1
|
Mirzakhani M, Bayat M, Dashti M, Tahmasebi S, Rostamtabar M, Esmaeili Gouvarchin Ghaleh H, Amani J. The Assessment of Anti-SARS-CoV-2 Antibodies in Different Vaccine Platforms: A Systematic Review and Meta-Analysis of COVID-19 Vaccine Clinical Trial Studies. Rev Med Virol 2024; 34:e2579. [PMID: 39327654 DOI: 10.1002/rmv.2579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/13/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND AND OBJECTIVE The COVID-19 pandemic spread rapidly throughout the world and caused millions of deaths globally. Several vaccines have been developed to control the COVID-19 pandemic and reduce the burden it placed on public health. This study aimed to assess the efficacy of different vaccine platforms in inducing potent antibody responses. Moreover, the seroconversion rate and common side effects of vaccine platforms were evaluated. METHODS This meta-analysis included clinical trials of COVID-19 vaccines that met the eligibility criteria. Electronic databases (including PubMed, Scopus, and Web of Science) and Google Scholar search engine were searched for eligible studies. Regarding the methodological heterogeneity between the included studies, we selected a random-effects model. The geometric mean ratio (GMR) was chosen as the effect size for this meta-analysis. RESULTS Of the 1838 records identified through screening and after removing duplicate records, the full texts of 1076 records were assessed for eligibility. After the full-text assessment, 56 records were eligible and included in the study. Overall, vaccinated participants had a 150.8-fold increased rate of anti-spike IgG titres compared with the placebo group (GMR = 150.8; 95% CI, 95.9-237.1; I2 = 100%). Moreover, vaccinated participants had a 37.3-fold increased rate of neutralising antibody titres compared with the placebo group (GMR = 37.3; 95% CI, 28.5-48.7; I2 = 99%). The mRNA platform showed a higher rate of anti-spike IgG (GMR = 1263.5; 95% CI, 431.1-3702.8; I2 = 99%), while neutralising antibody titres were higher in the subunit platform (GMR = 53.4; 95% CI, 32.8-87.1; I2 = 99%) than in other platforms. Different vaccine platforms showed different rates of both anti-spike IgG and neutralising antibody titres with interesting results. The seroconversion rate of anti-spike IgG and neutralising antibody titres was more than 98% in the vaccinated participants. CONCLUSION Inactivated and subunit vaccines produced a high percentage of neutralising antibodies and had a low common adverse reaction rate compared to other platforms. In this regard, subunit and inactivated vaccines can still be used as the main vaccine platforms for effectively controlling infections with high transmission rates.
Collapse
Affiliation(s)
- Mohammad Mirzakhani
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Bayat
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Dashti
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rostamtabar
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Esmaeili Gouvarchin Ghaleh
- Applied Virology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Konstantinovsky T, Peres A, Polak P, Yaari G. An unbiased comparison of immunoglobulin sequence aligners. Brief Bioinform 2024; 25:bbae556. [PMID: 39489605 PMCID: PMC11531861 DOI: 10.1093/bib/bbae556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/11/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024] Open
Abstract
Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) is critical for our understanding of the adaptive immune system's dynamics in health and disease. Reliable analysis of AIRR-seq data depends on accurate rearranged immunoglobulin (Ig) sequence alignment. Various Ig sequence aligners exist, but there is no unified benchmarking standard representing the complexities of AIRR-seq data, obscuring objective comparisons of aligners across tasks. Here, we introduce GenAIRR, a modular simulation framework for generating Ig sequences alongside their ground truths. GenAIRR realistically simulates the intricacies of V(D)J recombination, somatic hypermutation, and an array of sequence corruptions. We comprehensively assessed prominent Ig sequence aligners across various metrics, unveiling unique performance characteristics for each aligner. The GenAIRR-produced datasets, combined with the proposed rigorous evaluation criteria, establish a solid basis for unbiased benchmarking of immunogenetics computational tools. It sets up the ground for further improving the crucial task of Ig sequence alignment, ultimately enhancing our understanding of adaptive immunity.
Collapse
Affiliation(s)
- Thomas Konstantinovsky
- Faculty of Engineering, Bar Ilan University, 5290002 Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Ayelet Peres
- Faculty of Engineering, Bar Ilan University, 5290002 Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Pazit Polak
- Faculty of Engineering, Bar Ilan University, 5290002 Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, 5290002 Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, 5290002 Ramat Gan, Israel
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
3
|
Abbate MF, Dupic T, Vigne E, Shahsavarian MA, Walczak AM, Mora T. Computational detection of antigen-specific B cell receptors following immunization. Proc Natl Acad Sci U S A 2024; 121:e2401058121. [PMID: 39163333 PMCID: PMC11363332 DOI: 10.1073/pnas.2401058121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/10/2024] [Indexed: 08/22/2024] Open
Abstract
B cell receptors (BCRs) play a crucial role in recognizing and fighting foreign antigens. High-throughput sequencing enables in-depth sampling of the BCRs repertoire after immunization. However, only a minor fraction of BCRs actively participate in any given infection. To what extent can we accurately identify antigen-specific sequences directly from BCRs repertoires? We present a computational method grounded on sequence similarity, aimed at identifying statistically significant responsive BCRs. This method leverages well-known characteristics of affinity maturation and expected diversity. We validate its effectiveness using longitudinally sampled human immune repertoire data following influenza vaccination and SARS-CoV-2 infections. We show that different lineages converge to the same responding Complementarity Determining Region 3, demonstrating convergent selection within an individual. The outcomes of this method hold promise for application in vaccine development, personalized medicine, and antibody-derived therapeutics.
Collapse
Affiliation(s)
- Maria Francesca Abbate
- Laboratoire de physique de l’École normale supérieure, CNRS, Paris Sciences et Lettres University, Sorbonne Université, and Université Paris-Cité, Paris75005, France
- Large Molecule Research, Sanofi, Vitry-sur-Seine94 400, France
| | - Thomas Dupic
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
| | | | | | - Aleksandra M. Walczak
- Laboratoire de physique de l’École normale supérieure, CNRS, Paris Sciences et Lettres University, Sorbonne Université, and Université Paris-Cité, Paris75005, France
| | - Thierry Mora
- Laboratoire de physique de l’École normale supérieure, CNRS, Paris Sciences et Lettres University, Sorbonne Université, and Université Paris-Cité, Paris75005, France
| |
Collapse
|
4
|
Greenshields-Watson A, Abanades B, Deane CM. Investigating the ability of deep learning-based structure prediction to extrapolate and/or enrich the set of antibody CDR canonical forms. Front Immunol 2024; 15:1352703. [PMID: 38482007 PMCID: PMC10933040 DOI: 10.3389/fimmu.2024.1352703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/30/2024] [Indexed: 04/13/2024] Open
Abstract
Deep learning models have been shown to accurately predict protein structure from sequence, allowing researchers to explore protein space from the structural viewpoint. In this paper we explore whether "novel" features, such as distinct loop conformations can arise from these predictions despite not being present in the training data. Here we have used ABodyBuilder2, a deep learning antibody structure predictor, to predict the structures of ~1.5M paired antibody sequences. We examined the predicted structures of the canonical CDR loops and found that most of these predictions fall into the already described CDR canonical form structural space. We also found a small number of "new" canonical clusters composed of heterogeneous sequences united by a common sequence motif and loop conformation. Analysis of these novel clusters showed their origins to be either shapes seen in the training data at very low frequency or shapes seen at high frequency but at a shorter sequence length. To evaluate explicitly the ability of ABodyBuilder2 to extrapolate, we retrained several models whilst withholding all antibody structures of a specific CDR loop length or canonical form. These "starved" models showed evidence of generalisation across CDRs of different lengths, but they did not extrapolate to loop conformations which were highly distinct from those present in the training data. However, the models were able to accurately predict a canonical form even if only a very small number of examples of that shape were in the training data. Our results suggest that deep learning protein structure prediction methods are unable to make completely out-of-domain predictions for CDR loops. However, in our analysis we also found that even minimal amounts of data of a structural shape allow the method to recover its original predictive abilities. We have made the ~1.5 M predicted structures used in this study available to download at https://doi.org/10.5281/zenodo.10280181.
Collapse
|
5
|
Gallo E. Current advancements in B-cell receptor sequencing fast-track the development of synthetic antibodies. Mol Biol Rep 2024; 51:134. [PMID: 38236361 DOI: 10.1007/s11033-023-08941-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 01/19/2024]
Abstract
Synthetic antibodies (Abs) are a class of engineered proteins designed to mimic the functions of natural Abs. These are produced entirely in vitro, eliminating the need for an immune response. As such, synthetic Abs have transformed the traditional methods of raising Abs. Likewise, deep sequencing technologies have revolutionized genomics and molecular biology. These enable the rapid and cost-effective sequencing of DNA and RNA molecules. They have allowed for accurate and inexpensive analysis of entire genomes and transcriptomes. Notably, via deep sequencing it is now possible to sequence a person's entire B-cell receptor immune repertoire, termed BCR sequencing. This procedure allows for big data explorations of natural Abs associated with an immune response. Importantly, the identified sequences have the ability to improve the design and engineering of synthetic Abs by offering an initial sequence framework for downstream optimizations. Additionally, machine learning algorithms can be introduced to leverage the vast amount of BCR sequencing datasets to rapidly identify patterns hidden in big data to effectively make in silico predictions of antigen selective synthetic Abs. Thus, the convergence of BCR sequencing, machine learning, and synthetic Ab development has effectively promoted a new era in Ab therapeutics. The combination of these technologies is driving rapid advances in precision medicine, diagnostics, and personalized treatments.
Collapse
Affiliation(s)
- Eugenio Gallo
- Avance Biologicals, Department of Medicinal Chemistry, 950 Dupont Street, Toronto, ON, M6H 1Z2, Canada.
- RevivAb, Department of Protein Engineering, Av. Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|
6
|
Matsuda T, Akazawa-Ogawa Y, Komaba LK, Kiyose N, Miyazaki N, Mizuguchi Y, Fukuta T, Ito Y, Hagihara Y. Prediction of antigen-responding VHH antibodies by tracking the evolution of antibody along the time course of immunization. Front Immunol 2024; 14:1335462. [PMID: 38292485 PMCID: PMC10825579 DOI: 10.3389/fimmu.2023.1335462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024] Open
Abstract
Antibody maturation is the central function of the adaptive immune response. This process is driven by the repetitive selection of mutations that increase the affinity toward antigens. We hypothesized that a precise observation of this process by high-throughput sequencing along the time course of immunization will enable us to predict the antibodies reacting to the immunized antigen without any additional in vitro screening. An alpaca was immunized with IgG fragments using multiple antigen injections, and the antibody repertoire development was traced via high-throughput sequencing periodically for months. The sequences were processed into clusters, and the antibodies in the 16 most abundant clusters were generated to determine whether the clusters included antigen-binding antibodies. The sequences of most antigen-responsive clusters resembled those of germline cells in the early stages. These sequences were observed to accumulate significant mutations and also showed a continuous sequence turnover throughout the experimental period. The foregoing characteristics gave us >80% successful prediction of clusters composed of antigen-responding VHHs against IgG fragment. Furthermore, when the prediction method was applied to the data from other alpaca immunized with epidermal growth factor receptor, the success rate exceeded 80% as well, confirming the general applicability of the prediction method. Superior to previous studies, we identified the immune-responsive but very rare clusters or sequences from the immunized alpaca without any empirical screening data.
Collapse
Affiliation(s)
- Tomonari Matsuda
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Japan
| | - Yoko Akazawa-Ogawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Japan
| | - Lilian-Kaede Komaba
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Japan
| | - Norihiko Kiyose
- Division of Antibody Operations, ARK Resource. Co., Ltd., Kumamoto, Japan
| | - Nobuo Miyazaki
- Division of Antibody Operations, ARK Resource. Co., Ltd., Kumamoto, Japan
| | | | | | - Yuji Ito
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Yoshihisa Hagihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
7
|
Mashraqi MM, Alzamami A, Alturki NA, Almasaudi HH, Ahmed I, Alshamrani S, Basharat Z. Chimeric vaccine design against the conserved TonB-dependent receptor-like β-barrel domain from the outer membrane tbpA and hpuB proteins of Kingella kingae ATCC 23330. Front Mol Biosci 2023; 10:1258834. [PMID: 38053576 PMCID: PMC10694214 DOI: 10.3389/fmolb.2023.1258834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/12/2023] [Indexed: 12/07/2023] Open
Abstract
Kingella kingae is a Gram-negative bacterium that primarily causes pediatric infections such as septicemia, endocarditis, and osteoarticular infections. Its virulence is attributed to the outer membrane proteins having implications in bacterial adhesion, invasion, nutrition, and host tissue damage. TonB-dependent receptors (TBDRs) play an important role in nutrition and were previously implicated as vaccine targets in other bacteria. Therefore, we targeted the conserved β-barrel TBDR domain of these proteins for designing a vaccine construct that could elicit humoral and cellular immune responses. We used bioinformatic tools to mine TBDR-containing proteins from K. kingae ATCC 23330 and then predict B- and T-cell epitopes from their conserved β-barrel TDR domain. A chimeric vaccine construct was designed using three antigenic epitopes, covering >98% of the world population and capable of inciting humoral and adaptive immune responses. The final construct elicited a robust immune response. Docking and dynamics simulation showed good binding affinity of the vaccine construct to various receptors of the immune system. Additionally, the vaccine was predicted to be safe and non-allergenic, making it a promising candidate for further development. In conclusion, our study demonstrates the potential of immunoinformatics approaches in designing chimeric vaccines against K. kingae infections. The chimeric vaccine we designed can serve as a blueprint for future experimental studies to develop an effective vaccine against this pathogen, which can serve as a potential strategy to prevent K. kingae infections.
Collapse
Affiliation(s)
- Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, AlQuwayiyah, Saudi Arabia
| | - Norah A. Alturki
- Clinical Laboratory Science Department, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Hassan H. Almasaudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad, Pakistan
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
| | - Saleh Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | | |
Collapse
|
8
|
Ramirez Valdez K, Nzau B, Dorey-Robinson D, Jarman M, Nyagwange J, Schwartz JC, Freimanis G, Steyn AW, Warimwe GM, Morrison LJ, Mwangi W, Charleston B, Bonnet-Di Placido M, Hammond JA. A Customizable Suite of Methods to Sequence and Annotate Cattle Antibodies. Vaccines (Basel) 2023; 11:1099. [PMID: 37376488 PMCID: PMC10302312 DOI: 10.3390/vaccines11061099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Studying the antibody response to infection or vaccination is essential for developing more effective vaccines and therapeutics. Advances in high-throughput antibody sequencing technologies and immunoinformatic tools now allow the fast and comprehensive analysis of antibody repertoires at high resolution in any species. Here, we detail a flexible and customizable suite of methods from flow cytometry, single cell sorting, heavy and light chain amplification to antibody sequencing in cattle. These methods were used successfully, including adaptation to the 10x Genomics platform, to isolate native heavy-light chain pairs. When combined with the Ig-Sequence Multi-Species Annotation Tool, this suite represents a powerful toolkit for studying the cattle antibody response with high resolution and precision. Using three workflows, we processed 84, 96, and 8313 cattle B cells from which we sequenced 24, 31, and 4756 antibody heavy-light chain pairs, respectively. Each method has strengths and limitations in terms of the throughput, timeline, specialist equipment, and cost that are each discussed. Moreover, the principles outlined here can be applied to study antibody responses in other mammalian species.
Collapse
Affiliation(s)
| | - Benjamin Nzau
- The Pirbright Institute, Pirbright GU24 0NF, UK
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | | | | | - James Nyagwange
- The Pirbright Institute, Pirbright GU24 0NF, UK
- KEMRI-Wellcome Trust Research Programme CGMRC, Kilifi P.O. Box 230-80108, Kenya
| | | | | | | | - George M. Warimwe
- KEMRI-Wellcome Trust Research Programme CGMRC, Kilifi P.O. Box 230-80108, Kenya
| | - Liam J. Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | | | | | | | | |
Collapse
|
9
|
Safra M, Werner L, Peres A, Polak P, Salamon N, Schvimer M, Weiss B, Barshack I, Shouval DS, Yaari G. A somatic hypermutation-based machine learning model stratifies individuals with Crohn's disease and controls. Genome Res 2023; 33:71-79. [PMID: 36526432 PMCID: PMC9977146 DOI: 10.1101/gr.276683.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Crohn's disease (CD) is a chronic relapsing-remitting inflammatory disorder of the gastrointestinal tract that is characterized by altered innate and adaptive immune function. Although massively parallel sequencing studies of the T cell receptor repertoire identified oligoclonal expansion of unique clones, much less is known about the B cell receptor (BCR) repertoire in CD. Here, we present a novel BCR repertoire sequencing data set from ileal biopsies from pediatric patients with CD and controls, and identify CD-specific somatic hypermutation (SHM) patterns, revealed by a machine learning (ML) algorithm trained on BCR repertoire sequences. Moreover, ML classification of a different data set from blood samples of adults with CD versus controls identified that V gene usage, clusters, or mutation frequencies yielded excellent results in classifying the disease (F1 > 90%). In summary, we show that an ML algorithm enables the classification of CD based on unique BCR repertoire features with high accuracy.
Collapse
Affiliation(s)
- Modi Safra
- The Alexander Kofkin Faculty of Engineering, Bar Ilan University, 5290002, Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Lael Werner
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petah Tikva 4920235, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ayelet Peres
- The Alexander Kofkin Faculty of Engineering, Bar Ilan University, 5290002, Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Pazit Polak
- The Alexander Kofkin Faculty of Engineering, Bar Ilan University, 5290002, Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Naomi Salamon
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan 5262100, Israel
| | - Michael Schvimer
- Institute of Pathology, Sheba Medical Center, Ramat Gan 5262100, Israel
| | - Batia Weiss
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan 5262100, Israel
| | - Iris Barshack
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Institute of Pathology, Sheba Medical Center, Ramat Gan 5262100, Israel
| | - Dror S Shouval
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petah Tikva 4920235, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gur Yaari
- The Alexander Kofkin Faculty of Engineering, Bar Ilan University, 5290002, Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, 5290002, Ramat Gan, Israel
| |
Collapse
|
10
|
Zhang C, Bzikadze AV, Safonova Y, Mirarab S. A scalable model for simulating multi-round antibody evolution and benchmarking of clonal tree reconstruction methods. Front Immunol 2022; 13:1014439. [PMID: 36618367 PMCID: PMC9815712 DOI: 10.3389/fimmu.2022.1014439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/26/2022] [Indexed: 12/12/2022] Open
Abstract
Affinity maturation (AM) of B cells through somatic hypermutations (SHMs) enables the immune system to evolve to recognize diverse pathogens. The accumulation of SHMs leads to the formation of clonal lineages of antibody-secreting b cells that have evolved from a common naïve B cell. Advances in high-throughput sequencing have enabled deep scans of B cell receptor repertoires, paving the way for reconstructing clonal trees. However, it is not clear if clonal trees, which capture microevolutionary time scales, can be reconstructed using traditional phylogenetic reconstruction methods with adequate accuracy. In fact, several clonal tree reconstruction methods have been developed to fix supposed shortcomings of phylogenetic methods. Nevertheless, no consensus has been reached regarding the relative accuracy of these methods, partially because evaluation is challenging. Benchmarking the performance of existing methods and developing better methods would both benefit from realistic models of clonal lineage evolution specifically designed for emulating B cell evolution. In this paper, we propose a model for modeling B cell clonal lineage evolution and use this model to benchmark several existing clonal tree reconstruction methods. Our model, designed to be extensible, has several features: by evolving the clonal tree and sequences simultaneously, it allows modeling selective pressure due to changes in affinity binding; it enables scalable simulations of large numbers of cells; it enables several rounds of infection by an evolving pathogen; and, it models building of memory. In addition, we also suggest a set of metrics for comparing clonal trees and measuring their properties. Our results show that while maximum likelihood phylogenetic reconstruction methods can fail to capture key features of clonal tree expansion if applied naively, a simple post-processing of their results, where short branches are contracted, leads to inferences that are better than alternative methods.
Collapse
Affiliation(s)
- Chao Zhang
- Bioinformatics and Systems Biology, University of California, San Diego, San Diego, CA, United States
| | - Andrey V. Bzikadze
- Bioinformatics and Systems Biology, University of California, San Diego, San Diego, CA, United States
| | - Yana Safonova
- Computer Science and Engineering Department, University of California, San Diego, San Diego, CA, United States
| | - Siavash Mirarab
- Electrical and Computer Engineering Department, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
11
|
Tas JMJ, Koo JH, Lin YC, Xie Z, Steichen JM, Jackson AM, Hauser BM, Wang X, Cottrell CA, Torres JL, Warner JE, Kirsch KH, Weldon SR, Groschel B, Nogal B, Ozorowski G, Bangaru S, Phelps N, Adachi Y, Eskandarzadeh S, Kubitz M, Burton DR, Lingwood D, Schmidt AG, Nair U, Ward AB, Schief WR, Batista FD. Antibodies from primary humoral responses modulate the recruitment of naive B cells during secondary responses. Immunity 2022; 55:1856-1871.e6. [PMID: 35987201 PMCID: PMC9350677 DOI: 10.1016/j.immuni.2022.07.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 01/19/2023]
Abstract
Vaccines generate high-affinity antibodies by recruiting antigen-specific B cells to germinal centers (GCs), but the mechanisms governing the recruitment to GCs on secondary challenges remain unclear. Here, using preclinical SARS-CoV and HIV mouse models, we demonstrated that the antibodies elicited during primary humoral responses shaped the naive B cell recruitment to GCs during secondary exposures. The antibodies from primary responses could either enhance or, conversely, restrict the GC participation of naive B cells: broad-binding, low-affinity, and low-titer antibodies enhanced recruitment, whereas, by contrast, the high titers of high-affinity, mono-epitope-specific antibodies attenuated cognate naive B cell recruitment. Thus, the directionality and intensity of that effect was determined by antibody concentration, affinity, and epitope specificity. Circulating antibodies can, therefore, be important determinants of antigen immunogenicity. Future vaccines may need to overcome-or could, alternatively, leverage-the effects of circulating primary antibodies on subsequent naive B cell recruitment.
Collapse
Affiliation(s)
- Jeroen M J Tas
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Ja-Hyun Koo
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Ying-Cing Lin
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Zhenfei Xie
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Jon M Steichen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Abigail M Jackson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Blake M Hauser
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Xuesong Wang
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Christopher A Cottrell
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Jonathan L Torres
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - John E Warner
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Kathrin H Kirsch
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Stephanie R Weldon
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Bettina Groschel
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Bartek Nogal
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Gabriel Ozorowski
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Sandhya Bangaru
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Nicole Phelps
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Yumiko Adachi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Saman Eskandarzadeh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Michael Kubitz
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Dennis R Burton
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Daniel Lingwood
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Aaron G Schmidt
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Usha Nair
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Andrew B Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - William R Schief
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Facundo D Batista
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Mikelov AI, Alekseeva EI, Komech EA, Staroverov DB, Turchaninova MA, Shugay M, Chudakov DM, Bazykin GA, Zvyagin IV. Memory persistence and differentiation into antibody-secreting cells accompanied by positive selection in longitudinal BCR repertoires. eLife 2022; 11:79254. [PMID: 36107479 PMCID: PMC9525062 DOI: 10.7554/elife.79254] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/11/2022] [Indexed: 11/18/2022] Open
Abstract
The stability and plasticity of B cell-mediated immune memory ensures the ability to respond to the repeated challenges. We have analyzed the longitudinal dynamics of immunoglobulin heavy chain repertoires from memory B cells, plasmablasts, and plasma cells from the peripheral blood of generally healthy volunteers. We reveal a high degree of clonal persistence in individual memory B cell subsets, with inter-individual convergence in memory and antibody-secreting cells (ASCs). ASC clonotypes demonstrate clonal relatedness to memory B cells, and are transient in peripheral blood. We identify two clusters of expanded clonal lineages with differing prevalence of memory B cells, isotypes, and persistence. Phylogenetic analysis revealed signs of reactivation of persisting memory B cell-enriched clonal lineages, accompanied by new rounds of affinity maturation during proliferation and differentiation into ASCs. Negative selection contributes to both persisting and reactivated lineages, preserving the functionality and specificity of B cell receptors (BCRs) to protect against current and future pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Georgii A Bazykin
- Institute of Translational Medicine, Pirogov Russian National Research Medical University
| | | |
Collapse
|
13
|
Phenotypic determinism and stochasticity in antibody repertoires of clonally expanded plasma cells. Proc Natl Acad Sci U S A 2022; 119:e2113766119. [PMID: 35486691 PMCID: PMC9170022 DOI: 10.1073/pnas.2113766119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
B cell clonal selection and expansion from a genetically diverse antibody repertoire guides the immune response to a target antigen. It remains unclear if clonal selection and expansion follow any deterministic rules or are stochastic with regards to phenotypic antibody properties such as antigen-binding, affinity, and epitope specificity. We perform the in-depth genotypic and phenotypic characterization of antibody repertoires following immunization in mice. We identify the degree to which clonal expansion is driven by antibody binding, affinity, and epitope specificity and as such may provide greater insight into vaccine-induced immunity. The capacity of humoral B cell-mediated immunity to effectively respond to and protect against pathogenic infections is largely driven by the presence of a diverse repertoire of polyclonal antibodies in the serum, which are produced by plasma cells (PCs). Recent studies have started to reveal the balance between deterministic mechanisms and stochasticity of antibody repertoires on a genotypic level (i.e., clonal diversity, somatic hypermutation, and germline gene usage). However, it remains unclear if clonal selection and expansion of PCs follow any deterministic rules or are stochastic with regards to phenotypic antibody properties (i.e., antigen-binding, affinity, and epitope specificity). Here, we report on the in-depth genotypic and phenotypic characterization of clonally expanded PC antibody repertoires following protein immunization. We find that clonal expansion drives antigen specificity of the most expanded clones (top ∼10), whereas among the rest of the clonal repertoire antigen specificity is stochastic. Furthermore, we report both on a polyclonal repertoire and clonal lineage level that antibody-antigen binding affinity does not correlate with clonal expansion or somatic hypermutation. Last, we provide evidence for convergence toward targeting dominant epitopes despite clonal sequence diversity among the most expanded clones. Our results highlight the extent to which clonal expansion can be ascribed to antigen binding, affinity, and epitope specificity, and they have implications for the assessment of effective vaccines.
Collapse
|
14
|
Hoehn KB, Pybus OG, Kleinstein SH. Phylogenetic analysis of migration, differentiation, and class switching in B cells. PLoS Comput Biol 2022; 18:e1009885. [PMID: 35468128 PMCID: PMC9037912 DOI: 10.1371/journal.pcbi.1009885] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022] Open
Abstract
B cells undergo rapid mutation and selection for antibody binding affinity when producing antibodies capable of neutralizing pathogens. This evolutionary process can be intermixed with migration between tissues, differentiation between cellular subsets, and switching between functional isotypes. B cell receptor (BCR) sequence data has the potential to elucidate important information about these processes. However, there is currently no robust, generalizable framework for making such inferences from BCR sequence data. To address this, we develop three parsimony-based summary statistics to characterize migration, differentiation, and isotype switching along B cell phylogenetic trees. We use simulations to demonstrate the effectiveness of this approach. We then use this framework to infer patterns of cellular differentiation and isotype switching from high throughput BCR sequence datasets obtained from patients in a study of HIV infection and a study of food allergy. These methods are implemented in the R package dowser, available at https://dowser.readthedocs.io. B cells produce high affinity antibodies through an evolutionary process of mutation and selection during adaptive immune responses. Migration between tissues, differentiation to cellular subtypes, and switching between different antibody isotypes can be important factors in shaping the role B cells play in response to infection, autoimmune disease, and allergies. B cell receptor (BCR) sequence data has the potential to elucidate important information about these processes. However, there is currently no robust, generalizable framework for making such inferences from BCR sequence data. Here, we develop three parsimony-based summary statistics to characterize migration, differentiation, and isotype switching along B cell phylogenetic trees. We confirm the effectiveness of our approach using simulations and further apply our method to data from patients with HIV and allergy. Our methods are released in the R package dowser: https://dowser.readthedocs.io.
Collapse
Affiliation(s)
- Kenneth B. Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Oliver G. Pybus
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Department of Pathobiology and Population Sciences, Royal Veterinary College London, London, United Kingdom
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
15
|
Wu H, Zhou Z, Xie S, Yan R, Gong M, Tian X, Wang Z. Similarity measurements of B cell receptor repertoire in baseline mice showed spectrum convergence of IgM. BMC Immunol 2022; 23:11. [PMID: 35246036 PMCID: PMC8895918 DOI: 10.1186/s12865-022-00482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The B cell receptor (BCR) repertoire is highly diverse among individuals. Poor similarity of the spectrum among inbred baseline mice may limit the ability to discriminate true signals from those involving specific experimental factors. The repertoire similarity of the baseline status lacks intensive measurements. RESULTS We measured the repertoire similarity of IgH in blood and spleen samples from untreated BALB/c and C57BL/6J mice to investigate the baseline status of the two inbred strains. The antibody pool was stratified by the isotype of IgA, IgG and IgM. Between individuals, the results showed better convergence of CDR3 and clonal lineage profiles in IgM than in IgA and IgG, and better robustness of somatic mutation networks in IgM than in IgA and IgG. It also showed that the CDR3 clonotypes and clonal lineages shared better in the spleen samples than in the blood samples. The animal batch differences were detected in CDR3 evenness, mutated clonotype proportions, and maximal network degrees. A cut-off of 95% identity in the CDR3 nucleotide sequences was suitable for clonal lineage establishment. CONCLUSIONS Our findings reveal a natural landscape of BCR repertoire similarities between baseline mice and provide a solid reference for designing studies of mouse BCR repertoires.
Collapse
Affiliation(s)
- Hongkai Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhichao Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Shi Xie
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Yan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingxing Gong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Zhanhui Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
16
|
Characterization of human IgM and IgG repertoires in individuals with chronic HIV-1 infection. Virol Sin 2022; 37:370-379. [PMID: 35247647 PMCID: PMC9243603 DOI: 10.1016/j.virs.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/24/2022] [Indexed: 11/23/2022] Open
Abstract
Advancements in high-throughput sequencing (HTS) of antibody repertoires (Ig-Seq) have unprecedentedly improved our ability to characterize the antibody repertoires on a large scale. However, currently, only a few studies explored the influence of chronic HIV-1 infection on human antibody repertoires and many of them reached contradictory conclusions, possibly limited by inadequate sequencing depth and throughput. To better understand how HIV-1 infection would impact humoral immune system, in this study, we systematically analyzed the differences between the IgM (HIV-IgM) and IgG (HIV-IgG) heavy chain repertoires of HIV-1 infected patients, as well as between antibody repertoires of HIV-1 patients and healthy donors (HH). Notably, the public unique clones accounted for only a negligible proportion between the HIV-IgM and HIV-IgG repertoires libraries, and the diversity of unique clones in HIV-IgG remarkably reduced. In aspect of somatic mutation rates of CDR1 and CDR2, the HIV-IgG repertoire was higher than HIV-IgM. Besides, the average length of CDR3 region in HIV-IgM was significant longer than that in the HH repertoire, presumably caused by the great number of novel VDJ rearrangement patterns, especially a massive use of IGHJ6. Moreover, some of the B cell clonotypes had numerous clones, and somatic variants were detected within the clonotype lineage in HIV-IgG, indicating HIV-1 neutralizing activities. The in-depth characterization of HIV-IgG and HIV-IgM repertoires enriches our knowledge in the profound effect of HIV-1 infection on human antibody repertoires and may have practical value for the discovery of therapeutic antibodies. Ultra-deep sequencing of both IgM and IgG repertoires in chronic HIV-1 infection. VDJ gene rearrangement patterns can be dramatically changed by HIV-1 infection. Multiple mechanisms cause the high complexity of HIV-1-experienced antibodies. Discovery of promising neutralizing HIV-1 antibodies from antibody repertoires.
Collapse
|
17
|
Yu K, Ravoor A, Malats N, Pineda S, Sirota M. A Pan-Cancer Analysis of Tumor-Infiltrating B Cell Repertoires. Front Immunol 2022; 12:790119. [PMID: 35069569 PMCID: PMC8767103 DOI: 10.3389/fimmu.2021.790119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
Tumor-infiltrating B cells can play an important role in anti-tumor responses but their presence is not well understood. In this study, we extracted the B cell receptor repertoires from 9522 tumor and adjacent non-tumor samples across 28 tumor types in the Cancer Genome Atlas project and performed diversity and network analysis. We identified differences in diversity and network statistics across tumor types and subtypes and observed a trend towards increased clonality in primary tumors compared to adjacent non-tumor tissues. We also found significant associations between the repertoire features and mutation load, tumor stage, and age. Our V-gene usage analysis identified similar V-gene usage patterns in colorectal and endometrial cancers. Lastly, we evaluated the prognostic value of the repertoire features and identified significant associations with survival in seven tumor types. This study warrants further research into better understanding the role of tumor-infiltrating B cells across a wide range of tumor types.
Collapse
Affiliation(s)
- Katharine Yu
- Bakar Computational Health Sciences Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Pediatrics, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Akshay Ravoor
- Bakar Computational Health Sciences Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Silvia Pineda
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Pediatrics, University of California, San Francisco (UCSF), San Francisco, CA, United States
| |
Collapse
|
18
|
Hoehn KB, Turner JS, Miller FI, Jiang R, Pybus OG, Ellebedy AH, Kleinstein SH. Human B cell lineages associated with germinal centers following influenza vaccination are measurably evolving. eLife 2021; 10:e70873. [PMID: 34787567 PMCID: PMC8741214 DOI: 10.7554/elife.70873] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
The poor efficacy of seasonal influenza virus vaccines is often attributed to pre-existing immunity interfering with the persistence and maturation of vaccine-induced B cell responses. We previously showed that a subset of vaccine-induced B cell lineages are recruited into germinal centers (GCs) following vaccination, suggesting that affinity maturation of these lineages against vaccine antigens can occur. However, it remains to be determined whether seasonal influenza vaccination stimulates additional evolution of vaccine-specific lineages, and previous work has found no significant increase in somatic hypermutation among influenza-binding lineages sampled from the blood following seasonal vaccination in humans. Here, we investigate this issue using a phylogenetic test of measurable immunoglobulin sequence evolution. We first validate this test through simulations and survey measurable evolution across multiple conditions. We find significant heterogeneity in measurable B cell evolution across conditions, with enrichment in primary response conditions such as HIV infection and early childhood development. We then show that measurable evolution following influenza vaccination is highly compartmentalized: while lineages in the blood are rarely measurably evolving following influenza vaccination, lineages containing GC B cells are frequently measurably evolving. Many of these lineages appear to derive from memory B cells. We conclude from these findings that seasonal influenza virus vaccination can stimulate additional evolution of responding B cell lineages, and imply that the poor efficacy of seasonal influenza vaccination is not due to a complete inhibition of vaccine-specific B cell evolution.
Collapse
Affiliation(s)
- Kenneth B Hoehn
- Department of Pathology, Yale School of MedicineNew HavenUnited States
| | - Jackson S Turner
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
| | | | - Ruoyi Jiang
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
| | - Oliver G Pybus
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of MedicineSt LouisUnited States
| | - Steven H Kleinstein
- Department of Pathology, Yale School of MedicineNew HavenUnited States
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
- Interdepartmental Program in Computational Biology & Bioinformatics, Yale UniversityNew HavenUnited States
| |
Collapse
|
19
|
Landscapes and dynamic diversifications of B-cell receptor repertoires in COVID-19 patients. Hum Immunol 2021; 83:119-129. [PMID: 34785098 PMCID: PMC8566346 DOI: 10.1016/j.humimm.2021.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the pandemic of coronavirus disease 2019 (COVID-19). Great international efforts have been put into the development of prophylactic vaccines and neutralizing antibodies. However, the knowledge about the B cell immune response induced by the SARS-CoV-2 virus is still limited. Here, we report a comprehensive characterization of the dynamics of immunoglobin heavy chain (IGH) repertoire in COVID-19 patients. By using next-generation sequencing technology, we examined the temporal changes in the landscape of the patient's immunological status and found dramatic changes in the IGH within the patient's immune system after the onset of COVID-19 symptoms. Although different patients have distinct immune responses to SARS-CoV-2 infection, by employing clonotype overlap, lineage expansion, and clonotype network analyses, we observed a higher clonotype overlap and substantial lineage expansion of B cell clones 2-3 weeks after the onset of illness, which is of great importance to B-cell immune responses. Meanwhile, for preferences of V gene usage during SARS-CoV-2 infection, IGHV3-74 and IGHV4-34, and IGHV4-39 in COVID-19 patients were more abundant than those of healthy controls. Overall, we present an immunological resource for SARS-CoV-2 that could promote both therapeutic development as well as mechanistic research.
Collapse
|
20
|
Rettig TA, Tan JC, Nishiyama NC, Chapes SK, Pecaut MJ. An Analysis of the Effects of Spaceflight and Vaccination on Antibody Repertoire Diversity. Immunohorizons 2021; 5:675-686. [PMID: 34433623 PMCID: PMC10996920 DOI: 10.4049/immunohorizons.2100056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/26/2021] [Indexed: 11/19/2022] Open
Abstract
Ab repertoire diversity plays a critical role in the host's ability to fight pathogens. CDR3 is partially responsible for Ab-Ag binding and is a significant source of diversity in the repertoire. CDR3 diversity is generated during VDJ rearrangement because of gene segment selection, gene segment trimming and splicing, and the addition of nucleotides. We analyzed the Ab repertoire diversity across multiple experiments examining the effects of spaceflight on the Ab repertoire after vaccination. Five datasets from four experiments were analyzed using rank-abundance curves and Shannon indices as measures of diversity. We discovered a trend toward lower diversity as a result of spaceflight but did not find the same decrease in our physiological model of microgravity in either the spleen or bone marrow. However, the bone marrow repertoire showed a reduction in diversity after vaccination. We also detected differences in Shannon indices between experiments and tissues. We did not detect a pattern of CDR3 usage across the experiments. Overall, we were able to find differences in the Ab repertoire diversity across experimental groups and tissues.
Collapse
Affiliation(s)
- Trisha A Rettig
- Division of Biomedical Engineering Sciences, Department of Basic Sciences, Loma Linda University, Loma Linda, CA
- Division of Biology, Kansas State University, Manhattan, KS
| | - John C Tan
- Division of Biomedical Engineering Sciences, Department of Basic Sciences, Loma Linda University, Loma Linda, CA
| | - Nina C Nishiyama
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; and
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Michael J Pecaut
- Division of Biomedical Engineering Sciences, Department of Basic Sciences, Loma Linda University, Loma Linda, CA;
| |
Collapse
|
21
|
Ostrovsky-Berman M, Frankel B, Polak P, Yaari G. Immune2vec: Embedding B/T Cell Receptor Sequences in ℝ N Using Natural Language Processing. Front Immunol 2021; 12:680687. [PMID: 34367141 PMCID: PMC8340020 DOI: 10.3389/fimmu.2021.680687] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
The adaptive branch of the immune system learns pathogenic patterns and remembers them for future encounters. It does so through dynamic and diverse repertoires of T- and B- cell receptors (TCR and BCRs, respectively). These huge immune repertoires in each individual present investigators with the challenge of extracting meaningful biological information from multi-dimensional data. The ability to embed these DNA and amino acid textual sequences in a vector-space is an important step towards developing effective analysis methods. Here we present Immune2vec, an adaptation of a natural language processing (NLP)-based embedding technique for BCR repertoire sequencing data. We validate Immune2vec on amino acid 3-gram sequences, continuing to longer BCR sequences, and finally to entire repertoires. Our work demonstrates Immune2vec to be a reliable low-dimensional representation that preserves relevant information of immune sequencing data, such as n-gram properties and IGHV gene family classification. Applying Immune2vec along with machine learning approaches to patient data exemplifies how distinct clinical conditions can be effectively stratified, indicating that the embedding space can be used for feature extraction and exploratory data analysis.
Collapse
Affiliation(s)
- Miri Ostrovsky-Berman
- Bioengineering, Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel.,Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Boaz Frankel
- Bioengineering, Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel.,Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Pazit Polak
- Bioengineering, Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel.,Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Gur Yaari
- Bioengineering, Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel.,Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
22
|
Shipley MM, Mangala Prasad V, Doepker LE, Dingens A, Ralph DK, Harkins E, Dhar A, Arenz D, Chohan V, Weight H, Mandaliya K, Bloom JD, Matsen FA, Lee KK, Overbaugh JM. Functional development of a V3/glycan-specific broadly neutralizing antibody isolated from a case of HIV superinfection. eLife 2021; 10:68110. [PMID: 34263727 PMCID: PMC8376252 DOI: 10.7554/elife.68110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Stimulating broadly neutralizing antibodies (bnAbs) directly from germline remains a barrier for HIV vaccines. HIV superinfection elicits bnAbs more frequently than single infection, providing clues of how to elicit such responses. We used longitudinal antibody sequencing and structural studies to characterize bnAb development from a superinfection case. BnAb QA013.2 bound initial and superinfecting viral Env, despite its probable naive progenitor only recognizing the superinfecting strain, suggesting both viruses influenced this lineage. A 4.15 Å cryo-EM structure of QA013.2 bound to native-like trimer showed recognition of V3 signatures (N301/N332 and GDIR). QA013.2 relies less on CDRH3 and more on framework and CDRH1 for affinity and breadth compared to other V3/glycan-specific bnAbs. Antigenic profiling revealed that viral escape was achieved by changes in the structurally-defined epitope and by mutations in V1. These results highlight shared and novel properties of QA013.2 relative to other V3/glycan-specific bnAbs in the setting of sequential, diverse antigens.
Collapse
Affiliation(s)
- Mackenzie M Shipley
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Vidya Mangala Prasad
- Department of Medicinal Chemistry, University of Washington, Seattle, United States
| | - Laura E Doepker
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Adam Dingens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Duncan K Ralph
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Elias Harkins
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Amrit Dhar
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Dana Arenz
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Vrasha Chohan
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Haidyn Weight
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Kishor Mandaliya
- Coast Provincial General Hospital, Women's Health Project, Mombasa, Kenya
| | - Jesse D Bloom
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.,Department of Genome Sciences, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Frederick A Matsen
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, United States
| | - Julie M Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
23
|
Large-scale analysis of 2,152 Ig-seq datasets reveals key features of B cell biology and the antibody repertoire. Cell Rep 2021; 35:109110. [PMID: 33979623 DOI: 10.1016/j.celrep.2021.109110] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/09/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Antibody repertoire sequencing enables researchers to acquire millions of B cell receptors and investigate these molecules at the single-nucleotide level. This power and resolution in studying humoral responses have led to its wide applications. However, most of these studies were conducted with a limited number of samples. Given the extraordinary diversity, assessment of these key features with a large sample set is demanded. Thus, we collect and systematically analyze 2,152 high-quality heavy-chain antibody repertoires. Our study reveals that 52 core variable genes universally contribute to more than 99% of each individual's repertoire; a distal interspersed preferences characterize V gene recombination; the number of public clones between two repertoires follows a linear model, and the positive selection dominates at RGYW motif in somatic hypermutations. Thus, this population-level analysis resolves some critical features of the antibody repertoire and may have significant value to the large cadre of scientists.
Collapse
|
24
|
Zhao M, Li X, Xie S, Gong M, Yan R, Zheng A, Xu Y, Wu H, Wang Z. The dynamics and association of B and T cell receptor repertoires upon antibody response to hepatitis B vaccination in healthy adults. Hum Vaccin Immunother 2021; 17:3203-3213. [PMID: 33861159 DOI: 10.1080/21645515.2021.1913028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Hepatitis B (HB) vaccine is efficacious in preventing hepatitis B virus infection. However, the association between antibody response to the HB vaccine and dynamic immune repertoire changes in different cell subsets remains unclear. Nine healthy participants were administered three doses of HB vaccine following the 0, 1, 6 month schedule. Peripheral CD4+ T, memory B (MB), naïve B (NB), and plasma cells (PCs) were sorted before vaccination and 7 days following each dose. The complementary determining region 3 of T-cell receptor β (TCRβ) chain and B-cell receptor (BCR) heavy chain (IgG, IgM, IgA) repertoires were analyzed by high-throughput sequencing. All nine participants elicited protective antibody titers to the vaccine at the end of immunization. Compared with the baseline, MB cells showed a significant increase in IgG usage and decreased IgM usage and repertoire diversity at the end of vaccination. TCRβ diversity changes were highly correlated with those of the BCR in MB cells in participants with a faster and robust antibody responses. The percentage of shared clonotypes between NB and MB cells, and MB cells and PCs were much higher than that between NB cells and PCs. The more clonotypes sharing the faster and stronger antibody responses were observed after HB vaccination. These results suggest the integral involvement of MB cells in vaccine immunization. Interaction between CD4+ T and MB cells and B cell differentiation may improve antibody response to HB vaccine.
Collapse
Affiliation(s)
- Miaoxian Zhao
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xueying Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shi Xie
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingxing Gong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Yan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Anqi Zheng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Xu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongkai Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhanhui Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Pertseva M, Gao B, Neumeier D, Yermanos A, Reddy ST. Applications of Machine and Deep Learning in Adaptive Immunity. Annu Rev Chem Biomol Eng 2021; 12:39-62. [PMID: 33852352 DOI: 10.1146/annurev-chembioeng-101420-125021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adaptive immunity is mediated by lymphocyte B and T cells, which respectively express a vast and diverse repertoire of B cell and T cell receptors and, in conjunction with peptide antigen presentation through major histocompatibility complexes (MHCs), can recognize and respond to pathogens and diseased cells. In recent years, advances in deep sequencing have led to a massive increase in the amount of adaptive immune receptor repertoire data; additionally, proteomics techniques have led to a wealth of data on peptide-MHC presentation. These large-scale data sets are now making it possible to train machine and deep learning models, which can be used to identify complex and high-dimensional patterns in immune repertoires. This article introduces adaptive immune repertoires and machine and deep learning related to biological sequence data and then summarizes the many applications in this field, which span from predicting the immunological status of a host to the antigen specificity of individual receptors and the engineering of immunotherapeutics.
Collapse
Affiliation(s)
- Margarita Pertseva
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; .,Life Science Zurich Graduate School, ETH Zurich and University of Zurich, 8006 Zurich, Switzerland
| | - Beichen Gao
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland;
| | - Daniel Neumeier
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland;
| | - Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; .,Department of Pathology and Immunology, University of Geneva, 1205 Geneva, Switzerland.,Department of Biology, Institute of Microbiology and Immunology, ETH Zurich, 8093 Zurich, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland;
| |
Collapse
|
26
|
Grimsholm O, Piano Mortari E, Davydov AN, Shugay M, Obraztsova AS, Bocci C, Marasco E, Marcellini V, Aranburu A, Farroni C, Silvestris DA, Cristofoletti C, Giorda E, Scarsella M, Cascioli S, Barresi S, Lougaris V, Plebani A, Cancrini C, Finocchi A, Moschese V, Valentini D, Vallone C, Signore F, de Vincentiis G, Zaffina S, Russo G, Gallo A, Locatelli F, Tozzi AE, Tartaglia M, Chudakov DM, Carsetti R. The Interplay between CD27 dull and CD27 bright B Cells Ensures the Flexibility, Stability, and Resilience of Human B Cell Memory. Cell Rep 2021; 30:2963-2977.e6. [PMID: 32130900 DOI: 10.1016/j.celrep.2020.02.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/23/2019] [Accepted: 02/05/2020] [Indexed: 10/24/2022] Open
Abstract
Memory B cells (MBCs) epitomize the adaptation of the immune system to the environment. We identify two MBC subsets in peripheral blood, CD27dull and CD27bright MBCs, whose frequency changes with age. Heavy chain variable region (VH) usage, somatic mutation frequency replacement-to-silent ratio, and CDR3 property changes, reflecting consecutive selection of highly antigen-specific, low cross-reactive antibody variants, all demonstrate that CD27dull and CD27bright MBCs represent sequential MBC developmental stages, and stringent antigen-driven pressure selects CD27dull into the CD27bright MBC pool. Dynamics of human MBCs are exploited in pregnancy, when 50% of maternal MBCs are lost and CD27dull MBCs transit to the more differentiated CD27bright stage. In the postpartum period, the maternal MBC pool is replenished by the expansion of persistent CD27dull clones. Thus, the stability and flexibility of human B cell memory is ensured by CD27dull MBCs that expand and differentiate in response to change.
Collapse
Affiliation(s)
- Ola Grimsholm
- B Cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy; Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30 Gothenburg, Sweden
| | - Eva Piano Mortari
- B Cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy
| | - Alexey N Davydov
- Central European Institute of Technology, 625 00 Brno, Czech Republic
| | - Mikhail Shugay
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, 101000 Moscow, Russia
| | - Anna S Obraztsova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, 101000 Moscow, Russia
| | - Chiara Bocci
- B Cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy
| | - Emiliano Marasco
- Division of Rheumatology, Bambino Gesù Children's Hospital IRCCS, 00146 Roma, Italy
| | - Valentina Marcellini
- B Cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy
| | - Alaitz Aranburu
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30 Gothenburg, Sweden
| | - Chiara Farroni
- B Cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy
| | | | | | - Ezio Giorda
- B Cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy
| | - Marco Scarsella
- B Cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy
| | - Simona Cascioli
- B Cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy
| | - Sabina Barresi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, 00146 Rome, Italy
| | - Vassilios Lougaris
- Department of Experimental and Clinical Sciences, University of Brescia, 25121 Brescia, Italy
| | - Alessandro Plebani
- DPUO, Division of Immuno-Infectivology, University Department of Pediatrics, 00146 Bambino Gesù Children's Hospital, Rome, Italy
| | - Caterina Cancrini
- DPUO, Division of Immuno-Infectivology, University Department of Pediatrics, 00146 Bambino Gesù Children's Hospital, Rome, Italy; School of Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Andrea Finocchi
- DPUO, Division of Immuno-Infectivology, University Department of Pediatrics, 00146 Bambino Gesù Children's Hospital, Rome, Italy; School of Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Viviana Moschese
- Pediatric Immunology Unit, Policlinico Tor Vergata, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Diletta Valentini
- Pediatric and Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Cristina Vallone
- Department of Obstetrics and Gynaecology, Misericordia Hospital Grosseto, Usl Toscana Sud-est, 58100 Grosseto, Italy
| | - Fabrizio Signore
- Department of Obstetrics and Gynaecology, Misericordia Hospital Grosseto, Usl Toscana Sud-est, 58100 Grosseto, Italy
| | | | - Salvatore Zaffina
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | | | - Angela Gallo
- Oncohaematology Department, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy
| | - Franco Locatelli
- Oncohaematology Department, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy; Department of Pediatrics, Sapienza, University of Rome, 00161 Rome, Italy
| | - Alberto E Tozzi
- Multifactorial Disease and Complex Phenotype Research Area, Bambino Gesù Children's Hospital, IRCSS, 00146 Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, 00146 Rome, Italy
| | - Dmitriy M Chudakov
- Central European Institute of Technology, 625 00 Brno, Czech Republic; Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, 101000 Moscow, Russia
| | - Rita Carsetti
- B Cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy; Diagnostic Immunology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy.
| |
Collapse
|
27
|
Raybould MIJ, Marks C, Kovaltsuk A, Lewis AP, Shi J, Deane CM. Public Baseline and shared response structures support the theory of antibody repertoire functional commonality. PLoS Comput Biol 2021; 17:e1008781. [PMID: 33647011 PMCID: PMC7951972 DOI: 10.1371/journal.pcbi.1008781] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 03/11/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
The naïve antibody/B-cell receptor (BCR) repertoires of different individuals ought to exhibit significant functional commonality, given that most pathogens trigger an effective antibody response to immunodominant epitopes. Sequence-based repertoire analysis has so far offered little evidence for this phenomenon. For example, a recent study estimated the number of shared ('public') antibody clonotypes in circulating baseline repertoires to be around 0.02% across ten unrelated individuals. However, to engage the same epitope, antibodies only require a similar binding site structure and the presence of key paratope interactions, which can occur even when their sequences are dissimilar. Here, we search for evidence of geometric similarity/convergence across human antibody repertoires. We first structurally profile naïve ('baseline') antibody diversity using snapshots from 41 unrelated individuals, predicting all modellable distinct structures within each repertoire. This analysis uncovers a high (much greater than random) degree of structural commonality. For instance, around 3% of distinct structures are common to the ten most diverse individual samples ('Public Baseline' structures). Our approach is the first computational method to find levels of BCR commonality commensurate with epitope immunodominance and could therefore be harnessed to find more genetically distant antibodies with same-epitope complementarity. We then apply the same structural profiling approach to repertoire snapshots from three individuals before and after flu vaccination, detecting a convergent structural drift indicative of recognising similar epitopes ('Public Response' structures). We show that Antibody Model Libraries derived from Public Baseline and Public Response structures represent a powerful geometric basis set of low-immunogenicity candidates exploitable for general or target-focused therapeutic antibody screening.
Collapse
Affiliation(s)
- Matthew I. J. Raybould
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Claire Marks
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Aleksandr Kovaltsuk
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Alan P. Lewis
- Data and Computational Sciences, GlaxoSmithKline Research and Development, Stevenage, United Kingdom
| | - Jiye Shi
- Chemistry Department, UCB Pharma, Slough, United Kingdom
| | - Charlotte M. Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
Hong B, Wang L, Huang C, Hong X, Liu A, Li Q, Liu Q, Su L, Wang L, Wang C, Ying T. Decrease of Clone Diversity in IgM Repertoires of HBV Chronically Infected Individuals With High Level of Viral Replication. Front Microbiol 2021; 11:615669. [PMID: 33519772 PMCID: PMC7843509 DOI: 10.3389/fmicb.2020.615669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/22/2020] [Indexed: 01/05/2023] Open
Abstract
High-throughput antibody sequencing allows in-depth insights into human antibody repertoires. To investigate the characteristics of antibody repertoires in patients with chronic HBV infection, we performed Illumina sequencing and IMGT/HighV-QUEST analysis of B lymphocytes from healthy adults and the HBV carriers with high or low level of viral replication. The comparative study revealed high levels of similarity between the IgM and IgG repertoires of the HBV carriers and the healthy adults, including the somatic mutations in V regions, the average CDR3 length, and the occurrence of junctional modifications. Nevertheless, the diversity of the unique clones decreased and some clusters of unique clones expanded in the IgM repertoire of chronic HBV carriers (CHB) compared with healthy adults (HH) and inactive HBV carriers (IHB). Such difference in clone diversity and expansion was not observed in the IgG repertoires of the three populations. More shared antibody clones were found between the IgM repertoires of IHB and HH than that found between CHB and HH (7079 clones vs. 2304 clones). Besides, the biased used IGHD genes were IGHD2-2 and IGHD3-3 in CHB library but were IGHD3-10 and IGHD3-22 in IHB and HH library. In contrast, for IgG repertories, the preferred used VDJ genes were similar in all the three populations. These results indicated that low level of serum HBV might not induce significant changes in BCR repertoires, and high level of HBV replication could have more impacts on IgM repertories than IgG repertoires. Taken together, our findings provide a better understanding of the antibody repertoires of HBV chronically infected individuals.
Collapse
Affiliation(s)
- Binbin Hong
- Central Laboratory, Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Lizhi Wang
- Traditional Chinese Medicine Department, Rehabilitation Hospital, Quanzhou, China
| | - Chunlan Huang
- Traditional Chinese Medicine Department, Rehabilitation Hospital, Quanzhou, China
| | - Xiaoju Hong
- Traditional Chinese Medicine Department, Rehabilitation Hospital, Quanzhou, China
| | - Alan Liu
- Traditional Chinese Medicine Department, Rehabilitation Hospital, Quanzhou, China
| | - Qiulan Li
- Central Laboratory, Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Qiaoling Liu
- Central Laboratory, Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Lili Su
- Central Laboratory, Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Lixing Wang
- Central Laboratory, Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Chunyu Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Doepker LE, Danon S, Harkins E, Ralph DK, Yaffe Z, Garrett ME, Dhar A, Wagner C, Stumpf MM, Arenz D, Williams JA, Jaoko W, Mandaliya K, Lee KK, Matsen FA, Overbaugh JM. Development of antibody-dependent cell cytotoxicity function in HIV-1 antibodies. eLife 2021; 10:e63444. [PMID: 33427196 PMCID: PMC7884072 DOI: 10.7554/elife.63444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/08/2021] [Indexed: 11/27/2022] Open
Abstract
A prerequisite for the design of an HIV vaccine that elicits protective antibodies is understanding the developmental pathways that result in desirable antibody features. The development of antibodies that mediate antibody-dependent cellular cytotoxicity (ADCC) is particularly relevant because such antibodies have been associated with HIV protection in humans. We reconstructed the developmental pathways of six human HIV-specific ADCC antibodies using longitudinal antibody sequencing data. Most of the inferred naive antibodies did not mediate detectable ADCC. Gain of antigen binding and ADCC function typically required mutations in complementarity determining regions of one or both chains. Enhancement of ADCC potency often required additional mutations in framework regions. Antigen binding affinity and ADCC activity were correlated, but affinity alone was not sufficient to predict ADCC potency. Thus, elicitation of broadly active ADCC antibodies may require mutations that enable high-affinity antigen recognition along with mutations that optimize factors contributing to functional ADCC activity.
Collapse
Affiliation(s)
- Laura E Doepker
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Sonja Danon
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Elias Harkins
- Public Health Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Duncan K Ralph
- Public Health Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Zak Yaffe
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Medical Scientist Training Program, University of Washington School of MedicineSeattleUnited States
| | - Meghan E Garrett
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Molecular and Cellular Biology Graduate Program, University of Washington and Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Amrit Dhar
- Public Health Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Department of Statistics, University of WashingtonSeattleUnited States
| | - Cassia Wagner
- Medical Scientist Training Program, University of Washington School of MedicineSeattleUnited States
| | - Megan M Stumpf
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Dana Arenz
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - James A Williams
- Department of Medicinal Chemistry, University of WashingtonSeattleUnited States
| | - Walter Jaoko
- Department of Medicinal Microbiology, University of NairobiNairobiKenya
| | - Kishor Mandaliya
- Coast Provincial General Hospital, Women’s Health ProjectMombasaKenya
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of WashingtonSeattleUnited States
| | - Frederick A Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Julie M Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Public Health Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
30
|
Zhang S, Zhang S, Lin Z, Zhang X, Dou X, Zhou X, Wang X, Wang Z, Zhang Q. Deep sequencing reveals the skewed B-cell receptor repertoire in plaques and the association between pathogens and atherosclerosis. Cell Immunol 2020; 360:104256. [PMID: 33360167 DOI: 10.1016/j.cellimm.2020.104256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/11/2020] [Accepted: 11/21/2020] [Indexed: 12/22/2022]
Abstract
The immune/inflammatory responses regulated by B cells are the critical determinants of atherosclerosis. B-cell receptor (BCR) plays pivotal roles in regulating B cell function. However, the composition and molecular characteristics of the BCR repertoire in atherosclerotic patients have not been fully elucidated. Herein we analyzed BCR repertoire in circulation and plaques of atherosclerotic patients by sequencing the BCR heavy chain complement determining region 3 (BCRH CDR3). Our data showed that in plaques, BCR repertoire was dramatically skewed and their combinations and diversity were significantly decreased, while the frequency of public and dominant B-cell clones was markedly increased. Additionally, BCRH CDR3 in plaques had higher positive selection pressure than that in the peripheral blood of normal subjects and atherosclerotic patients. Moreover, the BCRH CDR3 of some B cell clones specifically expanded in plaques were similar to that of antibodies which recognized certain pathogens including Influenza A virus, implying the possibility of the association between pathogens and atherosclerosis. The present study contributed to understand the roles of B cells in atherosclerosis. The design of specific antibodies based on the B cell clones specifically expanded in plaques might yield useful tools to reveal the pathogenesis of atherosclerosis, assess or alleviate the progression of atherosclerosis.
Collapse
Affiliation(s)
- Shucui Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shigang Zhang
- Neurosurgical Department, Liaocheng People's Hospital, Liaocheng, China
| | - Zongwei Lin
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | | | - Xinyao Dou
- Shandong Experimental High School, Jinan, China
| | - Xiaoming Zhou
- Division of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaowei Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhe Wang
- Division of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Qunye Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
31
|
Zhou JQ, Kleinstein SH. Position-Dependent Differential Targeting of Somatic Hypermutation. THE JOURNAL OF IMMUNOLOGY 2020; 205:3468-3479. [PMID: 33188076 DOI: 10.4049/jimmunol.2000496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/04/2020] [Indexed: 01/28/2023]
Abstract
Somatic hypermutation (SHM) generates much of the Ab diversity necessary for affinity maturation and effective humoral immunity. The activation-induced cytidine deaminase-induced DNA lesions and error-prone repair that underlie SHM are known to exhibit intrinsic biases when targeting the Ig sequences. Computational models for SHM targeting often model the targeting probability of a nucleotide in a motif-based fashion, assuming that the same DNA motif is equally likely to be targeted regardless of its position along the Ig sequence. The validity of this assumption, however, has not been rigorously studied in vivo. In this study, by analyzing a large collection of 956,157 human Ig sequences while controlling for the confounding influence of selection, we show that the likelihood of a DNA 5-mer motif being targeted by SHM is not the same at different positions in the same Ig sequence. We found position-dependent differential SHM targeting for about three quarters of the 38 and 269 unique motifs from more than half of the 292 and 1912 motif-allele pairs analyzed using productive and nonproductive Ig sequences, respectively. The direction of the differential SHM targeting was largely conserved across individuals with no allele-specific effect within an IgH variable gene family, but was not consistent with general decay of SHM targeting with increasing distance from the transcription start site. However, SHM targeting did correlate positively with the mutability of the wider sequence neighborhood surrounding the motif. These findings provide insights and future directions for computational efforts toward modeling SHM.
Collapse
Affiliation(s)
- Julian Q Zhou
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511; and
| | - Steven H Kleinstein
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511; and .,Department of Pathology and Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511
| |
Collapse
|
32
|
Jiang R, Fichtner ML, Hoehn KB, Pham MC, Stathopoulos P, Nowak RJ, Kleinstein SH, O'Connor KC. Single-cell repertoire tracing identifies rituximab-resistant B cells during myasthenia gravis relapses. JCI Insight 2020; 5:136471. [PMID: 32573488 DOI: 10.1172/jci.insight.136471] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Rituximab, a B cell-depleting therapy, is indicated for treating a growing number of autoantibody-mediated autoimmune disorders. However, relapses can occur after treatment, and autoantibody-producing B cell subsets may be found during relapses. It is not understood whether these autoantibody-producing B cell subsets emerge from the failed depletion of preexisting B cells or are generated de novo. To further define the mechanisms that cause postrituximab relapse, we studied patients with autoantibody-mediated muscle-specific kinase (MuSK) myasthenia gravis (MG) who relapsed after treatment. We carried out single-cell transcriptional and B cell receptor profiling on longitudinal B cell samples. We identified clones present before therapy that persisted during relapse. Persistent B cell clones included both antibody-secreting cells and memory B cells characterized by gene expression signatures associated with B cell survival. A subset of persistent antibody-secreting cells and memory B cells were specific for the MuSK autoantigen. These results demonstrate that rituximab is not fully effective at eliminating autoantibody-producing B cells and provide a mechanistic understanding of postrituximab relapse in MuSK MG.
Collapse
Affiliation(s)
| | - Miriam L Fichtner
- Department of Immunobiology and.,Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kenneth B Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Panos Stathopoulos
- Department of Immunobiology and.,Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Richard J Nowak
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Steven H Kleinstein
- Department of Immunobiology and.,Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, New Haven, Connecticut, USA.,Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kevin C O'Connor
- Department of Immunobiology and.,Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
33
|
Wendel BS, Fu Y, He C, Hernandez SM, Qu M, Zhang Z, Jiang Y, Han X, Xu J, Ding H, Jiang N, Shang H. Rapid HIV Progression Is Associated with Extensive Ongoing Somatic Hypermutation. THE JOURNAL OF IMMUNOLOGY 2020; 205:587-594. [PMID: 32591400 DOI: 10.4049/jimmunol.1901161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 05/15/2020] [Indexed: 12/24/2022]
Abstract
The Ab response to HIV is of great interest, particularly in the context of a protective vaccine and broadly neutralizing Abs, but research is typically geared toward elite controllers because of their ability to successfully control the virus. In this study, we studied the evolution of the Ab repertoire over the first year of HIV infection in people classified as rapid progressors (RP) compared with typical progressors. HIV RPs are an important yet understudied group of HIV patients classified by a rapid decline in CD4 counts and accelerated development of AIDS. We found that the global IgG somatic hypermutation load negatively correlated with disease progression, possibly because of exaggerated isotype switching of unmutated sequences in patients with low CD4 counts. We measured Ab sequence evolution over time using longitudinal samples taken during the early stages of infection and 1 year postinfection. Within clonal lineages spanning both timepoints, visit 2-derived sequences harbored considerably more mutations than their visit 1 relatives. Despite extensive ongoing somatic hypermutation, the initially strong signs of Ag selection pressure observed in visit 1-derived sequences decayed by visit 2. These data suggest that excessive immune activation in RPs leads to a hyperactive B cell response that fails to confer protection.
Collapse
Affiliation(s)
- Ben S Wendel
- McKetta Department of Chemical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Yajing Fu
- Key Laboratory of AIDS Immunology of National Health Commission (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Chenfeng He
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712; and
| | - Stefany M Hernandez
- McKetta Department of Chemical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Mingjuan Qu
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712; and
| | - Zining Zhang
- Key Laboratory of AIDS Immunology of National Health Commission (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yongjun Jiang
- Key Laboratory of AIDS Immunology of National Health Commission (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Xiaoxu Han
- Key Laboratory of AIDS Immunology of National Health Commission (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Junjie Xu
- Key Laboratory of AIDS Immunology of National Health Commission (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Haibo Ding
- Key Laboratory of AIDS Immunology of National Health Commission (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ning Jiang
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712; and .,Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712
| | - Hong Shang
- Key Laboratory of AIDS Immunology of National Health Commission (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; .,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
34
|
Inter- and intraspecies comparison of phylogenetic fingerprints and sequence diversity of immunoglobulin variable genes. Immunogenetics 2020; 72:279-294. [PMID: 32367185 DOI: 10.1007/s00251-020-01164-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
Abstract
Protection and neutralization of a vast array of pathogens is accomplished by the tremendous diversity of the B cell receptor (BCR) repertoire. For jawed vertebrates, this diversity is initiated via the somatic recombination of immunoglobulin (Ig) germline elements. While it is clear that the number of these germline segments differs from species to species, the extent of cross-species sequence diversity remains largely uncharacterized. Here we use extensive computational and statistical methods to investigate the sequence diversity and evolutionary relationship between Ig variable (V), diversity (D), and joining (J) germline segments across nine commonly studied species ranging from zebrafish to human. Metrics such as guanine-cytosine (GC) content showed low redundancy across Ig germline genes within a given species. Other comparisons, including amino acid motifs, evolutionary selection, and sequence diversity, revealed species-specific properties. Additionally, we showed that the germline-encoded diversity differs across antibody (recombined V-D-J) repertoires of various B cell subsets. To facilitate future comparative immunogenomics analysis, we created VDJgermlines, an R package that contains the germline sequences from multiple species. Our study informs strategies for the humanization and engineering of therapeutic antibodies.
Collapse
|
35
|
Dynamics of heavy chain junctional length biases in antibody repertoires. Commun Biol 2020; 3:207. [PMID: 32358517 PMCID: PMC7195405 DOI: 10.1038/s42003-020-0931-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 04/01/2020] [Indexed: 11/21/2022] Open
Abstract
Antibody variable domain sequence diversity is generated by recombination of germline segments. The third complementarity-determining region of the heavy chain (CDR H3) is the region of highest sequence diversity and is formed by the joining of heavy chain VH, DH and JH germline segments combined with random nucleotide trimming and additions between these segments. We show that CDR H3 and junctional segment length distributions are biased in human antibody repertoires as a function of VH, VL and JH germline segment utilization. Most length biases are apparent in the naive and antigen experienced B cell compartments but not in nonproductive recombination products, indicating B cell selection as a major driver of these biases. Our findings reveal biases in the antibody CDR H3 diversity landscape shaped by VH, VL, and JH germline segment use during naive and antigen-experienced repertoire selection. Sankar et al. investigate the junctional length biases (determining antibody binding potential) as a function of germline gene usage in antibody repertoires. They show that CDR H3 and junction length are biased by VH, VL, and JH germline segment usage and these biases are apparent in both naive and antigen-experienced repertoires but not in non-productive repertoires.
Collapse
|
36
|
Fowler A, Galson JD, Trück J, Kelly DF, Lunter G. Inferring B cell specificity for vaccines using a Bayesian mixture model. BMC Genomics 2020; 21:176. [PMID: 32087698 PMCID: PMC7036227 DOI: 10.1186/s12864-020-6571-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 02/10/2020] [Indexed: 12/30/2022] Open
Abstract
Background Vaccines have greatly reduced the burden of infectious disease, ranking in their impact on global health second only after clean water. Most vaccines confer protection by the production of antibodies with binding affinity for the antigen, which is the main effector function of B cells. This results in short term changes in the B cell receptor (BCR) repertoire when an immune response is launched, and long term changes when immunity is conferred. Analysis of antibodies in serum is usually used to evaluate vaccine response, however this is limited and therefore the investigation of the BCR repertoire provides far more detail for the analysis of vaccine response. Results Here, we introduce a novel Bayesian model to describe the observed distribution of BCR sequences and the pattern of sharing across time and between individuals, with the goal to identify vaccine-specific BCRs. We use data from two studies to assess the model and estimate that we can identify vaccine-specific BCRs with 69% sensitivity. Conclusion Our results demonstrate that statistical modelling can capture patterns associated with vaccine response and identify vaccine specific B cells in a range of different data sets. Additionally, the B cells we identify as vaccine specific show greater levels of sequence similarity than expected, suggesting that there are additional signals of vaccine response, not currently considered, which could improve the identification of vaccine specific B cells.
Collapse
Affiliation(s)
- Anna Fowler
- Department of Biostatistics, University of Liverpool, Liverpool, UK.
| | - Jacob D Galson
- University Children's Hospital Zurich and the Children's Research Center, University of Zurich, Zurich, Switzerland
| | - Johannes Trück
- University Children's Hospital Zurich and the Children's Research Center, University of Zurich, Zurich, Switzerland
| | - Dominic F Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Center, Oxford, UK
| | - Gerton Lunter
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
37
|
Mitsunaga EM, Snyder MP. Deep Characterization of the Human Antibody Response to Natural Infection Using Longitudinal Immune Repertoire Sequencing. Mol Cell Proteomics 2020; 19:278-293. [PMID: 31767621 PMCID: PMC7000125 DOI: 10.1074/mcp.ra119.001633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/30/2019] [Indexed: 01/01/2023] Open
Abstract
Human antibody response studies are largely restricted to periods of high immune activity (e.g. vaccination). To comprehensively understand the healthy B cell immune repertoire and how this changes over time and through natural infection, we conducted immune repertoire RNA sequencing on flow cytometry-sorted B cell subsets to profile a single individual's antibodies over 11 months through two periods of natural viral infection. We found that 1) a baseline of healthy variable (V) gene usage in antibodies exists and is stable over time, but antibodies in memory cells consistently have a different usage profile relative to earlier B cell stages; 2) a single complementarity-determining region 3 (CDR3) is potentially generated from more than one VJ gene combination; and 3) IgG and IgA antibody transcripts are found at low levels in early human B cell development, suggesting that class switching may occur earlier than previously realized. These findings provide insight into immune repertoire stability, response to natural infections, and human B cell development.
Collapse
Affiliation(s)
- Erin M Mitsunaga
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305.
| |
Collapse
|
38
|
Sharonov GV, Serebrovskaya EO, Yuzhakova DV, Britanova OV, Chudakov DM. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat Rev Immunol 2020; 20:294-307. [DOI: 10.1038/s41577-019-0257-x] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
|
39
|
Nourmohammad A, Otwinowski J, Łuksza M, Mora T, Walczak AM. Fierce Selection and Interference in B-Cell Repertoire Response to Chronic HIV-1. Mol Biol Evol 2020; 36:2184-2194. [PMID: 31209469 PMCID: PMC6759071 DOI: 10.1093/molbev/msz143] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During chronic infection, HIV-1 engages in a rapid coevolutionary arms race with the host's adaptive immune system. While it is clear that HIV exerts strong selection on the adaptive immune system, the characteristics of the somatic evolution that shape the immune response are still unknown. Traditional population genetics methods fail to distinguish chronic immune response from healthy repertoire evolution. Here, we infer the evolutionary modes of B-cell repertoires and identify complex dynamics with a constant production of better B-cell receptor (BCR) mutants that compete, maintaining large clonal diversity and potentially slowing down adaptation. A substantial fraction of mutations that rise to high frequencies in pathogen-engaging CDRs of BCRs are beneficial, in contrast to many such changes in structurally relevant frameworks that are deleterious and circulate by hitchhiking. We identify a pattern where BCRs in patients who experience larger viral expansions undergo stronger selection with a rapid turnover of beneficial mutations due to clonal interference in their CDR3 regions. Using population genetics modeling, we show that the extinction of these beneficial mutations can be attributed to the rise of competing beneficial alleles and clonal interference. The picture is of a dynamic repertoire, where better clones may be outcompeted by new mutants before they fix.
Collapse
Affiliation(s)
- Armita Nourmohammad
- Max Planck Institute for Dynamics and Self-organization, Göttingen, Germany.,Department of Physics, University of Washington, Seattle, WA
| | - Jakub Otwinowski
- Max Planck Institute for Dynamics and Self-organization, Göttingen, Germany
| | - Marta Łuksza
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Thierry Mora
- Laboratoire de Physique Statistique, CNRS, Sorbonne University, Paris-Diderot University, École Normale Supérieure (PSL), Paris, France
| | - Aleksandra M Walczak
- Laboratoire de Physique Théorique, CNRS, Sorbonne University, École Normale Supérieure (PSL), Paris, France
| |
Collapse
|
40
|
Niu X, Yan Q, Yao Z, Zhang F, Qu L, Wang C, Wang C, Lei H, Chen C, Liang R, Luo J, Wang Q, Zhao L, Zhang Y, Luo K, Wang L, Wu H, Liu T, Li P, Zheng Z, Tan YJ, Feng L, Zhang Z, Han J, Zhang F, Chen L. Longitudinal analysis of the antibody repertoire of a Zika virus-infected patient revealed dynamic changes in antibody response. Emerg Microbes Infect 2020; 9:111-123. [PMID: 31906823 PMCID: PMC6968589 DOI: 10.1080/22221751.2019.1701953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Zika virus (ZIKV) is a mosquito-borne flavivirus that causes neonatal abnormalities and other disorders. Antibodies to the ZIKV envelope (E) protein can block infection. In this study, next-generation sequencing (NGS) of immunoglobulin heavy chain (IgH) mRNA transcripts was combined with single-cell PCR cloning of E-binding monoclonal antibodies for analysing antibody response in a patient from the early stages of infection to more than one year after the clearance of the virus. The patient's IgH repertoire 14 and 64 days after symptom onset showed dramatic dominant clonal expansion but low clonal diversity. IgH repertoire 6 months after disease-free status had few dominant clones but increased diversity. E-binding antibodies appeared abundantly in the repertoire during the early stages of infection but quickly declined after clearance of the virus. Certain VH genes such as VH5-10-1 and VH4-39 appeared to be preferentially enlisted for a rapid antibody response to ZIKV infection. Most of these antibodies require relatively few somatic hypermutations to acquire the ability to bind to the E protein, pointing to a possible mechanism for rapid defence against ZIKV infection. This study provides a unique and holistic view of the dynamic changes and characteristics of the antibody response to ZIKV infection.
Collapse
Affiliation(s)
- Xuefeng Niu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Qihong Yan
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Zhipeng Yao
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, People's Republic of China
| | - Fan Zhang
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, People's Republic of China
| | - Linbing Qu
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Chunlin Wang
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | - Chengrui Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Hui Lei
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Chaoming Chen
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Renshan Liang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jia Luo
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Qian Wang
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Lingzhai Zhao
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yudi Zhang
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Kun Luo
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Longyu Wang
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, People's Republic of China
| | - Hongkai Wu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Tingting Liu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Pingchao Li
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Zhiqiang Zheng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore, Singapore
| | - Yee Joo Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore, Singapore
| | - Liqiang Feng
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Zhenhai Zhang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian Han
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | - Fuchun Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China.,Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
41
|
Sevy AM, Soto C, Bombardi RG, Meiler J, Crowe JE. Immune repertoire fingerprinting by principal component analysis reveals shared features in subject groups with common exposures. BMC Bioinformatics 2019; 20:629. [PMID: 31801472 PMCID: PMC6894320 DOI: 10.1186/s12859-019-3281-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 11/18/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Advances in next-generation sequencing (NGS) of antibody repertoires have led to an explosion in B cell receptor sequence data from donors with many different disease states. These data have the potential to detect patterns of immune response across populations. However, to this point it has been difficult to interpret such patterns of immune response between disease states in the absence of functional data. There is a need for a robust method that can be used to distinguish general patterns of immune responses at the antibody repertoire level. RESULTS We developed a method for reducing the complexity of antibody repertoire datasets using principal component analysis (PCA) and refer to our method as "repertoire fingerprinting." We reduce the high dimensional space of an antibody repertoire to just two principal components that explain the majority of variation in those repertoires. We show that repertoires from individuals with a common experience or disease state can be clustered by their repertoire fingerprints to identify common antibody responses. CONCLUSIONS Our repertoire fingerprinting method for distinguishing immune repertoires has implications for characterizing an individual disease state. Methods to distinguish disease states based on pattern recognition in the adaptive immune response could be used to develop biomarkers with diagnostic or prognostic utility in patient care. Extending our analysis to larger cohorts of patients in the future should permit us to define more precisely those characteristics of the immune response that result from natural infection or autoimmunity.
Collapse
Affiliation(s)
- Alexander M Sevy
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN, 37235, USA.,Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Cinque Soto
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Robin G Bombardi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jens Meiler
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN, 37235, USA.,Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - James E Crowe
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN, 37235, USA. .,Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
42
|
A Recombinant Influenza A/H1N1 Carrying A Short Immunogenic Peptide of MERS-CoV as Bivalent Vaccine in BALB/c Mice. Pathogens 2019; 8:pathogens8040281. [PMID: 31810359 PMCID: PMC6963271 DOI: 10.3390/pathogens8040281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/21/2019] [Accepted: 11/30/2019] [Indexed: 01/26/2023] Open
Abstract
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) became a global human health threat since its first documentation in humans in 2012. An efficient vaccine for the prophylaxis of humans in hotspots of the infection (e.g., Saudi Arabia) is necessary but no commercial vaccines are yet approved. In this study, a chimeric DNA construct was designed to encode an influenza A/H1N1 NA protein which is flanking immunogenic amino acids (aa) 736–761 of MERS-CoV spike protein. Using the generated chimeric construct, a novel recombinant vaccine strain against pandemic influenza A virus (H1N1pdm09) and MERS-CoV was generated (chimeric bivalent 5 + 3). The chimeric bivalent 5 + 3 vaccine strain comprises a recombinant PR8-based vaccine, expressing the PB1, HA, and chimeric NA of pandemic 2009 H1N1. Interestingly, an increase in replication efficiency of the generated vaccine strain was observed when compared to the PR8-based 5 + 3 H1N1pdm09 vaccine strain that lacks the MERS-CoV spike peptide insert. In BALB/c mice, the inactivated chimeric bivalent vaccine induced potent and specific neutralizing antibodies against MERS-CoV and H1N1pdm09. This novel approach succeeded in developing a recombinant influenza virus with potential use as a bivalent vaccine against H1N1pdm09 and MERS-CoV. This approach provides a basis for the future development of chimeric influenza-based vaccines against MERS-CoV and other viruses.
Collapse
|
43
|
Hoehn KB, Vander Heiden JA, Zhou JQ, Lunter G, Pybus OG, Kleinstein SH. Repertoire-wide phylogenetic models of B cell molecular evolution reveal evolutionary signatures of aging and vaccination. Proc Natl Acad Sci U S A 2019; 116:22664-22672. [PMID: 31636219 PMCID: PMC6842591 DOI: 10.1073/pnas.1906020116] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In order to produce effective antibodies, B cells undergo rapid somatic hypermutation (SHM) and selection for binding affinity to antigen via a process called affinity maturation. The similarities between this process and evolution by natural selection have led many groups to use phylogenetic methods to characterize the development of immunological memory, vaccination, and other processes that depend on affinity maturation. However, these applications are limited by the fact that most phylogenetic models are designed to be applied to individual lineages comprising genetically diverse sequences, while B cell repertoires often consist of hundreds to thousands of separate low-diversity lineages. Further, several features of affinity maturation violate important assumptions in standard phylogenetic models. Here, we introduce a hierarchical phylogenetic framework that integrates information from all lineages in a repertoire to more precisely estimate model parameters while simultaneously incorporating the unique features of SHM. We demonstrate the power of this repertoire-wide approach by characterizing previously undescribed phenomena in affinity maturation. First, we find evidence consistent with age-related changes in SHM hot-spot targeting. Second, we identify a consistent relationship between increased tree length and signs of increased negative selection, apparent in the repertoires of recently vaccinated subjects and those without any known recent infections or vaccinations. This suggests that B cell lineages shift toward negative selection over time as a general feature of affinity maturation. Our study provides a framework for undertaking repertoire-wide phylogenetic testing of SHM hypotheses and provides a means of characterizing dynamics of mutation and selection during affinity maturation.
Collapse
Affiliation(s)
- Kenneth B Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520
| | - Jason A Vander Heiden
- Department of Bioinformatics & Computational Biology, Genentech, South San Francisco, CA 94080
| | - Julian Q Zhou
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511
| | - Gerton Lunter
- Wellcome Centre for Human Genetics, Oxford OX3 7BN, United Kingdom
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Steven H Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520;
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511
| |
Collapse
|
44
|
Olson BJ, Moghimi P, Schramm CA, Obraztsova A, Ralph D, Vander Heiden JA, Shugay M, Shepherd AJ, Lees W, Matsen FA. sumrep: A Summary Statistic Framework for Immune Receptor Repertoire Comparison and Model Validation. Front Immunol 2019; 10:2533. [PMID: 31736960 PMCID: PMC6838214 DOI: 10.3389/fimmu.2019.02533] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/11/2019] [Indexed: 12/28/2022] Open
Abstract
The adaptive immune system generates an incredible diversity of antigen receptors for B and T cells to keep dangerous pathogens at bay. The DNA sequences coding for these receptors arise by a complex recombination process followed by a series of productivity-based filters, as well as affinity maturation for B cells, giving considerable diversity to the circulating pool of receptor sequences. Although these datasets hold considerable promise for medical and public health applications, the complex structure of the resulting adaptive immune receptor repertoire sequencing (AIRR-seq) datasets makes analysis difficult. In this paper we introduce sumrep, an R package that efficiently performs a wide variety of repertoire summaries and comparisons, and show how sumrep can be used to perform model validation. We find that summaries vary in their ability to differentiate between datasets, although many are able to distinguish between covariates such as donor, timepoint, and cell type for BCR and TCR repertoires. We show that deletion and insertion lengths resulting from V(D)J recombination tend to be more discriminative characterizations of a repertoire than summaries that describe the amino acid composition of the CDR3 region. We also find that state-of-the-art generative models excel at recapitulating gene usage and recombination statistics in a given experimental repertoire, but struggle to capture many physiochemical properties of real repertoires.
Collapse
Affiliation(s)
- Branden J Olson
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Statistics, University of Washington, Seattle, WA, United States
| | - Pejvak Moghimi
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Anna Obraztsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Duncan Ralph
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Jason A Vander Heiden
- Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, CA, United States
| | - Mikhail Shugay
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Department of Molecular Technologies, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Adrian J Shepherd
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - William Lees
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | | |
Collapse
|
45
|
Chaaya N, Shahsavarian MA, Maffucci I, Friboulet A, Offmann B, Léger JB, Rousseau S, Avalle B, Padiolleau-Lefèvre S. Genetic background and immunological status influence B cell repertoire diversity in mice. Sci Rep 2019; 9:14261. [PMID: 31582818 PMCID: PMC6776527 DOI: 10.1038/s41598-019-50714-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 09/16/2019] [Indexed: 01/08/2023] Open
Abstract
The relationship between the immune repertoire and the physiopathological status of individuals is essential to apprehend the genesis and the evolution of numerous pathologies. Nevertheless, the methodological approaches to understand these complex interactions are challenging. We performed a study evaluating the diversity harbored by different immune repertoires as a function of their physiopathological status. In this study, we base our analysis on a murine scFv library previously described and representing four different immune repertoires: i) healthy and naïve, ii) healthy and immunized, iii) autoimmune prone and naïve, and iv) autoimmune prone and immunized. This library, 2.6 × 109 in size, is submitted to high throughput sequencing (Next Generation Sequencing, NGS) in order to analyze the gene subgroups encoding for immunoglobulins. A comparative study of the distribution of immunoglobulin gene subgroups present in the four libraries has revealed shifts in the B cell repertoire originating from differences in genetic background and immunological status of mice.
Collapse
Affiliation(s)
- Nancy Chaaya
- CNRS UMR 7025, Génie Enzymatique et Cellulaire. Centre de Recherche de Royallieu. CS 60319, 60203, Compiègne Cedex, France
- Sorbonne Universités, Université de Technologie de Compiègne, Génie Enzymatique et Cellulaire. Centre de Recherche de Royallieu. CS 60319, 60203, Compiègne Cedex, France
| | - Melody A Shahsavarian
- CNRS UMR 7025, Génie Enzymatique et Cellulaire. Centre de Recherche de Royallieu. CS 60319, 60203, Compiègne Cedex, France
- Sorbonne Universités, Université de Technologie de Compiègne, Génie Enzymatique et Cellulaire. Centre de Recherche de Royallieu. CS 60319, 60203, Compiègne Cedex, France
| | - Irene Maffucci
- CNRS UMR 7025, Génie Enzymatique et Cellulaire. Centre de Recherche de Royallieu. CS 60319, 60203, Compiègne Cedex, France
- Sorbonne Universités, Université de Technologie de Compiègne, Génie Enzymatique et Cellulaire. Centre de Recherche de Royallieu. CS 60319, 60203, Compiègne Cedex, France
| | - Alain Friboulet
- CNRS UMR 7025, Génie Enzymatique et Cellulaire. Centre de Recherche de Royallieu. CS 60319, 60203, Compiègne Cedex, France
- Sorbonne Universités, Université de Technologie de Compiègne, Génie Enzymatique et Cellulaire. Centre de Recherche de Royallieu. CS 60319, 60203, Compiègne Cedex, France
| | - Bernard Offmann
- Université de Nantes, Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR 6286 CNRS, UFR Sciences et Techniques, 2, chemin de la Houssinière, 44322, Nantes, France
| | - Jean-Benoist Léger
- CNRS UMR 7253, Heudiasyc; Université de Technologie de Compiègne. Centre de Recherche de Royallieu. CS 60319, 60203, Compiègne Cedex, France
- Sorbonne Universités, Université de Technologie de Compiègne, Heudiasyc. Centre de Recherche de Royallieu. CS 60319, 60203, Compiègne Cedex, France
| | - Sylvain Rousseau
- CNRS UMR 7253, Heudiasyc; Université de Technologie de Compiègne. Centre de Recherche de Royallieu. CS 60319, 60203, Compiègne Cedex, France
- Sorbonne Universités, Université de Technologie de Compiègne, Heudiasyc. Centre de Recherche de Royallieu. CS 60319, 60203, Compiègne Cedex, France
| | - Bérangère Avalle
- CNRS UMR 7025, Génie Enzymatique et Cellulaire. Centre de Recherche de Royallieu. CS 60319, 60203, Compiègne Cedex, France
- Sorbonne Universités, Université de Technologie de Compiègne, Génie Enzymatique et Cellulaire. Centre de Recherche de Royallieu. CS 60319, 60203, Compiègne Cedex, France
| | - Séverine Padiolleau-Lefèvre
- CNRS UMR 7025, Génie Enzymatique et Cellulaire. Centre de Recherche de Royallieu. CS 60319, 60203, Compiègne Cedex, France.
- Sorbonne Universités, Université de Technologie de Compiègne, Génie Enzymatique et Cellulaire. Centre de Recherche de Royallieu. CS 60319, 60203, Compiègne Cedex, France.
| |
Collapse
|
46
|
Miyasaka A, Yoshida Y, Wang T, Takikawa Y. Next-generation sequencing analysis of the human T-cell and B-cell receptor repertoire diversity before and after hepatitis B vaccination. Hum Vaccin Immunother 2019; 15:2738-2753. [PMID: 30945971 PMCID: PMC6930056 DOI: 10.1080/21645515.2019.1600987] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The hepatitis B (HB) vaccine effectively prevents the incidence of hepatitis B virus (HBV) infection. However, vaccine failure occurs in 5-10% of the recipients. The precise mechanisms leading to responsiveness to the HB vaccine are poorly understood. High-throughput sequencing (HTS) may help clarify the immune response to the HB vaccine, so we applied this method to investigate whether the HB vaccine induced a specific change in the T-cell receptor (TCR) and B-cell receptor (BCR) repertoires. We conducted HTS of the TCR β chain and BCR IgG heavy (H) chain complementary determining region 3 (CDR3) repertoires in five volunteers before and after the second and third immunizations with the HB vaccine. The HB surface antibody (HBsAb) levels were >10 mIU/ml after the third vaccination in all five participants. The TCR β chain CDR3 repertoire diversity significantly increased, while the BCR IgG H chain CDR3 repertoire diversity significantly decreased after the second vaccination. Although there was no marked inter-individual variation in terms of the numbers of unique reads, it is possible that the TCR β chain and BCR IgG H chain CDR3 repertoires may have changed within the same numbers of unique reads. Our data failed to identify the specific dominant clones that responded to the HB vaccine. In summary, the TCR β chain CDR3 repertoire diversity significantly increased, while the BCR IgG H chain CDR3 repertoire diversity significantly decreased, after the second HB vaccination. These diversity changes might be associated with a better response to the HB vaccine.
Collapse
Affiliation(s)
- Akio Miyasaka
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Morioka, Japan
| | - Yuichi Yoshida
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Morioka, Japan
| | - Ting Wang
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Morioka, Japan
| | - Yasuhiro Takikawa
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Morioka, Japan
| |
Collapse
|
47
|
Andrews SF, Chambers MJ, Schramm CA, Plyler J, Raab JE, Kanekiyo M, Gillespie RA, Ransier A, Darko S, Hu J, Chen X, Yassine HM, Boyington JC, Crank MC, Chen GL, Coates E, Mascola JR, Douek DC, Graham BS, Ledgerwood JE, McDermott AB. Activation Dynamics and Immunoglobulin Evolution of Pre-existing and Newly Generated Human Memory B cell Responses to Influenza Hemagglutinin. Immunity 2019; 51:398-410.e5. [PMID: 31350180 DOI: 10.1016/j.immuni.2019.06.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/26/2019] [Accepted: 06/21/2019] [Indexed: 12/25/2022]
Abstract
Vaccine-induced memory B cell responses to evolving viruses like influenza A involve activation of pre-existing immunity and generation of new responses. To define the contribution of these two types of responses, we analyzed the response to H7N9 vaccination in H7N9-naive adults. We performed comprehensive comparisons at the single-cell level of the kinetics, Ig repertoire, and activation phenotype of established pre-existing memory B cells recognizing conserved epitopes and the newly generated memory B cells directed toward H7 strain-specific epitopes. The recall response to conserved epitopes on H7 HA involved a transient expansion of memory B cells with little observed adaptation. However, the B cell response to newly encountered epitopes was phenotypically distinct and generated a sustained memory population that evolved and affinity matured months after vaccination. These findings establish clear differences between newly generated and pre-existing memory B cells, highlighting the challenges in achieving long-lasting, broad protection against an ever-evolving virus.
Collapse
Affiliation(s)
- Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA.
| | - Michael J Chambers
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Jason Plyler
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Julie E Raab
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Amy Ransier
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Sam Darko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Jianfei Hu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Hadi M Yassine
- Qatar University Biomedical Research Center, Doha, Qatar
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Grace L Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Emily Coates
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA.
| |
Collapse
|
48
|
Ralph DK, Matsen FA. Per-sample immunoglobulin germline inference from B cell receptor deep sequencing data. PLoS Comput Biol 2019; 15:e1007133. [PMID: 31329576 PMCID: PMC6675132 DOI: 10.1371/journal.pcbi.1007133] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 08/01/2019] [Accepted: 05/28/2019] [Indexed: 11/26/2022] Open
Abstract
The collection of immunoglobulin genes in an individual's germline, which gives rise to B cell receptors via recombination, is known to vary significantly across individuals. In humans, for example, each individual has only a fraction of the several hundred known V alleles. Furthermore, the currently-accepted set of known V alleles is both incomplete (particularly for non-European samples), and contains a significant number of spurious alleles. The resulting uncertainty as to which immunoglobulin alleles are present in any given sample results in inaccurate B cell receptor sequence annotations, and in particular inaccurate inferred naive ancestors. In this paper we first show that the currently widespread practice of aligning each sequence to its closest match in the full set of IMGT alleles results in a very large number of spurious alleles that are not in the sample's true set of germline V alleles. We then describe a new method for inferring each individual's germline gene set from deep sequencing data, and show that it improves upon existing methods by making a detailed comparison on a variety of simulated and real data samples. This new method has been integrated into the partis annotation and clonal family inference package, available at https://github.com/psathyrella/partis, and is run by default without affecting overall run time.
Collapse
Affiliation(s)
- Duncan K. Ralph
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Frederick A. Matsen
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
49
|
Waltari E, McGeever A, Friedland N, Kim PS, McCutcheon KM. Functional Enrichment and Analysis of Antigen-Specific Memory B Cell Antibody Repertoires in PBMCs. Front Immunol 2019; 10:1452. [PMID: 31293598 PMCID: PMC6603168 DOI: 10.3389/fimmu.2019.01452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/10/2019] [Indexed: 01/16/2023] Open
Abstract
Phenotypic screening of antigen-specific antibodies in human blood is a common diagnostic test for infectious agents and a correlate of protection after vaccination. In addition to long-lived antibody secreting plasma cells residing in the bone marrow, memory B cells are a latent source of antigen-experienced, long-term immunity that can be found at low frequencies in circulating peripheral blood mononuclear cells (PBMCs). Assessing the genotype, clonal frequency, quality, and function of antibodies resulting from an individual's persistent memory B cell repertoire can help inform the success or failure of immune protection. Using in vitro polyclonal stimulation, we functionally expand the memory repertoire from PBMCs and clonally map monoclonal antibodies from this population. We show that combining deep sequencing of stimulated memory B cell repertoires with retrieving single antigen-specific cells is a promising approach in evaluating the latent, functional B cell memory in PBMCs.
Collapse
Affiliation(s)
- Eric Waltari
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Aaron McGeever
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Natalia Friedland
- Stanford ChEM-H and Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States
| | - Peter S. Kim
- Chan Zuckerberg Biohub, San Francisco, CA, United States
- Stanford ChEM-H and Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States
| | | |
Collapse
|
50
|
López-Santibáñez-Jácome L, Avendaño-Vázquez SE, Flores-Jasso CF. The Pipeline Repertoire for Ig-Seq Analysis. Front Immunol 2019; 10:899. [PMID: 31114573 PMCID: PMC6503734 DOI: 10.3389/fimmu.2019.00899] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 04/08/2019] [Indexed: 11/22/2022] Open
Abstract
With the advent of high-throughput sequencing of immunoglobulin genes (Ig-Seq), the understanding of antibody repertoires and their dynamics among individuals and populations has become an exciting area of research. There is an increasing number of computational tools that aid in every step of the immune repertoire characterization. However, since not all tools function identically, every pipeline has its unique rationale and capabilities, creating a rich blend of useful features that may appear intimidating for newcomer laboratories with the desire to plunge into immune repertoire analysis to expand and improve their research; hence, all pipeline strengths and differences may not seem evident. In this review we provide a practical and organized list of the current set of computational tools, focusing on their most attractive features and differences in order to carry out the characterization of antibody repertoires so that the reader better decides a strategic approach for the experimental design, and computational pathways for the analyses of immune repertoires.
Collapse
Affiliation(s)
- Laura López-Santibáñez-Jácome
- Consorcio de Metabolismo de RNA, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Maestría en Ciencia de Datos, Instituto Tecnológico Autónomo de México, Mexico City, Mexico
| | | | | |
Collapse
|