1
|
Kain MP, Epstein JH, Ross N. Rethinking statistical approaches for serological data analysis for viral surveillance. J Virol Methods 2025; 335:115149. [PMID: 40122214 DOI: 10.1016/j.jviromet.2025.115149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/08/2025] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
A robust serological surveillance system for zoonotic pathogens is imperative for both early detection and advancing knowledge of emerging diseases. A statistical analysis plan that is aligned to research and epidemiological goals requires a purposeful choice among alternative methods for differentiating seronegative from seropositive samples, estimating seroprevalence, and estimating risk factors associated with seropositivity. The common standard deviation-based cutoff (e.g., 3sd) approach is simple to implement and understand, but fails to appropriately propagate uncertainty in serostatus assignments to any risk factor analysis. Methods such as Gaussian mixture models, which jointly estimate serostatus, risk factors, and their uncertainty, can alleviate the dichotomy created by the cutoff approach. Yet, because of a lack of empirical guidance of method performance, it remains difficult to choose a robust analysis method for a given serological dataset. Here we examine the performance of both cutoff and clustering approaches using simulated datasets that represent the epidemiological, biological, and immunological data generation process. We focus on understudied pathogens for which validated serological assays do not exist, as is common in emerging viruses in wildlife. We quantify coverage (the proportion of time 95 % confidence intervals contain the true value) and bias (systematic differences between true values and model point estimates) of model estimates for individual serostatus assignments, population seroprevalence, and regression coefficients for serostatus risk factors. In nearly all scenarios, Bayesian mixture models provide the highest coverage and lowest bias. Only with very low seroprevalence (∼ < 3 %) and large differences in signal between seronegative and seropositive individuals will a cutoff provide low bias and near-nominal coverage. Given poor coverage of risk factor regression coefficients, we advise against using a cutoff approach for quantifying determinants of seropositivity.
Collapse
Affiliation(s)
| | - Jonathan H Epstein
- EcoHealth Alliance, New York, NY, USA; One Health Science, Mt. Kisco, NY, USA
| | - Noam Ross
- EcoHealth Alliance, New York, NY, USA; rOpenSci, P.O. Box 90596, Austin, TX 78709, USA
| |
Collapse
|
2
|
Zhang C, Gu H, Peng J, He B, Liu Y, Yan X, Feng J, Liu Y. Phylogenetic relationships and species composition of host community influence the transmission of coronaviruses in sympatric bats. Mol Phylogenet Evol 2025; 207:108343. [PMID: 40147782 DOI: 10.1016/j.ympev.2025.108343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Since the emergence of Severe Acute Respiratory Syndrome (SARS) in 2002, bats have been recognized as important reservoirs of diverse coronaviruses (CoVs). Despite extensive research on the broad geographic transmission of bat CoVs, there is a notable gap in understanding the transmission dynamics within sympatric bat communities. Using a phylogeographic Bayesian statistical framework, we examined CoV transmission patterns and their determinants in a region where four bat roosting caves coexist and CoVs circulate persistently. Our findings reveal that two subgenera of CoVs, α-CoVs and β-CoVs dominate different bat caves at varying times. Notably, β-CoVs show more frequent cross-species transmission events among the dominant reservoir hosts, bats of Rhinolophidae. Phylogenetic distance between host species emerges as the key influence factor of viral cross-species transmission, whereas cohabitation duration and the number of hosts sharing caves do not significantly influence viral transmission. In addition, we emphasize that the compositional similarity of species in the roosting caves is critical for the inter-cave transmission of bat-CoVs, rather than the distance between cave. These results provide novel insights into the complex transmission dynamics of bat CoVs within sympatric bat communities.
Collapse
Affiliation(s)
- Chen Zhang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
| | - Hao Gu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
| | - Jie Peng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
| | - Biao He
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China.
| | - Yuhang Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
| | - Xiaomin Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China.
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China; College of Life Science, Jilin Agricultural University, Changchun, China; Key Laboratory of Vegetation Ecology, School of Environment, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun, China.
| | - Ying Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China; Key Laboratory of Vegetation Ecology, School of Environment, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun, China.
| |
Collapse
|
3
|
Larsen BB, McMahon T, Brown JT, Wang Z, Radford CE, Crowe JE, Veesler D, Bloom JD. Functional and antigenic landscape of the Nipah virus receptor-binding protein. Cell 2025; 188:2480-2494.e22. [PMID: 40132580 PMCID: PMC12048240 DOI: 10.1016/j.cell.2025.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 12/30/2024] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Nipah virus recurrently spills over to humans, causing fatal infections. The viral receptor-binding protein (RBP or G) attaches to host receptors and is a major target of neutralizing antibodies. Here, we use deep mutational scanning to measure how all amino-acid mutations to the RBP affect cell entry, receptor binding, and escape from neutralizing antibodies. We identify functionally constrained regions of the RBP, including sites involved in oligomerization, along with mutations that differentially modulate RBP binding to its two ephrin receptors. We map escape mutations for six anti-RBP antibodies and find that few antigenic mutations are present in natural Nipah strains. Our findings offer insights into the potential for functional and antigenic evolution of the RBP that can inform the development of antibody therapies and vaccines.
Collapse
Affiliation(s)
- Brendan B Larsen
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Teagan McMahon
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jack T Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Zhaoqian Wang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Caelan E Radford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James E Crowe
- Department of Pathology Microbiology and Immunology, The Vanderbilt Vaccine Center, and Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA.
| |
Collapse
|
4
|
Rahman MM, Miah M, Hossain ME, Rahim S, Sultana S, Satter SM, Islam A, Whitmer SLM, Epstein JH, Spiropoulou CF, Klena JD, Shirin T, Montgomery JM, Kaczmarek ME, Rahman MZ, Jahid IK. Development of a culture-independent whole-genome sequencing of Nipah virus using the MinION Oxford Nanopore platform. Microbiol Spectr 2025:e0249224. [PMID: 40237504 DOI: 10.1128/spectrum.02492-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/10/2025] [Indexed: 04/18/2025] Open
Abstract
Nipah virus (NiV) is a deadly zoonotic pathogen in Southeast Asia causing severe respiratory and encephalitis symptoms with a high fatality rate. Whole-genome sequencing (WGS) is crucial for tracking transmission, conducting epidemiological analyses, and understanding NiV's adaptive evolution. WGS is essential for analyzing genomes, particularly in understanding pathogen nature, and pathogenesis and aiding in the development of therapeutics. However, sequencing this highly contagious virus directly from samples is challenging in low- and middle-income countries lacking BSL-4 facilities. This study developed and optimized a culture-independent, high-throughput multiplex PCR-based third-generation sequencing protocol for NiV using the Oxford Nanopore Technology platform and a proposed bioinformatics pipeline to generate consensus genome sequences directly from environmental and clinical specimens. We amplified 12 NiV RT-PCR-positive specimens (11 clinical, one environmental) to produce 60 amplicons, each approximately 400 bp, covering the entire ~18.2 kb genome. Using a two-step reverse transcriptase PCR approach, libraries were prepared with a ligation sequencing kit. Raw sequence data were then analyzed using bioinformatics tools. A minimum of 10,000 total reads per sample provided a nearly complete coverage (>95%) of the NiV genome, even with low virus concentrations (Ct ≤ 32), with an average quality score of 10.2. The WGS of 12 NiV-positive samples achieved coverage between 95.71% (Ct 29.54) and 99.3% (Ct 22.34). The entire process, from RNA extraction to finished sequences, took only 24 h. We developed a portable, culture-independent, high-throughput sequencing workflow suitable for resource-limited settings, aiding in real-time monitoring, outbreak investigation, and detection of new NiV strains and genetic evolution. IMPORTANCE The development of a culture-independent, high-throughput whole-genome sequencing (WGS) protocol for Nipah virus (NiV) using the Oxford Nanopore MinION technology marks a significant advancement in outbreak response, surveillance, and genomic analysis of NiV. NiV is an RG4 category C pathogen; working with the NiV virus is a deep concern of biosafety and biosecurity. It demands the development of biologically safe procedures to get genetic information. This protocol utilizes biologically safe samples that were collected into recommended lysis solution, multiplex PCR, and third-generation sequencing, effectively addressing challenges in sequencing NiV. This optimized workflow achieved over 95% genome coverage without the need for virus culture. It is a cost-effective, rapid, and efficient approach to the WGS of NiV, making it suitable for resource-limited settings like Bangladesh. The method enhances the capacity for outbreak investigations, epidemiological analyses, and monitoring virus, aiding in detecting emerging strains. This work contributes significantly to global pandemic preparedness and response efforts.
Collapse
Affiliation(s)
- Md Mahfuzur Rahman
- Infectious Diseases Division (IDD), icddr,b, Dhaka, Bangladesh
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Mojnu Miah
- Infectious Diseases Division (IDD), icddr,b, Dhaka, Bangladesh
| | | | - Samiur Rahim
- Infectious Diseases Division (IDD), icddr,b, Dhaka, Bangladesh
| | - Sharmin Sultana
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | | | | | - Shannon L M Whitmer
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John D Klena
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | - Iqbal Kabir Jahid
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
5
|
Niu Y, McKee CD. Bat Viral Shedding: A Review of Seasonal Patterns and Risk Factors. Vector Borne Zoonotic Dis 2025; 25:229-239. [PMID: 39836021 DOI: 10.1089/vbz.2024.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Background: Bats act as reservoirs for a variety of zoonotic viruses, sometimes leading to spillover into humans and potential risks of global transmission. Viral shedding from bats is an essential prerequisite to bat-to-human viral transmission and understanding the timing and intensity of viral shedding from bats is critical to mitigate spillover risks. However, there are limited investigations on bats' seasonal viral shedding patterns and their related risk factors. We conducted a comprehensive review of longitudinal studies on bat viruses with spillover potential to synthesize patterns of seasonal viral shedding and explore associated risk factors. Methods: We extracted data from 60 reviewed articles and obtained 1085 longitudinal sampling events. We analyzed viral shedding events using entropy values to quantitatively assess whether they occur in a consistent, pulsed pattern in a given season. Results: We found that clear seasonal shedding patterns were common in bats. Eight out of seventeen species-level analyses presented clear seasonal patterns. Viral shedding pulses often coincide with bats' life cycles, especially in weaning and parturition seasons. Juvenile bats with waning maternal antibodies, pregnant bats undergoing immunity changes, and hibernation periods with decreased immune responses could be potential risk factors influencing seasonal shedding patterns. Conclusion: Based on our findings, we recommend future longitudinal studies on bat viruses that combine direct viral testing and serological testing, prioritize longitudinal research following young bats throughout their developmental stages, and broaden the geographical range of longitudinal studies on bat viruses based on current surveillance reports. Our review identified critical periods with heightened viral shedding for some viruses in bat species, which would help promote efforts to minimize spillovers and prevent outbreaks.
Collapse
Affiliation(s)
- Yannan Niu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Clifton D McKee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Eskew EA, Olival KJ, Mazet JAK, Daszak P. A global-scale dataset of bat viral detection suggests that pregnancy reduces viral shedding. Proc Biol Sci 2025; 292:20242381. [PMID: 40237082 PMCID: PMC12001080 DOI: 10.1098/rspb.2024.2381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/25/2025] [Accepted: 03/19/2025] [Indexed: 04/17/2025] Open
Abstract
Understanding viral infection dynamics in wildlife hosts can help forecast zoonotic pathogen spillover and human disease risk. Bats are important reservoirs of zoonotic viruses, and bat metapopulation dynamics, seasonal reproductive patterns and other life-history characteristics might explain temporal variation in the spillover of bat-associated viruses. Here, we analyse reproductive effects on viral dynamics in free-ranging bat hosts, leveraging a multi-year, global-scale viral detection dataset that spans eight viral families and 96 bat species from 14 countries. Bayesian models revealed that pregnancy had a negative effect on viral shedding across multiple data subsets, and this effect was robust to different model formulations. By contrast, lactation had a weaker influence that was inconsistent across models. These results are unusual for mammalian hosts, but given recent findings that bats may have high individual viral loads and population-level prevalence due to dampening of antiviral immunity, we propose that it would be evolutionarily advantageous for pregnancy to either not further reduce immunity or actually increase the immune response, reducing viral load, shedding and risk of fetal infection. This novel hypothesis would be valuable to test given its potential to help monitor, predict and manage viral spillover from bats.
Collapse
Affiliation(s)
- Evan A. Eskew
- EcoHealth Alliance, New York, NY, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | | | - Jonna A. K. Mazet
- School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Peter Daszak
- EcoHealth Alliance, New York, NY, USA
- Nature.Health.Global., Inc., Tallman, NY, USA
| |
Collapse
|
7
|
Molina CL, Magalhães MM, Rodrigues AC, Taniwaki SA, de Souza Silva SO, König GA, Brandão PE. Detection of an Alphacoronavirus in a Brazilian Bat (Molossus sp.). J Mol Evol 2025; 93:257-266. [PMID: 39961834 DOI: 10.1007/s00239-025-10236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/05/2025] [Indexed: 04/18/2025]
Abstract
Due to the COVID-19 pandemic and the uncertainty about aspects of its origin, in recent years there has been an increased interest in investigating coronaviruses in wild animals. Bats are hosts of the greatest diversity of coronaviruses to date, including the ancestors of viruses that have caused outbreaks in humans. Although in Brazil, information on coronaviruses in bats has expanded, still they remain unrepresentative. To help shed some light on this matter, we collected 175 samples from bats of different species from two Brazilian states. Here, we report the previously unknown presence of an alphacoronavirus in a bat (Molossus sp.) from Ceará. The phylogenetic analysis showed close relationships with alphacoronaviruses from Brazil and Argentina, but it was not possible to determine the subgenus or species of this virus using RNA-dependent RNA-polymerase (RdRp) domain of the nsp12 protein-coding sequence as it was distant from the specimens considered by the International Committee on Taxonomy of Viruses (ICTV). Finally, by performing High-Throughput Sequencing, we were able to find contigs mostly belonging to domains of the replicase of bat coronaviruses related to American bats of the Molossidae and Vespertilionidae families.
Collapse
Affiliation(s)
- C L Molina
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil.
| | - M M Magalhães
- Faculty of Veterinary, Postgraduate Program in Veterinary Sciences, State University of Ceará - Av. Dr. Silas Munguba, 1700 - Itaperi, Fortaleza, Ceará, Brazil
| | - A C Rodrigues
- Mammalian Systematics Laboratory - Sorocaba, Postgraduate Program in Fauna Conservation (PPGCFAU), Federal University of São Carlos, São Paulo, Brazil
| | - S A Taniwaki
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - S O de Souza Silva
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - G A König
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
- Institute of Agrobiotechnology and Molecular Biology, INTA-CONICET, Buenos Aires, Argentina
| | - P E Brandão
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Lu M, Yao Y, Liu H, Peng Y, Li X, Gao G, Chen M, Zhang X, Mao L, Yang P, Zhang X, Miao J, Yuan Z, Lan J, Shan C. Single-dose intranasal AdC68-vectored vaccines rapidly protect Syrian hamsters against lethal Nipah virus infection. Mol Ther 2025:S1525-0016(25)00206-0. [PMID: 40143544 DOI: 10.1016/j.ymthe.2025.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/26/2025] [Accepted: 03/21/2025] [Indexed: 03/28/2025] Open
Abstract
Nipah virus (NiV) infection is highly lethal in humans, and the development of vaccines that provide rapid protection is critical for addressing NiV outbreaks. In this study, we demonstrate that a single intranasal immunization with the chimpanzee adenoviral-vectored NiV vaccine, AdC68-F, induced robust and sustained cellular and humoral responses in BALB/c mice, and provided complete protection against challenge with the NiV-Malaysia strain (NiV-M) in Syrian hamsters. Notably, AdC68-F, administered at a dose of 5 × 109 viral particles, offered a complete prophylactic protection window as few as 7 days before exposure to a lethal NiV-M challenge. Furthermore, passive transfer of sera from AdC68-F or AdC68-G immunized animals conferred complete protection against NiV-M infection in naive hamsters. These findings underscore the pivotal role of antigen-specific immunity in controlling NiV infection and highlight the potential of single-dose intranasal AdC68-based NiV vaccines for rapid protection during outbreaks. By providing rapid and effective protection, these vaccines could help reduce human-to-human transmission and aid in curbing NiV outbreaks.
Collapse
Affiliation(s)
- Mingqing Lu
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Yanfeng Yao
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hang Liu
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yun Peng
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xuejie Li
- University of the Chinese Academy of Sciences, Beijing 100039, China; CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ge Gao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Miaoyu Chen
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xuekai Zhang
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Lingjing Mao
- University of the Chinese Academy of Sciences, Beijing 100039, China; CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peipei Yang
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - XiaoYu Zhang
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Jing Miao
- University of the Chinese Academy of Sciences, Beijing 100039, China; CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiming Yuan
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jiaming Lan
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Chao Shan
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of the Chinese Academy of Sciences, Beijing 100039, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Hubei Jiangxia Laboratory, Wuhan 430200, China.
| |
Collapse
|
9
|
Das S, Jain D, Chaudhary P, Quintela-Tizon RM, Banerjee A, Kesavardhana S. Bat adaptations in inflammation and cell death regulation contribute to viral tolerance. mBio 2025; 16:e0320423. [PMID: 39982110 PMCID: PMC11898699 DOI: 10.1128/mbio.03204-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
Bats are reservoirs for multiple viruses, some of which are known to cause global disease outbreaks. Virus spillovers from bats have been implicated in zoonotic transmission. Some bat species can tolerate viral infections, such as infections with coronaviruses and paramyxoviruses, better than humans and with less clinical consequences. Bat species are speculated to have evolved alongside these viral pathogens, and adaptations within the bat immune system are considered to be associated with viral tolerance. Inflammation and cell death in response to zoonotic virus infections prime human immunopathology. Unlike humans, bats have evolved adaptations to mitigate virus infection-induced inflammation. Inflammatory cell death pathways such as necroptosis and pyroptosis are associated with immunopathology during virus infections, but their regulation in bats remains understudied. This review focuses on the regulation of inflammation and cell death pathways in bats. We also provide a perspective on the possible contribution of cell death-regulating proteins, such as caspases and gasdermins, in modulating tissue damage and inflammation in bats. Understanding the role of these adaptations in bat immune responses can provide valuable insights for managing future disease outbreaks, addressing human disease severity, and improving pandemic preparedness.
Collapse
Affiliation(s)
- Subham Das
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Disha Jain
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Priyansh Chaudhary
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Rita M. Quintela-Tizon
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sannula Kesavardhana
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
10
|
Ruedas-Torres I, Findlay-Wilson S, Kennedy E, Dowall S, Salguero FJ. Pathology and host-pathogen interactions in a golden Syrian hamster model of Nipah virus infection. Front Vet Sci 2025; 12:1518358. [PMID: 40125323 PMCID: PMC11926554 DOI: 10.3389/fvets.2025.1518358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
Nipah virus (NiV) is recognized as one of the key pathogens with pandemic potential. We have recently established a NiV hamster model, which reproduces a highly similar disease to that observed in human cases, including respiratory and neurological signs and lesions. The aims of this study were to describe the microscopic lesions observed in the golden Syrian hamster model after intranasal (IN) and intraperitoneal (IP) inoculation with different doses of the Malaysian strain of NiV; to describe in depth the cell composition of the pulmonary and the brain lesions and the expression of proinflammatory cytokines in-situ using a combination of histopathological techniques including immunohistochemistry (IHC) and in-situ hybridisation (ISH) via RNAscope technique. We also developed a multiplex IHC which will allow us to study the interaction of the virus with cell populations in the lung and brain in future studies. For this, we selected 28 lung and brain formalin-fixed paraffin-embedded (FFPE) samples from previous experiments performed by our research group. Histopathology revealed severe pulmonary broncho-interstitial pneumonia, mainly in animals inoculated via the IN route, accompanied by a strong acute inflammatory response (Iba1+ cells) and high levels of NiV RNA. Upregulation of proinflammatory cytokines (IL-6 and TNF) was also observed by ISH RNAscope technique in these animals. Neurological lesions, consisting of perivascular cuffing and meningitis, were observed mainly in animals inoculated via IP route. IHC results showed astrocytosis (GFAP+) and microgliosis (Iba1+) in the brain of these animals, together with mild levels of IL6 and TNF mRNA. These results have helped us to characterize the host-pathogen interaction in the golden Syrian hamster animal model of NiV infection that is being currently used in preclinical testing of antiviral and vaccine strategies. Techniques used in this study could be applied to the development and application of golden Syrian hamster models of other infections by henipaviruses, including Hendra virus (HeV), and other high consequence priority pathogens.
Collapse
Affiliation(s)
- Inés Ruedas-Torres
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Tao Y, Giunta V, Börger L, Wilber MQ. Towards transient space-use dynamics: re-envisioning models of utilization distribution and their applications. MOVEMENT ECOLOGY 2025; 13:12. [PMID: 40022257 PMCID: PMC11869446 DOI: 10.1186/s40462-025-00538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/05/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Models of utilization distribution in the form of partial differential equations have long contributed to our understanding of organismal space use patterns. In studies of infectious diseases, they are also being increasingly adopted in support of epidemic forecasting and scenario planning. However, as movement research shifts its focus towards large data collection and statistical modeling of movement trajectories, the development of such models has notably slowed. METHODS Here, we demonstrate the continued importance of modeling utilization distribution to predict variation in space-use patterns over time. We highlight the considerable, yet largely untapped, potential of such models, which have historically been limited by the steady-state assumption due to longstanding technical constraints. Now, by adapting existing computational tools primarily developed for material science and engineering, we can probe beyond the steady states and unlock from them a broad spectrum of complex, transient space-use dynamics. Our approach requires little experience in numerical analysis and is readily accessible to model practitioners in ecology and epidemiology across diverse systems where movement is a critical feature. RESULTS We illustrated our approach using a mix of canonical and novel case studies, covering topics from wildlife translocation to vaccine deployment. First, we revisited a classical model of canid territorial formation driven by scent-mediated conspecific avoidance. Transient space-use analysis uncovered previously hidden spatial dynamics that are ecologically informative. Next, we applied our approach to long-distance movement on realistic landscapes. Habitat and land-use heterogeneities markedly affected the transient space-use dynamics and short-term forecasts, even when the steady state remained unchanged, with direct implications for conservation management. Finally, we modeled transient space-use dynamics as both a response to and a driver of transient population dynamics. The importance of this interdependence was shown in the context of epidemiology, in a scenario where the movement of healthcare personnel is influenced by local outbreak conditions that are stochastically evolving. CONCLUSIONS By facilitating transient space-use analysis, our approach could lead to reevaluations of foundational ecological concepts such as home range and territory, replacing static with dynamic definitions that more accurately reflect biological realities. Furthermore, we contend that a growing interest in transient space-use dynamics, spurred by this work, could have transformative effects, stimulating new research avenues in ecology and epidemiology.
Collapse
Affiliation(s)
- Yun Tao
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA.
| | - Valeria Giunta
- School of Mathematics and Computer Science, Swansea University, Swansea, SA1 8EN, UK
| | - Luca Börger
- Department of Biosciences, Swansea University, Swansea, SA1 8EN, UK
- Centre for Biomathematics, Swansea University, Swansea, SA1 8EN, UK
| | - Mark Q Wilber
- School of Natural Resources, University of Tennessee Institute of Agriculture, Knoxville, TN, 37998, USA
| |
Collapse
|
12
|
Fatima M, An T, Park PG, Hong KJ. Advancements and Challenges in Addressing Zoonotic Viral Infections with Epidemic and Pandemic Threats. Viruses 2025; 17:352. [PMID: 40143281 PMCID: PMC11946417 DOI: 10.3390/v17030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Zoonotic viruses have significant pandemic potential, as evidenced by the coronavirus pandemic, which underscores that zoonotic infections have historically caused numerous outbreaks and millions of deaths over centuries. Zoonotic viruses induce numerous types of illnesses in their natural hosts. These viruses are transmitted to humans via biological vectors, direct contact with infected animals or their bites, and aerosols. Zoonotic viruses continuously evolve and adapt to human hosts, resulting in devastating consequences. It is very important to understand pathogenesis pathways associated with zoonotic viral infections across various hosts and develop countermeasure strategies accordingly. In this review, we briefly discuss advancements in diagnostics and therapeutics for zoonotic viral infections. It provides insight into recent outbreaks, viral dynamics, licensed vaccines, as well as vaccine candidates progressing to clinical investigations. Despite advancements, challenges persist in combating zoonotic viruses due to immune evasion, unpredicted outbreaks, and the complexity of the immune responses. Most of these viruses lack effective treatments and vaccines, relying entirely on supportive care and preventive measures. Exposure to animal reservoirs, limited vaccine access, and insufficient coverage further pose challenges to preventive efforts. This review highlights the critical need for ongoing interdisciplinary research and collaboration to strengthen preparedness and response strategies against emerging infectious threats.
Collapse
Affiliation(s)
- Munazza Fatima
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea; (M.F.)
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Timothy An
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Pil-Gu Park
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea; (M.F.)
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Kee-Jong Hong
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea; (M.F.)
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Korea mRNA Vaccine Initiative, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
13
|
Yan X, Liu Y, Hu T, Huang Z, Li C, Guo L, Liu Y, Li N, Zhang H, Sun Y, Yi L, Wu J, Feng J, Zhang F, Jiang T, Tu C, He B. A compendium of 8,176 bat RNA viral metagenomes reveals ecological drivers and circulation dynamics. Nat Microbiol 2025; 10:554-568. [PMID: 39833544 DOI: 10.1038/s41564-024-01884-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 11/13/2024] [Indexed: 01/22/2025]
Abstract
Bats are natural hosts for many emerging viruses for which spillover to humans is a major risk, but the diversity and ecology of bat viruses is poorly understood. Here we generated 8,176 RNA viral metagenomes by metatranscriptomic sequencing of organ and swab samples from 4,143 bats representing 40 species across 52 locations in China. The resulting database, the BtCN-Virome, expands bat RNA virus diversity by over 3.4-fold. Some viruses in the BtCN-Virome are traced to mammals, birds, arthropods, mollusks and plants. Diet, infection dynamics and environmental parameters such as humidity and forest coverage shape virus distribution. Compared with those in the wild, bats dwelling in human settlements harboured more diverse viruses that also circulated in humans and domestic animals, including Nipah and Lloviu viruses not previously reported in China. The BtCN-Virome provides important insights into the genetic diversity, ecological drivers and circulation dynamics of bat viruses, highlighting the need for surveillance of bats near human settlements.
Collapse
Affiliation(s)
- Xiaomin Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Yang Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Tingsong Hu
- Southern Center for Diseases Control and Prevention, Guangzhou, Guangdong Province, China
| | - Zhenglanyi Huang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin Province, China
| | - Chenxi Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Lei Guo
- Division of Wildlife and Plant Conservation, State Forestry and Grassland Administration, Changchun, Jilin Province, China
| | - Yuhang Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Hailin Zhang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, Yunnan Province, China
| | - Yue Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Le Yi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Jianmin Wu
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin Province, China
| | - Fuqiang Zhang
- Southern Center for Diseases Control and Prevention, Guangzhou, Guangdong Province, China.
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin Province, China.
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China.
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China.
| |
Collapse
|
14
|
Bhowmik A, Hasan M, Redoy MMH, Saha G. Nipah virus outbreak trends in Bangladesh during the period 2001 to 2024: a brief review. SCIENCE IN ONE HEALTH 2024; 4:100103. [PMID: 40026914 PMCID: PMC11872451 DOI: 10.1016/j.soh.2024.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/23/2024] [Indexed: 03/05/2025]
Abstract
Nipah virus (NiV) is a zoonotic threat that has caused recurrent outbreaks in Bangladesh since 2001, raising significant public health concerns. This study provides a descriptive analysis of NiV outbreaks from 2001 to 2024, examining trends in infection and death rates and their correlation with climatic factors such as temperature, humidity, and rainfall. The findings highlight significant spikes in NiV cases during specific years, with environmental factors, particularly temperature and precipitation, showing solid correlations with outbreak patterns. The study also explores the impact of population dynamics on transmission risks, including urbanization and density. By focusing on these factors, this research supports the development of targeted public health interventions in high-risk areas, particularly in Bangladesh's northwestern and central districts, where recurrent outbreaks have been observed. These insights improve surveillance and preventive strategies for mitigating future NiV outbreaks.
Collapse
Affiliation(s)
- Awnon Bhowmik
- Colorado State University, Global Campus, 555 17th St., Ste. 1000, Denver, CO, 80202, United States
| | | | | | - Goutam Saha
- University of Dhaka, Dhaka, 1000, Bangladesh
- Miyan Research Institute, International University of Business Agriculture and Technology, Uttara, Dhaka, 1230, Bangladesh
| |
Collapse
|
15
|
Mohandas S, Patil D, Mathapati B, Rai V, Shete A, Belani S, Kumar A, Sahay R, Patil D, Yadav PD. Nipah virus survey in Pteropus medius of eastern and northeastern region of India, 2022-2023. Front Microbiol 2024; 15:1493428. [PMID: 39777153 PMCID: PMC11703920 DOI: 10.3389/fmicb.2024.1493428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction India has experienced seven outbreaks of the Nipah virus (NiV) since 2001, primarily occurring in the southern and eastern regions of the country. The southern region has been the main site for these outbreaks. In contrast, the eastern region, which borders Bangladesh, has not reported any outbreaks since 2007. However, Bangladesh continues to experience nearly annual outbreaks, indicating a significant lack of surveillance in that area. To improve the country's preparedness and to gather support for enhancing public health surveillance in eastern and northeastern states near the area affected by the NiV, a cross-sectional survey was conducted to determine the prevalence of NiV in the bat species Pteropus medius in Bihar, West Bengal, Assam, and Meghalaya states in India, which are adjacent to Bangladesh. Methods Throat and rectal swabs, blood samples, and organ samples were collected. Real-time quantitative reverse transcription PCR (qRT-PCR) was utilized for the detection of Nipah viral RNA, and sequencing was conducted for further confirmation. Bat IgG enzyme-linked immunosorbent assay (ELISA) was employed for antibody detection. Results Throat and rectal swab samples of 212 P. medius tested for NiV using qRT- PCR were found negative, whereas organ samples of two (one each from West Bengal and Bihar) out of the 10 bats collected tested positive. The retrieved NiV genome (~91%) showed close homology to the NiV-Bangladesh genotype indicating the circulation of two geographically distinct NiV strains in India. The seroprevalence estimated by ELISA ranged from 23 to 65% in the studied states. Discussion The serological and virological evidence obtained from the study indicates that a broader geographical area is under threat of spillover in India. It's crucial to implement a One Health approach connecting bat surveillance studies with human surveillance and risk factor studies in the region.
Collapse
Affiliation(s)
| | - Dilip Patil
- Animal House Division, ICMR-National Institute of Virology, Pune, India
| | | | - Vishal Rai
- Maximum Containment Facility, ICMR-National Institute of Virology, Pune, India
| | - Anita Shete
- Maximum Containment Facility, ICMR-National Institute of Virology, Pune, India
| | | | - Abhinendra Kumar
- Maximum Containment Facility, ICMR-National Institute of Virology, Pune, India
| | - Rima Sahay
- Maximum Containment Facility, ICMR-National Institute of Virology, Pune, India
| | - Deepak Patil
- Maximum Containment Facility, ICMR-National Institute of Virology, Pune, India
| | - Pragya D. Yadav
- Maximum Containment Facility, ICMR-National Institute of Virology, Pune, India
| |
Collapse
|
16
|
Anish TS, Aravind R, Radhakrishnan C, Gupta N, Yadav PD, Cherian JJ, Sahay R, Chenayil S, A S AK, Moorkoth AP, Ashadevi, Lathika VR, Moideen S, Kuriakose SL, Reena KJ, Mathew T. Pandemic potential of the Nipah virus and public health strategies adopted during outbreaks: Lessons from Kerala, India. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003926. [PMID: 39700307 DOI: 10.1371/journal.pgph.0003926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Kerala, a south Indian state witnessed several outbreaks of Nipah encephalitis since 2018, a zoonotic viral disease with significant pandemic potential. This review highlights the relevance of surveillance and health system preparedness, infection control, early diagnosis and treatment with broad-spectrum antivirals, environmental conservation, and community engagement in mitigating Nipah outbreaks. Additionally, it emphasises the importance of developing new biologicals and anti-viral drugs to combat the disease. The article discusses the available evidence on the spillover mechanisms, genetic attributes of the circulating virus, ecological factors, risk of hospital-based superspreading, treatment outcomes and successful strategies employed in Kerala in response to the recurrent Nipah outbreaks.
Collapse
Affiliation(s)
- Thekkumkara Surendran Anish
- Kerala One Health Centre for Nipah Research and Resilience, Kozhikode, Kerala, India
- Department of Community Medicine, Government Medical College, Wayanad, Kerala, India
| | - Reghukumar Aravind
- Department of Infectious Diseases, Government Medical College, Thiruvananthapuram, Kerala, India
| | - Chandni Radhakrishnan
- Department of Internal Medicine, Government Medical College, Kozhikode, Kerala, India
| | | | - Pragya D Yadav
- Indian Council of Medical Research- National Institute of Virology, Pune, Maharashtra, India
| | - Jerin Jose Cherian
- Indian Council of Medical Research, New Delhi, India
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Rima Sahay
- Indian Council of Medical Research- National Institute of Virology, Pune, Maharashtra, India
| | | | | | | | - Ashadevi
- Department of Health Services, Kozhikode, Kerala, India
| | | | - Shamsudeen Moideen
- IQRAA International Hospital and Research Centre, Kozhikode, Kerala, India
| | | | | | - Thomas Mathew
- Department of Medical Education, Thiruvananthapuram, Kerala, India
| |
Collapse
|
17
|
Cortes-Azuero O, Lefrancq N, Nikolay B, McKee C, Cappelle J, Hul V, Ou TP, Hoem T, Lemey P, Rahman MZ, Islam A, Gurley ES, Duong V, Salje H. The Genetic Diversity of Nipah Virus Across Spatial Scales. J Infect Dis 2024; 230:e1235-e1244. [PMID: 38682164 PMCID: PMC11646605 DOI: 10.1093/infdis/jiae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Nipah virus (NiV), a highly lethal virus in humans, circulates in Pteropus bats throughout South and Southeast Asia. Difficulty in obtaining viral genomes from bats means we have a poor understanding of NiV diversity. METHODS We develop phylogenetic approaches applied to the most comprehensive collection of genomes to date (N = 257, 175 from bats, 73 from humans) from 6 countries over 22 years (1999-2020). We divide the 4 major NiV sublineages into 15 genetic clusters. Using Approximate Bayesian Computation fit to a spatial signature of viral diversity, we estimate the presence and the average size of genetic clusters per area. RESULTS We find that, within any bat roost, there are an average of 2.4 co-circulating genetic clusters, rising to 5.5 clusters at areas of 1500-2000 km2. We estimate that each genetic cluster occupies an average area of 1.3 million km2 (95% confidence interval [CI], .6-2.3 million km2), with 14 clusters in an area of 100 000 km2 (95% CI, 6-24 km2). In the few sites in Bangladesh and Cambodia where genomic surveillance has been concentrated, we estimate that most clusters have been identified, but only approximately 15% of overall NiV diversity has been uncovered. CONCLUSIONS Our findings are consistent with entrenched co-circulation of distinct lineages, even within roosts, coupled with slow migration over larger spatial scales.
Collapse
Affiliation(s)
| | - Noémie Lefrancq
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Birgit Nikolay
- Department of Epidemiology and Training, Epicentre, Paris, France
| | - Clifton McKee
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Julien Cappelle
- Joint Research Unit, Animal Santé Territoires Risques Ecosystèmes, Centre de coopération internationale en recherche agronomique pour le développement, Montpellier, France
| | - Vibol Hul
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Tey Putita Ou
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Thavry Hoem
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | | | - Ausraful Islam
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Emily S Gurley
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
18
|
Mehnaz S, Anjum R, Mithila FR, Dewan SMR, Islam MR. The Current Pathogenicity and Potential Risk Assessment of Nipah Virus as Potential Cause of "Disease X": A Narrative Review. Health Sci Rep 2024; 7:e70241. [PMID: 39633830 PMCID: PMC11615694 DOI: 10.1002/hsr2.70241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Background and Aims The World Health Organization (WHO) recognized the potential for a severe international epidemic and introduced the term "Disease X" to classify pathogens that not yet identified. The Nipah virus (NiV) is highly dangerous due to its zoonotic nature, high mortality rate, and ability to cause severe clinical symptoms in humans. In this review, we gather the latest information on the NiV and its potential to become a significant candidate for Disease X. Methods We performed a thorough review of articles published in PubMed, Scopus, and Google Scholar using appropriate MeSH terms and keywords. Studies reported NiV infection were considered for this review. Results The NiV exhibits different epidemiological patterns in different countries that calls for customized prevention and control strategies. Genetic analysis highlights NiV's ability to mutate that alters possible treatment options. Transmission typically involves bats as the primary reservoir, with humans becoming infected either through intermediate hosts or food. This shows NiV's complex nature, including its ability to reach the central nervous system through the olfactory nerve. Promising treatment options, such as monoclonal antibodies, antivirals, and ongoing vaccine research, provide hope. However, the virus's adaptability, human-to-human transmission, and the lack of specific antiviral therapy raise concerns about its potential to cause a global pandemic. The interconnection between animals, humans, and the environment stresses the need for a One Health approach to tackle emerging infectious disease by NiV. Conclusion Global collaboration, surveillance, and research investments are imperative for the preparation of future pandemics. The ongoing COVID-19 challenges underscoring the critical need for sustained scientific endeavors, global leadership, and recognition of the prominence of NiV as a candidate for the potential Disease X.
Collapse
Affiliation(s)
- Samiha Mehnaz
- Department of PharmacyUniversity of Asia PacificDhakaBangladesh
| | - Ramisa Anjum
- Department of PharmacyUniversity of Asia PacificDhakaBangladesh
| | | | | | | |
Collapse
|
19
|
Rahman MA, Shanjana Y, Cronmiller S, Zong D, Davis R, Ernest J, Nguyen J, Rawa A, Thomas MR, Islam MR. Risk Evaluation and Mitigation Strategies for Potential Outbreaks of Nipah Virus Infection: Evidenced by the Recent Incidences in Southeast Asian Countries. Health Sci Rep 2024; 7:e70239. [PMID: 39633840 PMCID: PMC11615790 DOI: 10.1002/hsr2.70239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/21/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Background The importance of studying Nipah virus (NiV) stems from its high fatality rates and potential for causing widespread outbreaks. Recent incidences in Southeast Asian countries highlight the urgent need for effective risk evaluation and mitigation strategies. Justification Studying NiV in Southeast Asia is crucial due to the geographic and epidemiological significance that makes this region predominantly susceptible to the virus. Objectives This study aims to identify the risk factors of NiV, evaluate current mitigation strategies, and suggest improvements against this virus. Methods This review incorporates articles from the PubMed database related to available NiV treatments, vaccines, mitigation strategies, transmission data, and mortality to comprise an extensive analysis of pertinent information. Findings NiV warrants international attention, due to the high mortality rate and the rising number of human-to-human transmission vectors. NiV is difficult to diagnose early on in the infection due to its generic symptoms, and the two strains of NiV (B and M), pose significant challenges to healthcare institutions. Vaccines, such as the VSV-stored, virus-like particle-based, and mRNA-based NiV show promising results in both animal and human studies. Synthetic medicines, like Ribavirin, and favipiravir showed promising results in NiV-infected patients. Therapeutic infectious particles increased survival from 10% to roughly 70%-80% in animals. Phytochemicals, like serpentine and neoandrographolide are alternatives to NiV-G ligands. Griffithsin, an algae derivative has also shown efficacy in treating NiV infections. Artificial intelligence determines the NiV infection with an accuracy of 88.3%. Conclusions The strategies to control NiV must be one of a One Health approach, incorporating environmental and social factors. Extensive research on vaccines that showed promising results in animals needs to be tested for humans on a large scale. The major mitigation strategy available is the public awareness during the outbreak about NiV transmission vectors, quarantine protocol, and food hygiene.
Collapse
Affiliation(s)
| | - Yeasna Shanjana
- Department of Environmental SciencesNorth South UniversityBashundharaBangladesh
| | - Sydney Cronmiller
- Nesbitt School of PharmacyWilkes UniversityWilkes‐BarrePennsylvaniaUSA
| | - Donovan Zong
- Nesbitt School of PharmacyWilkes UniversityWilkes‐BarrePennsylvaniaUSA
| | - Rob Davis
- Nesbitt School of PharmacyWilkes UniversityWilkes‐BarrePennsylvaniaUSA
| | - Julianne Ernest
- Nesbitt School of PharmacyWilkes UniversityWilkes‐BarrePennsylvaniaUSA
| | - Jonah Nguyen
- Nesbitt School of PharmacyWilkes UniversityWilkes‐BarrePennsylvaniaUSA
| | - Amanda Rawa
- Nesbitt School of PharmacyWilkes UniversityWilkes‐BarrePennsylvaniaUSA
| | - Marie Roke Thomas
- Nesbitt School of PharmacyWilkes UniversityWilkes‐BarrePennsylvaniaUSA
| | | |
Collapse
|
20
|
Wang L, Lu D, Yang M, Chai S, Du H, Jiang H. Nipah virus: epidemiology, pathogenesis, treatment, and prevention. Front Med 2024; 18:969-987. [PMID: 39417975 DOI: 10.1007/s11684-024-1078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/18/2024] [Indexed: 10/19/2024]
Abstract
Nipah virus (NiV) is a zoonotic paramyxovirus that has recently emerged as a crucial public health issue. It can elicit severe encephalitis and respiratory diseases in animals and humans, leading to fatal outcomes, exhibiting a wide range of host species tropism, and directly transmitting from animals to humans or through an intermediate host. Human-to-human transmission associated with recurrent NiV outbreaks is a potential global health threat. Currently, the lack of effective therapeutics or licensed vaccines for NiV necessitates the primary utilization of supportive care. In this review, we summarize current knowledge of the various aspects of the NiV, including therapeutics, vaccines, and its biological characteristics, epidemiology, pathogenesis, and clinical features. The objective is to provide valuable information from scientific and clinical research and facilitate the formulation of strategies for preventing and controlling the NiV.
Collapse
Affiliation(s)
- Limei Wang
- Department of Microbiology and Pathogenic Biology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Denghui Lu
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Maosen Yang
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Shiqi Chai
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Hong Du
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Hong Jiang
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
21
|
Munjita SM, Mubemba B, Changula K, Tembo J, Hamoonga R, Bates M, Chitanga S, Munsaka S, Simulundu E. Unveiling the hidden threats: a review of pathogen diversity and public health risks from bats, rodents, and non-human primates in Zambia (1990-2022). Front Public Health 2024; 12:1471452. [PMID: 39651468 PMCID: PMC11621629 DOI: 10.3389/fpubh.2024.1471452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024] Open
Abstract
Background Infectious disease agents of animal origin, which can cause mild to severe illnesses in humans, are increasingly spilling over into human populations. Southern Africa, particularly Zambia as a regional transport hub, has experienced notable outbreaks of zoonotic pathogens in recent years. This context underscores the importance of research, as numerous studies over the past 33 years have reported various infectious agents with differing zoonotic potential from bats, rodents, and non-human primates (NHPs) in Zambia. However, the data remained unaggregated, hampering comprehensive and organized understanding of these threats. Methods A review spanning January 1990 to December 2022 synthesised data from selected studies conducted in bats, rodents, and NHPs across 14 of Zambia's 116 districts. Results Among the reported pathogens, viruses predominated (62%, 31/50), followed by parasites (20%, 10/50)), and bacteria (18%, 9/50). Notable pathogens included Ebola virus, Marburg virus, Hantavirus, Zika virus, Human parainfluenza virus-3, Anaplasma phagocytophilum, Borrelia faini, Coxiella burnetii, Trypanosoma brucei rhodesiense, Calodium hepaticum, and Trichinella spiralis. Most identified infectious agents came from short term cross-sectional investigations, thus, the temporal dynamics related to abundance and likelihood of outbreaks remain unknown. Conclusion The findings starkly illuminate significant zoonotic public health threats amidst glaring under-surveillance of zoonoses in humans in Zambia. This critical gap calls urgently for enhanced active, passive and syndromic surveillance activities to identify new diseases and provide evidence-based measures to safeguard public health from emerging infectious risks in Zambia and the Southern African sub-region, considering the country's position as a regional transport hub.
Collapse
Affiliation(s)
- Samuel Munalula Munjita
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Benjamin Mubemba
- Department of Wildlife Sciences, School of Natural Resources, Copperbelt University, Kitwe, Zambia
| | - Katendi Changula
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - John Tembo
- HerpeZ, University Teaching Hospital, Lusaka, Zambia
| | | | - Matthew Bates
- HerpeZ, University Teaching Hospital, Lusaka, Zambia
- School of Natural Sciences, University of Lincoln, Lincoln, Lincolnshire, United Kingdom
| | - Simbarashe Chitanga
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
- Department of Preclinical Studies, School of Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Sody Munsaka
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | | |
Collapse
|
22
|
Carlson CJ, Garnier R, Tiu A, Luby SP, Bansal S. Strategic vaccine stockpiles for regional epidemics of emerging viruses: A geospatial modeling framework. Vaccine 2024; 42:126051. [PMID: 38902187 DOI: 10.1016/j.vaccine.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Multinational epidemics of emerging infectious diseases are increasingly common, due to anthropogenic pressure on ecosystems and the growing connectivity of human populations. Early and efficient vaccination can contain outbreaks and prevent mass mortality, but optimal vaccine stockpiling strategies are dependent on pathogen characteristics, reservoir ecology, and epidemic dynamics. Here, we model major regional outbreaks of Nipah virus and Middle East respiratory syndrome, and use these to develop a generalized framework for estimating vaccine stockpile needs based on spillover geography, spatially-heterogeneous healthcare capacity and spatially-distributed human mobility networks. Because outbreak sizes were highly skewed, we found that most outbreaks were readily contained (median stockpile estimate for MERS-CoV: 2,089 doses; Nipah: 1,882 doses), but the maximum estimated stockpile need in a highly unlikely large outbreak scenario was 2-3 orders of magnitude higher (MERS-CoV: ∼87,000 doses; Nipah ∼ 1.1 million doses). Sensitivity analysis revealed that stockpile needs were more dependent on basic epidemiological parameters (i.e., death and recovery rate) and healthcare availability than any uncertainty related to vaccine efficacy or deployment strategy. Our results highlight the value of descriptive epidemiology for real-world modeling applications, and suggest that stockpile allocation should consider ecological, epidemiological, and social dimensions of risk.
Collapse
Affiliation(s)
- Colin J Carlson
- Department of Biology, Georgetown University; Department of Epidemiology of Microbial Diseases, Yale University School of Public Health
| | | | - Andrew Tiu
- Department of Biology, Georgetown University
| | | | | |
Collapse
|
23
|
Wickenhagen A, van Tol S, Munster V. Molecular determinants of cross-species transmission in emerging viral infections. Microbiol Mol Biol Rev 2024; 88:e0000123. [PMID: 38912755 PMCID: PMC11426021 DOI: 10.1128/mmbr.00001-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
SUMMARYSeveral examples of high-impact cross-species transmission of newly emerging or re-emerging bat-borne viruses, such as Sudan virus, Nipah virus, and severe acute respiratory syndrome coronavirus 2, have occurred in the past decades. Recent advancements in next-generation sequencing have strengthened ongoing efforts to catalog the global virome, in particular from the multitude of different bat species. However, functional characterization of these novel viruses and virus sequences is typically limited with regard to assessment of their cross-species potential. Our understanding of the intricate interplay between virus and host underlying successful cross-species transmission has focused on the basic mechanisms of entry and replication, as well as the importance of host innate immune responses. In this review, we discuss the various roles of the respective molecular mechanisms underlying cross-species transmission using different recent bat-borne viruses as examples. To delineate the crucial cellular and molecular steps underlying cross-species transmission, we propose a framework of overall characterization to improve our capacity to characterize viruses as benign, of interest, or of concern.
Collapse
Affiliation(s)
- Arthur Wickenhagen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Sarah van Tol
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
24
|
Moon SY, Flores RA, Yim MS, Lim H, Kim S, Lee SY, Lee YK, Kim JO, Park H, Bae SE, Ouh IO, Kim WH. Immunogenicity and Neutralization of Recombinant Vaccine Candidates Expressing F and G Glycoproteins against Nipah Virus. Vaccines (Basel) 2024; 12:999. [PMID: 39340029 PMCID: PMC11436239 DOI: 10.3390/vaccines12090999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Nipah virus (NiV), of the Paramyxoviridae family, causes highly fatal infections in humans and is associated with severe neurological and respiratory diseases. Currently, no commercial vaccine is available for human use. Here, eight structure-based mammalian-expressed recombinant proteins harboring the NiV surface proteins, fusion glycoprotein (F), and the major attachment glycoprotein (G) were produced. Specifically, prefusion NiV-F and/or NiV-G glycoproteins expressed in monomeric, multimeric (trimeric F and tetra G), or chimeric forms were evaluated for their properties as sub-unit vaccine candidates. The antigenicity of the recombinant NiV glycoproteins was evaluated in intramuscularly immunized mice, and the antibodies in serum were assessed. Predictably, all homologous immunizations exhibited immunogenicity, and neutralizing antibodies to VSV-luciferase-based pseudovirus expressing NiV-GF glycoproteins were found in all groups. Comparatively, neutralizing antibodies were highest in vaccines designed in their multimeric structures and administered as bivalent (GMYtet + GBDtet) and trivalent (Ftri + GMYtet + GBDtet). Additionally, while all adjuvants were able to elicit an immunogenic response in vaccinated groups, bivalent (GMYtet + GBDtet) and trivalent (Ftri + GMYtet + GBDtet) induced more potent neutralizing antibodies when administered with oil-in-water nano-emulsion adjuvant, AddaS03. For all experiments, the bivalent GMYtet + GBDtet was the most immunogenic vaccine candidate. Results from this study highlight the potential use of these mammalian-expressed recombinant NiV as vaccine candidates, deserving further exploration.
Collapse
Affiliation(s)
- Seo Young Moon
- Division of Vaccine Development Coordination, Center for Vaccine Research National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Chungcheongbuk-do, Republic of Korea
| | - Rochelle A Flores
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Gyeongsangnam-do, Republic of Korea
| | - Min Su Yim
- Division of Vaccine Development Coordination, Center for Vaccine Research National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Chungcheongbuk-do, Republic of Korea
| | - Heeji Lim
- Division of Vaccine Development Coordination, Center for Vaccine Research National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Chungcheongbuk-do, Republic of Korea
| | - Seungyeon Kim
- Division of Vaccine Development Coordination, Center for Vaccine Research National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Chungcheongbuk-do, Republic of Korea
| | - Seung Yun Lee
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Gyeongsangnam-do, Republic of Korea
| | - Yoo-Kyoung Lee
- Division of Vaccine Development Coordination, Center for Vaccine Research National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Chungcheongbuk-do, Republic of Korea
| | - Jae-Ouk Kim
- Molecular Immunology, Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea
| | - Hyejin Park
- Division of Vaccine Development Coordination, Center for Vaccine Research National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Chungcheongbuk-do, Republic of Korea
| | - Seong Eun Bae
- Molecular Immunology, Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea
| | - In-Ohk Ouh
- Division of Vaccine Development Coordination, Center for Vaccine Research National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Chungcheongbuk-do, Republic of Korea
| | - Woo H Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
25
|
Roffler AA, Maurer DP, Lunn TJ, Sironen T, Forbes KM, Schmidt AG. Bat humoral immunity and its role in viral pathogenesis, transmission, and zoonosis. Front Immunol 2024; 15:1269760. [PMID: 39156901 PMCID: PMC11329927 DOI: 10.3389/fimmu.2024.1269760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 02/08/2024] [Indexed: 08/20/2024] Open
Abstract
Bats harbor viruses that can cause severe disease and death in humans including filoviruses (e.g., Ebola virus), henipaviruses (e.g., Hendra virus), and coronaviruses (e.g., SARS-CoV). Bats often tolerate these viruses without noticeable adverse immunological effects or succumbing to disease. Previous studies have largely focused on the role of the bat's innate immune response to control viral pathogenesis, but little is known about bat adaptive immunity. A key component of adaptive immunity is the humoral response, comprised of antibodies that can specifically recognize viral antigens with high affinity. The antibody genes within the 1,400 known bat species are highly diverse, and these genetic differences help shape fundamental aspects of the antibody repertoire, including starting diversity and viral antigen recognition. Whether antibodies in bats protect, mediate viral clearance, and prevent transmission within bat populations is poorly defined. Furthermore, it is unclear how neutralizing activity and Fc-mediated effector functions contribute to bat immunity. Although bats have canonical Fc genes (e.g., mu, gamma, alpha, and epsilon), the copy number and sequences of their Fc genes differ from those of humans and mice. The function of bat antibodies targeting viral antigens has been speculated based on sequencing data and polyclonal sera, but functional and biochemical data of monoclonal antibodies are lacking. In this review, we summarize current knowledge of bat humoral immunity, including variation between species, their potential protective role(s) against viral transmission and replication, and address how these antibodies may contribute to population dynamics within bats communities. A deeper understanding of bat adaptive immunity will provide insight into immune control of transmission and replication for emerging viruses with the potential for zoonotic spillover.
Collapse
Affiliation(s)
- Anne A. Roffler
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, United States
| | - Daniel P. Maurer
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, United States
| | - Tamika J. Lunn
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Tarja Sironen
- Department of Virology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Kristian M. Forbes
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Aaron G. Schmidt
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, United States
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Tan FH, Sukri A, Idris N, Ong KC, Schee JP, Tan CT, Tan SH, Wong KT, Wong LP, Tee KK, Chang LY. A systematic review on Nipah virus: global molecular epidemiology and medical countermeasures development. Virus Evol 2024; 10:veae048. [PMID: 39119137 PMCID: PMC11306115 DOI: 10.1093/ve/veae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Nipah virus (NiV) is an emerging pathogen that causes encephalitis and a high mortality rate in infected subjects. This systematic review aimed to comprehensively analyze the global epidemiology and research advancements of NiV to identify the key knowledge gaps in the literature. Articles searched using literature databases, namely PubMed, Scopus, Web of Science, and Science Direct yielded 5,596 articles. After article screening, 97 articles were included in this systematic review, comprising 41 epidemiological studies and 56 research developments on NiV. The majority of the NiV epidemiological studies were conducted in Bangladesh, reflecting the country's significant burden of NiV outbreaks. The initial NiV outbreak was identified in Malaysia in 1998, with subsequent outbreaks reported in Bangladesh, India, and the Philippines. Transmission routes vary by country, primarily through pigs in Malaysia, consumption of date palm juice in Bangladesh, and human-to-human in India. However, the availability of NiV genome sequences remains limited, particularly from Malaysia and India. Mortality rates also vary according to the country, exceeding 70% in Bangladesh, India, and the Philippines, and less than 40% in Malaysia. Understanding these differences in mortality rate among countries is crucial for informing NiV epidemiology and enhancing outbreak prevention and management strategies. In terms of research developments, the majority of studies focused on vaccine development, followed by phylogenetic analysis and antiviral research. While many vaccines and antivirals have demonstrated complete protection in animal models, only two vaccines have progressed to clinical trials. Phylogenetic analyses have revealed distinct clades between NiV Malaysia, NiV Bangladesh, and NiV India, with proposals to classify NiV India as a separate strain from NiV Bangladesh. Taken together, comprehensive OneHealth approaches integrating disease surveillance and research are imperative for future NiV studies. Expanding the dataset of NiV genome sequences, particularly from Malaysia, Bangladesh, and India will be pivotal. These research efforts are essential for advancing our understanding of NiV pathogenicity and for developing robust diagnostic assays, vaccines and therapeutics necessary for effective preparedness and response to future NiV outbreaks.
Collapse
Affiliation(s)
- Foo Hou Tan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Asif Sukri
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Nuryana Idris
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Sciences, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Jie Ping Schee
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Chong Tin Tan
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Sciences, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kum Thong Wong
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Pathology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Li Ping Wong
- Department of Social Preventive Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| |
Collapse
|
27
|
Sun YQ, Zhang YY, Liu MC, Chen JJ, Li TT, Liu YN, Zhang LY, Wang T, Yu LJ, Che TL, Tang T, Xu Q, Lv CL, Jiang BG, Golding N, Mehlman ML, Hay SI, Fang LQ, Liu W. Mapping the distribution of Nipah virus infections: a geospatial modelling analysis. Lancet Planet Health 2024; 8:e463-e475. [PMID: 38969474 DOI: 10.1016/s2542-5196(24)00119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Nipah virus is a zoonotic paramyxovirus responsible for disease outbreaks with high fatality rates in south and southeast Asia. However, knowledge of the potential geographical extent and risk patterns of the virus is poor. We aimed to establish an integrated spatiotemporal and phylogenetic database of Nipah virus infections in humans and animals across south and southeast Asia. METHODS In this geospatial modelling analysis, we developed an integrated database containing information on the distribution of Nipah virus infections in humans and animals from 1998 to 2021. We conducted phylodynamic analysis to examine the evolution and migration pathways of the virus and meta-analyses to estimate the adjusted case-fatality rate. We used two boosted regression tree models to identify the potential ecological drivers of Nipah virus occurrences in spillover events and endemic areas, and mapped potential risk areas for Nipah virus endemicity. FINDINGS 749 people and eight bat species across nine countries were documented as being infected with Nipah virus. On the basis of 66 complete genomes of the virus, we identified two clades-the Bangladesh clade and the Malaysia clade-with the time of the most recent common ancestor estimated to be 1863. Adjusted case-fatality rates varied widely between countries and were higher for the Bangladesh clade than for the Malaysia clade. Multivariable meta-regression analysis revealed significant relationships between case-fatality rate estimates and viral clade (p=0·0021), source country (p=0·016), proportion of male patients (p=0·036), and travel time to health-care facilities (p=0·036). Temperature-related bioclimate variables and the probability of occurrence of Pteropus medius were important contributors to both the spillover and the endemic infection models. INTERPRETATION The suitable niches for Nipah virus are more extensive than previously reported. Future surveillance efforts should focus on high-risk areas informed by updated projections. Specifically, intensifying zoonotic surveillance efforts, enhancing laboratory testing capacity, and implementing public health education in projected high-risk areas where no human cases have been reported to date will be crucial. Additionally, strengthening wildlife surveillance and investigating potential modes of transmission in regions with documented human cases is needed. FUNDING The Key Research and Development Program of China.
Collapse
Affiliation(s)
- Yan-Qun Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; Nanjing Municipal Center for Disease Control and Prevention, Affiliated Nanjing Center for Disease Control and Prevention of Nanjing Medical University, Nanjing, China
| | - Yuan-Yuan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mei-Chen Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ting-Ting Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; School of Public Health, Guizhou Medical University, Guiyang, China
| | - Yan-Ning Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ling-Yu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tao Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lin-Jie Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tian-Le Che
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tian Tang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qiang Xu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Chen-Long Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Nick Golding
- Telethon Kids Institute, Nedlands, WA, Australia; School of Population Health, Curtin University, Bentley, WA, Australia; Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Max L Mehlman
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA; Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Simon I Hay
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA; Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA.
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; The First Affiliated Hospital, Anhui Medical University, Hefei, China.
| |
Collapse
|
28
|
Rahim AA, Chandran P, Bindu V, Radhakrishnan C, Moorkoth AP, Ramakrishnan LV. Recurrent Nipah outbreaks in Kerala: implications for health policy and preparedness. Front Public Health 2024; 12:1356515. [PMID: 38966708 PMCID: PMC11222320 DOI: 10.3389/fpubh.2024.1356515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Affiliation(s)
- Asuma Ayesha Rahim
- Department of Community Medicine, Government Medical College Kozhikode, Kozhikode, India
| | - Priya Chandran
- Department of Community Medicine, Government Medical College Kozhikode, Kozhikode, India
| | - V. Bindu
- Department of Community Medicine, Government Medical College Kozhikode, Kozhikode, India
| | - Chandini Radhakrishnan
- Department of Emergency Medicine, Government Medical College Kozhikode, Kozhikode, India
| | - Anitha P. Moorkoth
- Department of Microbiology, Government Medical College Kozhikode, Kozhikode, India
| | | |
Collapse
|
29
|
Leyva-Grado VH, Marin A, Hlushko R, Yunus AS, Promeneur D, Luckay A, Lazaro GG, Hamm S, Dimitrov AS, Broder CC, Andrianov AK. Nano-Assembled Polyphosphazene Delivery System Enables Effective Intranasal Immunization with Nipah Virus Subunit Vaccine. ACS APPLIED BIO MATERIALS 2024; 7:4133-4141. [PMID: 38812435 PMCID: PMC11321498 DOI: 10.1021/acsabm.4c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The ultimate vaccine against infections caused by Nipah virus should be capable of providing protection at the respiratory tract─the most probable port of entry for this pathogen. Intranasally delivered vaccines, which target nasal-associated lymphoid tissue and induce both systemic and mucosal immunity, are attractive candidates for enabling effective vaccination against this lethal disease. Herein, the water-soluble polyphosphazene delivery vehicle assembles into nanoscale supramolecular constructs with the soluble extracellular portion of the Hendra virus attachment glycoprotein─a promising subunit vaccine antigen against both Nipah and Hendra viruses. These supramolecular constructs signal through Toll-like receptor 7/8 and promote binding interactions with mucin─an important feature of effective mucosal adjuvants. High mass contrast of phosphorus-nitrogen backbone of the polymer enables a successful visualization of nanoconstructs in their vitrified state by cryogenic electron microscopy. Here, we characterize the self-assembly of polyphosphazene macromolecule with biologically relevant ligands by asymmetric flow field flow fractionation, dynamic light scattering, fluorescence spectrophotometry, and turbidimetric titration methods. Furthermore, a polyphosphazene-enabled intranasal Nipah vaccine candidate demonstrates the ability to induce immune responses in hamsters and shows superiority in inducing total IgG and neutralizing antibodies when benchmarked against the respective clinical stage alum adjuvanted vaccine. The results highlight the potential of polyphosphazene-enabled nanoassemblies in the development of intranasal vaccines.
Collapse
Affiliation(s)
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Raman Hlushko
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Abdul S. Yunus
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | | | - Amara Luckay
- Auro Vaccines LLC, 401 Middletown Rd. Bldg. 205, Pearl River, NY, 10965
| | - Glorie G. Lazaro
- Auro Vaccines LLC, 401 Middletown Rd. Bldg. 205, Pearl River, NY, 10965
| | - Stefan Hamm
- Auro Vaccines LLC, 401 Middletown Rd. Bldg. 205, Pearl River, NY, 10965
| | - Antony S. Dimitrov
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20814
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| |
Collapse
|
30
|
Apoorva, Singh SK. A tale of endurance: bats, viruses and immune dynamics. Future Microbiol 2024; 19:841-856. [PMID: 38648093 PMCID: PMC11382704 DOI: 10.2217/fmb-2023-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/09/2024] [Indexed: 04/25/2024] Open
Abstract
The emergence of highly zoonotic viral infections has propelled bat research forward. The viral outbreaks including Hendra virus, Nipah virus, Marburg virus, Ebola virus, Rabies virus, Middle East respiratory syndrome coronavirus, SARS-CoV and the latest SARS-CoV-2 have been epidemiologically linked to various bat species. Bats possess unique immunological characteristics that allow them to serve as a potential viral reservoir. Bats are also known to protect themselves against viruses and maintain their immunity. Therefore, there is a need for in-depth understanding into bat-virus biology to unravel the major factors contributing to the coexistence and spread of viruses.
Collapse
Affiliation(s)
- Apoorva
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sunit Kumar Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
- Dr. B R Ambedkar Center for Biomedical Research, University of Delhi (North Campus), New Delhi, 110007, India
| |
Collapse
|
31
|
Kessler S, Burke B, Andrieux G, Schinköthe J, Hamberger L, Kacza J, Zhan S, Reasoner C, Dutt TS, Kaukab Osman M, Henao-Tamayo M, Staniek J, Villena Ossa JF, Frank DT, Ma W, Ulrich R, Cathomen T, Boerries M, Rizzi M, Beer M, Schwemmle M, Reuther P, Schountz T, Ciminski K. Deciphering bat influenza H18N11 infection dynamics in male Jamaican fruit bats on a single-cell level. Nat Commun 2024; 15:4500. [PMID: 38802391 PMCID: PMC11130286 DOI: 10.1038/s41467-024-48934-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Jamaican fruit bats (Artibeus jamaicensis) naturally harbor a wide range of viruses of human relevance. These infections are typically mild in bats, suggesting unique features of their immune system. To better understand the immune response to viral infections in bats, we infected male Jamaican fruit bats with the bat-derived influenza A virus (IAV) H18N11. Using comparative single-cell RNA sequencing, we generated single-cell atlases of the Jamaican fruit bat intestine and mesentery. Gene expression profiling showed that H18N11 infection resulted in a moderate induction of interferon-stimulated genes and transcriptional activation of immune cells. H18N11 infection was predominant in various leukocytes, including macrophages, B cells, and NK/T cells. Confirming these findings, human leukocytes, particularly macrophages, were also susceptible to H18N11, highlighting the zoonotic potential of this bat-derived IAV. Our study provides insight into a natural virus-host relationship and thus serves as a fundamental resource for future in-depth characterization of bat immunology.
Collapse
Affiliation(s)
- Susanne Kessler
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bradly Burke
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Geoffroy Andrieux
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jan Schinköthe
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Lea Hamberger
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johannes Kacza
- BioImaging Core Facility, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Shijun Zhan
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Clara Reasoner
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Taru S Dutt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Maria Kaukab Osman
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Julian Staniek
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
| | - Jose Francisco Villena Ossa
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany
| | - Dalit T Frank
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Wenjun Ma
- Department of Veterinary Pathobiology and Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Toni Cathomen
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Reuther
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tony Schountz
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Kevin Ciminski
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
32
|
Fan P, Sun M, Zhang X, Zhang H, Liu Y, Yao Y, Li M, Fang T, Sun B, Chen Z, Chi X, Chen L, Peng C, Chen Z, Zhang G, Ren Y, Liu Z, Li Y, Li J, Li E, Guan W, Li S, Gong R, Zhang K, Yu C, Chiu S. A potent Henipavirus cross-neutralizing antibody reveals a dynamic fusion-triggering pattern of the G-tetramer. Nat Commun 2024; 15:4330. [PMID: 38773072 PMCID: PMC11109247 DOI: 10.1038/s41467-024-48601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024] Open
Abstract
The Hendra and Nipah viruses (HNVs) are highly pathogenic pathogens without approved interventions for human use. In addition, the interaction pattern between the attachment (G) and fusion (F) glycoproteins required for virus entry remains unclear. Here, we isolate a panel of Macaca-derived G-specific antibodies that cross-neutralize HNVs via multiple mechanisms. The most potent antibody, 1E5, confers adequate protection against the Nipah virus challenge in female hamsters. Crystallography demonstrates that 1E5 has a highly similar binding pattern to the receptor. In cryo-electron microscopy studies, the tendency of 1E5 to bind to the upper or lower heads results in two distinct quaternary structures of G. Furthermore, we identify the extended outer loop β1S2-β1S3 of G and two pockets on the apical region of fusion (F) glycoprotein as the essential sites for G-F interactions. This work highlights promising drug candidates against HNVs and contributes deeper insights into the viruses.
Collapse
Grants
- the Defense Industrial Technology Development Program, Grant No. JCKY2020802B001
- the Ministry of Science and Technology of China,Grant No. 2022YFC2303700; the Fundamental Research Funds for the Central Universities, Grant No. WK9100000032
- Hubei Jiangxia Laboratory, Grant No. JXBS002
- the Ministry of Science and Technology of China,Grant No. 2022YFC2303700, Grant No. 2022YFA1302700; the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDB0490000; the Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Grant No. QYPY20220019; the Fundamental Research Funds for the Central Universities, Grant No. WK9100000044
- the Strategic Priority Research Program of the Chinese Academy of Sciences,Grant No. XDB0490000
Collapse
Affiliation(s)
- Pengfei Fan
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China.
| | - Mengmeng Sun
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinghai Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Huajun Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yujiao Liu
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Yanfeng Yao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Ming Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ting Fang
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Bingjie Sun
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Zhengshan Chen
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Xiangyang Chi
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Li Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Guanying Zhang
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Yi Ren
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Zixuan Liu
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Yaohui Li
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Jianmin Li
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wuxiang Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Shanshan Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rui Gong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
| | - Kaiming Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Changming Yu
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
| |
Collapse
|
33
|
Rodrigue V, Gravagna K, Yao J, Nafade V, Basta NE. Current progress towards prevention of Nipah and Hendra disease in humans: A scoping review of vaccine and monoclonal antibody candidates being evaluated in clinical trials. Trop Med Int Health 2024; 29:354-364. [PMID: 38415314 DOI: 10.1111/tmi.13979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
OBJECTIVES Nipah and Hendra are deadly zoonotic diseases with pandemic potential. To date, no human vaccine or monoclonal antibody (mAb) has been licensed to prevent disease caused by these pathogens. The aim of this scoping review was to identify and describe all Phase I, II, and III clinical trials of vaccine candidates or mAbs candidates designed to prevent Nipah and Hendra in humans and to compare the characteristics of the vaccine candidates to characteristics outlined in the Target Product Profile drafted by the World Health Organisation as part of the WHO Research & Development Blueprint for Action to Prevent Epidemics. METHODS We searched 23 clinical trial registries, the Cochrane Central Register of Clinical Trials, and grey literature up to June 2023 to identify vaccine and mAb candidates being evaluated in registered clinical trials. Vaccine candidate and trial characteristics were double-extracted for evaluation and the vaccine candidate characteristics were compared with the preferred and critical criteria of the World Health Organisation's Target Product Profile for Nipah virus vaccine. RESULTS Three vaccine candidates (Hendra Virus Soluble Glycoprotein Vaccine [HeV-sG-V], PHV02, and mRNA-1215) and one mAb (m102.4) had a registered human clinical trial by June 2023. All trials were phase 1, dose-ranging trials taking place in the United States of America or Australia and enrolling healthy adults. Although all vaccine candidates meet the dose regimen and route of administration criteria of the Target Product Profile, other criteria such as measures of efficacy and reactogenicity will need to be evaluated in the future as evidence becomes available. CONCLUSION Multiple vaccine candidates and one mAb candidate have reached the stage of human clinical trials and are reviewed here. Monitoring progress during evaluation of these candidates and candidates entering clinical trials in the future can help highlight many of the challenges that remain.
Collapse
Affiliation(s)
- Valerie Rodrigue
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, McGill University, Montréal, Québec, Canada
| | - Katie Gravagna
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jacqueline Yao
- School of Medicine, Stanford University, Stanford, California, USA
| | - Vaidehi Nafade
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, McGill University, Montréal, Québec, Canada
| | - Nicole E Basta
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, McGill University, Montréal, Québec, Canada
| |
Collapse
|
34
|
Larsen BB, McMahon T, Brown JT, Wang Z, Radford CE, Crowe JE, Veesler D, Bloom JD. Functional and antigenic landscape of the Nipah virus receptor binding protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589977. [PMID: 38659959 PMCID: PMC11042328 DOI: 10.1101/2024.04.17.589977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nipah virus recurrently spills over to humans, causing fatal infections. The viral receptor-binding protein (RBP or G) attaches to host receptors and is a major target of neutralizing antibodies. Here we use deep mutational scanning to measure how all amino-acid mutations to the RBP affect cell entry, receptor binding, and escape from neutralizing antibodies. We identify functionally constrained regions of the RBP, including sites involved in oligomerization, along with mutations that differentially modulate RBP binding to its two ephrin receptors. We map escape mutations for six anti-RBP antibodies, and find that few antigenic mutations are present in natural Nipah strains. Our findings offer insights into the potential for functional and antigenic evolution of the RBP that can inform the development of antibody therapies and vaccines.
Collapse
Affiliation(s)
- Brendan B. Larsen
- Basic Sciences Division and Computational Biology Program, Fred Hutch Cancer Center, Seattle, WA 98109, USA
| | - Teagan McMahon
- Basic Sciences Division and Computational Biology Program, Fred Hutch Cancer Center, Seattle, WA 98109, USA
| | - Jack T. Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Zhaoqian Wang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Caelan E. Radford
- Basic Sciences Division and Computational Biology Program, Fred Hutch Cancer Center, Seattle, WA 98109, USA
| | - James E. Crowe
- Department of Pathology Microbiology and Immunology, The Vanderbilt Vaccine Center, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutch Cancer Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| |
Collapse
|
35
|
Zeitlin L, Cross RW, Woolsey C, West BR, Borisevich V, Agans KN, Prasad AN, Deer DJ, Stuart L, McCavitt-Malvido M, Kim DH, Pettitt J, Crowe JE, Whaley KJ, Veesler D, Dimitrov A, Abelson DM, Geisbert TW, Broder CC. Therapeutic administration of a cross-reactive mAb targeting the fusion glycoprotein of Nipah virus protects nonhuman primates. Sci Transl Med 2024; 16:eadl2055. [PMID: 38569014 DOI: 10.1126/scitranslmed.adl2055] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/03/2024] [Indexed: 04/05/2024]
Abstract
No licensed vaccines or therapies exist for patients infected with Nipah virus (NiV), although an experimental human monoclonal antibody (mAb) cross-reactive to the NiV and Hendra virus (HeV) G glycoprotein, m102.4, has been tested in a phase 1 trial and has been provided under compassionate use for both HeV and NiV exposures. NiV is a highly pathogenic zoonotic paramyxovirus causing regular outbreaks in humans and animals in South and Southeast Asia. The mortality rate of NiV infection in humans ranges from 40% to more than 90%, making it a substantial public health concern. The NiV G glycoprotein mediates host cell attachment, and the F glycoprotein facilitates membrane fusion and infection. We hypothesized that a mAb against the prefusion conformation of the F glycoprotein may confer better protection than m102.4. To test this, two potent neutralizing mAbs against NiV F protein, hu1F5 and hu12B2, were compared in a hamster model. Hu1F5 provided superior protection to hu12B2 and was selected for comparison with m102.4 for the ability to protect African green monkeys (AGMs) from a stringent NiV challenge. AGMs were exposed intranasally to the Bangladesh strain of NiV and treated 5 days after exposure with either mAb (25 milligrams per kilogram). Whereas only one of six AGMs treated with m102.4 survived until the study end point, all six AGMs treated with hu1F5 were protected. Furthermore, a reduced 10 milligrams per kilogram dose of hu1F5 also provided complete protection against NiV challenge, supporting the upcoming clinical advancement of this mAb for postexposure prophylaxis and therapy.
Collapse
Affiliation(s)
| | - Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | - Courtney Woolsey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | | | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | - Krystle N Agans
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | - Abhishek N Prasad
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | - Daniel J Deer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | | | | | - Do H Kim
- Mapp Biopharmaceutical, San Diego, CA 92121, USA
| | | | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Antony Dimitrov
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20814, USA
| | | | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
36
|
He W, Ma T, Wang Y, Han W, Liu J, Lei W, Zhang L, Wu G. Development and evaluation of a quadruple real-time fluorescence-based quantitative reverse transcription polymerase chain reaction assay for detecting Langya, Mojiang, Nipah, and Cedar viruses. BIOSAFETY AND HEALTH 2024; 6:80-87. [PMID: 40078949 PMCID: PMC11894978 DOI: 10.1016/j.bsheal.2024.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 03/14/2025] Open
Abstract
The emerging viruses within the genus Henipavirus in the family Paramyxoviridae pose a great threat to public biosafety. To develop a quadruple real-time fluorescence-based quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay is pivotal for the early warning of the potential of zoonotic infectious diseases. Specific primers and probes were designed for the relatively conserved regions based on whole genome sequences of Langya virus (LayV), Mojiang virus (MojV), Nipah virus (NiV), and Cedar virus (CedV), followed by the establishment of a quadruple real-time fluorescence-based qRT-PCR detection method. No cross-reactivity was observed with other viral nucleic acids. The optimal linear detection range for LayV, MojV, NiV, and CedV was 101-108 copies/μL, and the lower limit of detection was 10 copies/μL. Three different DNA concentrations of LayV, MojV, NiV, and CedV (104, 105, and 106 copies/μL) were tested 14 times, achieving good repeatability. The standard deviation of the cycle threshold values for each concentration was <0.5 and the coefficient of variation was <3 %. Furthermore, the amplification efficiency of quadruple real-time fluorescence-based qRT-PCR was >90 %, and the correlation coefficient was >0.99. The established quadruple real-time fluorescence-based qRT-PCR assay for the detection of LayV, MojV, NiV, and CedV exhibits good sensitivity, specificity, and repeatability. Therefore, it can be used to detect Henipavirus and other related clinical specimens.
Collapse
Affiliation(s)
- Wenjun He
- School of Public Health and Management, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Tian Ma
- School of Public Health and Management, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yalan Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Weifang Han
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jun Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wenwen Lei
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Le Zhang
- School of Public Health and Management, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
37
|
Couto RDS, Abreu WU, Rodrigues LRR, Marinho LF, Morais VDS, Villanova F, Pandey RP, Deng X, Delwart E, da Costa AC, Leal E. Genomoviruses in Liver Samples of Molossus molossus Bats. Microorganisms 2024; 12:688. [PMID: 38674632 PMCID: PMC11052389 DOI: 10.3390/microorganisms12040688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
CRESS-DNA encompasses a broad spectrum of viruses documented across diverse organisms such as animals, plants, diatoms, fungi, and marine invertebrates. Despite this prevalence, the full extent of these viruses' impact on the environment and their respective hosts remains incompletely understood. Furthermore, an increasing number of viruses within this category lack detailed characterization. This investigation focuses on unveiling and characterizing viruses affiliated with the Genomoviridae family identified in liver samples from the bat Molossus molossus. Leveraging viral metagenomics, we identified seven sequences (MmGmV-PA) featuring a circular DNA genome housing two ORFs encoding replication-associated protein (Rep) and capsid protein (Cap). Predictions based on conserved domains typical of the Genomoviridae family were established. Phylogenetic analysis revealed the segregation of these sequences into two clades aligning with the genera Gemycirculavirus (MmGmV-06-PA and MmGmV-07-PA) and Gemykibivirus (MmGmV-01-PA, MmGmV-02-PA, MmGmV-03-PA, MmGmV-05-PA, and MmGmV-09-PA). At the species level, pairwise comparisons based on complete nucleotide sequences indicated the potential existence of three novel species. In summary, our study significantly contributes to an enhanced understanding of the diversity of Genomoviridae within bat samples, shedding light on previously undiscovered viral entities and their potential ecological implications.
Collapse
Affiliation(s)
- Roseane da Silva Couto
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem 66075-000, PA, Brazil; (R.d.S.C.); (F.V.)
| | - Wandercleyson Uchôa Abreu
- Programa de Pos-Graduação REDE Bionorte, Polo Pará, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil;
| | - Luís Reginaldo Ribeiro Rodrigues
- Laboratory of Genetics & Biodiversity, Institute of Educational Sciences, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil;
| | | | - Vanessa dos Santos Morais
- Laboratory of Virology (LIM 52), Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil; (V.d.S.M.); (A.C.d.C.)
| | - Fabiola Villanova
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem 66075-000, PA, Brazil; (R.d.S.C.); (F.V.)
| | - Ramendra Pati Pandey
- School of Health Sciences & Technology, UPES University, Dehradun 248007, Uttarakhand, India;
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA 94143, USA;
| | - Eric Delwart
- Department Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Antonio Charlys da Costa
- Laboratory of Virology (LIM 52), Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil; (V.d.S.M.); (A.C.d.C.)
| | - Elcio Leal
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem 66075-000, PA, Brazil; (R.d.S.C.); (F.V.)
| |
Collapse
|
38
|
Sánchez CA, Phelps KL, Frank HK, Geldenhuys M, Griffiths ME, Jones DN, Kettenburg G, Lunn TJ, Moreno KR, Mortlock M, Vicente-Santos A, Víquez-R LR, Kading RC, Markotter W, Reeder DM, Olival KJ. Advances in understanding bat infection dynamics across biological scales. Proc Biol Sci 2024; 291:20232823. [PMID: 38444339 PMCID: PMC10915549 DOI: 10.1098/rspb.2023.2823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Over the past two decades, research on bat-associated microbes such as viruses, bacteria and fungi has dramatically increased. Here, we synthesize themes from a conference symposium focused on advances in the research of bats and their microbes, including physiological, immunological, ecological and epidemiological research that has improved our understanding of bat infection dynamics at multiple biological scales. We first present metrics for measuring individual bat responses to infection and challenges associated with using these metrics. We next discuss infection dynamics within bat populations of the same species, before introducing complexities that arise in multi-species communities of bats, humans and/or livestock. Finally, we outline critical gaps and opportunities for future interdisciplinary work on topics involving bats and their microbes.
Collapse
Affiliation(s)
| | | | - Hannah K. Frank
- Department of Ecology & Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Marike Geldenhuys
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | | | - Devin N. Jones
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | | | - Tamika J. Lunn
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Kelsey R. Moreno
- Department of Psychology, Saint Xavier University, Chicago, IL 60655, USA
| | - Marinda Mortlock
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | | | - Luis R. Víquez-R
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Rebekah C. Kading
- Department of Microbiology, Immunology and Pathology, Center for Vector-borne and Infectious Diseases, Colorado State University, Fort Collins, CO 80523, USA
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - DeeAnn M. Reeder
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | | |
Collapse
|
39
|
Balasubramanian R, Mohandas S, Thankappan UP, Shete A, Patil D, Sabarinath K, Mathapati B, Sahay R, Patil D, Yadav PD. Surveillance of Nipah virus in Pteropus medius of Kerala state, India, 2023. Front Microbiol 2024; 15:1342170. [PMID: 38511004 PMCID: PMC10951996 DOI: 10.3389/fmicb.2024.1342170] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/16/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Since 2018, the Indian state of Kerala has reported four Nipah virus (NiV) disease outbreaks, raising concerns about NiV spillover from bats to the human population. Considering this, a cross-sectional study was undertaken in the Pteropus medius bat population around the Nipah virus-affected regions of Kozhikode, Kerala, India, during February, July, and September 2023. Methods Throat swabs, rectal swabs, and organ samples were collected from bats to test for NiV using the real-time reverse transcriptase polymerase chain reaction (RT-PCR), while serum samples were screened for anti-Nipah IgG antibodies through ELISA. Results An overall seroprevalence of 20.9% was observed in 272 P. medius bats tested. The throat and rectal swab samples of 321 bats were negative for NiV RNA. However, 4 of 44 P. medius bats tested positive for NiV in their liver/spleen samples. The partial N gene retrieved showed more than 99% similarity with the earlier reported NiV genome from Kerala state, India. Discussion The findings of the study caution that there is a spillover risk in the region and necessary precautions should be taken.
Collapse
Affiliation(s)
| | | | | | - Anita Shete
- Maximum Containment Facility, ICMR-National Institute of Virology, Pune, India
| | - Dilip Patil
- Animal House, ICMR-National Institute of Virology, Pune, India
| | - Kannan Sabarinath
- Maximum Containment Facility, ICMR-National Institute of Virology, Pune, India
| | | | - Rima Sahay
- Maximum Containment Facility, ICMR-National Institute of Virology, Pune, India
| | - Deepak Patil
- Maximum Containment Facility, ICMR-National Institute of Virology, Pune, India
| | - Pragya D. Yadav
- Maximum Containment Facility, ICMR-National Institute of Virology, Pune, India
| |
Collapse
|
40
|
Eskew EA, Olival KJ, Mazet JAK, Daszak P, PREDICT Consortium. A global-scale dataset of bat viral detection suggests that pregnancy reduces viral shedding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.25.581969. [PMID: 38464184 PMCID: PMC10925100 DOI: 10.1101/2024.02.25.581969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Understanding viral infection dynamics in wildlife hosts can help forecast zoonotic pathogen spillover and human disease risk. Bats are particularly important reservoirs of zoonotic viruses, including some of major public health concern such as Nipah virus, Hendra virus, and SARS-related coronaviruses. Previous work has suggested that metapopulation dynamics, seasonal reproductive patterns, and other bat life history characteristics might explain temporal variation in spillover of bat-associated viruses into people. Here, we analyze viral dynamics in free-ranging bat hosts, leveraging a multi-year, global-scale viral detection dataset that spans eight viral families and 96 bat species from 14 countries. We fit hierarchical Bayesian models that explicitly control for important sources of variation, including geographic region, specimen type, and testing protocols, while estimating the influence of reproductive status on viral detection in female bats. Our models revealed that late pregnancy had a negative effect on viral shedding across multiple data subsets, while lactation had a weaker influence that was inconsistent across data subsets. These results are unusual for mammalian hosts, but given recent findings that bats may have high individual viral loads and population-level prevalence due to dampening of antiviral immunity, we propose that it would be evolutionarily advantageous for pregnancy to either not further reduce immunity or actually increase the immune response, reducing viral load, shedding, and risk of fetal infection. This novel hypothesis would be valuable to test given its potential to help monitor, predict, and manage viral spillover risk from bats.
Collapse
Affiliation(s)
- Evan A. Eskew
- EcoHealth Alliance, New York, NY 10018, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83844, USA
| | | | - Jonna A. K. Mazet
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | - PREDICT Consortium
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
41
|
He B, Hu T, Yan X, Pa Y, Liu Y, Liu Y, Li N, Yu J, Zhang H, Liu Y, Chai J, Sun Y, Mi S, Liu Y, Yi L, Tu Z, Wang Y, Sun S, Feng Y, Zhang W, Zhao H, Duan B, Gong W, Zhang F, Tu C. Isolation, characterization, and circulation sphere of a filovirus in fruit bats. Proc Natl Acad Sci U S A 2024; 121:e2313789121. [PMID: 38335257 PMCID: PMC10873641 DOI: 10.1073/pnas.2313789121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/11/2023] [Indexed: 02/12/2024] Open
Abstract
Bats are associated with the circulation of most mammalian filoviruses (FiVs), with pathogenic ones frequently causing deadly hemorrhagic fevers in Africa. Divergent FiVs have been uncovered in Chinese bats, raising concerns about their threat to public health. Here, we describe a long-term surveillance to track bat FiVs at orchards, eventually resulting in the identification and isolation of a FiV, Dehong virus (DEHV), from Rousettus leschenaultii bats. DEHV has a typical filovirus-like morphology with a wide spectrum of cell tropism. Its entry into cells depends on the engagement of Niemann-Pick C1, and its replication is inhibited by remdesivir. DEHV has the largest genome size of filoviruses, with phylogenetic analysis placing it between the genera Dianlovirus and Orthomarburgvirus, suggesting its classification as the prototype of a new genus within the family Filoviridae. The continuous detection of viral RNA in the serological survey, together with the wide host distribution, has revealed that the region covering southern Yunnan, China, and bordering areas is a natural circulation sphere for bat FiVs. These emphasize the need for a better understanding of the pathogenicity and potential risk of FiVs in the region.
Collapse
Affiliation(s)
- Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Tingsong Hu
- Southern Center for Diseases Control and Prevention, Guangzhou, Guangdong Province510630, China
| | - Xiaomin Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Yanhui Pa
- Ruili Center for Diseases Control and Prevention, Ruili, Yunnan Province678600, China
| | - Yuhang Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Yang Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Jing Yu
- Southern Center for Diseases Control and Prevention, Guangzhou, Guangdong Province510630, China
| | - Hailin Zhang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, Yunnan Province671000, China
| | - Yonghua Liu
- Ruili Center for Diseases Control and Prevention, Ruili, Yunnan Province678600, China
| | - Jun Chai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan Province650201, China
| | - Yue Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Shijiang Mi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Yan Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Le Yi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Zhongzhong Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Yiyin Wang
- Southern Center for Diseases Control and Prevention, Guangzhou, Guangdong Province510630, China
| | - Sheng Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Ye Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Wendong Zhang
- Center for Animal Diseases Control and Prevention of Yunnan Province, Kunming, Yunnan Province650051, China
| | - Huanyun Zhao
- Center for Animal Diseases Control and Prevention of Yunnan Province, Kunming, Yunnan Province650051, China
| | - Bofang Duan
- Center for Animal Diseases Control and Prevention of Yunnan Province, Kunming, Yunnan Province650051, China
| | - Wenjie Gong
- Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province130062, China
| | - Fuqiang Zhang
- Southern Center for Diseases Control and Prevention, Guangzhou, Guangdong Province510630, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province225009, China
| |
Collapse
|
42
|
Verma A, Jain H, Sulaiman SA, Pokhrel P, Goyal A, Dave T. An impending public health threat: analysis of the recent Nipah virus outbreak and future recommendations - an editorial. Ann Med Surg (Lond) 2024; 86:638-642. [PMID: 38333322 PMCID: PMC10849355 DOI: 10.1097/ms9.0000000000001627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/07/2023] [Indexed: 02/10/2024] Open
Affiliation(s)
- Amogh Verma
- Rama Medical College Hospital and Research Centre, Hapur
| | - Hritvik Jain
- All India Institute of Medical Sciences (AIIMS), Jodhpur
| | | | - Prakriti Pokhrel
- Kathmandu Medical College and Teaching Hospital, Kathmandu, Nepal
| | - Aman Goyal
- Department of Internal Medicine, Seth Gordhandas Sunderdas (GS) Medical College and King Edward Memorial (KEM) Hospital, Mumbai, India
| | - Tirth Dave
- Bukovinian State Medical University, Chernivtsi, Ukraine
| |
Collapse
|
43
|
Dsouza NN, Chellasamy SK. A comparative genomic approach to decipher the mutations associated with Nipah viral human isolates from southeast Asia. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:104-113. [PMID: 38682059 PMCID: PMC11055433 DOI: 10.18502/ijm.v16i1.14879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Background and Objectives Multiple outbreaks over two decades and a high mortality rate have emphasized the Nipah virus (NiV) as a priority research area. The study focuses on identifying the mutational landscape in sequences from NiV human isolates from different geographical regions. Materials and Methods Thirty-seven NiV genomes of human samples from Malaysia, Bangladesh, and India were subjected to phylogeny and metagenomic analysis to decipher the genome variability using MEGA11 software and the meta-CATS web server. Using the Single-Likelihood Ancestor Counting method, the synonymous and nonsynonymous mutations among NiV genes were identified. Further, the nonsynonymous variations were used to identify mutations in all the NiV proteins. Results The NiV isolates were categorized into NiV-M, NiV-B, and NiV-I clades based on phylogenetic analysis. Metagenomic analysis revealed 1636 variations in the noncoding and coding regions of the genomes of the three clades of NiV. Further analysis of nonsynonymous mutations showed the phosphoprotein to be highly mutating, whereas the matrix protein was stable. Conclusion Deciphering the mutation pattern using a comparative genomics approach for human isolates provided valuable insight into the stability of NiV proteins which can be further used for understanding variations in host-pathogen interaction and developing effective therapeutic measures.
Collapse
Affiliation(s)
- Norine Norbert Dsouza
- Department of Bioinformatics, School of Biotechnology and Bioinformatics, Sector 15, CBD Belapur, Navi Mumbai, Maharashtra, India
- Department of Biotechnology, St. Xavier’s College, Mumbai, Maharashtra, India
| | - Selvaa Kumar Chellasamy
- Department of Bioinformatics, School of Biotechnology and Bioinformatics, Sector 15, CBD Belapur, Navi Mumbai, Maharashtra, India
| |
Collapse
|
44
|
Waller SJ, Tortosa P, Thurley T, O’Donnell CFJ, Jackson R, Dennis G, Grimwood RM, Holmes EC, McInnes K, Geoghegan JL. Virome analysis of New Zealand's bats reveals cross-species viral transmission among the Coronaviridae. Virus Evol 2024; 10:veae008. [PMID: 38379777 PMCID: PMC10878368 DOI: 10.1093/ve/veae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/02/2023] [Accepted: 01/21/2024] [Indexed: 02/22/2024] Open
Abstract
The lesser short-tailed bat (Mystacina tuberculata) and the long-tailed bat (Chalinolobus tuberculatus) are Aotearoa New Zealand's only native extant terrestrial mammals and are believed to have migrated from Australia. Long-tailed bats arrived in New Zealand an estimated two million years ago and are closely related to other Australian bat species. Lesser short-tailed bats, in contrast, are the only extant species within the Mystacinidae and are estimated to have been living in isolation in New Zealand for the past 16-18 million years. Throughout this period of isolation, lesser short-tailed bats have become one of the most terrestrial bats in the world. Through a metatranscriptomic analysis of guano samples from eight locations across New Zealand, we aimed to characterise the viromes of New Zealand's bats and determine whether viruses have jumped between these species over the past two million years. High viral richness was observed among long-tailed bats with viruses spanning seven different viral families. In contrast, no bat-specific viruses were identified in lesser short-tailed bats. Both bat species harboured an abundance of likely dietary- and environment-associated viruses. We also identified alphacoronaviruses in long-tailed bat guano that had previously been identified in lesser short-tailed bats, suggesting that these viruses had jumped the species barrier after long-tailed bats migrated to New Zealand. Of note, an alphacoronavirus species discovered here possessed a complete genome of only 22,416 nucleotides with entire deletions or truncations of several non-structural proteins, thereby representing what may be the shortest genome within the Coronaviridae identified to date. Overall, this study has revealed a diverse range of novel viruses harboured by New Zealand's only native terrestrial mammals, in turn expanding our understanding of bat viral dynamics and evolution globally.
Collapse
Affiliation(s)
- Stephanie J Waller
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9016, New Zealand
| | - Pablo Tortosa
- UMR PIMIT Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, CNRS 9192, INSERM 1187, IRD 249, Plateforme de recherche CYROI, 2 rue Maxime Rivière, Ste Clotilde 97490, France
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Tertia Thurley
- Department of Conservation, New Zealand Government, P.O. Box 10420, Wellington 6143, New Zealand
| | - Colin F J O’Donnell
- Department of Conservation, New Zealand Government, P.O. Box 10420, Wellington 6143, New Zealand
| | - Rebecca Jackson
- Department of Conservation, New Zealand Government, P.O. Box 10420, Wellington 6143, New Zealand
| | - Gillian Dennis
- Department of Conservation, New Zealand Government, P.O. Box 10420, Wellington 6143, New Zealand
| | - Rebecca M Grimwood
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9016, New Zealand
| | | | - Kate McInnes
- Department of Conservation, New Zealand Government, P.O. Box 10420, Wellington 6143, New Zealand
| | - Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9016, New Zealand
- Institute of Environmental Science and Research, 34 Kenepuru Drive, Kenepuru, Porirua, Wellington 5022, New Zealand
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Westmead Hospital, Level 5, Block K, Westmead, Sydney, NSW 2006, Australia
| |
Collapse
|
45
|
Hoque AF, Rahman MM, Lamia AS, Islam A, Klena JD, Satter SM, Epstein JH, Montgomery JM, Hossain ME, Shirin T, Jahid IK, Rahman MZ. In silico prediction of interaction between Nipah virus attachment glycoprotein and host cell receptors Ephrin-B2 and Ephrin-B3 in domestic and peridomestic mammals. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105516. [PMID: 37924857 DOI: 10.1016/j.meegid.2023.105516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/11/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023]
Abstract
Nipah virus (NiV) is a lethal bat-borne zoonotic virus that causes mild to acute respiratory distress and neurological manifestations in humans with a high mortality rate. NiV transmission to humans occurs via consumption of bat-contaminated fruit and date palm sap (DPS), or through direct contact with infected individuals and livestock. Since NiV outbreaks were first reported in pigs from Malaysia and Singapore, non-neutralizing antibodies against NiV attachment Glycoprotein (G) have also been detected in a few domestic mammals. NiV infection is initiated after NiV G binds to the host cell receptors Ephrin-B2 and Ephrin-B3. In this study, we assessed the degree of NiV host tropism in domestic and peridomestic mammals commonly found in Bangladesh that may be crucial in the transmission of NiV by serving as intermediate hosts. We carried out a protein-protein docking analysis of NiV G complexes (n = 52) with Ephrin-B2 and B3 of 13 domestic and peridomestic species using bioinformatics tools. Protein models were generated by homology modelling and the structures were validated for model quality. The different protein-protein complexes in this study were stable, and their binding affinity (ΔG) scores ranged between -8.0 to -19.1 kcal/mol. NiV Bangladesh (NiV-B) strain displayed stronger binding to Ephrin receptors, especially with Ephrin-B3 than the NiV Malaysia (NiV-M) strain, correlating with the observed higher pathogenicity of NiV-B strains. From the docking result, we found that Ephrin receptors of domestic rat (R. norvegicus) had a higher binding affinity for NiV G, suggesting greater susceptibility to NiV infections compared to other study species. Investigations for NiV exposure to domestic/peridomestic animals will help us knowing more the possible role of rats and other animals as intermediate hosts of NiV and would improve future NiV outbreak control and prevention in humans and domestic animals.
Collapse
Affiliation(s)
- Ananya Ferdous Hoque
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh
| | - Md Mahfuzur Rahman
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh; Department of Microbiology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Ayeasha Siddika Lamia
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh
| | - Ariful Islam
- EcoHealth Alliance, 520 8th Ave Ste. 1200, New York, NY 10018, USA
| | - John D Klena
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333, USA
| | - Syed Moinuddin Satter
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh
| | | | - Joel M Montgomery
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333, USA
| | - Mohammad Enayet Hossain
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka 1212, Bangladesh
| | - Iqbal Kabir Jahid
- Department of Microbiology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Mohammed Ziaur Rahman
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh.
| |
Collapse
|
46
|
Lawrence P, Heung M, Nave J, Henkel C, Escudero-Pérez B. The natural virome and pandemic potential: Disease X. Curr Opin Virol 2023; 63:101377. [PMID: 37995425 DOI: 10.1016/j.coviro.2023.101377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Over the last decade, the emergence of several zoonotic viruses has demonstrated that previously unknown or neglected pathogens have the potential to cause epidemics and therefore to pose a threat to global public health. Even more concerning are the estimated 1.7 million still-undiscovered viruses present in the natural environment or 'global virome', with many of these as-yet uncharacterized viruses predicted to be pathogenic for humans. Thus, in order to mitigate disease emergence and prevent future pandemics, it is crucial to identify the global extent of viral threats to which humans may become exposed. This requires cataloguing the viruses that exist in the environment within their various and diverse host species, and also understanding the viral, host, and environmental factors that dictate the circumstances that result in viral spillover into humans. We also address here which strategies can be implemented as countermeasure initiatives to reduce the risk of emergence of new diseases.
Collapse
Affiliation(s)
- Philip Lawrence
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE: Sciences et Humanités (EA1598), Lyon, France
| | - Michelle Heung
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Julia Nave
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christoph Henkel
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, Braunschweig, Germany.
| |
Collapse
|
47
|
Kilpatrick AM. Ecological and Evolutionary Insights About Emerging Infectious Diseases from the COVID-19 Pandemic. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2023; 54:171-193. [DOI: 10.1146/annurev-ecolsys-102320-101234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic challenged the workings of human society, but in doing so, it advanced our understanding of the ecology and evolution of infectious diseases. Fluctuating transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demonstrated the highly dynamic nature of human social behavior, often without government intervention. Evolution of SARS-CoV-2 in the first two years following spillover resulted primarily in increased transmissibility, while in the third year, the globally dominant virus variants had all evolved substantial immune evasion. The combination of viral evolution and the buildup of host immunity through vaccination and infection greatly decreased the realized virulence of SARS-CoV-2 due to the age dependence of disease severity. The COVID-19 pandemic was exacerbated by presymptomatic, asymptomatic, and highly heterogeneous transmission, as well as highly variable disease severity and the broad host range of SARS-CoV-2. Insights and tools developed during the COVID-19 pandemic could provide a stronger scientific basis for preventing, mitigating, and controlling future pandemics.
Collapse
Affiliation(s)
- A. Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA
| |
Collapse
|
48
|
Fagre AC, Islam A, Reeves WK, Kading RC, Plowright RK, Gurley ES, McKee CD. Bartonella Infection in Fruit Bats and Bat Flies, Bangladesh. MICROBIAL ECOLOGY 2023; 86:2910-2922. [PMID: 37656196 DOI: 10.1007/s00248-023-02293-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Bats harbor diverse intracellular Bartonella bacteria, but there is limited understanding of the factors that influence transmission over time. Investigation of Bartonella dynamics in bats could reveal general factors that control transmission of multiple bat-borne pathogens, including viruses. We used molecular methods to detect Bartonella DNA in paired bat (Pteropus medius) blood and bat flies in the family Nycteribiidae collected from a roost in Faridpur, Bangladesh between September 2020 and January 2021. We detected high prevalence of Bartonella DNA in bat blood (35/55, 64%) and bat flies (59/60, 98%), with sequences grouping into three phylogenetic clades. Prevalence in bat blood increased over the study period (33% to 90%), reflecting an influx of juvenile bats in the population and an increase in the prevalence of bat flies. Discordance between infection status and the clade/genotype of detected Bartonella was also observed in pairs of bats and their flies, providing evidence that bat flies take blood meals from multiple bat hosts. This evidence of bat fly transfer between hosts and the changes in Bartonella prevalence during a period of increasing nycteribiid density support the role of bat flies as vectors of bartonellae. The study provides novel information on comparative prevalence and genetic diversity of Bartonella in pteropodid bats and their ectoparasites, as well as demographic factors that affect Bartonella transmission and potentially other bat-borne pathogens.
Collapse
Affiliation(s)
- Anna C Fagre
- Department of Microbiology, Immunology, and Pathology, Center for Vector-Borne Infectious Diseases, Colorado State University, Fort Collins, CO, USA
| | | | - Will K Reeves
- C.P. Gillette Museum of Arthropod Diversity, Fort Collins, CO, USA
| | - Rebekah C Kading
- Department of Microbiology, Immunology, and Pathology, Center for Vector-Borne Infectious Diseases, Colorado State University, Fort Collins, CO, USA
| | - Raina K Plowright
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY, USA
| | - Emily S Gurley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Clifton D McKee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
49
|
Debroy B, De A, Bhattacharya S, Pal K. In silico screening of herbal phytochemicals to develop a Rasayana for immunity against Nipah virus. J Ayurveda Integr Med 2023; 14:100825. [PMID: 38048723 PMCID: PMC10746367 DOI: 10.1016/j.jaim.2023.100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/09/2023] [Accepted: 10/27/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND The first emergence of the Nipah virus (NiV) in 1998 from Malaysia became a major concern when it came to light and resurfaced on different occasions thereafter. NiV is a bat-borne zoonotic and pleomorphic virus that causes severe infection in human and animal hosts. Studies revealed fruit bats are the major reservoirs as natural hosts and pigs as intermediate hosts for the spread of this infection. This became a major concern as the disease was characterized by high pathogenicity varying from 40% to 80% depending on its acuteness. Moreover, the solemnity lies in the fact that the infection transcends from being a mere mild illness to an acute respiratory infection leading to fatal encephalitis with a reportedly high mortality rate. Currently, there is no treatment or vaccine available against the NiV. Many antiviral drugs have been explored and developed but with limited efficacy. METHODOLOGY In search of high-affinity ayurvedic alternatives, we conducted a pan-proteome in silico exploration of the NiV proteins for their interaction with the best-suited phytoconstituents. The toxicity prediction of thirty phytochemicals based on their LD50 value identified thirteen potential candidates. Molecular docking studies of those thirteen phytochemicals with five important NiV proteins identified Tanshinone I as the potential compound with a high binding affinity. RESULTS The pharmacokinetics and pharmacodynamics studies also aided in determining the absorption, distribution, metabolism, excretion, and toxicity of the selected phytoconstituent. Interestingly, docking studies also revealed Rosmariquinone as a potent alternative to the antiviral drug Remdesivir binding the same pocket of RNA-dependent RNA polymerase of the NiV. A molecular dynamics simulation study of the surface glycoprotein of NiV against Tanshinone I showed a stable complex formation and significant allosteric changes in the protein structure, implying that these phytochemicals could be a natural alternative to synthetic drugs against NiV. CONCLUSION This study provides preliminary evidence based on in silico analysis that the herbal molecules showed an effect against NiV. However, it is essential to further evaluate the efficacy of this approach through cell-based experiments, organoid models, and eventually clinical trials.
Collapse
Affiliation(s)
- Bishal Debroy
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal, 700126, India
| | - Arkajit De
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal, 700126, India
| | - Somdatta Bhattacharya
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal, 700126, India
| | - Kuntal Pal
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal, 700126, India; School of Biosciences and Technology (SBST), Vellore Institute Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
50
|
Garbuglia AR, Lapa D, Pauciullo S, Raoul H, Pannetier D. Nipah Virus: An Overview of the Current Status of Diagnostics and Their Role in Preparedness in Endemic Countries. Viruses 2023; 15:2062. [PMID: 37896839 PMCID: PMC10612039 DOI: 10.3390/v15102062] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Nipah virus (NiV) is a paramyxovirus responsible for a high mortality rate zoonosis. As a result, it has been included in the list of Blueprint priority pathogens. Bats are the main reservoirs of the virus, and different clinical courses have been described in humans. The Bangladesh strain (NiV-B) is often associated with severe respiratory disease, whereas the Malaysian strain (NiV-M) is often associated with severe encephalitis. An early diagnosis of NiV infection is crucial to limit the outbreak and to provide appropriate care to the patient. Due to high specificity and sensitivity, qRT-PCR is currently considered to be the optimum method in acute NiV infection assessment. Nasal swabs, cerebrospinal fluid, urine, and blood are used for RT-PCR testing. N gene represents the main target used in molecular assays. Different sensitivities have been observed depending on the platform used: real-time PCR showed a sensitivity of about 103 equivalent copies/reaction, SYBRGREEN technology's sensitivity was about 20 equivalent copies/reaction, and in multiple pathogen card arrays, the lowest limit of detection (LOD) was estimated to be 54 equivalent copies/reaction. An international standard for NiV is yet to be established, making it difficult to compare the sensitivity of the different methods. Serological assays are for the most part used in seroprevalence studies owing to their lower sensitivity in acute infection. Due to the high epidemic and pandemic potential of this virus, the diagnosis of NiV should be included in a more global One Health approach to improve surveillance and preparedness for the benefit of public health. Some steps need to be conducted in the diagnostic field in order to become more efficient in epidemic management, such as development of point-of-care (PoC) assays for the rapid diagnosis of NiV.
Collapse
Affiliation(s)
- Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (D.L.); (S.P.)
| | - Daniele Lapa
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (D.L.); (S.P.)
| | - Silvia Pauciullo
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (D.L.); (S.P.)
| | - Hervé Raoul
- French National Agency for Research on AIDS—Emerging Infectious Diseases (ANRS MIE), Maladies Infectieuses Émergentes, 75015 Paris, France;
| | - Delphine Pannetier
- Institut National de la Santé et de la Recherche Médicale, Jean Mérieux BSL4 Laboratory, 69002 Lyon, France;
| |
Collapse
|