1
|
Surakhy M, Matheson J, Barnes DJ, Carter EJ, Hughes J, Bühnemann C, Sanegre S, Morreau H, Metz P, Imianowski CJ, Hassan AB. Smad4 and TGFβ1 dependent gene expression signatures in conditional intestinal adenoma, organoids and colorectal cancer. Sci Rep 2025; 15:16330. [PMID: 40348815 PMCID: PMC12065906 DOI: 10.1038/s41598-025-00908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 05/02/2025] [Indexed: 05/14/2025] Open
Abstract
TGF-β ligands suppress growth yet can paradoxically and potently promote cancer invasion and metastasis depending on downstream pathway mutational context, such as loss of Mothers against decapentaplegic homolog 4 (Smad4). Here, we characterised phenotypes and associated gene expression signatures in conditional murine intestinal adenoma with and without Smad4. Conditional Lgr5-CreERT2 activation in Apcfl/flSmad4fl/fl mice resulted in homozygote floxed alleles (ApcΔ/ΔSmad4Δ/Δ) and adenoma formation. The adenoma phenotype was discordant, with reduced small intestinal adenoma burden yet development of large non-metastatic caecal adenoma with nuclear localisation of phospho-Smad2/3. Derived ApcΔ/ΔSmad4Δ/Δ adenoma organoids resisted TGF-β1 dose dependent growth arrest and cell death (IC50 534 pM) compared to ApcΔ/ΔSmad4+/+ (IC50 24 pM). TGF-β1 (390 pM) altered adenoma bulk mRNA expression most significantly for Id1low and Spp1high in ApcΔ/ΔSmad4Δ/Δ. Single cell RNAseq of caecal adenoma identified expansion of Lgr5low, Pak3high and Id1low progenitor populations in ApcΔ/ΔSmad4Δ/Δ. Of the 76 Smad4 and TGF-β1 dependent genes identified in Apcfl/flSmad4fl/fl adenoma organoids, only 7 human equivalent genes were differentially expressed in SMAD4 mutated colorectal cancer (TCGA cohorts), including ID1low. SMAD4low, ID1low SPP1high and PAK3high all correlated with poorer survival. Murine adenoma identified Smad4 dependent gene expression signatures that require further evaluation as functional biomarker classifiers of SMAD4 mutated cancer subtypes.
Collapse
Affiliation(s)
- Mirvat Surakhy
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Julia Matheson
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - David J Barnes
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Emma J Carter
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Jennifer Hughes
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Claudia Bühnemann
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Sabina Sanegre
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Paul Metz
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Charlotte J Imianowski
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Andrew Bassim Hassan
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
2
|
Gaynor L, Singh H, Tie G, Badarinath K, Madha S, Mancini A, Bhattacharya S, Hoshino M, de Sauvage FJ, Murata K, Jadhav U, Shivdasani RA. Crypt density and recruited enhancers underlie intestinal tumour initiation. Nature 2025; 640:231-239. [PMID: 39778708 DOI: 10.1038/s41586-024-08573-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Oncogenic mutations that drive colorectal cancer can be present in healthy intestines for long periods without overt consequence1,2. Mutation of Apc, the most common initiating event in conventional adenomas3, activates Wnt signalling, thus conferring fitness on mutant intestinal stem cells (ISCs)4,5. Apc mutations may occur in ISCs that arise by routine self-renewal or by dedifferentiation of their progeny. Although ISCs of these different origins are fundamentally similar6,7, it is unclear whether both generate tumours equally well in uninjured intestines. It is also unknown whether cis-regulatory elements are substantively modulated upon Wnt hyperactivation or as a feature of subsequent tumours. Here we show in two mouse models that adenomas are not an obligatory outcome of Apc deletion in either ISC source, but require proximity of mutant intestinal crypts. Reduced crypt density abrogates, and aggregation of mutant colonic crypts augments, adenoma formation. Moreover, adenoma-resident ISCs open chromatin at thousands of enhancers that are inaccessible in Apc-null ISCs that are not associated with adenomas. These cis elements explain adenoma-selective gene activity and persist, with little further expansion of the repertoire, as other oncogenic mutations accumulate. Thus, cooperativity between neighbouring mutant crypts and new accessibility at specific enhancers are key steps early in intestinal tumorigenesis.
Collapse
Affiliation(s)
- Liam Gaynor
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Harshabad Singh
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Guodong Tie
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Krithika Badarinath
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Shariq Madha
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew Mancini
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Swarnabh Bhattacharya
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | - Kazutaka Murata
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Unmesh Jadhav
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
3
|
Richter KM, Wrage M, Krekeler C, De Oliveira T, Conradi LC, Menck K, Bleckmann A. Model systems to study tumor-microbiome interactions in early-onset colorectal cancer. EMBO Mol Med 2025; 17:395-413. [PMID: 39948421 PMCID: PMC11903813 DOI: 10.1038/s44321-025-00198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 03/14/2025] Open
Abstract
Colorectal cancer (CRC) is a major health problem, with an alarming increase of early-onset CRC (EO-CRC) cases among individuals under 50 years of age. This trend shows the urgent need for understanding the underlying mechanisms leading to EO-CRC development and progression. There is significant evidence that the gut microbiome acts as a key player in CRC by triggering molecular changes in the colon epithelium, leading to tumorigenesis. However, a comprehensive collection and comparison of methods to study such tumor-microbiome interactions in the context of EO-CRC is sparse. This review provides an overview of the available in vivo, ex vivo as well as in vitro approaches to model EO-CRC and assess the effect of gut microbes on tumor development and growth. By comparing the advantages and limitations of each model system, it highlights that, while no single model is perfect, each is suitable for studying specific aspects of microbiome-induced tumorigenesis. Taken together, multifaceted approaches can simulate the human body's complexity, aiding in the development of effective treatment and prevention strategies for EO-CRC.
Collapse
Affiliation(s)
- Katharina M Richter
- Department of Medicine A, University of Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Marius Wrage
- Department of Medicine A, University of Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Carolin Krekeler
- Department of Medicine A, University of Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Tiago De Oliveira
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075, Goettingen, Germany
| | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075, Goettingen, Germany
| | - Kerstin Menck
- Department of Medicine A, University of Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Annalen Bleckmann
- Department of Medicine A, University of Muenster, 48149, Muenster, Germany.
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany.
| |
Collapse
|
4
|
Chen C, Chen J, Cheng K, Xie P. The Car1 Knockout Mice Exhibit Antidepressant-like Behaviors Accompanied with Gut Microbiota Disturbance. Cell Biochem Biophys 2025; 83:777-782. [PMID: 39340592 DOI: 10.1007/s12013-024-01509-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 09/30/2024]
Abstract
Major depressive disorder (MDD) is a severe mental disorder with largely unknown mechanisms. Carbonic anhydrases convert CO2 to carbonates and protons, playing roles in various brain functions. Carbonic anhydrase 1 (Car1) is particularly abundant and may be linked to microbiota at interstitial sites. We developed Car1-deficient mice to explore the relationship between depression-like behaviors and gut microbiota. Behavioral tests confirmed depression-like behavior in Car1-/- mice. Fecal samples from Car1-/- and WT mice were collected, and 16S rRNA gene sequencing identified distinct microbiota components between the groups. Car1-/- mice exhibited significantly increased immobility in the tail suspension test (TST) compared to WT mice. The gut microbiota composition differed at the phylum level in p_Bacteroidetes, p_Verrucomicrobia, p_Firmicutes, and p_Tenericutes. At the family level, Car1-/- mice had significantly different abundances in eight microbiota groups compared to WT mice. Car1 deficiency is associated with depressive-like behavior and gut microbiota dysbiosis, potentially linked to depressive-like phenotypes.
Collapse
Affiliation(s)
- Chong Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, 402100, China
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Ke Cheng
- Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, 402100, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Good HJ, Larsen F, Shin AE, Zhang L, Derouet M, Meriwether D, Worthley D, Reddy ST, Wang TC, Asfaha S. Prostaglandin E 2 and Akt Promote Stemness in Apc Mutant Dclk1+ Cells to Give Rise to Colitis-associated Cancer. Cell Mol Gastroenterol Hepatol 2025; 19:101469. [PMID: 39884575 PMCID: PMC11999635 DOI: 10.1016/j.jcmgh.2025.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND & AIMS Loss of the tumor suppressor gene Apc in Lgr5+ intestinal stem cells results in aberrant Wnt signaling and colonic tumorigenesis. In the setting of injury, however, we and others have also shown that non-stem cells can give rise to colonic tumors. The mechanism by which inflammation leads to cellular plasticity and cancer, however, remains largely unknown. METHODS RNA expression analysis of Wnt, COX, and Akt signaling was assessed in patients with quiescent or active ulcerative colitis (UC) and patients with UC-associated neoplasia using available datasets. The role of COX signaling in colonic tumorigenesis was examined using epithelial and doublecortin-like kinase 1 (Dclk1)+ cell-specific conditional COX-1 knockout mice and pharmacologic treatment with different nonsteroidal anti-inflammatory drugs. RESULTS In this study, we show that prostaglandins and phospho-Akt are key inflammatory mediators that promote stemness in Apc mutant Dclk1+ cells that give rise to colorectal cancer. Moreover, prostaglandin E2 (PGE2) and Akt are increased in colitis in both mice and humans, leading to inflammation-associated dysplasia upon activation of Wnt signaling. Importantly, inhibition of epithelial-derived COX-1 by aspirin or conditional knockout in Dclk1+ cells reduced PGE2 levels and prevented the development of inflammation-associated colorectal cancer. CONCLUSIONS Our data shows that epithelial and Dclk1+ cell-derived COX-1 plays an important role in inflammation-associated tumorigenesis. Importantly, low-dose aspirin was effective in chemo-prevention through inhibition of COX-1 that reduced colitis-associated cancer.
Collapse
Affiliation(s)
- Hayley J Good
- Department of Medicine, University of Western Ontario, London, Ontario, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Frederikke Larsen
- Department of Medicine, University of Western Ontario, London, Ontario, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Alice E Shin
- Department of Medicine, University of Western Ontario, London, Ontario, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Liyue Zhang
- Department of Medicine, University of Western Ontario, London, Ontario, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Mathieu Derouet
- Department of Medicine, University of Western Ontario, London, Ontario, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, Ontario, Canada
| | - David Meriwether
- Department of Medicine, Division of Cardiology, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Daniel Worthley
- South Australian Health Medical Research Institute, North Terrace Adelaide, Australia
| | - Srinivasa T Reddy
- Department of Medicine, Division of Cardiology, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York
| | - Samuel Asfaha
- Department of Medicine, University of Western Ontario, London, Ontario, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, Ontario, Canada.
| |
Collapse
|
6
|
Jin H, Yang Q, Yang J, Wang F, Feng J, Lei L, Dai M. Exploring tumor organoids for cancer treatment. APL MATERIALS 2024; 12. [DOI: 10.1063/5.0216185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
As a life-threatening chronic disease, cancer is characterized by tumor heterogeneity. This heterogeneity is associated with factors that lead to treatment failure and poor prognosis, including drug resistance, relapse, and metastasis. Therefore, precision medicine urgently needs personalized tumor models that accurately reflect the tumor heterogeneity. Currently, tumor organoid technologies are used to generate in vitro 3D tissues, which have been shown to precisely recapitulate structure, tumor microenvironment, expression profiles, functions, molecular signatures, and genomic alterations in primary tumors. Tumor organoid models are important for identifying potential therapeutic targets, characterizing the effects of anticancer drugs, and exploring novel diagnostic and therapeutic options. In this review, we describe how tumor organoids can be cultured and summarize how researchers can use them as an excellent tool for exploring cancer therapies. In addition, we discuss tumor organoids that have been applied in cancer therapy research and highlight the potential of tumor organoids to guide preclinical research.
Collapse
Affiliation(s)
- Hairong Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
- Ningxia Medical University 3 , Ningxia 750004, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University 4 , Changsha 410011, Hunan, China
| | - Jing Yang
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
- Ningxia Medical University 3 , Ningxia 750004, China
| | - Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
| |
Collapse
|
7
|
Sharma S, Singh N, Turk AA, Wan I, Guttikonda A, Dong JL, Zhang X, Opyrchal M. Molecular insights into clinical trials for immune checkpoint inhibitors in colorectal cancer: Unravelling challenges and future directions. World J Gastroenterol 2024; 30:1815-1835. [PMID: 38659481 PMCID: PMC11036501 DOI: 10.3748/wjg.v30.i13.1815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/22/2024] [Accepted: 03/13/2024] [Indexed: 04/03/2024] Open
Abstract
Colorectal cancer (CRC) is a complex disease with diverse etiologies and clinical outcomes. Despite considerable progress in development of CRC therapeutics, challenges remain regarding the diagnosis and management of advanced stage metastatic CRC (mCRC). In particular, the five-year survival rate is very low since mCRC is currently rarely curable. Over the past decade, cancer treatment has significantly improved with the introduction of cancer immunotherapies, specifically immune checkpoint inhibitors. Therapies aimed at blocking immune checkpoints such as PD-1, PD-L1, and CTLA-4 target inhibitory pathways of the immune system, and thereby enhance anti-tumor immunity. These therapies thus have shown promising results in many clinical trials alone or in combination. The efficacy and safety of immunotherapy, either alone or in combination with CRC, have been investigated in several clinical trials. Clinical trials, including KEYNOTE-164 and CheckMate 142, have led to Food and Drug Administration approval of the PD-1 inhibitors pembrolizumab and nivolumab, respectively, for the treatment of patients with unresectable or metastatic microsatellite instability-high or deficient mismatch repair CRC. Unfortunately, these drugs benefit only a small percentage of patients, with the benefits of immunotherapy remaining elusive for the vast majority of CRC patients. To this end, primary and secondary resistance to immunotherapy remains a significant issue, and further research is necessary to optimize the use of immunotherapy in CRC and identify biomarkers to predict the response. This review provides a comprehensive overview of the clinical trials involving immune checkpoint inhibitors in CRC. The underlying rationale, challenges faced, and potential future steps to improve the prognosis and enhance the likelihood of successful trials in this field are discussed.
Collapse
Affiliation(s)
- Samantha Sharma
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Naresh Singh
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Anita Ahmed Turk
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Isabella Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Akshay Guttikonda
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Julia Lily Dong
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Xinna Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Mateusz Opyrchal
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| |
Collapse
|
8
|
Cheng F, Li P, Xu S, Zhang C, Liang H, Ding Z. A pair of primary colorectal cancer-derived and corresponding synchronous liver metastasis-derived organoid cell lines. Aging (Albany NY) 2024; 16:4396-4422. [PMID: 38407980 PMCID: PMC10968669 DOI: 10.18632/aging.205595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024]
Abstract
Proper preclinical models for the research of colorectal cancer (CRC) and CRC liver metastases (CLM) are a clear and unmet need. Patient-derived organoids have recently emerged as a robust preclinical model, but are not available to all scientific researchers. Here, we present paired 3D organoid cell lines of CWH22 (CRC-derived) and CLM22 (CLM-derived) with sound background information and the short tandem repeats are identical to those of the normal tissue. Morphological and immunohistochemical staining, along with whole-exome sequencing (WES), confirmed that the organoids exhibited the same differentiation, molecular expression, and mutation status as the corresponding tumor tissue. Both organoids possessed mutated APC/KRAS/SMAD4/CDKN1B/KMT2C genes and wild-type TP53 and PIK3CA; stably secreted the tumor markers CEA and CA19-9, and possessed sound proliferation rates in vitro, as well as subcutaneous tumorigenicity and liver metastatic abilities in vivo. IC50 assays confirmed that both cell lines were sensitive to 5-fluorouracil, oxaliplatin, SN-38, and sotorasib. WES and karyotype analyses revealed the genomic instability status as chromosome instability. The corresponding adherent cultured CWH22-2D/CLM22-2D cells were established and compared with commonly used CRC cell lines from the ATCC. Both organoids are publicly available to all researchers and will be useful tools for specific human CRC/CLM studies both in vitro and in vivo.
Collapse
Affiliation(s)
- Fangling Cheng
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China
| | - Pengcheng Li
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China
| | - Sanpeng Xu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chao Zhang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huifang Liang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China
| | - Zeyang Ding
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China
| |
Collapse
|
9
|
Yang L, Tu L, Bisht S, Mao Y, Petkovich D, Thursby SJ, Liang J, Patel N, Yen RWC, Largent T, Zahnow C, Brock M, Gabrielson K, Salimian KJ, Baylin SB, Easwaran H. Tissue-location-specific transcription programs drive tumor dependencies in colon cancer. Nat Commun 2024; 15:1384. [PMID: 38360902 PMCID: PMC10869357 DOI: 10.1038/s41467-024-45605-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Cancers of the same tissue-type but in anatomically distinct locations exhibit different molecular dependencies for tumorigenesis. Proximal and distal colon cancers exemplify such characteristics, with BRAFV600E predominantly occurring in proximal colon cancers along with increased DNA methylation phenotype. Using mouse colon organoids, here we show that proximal and distal colon stem cells have distinct transcriptional programs that regulate stemness and differentiation. We identify that the homeobox transcription factor, CDX2, which is silenced by DNA methylation in proximal colon cancers, is a key mediator of the differential transcriptional programs. Cdx2-mediated proximal colon-specific transcriptional program concurrently is tumor suppressive, and Cdx2 loss sufficiently creates permissive state for BRAFV600E-driven transformation. Human proximal colon cancers with CDX2 downregulation showed similar transcriptional program as in mouse proximal organoids with Cdx2 loss. Developmental transcription factors, such as CDX2, are thus critical in maintaining tissue-location specific transcriptional programs that create tissue-type origin specific dependencies for tumor development.
Collapse
Affiliation(s)
- Lijing Yang
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, PR China
| | - Lei Tu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shilpa Bisht
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Yiqing Mao
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Daniel Petkovich
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Sara-Jayne Thursby
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Jinxiao Liang
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Nibedita Patel
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Ray-Whay Chiu Yen
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Tina Largent
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Cynthia Zahnow
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Malcolm Brock
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Kathy Gabrielson
- Department of Comparative Medicine, Johns Hopkins Medical Institutions, 863 Broadway Research Building, 733 N. Broadway, Baltimore, MD, 21205-2196, USA
| | - Kevan J Salimian
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Stephen B Baylin
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Hariharan Easwaran
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA.
| |
Collapse
|
10
|
Abstract
Mouse models of colorectal cancer (CRC) have been crucial in the identification of the role of genes responsible for the full range of pathology of the human disease and have proved to be dependable for testing anti-cancer drugs. Recent research points toward the relevance of tumor, angiogenic, and immune microenvironments in CRC progression to late-stage disease, as well as the treatment of it. This study examines important mouse models in CRC, discussing inherent strengths and weaknesses disclosed during their construction. It endeavors to provide both a synopsis of previous work covering how investigators have defined various models and to evaluate critically how researchers are most likely to use them in the future. Accumulated evidence regarding the metastatic process and the hope of using checkpoint inhibitors and immunological inhibitor therapies points to the need for a genetically engineered mouse model that is both immunocompetent and autochthonous.
Collapse
Affiliation(s)
- Melanie Haas Kucherlapati
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
11
|
Manduca N, Maccafeo E, De Maria R, Sistigu A, Musella M. 3D cancer models: One step closer to in vitro human studies. Front Immunol 2023; 14:1175503. [PMID: 37114038 PMCID: PMC10126361 DOI: 10.3389/fimmu.2023.1175503] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer immunotherapy is the great breakthrough in cancer treatment as it displayed prolonged progression-free survival over conventional therapies, yet, to date, in only a minority of patients. In order to broad cancer immunotherapy clinical applicability some roadblocks need to be overcome, first among all the lack of preclinical models that faithfully depict the local tumor microenvironment (TME), which is known to dramatically affect disease onset, progression and response to therapy. In this review, we provide the reader with a detailed overview of current 3D models developed to mimick the complexity and the dynamics of the TME, with a focus on understanding why the TME is a major target in anticancer therapy. We highlight the advantages and translational potentials of tumor spheroids, organoids and immune Tumor-on-a-Chip models in disease modeling and therapeutic response, while outlining pending challenges and limitations. Thinking forward, we focus on the possibility to integrate the know-hows of micro-engineers, cancer immunologists, pharmaceutical researchers and bioinformaticians to meet the needs of cancer researchers and clinicians interested in using these platforms with high fidelity for patient-tailored disease modeling and drug discovery.
Collapse
Affiliation(s)
- Nicoletta Manduca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ester Maccafeo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario ‘A. Gemelli’ - Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Martina Musella
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
12
|
Che J, Yu S. Ecological niches for colorectal cancer stem cell survival and thrival. Front Oncol 2023; 13:1135364. [PMID: 37124519 PMCID: PMC10134776 DOI: 10.3389/fonc.2023.1135364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
To date, colorectal cancer is still ranking top three cancer types severely threatening lives. According to cancer stem cell hypothesis, malignant colorectal lumps are cultivated by a set of abnormal epithelial cells with stem cell-like characteristics. These vicious stem cells are derived from intestinal epithelial stem cells or transformed by terminally differentiated epithelial cells when they accumulate an array of transforming genomic alterations. Colorectal cancer stem cells, whatever cell-of-origin, give rise to all morphologically and functionally heterogenous tumor daughter cells, conferring them with overwhelming resilience to intrinsic and extrinsic stresses. On the other hand, colorectal cancer stem cells and their daughter cells continuously participate in constructing ecological niches for their survival and thrival by communicating with adjacent stromal cells and circulating immune guardians. In this review, we first provide an overview of the normal cell-of-origin populations contributing to colorectal cancer stem cell reservoirs and the niche architecture which cancer stem cells depend on at early stage. Then we survey recent advances on how these aberrant niches are fostered by cancer stem cells and their neighbors. We also discuss recent research on how niche microenvironment affects colorectal cancer stem cell behaviors such as plasticity, metabolism, escape of immune surveillance as well as resistance to clinical therapies, therefore endowing them with competitive advantages compared to their normal partners. In the end, we explore therapeutic strategies available to target malignant stem cells.
Collapse
Affiliation(s)
- Jiayun Che
- Shanghai Institute of Precision Medicine, 9 Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyan Yu
- Shanghai Institute of Precision Medicine, 9 Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oncology, 9 Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Shiyan Yu,
| |
Collapse
|
13
|
A doxycycline- and light-inducible Cre recombinase mouse model for optogenetic genome editing. Nat Commun 2022; 13:6442. [PMID: 36307419 PMCID: PMC9616875 DOI: 10.1038/s41467-022-33863-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/06/2022] [Indexed: 12/25/2022] Open
Abstract
The experimental need to engineer the genome both in time and space, has led to the development of several photoactivatable Cre recombinase systems. However, the combination of inefficient and non-intentional background recombination has prevented thus far the wide application of these systems in biological and biomedical research. Here, we engineer an optimized photoactivatable Cre recombinase system that we refer to as doxycycline- and light-inducible Cre recombinase (DiLiCre). Following extensive characterization in cancer cell and organoid systems, we generate a DiLiCre mouse line, and illustrated the biological applicability of DiLiCre for light-induced mutagenesis in vivo and positional cell-tracing by intravital microscopy. These experiments illustrate how newly formed HrasV12 mutant cells follow an unnatural movement towards the interfollicular dermis. Together, we develop an efficient photoactivatable Cre recombinase mouse model and illustrate how this model is a powerful genome-editing tool for biological and biomedical research.
Collapse
|
14
|
Hassan M, Yasir M, Shahzadi S, Kloczkowski A. Exploration of Potential Ewing Sarcoma Drugs from FDA-Approved Pharmaceuticals through Computational Drug Repositioning, Pharmacogenomics, Molecular Docking, and MD Simulation Studies. ACS OMEGA 2022; 7:19243-19260. [PMID: 35721972 PMCID: PMC9202290 DOI: 10.1021/acsomega.2c00518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/12/2022] [Indexed: 05/14/2023]
Abstract
Novel drug development is a time-consuming process with relatively high debilitating costs. To overcome this problem, computational drug repositioning approaches are being used to predict the possible therapeutic scaffolds against different diseases. In the current study, computational drug repositioning approaches were employed to fetch the promising drugs from the pool of FDA-approved drugs against Ewing sarcoma. The binding interaction patterns and conformational behaviors of screened drugs within the active region of Ewing sarcoma protein (EWS) were confirmed through molecular docking profiles. Furthermore, pharmacogenomics analysis was employed to check the possible associations of selected drugs with Ewing sarcoma genes. Moreover, the stability behavior of selected docked complexes (drugs-EWS) was checked by molecular dynamics simulations. Taken together, astemizole, sulfinpyrazone, and pranlukast exhibited a result comparable to pazopanib and can be used as a possible therapeutic agent in the treatment of Ewing sarcoma.
Collapse
Affiliation(s)
- Mubashir Hassan
- Institute
of Molecular Biology and Biotechnology, The University of Lahore, Defense Road Campus, Lahore 54590, Pakistan
- The
Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
- ,
| | - Muhammad Yasir
- Institute
of Molecular Biology and Biotechnology, The University of Lahore, Defense Road Campus, Lahore 54590, Pakistan
| | - Saba Shahzadi
- Institute
of Molecular Sciences and Bioinformatics (IMSB), Nisbet Road, Lahore 52254, Pakistan
| | - Andrzej Kloczkowski
- The
Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
- Department
of Pediatrics, The Ohio State University, Columbus, Ohio 43205, United States
| |
Collapse
|
15
|
Sun CP, Lan HR, Fang XL, Yang XY, Jin KT. Organoid Models for Precision Cancer Immunotherapy. Front Immunol 2022; 13:770465. [PMID: 35450073 PMCID: PMC9016193 DOI: 10.3389/fimmu.2022.770465] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer immunotherapy is exploited for the treatment of disease by modulating the immune system. Since the conventional in vivo animal and 2D in vitro models insufficiently recapitulate the complex tumor immune microenvironment (TIME) of the original tumor. In addition, due to the involvement of the immune system in cancer immunotherapy, more physiomimetic cancer models, such as patient-derived organoids (PDOs), are required to evaluate the efficacy of immunotherapy agents. On the other hand, the dynamic interactions between the neoplastic cells and non-neoplastic host components in the TIME can promote carcinogenesis, tumor metastasis, cancer progression, and drug resistance of cancer cells. Indeed, tumor organoid models can properly recapitulate the TIME by preserving endogenous stromal components including various immune cells, or by adding exogenous immune cells, cancer-associated fibroblasts (CAFs), vasculature, and other components. Therefore, organoid culture platforms could model immunotherapy responses and facilitate the immunotherapy preclinical testing. Here, we discuss the various organoid culture approaches for the modeling of TIME and the applications of complex tumor organoids in testing cancer immunotherapeutics and personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Cai-Ping Sun
- Department of Medical Oncology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xing-Liang Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University College of Medicine (Shaoxing Municipal Hospital), Shaoxing, China
| | - Xiao-Yun Yang
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
16
|
Parigi SM, Larsson L, Das S, Ramirez Flores RO, Frede A, Tripathi KP, Diaz OE, Selin K, Morales RA, Luo X, Monasterio G, Engblom C, Gagliani N, Saez-Rodriguez J, Lundeberg J, Villablanca EJ. The spatial transcriptomic landscape of the healing mouse intestine following damage. Nat Commun 2022; 13:828. [PMID: 35149721 PMCID: PMC8837647 DOI: 10.1038/s41467-022-28497-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
The intestinal barrier is composed of a complex cell network defining highly compartmentalized and specialized structures. Here, we use spatial transcriptomics to define how the transcriptomic landscape is spatially organized in the steady state and healing murine colon. At steady state conditions, we demonstrate a previously unappreciated molecular regionalization of the colon, which dramatically changes during mucosal healing. Here, we identified spatially-organized transcriptional programs defining compartmentalized mucosal healing, and regions with dominant wired pathways. Furthermore, we showed that decreased p53 activation defined areas with increased presence of proliferating epithelial stem cells. Finally, we mapped transcriptomics modules associated with human diseases demonstrating the translational potential of our dataset. Overall, we provide a publicly available resource defining principles of transcriptomic regionalization of the colon during mucosal healing and a framework to develop and progress further hypotheses.
Collapse
Affiliation(s)
- Sara M Parigi
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Ludvig Larsson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Srustidhar Das
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Ricardo O Ramirez Flores
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Annika Frede
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Kumar P Tripathi
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Oscar E Diaz
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Katja Selin
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Rodrigo A Morales
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Xinxin Luo
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Gustavo Monasterio
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Camilla Engblom
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Nicola Gagliani
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
- I. Department of Medicine and Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden.
- Center of Molecular Medicine, Stockholm, Sweden.
| |
Collapse
|
17
|
Nakanishi M, Rosenberg DW. Epithelial Cell-specific Deletion of Microsomal Prostaglandin E Synthase-1 Does Not Influence Colon Tumor Development in Mice. J Cancer Prev 2021; 26:304-308. [PMID: 35047457 PMCID: PMC8749314 DOI: 10.15430/jcp.2021.26.4.304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/06/2022] Open
Abstract
Activation of the COX-2/microsomal prostaglandin E synthase-1 (mPGES-1)/prostaglandin E2 (PGE2) signaling axis is a hallmark of many cancers, including colorectal cancer, prompting the implementation of prevention strategies targeting COX-2 activity. We have previously shown that targeting the downstream terminal PGE2 synthase, mPGES-1 (Ptges), specifically reduces inducible PGE2 formation without disrupting synthesis of other essential prostanoids, thereby conferring dramatic cancer protection against colon carcinogenesis in multiple mouse models. In order to accelerate its development as a viable drug target, and to better understand the mechanisms by which PGE2 influences colon carcinogenesis, we recently developed a conditional Ptges knockout mouse model (cKO). To evaluate the functional role of Ptges directly within the colonic epithelia, cKO mice were crossed with carbonic anhydrase 1 (Car1)-Cre mice (cKO.Car1), and colon tumors were induced using the azoxymethane/dextran sodium sulfate protocol. Unexpectedly, epithelial-specific blockade of Ptges failed to protect mice against colon tumor development. Further studies using the cKO mouse model will be necessary to pinpoint the cell type-specific location of mPGES-1 and its control of inducible PGE2 formation that drives tumor formation in the colon.
Collapse
Affiliation(s)
- Masako Nakanishi
- Center for Molecular Oncology, University of Connecticut Health Center, Farmington, CT, USA
| | - Daniel W. Rosenberg
- Center for Molecular Oncology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
18
|
Hu LF, Yang X, Lan HR, Fang XL, Chen XY, Jin KT. Preclinical tumor organoid models in personalized cancer therapy: Not everyone fits the mold. Exp Cell Res 2021; 408:112858. [PMID: 34600901 DOI: 10.1016/j.yexcr.2021.112858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/10/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022]
Abstract
In contrast to conventional cancer treatment, in personalized cancer medicine each patient receives a specific treatment. The response to therapy, clinical outcomes, and tumor behavior such as metastases, tumor progression, carcinogenesis can be significantly affected by the heterogeneous tumor microenvironment (TME) and interpersonal differences. Therefore, using native tumor microenvironment mimicking models is necessary to improving personalized cancer therapy. Both in vitro 2D cell culture and in vivo animal models poorly recapitulate the heterogeneous tumor (immune) microenvironments of native tumors. The development of 3D culture models, native tumor microenvironment mimicking models, made it possible to evaluate the chemoresistance of tumor tissue and the functionality of drugs in the presence of cell-extracellular matrix and cell-cell interactions in a 3D construction. Various personalized tumor models have been designed to preserving the native tumor microenvironment, including patient-derived tumor xenografts and organoid culture strategies. In this review, we will discuss the patient-derived organoids as a native tumor microenvironment mimicking model in personalized cancer therapy. In addition, we will also review the potential and the limitations of organoid culture systems for predicting patient outcomes and preclinical drug screening. Finally, we will discuss immunotherapy drug screening in tumor organoids by using microfluidic technology.
Collapse
Affiliation(s)
- Li-Feng Hu
- Department of Colorectal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang Province, 312000, China
| | - Xue Yang
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province, 310014, China; Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province, 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang Province, 310014, China
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, 321000, China
| | - Xing-Liang Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University College of Medicine (Shaoxing Municipal Hospital), Shaoxing, Zhejiang Province, 312000, China
| | - Xiao-Yi Chen
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province, 310014, China; Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province, 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang Province, 310014, China.
| | - Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, 321000, China.
| |
Collapse
|
19
|
Luo Z, Zhou X, Mandal K, He N, Wennerberg W, Qu M, Jiang X, Sun W, Khademhosseini A. Reconstructing the tumor architecture into organoids. Adv Drug Deliv Rev 2021; 176:113839. [PMID: 34153370 PMCID: PMC8560135 DOI: 10.1016/j.addr.2021.113839] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
Cancer remains a leading health burden worldwide. One of the challenges hindering cancer therapy development is the substantial discrepancies between the existing cancer models and the tumor microenvironment (TME) of human patients. Constructing tumor organoids represents an emerging approach to recapitulate the pathophysiological features of the TME in vitro. Over the past decade, various approaches have been demonstrated to engineer tumor organoids as in vitro cancer models, such as incorporating multiple cellular populations, reconstructing biophysical and chemical traits, and even recapitulating structural features. In this review, we focus on engineering approaches for building tumor organoids, including biomaterial-based, microfabrication-assisted, and synthetic biology-facilitated strategies. Furthermore, we summarize the applications of engineered tumor organoids in basic cancer research, cancer drug discovery, and personalized medicine. We also discuss the challenges and future opportunities in using tumor organoids for broader applications.
Collapse
Affiliation(s)
- Zhimin Luo
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xingwu Zhou
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Na He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Wally Wennerberg
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Moyuan Qu
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, and Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xing Jiang
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wujin Sun
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
| | - Ali Khademhosseini
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA; Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, Department of Radiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
20
|
Fazilaty H, Brügger MD, Valenta T, Szczerba BM, Berkova L, Doumpas N, Hausmann G, Scharl M, Basler K. Tracing colonic embryonic transcriptional profiles and their reactivation upon intestinal damage. Cell Rep 2021; 36:109484. [PMID: 34348153 DOI: 10.1016/j.celrep.2021.109484] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
We lack a holistic understanding of the genetic programs orchestrating embryonic colon morphogenesis and governing damage response in the adult. A window into these programs is the transcriptomes of the epithelial and mesenchymal cell populations in the colon. Performing unbiased single-cell transcriptomic analyses of the developing mouse colon at different embryonic stages (embryonic day 14.5 [E14.5], E15.5, and E18.5), we capture cellular and molecular profiles of the stages before, during, and after the appearance of crypt structures, as well as in a model of adult colitis. The data suggest most adult lineages are established by E18.5. We find embryonic-specific gene expression profiles and cell populations that reappear in response to tissue damage. Comparison of the datasets from mice and human colitis suggests the processes are conserved. In this study, we provide a comprehensive single-cell atlas of the developing mouse colon and evidence for the reactivation of embryonic genes in disease.
Collapse
Affiliation(s)
- Hassan Fazilaty
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Michael David Brügger
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute of Molecular Genetics of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| | - Barbara M Szczerba
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Linda Berkova
- Institute of Molecular Genetics of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Nikolaos Doumpas
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - George Hausmann
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
21
|
Wang X, Undi RB, Ali N, Huycke MM. It takes a village: microbiota, parainflammation, paligenosis and bystander effects in colorectal cancer initiation. Dis Model Mech 2021; 14:dmm048793. [PMID: 33969420 PMCID: PMC10621663 DOI: 10.1242/dmm.048793] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sporadic colorectal cancer (CRC) is a leading cause of worldwide cancer mortality. It arises from a complex milieu of host and environmental factors, including genetic and epigenetic changes in colon epithelial cells that undergo mutation, selection, clonal expansion, and transformation. The gut microbiota has recently gained increasing recognition as an additional important factor contributing to CRC. Several gut bacteria are known to initiate CRC in animal models and have been associated with human CRC. In this Review, we discuss the factors that contribute to CRC and the role of the gut microbiota, focusing on a recently described mechanism for cancer initiation, the so-called microbiota-induced bystander effect (MIBE). In this cancer mechanism, microbiota-driven parainflammation is believed to act as a source of endogenous mutation, epigenetic change and induced pluripotency, leading to the cancerous transformation of colon epithelial cells. This theory links the gut microbiota to key risk factors and common histologic features of sporadic CRC. MIBE is analogous to the well-characterized radiation-induced bystander effect. Both phenomena drive DNA damage, chromosomal instability, stress response signaling, altered gene expression, epigenetic modification and cellular proliferation in bystander cells. Myeloid-derived cells are important effectors in both phenomena. A better understanding of the interactions between the gut microbiota and mucosal immune effector cells that generate bystander effects can potentially identify triggers for parainflammation, and gain new insights into CRC prevention.
Collapse
Affiliation(s)
- Xingmin Wang
- Nantong Institute of Genetics and Reproductive Medicine, Nantong Maternity and Child Healthcare Hospital, Nantong University, Nantong, Jiangsu 226018, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ram Babu Undi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Naushad Ali
- Department of Internal Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mark M. Huycke
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
22
|
Barnett AM, Mullaney JA, Hendriks C, Le Borgne L, McNabb WC, Roy NC. Porcine colonoids and enteroids keep the memory of their origin during regeneration. Am J Physiol Cell Physiol 2021; 320:C794-C805. [PMID: 33760661 DOI: 10.1152/ajpcell.00420.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The development of alternative in vitro culture methods has increased in the last decade as three-dimensional organoids of various tissues, including those of the small and large intestines. Due to their multicellular composition, organoids offer advantages over traditionally used immortalized or primary cell lines. However, organoids must be accurate models of their tissues of origin. This study compared gene expression profiles with respect to markers of specific cell types (stem cells, enterocytes, goblet, and enteroendocrine cells) and barrier maturation (tight junctions) of colonoid and enteroid cultures with their tissues of origin and colonoids with enteroids. Colonoids derived from three healthy pigs formed multilobed structures with a monolayer of cells similar to the crypt structures in colonic tissue. Colonoid and enteroid gene expression signatures were more similar to those found for the tissues of their origin than to each other. However, relative to their derived tissues, organoids had increased gene expression levels of stem cell markers Sox9 and Lgr5 encoding sex-determining region Y-box 9 and leucine-rich repeat-containing G protein-coupled rector 5, respectively. In contrast, expression levels of Occl and Zo1 encoding occludin and zonula occludens 1, respectively, were decreased. Expression levels of the cell lineage markers Atoh1, Cga, and Muc2 encoding atonal homolog 1, chromogranin A, and mucin 2, respectively, were decreased in colonoids, whereas Sglt1 and Apn encoding sodium-glucose transporter 1 and aminopeptidase A, respectively, were decreased in enteroids. These results indicate colonoid and enteroid cultures were predominantly comprised of undifferentiated cell types with decreased barrier maturation relative to their tissues of origin.
Collapse
Affiliation(s)
- Alicia M Barnett
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Jane A Mullaney
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Charlotte Hendriks
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Lisa Le Borgne
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Warren C McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Department of Nutrition, The University of Otago, Dunedin, New Zealand
| |
Collapse
|
23
|
Bommi PV, Bowen CM, Reyes-Uribe L, Wu W, Katayama H, Rocha P, Parra ER, Francisco-Cruz A, Ozcan Z, Tosti E, Willis JA, Wu H, Taggart MW, Burks JK, Lynch PM, Edelmann W, Scheet PA, Wistuba II, Sinha KM, Hanash SM, Vilar E. The Transcriptomic Landscape of Mismatch Repair-Deficient Intestinal Stem Cells. Cancer Res 2021; 81:2760-2773. [PMID: 34003775 DOI: 10.1158/0008-5472.can-20-2896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/16/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
Lynch syndrome is the most common cause of hereditary colorectal cancer and is secondary to germline alterations in one of four DNA mismatch repair (MMR) genes. Here we aimed to provide novel insights into the initiation of MMR-deficient (MMRd) colorectal carcinogenesis by characterizing the expression profile of MMRd intestinal stem cells (ISC). A tissue-specific MMRd mouse model (Villin-Cre;Msh2 LoxP/LoxP ) was crossed with a reporter mouse (Lgr5-EGFP-IRES-creERT2) to trace and isolate ISCs (Lgr5+) using flow cytometry. Three different ISC genotypes (Msh2-KO, Msh2-HET, and Msh2-WT) were isolated and processed for mRNA-seq and mass spectrometry, followed by bioinformatic analyses to identify expression signatures of complete MMRd and haplo-insufficiency. These findings were validated using qRT-PCR, IHC, and whole transcriptomic sequencing in mouse tissues, organoids, and a cohort of human samples, including normal colorectal mucosa, premalignant lesions, and early-stage colorectal cancers from patients with Lynch syndrome and patients with familial adenomatous polyposis (FAP) as controls. Msh2-KO ISCs clustered together with differentiated intestinal epithelial cells from all genotypes. Gene-set enrichment analysis indicated inhibition of replication, cell-cycle progression, and the Wnt pathway and activation of epithelial signaling and immune reaction. An expression signature derived from MMRd ISCs successfully distinguished MMRd neoplastic lesions of patients with Lynch syndrome from FAP controls. SPP1 was specifically upregulated in MMRd ISCs and colocalized with LGR5 in Lynch syndrome colorectal premalignant lesions and tumors. These results show that expression signatures of MMRd ISC recapitulate the initial steps of Lynch syndrome carcinogenesis and have the potential to unveil novel biomarkers of early cancer initiation. SIGNIFICANCE: The transcriptomic and proteomic profile of MMR-deficient intestinal stem cells displays a unique set of genes with potential roles as biomarkers of cancer initiation and early progression.
Collapse
Affiliation(s)
- Prashant V Bommi
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Charles M Bowen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Laura Reyes-Uribe
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wenhui Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pedro Rocha
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Edwin R Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alejandro Francisco-Cruz
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zuhal Ozcan
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elena Tosti
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Jason A Willis
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melissa W Taggart
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jared K Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick M Lynch
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Paul A Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Krishna M Sinha
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
24
|
Dionellis VS, Norkin M, Karamichali A, Rossetti GG, Huelsken J, Ordonez-Moran P, Halazonetis TD. Genomic Instability Profiles at the Single Cell Level in Mouse Colorectal Cancers of Defined Genotypes. Cancers (Basel) 2021; 13:cancers13061267. [PMID: 33809306 PMCID: PMC7999300 DOI: 10.3390/cancers13061267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
The genomes of many human CRCs have been sequenced, revealing a large number of genetic alterations. However, the molecular mechanisms underlying the accumulation of these alterations are still being debated. In this study, we examined colorectal tumours that developed in mice with Apclox/lox, LSL-KrasG12D, and Tp53lox/lox targetable alleles. Organoids were derived from single cells and the spectrum of mutations was determined by exome sequencing. The number of single nucleotide substitutions (SNSs) correlated with the age of the tumour, but was unaffected by the number of targeted cancer-driver genes. Thus, tumours that expressed mutant Apc, Kras, and Tp53 alleles had as many SNSs as tumours that expressed only mutant Apc. In contrast, the presence of large-scale (>10 Mb) copy number alterations (CNAs) correlated strongly with Tp53 inactivation. Comparison of the SNSs and CNAs present in organoids derived from the same tumour revealed intratumoural heterogeneity consistent with genomic lesions accumulating at significantly higher rates in tumour cells compared to normal cells. The rate of acquisition of SNSs increased from the early stages of cancer development, whereas large-scale CNAs accumulated later, after Tp53 inactivation. Thus, a significant fraction of the genomic instability present in cancer cells cannot be explained by aging processes occurring in normal cells before oncogenic transformation.
Collapse
Affiliation(s)
- Vasilis S. Dionellis
- Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland; (V.S.D.); (A.K.); (G.G.R.)
| | - Maxim Norkin
- Cancer Stem Cell Laboratory, Swiss Institute of Technology Lausanne (EPFL), ISREC, 1015 Lausanne, Switzerland;
| | - Angeliki Karamichali
- Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland; (V.S.D.); (A.K.); (G.G.R.)
| | - Giacomo G. Rossetti
- Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland; (V.S.D.); (A.K.); (G.G.R.)
| | - Joerg Huelsken
- Cancer Stem Cell Laboratory, Swiss Institute of Technology Lausanne (EPFL), ISREC, 1015 Lausanne, Switzerland;
- Correspondence: (J.H.); (P.O.-M.); (T.D.H.)
| | - Paloma Ordonez-Moran
- Division of Cancer & Stem Cells, School of Medicine, Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
- Correspondence: (J.H.); (P.O.-M.); (T.D.H.)
| | - Thanos D. Halazonetis
- Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland; (V.S.D.); (A.K.); (G.G.R.)
- Correspondence: (J.H.); (P.O.-M.); (T.D.H.)
| |
Collapse
|
25
|
Sphyris N, Hodder MC, Sansom OJ. Subversion of Niche-Signalling Pathways in Colorectal Cancer: What Makes and Breaks the Intestinal Stem Cell. Cancers (Basel) 2021; 13:1000. [PMID: 33673710 PMCID: PMC7957493 DOI: 10.3390/cancers13051000] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium fulfils pleiotropic functions in nutrient uptake, waste elimination, and immune surveillance while also forming a barrier against luminal toxins and gut-resident microbiota. Incessantly barraged by extraneous stresses, the intestine must continuously replenish its epithelial lining and regenerate the full gamut of specialized cell types that underpin its functions. Homeostatic remodelling is orchestrated by the intestinal stem cell (ISC) niche: a convergence of epithelial- and stromal-derived cues, which maintains ISCs in a multipotent state. Following demise of homeostatic ISCs post injury, plasticity is pervasive among multiple populations of reserve stem-like cells, lineage-committed progenitors, and/or fully differentiated cell types, all of which can contribute to regeneration and repair. Failure to restore the epithelial barrier risks seepage of toxic luminal contents, resulting in inflammation and likely predisposing to tumour formation. Here, we explore how homeostatic niche-signalling pathways are subverted in tumorigenesis, enabling ISCs to gain autonomy from niche restraints ("ISC emancipation") and transform into cancer stem cells capable of driving tumour initiation, progression, and therapy resistance. We further consider the implications of the pervasive plasticity of the intestinal epithelium for the trajectory of colorectal cancer, the emergence of distinct molecular subtypes, the propensity to metastasize, and the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Nathalie Sphyris
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
| | - Michael C. Hodder
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
26
|
Betzler AM, Nanduri LK, Hissa B, Blickensdörfer L, Muders MH, Roy J, Jesinghaus M, Steiger K, Weichert W, Kloor M, Klink B, Schroeder M, Mazzone M, Weitz J, Reissfelder C, Rahbari NN, Schölch S. Differential Effects of Trp53 Alterations in Murine Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13040808. [PMID: 33671932 PMCID: PMC7919037 DOI: 10.3390/cancers13040808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) development is a multi-step process resulting in the accumulation of genetic alterations. Despite its high incidence, there are currently no mouse models that accurately recapitulate this process and mimic sporadic CRC. We aimed to develop and characterize a genetically engineered mouse model (GEMM) of Apc/Kras/Trp53 mutant CRC, the most frequent genetic subtype of CRC. METHODS Tumors were induced in mice with conditional mutations or knockouts in Apc, Kras, and Trp53 by a segmental adeno-cre viral infection, monitored via colonoscopy and characterized on multiple levels via immunohistochemistry and next-generation sequencing. RESULTS The model accurately recapitulates human colorectal carcinogenesis clinically, histologically and genetically. The Trp53 R172H hotspot mutation leads to significantly increased metastatic capacity. The effects of Trp53 alterations, as well as the response to treatment of this model, are similar to human CRC. Exome sequencing revealed spontaneous protein-modifying alterations in multiple CRC-related genes and oncogenic pathways, resulting in a genetic landscape resembling human CRC. CONCLUSIONS This model realistically mimics human CRC in many aspects, allows new insights into the role of TP53 in CRC, enables highly predictive preclinical studies and demonstrates the value of GEMMs in current translational cancer research and drug development.
Collapse
Affiliation(s)
- Alexander M. Betzler
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (A.M.B.); (B.H.); (C.R.)
| | - Lahiri K. Nanduri
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (L.K.N.); (J.W.)
| | - Barbara Hissa
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (A.M.B.); (B.H.); (C.R.)
| | - Linda Blickensdörfer
- Department of General, Gastrointestinal and Transplant Surgery, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany;
| | - Michael H. Muders
- Institute of Pathology, University of Bonn Medical Center, 53127 Bonn, Germany;
| | - Janine Roy
- Department of Bioinformatics, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany; (J.R.); (M.S.)
| | - Moritz Jesinghaus
- Institute of Pathology, Technische Universität München, 81675 München, Germany; (M.J.); (K.S.); (W.W.)
| | - Katja Steiger
- Institute of Pathology, Technische Universität München, 81675 München, Germany; (M.J.); (K.S.); (W.W.)
| | - Wilko Weichert
- Institute of Pathology, Technische Universität München, 81675 München, Germany; (M.J.); (K.S.); (W.W.)
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany;
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Barbara Klink
- Institute of Clinical Genetics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Michael Schroeder
- Department of Bioinformatics, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany; (J.R.); (M.S.)
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium;
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Jürgen Weitz
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (L.K.N.); (J.W.)
| | - Christoph Reissfelder
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (A.M.B.); (B.H.); (C.R.)
| | - Nuh N. Rahbari
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (A.M.B.); (B.H.); (C.R.)
- Correspondence: (N.N.R.); (S.S.)
| | - Sebastian Schölch
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (A.M.B.); (B.H.); (C.R.)
- Junior Clinical Cooperation Unit Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: (N.N.R.); (S.S.)
| |
Collapse
|
27
|
Yarla NS, Madka V, Pathuri G, Rao CV. Molecular Targets in Precision Chemoprevention of Colorectal Cancer: An Update from Pre-Clinical to Clinical Trials. Int J Mol Sci 2020; 21:ijms21249609. [PMID: 33348563 PMCID: PMC7765969 DOI: 10.3390/ijms21249609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer deaths worldwide. The initiation and progression of CRC is a multi-step process that proceeds via precursor lesions to carcinoma, with each stage characterized by its distinct molecular and tissue microenvironment changes. Precursor lesions of CRC, aberrant crypt foci, and adenoma exhibit drastic changes in genetic, transcriptomic, and proteomic profiles compared to normal tissue. The identification of these changes is essential and provides further validation as an initiator or promoter of CRC and, more so, as lesion-specific druggable molecular targets for the precision chemoprevention of CRC. Mutated/dysregulated signaling (adenomatous polyposis coli, β-catenin, epidermal growth factor receptor, V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS), tumor protein53, Akt, etc.), inflammatory (cyclooxygenase-2, microsomal prostaglandin E synthase-1, inducible nitric oxide synthase, and other pro-inflammatory mediators), and metabolic/growth factor (fatty acid synthase, β-Hydroxy β-methylglutaryl-CoA reductase, and ornithine decarboxylase) related targets are some of the well-characterized molecular targets in the precision chemoprevention of CRC. In this review, we discuss precursor-lesion specific targets of CRC and the current status of pre-clinical studies regarding clinical interventions and combinations for better efficacy and safety toward future precision clinical chemoprevention. In addition, we provide a brief discussion on the usefulness of secondary precision chemopreventive targets for tertiary precision chemoprevention to improve the disease-free and overall survival of advanced stage CRC patients.
Collapse
Affiliation(s)
- Nagendra S. Yarla
- Center for Cancer Prevention and Drug Development, Medical Oncology, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (N.S.Y.); (V.M.); (G.P.)
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Medical Oncology, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (N.S.Y.); (V.M.); (G.P.)
| | - Gopal Pathuri
- Center for Cancer Prevention and Drug Development, Medical Oncology, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (N.S.Y.); (V.M.); (G.P.)
| | - Chinthalapally V. Rao
- Center for Cancer Prevention and Drug Development, Medical Oncology, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (N.S.Y.); (V.M.); (G.P.)
- VA Medical Center, Oklahoma City, OK 73104, USA
- Correspondence: ; Tel.: +1-405-271-3224; Fax: +1-405-271-3225
| |
Collapse
|
28
|
Bürtin F, Mullins CS, Linnebacher M. Mouse models of colorectal cancer: Past, present and future perspectives. World J Gastroenterol 2020; 26:1394-1426. [PMID: 32308343 PMCID: PMC7152519 DOI: 10.3748/wjg.v26.i13.1394] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common diagnosed malignancy among both sexes in the United States as well as in the European Union. While the incidence and mortality rates in western, high developed countries are declining, reflecting the success of screening programs and improved treatment regimen, a rise of the overall global CRC burden can be observed due to lifestyle changes paralleling an increasing human development index. Despite a growing insight into the biology of CRC and many therapeutic improvements in the recent decades, preclinical in vivo models are still indispensable for the development of new treatment approaches. Since the development of carcinogen-induced rodent models for CRC more than 80 years ago, a plethora of animal models has been established to study colon cancer biology. Despite tenuous invasiveness and metastatic behavior, these models are useful for chemoprevention studies and to evaluate colitis-related carcinogenesis. Genetically engineered mouse models (GEMM) mirror the pathogenesis of sporadic as well as inherited CRC depending on the specific molecular pathways activated or inhibited. Although the vast majority of CRC GEMM lack invasiveness, metastasis and tumor heterogeneity, they still have proven useful for examination of the tumor microenvironment as well as systemic immune responses; thus, supporting development of new therapeutic avenues. Induction of metastatic disease by orthotopic injection of CRC cell lines is possible, but the so generated models lack genetic diversity and the number of suited cell lines is very limited. Patient-derived xenografts, in contrast, maintain the pathological and molecular characteristics of the individual patient's CRC after subcutaneous implantation into immunodeficient mice and are therefore most reliable for preclinical drug development - even in comparison to GEMM or cell line-based analyses. However, subcutaneous patient-derived xenograft models are less suitable for studying most aspects of the tumor microenvironment and anti-tumoral immune responses. The authors review the distinct mouse models of CRC with an emphasis on their clinical relevance and shed light on the latest developments in the field of preclinical CRC models.
Collapse
Affiliation(s)
- Florian Bürtin
- Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Christina S Mullins
- Department of Thoracic Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, Rostock 18057, Germany
| |
Collapse
|
29
|
Kalla D, Kind A, Schnieke A. Genetically Engineered Pigs to Study Cancer. Int J Mol Sci 2020; 21:E488. [PMID: 31940967 PMCID: PMC7013672 DOI: 10.3390/ijms21020488] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Recent decades have seen groundbreaking advances in cancer research. Genetically engineered animal models, mainly in mice, have contributed to a better understanding of the underlying mechanisms involved in cancer. However, mice are not ideal for translating basic research into studies closer to the clinic. There is a need for complementary information provided by non-rodent species. Pigs are well suited for translational biomedical research as they share many similarities with humans such as body and organ size, aspects of anatomy, physiology and pathophysiology and can provide valuable means of developing and testing novel diagnostic and therapeutic procedures. Porcine oncology is a new field, but it is clear that replication of key oncogenic mutation in pigs can usefully mimic several human cancers. This review briefly outlines the technology used to generate genetically modified pigs, provides an overview of existing cancer models, their applications and how the field may develop in the near future.
Collapse
Affiliation(s)
| | | | - Angelika Schnieke
- Chair of Livestock Biotechnology, School of Life Sciences, Technische Universität München, 85354 Freising, Germany; (D.K.); (A.K.)
| |
Collapse
|
30
|
Lewis SK, Nachun D, Martin MG, Horvath S, Coppola G, Jones DL. DNA Methylation Analysis Validates Organoids as a Viable Model for Studying Human Intestinal Aging. Cell Mol Gastroenterol Hepatol 2019; 9:527-541. [PMID: 31805439 PMCID: PMC7044532 DOI: 10.1016/j.jcmgh.2019.11.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The epithelia of the intestine and colon turn over rapidly and are maintained by adult stem cells at the base of crypts. Although the small intestine and colon have distinct, well-characterized physiological functions, it remains unclear if there are fundamental regional differences in stem cell behavior or region-dependent degenerative changes during aging. Mesenchyme-free organoids provide useful tools for investigating intestinal stem cell biology in vitro and have started to be used for investigating age-related changes in stem cell function. However, it is unknown whether organoids maintain hallmarks of age in the absence of an aging niche. We tested whether stem cell-enriched organoids preserved the DNA methylation-based aging profiles associated with the tissues and crypts from which they were derived. METHODS To address this, we used standard human methylation arrays and the human epigenetic clock as a biomarker of age to analyze in vitro-derived, 3-dimensional, stem cell-enriched intestinal organoids. RESULTS We found that human stem cell-enriched organoids maintained segmental differences in methylation patterns and that age, as measured by the epigenetic clock, also was maintained in vitro. Surprisingly, we found that stem cell-enriched organoids derived from the small intestine showed striking epigenetic age reduction relative to organoids derived from colon. CONCLUSIONS Our data validate the use of organoids as a model for studying human intestinal aging and introduce methods that can be used when modeling aging or age-onset diseases in vitro.
Collapse
Affiliation(s)
- Sophia K. Lewis
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California,Eli and Edythe Broad Stem Cell Research Center, University of California Los Angeles, Los Angeles, California
| | - Daniel Nachun
- Department of Psychiatry and Semel Institute, University of California Los Angeles, Los Angeles, California
| | - Martin G. Martin
- Eli and Edythe Broad Stem Cell Research Center, University of California Los Angeles, Los Angeles, California,Division of Gastroenterology and Nutrition, Department of Pediatrics, Mattel Children's Hospital and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Steve Horvath
- Department of Human Genetics, Gonda Research Center, David Geffen School of Medicine, Los Angeles, California
| | - Giovanni Coppola
- Department of Psychiatry and Semel Institute, University of California Los Angeles, Los Angeles, California,Department of Neurology, University of California Los Angeles, Los Angeles, California
| | - D. Leanne Jones
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California,Eli and Edythe Broad Stem Cell Research Center, University of California Los Angeles, Los Angeles, California,Correspondence Address correspondence to: D. Leanne Jones, PhD, Department of Molecular, Cell, and Developmental Biology, Terasaki Life Sciences Building Room 5139, 610 Charles E. Young Drive South, University of California Los Angeles, Los Angeles, California 90095.
| |
Collapse
|
31
|
Ivancic MM, Anson LW, Pickhardt PJ, Megna B, Pooler BD, Clipson L, Reichelderfer M, Sussman MR, Dove WF. Conserved serum protein biomarkers associated with growing early colorectal adenomas. Proc Natl Acad Sci U S A 2019; 116:8471-8480. [PMID: 30971492 PMCID: PMC6486772 DOI: 10.1073/pnas.1813212116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A major challenge for the reduction of colon cancer is to detect patients carrying high-risk premalignant adenomas with minimally invasive testing. As one step, we have addressed the feasibility of detecting protein signals in the serum of patients carrying an adenoma as small as 6-9 mm in maximum linear dimension. Serum protein biomarkers, discovered in two animal models of early colonic adenomagenesis, were studied in patients using quantitative mass-spectrometric assays. One cohort included patients bearing adenomas known to be growing on the basis of longitudinal computed tomographic colonography. The other cohort, screened by optical colonoscopy, included both patients free of adenomas and patients bearing adenomas whose risk status was judged by histopathology. The markers F5, ITIH4, LRG1, and VTN were each elevated both in this patient study and in the studies of the Pirc rat model. The quantitative study in the Pirc rat model had demonstrated that the elevated level of each of these markers is correlated with the number of colonic adenomas. However, the levels of these markers in patients were not significantly correlated with the total adenoma volume. Postpolypectomy blood samples demonstrated that the elevated levels of these four conserved markers persisted after polypectomy. Two additional serum markers rapidly renormalized after polypectomy: growth-associated CRP levels were enhanced only with high-risk adenomas, while PI16 levels, not associated with growth, were reduced regardless of risk status. We discuss biological hypotheses to account for these observations, and ways for these signals to contribute to the prevention of colon cancer.
Collapse
Affiliation(s)
- Melanie M Ivancic
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706;
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Leigh W Anson
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706
| | - Perry J Pickhardt
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792;
| | - Bryant Megna
- Department of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Bryan D Pooler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Mark Reichelderfer
- Department of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705;
| | - Michael R Sussman
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706;
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - William F Dove
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705;
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
32
|
Yang L, Yang S, Li X, Li B, Li Y, Zhang X, Ma Y, Peng X, Jin H, Fan Q, Wei S, Liu J, Li H. Tumor organoids: From inception to future in cancer research. Cancer Lett 2019; 454:120-133. [PMID: 30981763 DOI: 10.1016/j.canlet.2019.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 12/18/2022]
Abstract
Tumor models have created new avenues for personalized medicine and drug development. A new culture model derived from a three-dimensional system, the tumor organoid, is gradually being used in many fields. An organoid can simulate the physiological structure and function of tissue in situ and maintain the characteristics of tumor cells in vivo, overcoming the disadvantages of traditional experimental tumor models. Organoids can mimic pathological features of tumors and maintain genetic stability, making them suitable for both molecular mechanism studies and pharmacological experiments of clinical transformation. In addition, the application of tumor organoids combined with other technologies, such as liquid biopsy technology, microraft array (MRA), and high-content screening (HCS), for the development of personalized diagnosis and cancer treatment has a promising future. In this review, we introduce the evolution of organoids and discuss their specific application and advantages. We also summarize the characteristics of several tumor organoids culture systems.
Collapse
Affiliation(s)
- Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110000, PR China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110000, PR China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110000, PR China
| | - Bowen Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110000, PR China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110000, PR China
| | - Xiaodong Zhang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110000, PR China
| | - Yingbo Ma
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110000, PR China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110000, PR China
| | - Hongyuan Jin
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110000, PR China
| | - Qing Fan
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110000, PR China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110000, PR China
| | - Jingang Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110000, PR China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110000, PR China.
| |
Collapse
|
33
|
Zhu W, Han C, Dong Y, Jian B. Enzyme-responsive mechanism based on multi-walled carbon nanotubes and pectin complex tablets for oral colon-specific drug delivery system. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06501-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Perekatt AO, Shah PP, Cheung S, Jariwala N, Wu A, Gandhi V, Kumar N, Feng Q, Patel N, Chen L, Joshi S, Zhou A, Taketo MM, Xing J, White E, Gao N, Gatza ML, Verzi MP. SMAD4 Suppresses WNT-Driven Dedifferentiation and Oncogenesis in the Differentiated Gut Epithelium. Cancer Res 2018; 78:4878-4890. [PMID: 29986996 PMCID: PMC6125228 DOI: 10.1158/0008-5472.can-18-0043] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/26/2018] [Accepted: 07/02/2018] [Indexed: 12/22/2022]
Abstract
The cell of origin of colon cancer is typically thought to be the resident somatic stem cells, which are immortal and escape the continual cellular turnover characteristic of the intestinal epithelium. However, recent studies have identified certain conditions in which differentiated cells can acquire stem-like properties and give rise to tumors. Defining the origins of tumors will inform cancer prevention efforts as well as cancer therapies, as cancers with distinct origins often respond differently to treatments. We report here a new condition in which tumors arise from the differentiated intestinal epithelium. Inactivation of the differentiation-promoting transcription factor SMAD4 in the intestinal epithelium was surprisingly well tolerated in the short term. However, after several months, adenomas developed with characteristics of activated WNT signaling. Simultaneous loss of SMAD4 and activation of the WNT pathway led to dedifferentiation and rapid adenoma formation in differentiated tissue. Transcriptional profiling revealed acquisition of stem cell characteristics, and colabeling indicated that cells expressing differentiated enterocyte markers entered the cell cycle and reexpressed stem cell genes upon simultaneous loss of SMAD4 and activation of the WNT pathway. These results indicate that SMAD4 functions to maintain differentiated enterocytes in the presence of oncogenic WNT signaling, thus preventing dedifferentiation and tumor formation in the differentiated intestinal epithelium.Significance: This work identifies a mechanism through which differentiated cells prevent tumor formation by suppressing oncogenic plasticity. Cancer Res; 78(17); 4878-90. ©2018 AACR.
Collapse
Affiliation(s)
- Ansu O Perekatt
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Pooja P Shah
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Shannon Cheung
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Nidhi Jariwala
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Alex Wu
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Vishal Gandhi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Namit Kumar
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Qiang Feng
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, New Jersey
| | - Neeket Patel
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Lei Chen
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Shilpy Joshi
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Anbo Zhou
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - M Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Sakyo Kyoto, Japan
| | - Jinchuan Xing
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Nan Gao
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, New Jersey
| | - Michael L Gatza
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
35
|
Burclaff J, Mills JC. Plasticity of differentiated cells in wound repair and tumorigenesis, part II: skin and intestine. Dis Model Mech 2018; 11:11/9/dmm035071. [PMID: 30171151 PMCID: PMC6177008 DOI: 10.1242/dmm.035071] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent studies have identified and begun to characterize the roles of regenerative cellular plasticity in many organs. In Part I of our two-part Review, we discussed how cells reprogram following injury to the stomach and pancreas. We introduced the concept of a conserved cellular program, much like those governing division and death, which may allow mature cells to become regenerative. This program, paligenosis, is likely necessary to help organs repair the numerous injuries they face over the lifetime of an organism; however, we also postulated that rounds of paligenosis and redifferentiation may allow long-lived cells to accumulate and store oncogenic mutations, and could thereby contribute to tumorigenesis. We have termed the model wherein differentiated cells can store mutations and then unmask them upon cell cycle re-entry the ‘cyclical hit’ model of tumorigenesis. In the present Review (Part II), we discuss these concepts, and cell plasticity as a whole, in the skin and intestine. Although differentiation and repair are arguably more thoroughly studied in skin and intestine than in stomach and pancreas, it is less clear how mature skin and intestinal cells contribute to tumorigenesis. Moreover, we conclude our Review by discussing plasticity in all four organs, and look for conserved mechanisms and concepts that might help advance our knowledge of tumor formation and advance the development of therapies for treating or preventing cancers that might be shared across multiple organs. Summary: This final installment of a two-part Review discusses how cycles of dedifferentiation and redifferentiation can promote tumorigenesis in the skin and intestine, showing how plasticity in these continuously renewing tissues might contribute to tumorigenesis.
Collapse
Affiliation(s)
- Joseph Burclaff
- Division of Gastroenterology, Departments of Medicine, Pathology & Immunology, and Developmental Biology, Washington University, St Louis, MO 63110, USA
| | - Jason C Mills
- Division of Gastroenterology, Departments of Medicine, Pathology & Immunology, and Developmental Biology, Washington University, St Louis, MO 63110, USA
| |
Collapse
|
36
|
Shan X, Liu Q, Li Z, Li C, Gao H, Zhang Y. Epithelial–Mesenchymal Transition Induced by SMAD4 Activation in Invasive Growth Hormone-Secreting Adenomas. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AbstractBackgroundThe detection and treatment of invasive growth hormone-secreting pituitary adenoma (GHPA) remains challenging. Several transcription factors promoting the epithelial–mesenchymal transition (EMT) can act as cofactors for the transforming growth factor-beta (TGF-ß)/SMAD4. The goal of this study was to investigate the association of SMAD4 expression and clinicopathologic features using a tissue microarray analysis (TMA). The levels of SMAD4 and the related genes of EMT in GHPAs were analyzed by q-PCR and western blot. SMAD4 was strongly expressed in 15/19 cases (78.9%) of invasive GHPA and 10/42 cases (23.8%) of noninvasive GHPA (χ2=10.887,p=0.000). In the high SMAD4 group, a headache was reported in 16/25 cases (64%) compared with 13/36 cases (36.1%) in the low SMAD4 group (χ2=4.565,p=0.032). The progression-free survival (PFS) in the high group was lower than that in the low group (p=0.026). qRT-PCR and western blot analysis further revealed a significant downregulation of E-cadherin and upregulation of N-cadherin and vimentin in the invasive GHPA group. SMAD4 was associated with increased levels of invasion of GH3 cells, as determined by a transwell test. SMAD4 downregulated E-cadherin levels and increased the levels of N-cadherin and vimentin. Our data provide evidence that SMAD4 is a potential prognosis biomarker and a therapeutic target for patients with invasive GHPA.
Collapse
Affiliation(s)
- Xiaosong Shan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qian Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhenye Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Hua Gao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Brain Tumor Center, Beijing, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Brain Tumor Center, Beijing, China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
37
|
Testa U, Pelosi E, Castelli G. Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells. Med Sci (Basel) 2018; 6:E31. [PMID: 29652830 PMCID: PMC6024750 DOI: 10.3390/medsci6020031] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/24/2018] [Accepted: 04/03/2018] [Indexed: 02/08/2023] Open
Abstract
Colon cancer is the third most common cancer worldwide. Most colorectal cancer occurrences are sporadic, not related to genetic predisposition or family history; however, 20-30% of patients with colorectal cancer have a family history of colorectal cancer and 5% of these tumors arise in the setting of a Mendelian inheritance syndrome. In many patients, the development of a colorectal cancer is preceded by a benign neoplastic lesion: either an adenomatous polyp or a serrated polyp. Studies carried out in the last years have characterized the main molecular alterations occurring in colorectal cancers, showing that the tumor of each patient displays from two to eight driver mutations. The ensemble of molecular studies, including gene expression studies, has led to two proposed classifications of colorectal cancers, with the identification of four/five non-overlapping groups. The homeostasis of the rapidly renewing intestinal epithelium is ensured by few stem cells present at the level of the base of intestinal crypts. Various experimental evidence suggests that colorectal cancers may derive from the malignant transformation of intestinal stem cells or of intestinal cells that acquire stem cell properties following malignant transformation. Colon cancer stem cells seem to be involved in tumor chemoresistance, radioresistance and relapse.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
38
|
Aboulkheyr Es H, Montazeri L, Aref AR, Vosough M, Baharvand H. Personalized Cancer Medicine: An Organoid Approach. Trends Biotechnol 2018; 36:358-371. [PMID: 29366522 DOI: 10.1016/j.tibtech.2017.12.005] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 01/10/2023]
Abstract
Personalized cancer therapy applies specific treatments to each patient. Using personalized tumor models with similar characteristics to the original tumors may result in more accurate predictions of drug responses in patients. Tumor organoid models have several advantages over pre-existing models, including conserving the molecular and cellular composition of the original tumor. These advantages highlight the tremendous potential of tumor organoids in personalized cancer therapy, particularly preclinical drug screening and predicting patient responses to selected treatment regimens. Here, we highlight the advantages, challenges, and translational potential of tumor organoids in personalized cancer therapy and focus on gene-drug associations, drug response prediction, and treatment selection. Finally, we discuss how microfluidic technology can contribute to immunotherapy drug screening in tumor organoids.
Collapse
Affiliation(s)
- Hamidreza Aboulkheyr Es
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
39
|
Perochon J, Carroll LR, Cordero JB. Wnt Signalling in Intestinal Stem Cells: Lessons from Mice and Flies. Genes (Basel) 2018; 9:genes9030138. [PMID: 29498662 PMCID: PMC5867859 DOI: 10.3390/genes9030138] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/17/2018] [Accepted: 02/21/2018] [Indexed: 12/12/2022] Open
Abstract
Adult stem cells play critical roles in the basal maintenance of tissue integrity, also known as homeostasis, and in tissue regeneration following damage. The highly conserved Wnt signalling pathway is a key regulator of stem cell fate. In the gastrointestinal tract, Wnt signalling activation drives homeostasis and damage-induced repair. Additionally, deregulated Wnt signalling is a common hallmark of age-associated tissue dysfunction and cancer. Studies using mouse and fruit fly models have greatly improved our understanding of the functional contribution of the Wnt signalling pathway in adult intestinal biology. Here, we summarize the latest knowledge acquired from mouse and Drosophila research regarding canonical Wnt signalling and its key functions during stem cell driven intestinal homeostasis, regeneration, ageing and cancer.
Collapse
Affiliation(s)
- Jessica Perochon
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.
| | - Lynsey R Carroll
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.
| | - Julia B Cordero
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.
- CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| |
Collapse
|
40
|
Roper J, Tammela T, Akkad A, Almeqdadi M, Santos SB, Jacks T, Yilmaz ÖH. Colonoscopy-based colorectal cancer modeling in mice with CRISPR-Cas9 genome editing and organoid transplantation. Nat Protoc 2018; 13:217-234. [PMID: 29300388 PMCID: PMC6145089 DOI: 10.1038/nprot.2017.136] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most genetically engineered mouse models (GEMMs) of colorectal cancer are limited by tumor formation in the small intestine, a high tumor burden that limits metastasis, and the need to generate and cross mutant mice. Cell line or organoid transplantation models generally produce tumors in ectopic locations-such as the subcutaneous space, kidney capsule, or cecal wall-that do not reflect the native stromal environment of the colon mucosa. Here, we describe detailed protocols to rapidly and efficiently induce site-directed tumors in the distal colon of mice that are based on colonoscopy-guided mucosal injection. These techniques can be adapted to deliver viral vectors carrying Cre recombinase, CRISPR-Cas9 components, CRISPR-engineered mouse tumor organoids, or human cancer organoids to mice to model the adenoma-carcinoma-metastasis sequence of tumor progression. The colonoscopy injection procedure takes ∼15 min, including preparation. In our experience, anyone with reasonable hand-eye coordination can become proficient with mouse colonoscopy and mucosal injection with a few hours of practice. These approaches are ideal for a wide range of applications, including assessment of gene function in tumorigenesis, examination of tumor-stroma interactions, studies of cancer metastasis, and translational research with patient-derived cancers.
Collapse
Affiliation(s)
- Jatin Roper
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
- Division of Gastroenterology, Tufts Medical Center, Boston, Massachusetts, USA
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Adam Akkad
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Mohammad Almeqdadi
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Sebastian B Santos
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Tyler Jacks
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ömer H Yilmaz
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Perleberg C, Kind A, Schnieke A. Genetically engineered pigs as models for human disease. Dis Model Mech 2018; 11:11/1/dmm030783. [PMID: 29419487 PMCID: PMC5818075 DOI: 10.1242/dmm.030783] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetically modified animals are vital for gaining a proper understanding of disease mechanisms. Mice have long been the mainstay of basic research into a wide variety of diseases but are not always the most suitable means of translating basic knowledge into clinical application. The shortcomings of rodent preclinical studies are widely recognised, and regulatory agencies around the world now require preclinical trial data from nonrodent species. Pigs are well suited to biomedical research, sharing many similarities with humans, including body size, anatomical features, physiology and pathophysiology, and they already play an important role in translational studies. This role is set to increase as advanced genetic techniques simplify the generation of pigs with precisely tailored modifications designed to replicate lesions responsible for human disease. This article provides an overview of the most promising and clinically relevant genetically modified porcine models of human disease for translational biomedical research, including cardiovascular diseases, cancers, diabetes mellitus, Alzheimer's disease, cystic fibrosis and Duchenne muscular dystrophy. We briefly summarise the technologies involved and consider the future impact of recent technical advances. Summary: An overview of porcine models of human disease, including cardiovascular diseases, cancers, diabetes mellitus, Alzheimer's disease, cystic fibrosis and Duchenne muscular dystrophy. We summarise the technologies involved and potential future impact of recent technical advances.
Collapse
Affiliation(s)
- Carolin Perleberg
- Chair of Livestock Biotechnology, School of Life Sciences, Technische Universität München, 85354 Freising, Germany
| | - Alexander Kind
- Chair of Livestock Biotechnology, School of Life Sciences, Technische Universität München, 85354 Freising, Germany
| | - Angelika Schnieke
- Chair of Livestock Biotechnology, School of Life Sciences, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
42
|
Cammareri P, Vincent DF, Hodder MC, Ridgway RA, Murgia C, Nobis M, Campbell AD, Varga J, Huels DJ, Subramani C, Prescott KLH, Nixon C, Hedley A, Barry ST, Greten FR, Inman GJ, Sansom OJ. TGFβ pathway limits dedifferentiation following WNT and MAPK pathway activation to suppress intestinal tumourigenesis. Cell Death Differ 2017; 24:1681-1693. [PMID: 28622298 PMCID: PMC5596428 DOI: 10.1038/cdd.2017.92] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/17/2022] Open
Abstract
Recent studies have suggested increased plasticity of differentiated cells within the intestine to act both as intestinal stem cells (ISCs) and tumour-initiating cells. However, little is known of the processes that regulate this plasticity. Our previous work has shown that activating mutations of Kras or the NF-κB pathway can drive dedifferentiation of intestinal cells lacking Apc. To investigate this process further, we profiled both cells undergoing dedifferentiation in vitro and tumours generated from these cells in vivo by gene expression analysis. Remarkably, no clear differences were observed in the tumours; however, during dedifferentiation in vitro we found a marked upregulation of TGFβ signalling, a pathway commonly mutated in colorectal cancer (CRC). Genetic inactivation of TGFβ type 1 receptor (Tgfbr1/Alk5) enhanced the ability of KrasG12D/+ mutation to drive dedifferentiation and markedly accelerated tumourigenesis. Mechanistically this is associated with a marked activation of MAPK signalling. Tumourigenesis from differentiated compartments is potently inhibited by MEK inhibition. Taken together, we show that tumours arising in differentiated compartments will be exposed to different suppressive signals, for example, TGFβ and blockade of these makes tumourigenesis more efficient from this compartment.
Collapse
Affiliation(s)
- Patrizia Cammareri
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
| | - David F Vincent
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
| | - Michael C Hodder
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
| | - Rachel A Ridgway
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
| | - Claudio Murgia
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
| | - Max Nobis
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
| | - Andrew D Campbell
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
| | - Julia Varga
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt 60596 Germany
| | - David J Huels
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
| | - Chithra Subramani
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
| | - Katie L H Prescott
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
| | - Colin Nixon
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
| | - Ann Hedley
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
| | - Simon T Barry
- Oncology IMED, AstraZeneca, Alderley Park SK10 4TG, Cambridge, UK
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt 60596 Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Gareth J Inman
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Owen J Sansom
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| |
Collapse
|
43
|
Phesse TJ, Durban VM, Sansom OJ. Defining key concepts of intestinal and epithelial cancer biology through the use of mouse models. Carcinogenesis 2017; 38:953-965. [PMID: 28981588 PMCID: PMC5862284 DOI: 10.1093/carcin/bgx080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
Over the past 20 years, huge advances have been made in modelling human diseases such as cancer using genetically modified mice. Accurate in vivo models are essential to examine the complex interaction between cancer cells, surrounding stromal cells, tumour-associated inflammatory cells, fibroblast and blood vessels, and to recapitulate all the steps involved in metastasis. Elucidating these interactions in vitro has inherent limitations, and thus animal models are a powerful tool to enable researchers to gain insight into the complex interactions between signalling pathways and different cells types. This review will focus on how advances in in vivo models have shed light on many aspects of cancer biology including the identification of oncogenes, tumour suppressors and stem cells, epigenetics, cell death and context dependent cell signalling.
Collapse
Affiliation(s)
- Toby J Phesse
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, South Glamorgan, CF24 4HQ, UK
| | - Victoria Marsh Durban
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, South Glamorgan, CF24 4HQ, UK
- ReNeuron, Pencoed Business Park, Pencoed, Bridgend, CF35 5HY, UK and
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow, G61 1BD, UK
| |
Collapse
|
44
|
Kochall S, Thepkaysone ML, García SA, Betzler AM, Weitz J, Reissfelder C, Schölch S. Isolation of Circulating Tumor Cells in an Orthotopic Mouse Model of Colorectal Cancer. J Vis Exp 2017. [PMID: 28745637 DOI: 10.3791/55357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite the advantages of easy applicability and cost-effectiveness, subcutaneous mouse models have severe limitations and do not accurately simulate tumor biology and tumor cell dissemination. Orthotopic mouse models have been introduced to overcome these limitations; however, such models are technically demanding, especially in hollow organs such as the large bowel. In order to produce uniform tumors which reliably grow and metastasize, standardized techniques of tumor cell preparation and injection are critical. We have developed an orthotopic mouse model of colorectal cancer (CRC) which develops highly uniform tumors and can be used for tumor biology studies as well as therapeutic trials. Tumor cells from either primary tumors, 2-dimensional (2D) cell lines or 3-dimensional (3D) organoids are injected into the cecum and, depending on the metastatic potential of the injected tumor cells, form highly metastatic tumors. In addition, CTCs can be found regularly. We here describe the technique of tumor cell preparation from both 2D cell lines and 3D organoids as well as primary tumor tissue, the surgical and injection techniques as well as the isolation of CTCs from the tumor-bearing mice, and present tips for troubleshooting.
Collapse
Affiliation(s)
- Susan Kochall
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden
| | - May-Linn Thepkaysone
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden
| | - Sebastián A García
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden
| | - Alexander M Betzler
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden
| | - Jürgen Weitz
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden; German Cancer Consortium (DKTK); German Cancer Research Center (DKFZ)
| | - Christoph Reissfelder
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden
| | - Sebastian Schölch
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden; German Cancer Consortium (DKTK); German Cancer Research Center (DKFZ);
| |
Collapse
|
45
|
O’Rourke KP, Loizou E, Livshits G, Schatoff EM, Baslan T, Manchado E, Simon J, Romesser P, Leach B, Han T, Pauli C, Beltran H, Rubin MA, Dow LE, Lowe SW. Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat Biotechnol 2017; 35:577-582. [PMID: 28459450 PMCID: PMC5462850 DOI: 10.1038/nbt.3837] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/24/2017] [Indexed: 12/11/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of death in the developed world, yet facile preclinical models that mimic the natural stages of CRC progression are lacking. Through the orthotopic engraftment of colon organoids we describe a broadly usable immunocompetent CRC model that recapitulates the entire adenoma-adenocarcinoma-metastasis axis in vivo. The engraftment procedure takes less than 5 minutes, shows efficient tumor engraftment in two-thirds of mice, and can be achieved using organoids derived from genetically engineered mouse models (GEMMs), wild-type organoids engineered ex vivo, or from patient-derived human CRC organoids. In this model, we describe the genotype and time-dependent progression of CRCs from adenocarcinoma (6 weeks), to local disseminated disease (11-12 weeks), and spontaneous metastasis (>20 weeks). Further, we use the system to show that loss of dysregulated Wnt signaling is critical for the progression of disseminated CRCs. Thus, our approach provides a fast and flexible means to produce tailored CRC mouse models for genetic studies and pre-clinical investigation.
Collapse
Affiliation(s)
- Kevin P O’Rourke
- Weill Cornell Medicine/Rockefeller University/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Evangelia Loizou
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Geulah Livshits
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Emma M Schatoff
- Weill Cornell Medicine/Rockefeller University/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY
- Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Timour Baslan
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Eusebio Manchado
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Janelle Simon
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Paul Romesser
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Benjamin Leach
- Meyer Cancer Center, Hematology & Medical Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Teng Han
- Meyer Cancer Center, Hematology & Medical Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Chantal Pauli
- Meyer Cancer Center, Hematology & Medical Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, NY
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Himisha Beltran
- Meyer Cancer Center, Hematology & Medical Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, NY
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Mark A Rubin
- Meyer Cancer Center, Hematology & Medical Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, NY
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Lukas E Dow
- Meyer Cancer Center, Hematology & Medical Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
46
|
Kretzschmar K, Clevers H. Wnt/β-catenin signaling in adult mammalian epithelial stem cells. Dev Biol 2017; 428:273-282. [PMID: 28526587 DOI: 10.1016/j.ydbio.2017.05.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 01/06/2023]
Abstract
Adult stem cells self-renew and replenish differentiated cells in various organs and tissues throughout a mammal's life. Over the last 25 years an ever-growing body of knowledge has unraveled the essential regulation of adult mammalian epithelia by the canonical Wnt signaling with its key intracellular effector β-catenin. In this review, we discuss the principles of the signaling pathway and its role in adult epithelial stem cells of the intestine and skin during homeostasis and tumorigenesis. We further highlight the research that led to the identification of new stem cell markers and methods to study adult stem cells ex vivo.
Collapse
Affiliation(s)
- Kai Kretzschmar
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, The Netherlands; Cancer Genomics Netherlands, UMC Utrecht, 3584 CG Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, The Netherlands; Cancer Genomics Netherlands, UMC Utrecht, 3584 CG Utrecht, The Netherlands; Princess Máxima Centre for Pediatric Oncology, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
47
|
Abstract
The WNT signaling pathway is a critical mediator of tissue homeostasis and repair, and frequently co-opted during tumor development. Almost all colorectal cancers (CRC) demonstrate hyperactivation of the WNT pathway, which in many cases is believed to be the initiating and driving event. In this short review, we provide a focused overview of recent developments in our understanding of the WNT pathway in CRC, describe new research tools that are enabling a deeper understanding of WNT biology, and outline ongoing efforts to target this pathway therapeutically.
Collapse
Affiliation(s)
- Emma M Schatoff
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, 10021.,Weill Cornell/Rockefeller/Sloan Kettering Tri-I MD-PhD program, New York, 10065
| | - Benjamin I Leach
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, 10021.,New York Presbyterian Hospital, New York, 10021
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, 10021.,Department of Medicine, Weill Cornell Medicine, New York, 10021.,Department of Biochemistry, Weill Cornell Medicine, New York, 10021
| |
Collapse
|