1
|
Kunta S, Dahan Y, Torgeman S, Chory J, Burko Y. Species-specific PHYTOCHROME-INTERACTING FACTOR utilization in the plant morphogenetic response to environmental stimuli. THE PLANT CELL 2025; 37:koaf048. [PMID: 40085779 PMCID: PMC12070396 DOI: 10.1093/plcell/koaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/12/2025] [Indexed: 03/16/2025]
Abstract
PHYTOCHROME-INTERACTING FACTORs (PIFs) regulate growth-related gene expression in response to environmental conditions. Among their diverse functions in regulating signal responses, PIFs play an important role in thermomorphogenesis (the response to increased ambient temperature) and in the shade avoidance response. While numerous studies have examined the varied roles of PIFs in Arabidopsis (Arabidopsis thaliana), their roles in crop plants remain poorly investigated. This study delves into the conservation of PIFs activity among species by examining their functions in tomato (Solanum lycopersicum) and comparing them to known PIF functions in Arabidopsis using single and higher-order mutants of tomato PIF genes (SlPIFs). We demonstrate that, in contrast to Arabidopsis, PIFs are not required for thermomorphogenesis-induced stem elongation in tomato. In addition, whereas Arabidopsis PIF8 has a minor effect on plant growth, tomato SlPIF8a plays a key role in the low red/far-red (R/FR) response. In contrast, SlPIF4 and SlPIF7s play minor roles in this process. We also investigated the tissue-specific low R/FR response in tomato seedlings and demonstrate that the aboveground organs exhibit a conserved response to low R/FR, which is regulated by SlPIFs. Our findings provide insights into PIF-mediated responses in crop plants, which may guide future breeding strategies to enhance yield under high planting densities.
Collapse
Affiliation(s)
- Srinivas Kunta
- The Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Yardena Dahan
- The Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Shai Torgeman
- Institute of Plant Science and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Joanne Chory
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yogev Burko
- The Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| |
Collapse
|
2
|
Khong DT, Vu KV, Sng BJR, Choi IKY, Porter TK, Cui J, Gong X, Wang S, Nguyen NH, Ang MCY, Park M, Lew TTS, Loh SI, Ahsim R, Chin HJ, Singh GP, Chan-Park MB, Chua NH, Strano MS, Jang IC. A Near-Infrared Fluorescent Nanosensor for Direct and Real-Time Measurement of Indole-3-Acetic Acid in Plants. ACS NANO 2025; 19:15302-15321. [PMID: 40230072 DOI: 10.1021/acsnano.4c13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Auxin, particularly indole-3-acetic acid (IAA), is a phytohormone critical for plant growth, development, and response to environmental stresses like shade avoidance syndrome and thermomorphogenesis. Despite its importance, there is no existing method that allows for convenient and direct detection of IAA in various plant species. Here, we introduce a near-infrared fluorescent nanosensor that directly measures IAA in planta using corona phase molecular recognition with high selectivity, specificity, and spatiotemporal resolution. The IAA sensor can be conveniently functionalized to living plants and localized in various tissues, including leaf, cotyledon, and root tip, with the capability to visualize intrinsic IAA distribution. The IAA nanosensor was further tested in Arabidopsis thaliana leaf with tunable levels of endogenous IAA, in which the sensor measured dynamic and spatiotemporal changes of IAA. We also showed that the IAA sensor can be used for qualitative and quantitative mapping of IAA induction and spatial movement in various plant species undergoing environmental or stress response, such as shade avoidance syndrome, high temperature stress, and gravitropism. This highlights the potential application of IAA sensor for monitoring plant health in agriculture.
Collapse
Affiliation(s)
- Duc Thinh Khong
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Kien Van Vu
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Benny Jian Rong Sng
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Ian Kin Yuen Choi
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Thomas K Porter
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jianqiao Cui
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Song Wang
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
| | - Nguyen Hoai Nguyen
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Mervin Chun-Yi Ang
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
| | - Minkyung Park
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Tedrick Thomas Salim Lew
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Suh In Loh
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
| | - Riza Ahsim
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
| | - Hui Jun Chin
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Gajendra Pratap Singh
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
| | - Mary B Chan-Park
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Nam-Hai Chua
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Michael S Strano
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - In-Cheol Jang
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| |
Collapse
|
3
|
Jeong D, Kim S, Park H, Woo K, Choi J, Choi M, Shin J, Park SH, Seon M, Lee D, Cha J, Kim Y. Optogenetically Activatable MLKL as a Standalone Functional Module for Necroptosis and Therapeutic Applications in Antitumoral Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412393. [PMID: 39921454 PMCID: PMC11967802 DOI: 10.1002/advs.202412393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/17/2025] [Indexed: 02/10/2025]
Abstract
Necroptosis plays a crucial role in the progression of various diseases and has gained substantial attention for its potential to activate antitumor immunity. However, the complex signaling networks that regulate necroptosis have made it challenging to fully understand its mechanisms and translate this knowledge into therapeutic applications. To address these challenges, an optogenetically activatable necroptosis system is developed that allows for precise spatiotemporal control of key necroptosis regulators, bypassing complex upstream signaling processes. The system, specifically featuring optoMLKL, demonstrates that it can rapidly assemble into functional higher-order "hotspots" within cellular membrane compartments, independent of RIPK3-mediated phosphorylation. Moreover, the functional module of optoMLKL significantly enhances innate immune responses by promoting the release of iDAMPs and cDAMPs, which are critical for initiating antitumor immunity. Furthermore, optoMLKL exhibits antitumor effects when activated in patient-derived pancreatic cancer organoids, highlighting its potential for clinical application. These findings will pave the way for innovative cancer therapies by leveraging optogenetic approaches to precisely control and enhance necroptosis.
Collapse
Affiliation(s)
- Da‐Hye Jeong
- Department of BiochemistryAjou University School of MedicineSuwon16499Republic of Korea
- Department of Biomedical ScienceGraduate School of Ajou UniversitySuwon16499Republic of Korea
| | - Seokhwi Kim
- Department of Biomedical ScienceGraduate School of Ajou UniversitySuwon16499Republic of Korea
- Department of PathologyAjou University School of MedicineSuwon16499Republic of Korea
| | - Han‐Hee Park
- Department of BiochemistryAjou University School of MedicineSuwon16499Republic of Korea
- Department of Biomedical ScienceGraduate School of Ajou UniversitySuwon16499Republic of Korea
| | - Kyoung‐Jin Woo
- Department of Biomedical ScienceGraduate School of Ajou UniversitySuwon16499Republic of Korea
| | - Jae‐Il Choi
- Department of PathologyAjou University School of MedicineSuwon16499Republic of Korea
| | - Minji Choi
- Program in Biomedical Science and EngineeringGraduate schoolInha UniversityIncheon22212Republic of Korea
| | - Jisoo Shin
- Program in Biomedical Science and EngineeringGraduate schoolInha UniversityIncheon22212Republic of Korea
| | - So Hyun Park
- Department of PathologyAjou University School of MedicineSuwon16499Republic of Korea
| | - Myung‐Wook Seon
- Department of BiochemistryAjou University School of MedicineSuwon16499Republic of Korea
- Department of Biomedical ScienceGraduate School of Ajou UniversitySuwon16499Republic of Korea
| | - Dakeun Lee
- Department of Biomedical ScienceGraduate School of Ajou UniversitySuwon16499Republic of Korea
- Department of PathologyAjou University School of MedicineSuwon16499Republic of Korea
| | - Jong‐Ho Cha
- Program in Biomedical Science and EngineeringGraduate schoolInha UniversityIncheon22212Republic of Korea
- Department of Biomedical SciencesCollege of MedicineInha UniversityIncheon22212Republic of Korea
- Biohybrid Systems Research CenterInha UniversityIncheon22212Republic of Korea
| | - You‐Sun Kim
- Department of BiochemistryAjou University School of MedicineSuwon16499Republic of Korea
- Department of Biomedical ScienceGraduate School of Ajou UniversitySuwon16499Republic of Korea
| |
Collapse
|
4
|
Li L, van de Kaa Y, van der Krabben L, Pierik R, Kajala K. Effect of Low Red-to-Far-Red Light on Stem Elongation and Pith Cell Development in Dicots. PLANT DIRECT 2025; 9:e70072. [PMID: 40242792 PMCID: PMC11999800 DOI: 10.1002/pld3.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/06/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
In dense canopies, light becomes a limiting factor for plant growth. Many plants respond to neighbor cues by growing taller to improve light capture, a phenomenon known as the shade avoidance syndrome (SAS). The major neighbor detection is via enrichment of far-red (FR) light that leads to a low red:far-red light ratio (R:FR), suppressing phytochrome activity. In tomato, low R:FR induces elongation of the internodes, but study into the role of different cell types in this response has remained limited. We characterized changes in cellular anatomy of the tomato internode in response to low R:FR and its accompanying changes in gene expression. We observed changes to the pith traits, including increases in pith layer number, pith cell diameter, and longitudinal cell length. We profiled the transcriptome in the entire internodes and in the hand-dissected pith in the central cylinder of the internode in response to low R:FR treatment and identified transcription factors (TFs) of interest that were upregulated in the central cylinder, mostly GATA, TCP, and bZIPs. We then characterized FR responses in eight dicotyledonous species. Significant pith elongation was observed in species that exhibited a strong internode elongation response. The FR-responsive expression of homologs of target GATA, TCP, and bZIP TFs in the central cylinder was conserved within the Solanaceae family. Overall, we discovered central cylinder gene expression patterns in SAS that are distinct from those of the entire internode, suggesting that some responses are unique and likely specific to vascular cell types such as pith. These patterns were conserved with close relatives of tomato but not in other dicot families we sampled, indicating that different molecular mechanisms drive FR responses in different dicots.
Collapse
Affiliation(s)
- Linge Li
- Experimental & Computational Plant DevelopmentInstitute of Environmental Biology, Utrecht UniversityUtrechtThe Netherlands
- Current Affiliation: Dalian Yuanyi Technology Co., LtdDalianLiaoningChina
| | - Yorrit van de Kaa
- Experimental & Computational Plant DevelopmentInstitute of Environmental Biology, Utrecht UniversityUtrechtThe Netherlands
| | - Lotte van der Krabben
- Experimental & Computational Plant DevelopmentInstitute of Environmental Biology, Utrecht UniversityUtrechtThe Netherlands
| | - Ronald Pierik
- Experimental & Computational Plant DevelopmentInstitute of Environmental Biology, Utrecht UniversityUtrechtThe Netherlands
- Current Affiliation: Laboratory of Molecular BiologyWageningen University & ResearchWageningenThe Netherlands
| | - Kaisa Kajala
- Experimental & Computational Plant DevelopmentInstitute of Environmental Biology, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
5
|
Roig‐Villanova I, Torres‐Montilla S, López‐Ortiz E, Di Marzo M, Sánchez‐García Á, Esteve‐Codina A, Gómez‐Cadenas A, Martínez‐García JF. Plant proximity reduces seed yield in Arabidopsis plants by decreasing the number of ovule primordia. PHYSIOLOGIA PLANTARUM 2025; 177:e70220. [PMID: 40241247 PMCID: PMC12003759 DOI: 10.1111/ppl.70220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/17/2025] [Indexed: 04/18/2025]
Abstract
Proximity of vegetation, which is influenced by planting density, significantly impacts plant development. In Arabidopsis thaliana, it is well established that simulated shade, which mimics the proximity of other plants, triggers hypocotyl and petiole elongation, accelerates flowering and suppresses axillary bud growth. Although there is evidence that simulated shade affects reproduction beyond accelerating flowering, its impact on the development of reproductive tissues after plant architecture establishment (i.e., once flowering has begun) remains poorly explored. Here, we report that simulated shade promotes silique and pedicel elongation while reducing seed production, primarily by decreasing ovule number formation. Shade perception triggers rapid changes in gene expression in reproductive tissues, with some genes showing tissue-specific responses and others being induced in both seedlings and reproductive tissues, highlighting a conserved core of shade-responsive genes associated with light perception, photosynthesis and hormone regulation. However, while shade-induced elongation responses occur rapidly, reduction in ovule number requires prolonged shade exposure, suggesting distinct regulatory pathways for these responses. These findings shed light on the complex interplay between common (e.g., elongation and core gene expression) and tissue-specific responses (e.g., ovule formation and specialized gene expression) to shade, contributing to the developmental plasticity of Arabidopsis. Furthermore, they enhance our understanding of how external signals, indicative of vegetation proximity, can modulate seed production, a genetically determined process.
Collapse
Affiliation(s)
- Irma Roig‐Villanova
- Centre for Research in Agricultural Genomics (CRAG), CSIC‐IRTA‐UAB‐UBCerdanyola del VallèsBarcelonaSpain
- Serra Húnter Fellow. Department of Agri‐Food Engineering and BiotechnologyBarcelona School of Agri‐Food and Biosystems EngineeringCastelldefelsSpain
| | - Salvador Torres‐Montilla
- Institute for Plant Molecular and Cell Biology (IBMCP)CSIC ‐ Universitat Politècnica de ValènciaValènciaSpain
- Present address:
Plant Molecular Genetics Department, Centro Nacional de Biotecnologia‐CSIC (CNB‐CSIC)MadridSpain
| | - Estefanía López‐Ortiz
- Centre for Research in Agricultural Genomics (CRAG), CSIC‐IRTA‐UAB‐UBCerdanyola del VallèsBarcelonaSpain
- Present address:
Molecular Plant BreedingInstitute of Agricultural SciencesZürichZurichSwitzerland
| | - Maurizio Di Marzo
- Centre for Research in Agricultural Genomics (CRAG), CSIC‐IRTA‐UAB‐UBCerdanyola del VallèsBarcelonaSpain
- Dipartimento di BioscienzeUniversità degli Studi di MilanoMilanItaly
| | - Ángela Sánchez‐García
- Institute for Plant Molecular and Cell Biology (IBMCP)CSIC ‐ Universitat Politècnica de ValènciaValènciaSpain
| | - Anna Esteve‐Codina
- Centro Nacional de Análisis Genómico (CNAG)Barcelona, Spain, and Universitat de Barcelona (UB)BarcelonaSpain
| | - Aurelio Gómez‐Cadenas
- Departament de Biologia, Bioquimica i Ciències NaturalsUniversitat Jaume I (UJI)Castelló de la PlanaSpain
| | - Jaume F. Martínez‐García
- Centre for Research in Agricultural Genomics (CRAG), CSIC‐IRTA‐UAB‐UBCerdanyola del VallèsBarcelonaSpain
- Institute for Plant Molecular and Cell Biology (IBMCP)CSIC ‐ Universitat Politècnica de ValènciaValènciaSpain
| |
Collapse
|
6
|
Gautrat P, Matton SEA, Oskam L, Shetty SS, van der Velde KJ, Pierik R. Lights, location, action: shade avoidance signalling over spatial scales. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:695-711. [PMID: 38767295 PMCID: PMC11805592 DOI: 10.1093/jxb/erae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
Plants growing in dense vegetation need to flexibly position their photosynthetic organs to ensure optimal light capture in a competitive environment. They do so through a suite of developmental responses referred to as the shade avoidance syndrome. Below ground, root development is also adjusted in response to above-ground neighbour proximity. Canopies are dynamic and complex environments with heterogeneous light cues in the far-red, red, blue, and UV spectrum, which can be perceived by photoreceptors in spatially separated plant tissues. Molecular regulation of plant architecture adjustment via PHYTOCHROME-INTERACTING FACTOR transcription factors and growth-related hormones such as auxin, gibberellic acid, brassinosteroids, and abscisic acid were historically studied without much attention to spatial or tissue-specific context. Recent developments and technologies have, however, sparked strong interest in spatially explicit understanding of shade avoidance regulation. Other environmental factors such as temperature and nutrient availability interact with the molecular shade avoidance regulation network, often depending on the spatial location of the signals, and the responding organs. Here, we review recent advances in how plants respond to heterogeneous light cues and integrate these with other environmental signals.
Collapse
Affiliation(s)
- Pierre Gautrat
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Sanne E A Matton
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Lisa Oskam
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Experimental and Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Siddhant S Shetty
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Kyra J van der Velde
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Experimental and Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Ronald Pierik
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
7
|
Sellaro R, Durand M, Aphalo PJ, Casal JJ. Making the most of canopy light: shade avoidance under a fluctuating spectrum and irradiance. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:712-729. [PMID: 39101508 PMCID: PMC11805590 DOI: 10.1093/jxb/erae334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/08/2024] [Indexed: 08/06/2024]
Abstract
In the field, plants face constantly changing light conditions caused by both atmospheric effects and neighbouring vegetation. This interplay creates a complex, fluctuating light environment within plant canopies. Shade-intolerant species rely on light cues from competitors to trigger shade avoidance responses, ensuring access to light for photosynthesis. While research often uses controlled growth chambers with steady light to study shade avoidance responses, the influence of light fluctuations in real-world settings remains unclear. This review examines the dynamic light environments found in woodlands, grasslands, and crops. We explore how plants respond to some fluctuations but not others, analyse the potential reasons for these differences, and discuss the possible molecular mechanisms regulating this sensitivity. We propose that studying shade avoidance responses under fluctuating light conditions offers a valuable tool to explore the intricate regulatory network behind them.
Collapse
Affiliation(s)
- Romina Sellaro
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
| | - Maxime Durand
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pedro J Aphalo
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jorge J Casal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| |
Collapse
|
8
|
Lee N, Hwang DY, Lee HG, Hwang H, Kang HW, Lee W, Choi MG, Ahn YJ, Lim C, Kim JI, Kwon M, Kim ST, Paek NC, Cho H, Sohn KH, Seo PJ, Song YH. ASYMMETRIC LEAVES1 promotes leaf hyponasty in Arabidopsis by light-mediated auxin signaling. PLANT PHYSIOLOGY 2024; 197:kiae550. [PMID: 39418078 DOI: 10.1093/plphys/kiae550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024]
Abstract
In plants, balancing growth and environmental responses is crucial for maximizing fitness. Close proximity among plants and canopy shade, which negatively impacts reproduction, elicits morphological adjustments such as hypocotyl growth and leaf hyponasty, mainly through changes in light quality and auxin levels. However, how auxin, synthesized from a shaded leaf blade, distally induces elongation of hypocotyl and petiole cells remains to be elucidated. We demonstrated that ASYMMETRIC LEAVES1 (AS1) promotes leaf hyponasty through the regulation of auxin biosynthesis, polar auxin transport, and auxin signaling genes in Arabidopsis (Arabidopsis thaliana). AS1 overexpression leads to elongation of the abaxial petiole cells with auxin accumulation in the petiole, resulting in hyponastic growth, which is abolished by the application of an auxin transport inhibitor to the leaf blade. In addition, the as1 mutant exhibits reduced hypocotyl growth under shade conditions. We observed that AS1 protein accumulates in the nucleus in response to shade or far-red light. Chromatin immunoprecipitation analysis identified the association of AS1 with the promoters of YUCCA8 (YUC8) and INDOLE-3-ACETIC ACID INDUCIBLE 19 (IAA19). In addition, AS1 forms complexes with PHYTOCHROME-INTERACTING FACTORs in the nucleus and synergistically induces YUC8 and IAA19 expression. Our findings suggest that AS1 plays a crucial role in facilitating phenotypic plasticity to the surroundings by connecting light and phytohormone action.
Collapse
Affiliation(s)
- Nayoung Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju 52828, Korea
| | - Dae Yeon Hwang
- Department of Life Sciences, Ajou University, Suwon 16499, Korea
| | - Hong Gil Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Hyeona Hwang
- Department of Industrial Plant Science and Technology, College of Agriculture, Life and Environmental Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Hye Won Kang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Wonbok Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Min Gi Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Ye Jin Ahn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673Korea
| | - Chaemyeong Lim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Korea
| | - Jeong-Il Kim
- Department of Biotechnology, Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Korea
| | - Moonhyuk Kwon
- Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju 52828, Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea
- Anti-aging Bio Cell factory Regional Leading Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea
| | - Nam-Chon Paek
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyunwoo Cho
- Department of Industrial Plant Science and Technology, College of Agriculture, Life and Environmental Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Kee Hoon Sohn
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| | - Pil Joon Seo
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Young Hun Song
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
9
|
Gautrat P, Buti S, Romanowski A, Lammers M, Matton SEA, Buijs G, Pierik R. Phytochrome-dependent responsiveness to root-derived cytokinins enables coordinated elongation responses to combined light and nitrate cues. Nat Commun 2024; 15:8489. [PMID: 39353942 PMCID: PMC11445486 DOI: 10.1038/s41467-024-52828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Plants growing at high densities can detect competitors through changes in the composition of light reflected by neighbours. In response to this far-red-enriched light, plants elicit adaptive shade avoidance responses for light capture, but these need to be balanced against other input signals, such as nutrient availability. Here, we investigated how Arabidopsis integrates shade and nitrate signalling. We unveiled that nitrate modulates shade avoidance via a previously unknown shade response pathway that involves root-derived trans-zeatin (tZ) signal and the BEE1 transcription factor as an integrator of light and cytokinin signalling. Under nitrate-sufficient conditions, tZ promotes hypocotyl elongation specifically in the presence of supplemental far-red light. This occurs via PIF transcription factors-dependent inhibition of type-A ARRs cytokinin response inhibitors. Our data thus reveal how plants co-regulate responses to shade cues with root-derived information about nutrient availability, and how they restrict responses to this information to specific light conditions in the shoot.
Collapse
Affiliation(s)
- Pierre Gautrat
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands.
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands.
| | - Sara Buti
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Andrés Romanowski
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
| | - Michiel Lammers
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
| | - Sanne E A Matton
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
| | - Guido Buijs
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Ronald Pierik
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands.
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
10
|
Li L, Wonder J, Helming T, van Asselt G, Pantazopoulou CK, van de Kaa Y, Kohlen W, Pierik R, Kajala K. Evaluation of the roles of brassinosteroid, gibberellin and auxin for tomato internode elongation in response to low red:far-red light. PHYSIOLOGIA PLANTARUM 2024; 176:e14558. [PMID: 39360434 DOI: 10.1111/ppl.14558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
In this study, we explore the interplay between the plant hormones gibberellins (GA), brassinosteroids (BR), and Indole-3-Acetic Acid (IAA) in their collective impact on plant shade avoidance elongation under varying light conditions. We focus particularly on low Red:Far-red (R:FR) light conditions achieved by supplementing the background light with FR. We characterized the tomato internode response to low R:FR and, with RNA-seq analysis, we were able to identify some of the potential regulatory hormonal pathways. Through a series of exogenous pharmacological modulations of GA, IAA, and BR, we demonstrate that GA and BR are sufficient but also necessary for inducing stem elongation under low R:FR light conditions. Intriguingly, while IAA alone shows limited effects, its combination with GA yields significant elongation, suggesting a nuanced hormonal balance. Furthermore, we unveil the complex interplay of these hormones under light with low R:FR, where the suppression of one hormone's effect can be compensated by the others. This study provides insights into the hormonal mechanisms governing plant adaptation to light, highlighting the intricate and adaptable nature of plant growth responses. Our findings have far-reaching implications for agricultural practices, offering potential strategies for optimizing plant growth and productivity in various lighting environments.
Collapse
Affiliation(s)
- Linge Li
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Jesse Wonder
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Ticho Helming
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Gijs van Asselt
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Chrysoula K Pantazopoulou
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Yorrit van de Kaa
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Wouter Kohlen
- Laboratory of Cell and Developmental Biology, Cluster Plant Developmental Biology, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Ronald Pierik
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Kaisa Kajala
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
Huber M, de Boer HJ, Romanowski A, van Veen H, Buti S, Kahlon PS, van der Meijden J, Koch J, Pierik R. Far-red light enrichment affects gene expression and architecture as well as growth and photosynthesis in rice. PLANT, CELL & ENVIRONMENT 2024; 47:2936-2953. [PMID: 38629324 DOI: 10.1111/pce.14909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 07/12/2024]
Abstract
Plants use light as a resource and signal. Photons within the 400-700 nm waveband are considered photosynthetically active. Far-red photons (FR, 700-800 nm) are used by plants to detect nearby vegetation and elicit the shade avoidance syndrome. In addition, FR photons have also been shown to contribute to photosynthesis, but knowledge about these dual effects remains scarce. Here, we study shoot-architectural and photosynthetic responses to supplemental FR light during the photoperiod in several rice varieties. We observed that FR enrichment only mildly affected the rice transcriptome and shoot architecture as compared to established model species, whereas leaf formation, tillering and biomass accumulation were clearly promoted. Consistent with this growth promotion, we found that CO2-fixation in supplemental FR was strongly enhanced, especially in plants acclimated to FR-enriched conditions as compared to control conditions. This growth promotion dominates the effects of FR photons on shoot development and architecture. When substituting FR enrichment with an end-of-day FR pulse, this prevented photosynthesis-promoting effects and elicited shade avoidance responses. We conclude that FR photons can have a dual role, where effects depend on the environmental context: in addition to being an environmental signal, they are also a potent source of harvestable energy.
Collapse
Affiliation(s)
- Martina Huber
- Plant-Environment Signalling, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Hugo Jan de Boer
- Copernicus Institute of Sustainable Development, Department of Environmental Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Andrés Romanowski
- Plant-Environment Signalling, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Laboratory of Molecular Biology, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Hans van Veen
- Plant-Environment Signalling, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Plant Stress Resilience, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Sara Buti
- Plant-Environment Signalling, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Parvinderdeep S Kahlon
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Jannes van der Meijden
- Plant-Environment Signalling, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jeroen Koch
- Plant-Environment Signalling, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ronald Pierik
- Plant-Environment Signalling, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Laboratory of Molecular Biology, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
12
|
Kunkowska AB. What they do in the shadows: A low-cost imaging system for recording leaf expansion and movements. PLANT PHYSIOLOGY 2024; 195:1745-1747. [PMID: 38558199 PMCID: PMC11213243 DOI: 10.1093/plphys/kiae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Affiliation(s)
- Alicja B Kunkowska
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- PlantLab, Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56010 Pisa, Italy
| |
Collapse
|
13
|
Oskam L, Snoek BL, Pantazopoulou CK, van Veen H, Matton SEA, Dijkhuizen R, Pierik R. A low-cost open-source imaging platform reveals spatiotemporal insight into leaf elongation and movement. PLANT PHYSIOLOGY 2024; 195:1866-1879. [PMID: 38401532 PMCID: PMC11213255 DOI: 10.1093/plphys/kiae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/26/2024]
Abstract
Plant organs move throughout the diurnal cycle, changing leaf and petiole positions to balance light capture, leaf temperature, and water loss under dynamic environmental conditions. Upward movement of the petiole, called hyponasty, is one of several traits of the shade avoidance syndrome (SAS). SAS traits are elicited upon perception of vegetation shade signals such as far-red light (FR) and improve light capture in dense vegetation. Monitoring plant movement at a high temporal resolution allows studying functionality and molecular regulation of hyponasty. However, high temporal resolution imaging solutions are often very expensive, making this unavailable to many researchers. Here, we present a modular and low-cost imaging setup, based on small Raspberry Pi computers that can track leaf movements and elongation growth with high temporal resolution. We also developed an open-source, semiautomated image analysis pipeline. Using this setup, we followed responses to FR enrichment, light intensity, and their interactions. Tracking both elongation and the angle of the petiole, lamina, and entire leaf in Arabidopsis (Arabidopsis thaliana) revealed insight into R:FR sensitivities of leaf growth and movement dynamics and the interactions of R:FR with background light intensity. The detailed imaging options of this system allowed us to identify spatially separate bending points for petiole and lamina positioning of the leaf.
Collapse
Affiliation(s)
- Lisa Oskam
- Plant-Environment Signaling, Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Chrysoula K Pantazopoulou
- Plant-Environment Signaling, Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Hans van Veen
- Plant-Environment Signaling, Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Sanne E A Matton
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen 6700 AA, The Netherlands
| | - Rens Dijkhuizen
- Plant-Environment Signaling, Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Ronald Pierik
- Plant-Environment Signaling, Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen 6700 AA, The Netherlands
| |
Collapse
|
14
|
Wang G, Mao J, Ji M, Wang W, Fu J. A comprehensive assessment of photosynthetic acclimation to shade in C4 grass (Cynodon dactylon (L.) Pers.). BMC PLANT BIOLOGY 2024; 24:591. [PMID: 38902617 PMCID: PMC11191358 DOI: 10.1186/s12870-024-05242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Light deficit in shaded environment critically impacts the growth and development of turf plants. Despite this fact, past research has predominantly concentrated on shade avoidance rather than shade tolerance. To address this, our study examined the photosynthetic adjustments of Bermudagrass when exposed to varying intensities of shade to gain an integrative understanding of the shade response of C4 turfgrass. RESULTS We observed alterations in photosynthetic pigment-proteins, electron transport and its associated carbon and nitrogen assimilation, along with ROS-scavenging enzyme activity in shaded conditions. Mild shade enriched Chl b and LHC transcripts, while severe shade promoted Chl a, carotenoids and photosynthetic electron transfer beyond QA- (ET0/RC, φE0, Ψ0). The study also highlighted differential effects of shade on leaf and root components. For example, Soluble sugar content varied between leaves and roots as shade diminished SPS, SUT1 but upregulated BAM. Furthermore, we observed that shading decreased the transcriptional level of genes involving in nitrogen assimilation (e.g. NR) and SOD, POD, CAT enzyme activities in leaves, even though it increased in roots. CONCLUSIONS As shade intensity increased, considerable changes were noted in light energy conversion and photosynthetic metabolism processes along the electron transport chain axis. Our study thus provides valuable theoretical groundwork for understanding how C4 grass acclimates to shade tolerance.
Collapse
Affiliation(s)
- Guangyang Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, 264025, Shandong, China
| | - Jinyan Mao
- College of Agriculture, Ludong University, Yantai, 264025, Shandong, China
| | - Mingxia Ji
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, 264025, Shandong, China
| | - Wei Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, 264025, Shandong, China
| | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, 264025, Shandong, China.
| |
Collapse
|
15
|
Han R, Ma L, Terzaghi W, Guo Y, Li J. Molecular mechanisms underlying coordinated responses of plants to shade and environmental stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1893-1913. [PMID: 38289877 DOI: 10.1111/tpj.16653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Shade avoidance syndrome (SAS) is triggered by a low ratio of red (R) to far-red (FR) light (R/FR ratio), which is caused by neighbor detection and/or canopy shade. In order to compete for the limited light, plants elongate hypocotyls and petioles by deactivating phytochrome B (phyB), a major R light photoreceptor, thus releasing its inhibition of the growth-promoting transcription factors PHYTOCHROME-INTERACTING FACTORs. Under natural conditions, plants must cope with abiotic stresses such as drought, soil salinity, and extreme temperatures, and biotic stresses such as pathogens and pests. Plants have evolved sophisticated mechanisms to simultaneously deal with multiple environmental stresses. In this review, we will summarize recent major advances in our understanding of how plants coordinately respond to shade and environmental stresses, and will also discuss the important questions for future research. A deep understanding of how plants synergistically respond to shade together with abiotic and biotic stresses will facilitate the design and breeding of new crop varieties with enhanced tolerance to high-density planting and environmental stresses.
Collapse
Affiliation(s)
- Run Han
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Liang Ma
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, 18766, USA
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| |
Collapse
|
16
|
Shi FL, Li Q, Xu R, Yuan LS, Chen Y, Shi ZJ, Li YP, Zhou ZY, Xu LH, Zha QB, Hu B, He XH, Ou-Yang DY. Blocking reverse electron transfer-mediated mitochondrial DNA oxidation rescues cells from PANoptosis. Acta Pharmacol Sin 2024; 45:594-608. [PMID: 37964019 PMCID: PMC10834539 DOI: 10.1038/s41401-023-01182-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
PANoptosis is a new type of cell death featured with pyroptosis, apoptosis and necroptosis, and is implicated in organ injury and mortality in various inflammatory diseases, such as sepsis and hemophagocytic lymphohistiocytosis (HLH). Reverse electron transport (RET)-mediated mitochondrial reactive oxygen species (mtROS) has been shown to contribute to pyroptosis and necroptosis. In this study we investigated the roles of mtROS and RET in PANoptosis induced by TGF-β-activated kinase 1 (TAK1) inhibitor 5Z-7-oxozeaenol (Oxo) plus lipopolysaccharide (LPS) as well as the effects of anti-RET reagents on PANoptosis. We showed that pretreatment with anti-RET reagents 1-methoxy PMS (MPMS) or dimethyl fumarate (DMF) dose-dependently inhibited PANoptosis in macrophages BMDMs and J774A.1 cells induced by Oxo/LPS treatment assayed by propidium iodide (PI) staining. The three arms of the PANoptosis signaling pathway, namely pyroptosis, apoptosis and necroptosis signaling, as well as the formation of PANoptosomes were all inhibited by MPMS or DMF. We demonstrated that Oxo/LPS treatment induced RET and mtROS in BMDMs, which were reversed by MPMS or DMF pretreatment. Interestingly, the PANoptosome was co-located with mitochondria, in which the mitochondrial DNA was oxidized. MPMS and DMF fully blocked the mtROS production and the formation of PANoptosome induced by Oxo plus LPS treatment. An HLH mouse model was established by poly(I:C)/LPS challenge. Pretreatment with DMF (50 mg·kg-1·d-1, i.g. for 3 days) or MPMS (10 mg·kg-1·d-1, i.p. for 2 days) (DMF i.g. MPMS i.p.) effectively alleviated HLH lesions accompanied by decreased hallmarks of PANoptosis in the liver and kidney. Collectively, RET and mtDNA play crucial roles in PANoptosis induction and anti-RET reagents represent a novel class of PANoptosis inhibitors by blocking oxidation of mtDNA, highlighting their potential application in treating PANoptosis-related inflammatory diseases. PANoptotic stimulation induces reverse electron transport (RET) and reactive oxygen species (ROS) in mitochondia, while 1-methoxy PMS and dimethyl fumarate can inhibit PANoptosis by suppressing RETmediated oxidation of mitochondrial DNA.
Collapse
Affiliation(s)
- Fu-Li Shi
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qing Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Rong Xu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Li-Sha Yuan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ying Chen
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zi-Jian Shi
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Ya-Ping Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zhi-Ya Zhou
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qing-Bing Zha
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Department of Clinical Laboratory, the Fifth Affiliated Hospital of Jinan University, Heyuan, 517000, China
| | - Bo Hu
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
- Department of Clinical Laboratory, the Fifth Affiliated Hospital of Jinan University, Heyuan, 517000, China.
| | - Dong-Yun Ou-Yang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
17
|
Song X, Gu X, Chen S, Qi Z, Yu J, Zhou Y, Xia X. Far-red light inhibits lateral bud growth mainly through enhancing apical dominance independently of strigolactone synthesis in tomato. PLANT, CELL & ENVIRONMENT 2024; 47:429-441. [PMID: 37916615 DOI: 10.1111/pce.14758] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
The ratio of red light to far-red light (R:FR) is perceived by light receptors and consequently regulates plant architecture. Regulation of shoot branching by R:FR ratio involves plant hormones. However, the roles of strigolactone (SL), the key shoot branching hormone and the interplay of different hormones in the light regulation of shoot branching in tomato (Solanum lycopersicum) are elusive. Here, we found that defects in SL synthesis genes CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7) and CCD8 in tomato resulted in more lateral bud growth but failed to reverse the FR inhibition of lateral bud growth, which was associated with increased auxin synthesis and decreased synthesis of cytokinin (CK) and brassinosteroid (BR). Treatment of auxin also inhibited shoot branching in ccd mutants. However, CK released the FR inhibition of lateral bud growth in ccd mutants, concomitant with the upregulation of BR synthesis genes. Furthermore, plants that overexpressed BR synthesis gene showed more lateral bud growth and the shoot branching was less sensitive to the low R:FR ratio. The results indicate that SL synthesis is dispensable for light regulation of shoot branching in tomato. Auxin mediates the response to R:FR ratio to regulate shoot branching by suppressing CK and BR synthesis.
Collapse
Affiliation(s)
- Xuewei Song
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaohua Gu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
| | - Shangyu Chen
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhenyu Qi
- Hainan Institute, Zhejiang University, Sanya, People's Republic of China
- Agricultural Experiment Station, Zhejiang University, Hangzhou, People's Republic of China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
- Hainan Institute, Zhejiang University, Sanya, People's Republic of China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
- Hainan Institute, Zhejiang University, Sanya, People's Republic of China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
- Hainan Institute, Zhejiang University, Sanya, People's Republic of China
| |
Collapse
|
18
|
Waite JM, Dardick C. IGT/LAZY genes are differentially influenced by light and required for light-induced change to organ angle. BMC Biol 2024; 22:8. [PMID: 38233837 PMCID: PMC10795295 DOI: 10.1186/s12915-024-01813-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Plants adjust their growth orientations primarily in response to light and gravity signals. Considering that the gravity vector is fixed and the angle of light incidence is constantly changing, plants must somehow integrate these signals to establish organ orientation, commonly referred to as gravitropic set-point angle (GSA). The IGT gene family contains known regulators of GSA, including the gene clades LAZY, DEEPER ROOTING (DRO), and TILLER ANGLE CONTROL (TAC). RESULTS Here, we investigated the influence of light on different aspects of GSA phenotypes in LAZY and DRO mutants, as well as the influence of known light signaling pathways on IGT gene expression. Phenotypic analysis revealed that LAZY and DRO genes are collectively required for changes in the angle of shoot branch tip and root growth in response to light. Single lazy1 mutant branch tips turn upward in the absence of light and in low light, similar to wild-type, and mimic triple and quadruple IGT mutants in constant light and high-light conditions, while triple and quadruple IGT/LAZY mutants show little to no response to changing light regimes. Further, the expression of IGT/LAZY genes is differentially influenced by daylength, circadian clock, and light signaling. CONCLUSIONS Collectively, the data show that differential expression of LAZY and DRO genes are required to enable plants to alter organ angles in response to light-mediated signals.
Collapse
Affiliation(s)
- Jessica Marie Waite
- United States Department of Agriculture (USDA) Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, USA.
- Present Address: USDA Tree Fruit Research Laboratory, 1104 N Western Avenue, Wenatchee, WA, USA.
| | - Christopher Dardick
- United States Department of Agriculture (USDA) Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, USA
| |
Collapse
|
19
|
Wang YX, Liu XY, Di HH, He XS, Sun Y, Xiang S, Huang ZB. The mechanism of microbial community succession and microbial co-occurrence network in soil with compost application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167409. [PMID: 37769744 DOI: 10.1016/j.scitotenv.2023.167409] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
The application of organic and chemical fertilizer into soil can regulate microbial communities. However, the response mechanism of microbial communities in soil to compost and chemical fertilizer application remain unclear. In this study, compost made of tobacco leaves individually and combined with chemical fertilizer was applied, respectively, to investigate their effect on soil microorganisms during the pot-culture process. High-throughput sequence, neutral community model and null model were employed to clarify how soil microbial community respond to the application of compost and chemical fertilizer. Furthermore, random forest model was applied to predict the relationships between the plant agronomical traits and the soil microorganism during the pot-culture process. The results demonstrated that the simultaneous application of compost and chemical fertilizer increased significantly the richness and diversity of the microorganisms in soil (p < 0.05), groups C and D led to a significant reduction in the number of nodes and edges in the microbial network (77.78 %-96.57 %). The dominant bacteria in the application of 50 g fertilizer accounted for the highest proportion (40 %) and organic matter was the main factors driving the change in bacterial communities. Compared to the tilled soil, the microbial communities of the soil with the simultaneous application of compost and chemical fertilizer were more susceptible to stochastic processes, and soil microorganisms had less influence on the growth of crops during pot-culture. In conclusion, the simultaneous application of compost and fertilizer altered the ecological functions of soil microbial communities, leading to an enhanced stochastic process of community formation.
Collapse
Affiliation(s)
- Yu-Xin Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xie-Yang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Hui-Hui Di
- Enshi Tobacco Company of Hubei Province Corporation, Enshi 445000, China
| | - Xiao-Song He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yue Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Song Xiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zhan-Bin Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| |
Collapse
|
20
|
Li J, Yang J, Gao Y, Zhang Z, Gao C, Chen S, Liesche J. Parallel auxin transport via PINs and plasmodesmata during the Arabidopsis leaf hyponasty response. PLANT CELL REPORTS 2023; 43:4. [PMID: 38117314 PMCID: PMC10733227 DOI: 10.1007/s00299-023-03119-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
KEY MESSAGE The leaf hyponasty response depends on tip-to-petiole auxin transport. This transport can happen through two parallel pathways: active trans-membrane transport mediated by PIN proteins and passive diffusion through plasmodesmata. A plant's ability to counteract potential shading by neighboring plants depends on transport of the hormone auxin. Neighbor sensing at the leaf tip triggers auxin production. Once this auxin reaches the abaxial petiole epidermis, it causes cell elongation, which leads to leaf hyponasty. Two pathways are known to contribute to this intercellular tip-to-petiole auxin movement: (i) transport facilitated by plasma membrane-localized PIN auxin transporters and (ii) diffusion enabled by plasmodesmata. We tested if these two modes of transport are arranged sequentially or in parallel. Moreover, we investigated if they are functionally linked. Mutants in which one of the two pathways is disrupted indicated that both pathways are necessary for a full hyponasty response. Visualization of PIN3-GFP and PIN7-GFP localization indicated PIN-mediated transport in parallel to plasmodesmata-mediated transport along abaxial midrib epidermis cells. We found plasmodesmata-mediated cell coupling in the pin3pin4pin7 mutant to match wild-type levels, indicating no redundancy between pathways. Similarly, PIN3, PIN4 and PIN7 mRNA levels were unaffected in a mutant with disrupted plasmodesmata pathway. Our results provide mechanistic insight on leaf hyponasty, which might facilitate the manipulation of the shade avoidance response in crops.
Collapse
Affiliation(s)
- Jiazhou Li
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
- Biomass Energy Center for Arid and Semiarid Lands, Northwest A & F University, Yangling, 712100, China
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A & F University, Yangling, 712100, China
| | - Jintao Yang
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
- Biomass Energy Center for Arid and Semiarid Lands, Northwest A & F University, Yangling, 712100, China
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A & F University, Yangling, 712100, China
| | - Yibo Gao
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Ziyu Zhang
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Chen Gao
- Institute for Molecular Physiology, University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Shaolin Chen
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
- Biomass Energy Center for Arid and Semiarid Lands, Northwest A & F University, Yangling, 712100, China
| | - Johannes Liesche
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China.
- Biomass Energy Center for Arid and Semiarid Lands, Northwest A & F University, Yangling, 712100, China.
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A & F University, Yangling, 712100, China.
- Institute of Biology, University of Graz, Schubertstraße 51, 8010, Graz, Austria.
| |
Collapse
|
21
|
Mammarella MF, Lucero L, Hussain N, Muñoz‐Lopez A, Huang Y, Ferrero L, Fernandez‐Milmanda GL, Manavella P, Benhamed M, Crespi M, Ballare CL, Gutiérrez Marcos J, Cubas P, Ariel F. Long noncoding RNA-mediated epigenetic regulation of auxin-related genes controls shade avoidance syndrome in Arabidopsis. EMBO J 2023; 42:e113941. [PMID: 38054357 PMCID: PMC10711646 DOI: 10.15252/embj.2023113941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023] Open
Abstract
The long noncoding RNA (lncRNA) AUXIN-REGULATED PROMOTER LOOP (APOLO) recognizes a subset of target loci across the Arabidopsis thaliana genome by forming RNA-DNA hybrids (R-loops) and modulating local three-dimensional chromatin conformation. Here, we show that APOLO regulates shade avoidance syndrome by dynamically modulating expression of key factors. In response to far-red (FR) light, expression of APOLO anti-correlates with that of its target BRANCHED1 (BRC1), a master regulator of shoot branching in Arabidopsis thaliana. APOLO deregulation results in BRC1 transcriptional repression and an increase in the number of branches. Accumulation of APOLO transcription fine-tunes the formation of a repressive chromatin loop encompassing the BRC1 promoter, which normally occurs only in leaves and in a late response to far-red light treatment in axillary buds. In addition, our data reveal that APOLO participates in leaf hyponasty, in agreement with its previously reported role in the control of auxin homeostasis through direct modulation of auxin synthesis gene YUCCA2, and auxin efflux genes PID and WAG2. We show that direct application of APOLO RNA to leaves results in a rapid increase in auxin signaling that is associated with changes in the plant response to far-red light. Collectively, our data support the view that lncRNAs coordinate shade avoidance syndrome in A. thaliana, and reveal their potential as exogenous bioactive molecules. Deploying exogenous RNAs that modulate plant-environment interactions may therefore become a new tool for sustainable agriculture.
Collapse
Affiliation(s)
| | - Leandro Lucero
- Instituto de Agrobiotecnología del Litoral, CONICETUniversidad Nacional del LitoralSanta FeArgentina
| | | | - Aitor Muñoz‐Lopez
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología‐CSICCampus Universidad Autónoma de MadridMadridSpain
| | - Ying Huang
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRAUniversité Evry, Université Paris‐SaclayOrsayFrance
- Institute of Plant Sciences Paris‐Saclay IPS2Université de ParisOrsayFrance
| | - Lucia Ferrero
- Instituto de Agrobiotecnología del Litoral, CONICETUniversidad Nacional del LitoralSanta FeArgentina
| | - Guadalupe L Fernandez‐Milmanda
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad de Buenos AiresBuenos AiresArgentina
| | - Pablo Manavella
- Instituto de Agrobiotecnología del Litoral, CONICETUniversidad Nacional del LitoralSanta FeArgentina
| | - Moussa Benhamed
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRAUniversité Evry, Université Paris‐SaclayOrsayFrance
- Institute of Plant Sciences Paris‐Saclay IPS2Université de ParisOrsayFrance
| | - Martin Crespi
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRAUniversité Evry, Université Paris‐SaclayOrsayFrance
- Institute of Plant Sciences Paris‐Saclay IPS2Université de ParisOrsayFrance
| | - Carlos L Ballare
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Biotecnológicas (IIBIO), CONICETUniversidad Nacional de San MartínBuenos AiresArgentina
| | | | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología‐CSICCampus Universidad Autónoma de MadridMadridSpain
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICETUniversidad Nacional del LitoralSanta FeArgentina
| |
Collapse
|
22
|
Wong C, Alabadí D, Blázquez MA. Spatial regulation of plant hormone action. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6089-6103. [PMID: 37401809 PMCID: PMC10575700 DOI: 10.1093/jxb/erad244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Although many plant cell types are capable of producing hormones, and plant hormones can in most cases act in the same cells in which they are produced, they also act as signaling molecules that coordinate physiological responses between different parts of the plant, indicating that their action is subject to spatial regulation. Numerous publications have reported that all levels of plant hormonal pathways, namely metabolism, transport, and perception/signal transduction, can help determine the spatial ranges of hormone action. For example, polar auxin transport or localized auxin biosynthesis contribute to creating a differential hormone accumulation across tissues that is instrumental for specific growth and developmental responses. On the other hand, tissue specificity of cytokinin actions has been proposed to be regulated by mechanisms operating at the signaling stages. Here, we review and discuss current knowledge about the contribution of the three levels mentioned above in providing spatial specificity to plant hormone action. We also explore how new technological developments, such as plant hormone sensors based on FRET (fluorescence resonance energy transfer) or single-cell RNA-seq, can provide an unprecedented level of resolution in defining the spatial domains of plant hormone action and its dynamics.
Collapse
Affiliation(s)
- Cynthia Wong
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| |
Collapse
|
23
|
Pantazopoulou CK, Buti S, Nguyen CT, Oskam L, Weits DA, Farmer EE, Kajala K, Pierik R. Mechanodetection of neighbor plants elicits adaptive leaf movements through calcium dynamics. Nat Commun 2023; 14:5827. [PMID: 37730832 PMCID: PMC10511701 DOI: 10.1038/s41467-023-41530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
Plants detect their neighbors via various cues, including reflected light and touching of leaf tips, which elicit upward leaf movement (hyponasty). It is currently unknown how touch is sensed and how the signal is transferred from the leaf tip to the petiole base that drives hyponasty. Here, we show that touch-induced hyponasty involves a signal transduction pathway that is distinct from light-mediated hyponasty. We found that mechanostimulation of the leaf tip upon touching causes cytosolic calcium ([Ca2+]cyt induction in leaf tip trichomes that spreads towards the petiole. Both perturbation of the calcium response and the absence of trichomes reduce touch-induced hyponasty. Finally, using plant competition assays, we show that touch-induced hyponasty is adaptive in dense stands of Arabidopsis. We thus establish a novel, adaptive mechanism regulating hyponastic leaf movement in response to mechanostimulation by neighbors in dense vegetation.
Collapse
Affiliation(s)
- Chrysoula K Pantazopoulou
- Plant-Environment Signaling, Institute of Environment Biology, Utrecht University, Utrecht, The Netherlands.
| | - Sara Buti
- Plant-Environment Signaling, Institute of Environment Biology, Utrecht University, Utrecht, The Netherlands
| | - Chi Tam Nguyen
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Lisa Oskam
- Plant-Environment Signaling, Institute of Environment Biology, Utrecht University, Utrecht, The Netherlands
| | - Daan A Weits
- Plant-Environment Signaling, Institute of Environment Biology, Utrecht University, Utrecht, The Netherlands
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Kaisa Kajala
- Plant-Environment Signaling, Institute of Environment Biology, Utrecht University, Utrecht, The Netherlands
| | - Ronald Pierik
- Plant-Environment Signaling, Institute of Environment Biology, Utrecht University, Utrecht, The Netherlands.
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
24
|
Geldhof B, Pattyn J, Van de Poel B. From a different angle: genetic diversity underlies differentiation of waterlogging-induced epinasty in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1178778. [PMID: 37324684 PMCID: PMC10264670 DOI: 10.3389/fpls.2023.1178778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
In tomato, downward leaf bending is a morphological adaptation towards waterlogging, which has been shown to induce a range of metabolic and hormonal changes. This kind of functional trait is often the result of a complex interplay of regulatory processes starting at the gene level, gated through a plethora of signaling cascades and modulated by environmental cues. Through phenotypical screening of a population of 54 tomato accessions in a Genome Wide Association Study (GWAS), we have identified target genes potentially involved in plant growth and survival during waterlogging and subsequent recovery. Changes in both plant growth rate and epinastic descriptors revealed several associations to genes possibly supporting metabolic activity in low oxygen conditions in the root zone. In addition to this general reprogramming, some of the targets were specifically associated to leaf angle dynamics, indicating these genes might play a role in the induction, maintenance or recovery of differential petiole elongation in tomato during waterlogging.
Collapse
Affiliation(s)
- Batist Geldhof
- Molecular Plant Hormone Physiology Lab, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Jolien Pattyn
- Molecular Plant Hormone Physiology Lab, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Bram Van de Poel
- Molecular Plant Hormone Physiology Lab, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Casal JJ, Fankhauser C. Shade avoidance in the context of climate change. PLANT PHYSIOLOGY 2023; 191:1475-1491. [PMID: 36617439 PMCID: PMC10022646 DOI: 10.1093/plphys/kiad004] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 05/13/2023]
Abstract
When exposed to changes in the light environment caused by neighboring vegetation, shade-avoiding plants modify their growth and/or developmental patterns to access more sunlight. In Arabidopsis (Arabidopsis thaliana), neighbor cues reduce the activity of the photosensory receptors phytochrome B (phyB) and cryptochrome 1, releasing photoreceptor repression imposed on PHYTOCHROME INTERACTING FACTORs (PIFs) and leading to transcriptional reprogramming. The phyB-PIF hub is at the core of all shade-avoidance responses, whilst other photosensory receptors and transcription factors contribute in a context-specific manner. CONSTITUTIVELY PHOTOMORPHOGENIC1 is a master regulator of this hub, indirectly stabilizing PIFs and targeting negative regulators of shade avoidance for degradation. Warm temperatures reduce the activity of phyB, which operates as a temperature sensor and further increases the activities of PIF4 and PIF7 by independent temperature sensing mechanisms. The signaling network controlling shade avoidance is not buffered against climate change; rather, it integrates information about shade, temperature, salinity, drought, and likely flooding. We, therefore, predict that climate change will exacerbate shade-induced growth responses in some regions of the planet while limiting the growth potential in others.
Collapse
Affiliation(s)
- Jorge J Casal
- Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, 1417 Buenos Aires, Argentina
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina
| | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
26
|
Necroptosis of macrophage is a key pathological feature in biliary atresia via GDCA/S1PR2/ZBP1/p-MLKL axis. Cell Death Dis 2023; 14:175. [PMID: 36859525 PMCID: PMC9977961 DOI: 10.1038/s41419-023-05615-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 03/03/2023]
Abstract
Biliary atresia (BA) is a severe inflammatory and fibrosing neonatal cholangiopathy disease characterized by progressive obstruction of extrahepatic bile ducts, resulting in cholestasis and progressive hepatic failure. Cholestasis may play an important role in the inflammatory and fibrotic pathological processes, but its specific mechanism is still unclear. Necroptosis mediated by Z-DNA-binding protein 1 (ZBP1)/phosphorylated-mixed lineage kinase domain-like pseudokinase (p-MLKL) is a prominent pathogenic factor in inflammatory and fibrotic diseases, but its function in BA remains unclear. Here, we aim to determine the effect of macrophage necroptosis in the BA pathology, and to explore the specific molecular mechanism. We found that necroptosis existed in BA livers, which was occurred in liver macrophages. Furthermore, this process was mediated by ZBP1/p-MLKL, and the upregulated expression of ZBP1 in BA livers was correlated with liver fibrosis and prognosis. Similarly, in the bile duct ligation (BDL) induced mouse cholestatic liver injury model, macrophage necroptosis mediated by ZBP1/p-MLKL was also observed. In vitro, conjugated bile acid-glycodeoxycholate (GDCA) upregulated ZBP1 expression in mouse bone marrow-derived monocyte/macrophages (BMDMs) through sphingosine 1-phosphate receptor 2 (S1PR2), and the induction of ZBP1 was a prerequisite for the enhanced necroptosis. Finally, after selectively knocking down of macrophage S1pr2 in vivo, ZBP1/p-MLKL-mediated necroptosis was decreased, and further collagen deposition was markedly attenuated in BDL mice. Furthermore, macrophage Zbp1 or Mlkl specific knockdown also alleviated BDL-induced liver injury/fibrosis. In conclusion, GDCA/S1PR2/ZBP1/p-MLKL mediated macrophage necroptosis plays vital role in the pathogenesis of BA liver fibrosis, and targeting this process may represent a potential therapeutic strategy for BA.
Collapse
|
27
|
Local light signaling at the leaf tip drives remote differential petiole growth through auxin-gibberellin dynamics. Curr Biol 2023; 33:75-85.e5. [PMID: 36538931 PMCID: PMC9839380 DOI: 10.1016/j.cub.2022.11.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/16/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Although plants are immobile, many of their organs are flexible to move in response to environmental cues. In dense vegetation, plants detect neighbors through far-red light perception with their leaf tip. They respond remotely, with asymmetrical growth between the abaxial and adaxial sides of the leafstalk, the petiole. This results in upward movement that brings the leaf blades into better lit zones of the canopy. The plant hormone auxin is required for this response, but it is not understood how non-differential leaf tip-derived auxin can remotely regulate movement. Here, we show that remote signaling of far-red light promotes auxin accumulation in the abaxial petiole. This local auxin accumulation is facilitated by reinforcing an intrinsic directionality of the auxin transport protein PIN3 on the petiole endodermis, as visualized with a PIN3-GFP line. Using an auxin biosensor, we show that auxin accumulates in all cell layers from endodermis to epidermis in the abaxial petiole, upon far-red light signaling in the remote leaf tip. In the petiole, auxin elicits a response to both auxin itself as well as a second growth promoter; gibberellin. We show that this dual regulation is necessary for hyponastic leaf movement in response to light. Our data indicate that gibberellin is required to permit cell growth, whereas differential auxin accumulation determines which cells can grow. Our results reveal how plants can spatially relay information about neighbor proximity from their sensory leaf tips to the petiole base, thus driving adaptive growth.
Collapse
|
28
|
Abstract
When neighbouring competitors shade the tip of a leaf, differential growth at the other end of the organ elevates its position to avoid shade. A new study elucidates how waves of growth hormones communicate these distant leaf sectors.
Collapse
Affiliation(s)
- Jorge J Casal
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1417 Buenos Aires, Argentina; Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina.
| |
Collapse
|
29
|
Michaud O, Krahmer J, Galbier F, Lagier M, Galvão VC, Ince YÇ, Trevisan M, Knerova J, Dickinson P, Hibberd JM, Zeeman SC, Fankhauser C. Abscisic acid modulates neighbor proximity-induced leaf hyponasty in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:542-557. [PMID: 36135791 PMCID: PMC9806605 DOI: 10.1093/plphys/kiac447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/08/2022] [Indexed: 05/27/2023]
Abstract
Leaves of shade-avoiding plants such as Arabidopsis (Arabidopsis thaliana) change their growth pattern and position in response to low red to far-red ratios (LRFRs) encountered in dense plant communities. Under LRFR, transcription factors of the phytochrome-interacting factor (PIF) family are derepressed. PIFs induce auxin production, which is required for promoting leaf hyponasty, thereby favoring access to unfiltered sunlight. Abscisic acid (ABA) has also been implicated in the control of leaf hyponasty, with gene expression patterns suggesting that LRFR regulates the ABA response. Here, we show that LRFR leads to a rapid increase in ABA levels in leaves. Changes in ABA levels depend on PIFs, which regulate the expression of genes encoding isoforms of the enzyme catalyzing a rate-limiting step in ABA biosynthesis. Interestingly, ABA biosynthesis and signaling mutants have more erect leaves than wild-type Arabidopsis under white light but respond less to LRFR. Consistent with this, ABA application decreases leaf angle under white light; however, this response is inhibited under LRFR. Tissue-specific interference with ABA signaling indicates that an ABA response is required in different cell types for LRFR-induced hyponasty. Collectively, our data indicate that LRFR triggers rapid PIF-mediated ABA production. ABA plays a different role in controlling hyponasty under white light than under LRFR. Moreover, ABA exerts its activity in multiple cell types to control leaf position.
Collapse
Affiliation(s)
| | - Johanna Krahmer
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Génopode Building, Lausanne CH-1015, Switzerland
| | - Florian Galbier
- Plant Biochemistry, Department of Biology, ETH Zürich, Universität-Str. 2, CH-8092 Zürich, Switzerland
| | | | | | | | - Martine Trevisan
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Génopode Building, Lausanne CH-1015, Switzerland
| | - Jana Knerova
- Department of Plant Sciences, Downing Street, Cambridge, University of Cambridge, CB2 3EA, UK
| | - Patrick Dickinson
- Department of Plant Sciences, Downing Street, Cambridge, University of Cambridge, CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, Downing Street, Cambridge, University of Cambridge, CB2 3EA, UK
| | - Samuel C Zeeman
- Plant Biochemistry, Department of Biology, ETH Zürich, Universität-Str. 2, CH-8092 Zürich, Switzerland
| | | |
Collapse
|
30
|
Premachandran Y, Ugalde JM. Let the sunshine in: Abscisic acid modulates shade avoidance by inducing hyponasty movement in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:15-17. [PMID: 36308447 PMCID: PMC9806603 DOI: 10.1093/plphys/kiac500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Yadukrishnan Premachandran
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | | |
Collapse
|
31
|
Morgan BL, Donohue K. Parental methylation mediates how progeny respond to environments of parents and of progeny themselves. ANNALS OF BOTANY 2022; 130:883-899. [PMID: 36201313 PMCID: PMC9758305 DOI: 10.1093/aob/mcac125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND AIMS Environments experienced by both parents and offspring influence progeny traits, but the epigenetic mechanisms that regulate the balance of parental vs. progeny control of progeny phenotypes are not known. We tested whether DNA methylation in parents and/or progeny mediates responses to environmental cues experienced in both generations. METHODS Using Arabidopsis thaliana, we manipulated parental and progeny DNA methylation both chemically, via 5-azacytidine, and genetically, via mutants of methyltransferase genes, then measured progeny germination responses to simulated canopy shade in parental and progeny generations. KEY RESULTS We first found that germination of offspring responded to parental but not seed demethylation. We further found that parental demethylation reversed the parental effect of canopy in seeds with low (Cvi-1) to intermediate (Col) dormancy, but it obliterated the parental effect in seeds with high dormancy (Cvi-0). Demethylation did so by either suppressing germination of seeds matured under white-light (Cvi-1) or under canopy (Cvi-0), or by increasing the germination of seeds matured under canopy (Col). Disruption of parental methylation also prevented seeds from responding to their own light environment in one genotype (Cvi-0, most dormant), but it enabled seeds to respond to their own environment in another genotype (Cvi-1, least dormant). Using mutant genotypes, we found that both CG and non-CG DNA methylation were involved in parental effects on seed germination. CONCLUSIONS Parental methylation state influences seed germination more strongly than does the progeny's own methylation state, and it influences how seeds respond to environments of parents and progeny in a genotype-specific manner.
Collapse
Affiliation(s)
- Britany L Morgan
- University Program in Ecology Duke University, Durham, NC 27705, USA
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Kathleen Donohue
- University Program in Ecology Duke University, Durham, NC 27705, USA
- Biology Department, Duke University, Durham, NC 27705, USA
| |
Collapse
|
32
|
Costigliolo Rojas C, Bianchimano L, Oh J, Romero Montepaone S, Tarkowská D, Minguet EG, Schön J, García Hourquet M, Flugel T, Blázquez MA, Choi G, Strnad M, Mora-García S, Alabadi D, Zurbriggen MD, Casal JJ. Organ-specific COP1 control of BES1 stability adjusts plant growth patterns under shade or warmth. Dev Cell 2022; 57:2009-2025.e6. [PMID: 35901789 DOI: 10.1016/j.devcel.2022.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/16/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022]
Abstract
Under adverse conditions such as shade or elevated temperatures, cotyledon expansion is reduced and hypocotyl growth is promoted to optimize plant architecture. The mechanisms underlying the repression of cotyledon cell expansion remain unknown. Here, we report that the nuclear abundance of the BES1 transcription factor decreased in the cotyledons and increased in the hypocotyl in Arabidopsis thaliana under shade or warmth. Brassinosteroid levels did not follow the same trend. PIF4 and COP1 increased their nuclear abundance in both organs under shade or warmth. PIF4 directly bound the BES1 promoter to enhance its activity but indirectly reduced BES1 expression. COP1 physically interacted with the BES1 protein, promoting its proteasome degradation in the cotyledons. COP1 had the opposite effect in the hypocotyl, demonstrating organ-specific regulatory networks. Our work indicates that shade or warmth reduces BES1 activity by transcriptional and post-translational regulation to inhibit cotyledon cell expansion.
Collapse
Affiliation(s)
- Cecilia Costigliolo Rojas
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina
| | - Luciana Bianchimano
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina
| | - Jeonghwa Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Sofía Romero Montepaone
- Institute of Synthetic Biology and Cluster of Excellence in Plant Sciences, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Dana Tarkowská
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czech Republic
| | - Eugenio G Minguet
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Jonas Schön
- Institute of Synthetic Biology and Cluster of Excellence in Plant Sciences, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Mariano García Hourquet
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina
| | - Timo Flugel
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina
| | - Miguel A Blázquez
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Giltsu Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czech Republic
| | - Santiago Mora-García
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina
| | - David Alabadi
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and Cluster of Excellence in Plant Sciences, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Jorge J Casal
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina; Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1417 Buenos Aires, Argentina.
| |
Collapse
|
33
|
Fiorucci AS, Michaud O, Schmid-Siegert E, Trevisan M, Allenbach Petrolati L, Çaka Ince Y, Fankhauser C. Shade suppresses wound-induced leaf repositioning through a mechanism involving PHYTOCHROME KINASE SUBSTRATE (PKS) genes. PLoS Genet 2022; 18:e1010213. [PMID: 35622862 PMCID: PMC9197076 DOI: 10.1371/journal.pgen.1010213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 06/14/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Shaded plants challenged with herbivores or pathogens prioritize growth over defense. However, most experiments have focused on the effect of shading light cues on defense responses. To investigate the potential interaction between shade-avoidance and wounding-induced Jasmonate (JA)-mediated signaling on leaf growth and movement, we used repetitive mechanical wounding of leaf blades to mimic herbivore attacks. Phenotyping experiments with combined treatments on Arabidopsis thaliana rosettes revealed that shade strongly inhibits the wound effect on leaf elevation. By contrast, petiole length is reduced by wounding both in the sun and in the shade. Thus, the relationship between the shade and wounding/JA pathways varies depending on the physiological response, implying that leaf growth and movement can be uncoupled. Using RNA-sequencing, we identified genes with expression patterns matching the hyponastic response (opposite regulation by both stimuli, interaction between treatments with shade dominating the wound signal). Among them were genes from the PKS (Phytochrome Kinase Substrate) family, which was previously studied for its role in phototropism and leaf positioning. Interestingly, we observed reduced shade suppression of the wounding effect in pks2pks4 double mutants while a PKS4 overexpressing line showed constitutively elevated leaves and was less sensitive to wounding. Our results indicate a trait-specific interrelationship between shade and wounding cues on Arabidopsis leaf growth and positioning. Moreover, we identify PKS genes as integrators of external cues in the control of leaf hyponasty further emphasizing the role of these genes in aerial organ positioning. Plants face different types of stressful situations without the ability to relocate to favorable environments. For example, increasing plant density reduces access to sunlight as plants start to shade each other. Foliar shading represents a stress that many plants cope with by changing their morphology. This includes elongation of stem-like structures and repositioning of leaves to favor access to unfiltered sunlight. Plants also defend themselves against various pathogens including herbivores. Defense mechanisms include the production of deterrent chemical and morphological adaptations such as stunted growth and downwards leaf repositioning. Here we studied the morphological response of plants when simultaneously facing shade and herbivore stress. When facing both stresses petiole growth was intermediate between the shade-enhanced and wound-repressed response. In contrast, the shade cue overrides the wounding cue leading to a similar upwards leaf repositioning in the combined treatments or in the response to shade alone. Using gene expression analyses and genetics we identified two members of the Phytochrome Kinase Substrate family as playing a signal integration role when plants simultaneously faced both stresses. This contributes to our understanding of the mechanisms underlying plant morphological adaptations when facing multiple stresses.
Collapse
Affiliation(s)
- Anne-Sophie Fiorucci
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Olivier Michaud
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Martine Trevisan
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Laure Allenbach Petrolati
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Yetkin Çaka Ince
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Christian Fankhauser
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
34
|
Li M, Wang ZW, Fang LJ, Cheng SQ, Wang X, Liu NF. Programmed cell death in atherosclerosis and vascular calcification. Cell Death Dis 2022; 13:467. [PMID: 35585052 PMCID: PMC9117271 DOI: 10.1038/s41419-022-04923-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022]
Abstract
The concept of cell death has been expanded beyond apoptosis and necrosis to additional forms, including necroptosis, pyroptosis, autophagy, and ferroptosis. These cell death modalities play a critical role in all aspects of life, which are noteworthy for their diverse roles in diseases. Atherosclerosis (AS) and vascular calcification (VC) are major causes for the high morbidity and mortality of cardiovascular disease. Despite considerable advances in understanding the signaling pathways associated with AS and VC, the exact molecular basis remains obscure. In the article, we review the molecular mechanisms that mediate cell death and its implications for AS and VC. A better understanding of the mechanisms underlying cell death in AS and VC may drive the development of promising therapeutic strategies.
Collapse
Affiliation(s)
- Min Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Zhen-Wei Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Li-Juan Fang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Shou-Quan Cheng
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Xin Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Nai-Feng Liu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, PR China.
| |
Collapse
|
35
|
Xie X, Cheng H, Hou C, Ren M. Integration of Light and Auxin Signaling in Shade Plants: From Mechanisms to Opportunities in Urban Agriculture. Int J Mol Sci 2022; 23:3422. [PMID: 35408782 PMCID: PMC8998421 DOI: 10.3390/ijms23073422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 11/24/2022] Open
Abstract
With intensification of urbanization throughout the world, food security is being threatened by the population surge, frequent occurrence of extreme climate events, limited area of available cultivated land, insufficient utilization of urban space, and other factors. Determining the means by which high-yielding and high-quality crops can be produced in a limited space is an urgent priority for plant scientists. Dense planting, vertical production, and indoor cultivation are effective ways to make full use of space and improve the crop yield. The results of physiological and molecular analyses of the model plant species Arabidopsis thaliana have shown that the plant response to shade is the key to regulating the plant response to changes in light intensity and quality by integrating light and auxin signals. In this study, we have summarized the major molecular mechanisms of shade avoidance and shade tolerance in plants. In addition, the biotechnological strategies of enhancing plant shade tolerance are discussed. More importantly, cultivating crop varieties with strong shade tolerance could provide effective strategies for dense planting, vertical production, and indoor cultivation in urban agriculture in the future.
Collapse
Affiliation(s)
- Xiulan Xie
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; (X.X.); (H.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China;
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Hao Cheng
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; (X.X.); (H.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China;
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Chenyang Hou
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China;
| | - Maozhi Ren
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; (X.X.); (H.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China;
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
36
|
Du J, Xiang Y, Liu H, Liu S, Kumar A, Xing C, Wang Z. RIPK1 dephosphorylation and kinase activation by PPP1R3G/PP1γ promote apoptosis and necroptosis. Nat Commun 2021; 12:7067. [PMID: 34862394 PMCID: PMC8642546 DOI: 10.1038/s41467-021-27367-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 11/11/2021] [Indexed: 01/10/2023] Open
Abstract
Receptor-interacting protein kinase 1 (RIPK1) is a key regulator of inflammation and cell death. Many sites on RIPK1, including serine 25, are phosphorylated to inhibit its kinase activity and cell death. How these inhibitory phosphorylation sites are dephosphorylated is poorly understood. Using a sensitized CRISPR whole-genome knockout screen, we discover that protein phosphatase 1 regulatory subunit 3G (PPP1R3G) is required for RIPK1-dependent apoptosis and type I necroptosis. Mechanistically, PPP1R3G recruits its catalytic subunit protein phosphatase 1 gamma (PP1γ) to complex I to remove inhibitory phosphorylations of RIPK1. A PPP1R3G mutant which does not bind PP1γ fails to rescue RIPK1 activation and cell death. Furthermore, chemical prevention of RIPK1 inhibitory phosphorylations or mutation of serine 25 of RIPK1 to alanine largely restores cell death in PPP1R3G-knockout cells. Finally, Ppp1r3g-/- mice are protected from tumor necrosis factor-induced systemic inflammatory response syndrome, confirming the important role of PPP1R3G in regulating apoptosis and necroptosis in vivo.
Collapse
Affiliation(s)
- Jingchun Du
- grid.267313.20000 0000 9482 7121Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 USA ,grid.410737.60000 0000 8653 1072Department of Clinical Immunology, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510182 China
| | - Yougui Xiang
- grid.267313.20000 0000 9482 7121Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 USA ,grid.492659.50000 0004 0492 4462Caris Life Sciences, 4610 South 44th Place, Phoenix, AZ 85040 USA
| | - Hua Liu
- grid.267313.20000 0000 9482 7121Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 USA ,School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006 China
| | - Shuzhen Liu
- grid.267313.20000 0000 9482 7121Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 USA
| | - Ashwani Kumar
- grid.267313.20000 0000 9482 7121Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 USA
| | - Chao Xing
- grid.267313.20000 0000 9482 7121Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 USA ,grid.267313.20000 0000 9482 7121Department of Bioinformatics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 USA ,grid.267313.20000 0000 9482 7121Department of Population and Data Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 USA
| | - Zhigao Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA. .,Center for Regenerative Medicine, Heart Institute, Department of Internal Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL, 33602, USA.
| |
Collapse
|
37
|
Fortineau A, Combes D, Richard-Molard C, Frak E, Jullien A. LightCue: An Innovative Far-Red Light Emitter for Locally Modifying the Spectral Cue in Outdoor Conditions with Global Consequences on Plant Architecture. PLANTS 2021; 10:plants10112483. [PMID: 34834846 PMCID: PMC8625856 DOI: 10.3390/plants10112483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
Plasticity of plant architecture is a promising lever to increase crop resilience to biotic and abiotic damage. Among the main drivers of its regulation are the spectral signals which occur via photomorphogenesis processes. In particular, branching, one of the yield components, is responsive to photosynthetic photon flux density (PPFD) and to red to far-red ratio (R:FR), both signals whose effects are tricky to decorrelate in the field. Here, we developed a device consisting of far-red light emitting diode (LED) rings. It can reduce the R:FR ratio to 0.14 in the vicinity of an organ without changing the PPFD in outdoor high irradiance fluctuating conditions, which is a breakthrough as LEDs have been mostly used in non-fluctuant controlled conditions at low irradiance over short periods of time. Applied at the base of rapeseed stems during the whole bolting-reproductive phase, LightCue induced an expected significant inhibitory effect on two basal targeted axillary buds and a strong unexpected stimulatory effect on the overall plant aerial architecture. It increased shoot/root ratio while not modifying the carbon balance. LightCue therefore represents a promising device for progress in the understanding of light signal regulation in the field.
Collapse
Affiliation(s)
- Alain Fortineau
- INRAE, AgroParisTech, UMR EcoSys, Université Paris-Saclay, 78850 Thiverval-Grignon, France; (A.F.); (C.R.-M.)
| | - Didier Combes
- INRAE, UR P3F, 86600 Lusignan, France; (D.C.); (E.F.)
| | - Céline Richard-Molard
- INRAE, AgroParisTech, UMR EcoSys, Université Paris-Saclay, 78850 Thiverval-Grignon, France; (A.F.); (C.R.-M.)
| | - Ela Frak
- INRAE, UR P3F, 86600 Lusignan, France; (D.C.); (E.F.)
| | - Alexandra Jullien
- INRAE, AgroParisTech, UMR EcoSys, Université Paris-Saclay, 78850 Thiverval-Grignon, France; (A.F.); (C.R.-M.)
- Correspondence: ; Tel.: +33-130815579
| |
Collapse
|
38
|
Courbier S, Snoek BL, Kajala K, Li L, van Wees SCM, Pierik R. Mechanisms of far-red light-mediated dampening of defense against Botrytis cinerea in tomato leaves. PLANT PHYSIOLOGY 2021; 187:1250-1266. [PMID: 34618050 PMCID: PMC8566310 DOI: 10.1093/plphys/kiab354] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Plants detect neighboring competitors through a decrease in the ratio between red and far-red light (R:FR). This decreased R:FR is perceived by phytochrome photoreceptors and triggers shade avoidance responses such as shoot elongation and upward leaf movement (hyponasty). In addition to promoting elongation growth, low R:FR perception enhances plant susceptibility to pathogens: the growth-defense tradeoff. Although increased susceptibility in low R:FR has been studied for over a decade, the associated timing of molecular events is still unknown. Here, we studied the chronology of FR-induced susceptibility events in tomato (Solanum lycopersicum) plants pre-exposed to either white light (WL) or WL supplemented with FR light (WL+FR) prior to inoculation with the necrotrophic fungus Botrytis cinerea (B.c.). We monitored the leaf transcriptional changes over a 30-h time course upon infection and followed up with functional studies to identify mechanisms. We found that FR-induced susceptibility in tomato is linked to a general dampening of B.c.-responsive gene expression, and a delay in both pathogen recognition and jasmonic acid-mediated defense gene expression. In addition, we found that the supplemental FR-induced ethylene emissions affected plant immune responses under the WL+FR condition. This study improves our understanding of the growth-immunity tradeoff, while simultaneously providing leads to improve tomato resistance against pathogens in dense cropping systems.
Collapse
Affiliation(s)
- Sarah Courbier
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, The Netherlands
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics, Institute of Biodynamics and Biocomplexity, Utrecht University, The Netherlands
| | - Kaisa Kajala
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, The Netherlands
| | - Linge Li
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, The Netherlands
| | - Saskia C M van Wees
- Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, The Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, The Netherlands
| |
Collapse
|
39
|
Geldhof B, Pattyn J, Eyland D, Carpentier S, Van de Poel B. A digital sensor to measure real-time leaf movements and detect abiotic stress in plants. PLANT PHYSIOLOGY 2021; 187:1131-1148. [PMID: 34618089 PMCID: PMC8566216 DOI: 10.1093/plphys/kiab407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/02/2021] [Indexed: 05/31/2023]
Abstract
Plant and plant organ movements are the result of a complex integration of endogenous growth and developmental responses, partially controlled by the circadian clock, and external environmental cues. Monitoring of plant motion is typically done by image-based phenotyping techniques with the aid of computer vision algorithms. Here we present a method to measure leaf movements using a digital inertial measurement unit (IMU) sensor. The lightweight sensor is easily attachable to a leaf or plant organ and records angular traits in real-time for two dimensions (pitch and roll) with high resolution (measured sensor oscillations of 0.36 ± 0.53° for pitch and 0.50 ± 0.65° for roll). We were able to record simple movements such as petiole bending, as well as complex lamina motions, in several crops, ranging from tomato to banana. We also assessed growth responses in terms of lettuce rosette expansion and maize seedling stem movements. The IMU sensors are capable of detecting small changes of nutations (i.e. bending movements) in leaves of different ages and in different plant species. In addition, the sensor system can also monitor stress-induced leaf movements. We observed that unfavorable environmental conditions evoke certain leaf movements, such as drastic epinastic responses, as well as subtle fading of the amplitude of nutations. In summary, the presented digital sensor system enables continuous detection of a variety of leaf motions with high precision, and is a low-cost tool in the field of plant phenotyping, with potential applications in early stress detection.
Collapse
Affiliation(s)
- Batist Geldhof
- Department of Biosystems, Division of Crop Biotechnics, Molecular Plant Hormone Physiology Lab, University of Leuven, Leuven 3001, Belgium
| | - Jolien Pattyn
- Department of Biosystems, Division of Crop Biotechnics, Molecular Plant Hormone Physiology Lab, University of Leuven, Leuven 3001, Belgium
| | - David Eyland
- Department of Biosystems, Division of Crop Biotechnics, Tropical Crop Improvement Laboratory, University of Leuven, Leuven 3001, Belgium
| | - Sebastien Carpentier
- Department of Biosystems, Division of Crop Biotechnics, Tropical Crop Improvement Laboratory, University of Leuven, Leuven 3001, Belgium
- Bioversity International, Leuven, 3001, Belgium
| | - Bram Van de Poel
- Department of Biosystems, Division of Crop Biotechnics, Molecular Plant Hormone Physiology Lab, University of Leuven, Leuven 3001, Belgium
| |
Collapse
|
40
|
Adjesiwor AT, Ballenger JG, Weinig C, Ewers BE, Kniss AR. Plastic response to early shade avoidance cues has season-long effect on Beta vulgaris growth and development. PLANT, CELL & ENVIRONMENT 2021; 44:3538-3551. [PMID: 34424563 PMCID: PMC9290947 DOI: 10.1111/pce.14171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Early-emerging weeds are known to negatively affect crop growth but the mechanisms by which weeds reduce crop yield are not fully understood. In a 4-year study, we evaluated the effect of duration of weed-reflected light on sugar beet (Beta vulgaris L.) growth and development. The study included an early-season weed removal series and a late-season weed addition series of treatments arranged in a randomized complete block, and the study design minimized direct resource competition. If weeds were present from emergence until the two true-leaf sugar beet stage, sugar beet leaf area was reduced 22%, leaf biomass reduced 25%, and root biomass reduced 32% compared to sugar beet grown season-long without surrounding weeds. Leaf area, leaf biomass, and root biomass was similar whether weeds were removed at the two true-leaf stage (approximately 330 GDD after planting) or allowed to remain until sugar beet harvest (approximately 1,240 GDD after planting). Adding weeds at the two true-leaf stage and leaving them until harvest (~1,240 GDD) reduced sugar beet leaf and root biomass by 18% and 23%, respectively. This work suggests sugar beet responds early and near-irreversibly to weed presence and has implications for crop management genetic improvement.
Collapse
Affiliation(s)
- Albert T. Adjesiwor
- Department of Plant SciencesUniversity of WyomingLaramieWyomingUSA
- Present address:
Kimberly Research and Extension CenterUniversity of IdahoKimberly 83341IDUSA
| | | | - Cynthia Weinig
- Department of BotanyUniversity of WyomingLaramieWyomingUSA
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
- Program in EcologyUniversity of WyomingLaramieWyomingUSA
| | - Brent E. Ewers
- Department of BotanyUniversity of WyomingLaramieWyomingUSA
- Program in EcologyUniversity of WyomingLaramieWyomingUSA
| | - Andrew R. Kniss
- Department of Plant SciencesUniversity of WyomingLaramieWyomingUSA
| |
Collapse
|
41
|
Reprint of: Functional-structural plant models to boost understanding of complementarity in light capture and use in mixed-species forests. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Park YJ, Kim JY, Lee JH, Han SH, Park CM. External and Internal Reshaping of Plant Thermomorphogenesis. TRENDS IN PLANT SCIENCE 2021; 26:810-821. [PMID: 33583729 DOI: 10.1016/j.tplants.2021.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/05/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Plants dynamically adapt to changing temperatures to ensure propagation and reproductive success, among which morphogenic responses to warm temperatures have been extensively studied in recent years. As readily inferred from the cyclic co-oscillations of environmental cues in nature, plant thermomorphogenesis is coordinately reshaped by various external conditions. Accumulating evidence supports that internal and developmental cues also contribute to harmonizing thermomorphogenic responses. The external and internal reshaping of thermomorphogenesis is facilitated by versatile temperature sensing and interorgan communication processes, circadian and photoperiodic gating of thermomorphogenic behaviors, and their metabolic coordination. Here, we discuss recent advances in plant thermal responses with focus on the diel and seasonal reshaping of thermomorphogenesis and briefly explore its application to developing climate-smart crops.
Collapse
Affiliation(s)
- Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - June-Hee Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Shin-Hee Han
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
43
|
Hou S, Thiergart T, Vannier N, Mesny F, Ziegler J, Pickel B, Hacquard S. A microbiota-root-shoot circuit favours Arabidopsis growth over defence under suboptimal light. NATURE PLANTS 2021; 7:1078-1092. [PMID: 34226690 PMCID: PMC8367822 DOI: 10.1038/s41477-021-00956-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/02/2021] [Indexed: 05/03/2023]
Abstract
Bidirectional root-shoot signalling is probably key in orchestrating stress responses and ensuring plant survival. Here, we show that Arabidopsis thaliana responses to microbial root commensals and light are interconnected along a microbiota-root-shoot axis. Microbiota and light manipulation experiments in a gnotobiotic plant system reveal that low photosynthetically active radiation perceived by leaves induces long-distance modulation of root bacterial communities but not fungal or oomycete communities. Reciprocally, microbial commensals alleviate plant growth deficiency under low photosynthetically active radiation. This growth rescue was associated with reduced microbiota-induced aboveground defence responses and altered resistance to foliar pathogens compared with the control light condition. Inspection of a set of A. thaliana mutants reveals that this microbiota- and light-dependent growth-defence trade-off is directly explained by belowground bacterial community composition and requires the host transcriptional regulator MYC2. Our work indicates that aboveground stress responses in plants can be modulated by signals from microbial root commensals.
Collapse
Affiliation(s)
- Shiji Hou
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Nathan Vannier
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Fantin Mesny
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Brigitte Pickel
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Stéphane Hacquard
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
44
|
Romanowski A, Furniss JJ, Hussain E, Halliday KJ. Phytochrome regulates cellular response plasticity and the basic molecular machinery of leaf development. PLANT PHYSIOLOGY 2021; 186:1220-1239. [PMID: 33693822 PMCID: PMC8195529 DOI: 10.1093/plphys/kiab112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/18/2021] [Indexed: 05/04/2023]
Abstract
Plants are plastic organisms that optimize growth in response to a changing environment. This adaptive capability is regulated by external cues, including light, which provides vital information about the habitat. Phytochrome photoreceptors detect far-red light, indicative of nearby vegetation, and elicit the adaptive shade-avoidance syndrome (SAS), which is critical for plant survival. Plants exhibiting SAS are typically more elongated, with distinctive, small, narrow leaf blades. By applying SAS-inducing end-of-day far-red (EoD FR) treatments at different times during Arabidopsis (Arabidopsis thaliana) leaf 3 development, we have shown that SAS restricts leaf blade size through two distinct cellular strategies. Early SAS induction limits cell division, while later exposure limits cell expansion. This flexible strategy enables phytochromes to maintain control of leaf size through the proliferative and expansion phases of leaf growth. mRNAseq time course data, accessible through a community resource, coupled to a bioinformatics pipeline, identified pathways that underlie these dramatic changes in leaf growth. Phytochrome regulates a suite of major development pathways that control cell division, expansion, and cell fate. Further, phytochromes control cell proliferation through synchronous regulation of the cell cycle, DNA replication, DNA repair, and cytokinesis, and play an important role in sustaining ribosome biogenesis and translation throughout leaf development.
Collapse
Affiliation(s)
- Andrés Romanowski
- Halliday Lab, Institute of Molecular Plant Sciences (IMPS), King’s Buildings, University of Edinburgh, Edinburgh, UK
- Comparative Genomics of Plant Development, Fundación Instituto Leloir (FIL), Instituto de Investigaciones Bioquímicas Buenos Aires (IIBBA) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - James J Furniss
- Halliday Lab, Institute of Molecular Plant Sciences (IMPS), King’s Buildings, University of Edinburgh, Edinburgh, UK
| | - Ejaz Hussain
- Halliday Lab, Institute of Molecular Plant Sciences (IMPS), King’s Buildings, University of Edinburgh, Edinburgh, UK
| | - Karen J Halliday
- Halliday Lab, Institute of Molecular Plant Sciences (IMPS), King’s Buildings, University of Edinburgh, Edinburgh, UK
- Author for communication:
| |
Collapse
|
45
|
Bilas RD, Bretman A, Bennett T. Friends, neighbours and enemies: an overview of the communal and social biology of plants. PLANT, CELL & ENVIRONMENT 2021; 44:997-1013. [PMID: 33270936 DOI: 10.1111/pce.13965] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/06/2020] [Accepted: 11/26/2020] [Indexed: 05/21/2023]
Abstract
Plants were traditionally seen as rather passive actors in their environment, interacting with each other only in so far as they competed for the same resources. In the last 30 years, this view has been spectacularly overturned, with a wealth of evidence showing that plants actively detect and respond to their neighbours. Moreover, there is evidence that these responses depend on the identity of the neighbour, and that plants may cooperate with their kin, displaying social behaviour as complex as that observed in animals. These plant-plant interactions play a vital role in shaping natural ecosystems, and are also very important in determining agricultural productivity. However, in terms of mechanistic understanding, we have only just begun to scratch the surface, and many aspects of plant-plant interactions remain poorly understood. In this review, we aim to provide an overview of the field of plant-plant interactions, covering the communal interactions of plants with their neighbours as well as the social behaviour of plants towards their kin, and the consequences of these interactions. We particularly focus on the mechanisms that underpin neighbour detection and response, highlighting both progress and gaps in our understanding of these fascinating but previously overlooked interactions.
Collapse
Affiliation(s)
- Roza D Bilas
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Amanda Bretman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
46
|
Casal JJ, Estevez JM. Auxin-Environment Integration in Growth Responses to Forage for Resources. Cold Spring Harb Perspect Biol 2021; 13:a040030. [PMID: 33431585 PMCID: PMC8015692 DOI: 10.1101/cshperspect.a040030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plant fitness depends on the adequate morphological adjustment to the prevailing conditions of the environment. Therefore, plants sense environmental cues through their life cycle, including the presence of full darkness, light, or shade, the range of ambient temperatures, the direction of light and gravity vectors, and the presence of water and mineral nutrients (such as nitrate and phosphate) in the soil. The environmental information impinges on different aspects of the auxin system such as auxin synthesis, degradation, transport, perception, and downstream transcriptional regulation to modulate organ growth. Although a single environmental cue can affect several of these points, the relative impacts differ significantly among the various growth processes and cues. While stability in the generation of precise auxin gradients serves to guide the basic developmental pattern, dynamic changes in the auxin system fine-tune body shape to optimize the capture of environmental resources.
Collapse
Affiliation(s)
- Jorge J Casal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires 1417, Argentina
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires C1405BWE, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires C1405BWE, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello and Millennium Institute for Integrative Biology (iBio), Santiago 8370146, Chile
| |
Collapse
|
47
|
Zhang N, Evers JB, Anten NPR, Marcelis LFM. Turning plant interactions upside down: Light signals from below matter. PLANT, CELL & ENVIRONMENT 2021; 44:1111-1118. [PMID: 32920859 PMCID: PMC8048918 DOI: 10.1111/pce.13886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/19/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Plants grow in dense stands receive light signals of varying strength from all directions. Plant responses to light signals from below should be considered in light‐mediated plant interactions, as their consequences for plant performance differ among ecological and agricultural settings. Where to perceive, how to integrate and what type of responses can be induced by light signals from below are major questions that need to be solved to expand our understanding of light‐mediated plant interactions.
Collapse
Affiliation(s)
- Ningyi Zhang
- Horticulture and Product Physiology Group, Department of Plant SciencesWageningen UniversityWageningenThe Netherlands
| | - Jochem B. Evers
- Centre for Crop Systems Analysis, Department of Plant SciencesWageningen UniversityWageningenThe Netherlands
| | - Niels P. R. Anten
- Centre for Crop Systems Analysis, Department of Plant SciencesWageningen UniversityWageningenThe Netherlands
| | - Leo F. M. Marcelis
- Horticulture and Product Physiology Group, Department of Plant SciencesWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
48
|
Huber M, Nieuwendijk NM, Pantazopoulou CK, Pierik R. Light signalling shapes plant-plant interactions in dense canopies. PLANT, CELL & ENVIRONMENT 2021; 44:1014-1029. [PMID: 33047350 PMCID: PMC8049026 DOI: 10.1111/pce.13912] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 05/09/2023]
Abstract
Plants growing at high densities interact via a multitude of pathways. Here, we provide an overview of mechanisms and functional consequences of plant architectural responses initiated by light cues that occur in dense vegetation. We will review the current state of knowledge about shade avoidance, as well as its possible applications. On an individual level, plants perceive neighbour-associated changes in light quality and quantity mainly with phytochromes for red and far-red light and cryptochromes and phototropins for blue light. Downstream of these photoreceptors, elaborate signalling and integration takes place with the PHYTOCHROME INTERACTING FACTORS, several hormones and other regulators. This signalling leads to the shade avoidance responses, consisting of hyponasty, stem and petiole elongation, apical dominance and life cycle adjustments. Architectural changes of the individual plant have consequences for the plant community, affecting canopy structure, species composition and population fitness. In this context, we highlight the ecological, evolutionary and agricultural importance of shade avoidance.
Collapse
Affiliation(s)
- Martina Huber
- Plant Ecophysiology, Dept. BiologyUtrecht UniversityUtrechtThe Netherlands
| | | | | | - Ronald Pierik
- Plant Ecophysiology, Dept. BiologyUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
49
|
Pantazopoulou CK, Bongers FJ, Pierik R. Reducing shade avoidance can improve Arabidopsis canopy performance against competitors. PLANT, CELL & ENVIRONMENT 2021; 44:1130-1141. [PMID: 33034378 PMCID: PMC8048483 DOI: 10.1111/pce.13905] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 05/15/2023]
Abstract
Plants that grow in high density communities activate shade avoidance responses to consolidate light capture by individuals. Although this is an evolutionary successful strategy, it may not enhance performance of the community as a whole. Resources are invested in shade responses at the expense of other organs and light penetration through the canopy is increased, allowing invading competitors to grow better. Here we investigate if suppression of shade avoidance responses would enhance group performance of a monoculture community that is invaded by a competitor. Using different Arabidopsis genotypes, we show that suppression of shade-induced upward leaf movement in the pif7 mutant increases the pif7 communal performance against invaders as compared to a wild-type canopy. The invaders were more severely suppressed and the community grew larger as compared to wild type. Using computational modelling, we show that leaf angle variations indeed strongly affect light penetration and growth of competitors that invade the canopy. Our data thus show that modifying specific shade avoidance aspects can improve plant community performance. These insights may help to suppress weeds in crop stands.
Collapse
Affiliation(s)
| | - Franca J. Bongers
- Plant Ecophysiology, Dept. of BiologyUtrecht UniversityUtrechtThe Netherlands
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of Botany, Chinese Academy of SciencesBeijingChina
| | - Ronald Pierik
- Plant Ecophysiology, Dept. of BiologyUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
50
|
Ince YÇ, Galvão VC. Analysis of Shade-Induced Hypocotyl Elongation in Arabidopsis. Methods Mol Biol 2021; 2297:21-31. [PMID: 33656666 DOI: 10.1007/978-1-0716-1370-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The presence of neighbor or overtopping plants is perceived by changes in light quality, which lead to several growth and developmental changes known as shade avoidance syndrome (SAS). Among them, the analysis of hypocotyl elongation is an important SAS physiological output that has been successfully used to investigate photoreceptors and downstream signaling components. Here we describe the experimental setup and growth conditions used to investigate photoreceptors and their signaling mechanisms through the analysis of hypocotyl elongation in laboratory, using simulated low R/FR ratio, low blue light, and true/deep shade conditions.
Collapse
Affiliation(s)
- Yetkin Çaka Ince
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vinicius Costa Galvão
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|