1
|
Saxena R, Gottlin EB, Campa MJ, He YW, Patz EF. Complement regulators as novel targets for anti-cancer therapy: A comprehensive review. Semin Immunol 2025; 77:101931. [PMID: 39826189 DOI: 10.1016/j.smim.2025.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/04/2025] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Cancer remains a formidable global health challenge requiring the continued exploration of innovative therapeutic approaches. While traditional treatment strategies including surgery, chemotherapy, and radiation therapy have had some success, primarily in early-stage disease, the quest for more targeted, personalized, safer, and effective therapies remains an ongoing pursuit. Over the past decade, significant advances in the field of tumor immunology have dramatically shifted a focus towards immunotherapy, although the ability to harness and coopt the immune system to treat cancer is still just beginning to be realized. One important area that has yet to be fully explored is the complement system, an integral part of innate immunity that has gathered attention recently as a source of potential targets for anti-cancer therapy. The complement system has a complex and context dependent role in cancer biology in that it not only contributes to immune surveillance but also may promote tumor progression. Complement regulators, including CD46, CD55, CD59, and complement factor H, exercise defined control over complement activation, and have also been acknowledged for their role in the tumor microenvironment. This review explores the intricate role of complement regulators in cancer development and progression, examining their potential as therapeutic targets, current strategies, challenges, and the evolving landscape of clinical research.
Collapse
Affiliation(s)
- Ruchi Saxena
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Elizabeth B Gottlin
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael J Campa
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - You-Wen He
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Edward F Patz
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
2
|
Ghaemi A. Clarification on Rigvir's mechanism: Misinterpretation of CD55 inhibition in oncolytic therapy. Virology 2025; 601:110278. [PMID: 39482221 DOI: 10.1016/j.virol.2024.110278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Affiliation(s)
- Amir Ghaemi
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, P.O. Box: 1316943551, Iran.
| |
Collapse
|
3
|
Zhu Q, Duan XB, Hu H, You R, Xia TL, Yu T, Xiang T, Chen MY. EBV-induced upregulation of CD55 reduces the efficacy of cetuximab treatment in nasopharyngeal carcinoma. J Transl Med 2024; 22:1111. [PMID: 39695702 DOI: 10.1186/s12967-024-05822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/31/2024] [Indexed: 12/20/2024] Open
Abstract
Cetuximab, an anti-epidermal growth factor receptor (EGFR) antibody, has been shown to improve survival in nasopharyngeal carcinoma (NPC) patients. However, a correlation between the expression of EGFR and the response to cetuximab has not been observed, indicating that the mechanism underlying the effects of cetuximab needs to be further elucidated. The antitumour response involves immunotherapeutic mechanisms that target tumour-associated antigens, including complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC), act either alone or, more often, in combination. However, EBV infected NPC cells often develop resistance mechanisms that allow them to evade immune surveillance. Here, we found that overexpression of the complement-regulated protein CD55 in EBV-associated NPC cells mainly suppresses ADCC activity thus reduces the efficacy of cetuximab. Mechanistically, EBV latent membrane protein 1 (LMP1) mediated upregulation of CD55 through the NF-κB signalling pathway. The present study provides a rationale for the development of CD55 inhibitors to improve the clinical efficacy of cetuximab in NPC.
Collapse
Affiliation(s)
- Qian Zhu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Bing Duan
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hao Hu
- General Hospital of Southern Theater Command, Department of Radiation Therapy, Guangzhou, China
| | - Rui You
- Nasopharyngeal Cancer Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Tian-Liang Xia
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tao Yu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tong Xiang
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Ming-Yuan Chen
- Nasopharyngeal Cancer Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China.
| |
Collapse
|
4
|
Alekseeva ON, Hoa LT, Vorobyev PO, Kochetkov DV, Gumennaya YD, Naberezhnaya ER, Chuvashov DO, Ivanov AV, Chumakov PM, Lipatova AV. Receptors and Host Factors for Enterovirus Infection: Implications for Cancer Therapy. Cancers (Basel) 2024; 16:3139. [PMID: 39335111 PMCID: PMC11430599 DOI: 10.3390/cancers16183139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Enteroviruses, with their diverse clinical manifestations ranging from mild or asymptomatic infections to severe diseases such as poliomyelitis and viral myocarditis, present a public health threat. However, they can also be used as oncolytic agents. This review shows the intricate relationship between enteroviruses and host cell factors. Enteroviruses utilize specific receptors and coreceptors for cell entry that are critical for infection and subsequent viral replication. These receptors, many of which are glycoproteins, facilitate virus binding, capsid destabilization, and internalization into cells, and their expression defines virus tropism towards various types of cells. Since enteroviruses can exploit different receptors, they have high oncolytic potential for personalized cancer therapy, as exemplified by the antitumor activity of certain enterovirus strains including the bioselected non-pathogenic Echovirus type 7/Rigvir, approved for melanoma treatment. Dissecting the roles of individual receptors in the entry of enteroviruses can provide valuable insights into their potential in cancer therapy. This review discusses the application of gene-targeting techniques such as CRISPR/Cas9 technology to investigate the impact of the loss of a particular receptor on the attachment of the virus and its subsequent internalization. It also summarizes the data on their expression in various types of cancer. By understanding how enteroviruses interact with specific cellular receptors, researchers can develop more effective regimens of treatment, offering hope for more targeted and efficient therapeutic strategies.
Collapse
Affiliation(s)
- Olga N. Alekseeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Le T. Hoa
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pavel O. Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Dmitriy V. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Yana D. Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Elizaveta R. Naberezhnaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Denis O. Chuvashov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Peter M. Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Anastasia V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| |
Collapse
|
5
|
Gujar S, Pol JG, Kumar V, Lizarralde-Guerrero M, Konda P, Kroemer G, Bell JC. Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy. Nat Protoc 2024; 19:2540-2570. [PMID: 38769145 DOI: 10.1038/s41596-024-00985-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/12/2024] [Indexed: 05/22/2024]
Abstract
Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.
Collapse
Affiliation(s)
- Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Jonathan G Pol
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
| | - Vishnupriyan Kumar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Manuela Lizarralde-Guerrero
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Guido Kroemer
- INSERM, U1138, Paris, France.
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
- Université Paris Cité, Paris, France.
- Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France.
- Institut Universitaire de France, Paris, France.
- Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - John C Bell
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada.
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
6
|
Casasnovas JM. Virus-Receptor Interactions and Receptor-Mediated Virus Entry into Host Cells. Subcell Biochem 2024; 105:533-566. [PMID: 39738957 DOI: 10.1007/978-3-031-65187-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The virus particles described in the previous chapters of this book are vehicles that transmit the viral genome and the infection from cell to cell. To initiate the infective cycle, the viral genome must therefore translocate from the viral particle to the cell cytoplasm. Via distinct proteins or motifs in their outermost shell, the particles of animal viruses or bacteriophages attach initially to specific receptors on the host cell surface. These viral receptors thus mediate penetration of the viral genome inside the cell, where the intracellular infective cycle starts. The presence of these receptors on the cell surface is a principal determinant of virus-host tropism. Viruses can use diverse types of molecules to attach to and enter into cells. In addition, virus-receptor recognition can evolve over the course of an infection, and viral variants with distinct receptor-binding specificities and tropism can appear. The identification of viral receptors and the characterization of virus-receptor interactions have been major research goals in virology. In this chapter, we will describe, from a structural perspective, several virus-receptor interactions and the active role of receptor molecules in virus cell entry.
Collapse
Affiliation(s)
- José M Casasnovas
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
7
|
Liang Y, Chen J, Wang C, Yu B, Zhang Y, Liu Z. Investigating the mechanism of Echovirus 30 cell invasion. Front Microbiol 2023; 14:1174410. [PMID: 37485505 PMCID: PMC10359910 DOI: 10.3389/fmicb.2023.1174410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Viruses invade susceptible cells through a complex mechanism before injecting their genetic material into them. This causes direct damage to the host cell, as well as resulting in disease in the corresponding system. Echovirus type 30 (E30) is a member of the Enterovirus B group and has recently been reported to cause central nervous system (CNS) disorders, leading to viral encephalitis and viral meningitis in children. In this review, we aim to help in improving the understanding of the mechanisms of CNS diseases caused by E30 for the subsequent development of relevant drugs and vaccines.
Collapse
Affiliation(s)
- Yucai Liang
- Department of Microbiology, Weifang Medical University, Weifang, China
| | - Junbing Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Congcong Wang
- Department of Microbiology, Weifang Medical University, Weifang, China
| | - Bowen Yu
- Department of Immunology, Weifang Medical University, Weifang, China
| | - Yong Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhijun Liu
- Department of Microbiology, Weifang Medical University, Weifang, China
| |
Collapse
|
8
|
Liu YS, Wang Y, Zhou X, Zhang L, Yang G, Gao XD, Murakami Y, Fujita M, Kinoshita T. Accumulated precursors of specific GPI-anchored proteins upregulate GPI biosynthesis with ARV1. J Cell Biol 2023; 222:213904. [PMID: 36828365 PMCID: PMC9997660 DOI: 10.1083/jcb.202208159] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/27/2022] [Accepted: 01/30/2023] [Indexed: 02/26/2023] Open
Abstract
We previously reported that glycosylphosphatidylinositol (GPI) biosynthesis is upregulated when endoplasmic reticulum-associated degradation (ERAD) is defective; however, the underlying mechanistic basis remains unclear. Based on a genome-wide CRISPR-Cas9 screen, we show that a widely expressed GPI-anchored protein CD55 precursor and ER-resident ARV1 are involved in upregulation of GPI biosynthesis under ERAD-deficient conditions. In cells defective in GPI transamidase, GPI-anchored protein precursors fail to obtain GPI, with the remaining uncleaved GPI-attachment signal at the C-termini. We show that ERAD deficiency causes accumulation of the CD55 precursor, which in turn upregulates GPI biosynthesis, where the GPI-attachment signal peptide is the active element. Among the 31 GPI-anchored proteins tested, only the GPI-attachment signal peptides of CD55, CD48, and PLET1 enhance GPI biosynthesis. ARV1 is prerequisite for the GPI upregulation by CD55 precursor. Our data indicate that GPI biosynthesis is balanced to need by ARV1 and precursors of specific GPI-anchored proteins.
Collapse
Affiliation(s)
- Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi, China
| | - Yicheng Wang
- Research Institute for Microbial Diseases, Osaka University , Suita, Japan.,WPI Immunology Frontier Research Center, Osaka University , Suita, Japan
| | - Xiaoman Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi, China
| | - Linpei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi, China
| | - Ganglong Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi, China
| | - Yoshiko Murakami
- Research Institute for Microbial Diseases, Osaka University , Suita, Japan.,WPI Immunology Frontier Research Center, Osaka University , Suita, Japan
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi, China.,Institute for Glyco-Core Research, Gifu University , Gifu, Japan
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, Osaka University , Suita, Japan.,WPI Immunology Frontier Research Center, Osaka University , Suita, Japan.,Center for Infectious Disease Education and Research, Osaka University , Suita, Japan
| |
Collapse
|
9
|
Bharti R, Dey G, Lin F, Lathia J, Reizes O. CD55 in cancer: Complementing functions in a non-canonical manner. Cancer Lett 2022; 551:215935. [PMID: 36216147 PMCID: PMC11019835 DOI: 10.1016/j.canlet.2022.215935] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/02/2022]
Abstract
CD55, or decay accelerating factor, is a membrane lipid microdomain-associated, GPI-anchored protein implicated in the shielding of cells from complement-mediated attack via accelerating decay of C3 and C5. Loss of CD55 is associated with a number of pathologies due to hyperactivation of the complement system. CD55 is also implicated in cancer progression thought to be driven via its role in cell shielding mechanisms. We now appreciate that CD55 can signal intracellularly to promote malignant transformation, cancer progression, cell survival, angiogenesis, and inhibition of apoptosis. Outside-in signaling via CD55 is mediated by signaling pathways including JNK, JAK/STAT, MAPK/NF-κB, and LCK. Moreover, CD55 is enriched in the cancer stem cell (CSC) niche of multiple tumors including breast, ovarian, cervical, and can be induced by chemotherapeutics and hypoxic environments. CSCs are implicated in tumor recurrence and chemoresistance. Here, we review the unexpected roles of CD55 in cancer including the roles of canonical and noncanonical pathways that CD55 orchestrates. We will highlight opportunities for therapeutic targeting CD55 and gaps in the field that require more in-depth mechanistic insights.
Collapse
Affiliation(s)
- Rashmi Bharti
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Goutam Dey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Feng Lin
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Justin Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA.
| |
Collapse
|
10
|
Abstract
Enterovirus 70 (EV70) is a human pathogen belonging to the family Picornaviridae. EV70 is transmitted by eye secretions and causes acute hemorrhagic conjunctivitis, a serious eye disease. Despite the severity of the disease caused by EV70, its structure is unknown. Here, we present the structures of the EV70 virion, altered particle, and empty capsid determined by cryo-electron microscopy. The capsid of EV70 is composed of the subunits VP1, VP2, VP3, and VP4. The partially collapsed hydrophobic pocket located in VP1 of the EV70 virion is not occupied by a pocket factor, which is commonly present in other enteroviruses. Nevertheless, we show that the pocket can be targeted by the antiviral compounds WIN51711 and pleconaril, which block virus infection. The inhibitors prevent genome release by stabilizing EV70 particles. Knowledge of the structures of complexes of EV70 with inhibitors will enable the development of capsid-binding therapeutics against this virus. IMPORTANCE Globally distributed enterovirus 70 (EV70) causes local outbreaks of acute hemorrhagic conjunctivitis. The discharge from infected eyes enables the high-efficiency transmission of EV70 in overcrowded areas with low hygienic standards. Currently, only symptomatic treatments are available. We determined the structures of EV70 in its native form, the genome release intermediate, and the empty capsid resulting from genome release. Furthermore, we elucidated the structures of EV70 in complex with two inhibitors that block virus infection, and we describe the mechanism of their binding to the virus capsid. These results enable the development of therapeutics against EV70.
Collapse
|
11
|
Filipe IC, Guedes MS, Zdobnov EM, Tapparel C. Enterovirus D: A Small but Versatile Species. Microorganisms 2021; 9:1758. [PMID: 34442837 PMCID: PMC8400195 DOI: 10.3390/microorganisms9081758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Enteroviruses (EVs) from the D species are the causative agents of a diverse range of infectious diseases in spite of comprising only five known members. This small clade has a diverse host range and tissue tropism. It contains types infecting non-human primates and/or humans, and for the latter, they preferentially infect the eye, respiratory tract, gastrointestinal tract, and nervous system. Although several Enterovirus D members, in particular EV-D68, have been associated with neurological complications, including acute myelitis, there is currently no effective treatment or vaccine against any of them. This review highlights the peculiarities of this viral species, focusing on genome organization, functional elements, receptor usage, and pathogenesis.
Collapse
Affiliation(s)
- Ines Cordeiro Filipe
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Mariana Soares Guedes
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Evgeny M. Zdobnov
- Department of Genetic Medicine and Development, Switzerland and Swiss Institute of Bioinformatics, University of Geneva, 1206 Geneva, Switzerland;
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| |
Collapse
|
12
|
Peters CE, Carette JE. Return of the Neurotropic Enteroviruses: Co-Opting Cellular Pathways for Infection. Viruses 2021; 13:v13020166. [PMID: 33499355 PMCID: PMC7911124 DOI: 10.3390/v13020166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Enteroviruses are among the most common human infectious agents. While infections are often mild, the severe neuropathogenesis associated with recent outbreaks of emerging non-polio enteroviruses, such as EV-A71 and EV-D68, highlights their continuing threat to public health. In recent years, our understanding of how non-polio enteroviruses co-opt cellular pathways has greatly increased, revealing intricate host-virus relationships. In this review, we focus on newly identified mechanisms by which enteroviruses hijack the cellular machinery to promote their replication and spread, and address their potential for the development of host-directed therapeutics. Specifically, we discuss newly identified cellular receptors and their contribution to neurotropism and spread, host factors required for viral entry and replication, and recent insights into lipid acquisition and replication organelle biogenesis. The comprehensive knowledge of common cellular pathways required by enteroviruses could expose vulnerabilities amenable for host-directed therapeutics against a broad spectrum of enteroviruses. Since this will likely include newly arising strains, it will better prepare us for future epidemics. Moreover, identifying host proteins specific to neurovirulent strains may allow us to better understand factors contributing to the neurotropism of these viruses.
Collapse
|
13
|
Honkimaa A, Kimura B, Sioofy-Khojine AB, Lin J, Laiho J, Oikarinen S, Hyöty H. Genetic Adaptation of Coxsackievirus B1 during Persistent Infection in Pancreatic Cells. Microorganisms 2020; 8:microorganisms8111790. [PMID: 33203081 PMCID: PMC7697981 DOI: 10.3390/microorganisms8111790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022] Open
Abstract
Coxsackie B (CVB) viruses have been associated with type 1 diabetes. We have recently observed that CVB1 was linked to the initiation of the autoimmune process leading to type 1 diabetes in Finnish children. Viral persistency in the pancreas is currently considered as one possible mechanism. In the current study persistent infection was established in pancreatic ductal and beta cell lines (PANC-1 and 1.1B4) using four different CVB1 strains, including the prototype strain and three clinical isolates. We sequenced 5′ untranslated region (UTR) and regions coding for structural and non-structural proteins and the second single open reading frame (ORF) protein of all persisting CVB1 strains using next generation sequencing to identify mutations that are common for all of these strains. One mutation, K257R in VP1, was found from all persisting CVB1 strains. The mutations were mainly accumulated in viral structural proteins, especially at BC, DE, EF loops and C-terminus of viral capsid protein 1 (VP1), the puff region of VP2, the knob region of VP3 and infection-enhancing epitope of VP4. This showed that the capsid region of the viruses sustains various changes during persistency some of which could be hallmark(s) of persistency.
Collapse
Affiliation(s)
- Anni Honkimaa
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (B.K.); (A.B.S.-K.); (J.L.); (S.O.); (H.H.)
- Correspondence:
| | - Bryn Kimura
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (B.K.); (A.B.S.-K.); (J.L.); (S.O.); (H.H.)
| | - Amir-Babak Sioofy-Khojine
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (B.K.); (A.B.S.-K.); (J.L.); (S.O.); (H.H.)
| | - Jake Lin
- Finnish Institute of Molecular Medicine (FIMM), University of Helsinki, 00290 Helsinki, Finland;
| | - Jutta Laiho
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (B.K.); (A.B.S.-K.); (J.L.); (S.O.); (H.H.)
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (B.K.); (A.B.S.-K.); (J.L.); (S.O.); (H.H.)
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (B.K.); (A.B.S.-K.); (J.L.); (S.O.); (H.H.)
- Fimlab Laboratories, Pirkanmaa Hospital District, 33520 Tampere, Finland
| |
Collapse
|
14
|
Wang K, Zhu L, Sun Y, Li M, Zhao X, Cui L, Zhang L, Gao GF, Zhai W, Zhu F, Rao Z, Wang X. Structures of Echovirus 30 in complex with its receptors inform a rational prediction for enterovirus receptor usage. Nat Commun 2020; 11:4421. [PMID: 32887891 PMCID: PMC7474057 DOI: 10.1038/s41467-020-18251-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/12/2020] [Indexed: 01/27/2023] Open
Abstract
Receptor usage that determines cell tropism and drives viral classification closely correlates with the virus structure. Enterovirus B (EV-B) consists of several subgroups according to receptor usage, among which echovirus 30 (E30), a leading causative agent for human aseptic meningitis, utilizes FcRn as an uncoating receptor. However, receptors for many EVs remain unknown. Here we analyzed the atomic structures of E30 mature virion, empty- and A-particles, which reveals serotype-specific epitopes and striking conformational differences between the subgroups within EV-Bs. Of these, the VP1 BC loop markedly distinguishes E30 from other EV-Bs, indicative of a role as a structural marker for EV-B. By obtaining cryo-electron microscopy structures of E30 in complex with its receptor FcRn and CD55 and comparing its homologs, we deciphered the underlying molecular basis for receptor recognition. Together with experimentally derived viral receptor identifications, we developed a structure-based in silico algorithm to inform a rational prediction for EV receptor usage. Echovirus 30 (E30) belongs to the Enterovirus-B group and causes aseptic meningitis in humans. Here, the authors present the cryo-EM structures of the E30 E-particle, A-particle and the mature virion, as well as structures of E30 in complex with its receptor FcRn and CD55, and furthermore they describe a structure-based algorithm that allows the prediction of EV receptor usage.
Collapse
Affiliation(s)
- Kang Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy and Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, 300353, China
| | - Ling Zhu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yao Sun
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Minhao Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lunbiao Cui
- NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Li Zhang
- NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Fengcai Zhu
- NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
| | - Zihe Rao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy and Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, 300353, China
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy and Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, 300353, China.
| |
Collapse
|
15
|
Zhao X, Zhang G, Liu S, Chen X, Peng R, Dai L, Qu X, Li S, Song H, Gao Z, Yuan P, Liu Z, Li C, Shang Z, Li Y, Zhang M, Qi J, Wang H, Du N, Wu Y, Bi Y, Gao S, Shi Y, Yan J, Zhang Y, Xie Z, Wei W, Gao GF. Human Neonatal Fc Receptor Is the Cellular Uncoating Receptor for Enterovirus B. Cell 2019; 177:1553-1565.e16. [PMID: 31104841 PMCID: PMC7111318 DOI: 10.1016/j.cell.2019.04.035] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/21/2019] [Accepted: 04/16/2019] [Indexed: 01/14/2023]
Abstract
Enterovirus B (EV-B), a major proportion of the genus Enterovirus in the family Picornaviridae, is the causative agent of severe human infectious diseases. Although cellular receptors for coxsackievirus B in EV-B have been identified, receptors mediating virus entry, especially the uncoating process of echovirus and other EV-B remain obscure. Here, we found that human neonatal Fc receptor (FcRn) is the uncoating receptor for major EV-B. FcRn binds to the virus particles in the "canyon" through its FCGRT subunit. By obtaining multiple cryo-electron microscopy structures at different stages of virus entry at atomic or near-atomic resolution, we deciphered the underlying mechanisms of enterovirus attachment and uncoating. These structures revealed that different from the attachment receptor CD55, binding of FcRn to the virions induces efficient release of "pocket factor" under acidic conditions and initiates the conformational changes in viral particle, providing a structural basis for understanding the mechanisms of enterovirus entry.
Collapse
Affiliation(s)
- Xin Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China; CAS Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, 100101 Beijing, China
| | - Guigen Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Sheng Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China; School of Life Sciences, University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - Xiangpeng Chen
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Virology Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045 Beijing, China
| | - Ruchao Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Lianpan Dai
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiao Qu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Shihua Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, 100101 Beijing, China
| | - Zhengrong Gao
- KunMing Institute of Zoology, Chinese Academy of Sciences, 650223 KunMing, China
| | - Pengfei Yuan
- EdiGene Inc, Life Science Park, 22 KeXueYuan Road, Changping District, 102206 Beijing, China
| | - Zhiheng Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871 Beijing, China; Academy for Advanced Interdisciplinary Studies, Peking University, 100871 Beijing, China
| | - Changyao Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Zifang Shang
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yan Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Meifan Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Han Wang
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, 100101 Beijing, China
| | - Ning Du
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yan Wu
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China; CAS Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, 100101 Beijing, China
| | - Shan Gao
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China; CAS Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, 100101 Beijing, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China; CAS Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, 100101 Beijing, China; CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yong Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), 102206 Beijing, China; WHO WPRO Regional Polio Reference Laboratory, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China
| | - Zhengde Xie
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Virology Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045 Beijing, China.
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871 Beijing, China.
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China; CAS Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, 100101 Beijing, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, 100101 Beijing, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), 102206 Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
16
|
Molecular Epidemiology of Echovirus 18 Circulating in Mainland China from 2015 to 2016. Virol Sin 2019; 34:50-58. [PMID: 30790201 DOI: 10.1007/s12250-018-0080-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022] Open
Abstract
Echovirus 18 (E18), a serotype of Enterovirus B (EV-B) species, is an important pathogen in aseptic meningitis. E18 had rarely been detected in mainland China, but became the predominant pathogen associated with viral encephalitis (VE) and meningitis in Hebei province for the first time in 2015. To investigate the molecular epidemiology and genetic characteristics of E18 in mainland China, sixteen E18 strains from patient throat swabs with hand, foot, and mouth disease (HFMD) in six provinces in China collected between 2015 and 2016, and four E18 strains isolated from 18 patient cerebrospinal fluid specimens with VE in Hebei Province in 2015 were obtained and sequenced. Combined with the sequences from the GenBank database, we performed an extensive genetic analysis. Phylogenetic analysis of VP1 gene sequences revealed that all E18 strains from mainland China after 2015 belonged to subgenotype C2. There were no obvious specific differences in phylogenetic and variation analyses of E18 genome sequences between HFMD and VE/meningitis strains. Potential multiple recombination may have occurred in the 5'-untranslated region and in the P2 and P3 nonstructural protein-encoding regions of E18 strains from China. The current E18 strains were potential multiple-recombinant viruses. Overall, these findings supported that E18 caused HFMD, VE, and meningitis, although there were no significant associations between clinical features and viral genomic characteristics.
Collapse
|
17
|
Alberts P, Tilgase A, Rasa A, Bandere K, Venskus D. The advent of oncolytic virotherapy in oncology: The Rigvir® story. Eur J Pharmacol 2018; 837:117-126. [PMID: 30179611 DOI: 10.1016/j.ejphar.2018.08.042] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/03/2018] [Accepted: 08/31/2018] [Indexed: 02/06/2023]
Abstract
Oncolytic viruses are a fast-developing cancer treatment field. Numerous viruses have been tested in clinical trials and three are approved. The first, Rigvir, is an immunomodulator with anti-tumour effect for treatment of melanoma, local treatment of skin and subcutaneous metastases of melanoma, for prevention of relapse and metastasis after radical surgery registered in Latvia, Georgia, Armenia and Uzbekistan. The aim of the present review is to summarize the development of Rigvir. Approximately 60 viruses were screened preclinically. Clinical safety and efficacy trials were with 5 oncolytic enteroviruses. Safety of the selected and melanoma-adapted ECHO-7 virus Rigvir was tested in over 180 patients with no severe adverse events observed. Pre-registration efficacy studies involved over 700 cancer patients: over 540 melanoma patients, and patients with late stage stomach (ca. 90), colorectal cancer (ca. 60), and other cancers. Patients were treated with Rigvir for 3 years after surgery and compared to immunotherapy: 3- and 5-year overall survival appeared to be increased in Rigvir treated patients. In post-marketing retrospective studies, Rigvir-treated stage II melanoma patients showed a 6.67-fold decreased risk for disease progression in comparison to those that had been observed according to guidelines, and stage IB and stage II melanoma patients that had received Rigvir therapy had 4.39-6.57-fold lower mortality. The results are confirmed and extended by case reports. Several immunological markers have been measured. In conclusion, Rigvir is an oncotropic and oncolytic virus for treatment of melanoma; the results will be confirmed and updated by modern clinical studies.
Collapse
Affiliation(s)
- Pēteris Alberts
- International Virotherapy Center, Teātra iela 9-9, Riga LV-1050, Latvia.
| | - Andra Tilgase
- International Virotherapy Center, Teātra iela 9-9, Riga LV-1050, Latvia
| | - Agnija Rasa
- International Virotherapy Center, Teātra iela 9-9, Riga LV-1050, Latvia
| | - Katrīna Bandere
- International Virotherapy Center, Teātra iela 9-9, Riga LV-1050, Latvia
| | - Dite Venskus
- International Virotherapy Center, Teātra iela 9-9, Riga LV-1050, Latvia
| |
Collapse
|
18
|
Veesler D, Kearney BM, Johnson JE. Integration of X-ray crystallography and electron cryo-microscopy in the analysis of virus structure and function. CRYSTALLOGR REV 2015. [DOI: 10.1080/0889311x.2015.1038530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Structural Basis of Human Parechovirus Neutralization by Human Monoclonal Antibodies. J Virol 2015; 89:9571-80. [PMID: 26157123 DOI: 10.1128/jvi.01429-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Since it was first recognized in 2004 that human parechoviruses (HPeV) are a significant cause of central nervous system and neonatal sepsis, their clinical importance, primarily in children, has started to emerge. Intravenous immunoglobulin treatment is the only treatment available in such life-threatening cases and has given moderate success. Direct inhibition of parechovirus infection using monoclonal antibodies is a potential treatment. We have developed two neutralizing monoclonal antibodies against HPeV1 and HPeV2, namely, AM18 and AM28, which also cross-neutralize other viruses. Here, we present the mapping of their epitopes using peptide scanning, surface plasmon resonance, fluorescence-based thermal shift assays, electron cryomicroscopy, and image reconstruction. We determined by peptide scanning and surface plasmon resonance that AM18 recognizes a linear epitope motif including the arginine-glycine-aspartic acid on the C terminus of capsid protein VP1. This epitope is normally used by the virus to attach to host cell surface integrins during entry and is found in 3 other viruses that AM18 neutralizes. Therefore, AM18 is likely to cause virus neutralization by aggregation and by blocking integrin binding to the capsid. Further, we show by electron cryomicroscopy, three-dimensional reconstruction, and pseudoatomic model fitting that ordered RNA interacts with HPeV1 VP1 and VP3. AM28 recognizes quaternary epitopes on the capsid composed of VP0 and VP3 loops from neighboring pentamers, thereby increasing the RNA accessibility temperature for the virus-AM28 complex compared to the virus alone. Thus, inhibition of RNA uncoating probably contributes to neutralization by AM28. IMPORTANCE Human parechoviruses can cause mild infections to severe diseases in young children, such as neonatal sepsis, encephalitis, and cardiomyopathy. Intravenous immunoglobulin treatment is the only treatment available in such life-threatening cases. In order to develop more targeted treatment, we have searched for human monoclonal antibodies that would neutralize human parechoviruses 1 and 2, associated with mild infections such as gastroenteritis and severe infections of the central nervous system, and thus allow safe treatment. In the current study, we show how two such promising antibodies interact with the virus, modeling the atomic interactions between the virus and the antibody to propose how neutralization occurs. Both antibodies can cause aggregation; in addition, one antibody interferes with the virus recognizing its target cell, while the other, recognizing only the whole virus, inhibits the genome uncoating and replication in the cell.
Collapse
|
20
|
Abstract
The virus particles described in previous chapters are vehicles that transmit the viral genome and the infection from cell to cell. To initiate the infective cycle, the viral genome must therefore translocate from the viral particle to the cytoplasm. Via distinct proteins or motifs in their outermost shell, the particles attach initially to specific molecules on the host cell surface. These virus receptors thus mediate penetration of the viral genome inside the cell, where the intracellular infective cycle starts. The presence of these receptors on the cell surface is a principal determinant of virus host tropism. Viruses can use diverse types of molecules to attach to and enter into cells. In addition, virus-receptor recognition can evolve over the course of an infection, and virus variants with distinct receptor-binding specificities and tropism can appear. The identification of virus receptors and the characterization of virus-receptor interactions have been major research goals in virology for the last two decades. In this chapter, we will describe, from a structural perspective, several virus-receptor interactions and the active role of receptor molecules in virus entry.
Collapse
|
21
|
Giugno R, Bonnici V, Bombieri N, Pulvirenti A, Ferro A, Shasha D. GRAPES: a software for parallel searching on biological graphs targeting multi-core architectures. PLoS One 2013; 8:e76911. [PMID: 24167551 PMCID: PMC3805575 DOI: 10.1371/journal.pone.0076911] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/26/2013] [Indexed: 11/19/2022] Open
Abstract
Biological applications, from genomics to ecology, deal with graphs that represents the structure of interactions. Analyzing such data requires searching for subgraphs in collections of graphs. This task is computationally expensive. Even though multicore architectures, from commodity computers to more advanced symmetric multiprocessing (SMP), offer scalable computing power, currently published software implementations for indexing and graph matching are fundamentally sequential. As a consequence, such software implementations (i) do not fully exploit available parallel computing power and (ii) they do not scale with respect to the size of graphs in the database. We present GRAPES, software for parallel searching on databases of large biological graphs. GRAPES implements a parallel version of well-established graph searching algorithms, and introduces new strategies which naturally lead to a faster parallel searching system especially for large graphs. GRAPES decomposes graphs into subcomponents that can be efficiently searched in parallel. We show the performance of GRAPES on representative biological datasets containing antiviral chemical compounds, DNA, RNA, proteins, protein contact maps and protein interactions networks.
Collapse
Affiliation(s)
- Rosalba Giugno
- Department Clinical and Molecular Biomedicine, University of Catania, Catania, Italy
- * E-mail:
| | - Vincenzo Bonnici
- Department Computer Science, University of Verona, Verona, Italy
| | - Nicola Bombieri
- Department Computer Science, University of Verona, Verona, Italy
| | - Alfredo Pulvirenti
- Department Clinical and Molecular Biomedicine, University of Catania, Catania, Italy
| | - Alfredo Ferro
- Department Clinical and Molecular Biomedicine, University of Catania, Catania, Italy
| | - Dennis Shasha
- Courant Institute of Mathematical Sciences, New York University, New York, New York, United States of America
| |
Collapse
|
22
|
Bergelson JM, Coyne CB. Picornavirus entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 790:24-41. [PMID: 23884584 DOI: 10.1007/978-1-4614-7651-1_2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The essential event in picornavirus entry is the delivery of the RNA genome to the cytoplasm of a target cell, where replication occurs. In the past several years progress has been made in understanding the structural changes in the virion important for uncoating and RNA release. In addition, for several viruses the endocytic mechanisms responsible for internalization have been identified, as have the cellular sites at which uncoating occurs. It has become clear that entry is not a passive process, and that viruses initiate specific signals required for entry. And we have begun to recognize that for a given virus, there may be multiple routes of entry, depending on the particular target cell and the receptors available on that cell.
Collapse
Affiliation(s)
- Jeffrey M Bergelson
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | | |
Collapse
|
23
|
The crystal structure of a coxsackievirus B3-RD variant and a refined 9-angstrom cryo-electron microscopy reconstruction of the virus complexed with decay-accelerating factor (DAF) provide a new footprint of DAF on the virus surface. J Virol 2012; 86:12571-81. [PMID: 22973031 DOI: 10.1128/jvi.01592-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The coxsackievirus-adenovirus receptor (CAR) and decay-accelerating factor (DAF) have been identified as cellular receptors for coxsackievirus B3 (CVB3). The first described DAF-binding isolate was obtained during passage of the prototype strain, Nancy, on rhabdomyosarcoma (RD) cells, which express DAF but very little CAR. Here, the structure of the resulting variant, CVB3-RD, has been solved by X-ray crystallography to 2.74 Å, and a cryo-electron microscopy reconstruction of CVB3-RD complexed with DAF has been refined to 9.0 Å. This new high-resolution structure permits us to correct an error in our previous view of DAF-virus interactions, providing a new footprint of DAF that bridges two adjacent protomers. The contact sites between the virus and DAF clearly encompass CVB3-RD residues recently shown to be required for binding to DAF; these residues interact with DAF short consensus repeat 2 (SCR2), which is known to be essential for virus binding. Based on the new structure, the mode of the DAF interaction with CVB3 differs significantly from the mode reported previously for DAF binding to echoviruses.
Collapse
|
24
|
Cifuente JO, Ferrer MF, Jaquenod de Giusti C, Song WC, Romanowski V, Hafenstein SL, Gómez RM. Molecular determinants of disease in coxsackievirus B1 murine infection. J Med Virol 2012; 83:1571-81. [PMID: 21739448 DOI: 10.1002/jmv.22133] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To understand better how different genomic regions may confer pathogenicity for the coxsackievirus B (CVB), two intratypic CVB1 variants, and a number of recombinant viruses were studied. Sequencing analysis showed 23 nucleotide changes between the parental non-pathogenic CVB1N and the pathogenic CVB1Nm. Mutations present in CVB1Nm were more conserved than those in CVB1N when compared to other CVB sequences. Inoculation in C3H/HeJ mice showed that the P1 region is critical for pathogenicity in murine pancreas and heart. The molecular determinants of disease for these organs partially overlap. Several P1 region amino acid differences appear to be located in the decay-accelerating factor (DAF) footprint CVBs. CVB1N and CVB1Nm interacted with human CAR, but only CVB1N seemed to interact with human DAF, as determined using soluble receptors in a plaque-reduction assay. However, the murine homolog Daf-1 did not interact with any virus assessed by hemagglutination. The results of this study suggest that an unknown receptor interaction with the virus play an important role in the pathogenicity of CVB1Nm. Further in vivo studies may clarify this issue.
Collapse
Affiliation(s)
- Javier O Cifuente
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Argentina
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Echovirus 7 (EV7) belongs to the Enterovirus genus within the family Picornaviridae. Many picornaviruses use IgG-like receptors that bind in the viral canyon and are required to initiate viral uncoating during infection. However, in addition, some of the enteroviruses use an alternative or additional receptor that binds outside the canyon. Decay-accelerating factor (DAF) has been identified as a cellular receptor for EV7. The crystal structure of EV7 has been determined to 3.1-Å resolution and used to interpret the 7.2-Å-resolution cryo-electron microscopy reconstruction of EV7 complexed with DAF. Each DAF binding site on EV7 is near a 2-fold icosahedral symmetry axis, which differs from the binding site of DAF on the surface of coxsackievirus B3, indicating that there are independent evolutionary processes by which DAF was selected as a picornavirus accessory receptor. This suggests that there is an advantage for these viruses to recognize DAF during the initial process of infection.
Collapse
|
26
|
Park JH, Kim DS, Cho YJ, Kim YJ, Jeong SY, Lee SM, Cho SJ, Yun CW, Jo I, Nam JH. Attenuation of coxsackievirus B3 by VP2 mutation and its application as a vaccine against virus-induced myocarditis and pancreatitis. Vaccine 2009; 27:1974-83. [DOI: 10.1016/j.vaccine.2009.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 01/02/2009] [Accepted: 01/05/2009] [Indexed: 11/29/2022]
|
27
|
Sandager MM, Nugent JL, Schulz WL, Messner RP, Tam PE. Interactions between multiple genetic determinants in the 5' UTR and VP1 capsid control pathogenesis of chronic post-viral myopathy caused by coxsackievirus B1. Virology 2008; 372:35-47. [PMID: 18029287 PMCID: PMC2352162 DOI: 10.1016/j.virol.2007.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 08/20/2007] [Accepted: 10/19/2007] [Indexed: 11/29/2022]
Abstract
Mice infected with coxsackievirus B1 Tucson (CVB1(T)) develop chronic, post-viral myopathy (PVM) with clinical manifestations of hind limb muscle weakness and myositis. The objective of the current study was to establish the genetic basis of myopathogenicity in CVB1(T). Using a reverse genetics approach, full attenuation of PVM could only be achieved by simultaneously mutating four sites located at C706U in the 5' untranslated region (5' UTR) and at Y87F, V136A, and T276A in the VP1 capsid. Engineering these four myopathic determinants into an amyopathic CVB1(T) variant restored the ability to cause PVM. Moreover, these same four determinants controlled PVM expression in a second strain of mice, indicating that the underlying mechanism is operational in mice of different genetic backgrounds. Modeling studies predict that C706U alters both local and long range pairing in the 5' UTR, and that VP1 determinants are located on the capsid surface. However, these differences did not affect viral titers, temperature stability, pH stability, or the antibody response to virus. These studies demonstrate that PVM develops from a complex interplay between viral determinants in the 5' UTR and VP1 capsid and have uncovered intriguing similarities between genetic determinants that cause PVM and those involved in pathogenesis of other enteroviruses.
Collapse
Affiliation(s)
- Maribeth M. Sandager
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, 420 Delaware St. SE, MMC 108, Minneapolis, MN 55455, USA
| | - Jaime L. Nugent
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, 420 Delaware St. SE, MMC 108, Minneapolis, MN 55455, USA
| | - Wade L. Schulz
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, 420 Delaware St. SE, MMC 108, Minneapolis, MN 55455, USA
| | - Ronald P. Messner
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, 420 Delaware St. SE, MMC 108, Minneapolis, MN 55455, USA
| | - Patricia E. Tam
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, 420 Delaware St. SE, MMC 108, Minneapolis, MN 55455, USA
| |
Collapse
|
28
|
Hafenstein S, Bowman VD, Chipman PR, Bator Kelly CM, Lin F, Medof ME, Rossmann MG. Interaction of decay-accelerating factor with coxsackievirus B3. J Virol 2007; 81:12927-35. [PMID: 17804498 PMCID: PMC2169128 DOI: 10.1128/jvi.00931-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 08/24/2007] [Indexed: 11/20/2022] Open
Abstract
Many entero-, parecho-, and rhinoviruses use immunoglobulin (Ig)-like receptors that bind into the viral canyon and are required to initiate viral uncoating during infection. However, some of these viruses use an alternative or additional receptor that binds outside the canyon. Both the coxsackievirus-adenovirus receptor (CAR), an Ig-like molecule that binds into the viral canyon, and decay-accelerating factor (DAF) have been identified as cellular receptors for coxsackievirus B3 (CVB3). A cryoelectron microscopy reconstruction of a variant of CVB3 complexed with DAF shows full occupancy of the DAF receptor in each of 60 binding sites. The DAF molecule bridges the canyon, blocking the CAR binding site and causing the two receptors to compete with one another. The binding site of DAF on CVB3 differs from the binding site of DAF on the surface of echoviruses, suggesting independent evolutionary processes.
Collapse
Affiliation(s)
- Susan Hafenstein
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Lau SKP, Yip CCY, Tsoi HW, Lee RA, So LY, Lau YL, Chan KH, Woo PCY, Yuen KY. Clinical features and complete genome characterization of a distinct human rhinovirus (HRV) genetic cluster, probably representing a previously undetected HRV species, HRV-C, associated with acute respiratory illness in children. J Clin Microbiol 2007; 45:3655-64. [PMID: 17804649 PMCID: PMC2168475 DOI: 10.1128/jcm.01254-07] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although human rhinoviruses (HRVs) are common causes of respiratory illness, their molecular epidemiology has been poorly investigated. Despite the recent findings of new HRV genotypes, their clinical disease spectrum and phylogenetic positions were not fully understood. In this study, 203 prospectively collected nasopharyngeal aspirates (NPAs), negative for common respiratory viruses (83 were human bocavirus [HBoV] positive and 120 HBoV negative), from hospitalized children during a 1-year period were subjected to reverse transcription-PCR for HRV. HRV was detected in 14 NPAs positive and 12 NPAs negative for HBoV. Upon VP4 gene analysis, 5 of these 26 HRV strains were found to belong to HRV-A while 21 belonged to a genetic clade probably representing a previously undetected HRV species, HRV-C, that is phylogenetically distinct from the two known HRV species, HRV-A and HRV-B. The VP4 sequences of these HRV-C strains were closely related to the newly identified HRV strains from the United States and Australia. Febrile wheeze or asthma was the most common presentation (76%) of HRV-C infection, which peaked in fall and winter. Complete genome sequencing of three HRV-C strains revealed that HRV-C represents an additional HRV species, with features distinct from HRV-A and HRV-B. Analysis of VP1 of HRV-C revealed major deletions in regions important for neutralization in other HRVs, which may be signs of a distinct species, while within-clade amino acid variation in potentially antigenic regions may indicate the existence of different serotypes among HRV-C strains. A newly identified HRV species, HRV-C, is circulating worldwide and is an important cause of febrile wheeze and asthmatic exacerbations in children requiring hospitalization.
Collapse
Affiliation(s)
- Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, University Pathology Building, Queen Mary Hospital, Hong Kong
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lévêque N, Norder H, Zreik Y, Cartet G, Falcon D, Rivat N, Chomel JJ, Hong SS, Lina B. Echovirus 6 strains derived from a clinical isolate show differences in haemagglutination ability and cell entry pathway. Virus Res 2007; 130:1-9. [PMID: 17566587 DOI: 10.1016/j.virusres.2007.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Revised: 05/02/2007] [Accepted: 05/04/2007] [Indexed: 11/25/2022]
Abstract
Two echovirus 6 (EV6) strains were isolated from a clinical sample after successive sub-cultures in PLC (human hepatocellular carcinoma) and HeLa (human cervical adenocarcinoma) cells. The first strain retained its haemagglutinating capacity (HAEV6) while the second became non-haemagglutinating (NHAEV6). Virus binding assay showed that HAEV6 was capable of binding to DAF-expressing cells but not NHAEV6 confirming the role of DAF in EV6 haemagglutination. The lack of competition between the two viral strains during coinfections suggested that each strain used a different cell entry pathway. We provide evidence showing that HAEV6 used preferentially the lipid raft-dependent caveolae pathway, whereas NHAEV6 followed the clathrin-mediated pathway. Comparison of the sequences of HAEV6 and NHAEV6 revealed five amino acid changes in the VP1, VP2 and VP3 capsid proteins distributed in domains which are known to be highly immunogenic or suggested to be involved in receptor binding, virion stability and pathogenicity.
Collapse
Affiliation(s)
- Nicolas Lévêque
- Centre National de Référence des Entérovirus, Laboratoire de Virologie, Centre de Biologie et de Pathologie Est, Institut de Microbiologie, Hospices Civils de Lyon, 69677 Bron, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Tam PE. Coxsackievirus myocarditis: interplay between virus and host in the pathogenesis of heart disease. Viral Immunol 2006; 19:133-46. [PMID: 16817756 DOI: 10.1089/vim.2006.19.133] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Coxsackievirus (CVB) infection is a significant cause of myocarditis and dilated cardiomyopathy (DCM). Heart disease may be caused by direct cytopathic effects of the virus, a pathologic immune response to persistent virus, or autoimmunity triggered by the viral infection. CVB interacts with its host at multiple stages during disease development. Signaling through viral receptors may alter the intracellular environment in addition to facilitating virus entry. Viral genetic determinants that encode cardiovirulence have been mapped and may change depending on the nutritional status of the host. Virus persistence is directly associated with pathology, and recent work demonstrates that CVB evolves into a slowly replicating form capable of establishing a low-grade infection in the heart. The innate immune response to CVB has taken on increasing importance because of its role in shaping the development of the adaptive immune response that is responsible for cardiac pathology. Studies of T cell responsiveness and the development of autoimmunity at the molecular level are beginning to clarify the mechanisms through which CVB infection causes inflammatory heart disease.
Collapse
Affiliation(s)
- Patricia E Tam
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
32
|
O'Brien DP, Israel DA, Krishna U, Romero-Gallo J, Nedrud J, Medof ME, Lin F, Redline R, Lublin DM, Nowicki BJ, Franco AT, Ogden S, Williams AD, Polk DB, Peek RM. The role of decay-accelerating factor as a receptor for Helicobacter pylori and a mediator of gastric inflammation. J Biol Chem 2006; 281:13317-13323. [PMID: 16543227 DOI: 10.1074/jbc.m601805200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Persistent gastritis induced by Helicobacter pylori is the strongest known risk factor for peptic ulcer disease and distal gastric adenocarcinoma, a process for which adherence of H. pylori to gastric epithelial cells is critical. Decay-accelerating factor (DAF), a protein that protects epithelial cells from complement-mediated lysis, also functions as a receptor for several microbial pathogens. In this study, we investigated whether H. pylori utilizes DAF as a receptor and the role of DAF within H. pylori-infected gastric mucosa. In vitro studies showed that H. pylori adhered avidly to Chinese hamster ovary cells expressing human DAF but not to vector controls. In H. pylori, disruption of the virulence factors vacA, cagA, and cagE did not alter adherence, but deletion of DAF complement control protein (CCP) domains 1-4 or the heavily O-glycosylated serine-threonine-rich COOH-terminal domain reduced binding. In cultured gastric epithelial cells, H. pylori induced transcriptional up-regulation of DAF, and genetic deficiency of DAF attenuated the development of inflammation among H. pylori-infected mice. These results indicate that DAF may regulate H. pylori-epithelial cell interactions relevant to pathogenesis.
Collapse
Affiliation(s)
- Daniel P O'Brien
- Division of Gastroenterology, Departments of Medicine, Pediatrics, and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2279
| | - Dawn A Israel
- Division of Gastroenterology, Departments of Medicine, Pediatrics, and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2279
| | - Uma Krishna
- Division of Gastroenterology, Departments of Medicine, Pediatrics, and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2279
| | - Judith Romero-Gallo
- Division of Gastroenterology, Departments of Medicine, Pediatrics, and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2279
| | - John Nedrud
- Institute of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - M Edward Medof
- Institute of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Feng Lin
- Institute of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Raymond Redline
- Institute of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Douglas M Lublin
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Bogdan J Nowicki
- Departments of Obstetrics & Gynecology and Biomedical Sciences and Division of Microbial Pathogenesis and Immune Response, Meharry Medical Center, Nashville, Tennessee 37208
| | - Aime T Franco
- Division of Gastroenterology, Departments of Medicine, Pediatrics, and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2279
| | - Seth Ogden
- Division of Gastroenterology, Departments of Medicine, Pediatrics, and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2279
| | - Amanda D Williams
- Division of Gastroenterology, Departments of Medicine, Pediatrics, and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2279
| | - D Brent Polk
- Division of Gastroenterology, Departments of Medicine, Pediatrics, and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2279
| | - Richard M Peek
- Division of Gastroenterology, Departments of Medicine, Pediatrics, and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2279; Department of Veterans Affairs Medical Center, Nashville, Tennessee 37212.
| |
Collapse
|
33
|
Pokidysheva E, Zhang Y, Battisti AJ, Bator-Kelly CM, Chipman PR, Xiao C, Gregorio GG, Hendrickson WA, Kuhn RJ, Rossmann MG. Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 2006; 124:485-93. [PMID: 16469696 DOI: 10.1016/j.cell.2005.11.042] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 10/06/2005] [Accepted: 11/11/2005] [Indexed: 11/22/2022]
Abstract
Dengue virus (DENV) is a significant human pathogen that causes millions of infections and results in about 24,000 deaths each year. Dendritic cell-specific ICAM3 grabbing nonintegrin (DC-SIGN), abundant in immature dendritic cells, was previously reported as being an ancillary receptor interacting with the surface of DENV. The structure of DENV in complex with the carbohydrate recognition domain (CRD) of DC-SIGN was determined by cryo-electron microscopy at 25 A resolution. One CRD monomer was found to bind to two glycosylation sites at Asn67 of two neighboring glycoproteins in each icosahedral asymmetric unit, leaving the third Asn67 residue vacant. The vacancy at the third Asn67 site is a result of the nonequivalence of the glycoprotein environments, leaving space for the primary receptor binding to domain III of E. The use of carbohydrate moieties for receptor binding sites suggests a mechanism for avoiding immune surveillance.
Collapse
Affiliation(s)
- Elena Pokidysheva
- Department of Biological Sciences, Lilly Hall, 915 W. State Street, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pettigrew DM, Williams DT, Kerrigan D, Evans DJ, Lea SM, Bhella D. Structural and functional insights into the interaction of echoviruses and decay-accelerating factor. J Biol Chem 2006; 281:5169-77. [PMID: 16272562 DOI: 10.1074/jbc.m510362200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many enteroviruses bind to the complement control protein decay-accelerating factor (DAF) to facilitate cell entry. We present here a structure for echovirus (EV) type 12 bound to DAF using cryo-negative stain transmission electron microscopy and three-dimensional image reconstruction to 16-A resolution, which we interpreted using the atomic structures of EV11 and DAF. DAF binds to a hypervariable region of the capsid close to the 2-fold symmetry axes in an interaction that involves mostly the short consensus repeat 3 domain of DAF and the capsid protein VP2. A bulge in the density for the short consensus repeat 3 domain suggests that a loop at residues 174-180 rearranges to prevent steric collision between closely packed molecules at the 2-fold symmetry axes. Detailed analysis of receptor interactions between a variety of echoviruses and DAF using surface plasmon resonance and comparison of this structure (and our previous work; Bhella, D., Goodfellow, I. G., Roversi, P., Pettigrew, D., Chaudhry, Y., Evans, D. J., and Lea, S. M. (2004) J. Biol. Chem. 279, 8325-8332) with reconstructions published for EV7 bound to DAF support major differences in receptor recognition among these viruses. However, comparison of the electron density for the two virus.receptor complexes (rather than comparisons of the pseudo-atomic models derived from fitting the coordinates into these densities) suggests that the dramatic differences in interaction affinities/specificities may arise from relatively subtle structural differences rather than from large-scale repositioning of the receptor with respect to the virus surface.
Collapse
MESH Headings
- CD55 Antigens/metabolism
- Capsid Proteins/chemistry
- Capsid Proteins/metabolism
- Cell Line, Tumor
- Cryoelectron Microscopy
- Databases, Protein
- Electrons
- Enterovirus B, Human/chemistry
- Enterovirus B, Human/metabolism
- Humans
- Image Processing, Computer-Assisted
- Microscopy, Electron
- Microscopy, Electron, Transmission
- Microscopy, Video
- Models, Molecular
- Pichia
- Protein Binding
- Protein Conformation
- Receptors, Virus/chemistry
- Recombinant Proteins/chemistry
- Rhabdomyosarcoma/metabolism
- Stereoisomerism
- Surface Plasmon Resonance
Collapse
Affiliation(s)
- David M Pettigrew
- Medical Research Council Virology Unit, Institute of Biomedical and Life Sciences, University of Glasgow, Scotland, United Kingdom
| | | | | | | | | | | |
Collapse
|
35
|
Xiao C, Bator-Kelly CM, Rieder E, Chipman PR, Craig A, Kuhn RJ, Wimmer E, Rossmann MG. The crystal structure of coxsackievirus A21 and its interaction with ICAM-1. Structure 2005; 13:1019-33. [PMID: 16004874 DOI: 10.1016/j.str.2005.04.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 04/03/2005] [Accepted: 04/03/2005] [Indexed: 11/18/2022]
Abstract
CVA21 and polioviruses both belong to the Enterovirus genus in the family of Picornaviridae, whereas rhinoviruses form a distinct picornavirus genus. Nevertheless, CVA21 and the major group of human rhinoviruses recognize intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor, whereas polioviruses use poliovirus receptor. The crystal structure of CVA21 has been determined to 3.2 A resolution. Its structure has greater similarity to poliovirus structures than to other known picornavirus structures. Cryo-electron microscopy (cryo-EM) was used to determine an 8.0 A resolution structure of CVA21 complexed with an ICAM-1 variant, ICAM-1(Kilifi). The cryo-EM map was fitted with the crystal structures of ICAM-1 and CVA21. Significant differences in the structure of CVA21 with respect to the poliovirus structures account for the inability of ICAM-1 to bind polioviruses. The interface between CVA21 and ICAM-1 has shape and electrostatic complementarity with many residues being conserved among those CVAs that bind ICAM-1.
Collapse
Affiliation(s)
- Chuan Xiao
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Goodfellow IG, Evans DJ, Blom AM, Kerrigan D, Miners JS, Morgan BP, Spiller OB. Inhibition of coxsackie B virus infection by soluble forms of its receptors: binding affinities, altered particle formation, and competition with cellular receptors. J Virol 2005; 79:12016-24. [PMID: 16140777 PMCID: PMC1212587 DOI: 10.1128/jvi.79.18.12016-12024.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that soluble decay-accelerating factor (DAF) and coxsackievirus-adenovirus receptor (CAR) blocked coxsackievirus B3 (CVB3) myocarditis in mice, but only soluble CAR blocked CVB3-mediated pancreatitis. Here, we report that the in vitro mechanisms of viral inhibition by these soluble receptors also differ. Soluble DAF inhibited virus infection through the formation of reversible complexes with CVB3, while binding of soluble CAR to CVB induced the formation of altered (A) particles with a resultant irreversible loss of infectivity. A-particle formation was characterized by loss of VP4 from the virions and required incubation of CVB3-CAR complexes at 37 degrees C. Dimeric soluble DAF (DAF-Fc) was found to be 125-fold-more effective at inhibiting CVB3 than monomeric DAF, which corresponded to a 100-fold increase in binding affinity as determined by surface plasmon resonance analysis. Soluble CAR and soluble dimeric CAR (CAR-Fc) bound to CVB3 with 5,000- and 10,000-fold-higher affinities than the equivalent forms of DAF. While DAF-Fc was 125-fold-more effective at inhibiting virus than monomeric DAF, complement regulation by DAF-Fc was decreased 4 fold. Therefore, while the virus binding was a cooperative event, complement regulation was hindered by the molecular orientation of DAF-Fc, indicating that the regions responsible for complement regulation and virus binding do not completely overlap. Relative contributions of CVB binding affinity, receptor binding footprint on the virus capsid, and induction of capsid conformation alterations for the ability of cellular DAF and CAR to act as receptors are discussed.
Collapse
Affiliation(s)
- Ian G Goodfellow
- School of Animal and Microbial Sciences, University of Reading, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
37
|
Moser R, Snyers L, Wruss J, Angulo J, Peters H, Peters T, Blaas D. Neutralization of a common cold virus by concatemers of the third ligand binding module of the VLDL-receptor strongly depends on the number of modules. Virology 2005; 338:259-69. [PMID: 15950998 DOI: 10.1016/j.virol.2005.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 04/22/2005] [Accepted: 05/13/2005] [Indexed: 10/25/2022]
Abstract
Concatemers of various numbers of the third ligand binding repeat of human very-low density lipoprotein receptor arranged in tandem were fused to maltose-binding protein and expressed as soluble polypeptides. These artificial receptors protected HeLa cells against infection with human rhinovirus serotype 2 (HRV2) to a degree that strongly increased with the number of repeats present; maximal protection was seen for the pentameric concatemer (MBP-V33333). This V3 pentamer neutralized HRV2 more efficiently than a recombinant protein with the entire ligand binding domain of the native receptor encompassing all 8 non-identical repeats. A concatemer of seven V3 modules (MBP-V3333333) was also less neutralizing. Neutralization was correlated with the degree of inhibition of virus binding to the cell surface. The results were in agreement with kinetic measurements using Biacore instrumentation demonstrating an increase in avidity with the number of modules present. At low concentrations of the receptor fragments, a 1:1 Langmuir kinetics was observed which became of complex type in the higher concentration range. This is most likely a consequence of receptor molecules simultaneously binding via several modules. Since there is no viral aggregation, neutralization of viral infectivity results from blockage of the receptor binding sites and possibly from inhibition of viral uncoating by crosslinking the viral capsid subunits via multi-module binding. Finally, the low affinity of the single V3 module allowed demonstrating the possibility of mapping the binding epitope of the V3 receptor fragment by saturation transfer difference nuclear magnetic resonance methodology.
Collapse
Affiliation(s)
- Rosita Moser
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
38
|
Dan M, Chantler JK. A genetically engineered attenuated coxsackievirus B3 strain protects mice against lethal infection. J Virol 2005; 79:9285-95. [PMID: 15994822 PMCID: PMC1168767 DOI: 10.1128/jvi.79.14.9285-9295.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxsackievirus B3 (CVB3) is a common human pathogen that is endemic throughout the world. There is currently no vaccine available, although the virus is known to be highly lethal to newborns and has been associated with heart disease and pancreatitis in older children and adults. Previously, we showed that the virulence of CVB3 is reduced by a lysine-to-arginine substitution in the capsid protein VP2 (K2168R) or a glutamic acid-to-glycine substitution in VP3 (E3060G). In this report, we show that the double mutant virus CVB3(KR/EG) displays additional attenuation, particularly for the pancreas, in A/J mice. In addition, two other attenuating mutations have been identified in the capsid protein VP1. When either the aspartic acid residue D1155 was replaced with glutamic acid or the proline residue P1126 was replaced with methionine, the resulting mutant also possessed an attenuated phenotype. Moreover, when either of these mutations was incorporated into CVB3(KR/EG), the resulting triple mutant viruses, CVB3(KR/EG/DE) and CVB3(KR/EG/PM), were completely noncardiovirulent and caused only small foci of damage to the pancreas, even at a high dose. Both triple mutants were found to be immunogenic, and a single injection of young A/J mice with either was found to protect them from a subsequent lethal challenge with wild-type CVB3. These findings indicate that the triple mutants could be exploited for the development of a live attenuated vaccine against CVB3.
Collapse
Affiliation(s)
- M Dan
- Department of Pathology and Laboratory Medicine, University of British Columbia, #318, BCRICWH, 950 West 28th Ave., Vancouver, British Columbia, Canada V5Z4H4
| | | |
Collapse
|
39
|
Jimenez-Clavero MA, Escribano-Romero E, Ley V, Spiller OB. More recent swine vesicular disease virus isolates retain binding to coxsackie-adenovirus receptor, but have lost the ability to bind human decay-accelerating factor (CD55). J Gen Virol 2005; 86:1369-1377. [PMID: 15831949 DOI: 10.1099/vir.0.80669-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Swine vesicular disease virus (SVDV) evolved from coxsackie B virus serotype 5 (CVB5) in the recent past, crossing the species barrier from humans to pigs. Here, SVDV isolates from early and recent outbreaks have been compared for their capacity to utilize the progenitor virus receptors coxsackie-adenovirus receptor (CAR) and decay-accelerating factor (DAF; CD55). Virus titre of CVB5 and SVDV isolates It'66 and UK'72 on human HeLa cells was reduced by pre-incubation with either anti-DAF or anti-CAR antibodies; however, recent SVDV isolates R1072, R1120 and SPA'93 did not infect HeLa cells lytically. CVB5 and SVDV infection of the pig cell line IB-RS-2 was inhibited completely by anti-CAR antibodies for all isolates, and no reduction was observed following pre-incubation of cells with anti-pig DAF antibodies. Expression of human DAF in the pig cell line IB-RS-2 enhanced the virus titre of early SVDV isolates by 25-fold, but had no effect on recent SVDV isolate titre. Binding of radiolabelled CVB5 to IB-RS-2 cells was increased seven- to eightfold by expression of human DAF and binding of early SVDV isolates was increased 1.2-1.3-fold, whereas no increase in binding by recent SVDV isolates was mediated by human DAF expression. Addition of soluble hDAF-Fc inhibited CVB5, but not SVDV, infection of pig cells. Pre-incubation of all viruses with soluble hCAR-Fc blocked infection of IB-RS-2 pig cells completely; titration of the amount of soluble hCAR-Fc required to block infection revealed that early isolate UK'72 was the least susceptible to inhibition, and the most recent isolate, SPA'93, was the most susceptible.
Collapse
Affiliation(s)
- Miguel A Jimenez-Clavero
- Department of Biotechnology, National Institute for Agriculture and Food Research and Technology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra Coruña km 7·5, 28040 Madrid, Spain
| | - Estela Escribano-Romero
- Department of Biotechnology, National Institute for Agriculture and Food Research and Technology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra Coruña km 7·5, 28040 Madrid, Spain
| | - Victoria Ley
- Department of Biotechnology, National Institute for Agriculture and Food Research and Technology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra Coruña km 7·5, 28040 Madrid, Spain
| | - O Brad Spiller
- Virus Receptor and Immune Evasion Group, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Third Floor Henry Wellcome Research Institute, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
40
|
Abstract
Over the last few years, dramatic increases in our knowledge about diffusely adhering Escherichia coli (DAEC) pathogenesis have taken place. The typical class of DAEC includes E. coli strains harboring AfaE-I, AfaE-II, AfaE-III, AfaE-V, Dr, Dr-II, F1845, and NFA-I adhesins (Afa/Dr DAEC); these strains (i) have an identical genetic organization and (ii) allow binding to human decay-accelerating factor (DAF) (Afa/Dr(DAF) subclass) or carcinoembryonic antigen (CEA) (Afa/Dr(CEA) subclass). The atypical class of DAEC includes two subclasses of strains; the atypical subclass 1 includes E. coli strains that express AfaE-VII, AfaE-VIII, AAF-I, AAF-II, and AAF-III adhesins, which (i) have an identical genetic organization and (ii) do not bind to human DAF, and the atypical subclass 2 includes E. coli strains that harbor Afa/Dr adhesins or others adhesins promoting diffuse adhesion, together with pathogenicity islands such as the LEE pathogenicity island (DA-EPEC). In this review, the focus is on Afa/Dr DAEC strains that have been found to be associated with urinary tract infections and with enteric infection. The review aims to provide a broad overview and update of the virulence aspects of these intriguing pathogens. Epidemiological studies, diagnostic techniques, characteristic molecular features of Afa/Dr operons, and the respective role of Afa/Dr adhesins and invasins in pathogenesis are described. Following the recognition of membrane-bound receptors, including type IV collagen, DAF, CEACAM1, CEA, and CEACAM6, by Afa/Dr adhesins, activation of signal transduction pathways leads to structural and functional injuries at brush border and junctional domains and to proinflammatory responses in polarized intestinal cells. In addition, uropathogenic Afa/Dr DAEC strains, following recognition of beta(1) integrin as a receptor, enter epithelial cells by a zipper-like, raft- and microtubule-dependent mechanism. Finally, the presence of other, unknown virulence factors and the way that an Afa/Dr DAEC strain emerges from the human intestinal microbiota as a "silent pathogen" are discussed.
Collapse
Affiliation(s)
- Alain L Servin
- Institut National de la Santé et de la Recherche Médicale, Unité 510, Faculté de Pharmacie Paris XI, Châtenay-Malabry, France.
| |
Collapse
|
41
|
Milstone AM, Petrella J, Sanchez MD, Mahmud M, Whitbeck JC, Bergelson JM. Interaction with coxsackievirus and adenovirus receptor, but not with decay-accelerating factor (DAF), induces A-particle formation in a DAF-binding coxsackievirus B3 isolate. J Virol 2005; 79:655-60. [PMID: 15596863 PMCID: PMC538729 DOI: 10.1128/jvi.79.1.655-660.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although many coxsackie B viruses interact with decay accelerating factor (DAF), attachment to DAF by itself is not sufficient to initiate infection. We examined the early events in infection that follow virus interaction with DAF, and with the coxsackievirus and adenovirus receptor (CAR). Interaction with soluble CAR in a cell-free system, or with CAR on the surfaces of transfected cells, induced the formation of A particles; interaction with soluble or cell surface DAF did not. The results suggest that CAR, but not DAF, is capable of initiating the conformational changes in the viral capsid that lead to release of viral nucleic acid.
Collapse
Affiliation(s)
- Aaron M Milstone
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
42
|
Stadnick E, Dan M, Sadeghi A, Chantler JK. Attenuating mutations in coxsackievirus B3 map to a conformational epitope that comprises the puff region of VP2 and the knob of VP3. J Virol 2004; 78:13987-4002. [PMID: 15564506 PMCID: PMC533932 DOI: 10.1128/jvi.78.24.13987-14002.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ten antibody escape mutants of coxsackievirus B3 (CVB3) were used to identify nucleotide substitutions that determine viral virulence for the heart and pancreas. The P1 region, encoding the structural genes of each mutant, was sequenced to identify mutations associated with the lack of neutralization. Eight mutants were found to have a lysine-to arginine mutation in the puff region of VP2, while two had a glutamate-to-glycine substitution in the knob of VP3. Two mutants, EM1 and EM10, representing each of these mutations, were further analyzed, initially by determining their entire sequence. In addition to the mutations in P1, EM1 was found to have two mutations in the 3D polymerase, while EM10 had a mutation in stem-loop II of the 5' nontranslated region (5'NTR). The pathogenesis of the mutants relative to that of CVB3 strain RK [CVB3(RK)] then was examined in A/J mice. Both mutants were found to be less cardiotropic than the parental strain, with a 40-fold (EM1) or a 100- to 1,000-fold (EM10) reduction in viral titers in the heart relative to the titers of CVB3(RK). The mutations in VP2, VP3, and the 5'NTR were introduced independently into the RK infectious clone, and the phenotypes of the progeny viruses were determined. The results substantiated that the VP2 and VP3 mutations reduced cardiovirulence, while the 5'NTR mutation in EM10 was associated with a more virulent phenotype when expressed on its own. Stereographic imaging of the two mutations in the capsomer showed that they lie in close proximity on either side of a narrow cleft between the puff and the knob, forming a conformational epitope that is part of the putative binding site for coreceptor DAF.
Collapse
Affiliation(s)
- E Stadnick
- Department of Pathology and Laboratory Medicine, University of British Columbia, #318, BCRICWH, 950 West 28th Ave., Vancouver, British Columbia, Canada V5Z 4H4
| | | | | | | |
Collapse
|
43
|
Newcombe NG, Beagley LG, Christiansen D, Loveland BE, Johansson ES, Beagley KW, Barry RD, Shafren DR. Novel role for decay-accelerating factor in coxsackievirus A21-mediated cell infectivity. J Virol 2004; 78:12677-82. [PMID: 15507656 PMCID: PMC525106 DOI: 10.1128/jvi.78.22.12677-12682.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Decay-accelerating factor (DAF) is involved in the cell membrane attachment of many human enteroviruses. Presently, further specific active roles of DAF in mediating productive cell infection and in the pathogenesis of natural enterovirus infection are poorly understood. In an attempt to more fully understand the role of DAF in lytic cell infection we examined the specific interactions of the prototype strain of coxsackievirus A21 (CVA21) with surface-expressed DAF. Investigations into discrete DAF-CVA21 interactions focused on viral binding; viral particle elution with respect to the parameters of time, temperature, and pH; and subsequent cell infection. Radiolabeled-virus binding assays revealed that peak elution of CVA21 from DAF occurred within 15 min of initial attachment and that the DAF-eluted virus increased in a linear fashion with respect to temperature and pH. CVA21 eluted from endogenous surface-expressed DAF was highly infectious, in contrast to CVA21 eluted from intercellular adhesion molecule 1 (ICAM-1), which retained little to no infectivity. Using an adenovirus transduction system, we demonstrate that CVA21 can remain infectious for up to 24 h after DAF binding and is capable of initiating a multicycle lytic infection upon delayed ICAM-1 surface expression. Taken together, the data suggest that a major role of DAF in cell infection by the prototype strain of CVA21 is to provide membrane concentration of infectious virions, effectively increasing viral interactions with endogenous or induced ICAM-1.
Collapse
Affiliation(s)
- Nicole G Newcombe
- The Picornaviral Research Unit, Discipline of Immunology and Microbiology, Faculty of Health, The University of Newcastle, Level 3, David Maddison Clinical Sciences Building, Royal Newcastle Hospital, Newcastle, New South Wales 2300, Australia
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Johansson ES, Xing L, Cheng RH, Shafren DR. Enhanced cellular receptor usage by a bioselected variant of coxsackievirus a21. J Virol 2004; 78:12603-12. [PMID: 15507647 PMCID: PMC525059 DOI: 10.1128/jvi.78.22.12603-12612.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Decay-accelerating factor (DAF) functions as cell attachment receptor for a wide range of human enteroviruses. The Kuykendall prototype strain of coxsackievirus A21 (CVA21) attaches to DAF but requires interactions with intercellular cell adhesion molecule 1 (ICAM-1) to infect cells. We show here that a bioselected variant of CVA21 (CVA21-DAFv) generated by multiple passages in DAF-expressing, ICAM-1-negative rhabdomyosarcoma (RD) cells acquired the capacity to induce rapid and complete lysis of ICAM-1-deficient cells while retaining the capacity to bind ICAM-1. CVA21-DAFv binding to DAF on RD cells mediated lytic infection and was inhibited by either antibody blockade with a specific anti-DAF SCR1 monoclonal antibody (MAb) or soluble human DAF. Despite being bioselected in RD cells, CVA21-DAFv was able to lytically infect an additional ICAM-1-negative cancer cell line via DAF interactions alone. The finding that radiolabeled CVA21-DAFv virions are less readily eluted from surface-expressed DAF than are parental CVA21 virions during a competitive epitope challenge by an anti-DAF SCR1 MAb suggests that interactions between CVA21-DAFv and DAF are of higher affinity than those of the parental strain. Nucleotide sequence analysis of the capsid-coding region of the CVA21-DAFv revealed the presence of two amino acid substitutions in capsid protein VP3 (R96H and E101A), possibly conferring the enhanced DAF-binding phenotype of CVA21-DAFv. These residues are predicted to be embedded at the interface of VP1, VP2, and VP3 and are postulated to enhance the affinity of DAF interaction occurring outside the capsid canyon. Taken together, the data clearly demonstrate an enhanced DAF-using phenotype and expanded receptor utilization of CVA21-DAFv compared to the parental strain, further highlighting that capsid interactions with DAF alone facilitate rapid multicycle lytic cell infection.
Collapse
Affiliation(s)
- E Susanne Johansson
- Picornaviral Research Unit, Discipline of Immunology and Microbiology, Faculty of Health, The University of Newcastle, Level 3, David Maddison Clinical Sciences, Bldg., 2300 Newcastle, New South Wales, Australia.
| | | | | | | |
Collapse
|
45
|
Myers SE, Brewer L, Shaw DP, Greene WH, Love BC, Hering B, Spiller OB, Njenga MK. Prevalent human coxsackie B-5 virus infects porcine islet cells primarily using the coxsackie-adenovirus receptor. Xenotransplantation 2004; 11:536-46. [PMID: 15479464 DOI: 10.1111/j.1399-3089.2004.00183.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND We have previously demonstrated that transplanting porcine encephalomyocarditis virus (EMCV)-infected porcine islet cells (PICs) results in transmission of the virus to recipient mice, which is manifested by acute fatal infection within 5 to 8 days. Here, we determined PIC susceptibility to a related and highly prevalent human picornavirus, coxsackie B-5 virus (CVB-5). METHODS PICs were inoculated with CVB-5 in vitro for up to 96 hours and infectivity, level of virus replication, and cellular function determined. Subsequently, monoclonal and polyclonal antibody blocking experiments were used to investigate the receptor CVB-5 uses to enter PICs, and the ability of CVB-5-infected islets to reverse diabetes analyzed in mice. RESULTS Adult pig islets inoculated with CVB-5 in vitro showed a typical picornaviral replication cycle with a 2-h lag phase followed by a 4-h exponential phase during which the virus titer increased by 4 logs. However, CVB-5 was less cytolytic to PICs than EMCV, resulting in a persistent productive infection lasting for up to 96 h, with minimal evidence of cell lysis. Double immunostaining confirmed the presence of CVB-5 antigens in insulin-producing islets. Infection of PICs in the presence of antibodies against human coxsackie-adenovirus receptor (CAR) resulted in near complete blockage in production of infectious virus particles whereas blocking with anti-porcine decay-accelerating factor (DAF, also called CD55) or anti-porcine membrane cofactor protein (MCP, also called CD46) only slightly decreased the number of infectious CVB-5 particles produced. Immunofluoresence staining showed CAR and MCP expression on the islet surface, but not DAF. Transplanting CVB-5-infected PICs into diabetic C57BL/6 mice resulted in reversal of diabetes. CONCLUSION Although PICs are susceptible to human CVB-5, the infection does not appear to affect xenograft function in vitro or in vivo in the short term.
Collapse
Affiliation(s)
- Suzanne E Myers
- Pathobiology Graduate Program, Veterinary Science Department, Pennsylvania State University, University Park, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Xiao C, Tuthill TJ, Bator Kelly CM, Challinor LJ, Chipman PR, Killington RA, Rowlands DJ, Craig A, Rossmann MG. Discrimination among rhinovirus serotypes for a variant ICAM-1 receptor molecule. J Virol 2004; 78:10034-44. [PMID: 15331736 PMCID: PMC514980 DOI: 10.1128/jvi.78.18.10034-10044.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intercellular adhesion molecule 1 (ICAM-1) is the cellular receptor for the major group of human rhinovirus serotypes, including human rhinovirus 14 (HRV14) and HRV16. A naturally occurring variant of ICAM-1, ICAM-1Kilifi, has altered binding characteristics with respect to different HRV serotypes. HRV14 binds to ICAM-1 only transiently at physiological temperatures but forms a stable complex with ICAM-1Kilifi. Conversely, HRV16 forms a stable complex with ICAM-1 but does not bind to ICAM-1Kilifi. The three-dimensional structures of HRV14 and HRV16, complexed with ICAM-1, and the structure of HRV14, complexed with ICAM-1Kilifi, have been determined by cryoelectron microscopy (cryoEM) image reconstruction to a resolution of approximately 10 angstroms. Structures determined by X-ray crystallography of both viruses and of ICAM-1 were fitted into the cryoEM density maps. The interfaces between the viruses and receptors contain extensive ionic networks. However, the interactions between the viruses and ICAM-1Kilifi contain one less salt bridge than between the viruses and ICAM-1. As HRV16 has fewer overall interactions with ICAM-1 than HRV14, the absence of this charge interaction has a greater impact on the binding of ICAM-1Kilifi to HRV16 than to HRV14.
Collapse
Affiliation(s)
- Chuan Xiao
- Department of Biological Sciences, Purdue University, 915 W. State St., West Layfayette, IN 47909-2054, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Duque H, LaRocco M, Golde WT, Baxt B. Interactions of foot-and-mouth disease virus with soluble bovine alphaVbeta3 and alphaVbeta6 integrins. J Virol 2004; 78:9773-81. [PMID: 15331710 PMCID: PMC514961 DOI: 10.1128/jvi.78.18.9773-9781.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
At least four members of the integrin family of receptors, alphaVbeta1, alphaVbeta3, alphaVbeta6, and alphaVbeta8, have been identified as receptors for foot-and-mouth disease virus (FMDV) in vitro. Our investigators have recently shown that the efficiency of receptor usage appears to be related to the viral serotype and may be influenced by structural differences on the viral surface (H. Duque and B. Baxt, J. Virol. 77:2500-2511, 2003). To further examine these differences, we generated soluble alphaVbeta3 and alphaVbeta6 integrins. cDNA plasmids encoding the individual complete integrin alphaV, beta3, and beta6 subunits were used to amplify sequences encoding the subunits' signal peptide and ectodomain, resulting in subunits lacking transmembrane and cytoplasmic domains. COS-1 cells were transfected with plasmids encoding the soluble alphaV subunit and either the soluble beta3 or beta6 subunit and labeled with [35S]methionine-cysteine. Complete subunit heterodimeric integrins were secreted into the medium, as determined by radioimmunoprecipitation with specific monoclonal and polyclonal antibodies. For the examination of the integrins' biological activities, stable cell lines producing the soluble integrins were generated in HEK 293A cells. In the presence of divalent cations, soluble alphaVbeta6 bound to representatives of type A or O viruses, immobilized on plastic dishes, and significantly inhibited viral replication, as determined by plaque reduction assays. In contrast, soluble alphaVbeta3 was unable to bind to immobilized virus of either serotype; however, virus bound to the immobilized integrin, suggesting that FMDV binding to alphaVbeta3 is a low-affinity interaction. In addition, soluble alphaVbeta3 did not neutralize virus infectivity. Incubation of soluble alphaVbeta6 with labeled type A12 or O1 resulted in a significant inhibition of virus adsorption to BHK cells, while soluble alphaVbeta3 caused a low (20 to 30%), but consistent, inhibition of virus adsorption. Virus incubated with soluble alphaVbeta6 had a lower sedimentation rate than native virus on sucrose density gradients, but the particles retained all of their structural proteins and still contained bound integrin and, therefore, were not exhibiting characteristics of a picornavirus A particle.
Collapse
Affiliation(s)
- Hernando Duque
- Foot-and-Mouth Disease Research Unit, Plum Island Animal Disease Center, USDA Agricultural Research Service, Greenport, NY 11944-0848, USA
| | | | | | | |
Collapse
|
48
|
Hudault S, Spiller OB, Morgan BP, Servin AL. Human diffusely adhering Escherichia coli expressing Afa/Dr adhesins that use human CD55 (decay-accelerating factor) as a receptor does not bind the rodent and pig analogues of CD55. Infect Immun 2004; 72:4859-63. [PMID: 15271948 PMCID: PMC470588 DOI: 10.1128/iai.72.8.4859-4863.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 03/17/2004] [Accepted: 04/05/2004] [Indexed: 11/20/2022] Open
Abstract
Afa/Dr diffusely adhering Escherichia coli (DAEC) bacteria that are responsible for recurrent urinary tract and gastrointestinal infections recognized as a receptor the glycosylphosphatidylinositol (GPI)-anchored protein decay-accelerating factor (DAF; CD55) at the brush border of cultured human intestinal cells. Results show that Afa/Dr DAEC C1845 bacteria were poorly associated with the mucosa of the gastrointestinal tract of infected mice. We conducted experiments with Chinese hamster ovary (CHO) cells stably transfected with mouse (GPI or transmembrane forms), pig, or human CD55 or mouse Crry cDNAs or transfected with empty vector pDR2EF1 alpha. Recombinant E. coli AAEC185 bacteria expressing Dr or F1845 adhesins bound strongly to CHO cells expressing human CD55 but not to the CHO cells expressing mouse (transmembrane and GPI anchored), rat, or pig CD55 or mouse Crry. Positive clustering of CD55 around Dr-positive bacteria was observed in human CD55-expressing CHO cells but not around the rarely adhering Dr-positive bacteria randomly distributed at the cell surface of CHO cells expressing mouse, rat, or pig CD55.
Collapse
Affiliation(s)
- Sylvie Hudault
- Institut National de la Santé et de la Recherche Médicale, Unité 510, Faculté de Pharmacie Paris XI, F-92296 ChAtenay-Malabry, France
| | | | | | | |
Collapse
|
49
|
Williams DT, Chaudhry Y, Goodfellow IG, Lea S, Evans DJ. Interactions of decay-accelerating factor (DAF) with haemagglutinating human enteroviruses: utilizing variation in primate DAF to map virus binding sites. J Gen Virol 2004; 85:731-738. [PMID: 14993659 DOI: 10.1099/vir.0.19674-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A cellular receptor for the haemagglutinating enteroviruses (HEV), and the protein that mediates haemagglutination, is the membrane complement regulatory protein decay accelerating factor (DAF; CD55). Although primate DAF is highly conserved, significant differences exist to enable cell lines derived from primates to be utilized for the characterization of the DAF binding phenotype of human enteroviruses. Thus, several distinct DAF-binding phenotypes of a selection of HEVs (viz. coxsackievirus A21 and echoviruses 6, 7, 11-13, 29) were identified from binding and infection assays using a panel of primate cells derived from human, orang-utan, African Green monkey and baboon tissues. These studies complement our recent determination of the crystal structure of SCR(34) of human DAF [Williams, P., Chaudhry, Y., Goodfellow, I. G., Billington, J., Powell, R., Spiller, O. B., Evans, D. J. & Lea, S. (2003). J Biol Chem 278, 10691-10696] and have enabled us to better map the regions of DAF with which enteroviruses interact and, in certain cases, predict specific virus-receptor contacts.
Collapse
Affiliation(s)
- David T Williams
- Faculty of Biomedical and Life Sciences, Division of Virology, University of Glasgow, Glasgow G11 5JR, UK
| | - Yasmin Chaudhry
- Faculty of Biomedical and Life Sciences, Division of Virology, University of Glasgow, Glasgow G11 5JR, UK
| | - Ian G Goodfellow
- Faculty of Biomedical and Life Sciences, Division of Virology, University of Glasgow, Glasgow G11 5JR, UK
| | - Susan Lea
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford, UK
| | - David J Evans
- Faculty of Biomedical and Life Sciences, Division of Virology, University of Glasgow, Glasgow G11 5JR, UK
| |
Collapse
|
50
|
Escribano-Romero E, Jimenez-Clavero MA, Gomes P, García-Ranea JA, Ley V. Heparan sulphate mediates swine vesicular disease virus attachment to the host cell. J Gen Virol 2004; 85:653-663. [PMID: 14993651 DOI: 10.1099/vir.0.19603-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heparan sulphate (HS) has been found to serve as receptor for initial cell binding of numerous viruses. Different glycosaminoglycans (GAGs), including heparin and HS, were analysed for their ability to bind swine vesicular disease virus (SVDV), a picornavirus with close homology to human coxsackie B5 virus. Binding of SVDV was established by heparin-affinity chromatography. In addition, infection of IB-RS-2 epithelial porcine cells was inhibited by treating the virus with soluble HS, heparin, and chondroitin sulphate B (CS-B), as well as by enzymic digestion of cell surface GAGs. Analysis of the infection course showed that SVDV uses cellular HS for its binding to the cell surface and that this interaction occurs during attachment of the virus, prior to its internalization into the cell. Sequence analysis of SVDV variants selected for their lack of sensitivity to heparin inhibition in vitro led to the identification of two residues (A2135V and I1266K) potentially involved in heparin/HS interaction. The location of these residues in a three-dimensional model shows that they are clustered in a well-exposed region of the capsid, providing a physical mechanism that could account for the heparin-binding phenotype.
Collapse
Affiliation(s)
- Estela Escribano-Romero
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Dep. Biotecnología, Ctra Coruña Km 7.5, 28040 Madrid, Spain
| | - Miguel Angel Jimenez-Clavero
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Dep. Biotecnología, Ctra Coruña Km 7.5, 28040 Madrid, Spain
| | - Paula Gomes
- CIQ(UP)/Departamento de Química, Faculdade de Ciências da Universidade do Porto, P-4169-007 Porto, Portugal
- Serveis Cientificotècnics (Unitat de Citometria de Flux), Parc Científic de Barcelona, Spain
| | | | - Victoria Ley
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Dep. Biotecnología, Ctra Coruña Km 7.5, 28040 Madrid, Spain
| |
Collapse
|