - Judy Oh
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, PSC 718 P.O. Box 5035, Atlanta, GA 30303, USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, PSC 718 P.O. Box 5035, Atlanta, GA 30303, USA
| | - Chong Hyun Shin
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, PSC 718 P.O. Box 5035, Atlanta, GA 30303, USA
| | - Bo Ryoung Park
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, PSC 718 P.O. Box 5035, Atlanta, GA 30303, USA
| | - Noopur Bhatnagar
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, PSC 718 P.O. Box 5035, Atlanta, GA 30303, USA
| | - Yu-Jin Jung
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, PSC 718 P.O. Box 5035, Atlanta, GA 30303, USA
| | - Youri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, PSC 718 P.O. Box 5035, Atlanta, GA 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, PSC 718 P.O. Box 5035, Atlanta, GA 30303, USA
| | - Baik-Lin Seong
- Department of Microbiology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
- Vaccine Innovative Technology Alliance (VITAL), Seoul 03722, Republic of Korea
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, PSC 718 P.O. Box 5035, Atlanta, GA 30303, USA
- Corresponding author Sang-Moo Kang, PhD, Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, PSC 718 P.O. Box 5035, Atlanta, GA 30303, USA.
| |
Collapse
|
45
|
Kar U, Khaleeq S, Garg P, Bhat M, Reddy P, Vignesh VS, Upadhyaya A, Das M, Chakshusmathi G, Pandey S, Dutta S, Varadarajan R. Comparative Immunogenicity of Bacterially Expressed Soluble Trimers and Nanoparticle Displayed Influenza Hemagglutinin Stem Immunogens. Front Immunol 2022; 13:890622. [PMID: 35720346 PMCID: PMC9204493 DOI: 10.3389/fimmu.2022.890622] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Current influenza vaccines need to be updated annually due to mutations in the globular head of the viral surface protein, hemagglutinin (HA). To address this, vaccine candidates have been designed based on the relatively conserved HA stem domain and have shown protective efficacy in animal models. Oligomerization of the antigens either by fusion to oligomerization motifs or display on self-assembling nanoparticle scaffolds, can induce more potent immune responses compared to the corresponding monomeric antigen due to multivalent engagement of B-cells. Since nanoparticle display can increase manufacturing complexity, and often involves one or more mammalian cell expressed components, it is important to characterize and compare various display and oligomerization scaffolds. Using a structure guided approach, we successfully displayed multiple copies of a previously designed soluble, trimeric influenza stem domain immunogen, pH1HA10, on the ferritin like protein, MsDps2 (12 copies), Ferritin (24 copies) and Encapsulin (180 copies). All proteins were expressed in Escherichia coli. The nanoparticle fusion immunogens were found to be well folded and bound to the influenza stem directed broadly neutralizing antibodies with high affinity. An 8.5 Å Cryo-EM map of Msdps2-pH1HA10 confirmed the successful design of the nanoparticle fusion immunogen. Mice immunization studies with the soluble trimeric stem and nanoparticle fusion constructs revealed that all of them were immunogenic, and protected mice against homologous (A/Belgium/145-MA/2009) and heterologous (A/Puerto Rico/8/1934) challenge with 10MLD50 mouse adapted virus. Although nanoparticle display conferred a small but statistically significant improvement in protection relative to the soluble trimer in a homologous challenge, heterologous protection was similar in both nanoparticle-stem immunized and trimeric stem immunized groups. Such rapidly producible, bacterially expressed antigens and nanoparticle scaffolds are useful modalities to tackle future influenza pandemics.
Collapse
Affiliation(s)
- Uddipan Kar
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | - Sara Khaleeq
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | - Priyanka Garg
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | - Madhuraj Bhat
- Mynvax Private Limited, ES12, Entrepreneurship Centre, Society for Innovation and Development (SID), Indian Institute of Science, Bengaluru, India
| | - Poorvi Reddy
- Mynvax Private Limited, ES12, Entrepreneurship Centre, Society for Innovation and Development (SID), Indian Institute of Science, Bengaluru, India
| | | | - Aditya Upadhyaya
- Mynvax Private Limited, ES12, Entrepreneurship Centre, Society for Innovation and Development (SID), Indian Institute of Science, Bengaluru, India
| | - Mili Das
- Mynvax Private Limited, ES12, Entrepreneurship Centre, Society for Innovation and Development (SID), Indian Institute of Science, Bengaluru, India
| | - Ghadiyaram Chakshusmathi
- Mynvax Private Limited, ES12, Entrepreneurship Centre, Society for Innovation and Development (SID), Indian Institute of Science, Bengaluru, India
| | - Suman Pandey
- Mynvax Private Limited, ES12, Entrepreneurship Centre, Society for Innovation and Development (SID), Indian Institute of Science, Bengaluru, India
| | - Somnath Dutta
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | | |
Collapse
|
46
|
Li J, Tang M, Qi H. Codon-Reduced Protein Synthesis With Manipulating tRNA Components in Cell-Free System. Front Bioeng Biotechnol 2022; 10:891808. [PMID: 35646841 PMCID: PMC9136035 DOI: 10.3389/fbioe.2022.891808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Manipulating transfer RNAs (tRNAs) for emancipating sense codons to simplify genetic codons in a cell-free protein synthesis (CFPS) system can offer more flexibility and controllability. Here, we provide an overview of the tRNA complement protein synthesis system construction in the tRNA-depleted Protein synthesis Using purified Recombinant Elements (PURE) system or S30 extract. These designed polypeptide coding sequences reduce the genetic codon and contain only a single tRNA corresponding to a single amino acid in this presented system. Strategies for removing tRNAs from cell lysates and synthesizing tRNAs in vivo/vitro are summarized and discussed in detail. Furthermore, we point out the trend toward a minimized genetic codon for reducing codon redundancy by manipulating tRNAs in the different proteins. It is hoped that the tRNA complement protein synthesis system can facilitate the construction of minimal cells and expand the biomedical application scope of synthetic biology.
Collapse
Affiliation(s)
- Jiaojiao Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Mengtong Tang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Hao Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
- *Correspondence: Hao Qi,
| |
Collapse
|
47
|
Varma DM, Batty CJ, Stiepel RT, Graham-Gurysh EG, Roque JA, Pena ES, Hasan Zahid MS, Qiu K, Anselmo A, Hill DB, Ross TM, Bachelder EM, Ainslie KM. Development of an Intranasal Gel for the Delivery of a Broadly Acting Subunit Influenza Vaccine. ACS Biomater Sci Eng 2022; 8:1573-1582. [PMID: 35353486 PMCID: PMC9627116 DOI: 10.1021/acsbiomaterials.2c00015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Influenza virus is a major cause of death on a global scale. Seasonal vaccines have been developed to combat influenza; however, they are not always highly effective. One strategy to develop a more broadly active influenza vaccine is the use of multiple rounds of layered consensus buildings to generate recombinant antigens, termed computationally optimized broadly reactive antigen (COBRA). Immunization with the COBRA hemagglutinin (HA) can elicit broad protection against multiple strains of a single influenza subtype (e.g., H1N1). We formulated a COBRA H1 HA with a stimulator of interferon genes agonist cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) into a nasal gel for vaccination against influenza. The gel formulation was designed to increase mucoadhesion and nasal retention of the antigen and adjuvant to promote a strong mucosal response. It consisted of a Schiff base-crosslinked hydrogel between branched polyethyleneimine and oxidized dextran. Following a prime-boost-boost schedule, an intranasal gel containing cGAMP and model antigen ovalbumin (OVA) led to the faster generation of serum IgG, IgG1, and IgG2c and significantly greater serum IgG1 levels on day 42 compared to soluble controls. Additionally, OVA-specific IgA was detected in nasal, vaginal, and fecal samples for all groups, except the vehicle control. When the COBRA HA was given intranasally in a prime-boost schedule, the mice receiving the gel containing the COBRA and cGAMP had significantly higher serum IgG and IgG2c at day 41 compared to all groups, and only this group had IgA levels above the background in vaginal, nasal, and fecal samples. Overall, this study indicates the utility of an intranasal gel for the delivery of COBRAs for the generation of serum and mucosal humoral responses.
Collapse
Affiliation(s)
- Devika M Varma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Cole J Batty
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rebeca T Stiepel
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Elizabeth G Graham-Gurysh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - John A Roque
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Erik S Pena
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
| | - M Shamim Hasan Zahid
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kunyu Qiu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Aaron Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David B Hill
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Marsico Lung Institute/CF Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia 30605, United States.,Department of Infectious Diseases, University of Georgia, Athens, Georgia 30605, United States
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States.,Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
48
|
Wang R, Suzuki S, Guest JD, Heller B, Almeda M, Andrianov AK, Marin A, Mariuzza RA, Keck ZY, Foung SKH, Yunus AS, Pierce BG, Toth EA, Ploss A, Fuerst TR. Induction of broadly neutralizing antibodies using a secreted form of the hepatitis C virus E1E2 heterodimer as a vaccine candidate. Proc Natl Acad Sci U S A 2022; 119:e2112008119. [PMID: 35263223 PMCID: PMC8931252 DOI: 10.1073/pnas.2112008119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022] Open
Abstract
SignificanceHepatitis C virus chronically infects approximately 1% of the world's population, making an effective vaccine for hepatitis C virus a major unmet public health need. The membrane-associated E1E2 envelope glycoprotein has been used in clinical studies as a vaccine candidate. However, limited neutralization breadth and difficulty in producing large amounts of homogeneous membrane-associated E1E2 have hampered efforts to develop an E1E2-based vaccine. Our previous work described the design and biochemical validation of a native-like soluble secreted form of E1E2 (sE1E2). Here, we describe the immunogenic characterization of the sE1E2 complex. sE1E2 elicited broadly neutralizing antibodies in immunized mice, with increased neutralization breadth relative to the membrane-associated E1E2, thereby validating this platform as a promising model system for vaccine development.
Collapse
Affiliation(s)
- Ruixue Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Saori Suzuki
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Johnathan D. Guest
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Brigitte Heller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Maricar Almeda
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Roy A. Mariuzza
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Steven K. H. Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Abdul S. Yunus
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Brian G. Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Eric A. Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Thomas R. Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| |
Collapse
|
49
|
Doelger J, Kardar M, Chakraborty AK. Inferring the intrinsic mutational fitness landscape of influenzalike evolving antigens from temporally ordered sequence data. Phys Rev E 2022; 105:024401. [PMID: 35291059 DOI: 10.1103/physreve.105.024401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
There still are no effective long-term protective vaccines against viruses that continuously evolve under immune pressure such as seasonal influenza, which has caused, and can cause, devastating epidemics in the human population. To find such a broadly protective immunization strategy, it is useful to know how easily the virus can escape via mutation from specific antibody responses. This information is encoded in the fitness landscape of the viral proteins (i.e., knowledge of the viral fitness as a function of sequence). Here we present a computational method to infer the intrinsic mutational fitness landscape of influenzalike evolving antigens from yearly sequence data. We test inference performance with computer-generated sequence data that are based on stochastic simulations mimicking basic features of immune-driven viral evolution. Although the numerically simulated model does create a phylogeny based on the allowed mutations, the inference scheme does not use this information. This provides a contrast to other methods that rely on reconstruction of phylogenetic trees. Our method just needs a sufficient number of samples over multiple years. With our method, we are able to infer single as well as pairwise mutational fitness effects from the simulated sequence time series for short antigenic proteins. Our fitness inference approach may have potential future use for the design of immunization protocols by identifying intrinsically vulnerable immune target combinations on antigens that evolve under immune-driven selection. In the future, this approach may be applied to influenza and other novel viruses such as SARS-CoV-2, which evolves and, like influenza, might continue to escape the natural and vaccine-mediated immune pressures.
Collapse
Affiliation(s)
- Julia Doelger
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Arup K Chakraborty
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; and Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
50
|
Nguyen QD, Kikuchi K, Kojima M, Ueno T. Dynamic Behavior of Cargo Proteins Regulated by Linker Peptides on a Protein Needle Scaffold. CHEM LETT 2022. [DOI: 10.1246/cl.210599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Que D. Nguyen
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, 4529-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kosuke Kikuchi
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, 4529-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Mariko Kojima
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, 4529-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Takafumi Ueno
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, 4529-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|