1
|
Gomez-Salinero JM, Redmond D, Rafii S. Microenvironmental determinants of endothelial cell heterogeneity. Nat Rev Mol Cell Biol 2025; 26:476-495. [PMID: 39875728 DOI: 10.1038/s41580-024-00825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/30/2025]
Abstract
During development, endothelial cells (ECs) undergo an extraordinary specialization by which generic capillary microcirculatory networks spanning from arteries to veins transform into patterned organotypic zonated blood vessels. These capillary ECs become specialized to support the cellular and metabolic demands of each specific organ, including supplying tissue-specific angiocrine factors that orchestrate organ development, maintenance of organ-specific functions and regeneration of injured adult organs. Here, we illustrate the mechanisms by which microenvironmental signals emanating from non-vascular niche cells induce generic ECs to acquire specific inter-organ and intra-organ functional attributes. We describe how perivascular, parenchymal and immune cells dictate vascular heterogeneity and capillary zonation, and how this system is maintained through tissue-specific signalling activated by vasculogenic and angiogenic factors and deposition of matrix components. We also discuss how perturbation of organotypic vascular niche cues lead to erasure of EC signatures, contributing to the pathogenesis of disease processes. We also describe approaches that use reconstitution of tissue-specific signatures of ECs to promote regeneration of damaged organs.
Collapse
Affiliation(s)
- Jesus M Gomez-Salinero
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration and Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David Redmond
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration and Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Shahin Rafii
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration and Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Ghosh S, Bishnoi B, Das S. Artery regeneration: Molecules, mechanisms and impact on organ function. Semin Cell Dev Biol 2025; 171:103611. [PMID: 40318557 DOI: 10.1016/j.semcdb.2025.103611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/24/2025] [Accepted: 03/25/2025] [Indexed: 05/07/2025]
Abstract
Replenishment of artery cells to repair or create new arteries is a promising strategy to re-vascularize ischemic tissue. However, limited understanding of cellular and molecular programs associated with artery (re-)growth impedes our efforts towards designing optimal therapeutic approaches. In this review, we summarize different cellular mechanisms that drive injury-induced artery regeneration in distinct organs and organisms. Artery formation during embryogenesis includes migration, self-amplification, and changes in cell fates. These processes are coordinated by multiple signaling pathways, like Vegf, Wnt, Notch, Cxcr4; many of which, also involved in injury-induced vascular responses. We also highlight how physiological and environmental factors determine the extent of arterial re-vascularization. Finally, we discuss different in vitro cellular reprogramming and tissue engineering approaches to promote artery regeneration, in vivo. This review provides the current understanding of endothelial cell fate reprogramming and explores avenues for regenerating arteries to restore organ function through efficient revascularization.
Collapse
Affiliation(s)
- Swarnadip Ghosh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, KA 560065, India
| | - Bhavnesh Bishnoi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, KA 560065, India
| | - Soumyashree Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, KA 560065, India.
| |
Collapse
|
3
|
Nikolova MT, He Z, Seimiya M, Jonsson G, Cao W, Okuda R, Wimmer RA, Okamoto R, Penninger JM, Camp JG, Treutlein B. Fate and state transitions during human blood vessel organoid development. Cell 2025:S0092-8674(25)00387-3. [PMID: 40250419 DOI: 10.1016/j.cell.2025.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2024] [Accepted: 03/21/2025] [Indexed: 04/20/2025]
Abstract
Human blood vessel organoids (hBVOs) have emerged as a system to model human vascular development and disease. Here, we use single-cell multi-omics together with genetic and signaling pathway perturbations to reconstruct hBVO development. Mesodermal progenitors bifurcate into endothelial and mural fates in vitro, and xenografted BVOs acquire definitive arteriovenous endothelial cell specification. We infer a gene regulatory network and use single-cell genetic perturbations to identify transcription factors (TFs) and receptors involved in cell fate specification, including a role for MECOM in endothelial and mural specification. We assess the potential of BVOs to generate organotypic states, identify TFs lacking expression in hBVOs, and find that induced LEF1 overexpression increases brain vasculature specificity. Finally, we map vascular disease-associated genes to hBVO cell states and analyze an hBVO model of diabetes. Altogether, we provide a comprehensive cell state atlas of hBVO development and illuminate the power and limitation of hBVOs for translational research.
Collapse
Affiliation(s)
- Marina T Nikolova
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Zhisong He
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Makiko Seimiya
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Gustav Jonsson
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Wuji Cao
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ryo Okuda
- Institute of Human Biology, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Reiner A Wimmer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria; Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Ryoko Okamoto
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria; Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - J Gray Camp
- Institute of Human Biology, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; Biozentrum, University of Basel, Basel, Switzerland.
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
4
|
Torii S, Nagaharu K, Nakanishi N, Usui H, Hori Y, Hirose K, Toyosawa S, Morii E, Narushima M, Kubota Y, Nakagawa O, Imanaka-Yoshida K, Maruyama K. Embryological cellular origins and hypoxia-mediated mechanisms in PIK3CA-driven refractory vascular malformations. EMBO Mol Med 2025:10.1038/s44321-025-00235-1. [PMID: 40234712 DOI: 10.1038/s44321-025-00235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/17/2025] Open
Abstract
Congenital vascular malformations, affecting 0.5% of the population, often occur in the head and neck, complicating treatment due to the critical functions in these regions. Our previous research identified distinct developmental origins for blood and lymphatic vessels in these areas, tracing them to the cardiopharyngeal mesoderm (CPM), which contributes to the development of the head, neck, and cardiovascular system in both mouse and human embryos. In this study, we investigated the pathogenesis of these malformations by expressing Pik3caH1047R in the CPM. Mice expressing Pik3caH1047R in the CPM developed vascular abnormalities restricted to the head and neck. Single-cell RNA sequencing revealed that Pik3caH1047R upregulates Vegf-a expression in endothelial cells through HIF-mediated hypoxia signaling. Human samples supported these findings, showing elevated HIF-1α and VEGF-A in malformed vessels. Notably, inhibition of HIF-1α and VEGF-A in the mouse model significantly reduced abnormal vasculature. These results highlight the role of embryonic origins and hypoxia-driven mechanisms in vascular malformations, providing a foundation for the development of therapies targeting these difficult-to-treat conditions.
Collapse
Affiliation(s)
- Sota Torii
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Keiki Nagaharu
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, 514-8507, Japan
| | - Nanako Nakanishi
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hidehito Usui
- Department of Surgery, Kanagawa Children's Medical Center, 2-138-4, Mutsukawa, Minami-ku, Yokohama, Kanagawa, Japan
| | - Yumiko Hori
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Central Laboratory and Surgical Pathology, NHO Osaka National Hospital, 2-1-14 Hoenzaka, Chuo-ku, Osaka, 540-0006, Japan
| | - Katsutoshi Hirose
- Department of Oral and Maxillofacial Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoru Toyosawa
- Department of Oral and Maxillofacial Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mitsunaga Narushima
- Department of Plastic and Reconstructive Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Osamu Nakagawa
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka, 564-8565, Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kazuaki Maruyama
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
5
|
Ramezankhani R, De Smedt J, Toprakhisar B, van der Veer BK, Tricot T, Vanmarcke G, Balaton B, van Grunsven L, Vosough M, Chai YC, Verfaillie C. Identification of Cell Fate Determining Transcription Factors for Generating Brain Endothelial Cells. Stem Cell Rev Rep 2025; 21:744-766. [PMID: 39853537 PMCID: PMC11965213 DOI: 10.1007/s12015-025-10842-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2024] [Indexed: 01/26/2025]
Abstract
Reliable models of the blood-brain barrier (BBB), wherein brain microvascular endothelial cells (BMECs) play a key role in maintenance of barrier function, are essential tools for developing therapeutics and disease modeling. Recent studies explored generating BMEC-like cells from human pluripotent stem cells (hPSCs) by mimicking brain-microenvironment signals or genetic reprogramming. However, due to the lack of comprehensive transcriptional studies, the exact cellular identity of most of these cells remains poorly defined. In this study we aimed to identify the most likely master transcription factors (TFs) for inducing brain endothelial cell (EC) fate and assess the transcriptomic changes following their introduction into immature ECs. Therefore, we first generated PSC-derived immature ECs by transient overexpression of the TF, ETV2. Subsequently, by performing an extensive meta-analysis of transcriptome studies of brain and non-brain ECs, 12 candidate TFs were identified, which might fate immature ECs towards cells with brain EC features. Following combinatorial overexpression of these 12 TFs tagged with unique barcodes, single cell transcriptomics identified a subset of transduced cells that resembled mid-gestational human brain ECs. Assessment of the TF barcodes present in these cells revealed significant enrichment of the TFs ZIC3, TFAP2C, TFAP2A, and DLX2. These TFs might be useful to fate PSC-EC to BMEC-like cells, which could be incorporated in human in vitro BBB models.
Collapse
Affiliation(s)
- Roya Ramezankhani
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, Leuven, 3000, Belgium.
- Department of Applied Cell Sciences, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, Academic Center for Education, Culture and Research, Tehran, Iran.
| | - Jonathan De Smedt
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, Leuven, 3000, Belgium
| | - Burak Toprakhisar
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, Leuven, 3000, Belgium
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Bernard K van der Veer
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, Leuven, 3000, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven-University of Leuven, Leuven, B-3000, Belgium
| | - Tine Tricot
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, Leuven, 3000, Belgium
| | - Gert Vanmarcke
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, Leuven, 3000, Belgium
| | - Bradley Balaton
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, Leuven, 3000, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven-University of Leuven, Leuven, B-3000, Belgium
| | - Leo van Grunsven
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Massoud Vosough
- Department of Applied Cell Sciences, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, Academic Center for Education, Culture and Research, Tehran, Iran
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Yoke Chin Chai
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, Leuven, 3000, Belgium
| | - Catherine Verfaillie
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, Leuven, 3000, Belgium
| |
Collapse
|
6
|
Zhong J, Gao RR, Zhang X, Yang JX, Liu Y, Ma J, Chen Q. Dissecting endothelial cell heterogeneity with new tools. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:10. [PMID: 40121354 PMCID: PMC11929667 DOI: 10.1186/s13619-025-00223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
The formation of a blood vessel network is crucial for organ development and regeneration. Over the past three decades, the central molecular mechanisms governing blood vessel growth have been extensively studied. Recent evidence indicates that vascular endothelial cells-the specialized cells lining the inner surface of blood vessels-exhibit significant heterogeneity to meet the specific needs of different organs. This review focuses on the current understanding of endothelial cell heterogeneity, which includes both intra-organ and inter-organ heterogeneity. Intra-organ heterogeneity encompasses arterio-venous and tip-stalk endothelial cell specialization, while inter-organ heterogeneity refers to organ-specific transcriptomic profiles and functions. Advances in single-cell RNA sequencing (scRNA-seq) have enabled the identification of new endothelial subpopulations and the comparison of gene expression patterns across different subsets of endothelial cells. Integrating scRNA-seq with other high-throughput sequencing technologies promises to deepen our understanding of endothelial cell heterogeneity at the epigenetic level and in a spatially resolved context. To further explore human endothelial cell heterogeneity, vascular organoids offer powerful tools for studying gene function in three-dimensional culture systems and for investigating endothelial-tissue interactions using human cells. Developing organ-specific vascular organoids presents unique opportunities to unravel inter-organ endothelial cell heterogeneity and its implications for human disease. Emerging technologies, such as scRNA-seq and vascular organoids, are poised to transform our understanding of endothelial cell heterogeneity and pave the way for innovative therapeutic strategies to address human vascular diseases.
Collapse
Affiliation(s)
- Jing Zhong
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Rong-Rong Gao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250117, Shandong, China
| | - Xin Zhang
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jia-Xin Yang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yang Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Jinjin Ma
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- The Institute of Future Health, South China of Technology, Guangzhou International Campus, Guangzhou, 511442, China.
| | - Qi Chen
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250117, Shandong, China.
| |
Collapse
|
7
|
Kim MS, Lee R, Lee DH, Song H, Ha T, Kim JK, Kang BY, Agger K, Helin K, Shin D, Kang Y, Park C. ETV2/ER71 regulates hematovascular lineage generation and vascularization through an H3K9 demethylase, KDM4A. iScience 2025; 28:111538. [PMID: 39811655 PMCID: PMC11732216 DOI: 10.1016/j.isci.2024.111538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 12/15/2023] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
ETV2/ER71, an ETS (E-twenty six) transcription factor, is critical for hematopoiesis and vascular development. However, research about the molecular mechanisms behind ETV2-mediated gene transcription is limited. Herein, we demonstrate that ETV2 and KDM4A, an H3K9 demethylase, regulate hematopoietic and endothelial genes. Etv2 -/- mouse embryonic stem cells (mESCs), which fail to generate hematopoietic and endothelial cells, exhibit enhanced H3K9me3 levels in hematopoietic and endothelial genes. ETV2 interacts with KDM4A, and the ETV2-mediated transcriptional activation of hematopoietic and endothelial genes depends on KDM4A histone demethylase activity. The ETV2 and KDM4A complex binds to the transcription regulatory regions of genes directly regulated by ETV2. Mice lacking Kdm4a and Etv2 in endothelial cells (Cdh5Cre:Kdm:Etv2 f/f mice) display a more severe perfusion recovery and neovascularization defect, compared with Cdh5Cre:Kdm4a f/f mice, Cdh5Cre:Etv2 f/f mice, and controls. Collectively, we demonstrate that ETV2 interacts with KDM4A, and that this interaction is critical for hematovascular lineage generation and vascular regeneration.
Collapse
Affiliation(s)
- Min Seong Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Raham Lee
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Dong Hun Lee
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biological Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Heesang Song
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Taekyung Ha
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Joo Kyung Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Bum-Yong Kang
- Department of Medicine, Emory University School of Medicine, and Atlanta VA HCS, Atlanta, GA, USA
| | - Karl Agger
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Donghyun Shin
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Yunhee Kang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Changwon Park
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, Shreveport, LA, USA
| |
Collapse
|
8
|
Mishra P, Biesiada I, Gupta P, Ghavami S, Markowski J, Łos MJ. Unraveling the Complexity and Advancements of Transdifferentiation Technologies in the Biomedical Field and Their Potential Clinical Relevance. Arch Immunol Ther Exp (Warsz) 2025; 73:aite-2025-0001. [PMID: 39637369 DOI: 10.2478/aite-2025-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Chronic diseases such as cancer, autoimmunity, and organ failure currently depend on conventional pharmaceutical treatment, which may cause detrimental side effects in the long term. In this regard, cell-based therapy has emerged as a suitable alternative for treating these chronic diseases. Transdifferentiation technologies have evolved as a suitable therapeutic alternative that converts one differentiated somatic cell into another phenotype by using transcription factors (TFs), small molecules, or small, single-stranded, non-coding RNA molecules (miRNA). The transdifferentiation techniques rely on simple, fast, standardized, and versatile protocols with minimal chance of tumorigenicity and genotoxicity. However, there are still challenges and limitations that need to be addressed to enhance their clinical translation percentage in the near future. Taking this into account, we have delineated the features and strategies used in the transdifferentiation techniques. Then, we delved into different intermediate states that were attained during transdifferentiation. Advancements in transdifferentiation techniques in the field of tissue engineering, autoimmunity, and cancer therapy were dissected. Furthermore, limitations, challenges, and future perspectives are outlined in this review to provide a whole new picture of the transdifferentiation techniques. Advancements in molecular biology, interdisciplinary research, bioinformatics, and artificial intelligence will push the frontiers of this technology further to establish new avenues for biomedical research.
Collapse
Affiliation(s)
- Purusottam Mishra
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
| | - Izabella Biesiada
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
| | - Payal Gupta
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Canada
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Zabrze, Poland
| | - Jarosław Markowski
- Department of Laryngology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
9
|
Sweat ME, Shi W, Keating EM, Ponek A, Li J, Ma Q, Park C, Trembley MA, Wang Y, Bezzerides VJ, Conlon FL, Pu WT. CHD4 Interacts With TBX5 to Maintain the Gene Regulatory Network of Postnatal Atrial Cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626894. [PMID: 39677667 PMCID: PMC11643115 DOI: 10.1101/2024.12.04.626894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia, affecting 59 million individuals worldwide. Impairment of atrial cardiomyocyte (aCM) gene regulatory mechanisms predisposes to atrial fibrillation. The transcription factor TBX5 is essential for normal atrial rhythm, and its inactivation causes loss of aCM enhancer accessibility, looping, and transcriptional identity. Here we investigated the mechanisms by which TBX5 regulates chromatin organization. We found that TBX5 recruits CHD4, a chromatin remodeling ATPase, to 33,170 genomic regions (TBX5-enhanced CHD4 sites). As a component of the NuRD complex, CHD4 functions to repress gene transcription. However, combined snRNA-seq and snATAC-seq of CHD4 knockout (KO) and control aCMs revealed that CHD4 has both gene activator and repressor functions. Genes repressed by CHD4 in aCMs included sarcomeric proteins from non-CM cell lineages. Genes activated by CHD4 in aCMs were characterized by TBX5-enhanced CHD4 recruitment, which enhanced chromatin accessibility and promoted the expression of aCM identity genes. This mechanism of TBX5 recruitment of CHD4 was critical for sinus rhythm because Chd4 AKO mice had increased vulnerability to AF from electrical pacing and a fraction had spontaneous AF. Our findings reveal that CHD4 is essential for maintaining aCM gene expression, aCM identity, and atrial rhythm homeostasis.
Collapse
|
10
|
O'Brien LL. Enhancing kidney organoid maturity with inducible vascularization: another step forward for in vitro modeling. Kidney Int 2024; 106:1017-1020. [PMID: 39577984 DOI: 10.1016/j.kint.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/06/2024] [Indexed: 11/24/2024]
Abstract
Kidney organoids represent a tangible in vitro system in which to model disease, identify novel therapeutics, and investigate cellular and physiological mechanisms. However, their relative immaturity and insufficient endowment of critical cell types limits their translational efficacy. Addressing a number of these shortcomings, Maggiore et al. present a novel genetically inducible vascularized kidney organoid model. Organoids develop a robust endothelial network with kidney-specific features that enhances podocyte maturity and supports the generation of functional renin+ cells.
Collapse
Affiliation(s)
- Lori L O'Brien
- Department of Cell Biology and Physiology, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
11
|
Maggiore JC, LeGraw R, Przepiorski A, Velazquez J, Chaney C, Vanichapol T, Streeter E, Almuallim Z, Oda A, Chiba T, Silva-Barbosa A, Franks J, Hislop J, Hill A, Wu H, Pfister K, Howden SE, Watkins SC, Little MH, Humphreys BD, Kiani S, Watson A, Stolz DB, Davidson AJ, Carroll T, Cleaver O, Sims-Lucas S, Ebrahimkhani MR, Hukriede NA. A genetically inducible endothelial niche enables vascularization of human kidney organoids with multilineage maturation and emergence of renin expressing cells. Kidney Int 2024; 106:1086-1100. [PMID: 38901605 PMCID: PMC11912416 DOI: 10.1016/j.kint.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024]
Abstract
Vascularization plays a critical role in organ maturation and cell-type development. Drug discovery, organ mimicry, and ultimately transplantation hinge on achieving robust vascularization of in vitro engineered organs. Here, focusing on human kidney organoids, we overcame this hurdle by combining a human induced pluripotent stem cell (iPSC) line containing an inducible ETS translocation variant 2 (ETV2) (a transcription factor playing a role in endothelial cell development) that directs endothelial differentiation in vitro, with a non-transgenic iPSC line in suspension organoid culture. The resulting human kidney organoids show extensive endothelialization with a cellular identity most closely related to human kidney endothelia. Endothelialized kidney organoids also show increased maturation of nephron structures, an associated fenestrated endothelium with de novo formation of glomerular and venous subtypes, and the emergence of drug-responsive renin expressing cells. The creation of an engineered vascular niche capable of improving kidney organoid maturation and cell type complexity is a significant step forward in the path to clinical translation. Thus, incorporation of an engineered endothelial niche into a previously published kidney organoid protocol allowed the orthogonal differentiation of endothelial and parenchymal cell types, demonstrating the potential for applicability to other basic and translational organoid studies.
Collapse
Affiliation(s)
- Joseph C Maggiore
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Center for Integrative Organ Systems, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ryan LeGraw
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aneta Przepiorski
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jeremy Velazquez
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christopher Chaney
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Thitinee Vanichapol
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Evan Streeter
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Center for Integrative Organ Systems, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zainab Almuallim
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Center for Integrative Organ Systems, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Akira Oda
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh Pennsylvania, USA
| | - Takuto Chiba
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh Pennsylvania, USA
| | - Anne Silva-Barbosa
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh Pennsylvania, USA
| | - Jonathan Franks
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joshua Hislop
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alex Hill
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Katherine Pfister
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh Pennsylvania, USA
| | - Sara E Howden
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Melissa H Little
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; Department of Developmental Biology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Samira Kiani
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan Watson
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Tom Carroll
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sunder Sims-Lucas
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh Pennsylvania, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Neil A Hukriede
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Center for Integrative Organ Systems, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
12
|
Mohanty SK, Singh K, Kumar M, Verma SS, Srivastava R, Gnyawali SC, Palakurti R, Sahi AK, El Masry MS, Banerjee P, Kacar S, Rustagi Y, Verma P, Ghatak S, Hernandez E, Rubin JP, Khanna S, Roy S, Yoder MC, Sen CK. Vasculogenic skin reprogramming requires TET-mediated gene demethylation in fibroblasts for rescuing impaired perfusion in diabetes. Nat Commun 2024; 15:10277. [PMID: 39604331 PMCID: PMC11603198 DOI: 10.1038/s41467-024-54385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Tissue nanotransfection (TNT) topically delivers Etv2, Foxc2, and Fli1 (EFF) plasmids increasing vasculogenic fibroblasts (VF) and promoting vascularization in ischemic murine skin. Human dermal fibroblasts respond to EFF nanoelectroporation with elevated expression of endothelial genes in vitro, which is linked to increased ten-eleven translocase 1/2/3 (TET) expression. Single cell RNA sequencing dependent validation of VF induction reveals a TET-dependent transcript signature. TNTEFF also induces TET expression in vivo, and fibroblast-specific EFF overexpression leads to VF-transition, with TET-activation correlating with higher 5-hydroxymethylcytosine (5-hmC) levels in VF. VF emergence requires TET-dependent demethylation of endothelial genes in vivo, enhancing VF abundance and restoring perfusion in diabetic ischemic limbs. TNTEFF improves perfusion and wound closure in diabetic mice, while increasing VF in cultured human skin explants. Suppressed in diabetes, TET1/2/3 play a critical role in TNT-mediated VF formation which supports de novo blood vessel development to rescue diabetic ischemic tissue.
Collapse
Affiliation(s)
- Sujit K Mohanty
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kanhaiya Singh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Manishekhar Kumar
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sumit S Verma
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rajneesh Srivastava
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Surya C Gnyawali
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ravichand Palakurti
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ajay K Sahi
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed S El Masry
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pradipta Banerjee
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sedat Kacar
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yashika Rustagi
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Priyanka Verma
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edward Hernandez
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J Peter Rubin
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Savita Khanna
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sashwati Roy
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mervin C Yoder
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chandan K Sen
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Choi YG, Ma X, Das S, Sierra-Pagan JE, Larson T, Gong W, Sadek HA, Zhang JJ, Garry MG, Garry DJ. ETV2 transcriptionally activates Rig1 gene expression and promotes reprogramming of the endothelial lineage. Sci Rep 2024; 14:28688. [PMID: 39562637 PMCID: PMC11576751 DOI: 10.1038/s41598-024-78115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
ETV2 is an essential transcription factor as Etv2 null murine embryos lack all vasculature, blood and are lethal early during embryogenesis. Previous studies have established that ETV2 functions as a pioneer factor and directly reprograms fibroblasts to endothelial cells. However, the underlying molecular mechanisms regulating this reprogramming process remain incompletely defined. In the present study, we examined the ETV2-RIG1 cascade as regulators that govern ETV2-mediated reprogramming. Mouse embryonic fibroblasts (MEFs) harboring an inducible ETV2 expression system were used to overexpress ETV2 and reprogram these somatic cells to the endothelial lineage. Single-cell RNA-seq from reprogrammed fibroblasts defined the induction of the transcriptional network involved in Rig1-like receptor signaling pathways. Studies using ChIP-seq, electrophoretic mobility shift assays, and transcriptional assays demonstrated that ETV2 was a direct upstream activator of Rig1 gene expression. We further demonstrated that the knockdown of Rig1 and separately, Nfκb1 using shRNA significantly reduced the efficiency of endothelial cell reprogramming. These results highlight that ETV2 reprograms fibroblasts to endothelial cells by directly activating RIG1. These findings extend our current understanding of the molecular mechanisms underlying ETV2-mediated reprogramming and will be important in the design of revascularization strategies for the treatment of ischemic tissues such as ischemic heart disease.
Collapse
Affiliation(s)
- Young Geun Choi
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Xiao Ma
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Satyabrata Das
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Javier E Sierra-Pagan
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Thijs Larson
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wuming Gong
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hesham A Sadek
- Cardiovascular Division, UT Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Jianyi Jay Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Department of Medicine, Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Mary G Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
- Lillehei Heart Institute, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA
- NorthStar Genomics, Eagan, MN, USA
| | - Daniel J Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
- Lillehei Heart Institute, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA.
- NorthStar Genomics, Eagan, MN, USA.
| |
Collapse
|
14
|
Yang L, Han Y, Zhang T, Dong X, Ge J, Roy A, Zhu J, Lu T, Jeya Vandana J, de Silva N, Robertson CC, Xiang JZ, Pan C, Sun Y, Que J, Evans T, Liu C, Wang W, Naji A, Parker SCJ, Schwartz RE, Chen S. Human vascularized macrophage-islet organoids to model immune-mediated pancreatic β cell pyroptosis upon viral infection. Cell Stem Cell 2024; 31:1612-1629.e8. [PMID: 39232561 PMCID: PMC11546835 DOI: 10.1016/j.stem.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/05/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
There is a paucity of human models to study immune-mediated host damage. Here, we utilized the GeoMx spatial multi-omics platform to analyze immune cell changes in COVID-19 pancreatic autopsy samples, revealing an accumulation of proinflammatory macrophages. Single-cell RNA sequencing (scRNA-seq) analysis of human islets exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coxsackievirus B4 (CVB4) viruses identified activation of proinflammatory macrophages and β cell pyroptosis. To distinguish viral versus proinflammatory-macrophage-mediated β cell pyroptosis, we developed human pluripotent stem cell (hPSC)-derived vascularized macrophage-islet (VMI) organoids. VMI organoids exhibited enhanced marker expression and function in both β cells and endothelial cells compared with separately cultured cells. Notably, proinflammatory macrophages within VMI organoids induced β cell pyroptosis. Mechanistic investigations highlighted TNFSF12-TNFRSF12A involvement in proinflammatory-macrophage-mediated β cell pyroptosis. This study established hPSC-derived VMI organoids as a valuable tool for studying immune-cell-mediated host damage and uncovered the mechanism of β cell damage during viral exposure.
Collapse
Affiliation(s)
- Liuliu Yang
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institute of Health Science, Tianjin 301600, China.
| | - Yuling Han
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Tuo Zhang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Xue Dong
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Jian Ge
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aadita Roy
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Jiajun Zhu
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Tiankun Lu
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - J Jeya Vandana
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Neranjan de Silva
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Catherine C Robertson
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jenny Z Xiang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chendong Pan
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yanjie Sun
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jianwen Que
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Wei Wang
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
15
|
Luo AC, Wang J, Wang K, Zhu Y, Gong L, Lee U, Li X, Tremmel DM, Lin RZ, Ingber DE, Gorman J, Melero-Martin JM. A streamlined method to generate endothelial cells from human pluripotent stem cells via transient doxycycline-inducible ETV2 activation. Angiogenesis 2024; 27:779-795. [PMID: 38969874 PMCID: PMC11577265 DOI: 10.1007/s10456-024-09937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
The development of reliable methods for producing functional endothelial cells (ECs) is crucial for progress in vascular biology and regenerative medicine. In this study, we present a streamlined and efficient methodology for the differentiation of human induced pluripotent stem cells (iPSCs) into induced ECs (iECs) that maintain the ability to undergo vasculogenesis in vitro and in vivo using a doxycycline-inducible system for the transient expression of the ETV2 transcription factor. This approach mitigates the limitations of direct transfection methods, such as mRNA-mediated differentiation, by simplifying the protocol and enhancing reproducibility across different stem cell lines. We detail the generation of iPSCs engineered for doxycycline-induced ETV2 expression and their subsequent differentiation into iECs, achieving over 90% efficiency within four days. Through both in vitro and in vivo assays, the functionality and phenotypic stability of the derived iECs were rigorously validated. Notably, these cells exhibit key endothelial markers and capabilities, including the formation of vascular networks in a microphysiological platform in vitro and in a subcutaneous mouse model. Furthermore, our results reveal a close transcriptional and proteomic alignment between the iECs generated via our method and primary ECs, confirming the biological relevance of the differentiated cells. The high efficiency and effectiveness of our induction methodology pave the way for broader application and accessibility of iPSC-derived ECs in scientific research, offering a valuable tool for investigating endothelial biology and for the development of EC-based therapies.
Collapse
Affiliation(s)
- Allen Chilun Luo
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Jiuhai Wang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Kai Wang
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Yonglin Zhu
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Liyan Gong
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Umji Lee
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiang Li
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel M Tremmel
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Ruei-Zeng Lin
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, 02138, USA
| | - James Gorman
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
16
|
Kiwimagi K, Noel M, Cetinbas M, Sadreyev RI, Wang L, Smoller JW, Cummings RD, Weiss R, Mealer RG. The restricted N-glycome of neurons is programmed during differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618477. [PMID: 39463965 PMCID: PMC11507760 DOI: 10.1101/2024.10.15.618477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The protein glycome of individual cell types in the brain is unexplored, despite the critical function of these modifications in development and disease. In aggregate, the most abundant asparagine (N-) linked glycans in the adult brain are high mannose structures, and specifically Man5GlcNAc2 (Man-5), which normally exits the ER for further processing in the Golgi. Mannose structures are uncommon in other organs and often overlooked or excluded in most studies. To understand cell-specific contributions to the unique brain N-glycome and its abundance of Man-5, we performed RNAseq and MALDI-MS TOF protein N-glycomics at several timepoints during differentiation of multiple cell types. To this end, homogeneous cultures of glutamatergic neurons, GABAergic neurons, and brain-specific endothelial cells were generated from monoclonal human inducible pluripotent stem cells (hiPSCs) through cellular reprogramming. Small molecule induction of stably integrated synthetic transcription units driving morphogen expression generated differentiated cells with distinct patterns mirroring intact tissue. Comparing uninduced hiPSCs for each cell type revealed identical transcriptomic and glycomic profiles before differentiation, with low quantities of Man-5. In differentiated glutamatergic and GABAergic neurons, the most abundant N-glycans became Man-5 and its immediate precursor Man-6, despite the presence of transcripts encoding enzymes for their subsequent modification. Differentiation to brain-specific endothelial cells showed an opposite effect, with the N-glycome displaying an abundance of complex N-glycans and terminal modifications of the late secretory pathway. These results confirm that the restricted N-glycome profile of brain is programmed into neuronal differentiation, with regulation independent of the transcriptome and under tight evolutionary constraint.
Collapse
Affiliation(s)
- Katherine Kiwimagi
- Synthetic Biology Center, Department of Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Maxence Noel
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lei Wang
- Synthetic Biology Center, Department of Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jordan W. Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard D. Cummings
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ron Weiss
- Synthetic Biology Center, Department of Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert G. Mealer
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
17
|
Rieck S, Sharma K, Altringer C, Hesse M, Triantafyllou C, Zhang Y, Busskamp V, Fleischmann BK. Forward programming of human induced pluripotent stem cells via the ETS variant transcription factor 2: rapid, reproducible, and cost-effective generation of highly enriched, functional endothelial cells. Cardiovasc Res 2024; 120:1472-1484. [PMID: 38916487 DOI: 10.1093/cvr/cvae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/13/2024] [Accepted: 05/03/2024] [Indexed: 06/26/2024] Open
Abstract
AIMS Endothelial cell (EC) dysfunction plays a key role in the initiation and progression of cardiovascular disease. However, studying these disorders in ECs from patients is challenging; hence, the use of human induced pluripotent stem cells (hiPSCs) and their in vitro differentiation into ECs represents a very promising approach. Still, the generation of hiPSC-derived ECs (hECs) remains demanding as a cocktail of growth factors and an intermediate purification step are required for hEC enrichment. Therefore, we probed the utility of a forward programming approach using transgenic hiPSC lines. METHODS AND RESULTS We have used the transgenic hiPSC line PGP1 ETV2 isoform 2 to explore the in vitro differentiation of hECs via doxycycline-dependent induction of the ETS variant transcription factor 2 (ETV2) and compared these with a standard differentiation protocol for hECs using non-transgenic control hiPSCs. The transgenic hECs were highly enriched without an intermediate purification step and expressed-as non-transgenic hECs and human umbilical vein endothelial cells-characteristic EC markers. The viability and yield of transgenic hECs were strongly improved by applying EC growth medium during differentiation. This protocol was successfully applied in two more transgenic hiPSC lines yielding reproducible results with low line-to-line variability. Transgenic hECs displayed typical functional properties, such as tube formation and LDL uptake, and a more mature phenotype than non-transgenic hECs. Transgenic hiPSCs preferentially differentiated into the arterial lineage; this was further enhanced by adding a high concentration of vascular endothelial growth factor to the medium. We also demonstrate that complexing lentivirus with magnetic nanoparticles and application of a magnetic field enables efficient transduction of transgenic hECs. CONCLUSION We have established a highly efficient, cost-effective, and reproducible differentiation protocol for the generation of functional hECs via forward programming. The transgenic hECs can be genetically modified and are a powerful tool for disease modelling, tissue engineering, and translational purposes.
Collapse
Affiliation(s)
- Sarah Rieck
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Kritika Sharma
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Carlotta Altringer
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Michael Hesse
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christos Triantafyllou
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Yanhui Zhang
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Volker Busskamp
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
18
|
Lee DH, Kim M, Chang SS, Lee R, Jang AJ, Kim J, Ma J, Passineau MJ, Benza RL, Karmouty‐Quintana H, Lam WA, Kopp BT, Sutliff RL, Hart CM, Park C, Kang B. PPARγ/ETV2 axis regulates endothelial-to-mesenchymal transition in pulmonary hypertension. Pulm Circ 2024; 14:e12448. [PMID: 39391221 PMCID: PMC11465559 DOI: 10.1002/pul2.12448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Endothelial-to-mesenchymal transition (EndoMT) plays an important role in pulmonary hypertension (PH) but the molecular mechanisms regulating EndoMT remain to be defined. We demonstrate that the axis of the transcription factors PPARγ (Peroxisome Proliferator-Activated Receptor gamma) and ETV2 (ETS variant 2) play important roles in the pathogenesis of PH. Decreased levels of the expression of PPARγ and ETV2 along with reduced endothelial and increased EndoMT markers are consistently observed in lungs and pulmonary artery endothelial cells (PAECs) of idiopathic pulmonary arterial hypertension patients, in hypoxia-exposed mouse lungs, human PAECs, and in induced-EndoMT cells. Etv2 +/- mice spontaneously developed PH and right ventricular hypertrophy (RVH), associated with increased EndoMT markers and decreased EC markers. Interestingly, chronic hypoxia exacerbated right ventricular systolic pressure and RVH in Etv2 +/- mice. PPARγ transcriptionally activates the ETV2 promoter. Consistently, while mice overexpressing endothelial PPARγ increases the expression of ETV2 and endothelial markers with reduced EndoMT markers, endothelial PPARγ KO mice show decreased ETV2 expression and enhanced EndoMT markers. Inducible overexpression of ETV2 under induced-EndoMT cell model reduces number of cells with mesenchymal morphology and decreases expression of mesenchymal markers with increased EC makers, compared to control. Therefore, our study suggests that PPARγ-ETV2 signaling regulates PH pathogenesis through EndoMT.
Collapse
Affiliation(s)
- Dong Hun Lee
- Department of PediatricsEmory University School of MedicineAtlantaGeorgiaUSA
- Department of Biological SciencesChonnam National University77 Yongbong‐ro, Buk‐guGwangjuRepublic of Korea
| | - Minseong Kim
- Department of PediatricsEmory University School of MedicineAtlantaGeorgiaUSA
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Science CenterShreveportLouisianaUSA
| | - Sarah S. Chang
- Department of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
- Atlanta Veterans Healthcare SystemDecaturGeorgiaUSA
| | - Raham Lee
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Science CenterShreveportLouisianaUSA
| | - Andrew J. Jang
- Department of Medicine, Allegheny Health NetworkCardiovascular InstitutePittsburghPennsylvaniaUSA
| | - Juyoung Kim
- Department of PediatricsEmory University School of MedicineAtlantaGeorgiaUSA
| | - Jing Ma
- Department of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
- Atlanta Veterans Healthcare SystemDecaturGeorgiaUSA
| | - Michael J. Passineau
- Department of Medicine, Allegheny Health NetworkCardiovascular InstitutePittsburghPennsylvaniaUSA
| | - Raymond L. Benza
- Division of CardiologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Harry Karmouty‐Quintana
- Department of Biochemistry and Molecular BiologyUniversity of Texas Health Science CenterHoustonTexasUSA
- Divisions of Critical Care & Pulmonary and Sleep Medicine, Department of Internal Medicine, McGovern Medical SchoolUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Wilbur A. Lam
- Department of PediatricsEmory University School of MedicineAtlantaGeorgiaUSA
- Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Benjamin T. Kopp
- Department of PediatricsEmory University School of MedicineAtlantaGeorgiaUSA
| | - Roy L. Sutliff
- Department of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
- Atlanta Veterans Healthcare SystemDecaturGeorgiaUSA
- National Heart, Lung and Blood InstituteBethesdaMarylandUSA
| | - C. Michael Hart
- Department of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
- Atlanta Veterans Healthcare SystemDecaturGeorgiaUSA
| | - Changwon Park
- Department of PediatricsEmory University School of MedicineAtlantaGeorgiaUSA
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Science CenterShreveportLouisianaUSA
| | - Bum‐Yong Kang
- Department of PediatricsEmory University School of MedicineAtlantaGeorgiaUSA
- Department of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
- Atlanta Veterans Healthcare SystemDecaturGeorgiaUSA
| |
Collapse
|
19
|
Saha S, Graham F, Knopp J, Patzke C, Hanjaya-Putra D. Robust Differentiation of Human Pluripotent Stem Cells into Lymphatic Endothelial Cells Using Transcription Factors. Cells Tissues Organs 2024; 213:464-474. [PMID: 39197437 PMCID: PMC11633880 DOI: 10.1159/000539699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/31/2024] [Indexed: 09/01/2024] Open
Abstract
INTRODUCTION Generating new lymphatic vessels has been postulated as an innovative therapeutic strategy for various disease phenotypes, including neurodegenerative diseases, metabolic syndrome, cardiovascular disease, and lymphedema. Yet, compared to the blood vascular system, protocols to differentiate human induced pluripotent stem cells (hiPSCs) into lymphatic endothelial cells (LECs) are still lacking. METHODS Transcription factors, ETS2 and ETV2 are key regulators of embryonic vascular development, including lymphatic specification. While ETV2 has been shown to efficiently generate blood endothelial cells, little is known about ETS2 and its role in lymphatic differentiation. Here, we describe a method for rapid and efficient generation of LECs using transcription factors, ETS2 and ETV2. RESULTS This approach reproducibly differentiates four diverse hiPSCs into LECs with exceedingly high efficiency. Timely activation of ETS2 was critical, to enable its interaction with Prox1, a master lymphatic regulator. Differentiated LECs express key lymphatic markers, VEGFR3, LYVE-1, and Podoplanin, in comparable levels to mature LECs. The differentiated LECs are able to assemble into stable lymphatic vascular networks in vitro, and secrete key lymphangiocrine, reelin. CONCLUSION Overall, our protocol has broad applications for basic study of lymphatic biology, as well as toward various approaches in lymphatic regeneration and personalized medicine.
Collapse
Affiliation(s)
- Sanjoy Saha
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Francine Graham
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - James Knopp
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
- Department of Biological Science, University of Notre Dame, Notre Dame, IN, USA
| | - Christopher Patzke
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
- Department of Biological Science, University of Notre Dame, Notre Dame, IN, USA
- Boler-Parseghian Center for Rare Diseases, University of Notre Dame, Notre Dame, IN, USA
| | - Donny Hanjaya-Putra
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
20
|
Yang L, Han Y, Zhang T, Dong X, Ge J, Roy A, Zhu J, Lu T, Vandana JJ, de Silva N, Robertson CC, Xiang JZ, Pan C, Sun Y, Que J, Evans T, Liu C, Wang W, Naji A, Parker SC, Schwartz RE, Chen S. Human Vascularized Macrophage-Islet Organoids to Model Immune-Mediated Pancreatic β cell Pyroptosis upon Viral Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606734. [PMID: 39149298 PMCID: PMC11326194 DOI: 10.1101/2024.08.05.606734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
There is a paucity of human models to study immune-mediated host damage. Here, we utilized the GeoMx spatial multi-omics platform to analyze immune cell changes in COVID-19 pancreatic autopsy samples, revealing an accumulation of proinflammatory macrophages. Single cell RNA-seq analysis of human islets exposed to SARS-CoV-2 or Coxsackievirus B4 (CVB4) viruses identified activation of proinflammatory macrophages and β cell pyroptosis. To distinguish viral versus proinflammatory macrophage-mediated β cell pyroptosis, we developed human pluripotent stem cell (hPSC)-derived vascularized macrophage-islet (VMI) organoids. VMI organoids exhibited enhanced marker expression and function in both β cells and endothelial cells compared to separately cultured cells. Notably, proinflammatory macrophages within VMI organoids induced β cell pyroptosis. Mechanistic investigations highlighted TNFSF12-TNFRSF12A involvement in proinflammatory macrophage-mediated β cell pyroptosis. This study established hPSC-derived VMI organoids as a valuable tool for studying immune cell-mediated host damage and uncovered mechanism of β cell damage during viral exposure.
Collapse
Affiliation(s)
- Liuliu Yang
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institute of Health Science, Tianjin 301600, China
| | - Yuling Han
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Tuo Zhang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Xue Dong
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Jian Ge
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aadita Roy
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Jiajun Zhu
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Tiankun Lu
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - J. Jeya Vandana
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Neranjan de Silva
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Catherine C. Robertson
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jenny Z Xiang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chendong Pan
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yanjie Sun
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jianwen Que
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Wei Wang
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Stephen C.J. Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Robert E. Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA. New York 10021, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| |
Collapse
|
21
|
Patrick R, Naval-Sanchez M, Deshpande N, Huang Y, Zhang J, Chen X, Yang Y, Tiwari K, Esmaeili M, Tran M, Mohamed AR, Wang B, Xia D, Ma J, Bayliss J, Wong K, Hun ML, Sun X, Cao B, Cottle DL, Catterall T, Barzilai-Tutsch H, Troskie RL, Chen Z, Wise AF, Saini S, Soe YM, Kumari S, Sweet MJ, Thomas HE, Smyth IM, Fletcher AL, Knoblich K, Watt MJ, Alhomrani M, Alsanie W, Quinn KM, Merson TD, Chidgey AP, Ricardo SD, Yu D, Jardé T, Cheetham SW, Marcelle C, Nilsson SK, Nguyen Q, White MD, Nefzger CM. The activity of early-life gene regulatory elements is hijacked in aging through pervasive AP-1-linked chromatin opening. Cell Metab 2024; 36:1858-1881.e23. [PMID: 38959897 DOI: 10.1016/j.cmet.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/28/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
A mechanistic connection between aging and development is largely unexplored. Through profiling age-related chromatin and transcriptional changes across 22 murine cell types, analyzed alongside previous mouse and human organismal maturation datasets, we uncovered a transcription factor binding site (TFBS) signature common to both processes. Early-life candidate cis-regulatory elements (cCREs), progressively losing accessibility during maturation and aging, are enriched for cell-type identity TFBSs. Conversely, cCREs gaining accessibility throughout life have a lower abundance of cell identity TFBSs but elevated activator protein 1 (AP-1) levels. We implicate TF redistribution toward these AP-1 TFBS-rich cCREs, in synergy with mild downregulation of cell identity TFs, as driving early-life cCRE accessibility loss and altering developmental and metabolic gene expression. Such remodeling can be triggered by elevating AP-1 or depleting repressive H3K27me3. We propose that AP-1-linked chromatin opening drives organismal maturation by disrupting cell identity TFBS-rich cCREs, thereby reprogramming transcriptome and cell function, a mechanism hijacked in aging through ongoing chromatin opening.
Collapse
Affiliation(s)
- Ralph Patrick
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Marina Naval-Sanchez
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Nikita Deshpande
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Yifei Huang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jingyu Zhang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Xiaoli Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Ying Yang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Kanupriya Tiwari
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Mohammadhossein Esmaeili
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Minh Tran
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Amin R Mohamed
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Binxu Wang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Di Xia
- Genome Innovation Hub, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jun Ma
- Genome Innovation Hub, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jacqueline Bayliss
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kahlia Wong
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Michael L Hun
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Xuan Sun
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Benjamin Cao
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Denny L Cottle
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Tara Catterall
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Hila Barzilai-Tutsch
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Institut NeuroMyoGène, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Robin-Lee Troskie
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Zhian Chen
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Andrea F Wise
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sheetal Saini
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ye Mon Soe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Snehlata Kumari
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Helen E Thomas
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Anne L Fletcher
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Konstantin Knoblich
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Majid Alhomrani
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Research Centre for Health Sciences, Taif University, Taif, Saudi Arabia
| | - Walaa Alsanie
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Research Centre for Health Sciences, Taif University, Taif, Saudi Arabia
| | - Kylie M Quinn
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Tobias D Merson
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ann P Chidgey
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sharon D Ricardo
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Surgery, Cabrini Monash University, Malvern, VIC 3144, Australia
| | - Seth W Cheetham
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Christophe Marcelle
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Institut NeuroMyoGène, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Susan K Nilsson
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Melanie D White
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Christian M Nefzger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
22
|
Larionov A, Hammer CM, Fiedler K, Filgueira L. Dynamics of Endothelial Cell Diversity and Plasticity in Health and Disease. Cells 2024; 13:1276. [PMID: 39120307 PMCID: PMC11312403 DOI: 10.3390/cells13151276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are vital structural units of the cardiovascular system possessing two principal distinctive properties: heterogeneity and plasticity. Endothelial heterogeneity is defined by differences in tissue-specific endothelial phenotypes and their high predisposition to modification along the length of the vascular bed. This aspect of heterogeneity is closely associated with plasticity, the ability of ECs to adapt to environmental cues through the mobilization of genetic, molecular, and structural alterations. The specific endothelial cytoarchitectonics facilitate a quick structural cell reorganization and, furthermore, easy adaptation to the extrinsic and intrinsic environmental stimuli, known as the epigenetic landscape. ECs, as universally distributed and ubiquitous cells of the human body, play a role that extends far beyond their structural function in the cardiovascular system. They play a crucial role in terms of barrier function, cell-to-cell communication, and a myriad of physiological and pathologic processes. These include development, ontogenesis, disease initiation, and progression, as well as growth, regeneration, and repair. Despite substantial progress in the understanding of endothelial cell biology, the role of ECs in healthy conditions and pathologies remains a fascinating area of exploration. This review aims to summarize knowledge and concepts in endothelial biology. It focuses on the development and functional characteristics of endothelial cells in health and pathological conditions, with a particular emphasis on endothelial phenotypic and functional heterogeneity.
Collapse
Affiliation(s)
- Alexey Larionov
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Christian Manfred Hammer
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Klaus Fiedler
- Independent Researcher, CH-1700 Fribourg, Switzerland;
| | - Luis Filgueira
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| |
Collapse
|
23
|
Li Z, Wu W, Li Q, Heng X, Zhang W, Zhu Y, Chen L, Chen Z, Shen M, Ma N, Xiao Q, Yan Y. BCL6B-dependent suppression of ETV2 hampers endothelial cell differentiation. Stem Cell Res Ther 2024; 15:226. [PMID: 39075623 PMCID: PMC11287929 DOI: 10.1186/s13287-024-03832-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND B-cell CLL/lymphoma 6 member B (BCL6B) operates as a sequence-specific transcriptional repressor within the nucleus, playing crucial roles in various biological functions, including tumor suppression, immune response, stem cell self-renew, and vascular angiogenesis. However, whether BCL6B is involved in endothelial cell (EC) development has remained largely unknown. ETS variant transcription factor 2 (ETV2) is well known to facilitate EC differentiation. This study aims to determine the important role of BCL6B in EC differentiation and its potential mechanisms. METHODS Doxycycline-inducible human induced pluripotent stem cell (hiPSC) lines with BCL6B overexpression or BCL6B knockdown were established and subjected to differentiate into ECs and vessel organoids (VOs). RNA sequencing analysis was performed to identify potential signal pathways regulated by BCL6B during EC differentiation from hiPSCs. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of pluripotency and vascular-specific marker genes expression. EC differentiation efficiency was determined by Flow cytometry analysis. The performance of EC was evaluated by in vitro Tube formation assay. The protein expression and the vessel-like structures were assessed using immunofluorescence analysis or western blot. Luciferase reporter gene assay and chromatin immunoprecipitation (ChIP)-PCR analysis were used to determine the regulatory relationship between BCL6B and ETV2. RESULTS Functional ECs and VOs were successfully generated from hiPSCs. Notably, overexpression of BCL6B suppressed while knockdown of BCL6B improved EC differentiation from hiPSCs. Additionally, the overexpression of BCL6B attenuated the capacity of derived hiPSC-ECs to form a tubular structure. Furthermore, compared to the control VOs, BCL6B overexpression repressed the growth of VOs, whereas BCL6B knockdown had little effect on the size of VOs. RNA sequencing analysis confirmed that our differentiation protocol induced landscape changes for cell/tissue/system developmental process, particularly vascular development and tube morphogenesis, which were significantly modulated by BCL6B. Subsequent experiments confirmed the inhibitory effect of BCL6B is facilitated by the binding of BCL6B to the promoter region of ETV2, led to the suppression of ETV2's transcriptional activity. Importantly, the inhibitory effect of BCL6B overexpression on EC differentiation from hiPSCs could be rescued by ETV2 overexpression. CONCLUSIONS BCL6B inhibits EC differentiation and hinders VO development by repressing the transcriptional activity of ETV2.
Collapse
Affiliation(s)
- Zhonghao Li
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Wei Wu
- Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiushi Li
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Xin Heng
- Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wei Zhang
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Yinghong Zhu
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Lin Chen
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Ziqi Chen
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Mengcheng Shen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, 94305, USA
| | - Ning Ma
- Guangzhou National Laboratory, Guangzhou, 510005, China.
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.
- Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital of Guangzhou Medical University and Guangzhou Municipal, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Yi Yan
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
24
|
Garibyan M, Hoffman T, Makaske T, Do SK, Wu Y, Williams BA, March AR, Cho N, Pedroncelli N, Lima RE, Soto J, Jackson B, Santoso JW, Khademhosseini A, Thomson M, Li S, McCain ML, Morsut L. Engineering programmable material-to-cell pathways via synthetic notch receptors to spatially control differentiation in multicellular constructs. Nat Commun 2024; 15:5891. [PMID: 39003263 PMCID: PMC11246427 DOI: 10.1038/s41467-024-50126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
Synthetic Notch (synNotch) receptors are genetically encoded, modular synthetic receptors that enable mammalian cells to detect environmental signals and respond by activating user-prescribed transcriptional programs. Although some materials have been modified to present synNotch ligands with coarse spatial control, applications in tissue engineering generally require extracellular matrix (ECM)-derived scaffolds and/or finer spatial positioning of multiple ligands. Thus, we develop here a suite of materials that activate synNotch receptors for generalizable engineering of material-to-cell signaling. We genetically and chemically fuse functional synNotch ligands to ECM proteins and ECM-derived materials. We also generate tissues with microscale precision over four distinct reporter phenotypes by culturing cells with two orthogonal synNotch programs on surfaces microcontact-printed with two synNotch ligands. Finally, we showcase applications in tissue engineering by co-transdifferentiating fibroblasts into skeletal muscle or endothelial cell precursors in user-defined micropatterns. These technologies provide avenues for spatially controlling cellular phenotypes in mammalian tissues.
Collapse
Affiliation(s)
- Mher Garibyan
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad Center, University of Southern California, Los Angeles, CA, 90033, USA
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Tyler Hoffman
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Thijs Makaske
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad Center, University of Southern California, Los Angeles, CA, 90033, USA
- Utrecht University in the lab of Prof. Dr. Lukas Kapitein, Los Angeles, CA, 90024, USA
| | - Stephanie K Do
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Yifan Wu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Brian A Williams
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alexander R March
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nathan Cho
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Nicolas Pedroncelli
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Ricardo Espinosa Lima
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Brooke Jackson
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeffrey W Santoso
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Ali Khademhosseini
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Megan L McCain
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA.
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| | - Leonardo Morsut
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA.
- Eli and Edythe Broad Center, University of Southern California, Los Angeles, CA, 90033, USA.
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
25
|
Kiskin FN, Yang Y, Yang H, Zhang JZ. Cracking the code of the cardiovascular enigma: hPSC-derived endothelial cells unveil the secrets of endothelial dysfunction. J Mol Cell Cardiol 2024; 192:65-78. [PMID: 38761989 DOI: 10.1016/j.yjmcc.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Endothelial dysfunction is a central contributor to the development of most cardiovascular diseases and is characterised by the reduced synthesis or bioavailability of the vasodilator nitric oxide together with other abnormalities such as inflammation, senescence, and oxidative stress. The use of patient-specific and genome-edited human pluripotent stem cell-derived endothelial cells (hPSC-ECs) has shed novel insights into the role of endothelial dysfunction in cardiovascular diseases with strong genetic components such as genetic cardiomyopathies and pulmonary arterial hypertension. However, their utility in studying complex multifactorial diseases such as atherosclerosis, metabolic syndrome and heart failure poses notable challenges. In this review, we provide an overview of the different methods used to generate and characterise hPSC-ECs before comprehensively assessing their effectiveness in cardiovascular disease modelling and high-throughput drug screening. Furthermore, we explore current obstacles that will need to be overcome to unleash the full potential of hPSC-ECs in facilitating patient-specific precision medicine. Addressing these challenges holds great promise in advancing our understanding of intricate cardiovascular diseases and in tailoring personalised therapeutic strategies.
Collapse
Affiliation(s)
- Fedir N Kiskin
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Yuan Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Hao Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Joe Z Zhang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
26
|
Deng D, Zhang Y, Tang B, Zhang Z. Sources and applications of endothelial seed cells: a review. Stem Cell Res Ther 2024; 15:175. [PMID: 38886767 PMCID: PMC11184868 DOI: 10.1186/s13287-024-03773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024] Open
Abstract
Endothelial cells (ECs) are widely used as donor cells in tissue engineering, organoid vascularization, and in vitro microvascular model development. ECs are invaluable tools for disease modeling and drug screening in fundamental research. When treating ischemic diseases, EC engraftment facilitates the restoration of damaged blood vessels, enhancing therapeutic outcomes. This article presents a comprehensive overview of the current sources of ECs, which encompass stem/progenitor cells, primary ECs, cell lineage conversion, and ECs derived from other cellular sources, provides insights into their characteristics, potential applications, discusses challenges, and explores strategies to mitigate these issues. The primary aim is to serve as a reference for selecting suitable EC sources for preclinical research and promote the translation of basic research into clinical applications.
Collapse
Affiliation(s)
- Dan Deng
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yu Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Bo Tang
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Zhihui Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
27
|
Chen D, Fan X, Wang K, Gong L, Melero-Martin JM, Pu WT. Pioneer factor ETV2 safeguards endothelial cell specification by recruiting the repressor REST to restrict alternative lineage commitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.595971. [PMID: 38853821 PMCID: PMC11160620 DOI: 10.1101/2024.05.28.595971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Mechanisms of cell fate specification remain a central question for developmental biology and regenerative medicine. The pioneer factor ETV2 is a master regulator for the endothelial cell (EC) lineage specification. Here, we studied mechanisms of ETV2-driven fate specification using a highly efficient system in which ETV2 directs human induced pluripotent stem cell-derived mesodermal progenitors to form ECs over two days. By applying CUT&RUN, single-cell RNA-sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) analyses, we characterized the transcriptomic profiles, chromatin landscapes, dynamic cis-regulatory elements (CREs), and molecular features of EC cell differentiation mediated by ETV2. This defined the scope of ETV2 pioneering activity and identified its direct downstream target genes. Induced ETV2 expression both directed specification of endothelial progenitors and suppressed acquisition of alternative fates. Functional screening and candidate validation revealed cofactors essential for efficient EC specification, including the transcriptional activator GABPA. Surprisingly, the transcriptional repressor REST was also necessary for efficient EC specification. ETV2 recruited REST to occupy and repress non-EC lineage genes. Collectively, our study provides an unparalleled molecular analysis of EC specification at single-cell resolution and identifies the important role of pioneer factors to recruit repressors that suppress commitment to alternative lineages.
Collapse
|
28
|
Park S, Cho SW. Bioengineering toolkits for potentiating organoid therapeutics. Adv Drug Deliv Rev 2024; 208:115238. [PMID: 38447933 DOI: 10.1016/j.addr.2024.115238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/28/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Organoids are three-dimensional, multicellular constructs that recapitulate the structural and functional features of specific organs. Because of these characteristics, organoids have been widely applied in biomedical research in recent decades. Remarkable advancements in organoid technology have positioned them as promising candidates for regenerative medicine. However, current organoids still have limitations, such as the absence of internal vasculature, limited functionality, and a small size that is not commensurate with that of actual organs. These limitations hinder their survival and regenerative effects after transplantation. Another significant concern is the reliance on mouse tumor-derived matrix in organoid culture, which is unsuitable for clinical translation due to its tumor origin and safety issues. Therefore, our aim is to describe engineering strategies and alternative biocompatible materials that can facilitate the practical applications of organoids in regenerative medicine. Furthermore, we highlight meaningful progress in organoid transplantation, with a particular emphasis on the functional restoration of various organs.
Collapse
Affiliation(s)
- Sewon Park
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea; Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
29
|
Wang X, Li X, Zhao J, Li Y, Shin SR, Ligresti G, Ng AHM, Bromberg JS, Church G, Lemos DR, Abdi R. Rapid Generation of hPSC-Derived High Endothelial Venule Organoids with In Vivo Ectopic Lymphoid Tissue Capabilities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308760. [PMID: 38306610 PMCID: PMC11009051 DOI: 10.1002/adma.202308760] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Bioengineering strategies for the fabrication of implantable lymphoid structures mimicking lymph nodes (LNs) and tertiary lymphoid structures (TLS) could amplify the adaptive immune response for therapeutic applications such as cancer immunotherapy. No method to date has resulted in the consistent formation of high endothelial venules (HEVs), which is the specialized vasculature responsible for naïve T cell recruitment and education in both LNs and TLS. Here orthogonal induced differentiation of human pluripotent stem cells carrying a regulatable ETV2 allele is used to rapidly and efficiently induce endothelial differentiation. Assembly of embryoid bodies combining primitive inducible endothelial cells and primary human LN fibroblastic reticular cells results in the formation of HEV-like structures that can aggregate into 3D organoids (HEVOs). Upon transplantation into immunodeficient mice, HEVOs successfully engraft and form lymphatic structures that recruit both antigen-presenting cells and adoptively-transferred lymphocytes, therefore displaying basic TLS capabilities. The results further show that functionally, HEVOs can organize an immune response and promote anti-tumor activity by adoptively-transferred T lymphocytes. Collectively, the experimental approaches represent an innovative and scalable proof-of-concept strategy for the fabrication of bioengineered TLS that can be deployed in vivo to enhance adaptive immune responses.
Collapse
Affiliation(s)
- Xichi Wang
- Renal Division, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaofei Li
- Renal Division, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Jing Zhao
- Renal Division, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Yi Li
- Renal Division, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Su Ryon Shin
- Renal Division, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Giovanni Ligresti
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Alex H M Ng
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02138, USA
| | - Jonathan S Bromberg
- Department of Surgery and Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - George Church
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02138, USA
| | - Dario R Lemos
- Renal Division, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Reza Abdi
- Renal Division, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| |
Collapse
|
30
|
Shang X, Jin Y, Xue Y, Pan X, Zhu H, Meng X, Cao Z, Rui Y. Overexpression of ETV2 in BMSCs promoted wound healing in cutaneous wound mice by triggering the differentiation of BMSCs into endothelial cells and modulating the transformation of M1 phenotype macrophages to M2 phenotype macrophages. Tissue Cell 2024; 87:102334. [PMID: 38430850 DOI: 10.1016/j.tice.2024.102334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
This study aimed to investigate the effects of E26-transformation-specific variant-2 (ETV2) overexpression on wound healing in a cutaneous wound (CW) model and clarify associated mechanisms. pLVX-ETV2 lentivirus expressing ETV2 was constructed and infected into BMSCs to generate ETV2-overexpressed BMSCs (BMSCs+pLVX+ETV2). The RT-PCR assay was applied to amplify ETV2, VE-cadherin, vWF, ARG-1, IL-6, iNOS, TGF-β, IL-10, TNF-α. Western blot was used to determine expression of VE-cadherin and vWF. ETV2 induced differentiation of BMSCs into ECs by increasing CDH5/CD31, triggering tube-like structures, inducing Dil-Ac-LDL positive BMSCs. ETV2 overexpression increased the gene transcription and expression of VE-cadherin and vWF (P<0.01). Transcription of M1 phenotype specific iNOS gene was lower and transcription of M2 phenotype specific ARG-1 gene was higher in the RAW264.7+BMSCs+ETV2 group compared to the RAW264.7+BMSCs+pLVX group (P<0.01). ETV2 overexpression (RAW264.7+BMSCs+ETV2) downregulated IL-6 and TNF-α, and upregulated IL-10 and TGF-β gene transcription compared to RAW264.7+BMSCs+pLVX group (P<0.01). ETV2-overexpressed BMSCs promoted wound healing in CW mice and triggered the migration of BMSCs to the wound region and macrophage activation. ETV2-overexpressed BMSCs promoted collagen fibers and blood vessel formation in the wound region of CW mice. In conclusion, this study revealed a novel biofunction of ETV2 molecule in the wound healing process. ETV2 overexpression in BMSCs promoted wound healing in CW mice by triggering BMSCs differentiation into endothelial cells and modulating the transformation of M1 pro-inflammatory and M2 anti-inflammatory macrophages in vitro and in vivo.
Collapse
Affiliation(s)
- Xiuchao Shang
- Medical College, Soochow University, Suzhou. China; The First People's Hospital of Lianyungang, Lianyungang, China
| | - Yesheng Jin
- Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Yuan Xue
- Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Xiaoyun Pan
- Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Haiquan Zhu
- The First People's Hospital of Lianyungang, Lianyungang, China
| | - Xiangsheng Meng
- The First People's Hospital of Lianyungang, Lianyungang, China
| | - Zhihai Cao
- Medical College, Soochow University, Suzhou. China
| | - Yongjun Rui
- Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China.
| |
Collapse
|
31
|
Grath A, Dai G. SOX17/ETV2 improves the direct reprogramming of adult fibroblasts to endothelial cells. CELL REPORTS METHODS 2024; 4:100732. [PMID: 38503291 PMCID: PMC10985233 DOI: 10.1016/j.crmeth.2024.100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/07/2023] [Accepted: 02/23/2024] [Indexed: 03/21/2024]
Abstract
An autologous source of vascular endothelial cells (ECs) is valuable for vascular regeneration and tissue engineering without the concern of immune rejection. The transcription factor ETS variant 2 (ETV2) has been shown to directly convert patient fibroblasts into vascular EC-like cells. However, reprogramming efficiency is low and there are limitations in EC functions, such as eNOS expression. In this study, we directly reprogram adult human dermal fibroblasts into reprogrammed ECs (rECs) by overexpressing SOX17 in conjunction with ETV2. We find several advantages to rEC generation using this approach, including improved reprogramming efficiency, increased enrichment of EC genes, formation of large blood vessels carrying blood from the host, and, most importantly, expression of eNOS in vivo. From these results, we present an improved method to reprogram adult fibroblasts into functional ECs and posit ideas for the future that could potentially further improve the reprogramming process.
Collapse
Affiliation(s)
- Alexander Grath
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
32
|
Zhao Y, Yang Y, Wu X, Zhang L, Cai X, Ji J, Chen S, Vera A, Boström KI, Yao Y. CDK1 inhibition reduces osteogenesis in endothelial cells in vascular calcification. JCI Insight 2024; 9:e176065. [PMID: 38456502 PMCID: PMC10972591 DOI: 10.1172/jci.insight.176065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/19/2024] [Indexed: 03/09/2024] Open
Abstract
Vascular calcification is a severe complication of cardiovascular diseases. Previous studies demonstrated that endothelial lineage cells transitioned into osteoblast-like cells and contributed to vascular calcification. Here, we found that inhibition of cyclin-dependent kinase (CDK) prevented endothelial lineage cells from transitioning to osteoblast-like cells and reduced vascular calcification. We identified a robust induction of CDK1 in endothelial cells (ECs) in calcified arteries and showed that EC-specific gene deletion of CDK1 decreased the calcification. We found that limiting CDK1 induced E-twenty-six specific sequence variant 2 (ETV2), which was responsible for blocking endothelial lineage cells from undergoing osteoblast differentiation. We also found that inhibition of CDK1 reduced vascular calcification in a diabetic mouse model. Together, the results highlight the importance of CDK1 suppression and suggest CDK1 inhibition as a potential option for treating vascular calcification.
Collapse
Affiliation(s)
- Yan Zhao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Yang Yang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Xinjiang Cai
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jaden Ji
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sydney Chen
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Abigail Vera
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- The Molecular Biology Institute at UCLA, Los Angeles, California, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
33
|
Chai YC, To SK, Simorgh S, Zaunz S, Zhu Y, Ahuja K, Lemaitre A, Ramezankhani R, van der Veer BK, Wierda K, Verhulst S, van Grunsven LA, Pasque V, Verfaillie C. Spatially Self-Organized Three-Dimensional Neural Concentroid as a Novel Reductionist Humanized Model to Study Neurovascular Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304421. [PMID: 38037510 PMCID: PMC10837345 DOI: 10.1002/advs.202304421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/15/2023] [Indexed: 12/02/2023]
Abstract
Although human pluripotent stem cell (PSC)-derived brain organoids have enabled researchers to gain insight into human brain development and disease, these organoids contain solely ectodermal cells and are not vascularized as occurs during brain development. Here it is created less complex and more homogenous large neural constructs starting from PSC-derived neuroprogenitor cells (NPC), by fusing small NPC spheroids into so-called concentroids. Such concentroids consisted of a pro-angiogenic core, containing neuronal and outer radial glia cells, surrounded by an astroglia-dense outer layer. Incorporating PSC-derived endothelial cells (EC) around and/or in the concentroids promoted vascularization, accompanied by differential outgrowth and differentiation of neuronal and astroglia cells, as well as the development of ectodermal-derived pericyte-like mural cells co-localizing with EC networks. Single nucleus transcriptomic analysis revealed an enhanced neural cell subtype maturation and diversity in EC-containing concentroids, which better resemble the fetal human brain compared to classical organoids or NPC-only concentroids. This PSC-derived "vascularized" concentroid brain model will facilitate the study of neurovascular/blood-brain barrier development, neural cell migration, and the development of effective in vitro vascularization strategies of brain mimics.
Collapse
Affiliation(s)
- Yoke Chin Chai
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - San Kit To
- Stem Cell Institute LeuvenDepartment of Development and RegenerationLeuven Institute for Single Cell Omics (LISCO)KU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Susan Simorgh
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Samantha Zaunz
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - YingLi Zhu
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Karan Ahuja
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Alix Lemaitre
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Roya Ramezankhani
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Bernard K. van der Veer
- Laboratory for Stem Cell and Developmental EpigeneticsDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Keimpe Wierda
- Electrophysiology Expert UnitVIB‐KU Leuven Center for Brain & Disease ResearchLeuven3000Belgium
| | - Stefaan Verhulst
- Liver Cell Biology Research GroupVrije Universiteit Brussel (VUB)Brussels1090Belgium
| | - Leo A. van Grunsven
- Liver Cell Biology Research GroupVrije Universiteit Brussel (VUB)Brussels1090Belgium
| | - Vincent Pasque
- Stem Cell Institute LeuvenDepartment of Development and RegenerationLeuven Institute for Single Cell Omics (LISCO)KU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Catherine Verfaillie
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| |
Collapse
|
34
|
Cho S, Xia I, Lee S, Park C, Yoon YS. Generation of Directly Reprogrammed Human Endothelial Cells. Methods Mol Biol 2024; 2835:155-164. [PMID: 39105914 DOI: 10.1007/978-1-0716-3995-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Direct reprogramming provides a novel breakthrough for generating functional endothelial cells (ECs) without the need for intermediate stem or progenitor states, offering a promising resource for cardiovascular research and treatment. ETV2 is a key transcription factor that has been identified as a pioneering factor for specifying endothelial lineage. Achieving precise ETV2 induction is essential for effective endothelial reprogramming, and maintaining the reprogrammed cellular phenotype relies on a specific combination of growth factors and small molecules. Thus, we hereby provide a straightforward and comprehensive protocol for generating two distinct types of reprogrammed ECs (rECs) from human dermal fibroblasts (HDFs). Early rECs demonstrate a robust neovascularization property but lack the mature EC phenotype, while late rECs exhibit phenotypical similarity to human postnatal ECs and have a neovascularization capacity similar to early rECs. Both cell types can be derived from human somatic source cells, making them suitable for personalized disease investigations, drug discovery, and disease therapy.
Collapse
Affiliation(s)
- Seonggeon Cho
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Iris Xia
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sangho Lee
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Changwon Park
- Louisiana State University Health Sciences Center, Department of Molecular & Cellular Physiology, Shreveport, LA, USA
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-Sup Yoon
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
35
|
Marzoog BA. Autophagy Behavior in Endothelial Cell Regeneration. Curr Aging Sci 2024; 17:58-67. [PMID: 37861048 DOI: 10.2174/0118746098260689231002044435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
Autophagy plays a crucial role in maintaining endothelial cell homeostasis through the turnover of intracellular components during stress conditions in a lysosomal-dependent manner. The regeneration strategy involves several aspects, including autophagy. Autophagy is a catabolic degenerative lysosomal-dependent degradation of intracellular components. Autophagy modifies cellular and subcellular endothelial cell functions, including mitochondria stress, lysosomal stress, and endoplasmic reticulum unfolded protein response. Activation of common signaling pathways of autophagy and regeneration and enhancement of intracellular endothelial cell metabolism serve as the bases for the induction of endothelial regeneration. Endothelial progenitor cells include induced pluripotent stem cells (iPSC), embryonic stem cells, and somatic cells, such as fibroblasts. Future strategies of endothelial cell regeneration involve the induction of autophagy to minimize the metabolic degeneration of the endothelial cells and optimize the regeneration outcomes.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
| |
Collapse
|
36
|
Konishi H, Rahmawati FN, Okamoto N, Akuta K, Inukai K, Jia W, Muramatsu F, Takakura N. Discovery of Transcription Factors Involved in the Maintenance of Resident Vascular Endothelial Stem Cell Properties. Mol Cell Biol 2024; 44:17-26. [PMID: 38247234 PMCID: PMC10829836 DOI: 10.1080/10985549.2023.2297997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024] Open
Abstract
A resident vascular endothelial stem cell (VESC) population expressing CD157 has been identified recently in mice. Herein, we identified transcription factors (TFs) regulating CD157 expression in endothelial cells (ECs) that were associated with drug resistance, angiogenesis, and EC proliferation. In the first screening, we detected 20 candidate TFs through the CD157 promoter and gene expression analyses. We found that 10 of the 20 TFs induced CD157 expression in ECs. We previously reported that 70% of CD157 VESCs were side population (SP) ECs that abundantly expressed ATP-binding cassette (ABC) transporters. Here, we found that the 10 TFs increased the expression of several ABC transporters in ECs and increased the proportion of SP ECs. Of these 10 TFs, we found that six (Atf3, Bhlhe40, Egr1, Egr2, Elf3, and Klf4) were involved in the manifestation of the SP phenotype. Furthermore, the six TFs enhanced tube formation and proliferation in ECs. Single-cell RNA sequence data in liver ECs suggested that Atf3 and Klf4 contributed to the production of CD157+ VESCs in the postnatal period. We concluded that Klf4 might be important for the development and maintenance of liver VESCs. Our work suggests that a TF network is involved in the differentiation hierarchy of VESCs.
Collapse
Affiliation(s)
- Hirotaka Konishi
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Fitriana N. Rahmawati
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Naoki Okamoto
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Keigo Akuta
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Koichi Inukai
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Weizhen Jia
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Fumitaka Muramatsu
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Signal Transduction, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| |
Collapse
|
37
|
Jiang H, Li X, Chen T, Liu Y, Wang Q, Wang Z, Jia J. Bioprinted vascular tissue: Assessing functions from cellular, tissue to organ levels. Mater Today Bio 2023; 23:100846. [PMID: 37953757 PMCID: PMC10632537 DOI: 10.1016/j.mtbio.2023.100846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
3D bioprinting technology is widely used to fabricate various tissue structures. However, the absence of vessels hampers the ability of bioprinted tissues to receive oxygen and nutrients as well as to remove wastes, leading to a significant reduction in their survival rate. Despite the advancements in bioinks and bioprinting technologies, bioprinted vascular structures continue to be unsuitable for transplantation compared to natural blood vessels. In addition, a complete assessment index system for evaluating the structure and function of bioprinted vessels in vitro has not yet been established. Therefore, in this review, we firstly highlight the significance of selecting suitable bioinks and bioprinting techniques as they two synergize with each other. Subsequently, focusing on both vascular-associated cells and vascular tissues, we provide a relatively thorough assessment of the functions of bioprinted vascular tissue based on the physiological functions that natural blood vessels possess. We end with a review of the applications of vascular models, such as vessel-on-a-chip, in simulating pathological processes and conducting drug screening at the organ level. We believe that the development of fully functional blood vessels will soon make great contributions to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Haihong Jiang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xueyi Li
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| | - Tianhong Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yang Liu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhimin Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Jia Jia
- School of Life Sciences, Shanghai University, Shanghai, China
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| |
Collapse
|
38
|
Ilia K, Shakiba N, Bingham T, Jones RD, Kaminski MM, Aravera E, Bruno S, Palacios S, Weiss R, Collins JJ, Del Vecchio D, Schlaeger TM. Synthetic genetic circuits to uncover the OCT4 trajectories of successful reprogramming of human fibroblasts. SCIENCE ADVANCES 2023; 9:eadg8495. [PMID: 38019912 PMCID: PMC10686568 DOI: 10.1126/sciadv.adg8495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Reprogramming human fibroblasts to induced pluripotent stem cells (iPSCs) is inefficient, with heterogeneity among transcription factor (TF) trajectories driving divergent cell states. Nevertheless, the impact of TF dynamics on reprogramming efficiency remains uncharted. We develop a system that accurately reports OCT4 protein levels in live cells and use it to reveal the trajectories of OCT4 in successful reprogramming. Our system comprises a synthetic genetic circuit that leverages noise to generate a wide range of OCT4 trajectories and a microRNA targeting endogenous OCT4 to set total cellular OCT4 protein levels. By fusing OCT4 to a fluorescent protein, we are able to track OCT4 trajectories with clonal resolution via live-cell imaging. We discover that a supraphysiological, stable OCT4 level is required, but not sufficient, for efficient iPSC colony formation. Our synthetic genetic circuit design and high-throughput live-imaging pipeline are generalizable for investigating TF dynamics for other cell fate programming applications.
Collapse
Affiliation(s)
- Katherine Ilia
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nika Shakiba
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
| | - Trevor Bingham
- Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard University, Boston, MA 02115, USA
| | - Ross D. Jones
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
| | - Michael M. Kaminski
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz-Association, Berlin 10115, Germany
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Medizinische Klinik m.S. Nephrologie und Intensivmedizin, Berlin 10117, Germany
- Berlin Institute of Health, Berlin 13125, Germany
| | - Eliezer Aravera
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Simone Bruno
- Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA
| | - Sebastian Palacios
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA
| | - James J. Collins
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Domitilla Del Vecchio
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA
| | | |
Collapse
|
39
|
Wang Y, Gao X, Yang Z, Yan X, He X, Guo T, Zhao S, Zhao H, Chen ZJ. Deciphering the DNA methylome in women with PCOS diagnosed using the new international evidence-based guidelines. Hum Reprod 2023; 38:ii69-ii79. [PMID: 37982419 DOI: 10.1093/humrep/dead191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 07/16/2023] [Indexed: 11/21/2023] Open
Abstract
STUDY QUESTION Is there any methylome alteration in women with PCOS who were diagnosed using the new international evidence-based guidelines? SUMMARY ANSWER A total of 264 differentially methylated probes (DMPs) and 53 differentially methylated regions (DMRs) were identified in patients with PCOS and healthy controls. WHAT IS KNOWN ALREADY PCOS is a common endocrine disorder among women of reproductive age and polycystic ovarian morphology (PCOM) is one of the main features of the disease. Owing to the availability of more sensitive ultrasound machines, the traditional diagnosis of PCOM according to the Rotterdam criteria (≥12 antral follicles per ovary) is currently debated as there is a risk of overdiagnosis. The new international evidence-based guidelines set the threshold for PCOM as ≥20 antral follicles per ovary when using endovaginal ultrasound transducers with a frequency bandwidth that includes 8 MHz. However, current DNA methylation studies in PCOS are still based on the Rotterdam criteria. This study aimed to explore aberrant DNA methylation in patients diagnosed with PCOS according to the new evidence-based guidelines. STUDY DESIGN, SIZE, DURATION This cross-sectional case-control study included 34 PCOS cases diagnosed using new international evidence-based guidelines and 36 controls. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 70 women, including 34 PCOS cases and 36 controls, were recruited. DNA extracted from whole blood samples of participants were profiled using array technology. Data quality control, preprocessing, annotation, and statistical analyses were performed. Least absolute shrinkage and selection operator (LASSO) regression were used to build a PCOS diagnosis model with DNA methylation sites. MAIN RESULTS AND THE ROLE OF CHANCE We identified 264 DMPs between PCOS cases and controls, which were mainly located in intergenic regions or gene bodies of the genome, CpG open sea sites, and heterochromatin of functional elements. Pathway enrichment analysis showed that DMPs were significantly enriched in biological processes involved in triglyceride regulation. Three of these DMPs overlapped with the PCOS susceptibility genes thyroid adenoma-associated protein (THADA), aminopeptidase O (AOPEP), and tripartite motif family-like protein 2 (TRIML2). Fifty-three DMRs were identified and their annotated genes were largely enriched in allograft rejection, thyroid hormone production, and peripheral downstream signaling effects. Two DMRs were closely related to the PCOS susceptibility genes, potassium voltage-gated channel subfamily A member 4 (KCNA4) and farnesyl-diphosphate farnesyltransferase 1 (FDFT1). Finally, based on LASSO regression, we built a methylation marker model with high accuracy for PCOS diagnosis (AUC=0.952). LIMITATIONS, REASONS FOR CAUTION The study cohort was single-center and the sample size was relatively limited. Further analyses with a larger number of participants are required. WIDER IMPLICATIONS OF THE FINDINGS This is the first study to identify DNA methylation alterations in women with PCOS diagnosed using the new international evidence-based guideline, and it provided new molecular insight into the application of the new guidelines. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Key Research and Development Program of China (2021YFC2700400), Basic Science Center Program of NSFC (31988101), CAMS Innovation Fund for Medical Sciences (2021-I2M-5-001), National Natural Science Foundation of China (32370916, 82071606, 82101707, 82192874, and 31871509), Shandong Provincial Key Research and Development Program (2020ZLYS02), Taishan Scholars Program of Shandong Province (ts20190988), and Fundamental Research Funds of Shandong University. The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Yuteng Wang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Xueying Gao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ziyi Yang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Xueqi Yan
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Xinmiao He
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Ting Guo
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Shigang Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Han Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
40
|
Sato Y, Asahi T, Kataoka K. Integrative single-cell RNA-seq analysis of vascularized cerebral organoids. BMC Biol 2023; 21:245. [PMID: 37940920 PMCID: PMC10634128 DOI: 10.1186/s12915-023-01711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Cerebral organoids are three-dimensional in vitro cultured brains that mimic the function and structure of the human brain. One of the major challenges for cerebral organoids is the lack of functional vasculature. Without perfusable vessels, oxygen and nutrient supplies may be insufficient for long-term culture, hindering the investigation of the neurovascular interactions. Recently, several strategies for the vascularization of human cerebral organoids have been reported. However, the generalizable trends and variability among different strategies are unclear due to the lack of a comprehensive characterization and comparison of these vascularization strategies. In this study, we aimed to explore the effect of different vascularization strategies on the nervous system and vasculature in human cerebral organoids. RESULTS We integrated single-cell RNA sequencing data of multiple vascularized and vascular organoids and fetal brains from publicly available datasets and assessed the protocol-dependent and culture-day-dependent effects on the cell composition and transcriptomic profiles in neuronal and vascular cells. We revealed the similarities and uniqueness of multiple vascularization strategies and demonstrated the transcriptomic effects of vascular induction on neuronal and mesodermal-like cell populations. Moreover, our data suggested that the interaction between neurons and mesodermal-like cell populations is important for the cerebrovascular-specific profile of endothelial-like cells. CONCLUSIONS This study highlights the current challenges to vascularization strategies in human cerebral organoids and offers a benchmark for the future fabrication of vascularized organoids.
Collapse
Affiliation(s)
- Yuya Sato
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Toru Asahi
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
- Comprehensive Research Organization, Waseda University, Tokyo, Japan.
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan.
| | - Kosuke Kataoka
- Comprehensive Research Organization, Waseda University, Tokyo, Japan.
| |
Collapse
|
41
|
Zhong J, Qiu M, Meng Y, Wang P, Chen S, Wang L. Single-cell multi-omics sequencing reveals the immunological disturbance underlying STAT3-V637M Hyper-IgE syndrome. Int Immunopharmacol 2023; 122:110624. [PMID: 37480751 DOI: 10.1016/j.intimp.2023.110624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
Hyper-IgE syndrome (HIES) is a primary immunodeficiency characterized by, among others, the excessive production of IgE and repetitive bacterial/fungal infections. Mutations in STAT3, a transcription factor that orchestrates immune responses, may cause HIES, but the underlying mechanisms are not fully understood. Here, we used multi-omic approaches to comprehensively decipher the immune disturbance in a male HIES patient harboring STAT3-V637M. In his peripheral blood mononuclear cell (PBMC) we found significant clonal expansion of CD8 T cells (with increased CD8 subunits expression, potentially enhancing responsiveness to MHC I molecules), but not in his CD4 T cells and B cells. Although his B cells exhibited a higher potential in producing immunoglobulin, elevated SPIC binding might bias the products toward IgE isotype. Immune checkpoint inhibitors, including CTLA4, LAG3, were overexpressed in his PBMC-CD4 T cells, accompanied by reduced CD28 and IL6ST (gp130) expression. In his CD4 T cells, integrative analyses predicted upstream transcription factors (including ETV6, KLF13, and RORA) for LAG3, IL6ST, and CD28, respectively. The down-regulation of phagocytosis and nitric oxide synthesis-related genes in his PBMC-monocytes seem to be the culprit of his disseminated bacterial/fungal infection. Counterintuitively, in his PBMC we predicted increased STAT3 binding in both naïve and mature CD4 compartments, although this was not observed in most of his PBMC. In his bronchoalveolar lavage fluid (BALF), we found two macrophage subtypes with anti-bacterial properties, which were identified by CXCL8/S100A8/S100A9, or SOD2, respectively. Together, we described how the immune cell landscape was disturbed in STAT3-V637M HIES, providing a resource for further studies.
Collapse
Affiliation(s)
- Jiacheng Zhong
- Shenzhen Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital, Shenzhen 518055, Guangdong, China; Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518055, Guangdong, China
| | - Minzhi Qiu
- Health Management Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Yu Meng
- Department of Quality Control, Shenzhen People's Hospital, Shenzhen 518055, Guangdong, China
| | - Peizhong Wang
- Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Shanze Chen
- Shenzhen Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital, Shenzhen 518055, Guangdong, China; Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518055, Guangdong, China.
| | - Lingwei Wang
- Shenzhen Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital, Shenzhen 518055, Guangdong, China; Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518055, Guangdong, China.
| |
Collapse
|
42
|
Yoshida YG, Yan S, Xu H, Yang J. Novel Metal Nanomaterials to Promote Angiogenesis in Tissue Regeneration. ENGINEERED REGENERATION 2023; 4:265-276. [PMID: 37234753 PMCID: PMC10207714 DOI: 10.1016/j.engreg.2023.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Angiogenesis-the formation of new blood vessels from existing blood vessels-has drawn significant attention in medical research. New techniques have been developed to control proangiogenic factors to obtain desired effects. Two important research areas are 1) understanding cellular mechanisms and signaling pathways involved in angiogenesis and 2) discovering new biomaterials and nanomaterials with proangiogenic effects. This paper reviews recent developments in controlling angiogenesis in the context of regenerative medicine and wound healing. We focus on novel proangiogenic materials that will advance the field of regenerative medicine. Specifically, we mainly focus on metal nanomaterials. We also discuss novel technologies developed to carry these proangiogenic inorganic molecules efficiently to target sites. We offer a comprehensive overview by combining existing knowledge regarding metal nanomaterials with novel developments that are still being refined to identify new nanomaterials.
Collapse
Affiliation(s)
- Yuki G. Yoshida
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hui Xu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
43
|
Cannell IG, Sawicka K, Pearsall I, Wild SA, Deighton L, Pearsall SM, Lerda G, Joud F, Khan S, Bruna A, Simpson KL, Mulvey CM, Nugent F, Qosaj F, Bressan D, Dive C, Caldas C, Hannon GJ. FOXC2 promotes vasculogenic mimicry and resistance to anti-angiogenic therapy. Cell Rep 2023; 42:112791. [PMID: 37499655 DOI: 10.1016/j.celrep.2023.112791] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/09/2022] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Vasculogenic mimicry (VM) describes the formation of pseudo blood vessels constructed of tumor cells that have acquired endothelial-like properties. VM channels endow the tumor with a tumor-derived vascular system that directly connects to host blood vessels, and their presence is generally associated with poor patient prognosis. Here we show that the transcription factor, Foxc2, promotes VM in diverse solid tumor types by driving ectopic expression of endothelial genes in tumor cells, a process that is stimulated by hypoxia. VM-proficient tumors are resistant to anti-angiogenic therapy, and suppression of Foxc2 augments response. This work establishes co-option of an embryonic endothelial transcription factor by tumor cells as a key mechanism driving VM proclivity and motivates the search for VM-inhibitory agents that could form the basis of combination therapies with anti-angiogenics.
Collapse
Affiliation(s)
- Ian G Cannell
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA.
| | - Kirsty Sawicka
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA
| | - Isabella Pearsall
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA
| | - Sophia A Wild
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Lauren Deighton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Sarah M Pearsall
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; Cancer Research UK Cancer Biomarker Centre, Manchester M20 4BX, UK; CRUK Manchester Institute, Manchester M20 4BX, UK
| | - Giulia Lerda
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Fadwa Joud
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Showkhin Khan
- New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA
| | - Alejandra Bruna
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; Preclinical Modelling of Paediatric Cancer Evolution Team, The Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5N, UK
| | - Kathryn L Simpson
- Cancer Research UK Cancer Biomarker Centre, Manchester M20 4BX, UK; CRUK Manchester Institute, Manchester M20 4BX, UK
| | - Claire M Mulvey
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Fiona Nugent
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Fatime Qosaj
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Dario Bressan
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Caroline Dive
- Cancer Research UK Cancer Biomarker Centre, Manchester M20 4BX, UK; CRUK Manchester Institute, Manchester M20 4BX, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; Department of Oncology and Breast Cancer Programme, CRUK Cambridge Centre, Cambridge University Hospitals NHS and University of Cambridge, Cambridge CB2 2QQ, UK
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA.
| |
Collapse
|
44
|
Kizub IV. Induced pluripotent stem cells for cardiovascular therapeutics: Progress and perspectives. REGULATORY MECHANISMS IN BIOSYSTEMS 2023; 14:451-468. [DOI: 10.15421/10.15421/022366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
The discovery of methods for reprogramming adult somatic cells into induced pluripotent stem cells (iPSCs) opens up prospects of developing personalized cell-based therapy options for a variety of human diseases as well as disease modeling and new drug discovery. Like embryonic stem cells, iPSCs can give rise to various cell types of the human body and are amenable to genetic correction. This allows usage of iPSCs in the development of modern therapies for many virtually incurable human diseases. The review summarizes progress in iPSC research in the context of application in the cardiovascular field including modeling cardiovascular disease, drug study, tissue engineering, and perspectives for personalized cardiovascular medicine.
Collapse
|
45
|
Cho S, Aakash P, Lee S, Yoon YS. Endothelial cell direct reprogramming: Past, present, and future. J Mol Cell Cardiol 2023; 180:22-32. [PMID: 37080451 PMCID: PMC10330356 DOI: 10.1016/j.yjmcc.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Ischemic cardiovascular disease still remains as a leading cause of morbidity and mortality despite various medical, surgical, and interventional therapy. As such, cell therapy has emerged as an attractive option because it tackles underlying problem of the diseases by inducing neovascularization in ischemic tissue. After overall failure of adult stem or progenitor cells, studies attempted to generate endothelial cells (ECs) from pluripotent stem cells (PSCs). While endothelial cells (ECs) differentiated from PSCs successfully induced vascular regeneration, differentiating volatility and tumorigenic potential is a concern for their clinical applications. Alternatively, direct reprogramming strategies employ lineage-specific factors to change cell fate without achieving pluripotency. ECs have been successfully reprogrammed via ectopic expression of transcription factors (TFs) from endothelial lineage. The reprogrammed ECs induced neovascularization in vitro and in vivo and thus demonstrated their therapeutic value in animal models of vascular insufficiency. Methods of delivering reprogramming factors include lentiviral or retroviral vectors and more clinically relevant, non-integrative adenoviral and episomal vectors. Most studies made use of fibroblast as a source cell for reprogramming, but reprogrammability of other clinically relevant source cell types has to be evaluated. Specific mechanisms and small molecules that are involved in the aforementioned processes tackles challenges associated with direct reprogramming efficiency and maintenance of reprogrammed EC characteristics. After all, this review provides summary of past and contemporary methods of direct endothelial reprogramming and discusses the future direction to overcome these challenges to acquire clinically applicable reprogrammed ECs.
Collapse
Affiliation(s)
- Seonggeon Cho
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Parthasarathy Aakash
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sangho Lee
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | - Young-Sup Yoon
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Steimle JD, Kim C, Rowton M, Nadadur RD, Wang Z, Stocker M, Hoffmann AD, Hanson E, Kweon J, Sinha T, Choi K, Black BL, Cunningham JM, Moskowitz IP, Ikegami K. ETV2 primes hematoendothelial gene enhancers prior to hematoendothelial fate commitment. Cell Rep 2023; 42:112665. [PMID: 37330911 PMCID: PMC10592526 DOI: 10.1016/j.celrep.2023.112665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 03/14/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023] Open
Abstract
Mechanisms underlying distinct specification, commitment, and differentiation phases of cell fate determination remain undefined due to difficulties capturing these processes. Here, we interrogate the activity of ETV2, a transcription factor necessary and sufficient for hematoendothelial differentiation, within isolated fate intermediates. We observe transcriptional upregulation of Etv2 and opening of ETV2-binding sites, indicating new ETV2 binding, in a common cardiac-hematoendothelial progenitor population. Accessible ETV2-binding sites are active at the Etv2 locus but not at other hematoendothelial regulator genes. Hematoendothelial commitment coincides with the activation of a small repertoire of previously accessible ETV2-binding sites at hematoendothelial regulators. Hematoendothelial differentiation accompanies activation of a large repertoire of new ETV2-binding sites and upregulation of hematopoietic and endothelial gene regulatory networks. This work distinguishes specification, commitment, and sublineage differentiation phases of ETV2-dependent transcription and suggests that the shift from ETV2 binding to ETV2-bound enhancer activation, not ETV2 binding to target enhancers, drives hematoendothelial fate commitment.
Collapse
Affiliation(s)
- Jeffrey D Steimle
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Chul Kim
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Megan Rowton
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Rangarajan D Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Zhezhen Wang
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Stocker
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Andrew D Hoffmann
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Erika Hanson
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Junghun Kweon
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Tanvi Sinha
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John M Cunningham
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| | - Kohta Ikegami
- Division of Molecular and Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
47
|
Hagedorn EJ, Perlin JR, Freeman RJ, Wattrus SJ, Han T, Mao C, Kim JW, Fernández-Maestre I, Daily ML, D'Amato C, Fairchild MJ, Riquelme R, Li B, Ragoonanan DAVE, Enkhbayar K, Henault EL, Wang HG, Redfield SE, Collins SH, Lichtig A, Yang S, Zhou Y, Kunar B, Gomez-Salinero JM, Dinh TT, Pan J, Holler K, Feldman HA, Butcher EC, van Oudenaarden A, Rafii S, Junker JP, Zon LI. Transcription factor induction of vascular blood stem cell niches in vivo. Dev Cell 2023; 58:1037-1051.e4. [PMID: 37119815 PMCID: PMC10330626 DOI: 10.1016/j.devcel.2023.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/08/2023] [Accepted: 04/07/2023] [Indexed: 05/01/2023]
Abstract
The hematopoietic niche is a supportive microenvironment composed of distinct cell types, including specialized vascular endothelial cells that directly interact with hematopoietic stem and progenitor cells (HSPCs). The molecular factors that specify niche endothelial cells and orchestrate HSPC homeostasis remain largely unknown. Using multi-dimensional gene expression and chromatin accessibility analyses in zebrafish, we define a conserved gene expression signature and cis-regulatory landscape that are unique to sinusoidal endothelial cells in the HSPC niche. Using enhancer mutagenesis and transcription factor overexpression, we elucidate a transcriptional code that involves members of the Ets, Sox, and nuclear hormone receptor families and is sufficient to induce ectopic niche endothelial cells that associate with mesenchymal stromal cells and support the recruitment, maintenance, and division of HSPCs in vivo. These studies set forth an approach for generating synthetic HSPC niches, in vitro or in vivo, and for effective therapies to modulate the endogenous niche.
Collapse
Affiliation(s)
- Elliott J Hagedorn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA; Section of Hematology and Medical Oncology and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Julie R Perlin
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Rebecca J Freeman
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Samuel J Wattrus
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Tianxiao Han
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Clara Mao
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Ji Wook Kim
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Inés Fernández-Maestre
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Madeleine L Daily
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Christopher D'Amato
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Michael J Fairchild
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Raquel Riquelme
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Brian Li
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Dana A V E Ragoonanan
- Section of Hematology and Medical Oncology and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Khaliun Enkhbayar
- Section of Hematology and Medical Oncology and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Emily L Henault
- Section of Hematology and Medical Oncology and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Helen G Wang
- Section of Hematology and Medical Oncology and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Shelby E Redfield
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Samantha H Collins
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Asher Lichtig
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Song Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Yi Zhou
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Balvir Kunar
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jesus Maria Gomez-Salinero
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Thanh T Dinh
- Veterans Affairs Palo Alto Health Care System, The Palo Alto Veterans Institute for Research and the Department of Pathology, Stanford University, Stanford, CA, USA
| | - Junliang Pan
- Veterans Affairs Palo Alto Health Care System, The Palo Alto Veterans Institute for Research and the Department of Pathology, Stanford University, Stanford, CA, USA
| | - Karoline Holler
- Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Henry A Feldman
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, USA
| | - Eugene C Butcher
- Veterans Affairs Palo Alto Health Care System, The Palo Alto Veterans Institute for Research and the Department of Pathology, Stanford University, Stanford, CA, USA
| | - Alexander van Oudenaarden
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Shahin Rafii
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - J Philipp Junker
- Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA.
| |
Collapse
|
48
|
Maggiore JC, LeGraw R, Przepiorski A, Velazquez J, Chaney C, Streeter E, Silva-Barbosa A, Franks J, Hislop J, Hill A, Wu H, Pfister K, Howden SE, Watkins SC, Little M, Humphreys BD, Watson A, Stolz DB, Kiani S, Davidson AJ, Carroll TJ, Cleaver O, Sims-Lucas S, Ebrahimkhani MR, Hukriede NA. Genetically engineering endothelial niche in human kidney organoids enables multilineage maturation, vascularization and de novo cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542848. [PMID: 37333155 PMCID: PMC10274893 DOI: 10.1101/2023.05.30.542848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Vascularization plays a critical role in organ maturation and cell type development. Drug discovery, organ mimicry, and ultimately transplantation in a clinical setting thereby hinges on achieving robust vascularization of in vitro engineered organs. Here, focusing on human kidney organoids, we overcome this hurdle by combining an inducible ETS translocation variant 2 (ETV2) human induced pluripotent stem cell (iPSC) line, which directs endothelial fate, with a non-transgenic iPSC line in suspension organoid culture. The resulting human kidney organoids show extensive vascularization by endothelial cells with an identity most closely related to endogenous kidney endothelia. Vascularized organoids also show increased maturation of nephron structures including more mature podocytes with improved marker expression, foot process interdigitation, an associated fenestrated endothelium, and the presence of renin+ cells. The creation of an engineered vascular niche capable of improving kidney organoid maturation and cell type complexity is a significant step forward in the path to clinical translation. Furthermore, this approach is orthogonal to native tissue differentiation paths, hence readily adaptable to other organoid systems and thus has the potential for a broad impact on basic and translational organoid studies.
Collapse
Affiliation(s)
- Joseph C Maggiore
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
| | - Ryan LeGraw
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Aneta Przepiorski
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
| | - Jeremy Velazquez
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Christopher Chaney
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Evan Streeter
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
| | - Anne Silva-Barbosa
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh PA, 15213
| | - Jonathan Franks
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joshua Hislop
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Alex Hill
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, MO 63130
| | - Katherine Pfister
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh PA, 15213
| | - Sara E Howden
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Melissa Little
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, MO 63130
- Department of Developmental Biology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63130
| | - Alan Watson
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Samira Kiani
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1010, New Zealand
| | - Thomas J Carroll
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ondine Cleaver
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Sunder Sims-Lucas
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh PA, 15213
| | - Mo R Ebrahimkhani
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Neil A Hukriede
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
| |
Collapse
|
49
|
Garibyan M, Hoffman T, Makaske T, Do S, March AR, Cho N, Pedroncelli N, Lima RE, Soto J, Jackson B, Khademhosseini A, Li S, McCain M, Morsut L. Engineering Programmable Material-To-Cell Pathways Via Synthetic Notch Receptors To Spatially Control Cellular Phenotypes In Multi-Cellular Constructs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541497. [PMID: 37293089 PMCID: PMC10245658 DOI: 10.1101/2023.05.19.541497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Synthetic Notch (synNotch) receptors are modular synthetic components that are genetically engineered into mammalian cells to detect signals presented by neighboring cells and respond by activating prescribed transcriptional programs. To date, synNotch has been used to program therapeutic cells and pattern morphogenesis in multicellular systems. However, cell-presented ligands have limited versatility for applications that require spatial precision, such as tissue engineering. To address this, we developed a suite of materials to activate synNotch receptors and serve as generalizable platforms for generating user-defined material-to-cell signaling pathways. First, we demonstrate that synNotch ligands, such as GFP, can be conjugated to cell- generated ECM proteins via genetic engineering of fibronectin produced by fibroblasts. We then used enzymatic or click chemistry to covalently link synNotch ligands to gelatin polymers to activate synNotch receptors in cells grown on or within a hydrogel. To achieve microscale control over synNotch activation in cell monolayers, we microcontact printed synNotch ligands onto a surface. We also patterned tissues comprising cells with up to three distinct phenotypes by engineering cells with two distinct synthetic pathways and culturing them on surfaces microfluidically patterned with two synNotch ligands. We showcase this technology by co-transdifferentiating fibroblasts into skeletal muscle or endothelial cell precursors in user-defined spatial patterns towards the engineering of muscle tissue with prescribed vascular networks. Collectively, this suite of approaches extends the synNotch toolkit and provides novel avenues for spatially controlling cellular phenotypes in mammalian multicellular systems, with many broad applications in developmental biology, synthetic morphogenesis, human tissue modeling, and regenerative medicine.
Collapse
|
50
|
Ahmed TA, Eldaly B, Eldosuky S, Elkhenany H, El-Derby AM, Elshazly MF, El-Badri N. The interplay of cells, polymers, and vascularization in three-dimensional lung models and their applications in COVID-19 research and therapy. Stem Cell Res Ther 2023; 14:114. [PMID: 37118810 PMCID: PMC10144893 DOI: 10.1186/s13287-023-03341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/14/2023] [Indexed: 04/30/2023] Open
Abstract
Millions of people have been affected ever since the emergence of the corona virus disease of 2019 (COVID-19) outbreak, leading to an urgent need for antiviral drug and vaccine development. Current experimentation on traditional two-dimensional culture (2D) fails to accurately mimic the in vivo microenvironment for the disease, while in vivo animal model testing does not faithfully replicate human COVID-19 infection. Human-based three-dimensional (3D) cell culture models such as spheroids, organoids, and organ-on-a-chip present a promising solution to these challenges. In this report, we review the recent 3D in vitro lung models used in COVID-19 infection and drug screening studies and highlight the most common types of natural and synthetic polymers used to generate 3D lung models.
Collapse
Affiliation(s)
- Toka A Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Bassant Eldaly
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Shadwa Eldosuky
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Hoda Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Muhamed F Elshazly
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt.
| |
Collapse
|