1
|
Kropp EM, Matono S, Wang OY, Robida AM, Kandarpa M, Grant JL, Oleson BJ, Alt A, Talpaz M, Pianko M, Li Q. Identification of Omaveloxolone as An Endoplasmic Reticulum Associated Degradation Inhibitor That Induces Early Apoptotic Signaling in Multiple Myeloma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646787. [PMID: 40236186 PMCID: PMC11996520 DOI: 10.1101/2025.04.02.646787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is essential for maintaining protein homeostasis, yet its regulatory mechanisms remain poorly understood. A major challenge in studying ERAD is the lack of specific inhibitors targeting the ERAD complex. To address this, we conducted a cell-based high-throughput screen using the FDA-repurposing library and identified omaveloxolone (RTA408) as a potent ERAD inhibitor that selectively impairs the degradation of ER luminal and membrane substrates. Beyond its utility in identifying ERAD substrates, RTA408 exhibits strong cytotoxic effects in multiple myeloma (MM), an incurable plasma cell malignancy. RTA408 inhibits ERAD activity and rapidly induces apoptotic signaling via caspase 8 and the death-inducing signaling complex (DISC). Notably, RTA408 is cytotoxic to malignant plasma cells, including those resistant to proteasome inhibitors, and demonstrates in vivo anti-myeloma activity. Our findings establish ERAD inhibitors as valuable tools for dissecting ERAD regulation while also highlighting their potential as therapeutic agents for MM. Highlights We developed a cell-based screening approach to identify novel modulators of endoplasmic reticulum associated degradation (ERAD), with implications in studying ERAD biology and targeting plasma cell neoplasms.Screening of the FDA-repurposing library identified Omaveloxolone (RTA408) as an inhibitor of luminal and membrane ERAD substrate degradation, which can be leveraged to identify ERAD substrates.maveloxolone treatment rapidly induces the unfolded protein response and apoptosis that is dependent on caspase 8 and death-inducing signaling complex (DISC) in multiple myeloma cells. maveloxolone exhibits cytotoxic effects against multiple myeloma cells in vitro and in vivo and induces apoptosis in primary plasma cells from patients with relapsed/refractory myeloma.
Collapse
|
2
|
Geurs S, Staessens E, Bredael K, Borghgraef S, De Ridder J, Persoons L, De Jonghe S, Schols D, Mann MK, Harding RJ, Franceus J, Desmet T, Van Hecke K, Clarisse D, De Bosscher K, D'hooghe M. Synthesis and functional screening of novel inhibitors targeting the HDAC6 zinc finger ubiquitin-binding domain. Eur J Med Chem 2025; 285:117208. [PMID: 39823806 DOI: 10.1016/j.ejmech.2024.117208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/20/2025]
Abstract
Histone deacetylase 6 (HDAC6) is a promising target for treating neurodegenerative disorders, several cancer types and viral infections. Unique among HDACs, the HDAC6 isoform possesses a zinc finger ubiquitin-binding domain (UBD) crucial for managing misfolded protein aggregates and facilitating viral infection. HDAC6 binds aggregated polyubiquitinated proteins through its UBD, mediating their transport to the aggresome and subsequent removal via autophagy. Despite the importance of the UBD in proteostasis and viral infection, its pharmacological inhibition has been minimally explored thus far, with research largely focused on the deacetylase domain. We synthesized a diverse library of new compounds designed to target the HDAC6-UBD, termed HZUBi, with varied core structures including quinazolinone, oxindole and tetrahydrothiopyrano[4,3-b]indole, aimed at enhancing UBD interaction and extending into the side pocket. New structure-activity relationships were established, computational docking and molecular dynamics studies were performed and the functional impact of selected inhibitors was assessed in the context of multiple myeloma and viral infection. Several new HZUBi could displace a ubiquitin peptide from HDAC6-UBD in a differential manner, although to a lower extent than the literature reference compound HZUBi-3e. Despite exhibiting in vitro target engagement, neither HZUBi-3e nor its ester prodrug HZUBi-1e enhanced proteasome inhibitor-mediated multiple myeloma cell killing. Finally, none of the screened HZUBi triggered anti-viral activity.
Collapse
Affiliation(s)
- Silke Geurs
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Eleni Staessens
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Kato Bredael
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Stefaan Borghgraef
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jordy De Ridder
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Leentje Persoons
- Molecular Genetics and Therapeutics in Virology and Oncology Research Group, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Steven De Jonghe
- Molecular Structural and Translational Virology Research Group, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Dominique Schols
- Molecular Structural and Translational Virology Research Group, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Mandeep K Mann
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Rachel J Harding
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jorick Franceus
- Center for Synthetic Biology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Tom Desmet
- Center for Synthetic Biology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Dorien Clarisse
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
3
|
Sogbein O, Paul P, Umar M, Chaari A, Batuman V, Upadhyay R. Bortezomib in cancer therapy: Mechanisms, side effects, and future proteasome inhibitors. Life Sci 2024; 358:123125. [PMID: 39413903 DOI: 10.1016/j.lfs.2024.123125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/07/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
The ubiquitin-proteasome pathway (UPP) regulates protein stability and normal cellular functions with the help of autocatalytic proteasome complex. Studies have linked aberrant proteasome activity to malignant cells and found that proteasome inhibitors play a significant role as therapeutic drugs for various types of cancer, specifically multiple myeloma and mantle cell lymphoma. Bortezomib, the first FDA-approved proteasome inhibitor for treating different stages of multiple myeloma, acts on cancer cells by inhibiting the 26S proteasome, modulating NF-κB, phosphorylating Bcl-2, upregulating of NOXA, blocking p53 degradation, activating caspase, generating reactive oxygen species (ROS), and inhibiting angiogenesis. However, its efficacy is limited due to side effects such as peripheral neuropathy (PN), thrombotic microangiopathy (TMA), and acute interstitial nephritis (AIN). Therefore, a better understanding of its precise mechanism of action may help mitigate these side effects. In this review, we have discussed the proposed mechanisms of action and off target effects of Bortezomib, along with the prospects of next generation potential proteasome inhibitor drugs in the treatment of cancer.
Collapse
Affiliation(s)
- Olusola Sogbein
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Pradipta Paul
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Qatar
| | - Meenakshi Umar
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ali Chaari
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Qatar
| | - Vecihi Batuman
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Rohit Upadhyay
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
4
|
Akintola OA, Patterson MB, Smith JG, DeMartino GN, Mitra AK, Kisselev AF. Inhibition of proteolytic and ATPase activities of the proteasome by the BTK inhibitor CGI-1746. iScience 2024; 27:110961. [PMID: 39759071 PMCID: PMC11700655 DOI: 10.1016/j.isci.2024.110961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/24/2024] [Accepted: 09/11/2024] [Indexed: 01/07/2025] Open
Abstract
Bruton's tyrosine kinase (BTK) inhibitor, ibrutinib, has been shown to synergize in vitro with proteasome inhibitors (PIs) in reducing the viability of cells derived from B cell malignancies, but the mechanism is not known. We report here that an off-target effect of ibrutinib causes synergy because not all BTK inhibitors exhibited the synergistic effect, and those that synergized did so even in cells that do not express BTK. The allosteric BTK inhibitor CGI-1746 showed the strongest synergy. Co-treatment of cells with CGI-1746 increased PI-induced accumulation of ubiquitin conjugates and expression of heat shock proteins and NOXA and decreased a ratio of reduced to oxidized glutathione. CGI-1746, but not other BTK inhibitors, inhibited ATPase activity and all three peptidase activities of the 26S proteasome. The effect demonstrates a conceptually novel mode of proteasome inhibition that may aid the development of more potent PIs.
Collapse
Affiliation(s)
- Olasubomi A. Akintola
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL, USA
| | - Mitchell B. Patterson
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL, USA
| | - John G. Smith
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL, USA
| | - George N. DeMartino
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amit K. Mitra
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL, USA
| | - Alexei F. Kisselev
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL, USA
| |
Collapse
|
5
|
Chen Y, Chen Q, Song Y, Wang H, Hu X, Wang K, Wu X, Xu F, Bao L, Zhang X. Tracing from Periphery to Cortex: Application of Herpes Simplex Virus to Somatosensory Neural Networks. Neurosci Bull 2024; 40:1739-1744. [PMID: 39414760 DOI: 10.1007/s12264-024-01309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/03/2024] [Indexed: 10/18/2024] Open
Affiliation(s)
- Yan Chen
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, China.
- Research Unit of Pain Medicine, Chinese Academy of Medical Sciences, Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, China.
| | - Qin Chen
- School of Life Science and Technology, ShanghaiTec University, Shanghai, 201210, China
- Research Unit of Pain Medicine, Chinese Academy of Medical Sciences, Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, China
| | - Yuran Song
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, China
- Research Unit of Pain Medicine, Chinese Academy of Medical Sciences, Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, China
| | - Huadong Wang
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518067, China
| | - Xinyu Hu
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Kaikai Wang
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, China
- Research Unit of Pain Medicine, Chinese Academy of Medical Sciences, Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, China
| | - Xuanyuan Wu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, China
- Research Unit of Pain Medicine, Chinese Academy of Medical Sciences, Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, China
| | - Fuqiang Xu
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518067, China
| | - Lan Bao
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, China
- Research Unit of Pain Medicine, Chinese Academy of Medical Sciences, Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xu Zhang
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, China.
- School of Life Science and Technology, ShanghaiTec University, Shanghai, 201210, China.
- Research Unit of Pain Medicine, Chinese Academy of Medical Sciences, Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, China.
| |
Collapse
|
6
|
Huang ZN, Lee SY, Chen JM, Huang ZT, Her LS. Oleuropein enhances proteasomal activity and reduces mutant huntingtin-induced cytotoxicity. Front Pharmacol 2024; 15:1459909. [PMID: 39351099 PMCID: PMC11440197 DOI: 10.3389/fphar.2024.1459909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Huntington's disease (HD) is a hereditary neurodegenerative disorder that primarily affects the striatum, a brain region responsible for movement control. The disease is characterized by the mutant huntingtin (mHtt) proteins with an extended polyQ stretch, which are prone to aggregation. These mHtt aggregates accumulate in neurons and are the primary cause of the neuropathology associated with HD. To date, no effective cure for HD has been developed. Methods The immortalized STHdh Q111/Q111 striatal cell line, the mHtt-transfected wild-type STHdh Q7/Q7 striatal cell line, and N2a cells were used as Huntington's disease cell models. Flow cytometry was used to assess cellular reactive oxygen species and transfection efficiency. The CCK-8 assay was used to measure cell viability, while fluorescence microscopy was used to quantify aggregates. Immunoblotting analyses were used to evaluate the effects on protein expression. Results Polyphenols are natural antioxidants that offer neuroprotection in neurological disorders. In this study, we provide evidence that oleuropein, the primary polyphenol in olive leaves and olive oil, enhances cell viability in HD cell models, including. STHdh Q7/Q7 STHdh Q7/Q7 striatal cells, N2a cells ectopically expressing the truncated mHtt, and STHdh Q111/Q111 striatal cells expressing the full-length mHtt. Oleuropein effectively reduced both soluble and aggregated forms of mHtt protein in these HD model cells. Notably, the reduction of mHtt aggregates associated with oleuropein was linked to increased proteasome activity rather than changes in autophagic flux. Oleuropein seems to modulate proteasome activity through an unidentified pathway, as it did not affect the 20S proteasome catalytic β subunits, the proteasome regulator PA28γ, or multiple MAPK pathways. Discussion We demonstrated that oleuropein enhances the degradation of mHtt by increasing proteasomal protease activities and alleviates mHtt-induced cytotoxicity. Hence, we propose that oleuropein and potentially other polyphenols hold promise as a candidate for alleviating Huntington's disease.
Collapse
Affiliation(s)
- Zih-Ning Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Sin-Yi Lee
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jie-Mao Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Zih-Ting Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Lu-Shiun Her
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
7
|
Gilda JE, Nahar A, Kasiviswanathan D, Tropp N, Gilinski T, Lahav T, Alexandrovich D, Mandel-Gutfreund Y, Park S, Shemer S. Proteasome gene expression is controlled by coordinated functions of multiple transcription factors. J Cell Biol 2024; 223:e202402046. [PMID: 38767572 PMCID: PMC11104393 DOI: 10.1083/jcb.202402046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Proteasome activity is crucial for cellular integrity, but how tissues adjust proteasome content in response to catabolic stimuli is uncertain. Here, we demonstrate that transcriptional coordination by multiple transcription factors is required to increase proteasome content and activate proteolysis in catabolic states. Using denervated mouse muscle as a model system for accelerated proteolysis in vivo, we reveal that a two-phase transcriptional program activates genes encoding proteasome subunits and assembly chaperones to boost an increase in proteasome content. Initially, gene induction is necessary to maintain basal proteasome levels, and in a more delayed phase (7-10 days after denervation), it stimulates proteasome assembly to meet cellular demand for excessive proteolysis. Intriguingly, the transcription factors PAX4 and α-PALNRF-1 control the expression of proteasome among other genes in a combinatorial manner, driving cellular adaptation to muscle denervation. Consequently, PAX4 and α-PALNRF-1 represent new therapeutic targets to inhibit proteolysis in catabolic diseases (e.g., type-2 diabetes, cancer).
Collapse
Affiliation(s)
- Jennifer E Gilda
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | | | | | - Nadav Tropp
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | - Tamar Gilinski
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | - Tamar Lahav
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | | | | | | | - Shenhav Shemer
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| |
Collapse
|
8
|
Tatsumi K, Kitahata S, Komatani Y, Katsuyama A, Yakushiji F, Ichikawa S. Modulation of proteasome subunit selectivity of syringolins. Bioorg Med Chem 2024; 106:117733. [PMID: 38704960 DOI: 10.1016/j.bmc.2024.117733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
Development of selective or dual proteasome subunit inhibitors based on syringolin B as a scaffold is described. We focused our efforts on a structure-activity relationship study of inhibitors with various substituents at the 3-position of the macrolactam moiety of syringolin B analogue to evaluate whether this would be sufficient to confer subunit selectivity by using sets of analogues with hydrophobic, basic and acidic substituents, which were designed to target Met45, Glu53 and Arg45 embedded in the S1 subsite, respectively. The structure-activity relationship study using systematic analogues provided insight into the origin of the subunit-selective inhibitory activity. This strategy would be sufficient to confer subunit selectivity regarding β5 and β2 subunits.
Collapse
Affiliation(s)
- Kengo Tatsumi
- Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Shun Kitahata
- Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yuya Komatani
- Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Akira Katsuyama
- Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Fumika Yakushiji
- Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
9
|
Mitsiades CS. Proteasome Inhibitors in Multiple Myeloma: Biological Insights on Mechanisms of Action or Resistance Informed by Functional Genomics. Hematol Oncol Clin North Am 2024; 38:321-336. [PMID: 38278626 DOI: 10.1016/j.hoc.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
During the last 20 years, proteasome inhibitors have been a cornerstone for the therapeutic management of multiple myeloma (MM). This review highlights how MM research has evolved over time in terms of our understanding of the mechanistic basis for the pronounced clinical activity of proteasome inhibitors in MM, compared with the limited clinical applications of this drug class outside the setting of plasma cell dyscrasias.
Collapse
Affiliation(s)
- Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Ludwig Center at Harvard, Boston, MA, USA.
| |
Collapse
|
10
|
Yang K, Jeltema D, Yan N. Innate immune sensing of macromolecule homeostasis. Adv Immunol 2024; 161:17-51. [PMID: 38763701 DOI: 10.1016/bs.ai.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The innate immune system uses a distinct set of germline-encoded pattern recognition receptors to recognize molecular patterns initially thought to be unique to microbial invaders, named pathogen-associated molecular patterns. The concept was later further developed to include similar molecular patterns originating from host cells during tissue damage, known as damage-associated molecular patterns. However, recent advances in the mechanism of monogenic inflammatory diseases have highlighted a much more expansive repertoire of cellular functions that are monitored by innate immunity. Here, we summarize several examples in which an innate immune response is triggered when homeostasis of macromolecule in the cell is disrupted in non-infectious or sterile settings. These ever-growing sensing mechanisms expand the repertoire of innate immune recognition, positioning it not only as a key player in host defense but also as a gatekeeper of cellular homeostasis. Therapeutics inspired by these advances to restore cellular homeostasis and correct the immune system could have far-reaching implications.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Devon Jeltema
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
11
|
Pelon M, Krzeminski P, Tracz-Gaszewska Z, Misiewicz-Krzeminska I. Factors determining the sensitivity to proteasome inhibitors of multiple myeloma cells. Front Pharmacol 2024; 15:1351565. [PMID: 38500772 PMCID: PMC10944964 DOI: 10.3389/fphar.2024.1351565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Multiple myeloma is an incurable cancer that originates from antibody-producing plasma cells. It is characterized by an intrinsic ability to produce large amounts of immunoglobulin-like proteins. The high rate of synthesis makes myeloma cells dependent on protein processing mechanisms related to the proteasome. This dependence made proteasome inhibitors such as bortezomib and carfilzomib one of the most important classes of drugs used in multiple myeloma treatment. Inhibition of the proteasome is associated with alteration of a number of important biological processes leading, in consequence, to inhibition of angiogenesis. The effect of drugs in this group and the degree of patient response to the treatment used is itself an extremely complex process that depends on many factors. At cellular level the change in sensitivity to proteasome inhibitors may be related to differences in the expression level of proteasome subunits, the degree of proteasome loading, metabolic adaptation, transcriptional or epigenetic factors. These are just some of the possibilities that may influence differences in response to proteasome inhibitors. This review describes the main cellular factors that determine the degree of response to proteasome inhibitor drugs, as well as information on the key role of the proteasome and the performance characteristics of the inhibitors that are the mainstay of multiple myeloma treatment.
Collapse
Affiliation(s)
- Marta Pelon
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Patryk Krzeminski
- Department of Nanobiotechnology, Biology Institute, Warsaw University of Life Sciences, Warsaw, Poland
| | - Zuzanna Tracz-Gaszewska
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | |
Collapse
|
12
|
Prevedel NE, Mee MW, Wood GA, Coomber BL. Effect of proteasome inhibitors on canine lymphoma cell response to CHOP chemotherapy in vitro. Vet Comp Oncol 2024; 22:96-105. [PMID: 38237918 DOI: 10.1111/vco.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 02/13/2024]
Abstract
The standard treatment for canine lymphoma is the CHOP chemotherapy regimen. Proteasome inhibitors have been employed with CHOP for the treatment of human haematological malignancies but remain to be fully explored in canine lymphoma. We identified an association between poor response to CHOP chemotherapy and high mRNA expression levels of proteasomal subunits in a cohort of 15 canine lymphoma patients, and sought to determine the effect of proteasome inhibitors on the viability of a canine B-cell lymphoma cell line (CLBL-1). The aim of this study was to investigate whether proteasome inhibitors sensitize these cells to the CHOP agents doxorubicin, vincristine and cyclophosphamide (as 4-hydroxycyclophosphamide/4-HC). CLBL-1 cells were sensitive to proteasome inhibition by bortezomib and ixazomib. The IC50 of bortezomib was 15.1 nM and of ixazomib was 59.14 nM. Proteasome inhibitors plus doxorubicin had a synergistic effect on CLBL-1 viability; proteosome inhibitors plus vincristine showed different effects depending on the combination ratio, and there was an antagonistic effect with 4-HC. These results may have clinical utility, as proteasome inhibition could potentially be used with a synergizing CHOP compound to improve responsiveness to chemotherapy for canine lymphoma patients.
Collapse
Affiliation(s)
- Nicholas E Prevedel
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Miles W Mee
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Geoffrey A Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Brenda L Coomber
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
13
|
Lim CH, Fang XQ, Kang H, Oh T, Lee S, Kim YS, Lim JH. ER Stress-Activated HSF1 Governs Cancer Cell Resistance to USP7 Inhibitor-Based Chemotherapy through the PERK Pathway. Int J Mol Sci 2024; 25:2768. [PMID: 38474017 DOI: 10.3390/ijms25052768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Ubiquitin-specific protease 7 inhibitors (USP7i) are considered a novel class of anticancer drugs. Cancer cells occasionally become insensitive to anticancer drugs, known as chemoresistance, by acquiring multidrug resistance, resulting in poor clinical outcomes in patients with cancer. However, the chemoresistance of cancer cells to USP7i (P22077 and P5091) and mechanisms to overcome it have not yet been investigated. In the present study, we generated human cancer cells with acquired resistance to USP7i-induced cell death. Gene expression profiling showed that heat stress response (HSR)- and unfolded protein response (UPR)-related genes were largely upregulated in USP7i-resistant cancer cells. Biochemical studies showed that USP7i induced the phosphorylation and activation of heat shock transcription factor 1 (HSF1), mediated by the endoplasmic reticulum (ER) stress protein kinase R-like ER kinase (PERK) signaling pathway. Inhibition of HSF1 and PERK significantly sensitized cancer cells to USP7i-induced cytotoxicity. Our study demonstrated that the ER stress-PERK axis is responsible for chemoresistance to USP7i, and inhibiting PERK is a potential strategy for improving the anticancer efficacy of USP7i.
Collapse
Affiliation(s)
- Chang-Hoon Lim
- Department of Medicinal Biosciences, College of Biomedical & Health Science, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
- BK21 Program, Department of Applied Life Science, Graduate School, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
| | - Xue-Quan Fang
- Department of Medicinal Biosciences, College of Biomedical & Health Science, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
- BK21 Program, Department of Applied Life Science, Graduate School, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
| | - Hyeji Kang
- Department of Medicinal Biosciences, College of Biomedical & Health Science, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
| | - Taerim Oh
- Department of Medicinal Biosciences, College of Biomedical & Health Science, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
| | - Seonghoon Lee
- Department of Medicinal Biosciences, College of Biomedical & Health Science, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
- BK21 Program, Department of Applied Life Science, Graduate School, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
| | - Young-Seon Kim
- Department of Medicinal Biosciences, College of Biomedical & Health Science, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
| | - Ji-Hong Lim
- Department of Medicinal Biosciences, College of Biomedical & Health Science, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
- BK21 Program, Department of Applied Life Science, Graduate School, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
- Center for Metabolic Diseases, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
| |
Collapse
|
14
|
Ko EJ, Kim DY, Kim MH, An H, Kim J, Jeong JY, Song KS, Cha HJ. Functional Analysis of Membrane-Associated Scaffolding Tight Junction (TJ) Proteins in Tumorigenic Characteristics of B16-F10 Mouse Melanoma Cells. Int J Mol Sci 2024; 25:833. [PMID: 38255907 PMCID: PMC10815660 DOI: 10.3390/ijms25020833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Tight junction (TJ) proteins (Tjps), Tjp1 and Tjp2, are tight junction-associated scaffold proteins that bind to the transmembrane proteins of tight junctions and the underlying cytoskeleton. In this study, we first analyzed the tumorigenic characteristics of B16-F10 melanoma cells, including cell proliferation, migration, invasion, metastatic potential, and the expression patterns of related proteins, after the CRISPR-Cas9-mediated knockout (KO) of Tjp genes. The proliferation of Tjp1 and Tjp2 KO cells significantly increased in vitro. Other tumorigenic characteristics, including migration and invasion, were significantly enhanced in Tjp1 and Tjp2 KO cells. Zonula occludens (ZO)-associated protein Claudin-1 (CLDN-1), which is a major component of tight junctions and functions in controlling cell-to-cell adhesion, was decreased in Tjp KO cells. Additionally, Tjp KO significantly stimulated tumor growth and metastasis in an in vivo mouse model. We performed a transcriptome analysis using next-generation sequencing (NGS) to elucidate the key genes involved in the mechanisms of action of Tjp1 and Tjp2. Among the various genes affected by Tjp KO-, cell cycle-, cell migration-, angiogenesis-, and cell-cell adhesion-related genes were significantly altered. In particular, we found that the Ninjurin-1 (Ninj1) and Catenin alpha-1 (Ctnna1) genes, which are known to play fundamental roles in Tjps, were significantly downregulated in Tjp KO cells. In summary, tumorigenic characteristics, including cell proliferation, migration, invasion, tumor growth, and metastatic potential, were significantly increased in Tjp1 and Tjp2 KO cells, and the knockout of Tjp genes significantly affected the expression of related proteins.
Collapse
Affiliation(s)
- Eun-Ji Ko
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan 49241, Republic of Korea or (E.-J.K.); (D.-Y.K.); (M.-H.K.); (H.A.)
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Do-Ye Kim
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan 49241, Republic of Korea or (E.-J.K.); (D.-Y.K.); (M.-H.K.); (H.A.)
| | - Min-Hye Kim
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan 49241, Republic of Korea or (E.-J.K.); (D.-Y.K.); (M.-H.K.); (H.A.)
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Hyojin An
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan 49241, Republic of Korea or (E.-J.K.); (D.-Y.K.); (M.-H.K.); (H.A.)
| | - Jeongtae Kim
- Department of Anatomy, Kosin University College of Medicine, Busan 49241, Republic of Korea;
- Institute for Medical Science, Kosin University College of Medicine, Busan 49241, Republic of Korea; (J.-Y.J.); (K.S.S.)
| | - Jee-Yeong Jeong
- Institute for Medical Science, Kosin University College of Medicine, Busan 49241, Republic of Korea; (J.-Y.J.); (K.S.S.)
- Department of Biochemistry, Kosin University College of Medicine, Busan 49241, Republic of Korea
| | - Kyoung Seob Song
- Institute for Medical Science, Kosin University College of Medicine, Busan 49241, Republic of Korea; (J.-Y.J.); (K.S.S.)
- Departments of Medical Life Science, Kosin University College of Medicine, Busan 49241, Republic of Korea
| | - Hee-Jae Cha
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan 49241, Republic of Korea or (E.-J.K.); (D.-Y.K.); (M.-H.K.); (H.A.)
- Institute for Medical Science, Kosin University College of Medicine, Busan 49241, Republic of Korea; (J.-Y.J.); (K.S.S.)
| |
Collapse
|
15
|
Kikuchi S, Sugama Y, Takada K, Kamihara Y, Wada A, Arihara Y, Nakamura H, Sato T. Simultaneous XIAP and cIAP1/2 inhibition by a dimeric SMAC mimetic AZD5582 induces apoptosis in multiple myeloma. J Pharmacol Sci 2024; 154:30-36. [PMID: 38081681 DOI: 10.1016/j.jphs.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/23/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Overexpression of inhibitor of apoptosis (IAP) proteins is associated with poor prognosis. In multiple myeloma (MM), the IAP inhibitors (IAPi), LCL161, have been evaluated in preclinical and clinical settings but are not fully effective. Among IAPs, XIAP has the strongest anti-apoptotic function with direct binding activity to caspases and cIAP1 and cIAP2 are positive regulator of NF-κB signaling. Prior IAPi such as LCL161 has high affinity to cIAP1 and cIAP2 resulting in inferior inhibiting activity against XIAP. A novel dimeric IAPi, AZD5582 (C58H78N8O8), have high binding potency to XIAP with EC50 dose of 15 nM, enabling to simultaneous inhibit XIAP and cIAP1/2. AZD5582 monotherapy showed cell growth inhibition for all MM cell lines, MM1S, RPMI8226, U266 and KMS-5 and induced apoptosis. AZD5582 further showed anti-proliferation effect under the IL-6 additional condition and inhibited JAK-STAT signaling triggered by IL-6. AZD5582 combined with carfilzomib therapy showed a synergistic effect. Enhanced apoptosis was also observed in combination therapy. Synergistic effect was further observed with other conventional therapeutics. Simultaneous XIAP and cIAP1/2 inhibition by the dimeric IAPi AZD5582 is promising. This study provides a rationale of AZD5582 as a new treatment strategy in monotherapy and in combination therapy.
Collapse
Affiliation(s)
- Shohei Kikuchi
- Department of Hematology, Toyama University Hospital, Toyama, Japan
| | - Yusuke Sugama
- Department of Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kohichi Takada
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yusuke Kamihara
- Department of Hematology, Toyama University Hospital, Toyama, Japan
| | - Akinori Wada
- Department of Hematology, Toyama University Hospital, Toyama, Japan
| | - Yohei Arihara
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hajime Nakamura
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsutomu Sato
- Department of Hematology, Toyama University Hospital, Toyama, Japan.
| |
Collapse
|
16
|
Ishikawa C, Mori N. Heat shock factor 1 is a promising therapeutic target against adult T-cell leukemia. Med Oncol 2023; 40:172. [PMID: 37165174 DOI: 10.1007/s12032-023-02042-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Patients with adult T-cell leukemia (ATL), which is caused by human T-cell leukemia virus type 1 (HTLV-1), show poor prognosis because of drug resistance. Heat shock protein (HSP) 90 is reportedly essential for ATL cell survival as it regulates important signaling pathways, thereby making HSP90 inhibitors new therapeutic candidates for ATL. However, HSP90 inhibition increases the expression of other HSPs, suggesting that HSPs may contribute to drug resistance. The heat shock factor 1 (HSF1) transcription factor is the primary regulator of the expression of HSPs. Furthermore, targeting HSF1 disrupts the HSP90 chaperone function. Herein, we demonstrated that HSF1 is overexpressed in HTLV-1-infected T cells. HSF1 knockdown inhibited the proliferation of HTLV-1-infected T cells. HSF1 inhibitor KRIBB11 reduced the expression and phosphorylation of HSF1, downregulated HSP70 and HSP27 expression, and suppressed Akt, nuclear factor-κB, and AP-1 signals. KRIBB11 treatment induced DNA damage, upregulated p53 and p21, and reduced the expression of cyclin D2/E, CDK2/4, c-Myc, MDM2, and β-catenin, thereby preventing retinoblastoma protein phosphorylation and inhibiting G1-S cell cycle progression. KRIBB11 also induced caspase-mediated apoptosis concomitant with the suppression of Bcl-xL, Mcl-1, XIAP, c-IAP1/2, and survivin expression. KRIBB11 inhibited HSP70 and HSP90 upregulation through treatment with AUY922, an HSP90 inhibitor, and enhanced the cytotoxic effect of AUY922, suggesting a salvage role of HSF1-dependent HSP induction in response to drug treatment. Finally, treatment of mice with KRIBB11 reduced ATL tumor growth. Therefore, this study provides a strong rationale to target HSF1 and validates the anti-ATL activity of KRIBB11.
Collapse
Affiliation(s)
- Chie Ishikawa
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
- Division of Health Sciences, Transdisciplinary Research Organization for Subtropics and Island Studies, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Naoki Mori
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan.
| |
Collapse
|
17
|
Gilda JE, Nahar A, Kasiviswanathan D, Tropp N, Gilinski T, Lahav T, Mandel-Gutfreund Y, Park S, Cohen S. Proteasome gene expression is controlled by the coordinated functions of multiple transcription factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536627. [PMID: 37205440 PMCID: PMC10187252 DOI: 10.1101/2023.04.12.536627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Proteasome activity is crucial for cellular integrity, but how tissues adjust proteasome content in response to catabolic stimuli is uncertain. Here, we demonstrate that transcriptional coordination by multiple transcription factors is required to increase proteasome content and activate proteolysis in catabolic states. Using denervated mouse muscle as a model system for accelerated proteolysis in vivo , we reveal that a two-phase transcriptional program activates genes encoding proteasome subunits and assembly chaperones to boost an increase in proteasome content. Initially, gene induction is necessary to maintain basal proteasome levels, and in a more delayed phase (7-10 d after denervation) it stimulates proteasome assembly to meet cellular demand for excessive proteolysis. Intriguingly, the transcription factors PAX4 and α-PAL NRF-1 control the expression of proteasome among other genes in a combinatorial manner, driving cellular adaptation to muscle denervation. Consequently, PAX4 and α-PAL NRF-1 represent new therapeutic targets to inhibit proteolysis in catabolic diseases (e.g. type-2 diabetes, cancer).
Collapse
|
18
|
de Matos Simoes R, Shirasaki R, Downey-Kopyscinski SL, Matthews GM, Barwick BG, Gupta VA, Dupéré-Richer D, Yamano S, Hu Y, Sheffer M, Dhimolea E, Dashevsky O, Gandolfi S, Ishiguro K, Meyers RM, Bryan JG, Dharia NV, Hengeveld PJ, Brüggenthies JB, Tang H, Aguirre AJ, Sievers QL, Ebert BL, Glassner BJ, Ott CJ, Bradner JE, Kwiatkowski NP, Auclair D, Levy J, Keats JJ, Groen RWJ, Gray NS, Culhane AC, McFarland JM, Dempster JM, Licht JD, Boise LH, Hahn WC, Vazquez F, Tsherniak A, Mitsiades CS. Genome-scale functional genomics identify genes preferentially essential for multiple myeloma cells compared to other neoplasias. NATURE CANCER 2023; 4:754-773. [PMID: 37237081 PMCID: PMC10918623 DOI: 10.1038/s43018-023-00550-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/29/2023] [Indexed: 05/28/2023]
Abstract
Clinical progress in multiple myeloma (MM), an incurable plasma cell (PC) neoplasia, has been driven by therapies that have limited applications beyond MM/PC neoplasias and do not target specific oncogenic mutations in MM. Instead, these agents target pathways critical for PC biology yet largely dispensable for malignant or normal cells of most other lineages. Here we systematically characterized the lineage-preferential molecular dependencies of MM through genome-scale clustered regularly interspaced short palindromic repeats (CRISPR) studies in 19 MM versus hundreds of non-MM lines and identified 116 genes whose disruption more significantly affects MM cell fitness compared with other malignancies. These genes, some known, others not previously linked to MM, encode transcription factors, chromatin modifiers, endoplasmic reticulum components, metabolic regulators or signaling molecules. Most of these genes are not among the top amplified, overexpressed or mutated in MM. Functional genomics approaches thus define new therapeutic targets in MM not readily identifiable by standard genomic, transcriptional or epigenetic profiling analyses.
Collapse
Affiliation(s)
- Ricardo de Matos Simoes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Ryosuke Shirasaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Sondra L Downey-Kopyscinski
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Geoffrey M Matthews
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Benjamin G Barwick
- Department of Hematology and Medical Oncology and the Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Vikas A Gupta
- Department of Hematology and Medical Oncology and the Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | | | - Shizuka Yamano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yiguo Hu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Michal Sheffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Eugen Dhimolea
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Olga Dashevsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Sara Gandolfi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Kazuya Ishiguro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Robin M Meyers
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Jordan G Bryan
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Neekesh V Dharia
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paul J Hengeveld
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Johanna B Brüggenthies
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Huihui Tang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Quinlan L Sievers
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Brian J Glassner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Christopher J Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Nicholas P Kwiatkowski
- Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Joan Levy
- Multiple Myeloma Research Foundation, Norwalk, CT, USA
| | | | - Richard W J Groen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Nathanael S Gray
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Aedin C Culhane
- Department of Data Sciences, Dana-Farber Cancer Institute & Harvard School of Public Health, Boston, MA, USA
- Limerick Digital Cancer Research Center, Health Research Institute, School of Medicine, University of Limerick, Limerick, Ireland
| | - James M McFarland
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Joshua M Dempster
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Jonathan D Licht
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology and the Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Francisca Vazquez
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
| | - Aviad Tsherniak
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
| | - Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
- Ludwig Center at Harvard, Boston, MA, USA.
| |
Collapse
|
19
|
Wen T, Geng M, Bai E, Wang X, Miao H, Chen Z, Zhou H, Wang J, Shi J, Zhang Y, Lei M, Zhu Y. KPT-330 and Y219 exert a synergistic antitumor effect in triple-negative breast cancer through inhibiting NF-κB signaling. FEBS Open Bio 2023; 13:751-762. [PMID: 36847599 PMCID: PMC10068319 DOI: 10.1002/2211-5463.13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/09/2023] [Accepted: 02/24/2023] [Indexed: 03/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype, which has poor prognosis due to the lack of effective targeted drugs. KPT-330, an inhibitor of the nuclear export protein CRM-1, has been widely used in clinical medicine. Y219, a novel proteasome inhibitor designed by our group, shows superior efficacy, reduced toxicity, and reduced off-target effects as compared to the proteasome inhibitor bortezomib. In this study, we investigated the synergistic effect of KPT-330 and Y219 against TNBC cells, as well as the underlying mechanisms. We report that combination treatment with KPT-330 and Y219 synergistically inhibited the viability of TNBC cells in vitro and in vivo. Further analysis revealed that the combined use of KPT-330 and Y219 induced G2-M phase arrest and apoptosis in TNBC cells, and attenuated nuclear factor kappa B (NF-κB) signaling by facilitating nuclear localization of IκB-α. Collectively, these results suggest that the combined use of KPT-330 and Y219 may be an effective therapeutic strategy for the treatment of TNBC.
Collapse
Affiliation(s)
- Tiantian Wen
- College of Life Science, Nanjing Normal University, China
| | - Mengzhu Geng
- College of Life Science, Nanjing Normal University, China
| | - Enhe Bai
- College of Life Science, Nanjing Normal University, China
| | - Xueyuan Wang
- College of Life Science, Nanjing Normal University, China
| | - Hang Miao
- College of Science, Nanjing Forestry University, China
| | - Zhimeng Chen
- College of Science, Nanjing Forestry University, China
| | - Hui Zhou
- College of Life Science, Nanjing Normal University, China
| | - Jia Wang
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing, China
| | - Jingmiao Shi
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing, China
| | - Yin Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, China
| | - Meng Lei
- College of Science, Nanjing Forestry University, China
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, China
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, China
| |
Collapse
|
20
|
Role of Ganetespib, an HSP90 Inhibitor, in Cancer Therapy: From Molecular Mechanisms to Clinical Practice. Int J Mol Sci 2023; 24:ijms24055014. [PMID: 36902446 PMCID: PMC10002602 DOI: 10.3390/ijms24055014] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Heat-shock proteins are upregulated in cancer and protect several client proteins from degradation. Therefore, they contribute to tumorigenesis and cancer metastasis by reducing apoptosis and enhancing cell survival and proliferation. These client proteins include the estrogen receptor (ER), epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R), human epidermal growth factor receptor 2 (HER-2), and cytokine receptors. The diminution of the degradation of these client proteins activates different signaling pathways, such as the PI3K/Akt/NF-κB, Raf/MEK/ERK, and JAK/STAT3 pathways. These pathways contribute to hallmarks of cancer, such as self-sufficiency in growth signaling, an insensitivity to anti-growth signals, the evasion of apoptosis, persistent angiogenesis, tissue invasion and metastasis, and an unbounded capacity for replication. However, the inhibition of HSP90 activity by ganetespib is believed to be a promising strategy in the treatment of cancer because of its low adverse effects compared to other HSP90 inhibitors. Ganetespib is a potential cancer therapy that has shown promise in preclinical tests against various cancers, including lung cancer, prostate cancer, and leukemia. It has also shown strong activity toward breast cancer, non-small cell lung cancer, gastric cancer, and acute myeloid leukemia. Ganetespib has been found to cause apoptosis and growth arrest in these cancer cells, and it is being tested in phase II clinical trials as a first-line therapy for metastatic breast cancer. In this review, we will highlight the mechanism of action of ganetespib and its role in treating cancer based on recent studies.
Collapse
|
21
|
Kilgas S, Ramadan K. Inhibitors of the ATPase p97/VCP: From basic research to clinical applications. Cell Chem Biol 2023; 30:3-21. [PMID: 36640759 DOI: 10.1016/j.chembiol.2022.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/13/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Protein homeostasis deficiencies underlie various cancers and neurodegenerative diseases. The ubiquitin-proteasome system (UPS) and autophagy are responsible for most of the protein degradation in mammalian cells and, therefore, represent attractive targets for cancer therapy and that of neurodegenerative diseases. The ATPase p97, also known as VCP, is a central component of the UPS that extracts and disassembles its substrates from various cellular locations and also regulates different steps in autophagy. Several UPS- and autophagy-targeting drugs are in clinical trials. In this review, we focus on the development of various p97 inhibitors, including the ATPase inhibitors CB-5083 and CB-5339, which reached clinical trials by demonstrating effective anti-tumor activity across various tumor models, providing an effective alternative to targeting protein degradation for cancer therapy. Here, we provide an overview of how different p97 inhibitors have evolved over time both as basic research tools and effective UPS-targeting cancer therapies in the clinic.
Collapse
Affiliation(s)
- Susan Kilgas
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Kristijan Ramadan
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
22
|
Review on Bortezomib Resistance in Multiple Myeloma and Potential Role of Emerging Technologies. Pharmaceuticals (Basel) 2023; 16:ph16010111. [PMID: 36678608 PMCID: PMC9864669 DOI: 10.3390/ph16010111] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Multiple myeloma is a hematological cancer type. For its treatment, Bortezomib has been widely used. However, drug resistance to this effective chemotherapeutic has been developed for various reasons. 2D cell cultures and animal models have failed to understand the MM disease and Bortezomib resistance. It is therefore essential to utilize new technologies to reveal a complete molecular profile of the disease. In this review, we in-depth examined the possible molecular mechanisms that cause Bortezomib resistance and specifically addressed MM and Bortezomib resistance. Moreover, we also included the use of nanoparticles, 3D culture methods, microfluidics, and organ-on-chip devices in multiple myeloma. We also discussed whether the emerging technology offers the necessary tools to understand and prevent Bortezomib resistance in multiple myeloma. Despite the ongoing research activities on MM, the related studies cannot provide a complete summary of MM. Nanoparticle and 3D culturing have been frequently used to understand MM disease and Bortezomib resistance. However, the number of microfluidic devices for this application is insufficient. By combining siRNA/miRNA technologies with microfluidic devices, a complete molecular genetic profile of MM disease could be revealed. Microfluidic chips should be used clinically in personal therapy and point-of-care applications. At least with Bortezomib microneedles, it could be ensured that MM patients can go through the treatment process more painlessly. This way, MM can be switched to the curable cancer type list, and Bortezomib can be targeted for its treatment with fewer side effects.
Collapse
|
23
|
Arif A, Alameri AA, Tariq UB, Ansari SA, Sakr HI, Qasim MT, Aljoborae FFM, Ramírez-Coronel AA, Jabbar HS, Gabr GA, Mirzaei R, Karampoor S. The functions and molecular mechanisms of Tribbles homolog 3 (TRIB3) implicated in the pathophysiology of cancer. Int Immunopharmacol 2023; 114:109581. [PMID: 36527874 DOI: 10.1016/j.intimp.2022.109581] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Currently, cancer ranks as the second leading cause of death worldwide, and at the same time, the burden of cancer continues to increase. The underlying molecular pathways involved in the initiation and development of cancer are the subject of considerable research worldwide. Further understanding of these pathways may lead to new cancer treatments. Growing data suggest that Tribble's homolog 3 (TRIB3) is essential in oncogenesis in many types of cancer. The mammalian tribbles family's proteins regulate various cellular and physiological functions, such as the cell cycle, stress response, signal transduction, propagation, development, differentiation, immunity, inflammatory processes, and metabolism. To exert their activities, Tribbles proteins must alter key signaling pathways, including the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PI3K)/AKT pathways. Recent evidence supports that TRIB3 dysregulation has been linked to various diseases, including tumor development and chemoresistance. It has been speculated that TRIB3 may either promote or inhibit the onset and development of cancer. However, it is still unclear how TRIB3 performs this dual function in cancer. In this review, we present and discuss the most recent data on the role of TRIB3 in cancer pathophysiology and chemoresistance. Furthermore, we describe in detail the molecular mechanism TRIB3 regulates in cancer.
Collapse
Affiliation(s)
- Anam Arif
- Department of Government DHQ hospital Narowal, Gujranwala medical college, Gujranwala, Pakistan
| | - Ameer A Alameri
- Department of Chemistry, College of Science, University of Babylon, Babylon, Iraq
| | | | - Shakeel Ahmed Ansari
- Department of Biochemistry, Batterjee Medical College for Science and Technology, Jeddah, Saudi Arabia
| | - Hader Ibrahim Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Egypt; Department of Medical Physiology, Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Fadhil F M Aljoborae
- Department of Anesthesia Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador
| | - Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University, Erbil, Iraq; Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Iraq
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Gadalla HH, Lee S, Kim H, Armstrong AT, Fathalla D, Habib F, Jeong H, Lee W, Yeo Y. Size optimization of carfilzomib nanocrystals for systemic delivery to solid tumors. J Control Release 2022; 352:637-651. [PMID: 36349616 PMCID: PMC9737058 DOI: 10.1016/j.jconrel.2022.10.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 11/08/2022]
Abstract
Carfilzomib (CFZ) is a second-generation proteasome inhibitor effective in blood cancer therapy. However, CFZ has shown limited efficacy in solid tumor therapy due to the short half-life and poor tumor distribution. Albumin-coated nanocrystal (NC) formulation was shown to improve the circulation stability of CFZ, but its antitumor efficacy remained suboptimal. We hypothesize that NC size reduction is critical to the formulation safety and efficacy as the small size would decrease the distribution in the reticuloendothelial system (RES) and selectively increase the uptake by tumor cells. We controlled the size of CFZ-NCs by varying the production parameters in the crystallization-in-medium method and compared the size-reduced CFZ-NCs (z-average of 168 nm, NC168) with a larger counterpart (z-average of 325 nm, NC325) as well as the commercial CFZ formulation (CFZ-CD). Both CFZ-NCs showed similar or higher cytotoxicity than CFZ-CD against breast cancer cells. NC168 showed greater uptake by cancer cells, less uptake by macrophages and lower immune cell toxicity than NC325 or CFZ-CD. NC168, but not NC325, showed a similar safety profile to CFZ-CD in vivo. The biodistribution and antitumor efficacy of CFZ-NCs in mice were also size-dependent. NC168 showed greater antitumor efficacy and tumor accumulation but lower RES accumulation than NC325 in 4T1 breast cancer model. These results support that NC formulation with an optimal particle size can improve the therapeutic efficacy of CFZ in solid tumors.
Collapse
Affiliation(s)
- Hytham H. Gadalla
- Department of Industrial and Physical Pharmacy, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA,Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Seongsoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyungjun Kim
- Department of Industrial and Physical Pharmacy, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA,Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Abigail T. Armstrong
- Department of Industrial and Physical Pharmacy, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Dina Fathalla
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Fawzia Habib
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Hyunyoung Jeong
- Department of Industrial and Physical Pharmacy, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea,Corresponding authors: Wooin Lee, Ph.D., Phone: 82.2.880.7873, Fax: 82.2.888.0649, , Yoon Yeo, Ph.D., Phone: 1.765.496.9608, Fax: 1.765.494.6545,
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA,Corresponding authors: Wooin Lee, Ph.D., Phone: 82.2.880.7873, Fax: 82.2.888.0649, , Yoon Yeo, Ph.D., Phone: 1.765.496.9608, Fax: 1.765.494.6545,
| |
Collapse
|
25
|
Roman-Trufero M, Auner HW, Edwards CM. Multiple myeloma metabolism - a treasure trove of therapeutic targets? Front Immunol 2022; 13:897862. [PMID: 36072593 PMCID: PMC9441940 DOI: 10.3389/fimmu.2022.897862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma is an incurable cancer of plasma cells that is predominantly located in the bone marrow. Multiple myeloma cells are characterized by distinctive biological features that are intricately linked to their core function, the assembly and secretion of large amounts of antibodies, and their diverse interactions with the bone marrow microenvironment. Here, we provide a concise and introductory discussion of major metabolic hallmarks of plasma cells and myeloma cells, their roles in myeloma development and progression, and how they could be exploited for therapeutic purposes. We review the role of glucose consumption and catabolism, assess the dependency on glutamine to support key metabolic processes, and consider metabolic adaptations in drug-resistant myeloma cells. Finally, we examine the complex metabolic effects of proteasome inhibitors on myeloma cells and the extracellular matrix, and we explore the complex relationship between myeloma cells and bone marrow adipocytes.
Collapse
Affiliation(s)
- Monica Roman-Trufero
- Department of Immunology and Inflammation, Cancer Cell Protein Metabolism, The Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Holger W. Auner
- Department of Immunology and Inflammation, Cancer Cell Protein Metabolism, The Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Claire M. Edwards
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Shao H, Taguwa S, Gilbert L, Shkedi A, Sannino S, Guerriero CJ, Gale-Day ZJ, Young ZT, Brodsky JL, Weissman J, Gestwicki JE, Frydman J. A campaign targeting a conserved Hsp70 binding site uncovers how subcellular localization is linked to distinct biological activities. Cell Chem Biol 2022; 29:1303-1316.e3. [PMID: 35830852 PMCID: PMC9513760 DOI: 10.1016/j.chembiol.2022.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/20/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
Abstract
The potential of small molecules to localize within subcellular compartments is rarely explored. To probe this question, we measured the localization of Hsp70 inhibitors using fluorescence microscopy. We found that even closely related analogs had dramatically different distributions, with some residing predominantly in the mitochondria and others in the ER. CRISPRi screens supported this idea, showing that different compounds had distinct chemogenetic interactions with Hsp70s of the ER (HSPA5/BiP) and mitochondria (HSPA9/mortalin) and their co-chaperones. Moreover, localization seemed to determine function, even for molecules with conserved binding sites. Compounds with distinct partitioning have distinct anti-proliferative activity in breast cancer cells compared with anti-viral activity in cellular models of Dengue virus replication, likely because different sets of Hsp70s are required in these processes. These findings highlight the contributions of subcellular partitioning and chemogenetic interactions to small molecule activity, features that are rarely explored during medicinal chemistry campaigns.
Collapse
Affiliation(s)
- Hao Shao
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Shuhei Taguwa
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan; Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Luke Gilbert
- Department of Urology and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Arielle Shkedi
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sara Sannino
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Zachary J Gale-Day
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Zapporah T Young
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Weissman
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
27
|
Ferguson ID, Lin YHT, Lam C, Shao H, Tharp KM, Hale M, Kasap C, Mariano MC, Kishishita A, Patiño Escobar B, Mandal K, Steri V, Wang D, Phojanakong P, Tuomivaara ST, Hann B, Driessen C, Van Ness B, Gestwicki JE, Wiita AP. Allosteric HSP70 inhibitors perturb mitochondrial proteostasis and overcome proteasome inhibitor resistance in multiple myeloma. Cell Chem Biol 2022; 29:1288-1302.e7. [PMID: 35853457 PMCID: PMC9434701 DOI: 10.1016/j.chembiol.2022.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/21/2022] [Accepted: 06/24/2022] [Indexed: 11/03/2022]
Abstract
Proteasome inhibitor (PI) resistance remains a central challenge in multiple myeloma. To identify pathways mediating resistance, we first mapped proteasome-associated genetic co-dependencies. We identified heat shock protein 70 (HSP70) chaperones as potential targets, consistent with proposed mechanisms of myeloma cells overcoming PI-induced stress. We therefore explored allosteric HSP70 inhibitors (JG compounds) as myeloma therapeutics. JG compounds exhibited increased efficacy against acquired and intrinsic PI-resistant myeloma models, unlike HSP90 inhibition. Shotgun and pulsed SILAC mass spectrometry demonstrated that JGs unexpectedly impact myeloma proteostasis by destabilizing the 55S mitoribosome. Our data suggest JGs have the most pronounced anti-myeloma effect not through inhibiting cytosolic HSP70 proteins but instead through mitochondrial-localized HSP70, HSPA9/mortalin. Analysis of myeloma patient data further supports strong effects of global proteostasis capacity, and particularly HSPA9 expression, on PI response. Our results characterize myeloma proteostasis networks under therapeutic pressure while motivating further investigation of HSPA9 as a specific vulnerability in PI-resistant disease.
Collapse
Affiliation(s)
- Ian D Ferguson
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Yu-Hsiu T Lin
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Christine Lam
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Hao Shao
- Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevin M Tharp
- Department of Surgery, University of California, San Francisco, San Francisco CA 94143, USA
| | - Martina Hale
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Corynn Kasap
- Department of Medicine, Division of Hematology or Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Margarette C Mariano
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Audrey Kishishita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA; Graduate Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bonell Patiño Escobar
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Kamal Mandal
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Veronica Steri
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Donghui Wang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Paul Phojanakong
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sami T Tuomivaara
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Byron Hann
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christoph Driessen
- Department of Oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Brian Van Ness
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jason E Gestwicki
- Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA.
| |
Collapse
|
28
|
Wei H, Sun Z, Ye X, Yu J, Ye Y, Wang Z. Establishment of a prediction model for disease progression within one year in newly diagnosed multiple myeloma patients. Hematology 2022; 27:575-582. [PMID: 35617129 DOI: 10.1080/16078454.2022.2067940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Multiple myeloma is still an incurable disease In the past decade, with the continuous progress of treatment methods, the progression-free survival of patients has been prolonged, but some patients still progress in the early stage of the disease. Our research analyses the clinical laboratory indicators of newly diagnosed multiple myeloma (NDMM) patients, to obtain the relevant factors of disease progression within one year in MM patients and to establish a prediction model. 108 MM patients treated in our hospital from January 2015 to January 2020 were retrospectively analyzed. After univariate and multivariate logistic regression analyses, the related factors of disease progression within one year in NDMM patients were obtained, and a prediction model was established. Treatment regimen containing at least two targeted drugs (OR = 0.226, 95% CI 0.068-0.753), increased lactate dehydrogenase(LDH, OR = 3.452, 95% CI 1.101-10.826) and increased serum corrected calcium(OR = 4.466, 95% CI 1.346-14.811) were identified as potential predictors by statistical analysis. The prediction model was obtained: x = -2.042-1.489 × treatment regimen (including at least two targeted drug assignment as 1, otherwise 0) + 1.239 ×LDH (U/L, lactate dehydrogenase elevation assignment as 1, normal as 0) +1.496 × serum corrected calcium (mmol/L, serum corrected calcium elevation assignment as 1, normal as 0). Receiver operating characteristic curve analysis showed that the model has good predictive performance. The possibility of disease progression within one year can be predicted by the prediction model. The model can be used as a reference for clinicians to make individualized treatment plans for patients so that patients can obtain better treatment effects.
Collapse
Affiliation(s)
- Huahua Wei
- Department of Hematology, Shangrao People's Hospital, Shangrao, People's Republic of China
| | - Zhihuang Sun
- Department of Orthopedics, Shangrao People's Hospital, Shangrao, People's Republic of China
| | - Xiaoying Ye
- Department of Hematology, Shangrao People's Hospital, Shangrao, People's Republic of China
| | - Jieni Yu
- Department of Hematology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, People's Republic of China
| | - Yinhai Ye
- Department of Blood Transfusion, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Zifeng Wang
- Department of Hematology, Shangrao People's Hospital, Shangrao, People's Republic of China
| |
Collapse
|
29
|
Talloji P, Nehlin L, Hüttel B, Winter N, Černý M, Dufková H, Hamali B, Hanczaryk K, Novák J, Hermanns M, Drexler N, Eifler K, Schlaich N, Brzobohatý B, Bachmair A. Transcriptome, metabolome and suppressor analysis reveal an essential role for the ubiquitin-proteasome system in seedling chloroplast development. BMC PLANT BIOLOGY 2022; 22:183. [PMID: 35395773 PMCID: PMC8991883 DOI: 10.1186/s12870-022-03536-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/15/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Many regulatory circuits in plants contain steps of targeted proteolysis, with the ubiquitin proteasome system (UPS) as the mediator of these proteolytic events. In order to decrease ubiquitin-dependent proteolysis, we inducibly expressed a ubiquitin variant with Arg at position 48 instead of Lys (ubK48R). This variant acts as an inhibitor of proteolysis via the UPS, and allowed us to uncover processes that are particularly sensitive to UPS perturbation. RESULTS Expression of ubK48R during germination leads to seedling death. We analyzed the seedling transcriptome, proteome and metabolome 24 h post ubK48R induction and confirmed defects in chloroplast development. We found that mutations in single genes can suppress seedling lethality, indicating that a single process in seedlings is critically sensitive to decreased performance of the UPS. Suppressor mutations in phototropin 2 (PHOT2) suggest that a contribution of PHOT2 to chloroplast protection is compromised by proteolysis inhibition. CONCLUSIONS Overall, the results reveal protein turnover as an integral part of a signal transduction chain that protects chloroplasts during development.
Collapse
Affiliation(s)
- Prabhavathi Talloji
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria
| | - Lilian Nehlin
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria
| | - Bruno Hüttel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Nikola Winter
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-613 00, Brno, Czech Republic
| | - Hana Dufková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-613 00, Brno, Czech Republic
| | - Bulut Hamali
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria
- Present address: Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR, 97331, USA
| | - Katarzyna Hanczaryk
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-613 00, Brno, Czech Republic
| | - Monika Hermanns
- Institute of Plant Physiology (Bio III), RWTH-Aachen, 52056, Aachen, Germany
| | - Nicole Drexler
- Vienna Biocenter Core Facilities, Electron Microscopy, A-1030, Vienna, Austria
| | - Karolin Eifler
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria
| | - Nikolaus Schlaich
- Institute of Plant Physiology (Bio III), RWTH-Aachen, 52056, Aachen, Germany
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-613 00, Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Mendel University in Brno, CZ-61300, Brno, Czech Republic
| | - Andreas Bachmair
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria.
| |
Collapse
|
30
|
Wu D, Wang Z, Li J, Song Y, Perez MEM, Wang Z, Cao X, Cao C, Maharjan S, Anderson KC, Chauhan D, Zhang YS. A 3D-Bioprinted Multiple Myeloma Model. Adv Healthc Mater 2022; 11:e2100884. [PMID: 34558232 PMCID: PMC8940744 DOI: 10.1002/adhm.202100884] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/05/2021] [Indexed: 11/05/2022]
Abstract
Multiple myeloma (MM) is a malignancy of plasma cells accounting for ≈12% of hematological malignancies. In this study, the fabrication of a high-content in vitro MM model using a coaxial extrusion bioprinting method is reported, allowing formation of a human bone marrow-like microenvironment featuring an outer mineral-containing sheath and the inner soft hydrogel-based core. MM cells are mono-cultured or co-cultured with HS5 stromal cells that can release interleukin-6 (IL-6), where the cells show superior behaviors and responses to bortezomib in 3D models than in the planar cultures. Tocilizumab, a recombinant humanized anti-IL-6 receptor (IL-6R), is investigated for its efficacy to enhance the chemosensitivity of bortezomib on MM cells cultured in the 3D model by inhibiting IL-6R. More excitingly, in a proof-of-concept demonstration, it is revealed that patient-derived MM cells can be maintained in 3D-bioprinted microenvironment with decent viability for up to 7 days evaluated, whereas they completely die off in planar culture as soon as 5 days. In conclusion, a 3D-bioprinted MM model is fabricated to emulate some characteristics of the human bone marrow to promote growth and proliferation of the encapsulated MM cells, providing new insights for MM modeling, drug development, and personalized therapy in the future.
Collapse
Affiliation(s)
- Di Wu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zongyi Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jun Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yan Song
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Manuel Everardo Mondragon Perez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zixuan Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xia Cao
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Changliang Cao
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Dharminder Chauhan
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
31
|
Xu A, Zhang J, Zuo L, Yan H, Chen L, Zhao F, Fan F, Xu J, Zhang B, Zhang Y, Yin X, Cheng Q, Gao S, Deng J, Mei H, Huang Z, Sun C, Hu Y. FTO promotes multiple myeloma progression by posttranscriptional activation of HSF1 in an m 6A-YTHDF2-dependent manner. Mol Ther 2022; 30:1104-1118. [PMID: 34915192 PMCID: PMC8899603 DOI: 10.1016/j.ymthe.2021.12.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/23/2021] [Accepted: 12/10/2021] [Indexed: 01/27/2023] Open
Abstract
N6-methyladenosine (m6A), as the most pervasive internal modification of eukaryotic mRNA, plays a crucial role in various cancers, but its role in multiple myeloma (MM) pathogenesis has not yet been investigated. In this study, we revealed significantly decreased m6A methylation in plasma cells (PCs) from MM patients and showed that the abnormal m6A level resulted mainly from upregulation of the demethylase fat mass and obesity-associated protein (FTO). Gain- and loss-of-function studies demonstrated that FTO plays a tumor-promoting and pro-metastatic role in MM. Combined m6A and RNA sequencing (RNA-seq) and subsequent validation and functional studies identified heat shock factor 1 (HSF1) as a functional target of FTO-mediated m6A modification. FTO significantly promotes MM cell proliferation, migration, and invasion by targeting HSF1/HSPs in a YTHDF2-dependent manner. FTO inhibition, especially when combined with bortezomib (BTZ) treatment, synergistically inhibited myeloma bone tumor formation and extramedullary spread in NOD-Prkdcem26Cd52il2rgem26Cd22/Nju (NCG) mice. We demonstrated the functional importance of m6A demethylase FTO in MM progression, especially in promoting extramedullary myeloma (EMM) formation, and proposed the FTO-HSF1/HSP axis as a potential novel therapeutic target in MM.
Collapse
Affiliation(s)
- Aoshuang Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiasi Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liping Zuo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Han Yan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fei Zhao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fengjuan Fan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jian Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuyang Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuejiao Yin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianwen Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Su Gao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Deng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiping Huang
- Department of Hematology, Jingzhou Central Hospital, Jingzhou 434020, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
32
|
Heat Shock Proteins in Benign Prostatic Hyperplasia and Prostate Cancer. Int J Mol Sci 2022; 23:ijms23020897. [PMID: 35055079 PMCID: PMC8779911 DOI: 10.3390/ijms23020897] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Two out of three diseases of the prostate gland affect aging men worldwide. Benign prostatic hyperplasia (BPH) is a noncancerous enlargement affecting millions of men. Prostate cancer (PCa) in turn is the second leading cause of cancer death. The factors influencing the occurrence of BPH and PCa are different; however, in the course of these two diseases, the overexpression of heat shock proteins is observed. Heat shock proteins (HSPs), chaperone proteins, are known to be one of the main proteins playing a role in maintaining cell homeostasis. HSPs take part in the process of the proper folding of newly formed proteins, and participate in the renaturation of damaged proteins. In addition, they are involved in the transport of specific proteins to the appropriate cell organelles and directing damaged proteins to proteasomes or lysosomes. Their function is to protect the proteins against degradation factors that are produced during cellular stress. HSPs are also involved in modulating the immune response and the process of apoptosis. One well-known factor affecting HSPs is the androgen receptor (AR)—a main player involved in the development of BPH and the progression of prostate cancer. HSPs play a cytoprotective role and determine the survival of cancer cells. These chaperones are often upregulated in malignancies and play an indispensable role in tumor progression. Therefore, HSPs are considered as one of the therapeutic targets in anti-cancer therapies. In this review article, we discuss the role of different HSPs in prostate diseases, and their potential as therapeutic targets.
Collapse
|
33
|
Jayaweera SPE, Wanigasinghe Kanakanamge SP, Rajalingam D, Silva GN. Carfilzomib: A Promising Proteasome Inhibitor for the Treatment of Relapsed and Refractory Multiple Myeloma. Front Oncol 2021; 11:740796. [PMID: 34858819 PMCID: PMC8631731 DOI: 10.3389/fonc.2021.740796] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/21/2021] [Indexed: 01/04/2023] Open
Abstract
The proteasome is crucial for the degradation of intracellular proteins and plays an important role in mediating a number of cell survival and progression events by controlling the levels of key regulatory proteins such as cyclins and caspases in both normal and tumor cells. However, compared to normal cells, cancer cells are more dependent on the ubiquitin proteasome pathway (UPP) due to the accumulation of proteins in response to uncontrolled gene transcription, allowing proteasome to become a potent therapeutic target for human cancers such as multiple myeloma (MM). Up to date, three proteasome inhibitors namely bortezomib (2003), carfilzomib (2012) and ixazomib (2015) have been approved by the US Food and Drug Administration (FDA) for the treatment of patients with relapsed and/or refractory MM. This review mainly focuses on the biochemical properties, mechanism of action, toxicity profile and pivotal clinical trials related to carfilzomib, a second-generation proteasome inhibitor that binds irreversibly with proteasome to overcome the major toxicities and resistance associated with bortezomib.
Collapse
Affiliation(s)
| | | | - Dharshika Rajalingam
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Gayathri N Silva
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
34
|
Lehrbach NJ. NGLY1: Insights from C. elegans. J Biochem 2021; 171:145-152. [PMID: 34697631 DOI: 10.1093/jb/mvab112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/01/2021] [Indexed: 01/31/2023] Open
Abstract
Peptide:N-glycanase is an evolutionarily conserved deglycosylating enzyme that catalyzes the removal of N-linked glycans from cytosolic glycoproteins. Recessive mutations that inactivate this enzyme cause NGLY1 deficiency, a multisystemic disorder with symptoms including developmental delay and defects in cognition and motor control. Developing treatments for NGLY1 deficiency will require an understanding of how failure to deglycosylate NGLY1 substrates perturbs cellular and organismal function. In this review, I highlight insights into peptide:N-glycanase biology gained by studies in the highly tractable genetic model animal C. elegans. I focus on the recent discovery of SKN-1A/Nrf1, an N-glycosylated transcription factor, as a peptide:N-glycanase substrate critical for regulation of the proteasome. I describe the elaborate post-translational mechanism that culminates in activation of SKN-1A/Nrf1 via NGLY1-dependent 'sequence editing' and discuss the implications of these findings for our understanding of NGLY1 deficiency.
Collapse
|
35
|
Seyed MA, Ayesha S. Marine-derived pipeline anticancer natural products: a review of their pharmacotherapeutic potential and molecular mechanisms. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00350-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Cancer is a complex and most widespread disease and its prevalence is increasing worldwide, more in countries that are witnessing urbanization and rapid industrialization changes. Although tremendous progress has been made, the interest in targeting cancer has grown rapidly every year. This review underscores the importance of preventive and therapeutic strategies.
Main text
Natural products (NPs) from various sources including plants have always played a crucial role in cancer treatment. In this growing list, numerous unique secondary metabolites from marine sources have added and gaining attention and became potential players in drug discovery and development for various biomedical applications. Many NPs found in nature that normally contain both pharmacological and biological activity employed in pharmaceutical industry predominantly in anticancer pharmaceuticals because of their enormous range of structure entities with unique functional groups that attract and inspire for the creation of several new drug leads through synthetic chemistry. Although terrestrial medicinal plants have been the focus for the development of NPs, however, in the last three decades, marine origins that include invertebrates, plants, algae, and bacteria have unearthed numerous novel pharmaceutical compounds, generally referred as marine NPs and are evolving continuously as discipline in the molecular targeted drug discovery with the inclusion of advanced screening tools which revolutionized and became the component of antitumor modern research.
Conclusions
This comprehensive review summarizes some important and interesting pipeline marine NPs such as Salinosporamide A, Dolastatin derivatives, Aplidine/plitidepsin (Aplidin®) and Coibamide A, their anticancer properties and describes their mechanisms of action (MoA) with their efficacy and clinical potential as they have attracted interest for potential use in the treatment of various types of cancers.
Collapse
|
36
|
Mitsiades CS. Biological and Translational Considerations regarding the Recent Therapeutic Successes and Upcoming Challenges for Multiple Myeloma. Cold Spring Harb Perspect Med 2021; 11:a034900. [PMID: 32928892 PMCID: PMC8247558 DOI: 10.1101/cshperspect.a034900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Even though multiple myeloma (MM) is still considered incurable, the therapeutic management of this disease has undergone a major transformation over the last two decades, with several new classes of therapeutics and diverse options for their combined use in many different regimens that have contributed to major improvement in overall survival of patients. This review discusses key themes underlying the pharmacological and immune-based therapies that represent the cornerstones of this progress. A major part of the clinical progress achieved by these classes' therapeutics has depended on the targeting of molecular pathways with distinct or preferential roles for the biology of plasma cells-normal or malignant-and the ability of many of these agents to be incorporated into combination regimens that exhibit enhanced antimyeloma responses, without precipitating acceptable levels of toxicity. This review also discusses why these advances have not yet translated into curative outcomes and how these remaining barriers could be overcome.
Collapse
Affiliation(s)
- Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Medicine, Harvard Medical School, Broad Institute of MIT & Harvard, Boston, Massachusetts 02215, USA
| |
Collapse
|
37
|
Northrop A, Byers HA, Radhakrishnan SK. Regulation of NRF1, a master transcription factor of proteasome genes: implications for cancer and neurodegeneration. Mol Biol Cell 2021; 31:2158-2163. [PMID: 32924844 PMCID: PMC7550695 DOI: 10.1091/mbc.e20-04-0238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The ability to sense proteasome insufficiency and respond by directing the transcriptional synthesis of de novo proteasomes is a trait that is conserved in evolution and is found in organisms ranging from yeast to humans. This homeostatic mechanism in mammalian cells is driven by the transcription factor NRF1. Interestingly, NRF1 is synthesized as an endoplasmic reticulum (ER) membrane protein and when cellular proteasome activity is sufficient, it is retrotranslocated into the cytosol and targeted for destruction by the ER-associated degradation pathway (ERAD). However, when proteasome capacity is diminished, retrotranslocated NRF1 escapes ERAD and is activated into a mature transcription factor that traverses to the nucleus to induce proteasome genes. In this Perspective, we track the journey of NRF1 from the ER to the nucleus, with a special focus on the various molecular regulators it encounters along its way. Also, using human pathologies such as cancer and neurodegenerative diseases as examples, we explore the notion that modulating the NRF1-proteasome axis could provide the basis for a viable therapeutic strategy in these cases.
Collapse
Affiliation(s)
- Amy Northrop
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298
| | - Holly A Byers
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298
| | | |
Collapse
|
38
|
Vasco-Mogorrón MA, Campillo JA, Periago A, Cabañas V, Berenguer M, García-Garay MC, Gimeno L, Soto-Ramírez MF, Martínez-Hernández MD, Muro M, Minguela A. Blood-based risk stratification for pre-malignant and symptomatic plasma cell neoplasms to improve patient management. Am J Cancer Res 2021; 11:2736-2753. [PMID: 34249425 PMCID: PMC8263680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023] Open
Abstract
Standard risk stratification (sRisk) guides clinical management in monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM) and multiple myeloma (MM). Nonetheless, clinical results are considerably heterogeneous among patients with similar risk status. Blood and bone marrow samples from 276 MGUS, 56 SMM and 242 MM in regular clinical practice were analyzed at diagnosis by flow cytometry. Higher levels of aberrant circulating plasma cells (cPC) (> 0.0035% of leukocytes), combined with albumin, beta2-microglobuline and lactate-dehydrogenase levels, offered minimally-invasive risk stratification (RcPC) with results comparable to sRisk. RcPC and sRisk 10-year progression-free-survival (10y-PFS) rates were: 93.8% vs. 95.1% for low-risk, 78.4% vs. 81.7% for intermediate-risk and 50.0% vs. 47.8% for high-risk MGUS; 58.3% vs. 57.8% low-risk, 44.4% vs. 45.8% intermediate-risk and 8.9% vs. 15.0% high-risk SMM; and 44.4% vs. 44.4% low-risk, 36.1% vs. 36.8% intermediate-risk, and 13.3% vs. 16.2% high-risk MM. Circulating-PC > 0.0035% vs. cPC<0.0035% was an independent prognostic factor for PFS (HR=4.389, P=1.2×10-15, Harrell C-statistic =0.7705±0.0190) and over-all survival (OS, HR=4.286, 2.3×10-9, Harrell C-statistic =0.8225±0.0197) that complemented sRisk in patients with low-sRisk (10y-PFS rates 48.1% vs. 87.3%, P=1.2×10-8) and intermediate-sRisk (10y-PFS rates 28.9% vs. 74.1%, P=8.6×10-12). Patients with high cPCs values are associated with higher proliferation and lower apoptosis rates of PC. Circulating-PC > 0.0035% identified MGUS, SMM and MM patients at higher risk of progression or death and predicted a cohort of patients that after relapse from stringent complete response showed shorter OS. These patients could benefit from early consolidation therapy, tandem ASCT or intensive maintenance.
Collapse
Affiliation(s)
- María A Vasco-Mogorrón
- Immunology Service, Clinic University Hospital Virgen de la Arrrixaca (HCUVA) and Biomedical Research Institute of Murcia (IMIB)Murcia, Spain
| | - José A Campillo
- Immunology Service, Clinic University Hospital Virgen de la Arrrixaca (HCUVA) and Biomedical Research Institute of Murcia (IMIB)Murcia, Spain
| | - Adela Periago
- Hematology Service, General University Hospital Rafael Méndez, Lorca, and Biomedical Research Institute of Murcia (IMIB)Murcia, Spain
| | - Valentin Cabañas
- Hematology Service, Clinic University Hospital Virgen de la Arrrixaca (HCUVA) and Biomedical Research Institute of Murcia (IMIB)Murcia, Spain
| | - Mercedes Berenguer
- Hematology Service, General University Hospital Santa Lucía, Cartagena, and Biomedical Research Institute of Murcia (IMIB)Murcia, Spain
| | - María C García-Garay
- Hematology Service, Clinic University Hospital Virgen de la Arrrixaca (HCUVA) and Biomedical Research Institute of Murcia (IMIB)Murcia, Spain
| | - Lourdes Gimeno
- Immunology Service, Clinic University Hospital Virgen de la Arrrixaca (HCUVA) and Biomedical Research Institute of Murcia (IMIB)Murcia, Spain
- Human Anatomy Department, Medicine Faculty, Murcia UniversityMurcia, Spain
| | - María F Soto-Ramírez
- Immunology Service, Clinic University Hospital Virgen de la Arrrixaca (HCUVA) and Biomedical Research Institute of Murcia (IMIB)Murcia, Spain
| | - María D Martínez-Hernández
- Immunology Service, Clinic University Hospital Virgen de la Arrrixaca (HCUVA) and Biomedical Research Institute of Murcia (IMIB)Murcia, Spain
| | - Manuel Muro
- Immunology Service, Clinic University Hospital Virgen de la Arrrixaca (HCUVA) and Biomedical Research Institute of Murcia (IMIB)Murcia, Spain
| | - Alfredo Minguela
- Immunology Service, Clinic University Hospital Virgen de la Arrrixaca (HCUVA) and Biomedical Research Institute of Murcia (IMIB)Murcia, Spain
| |
Collapse
|
39
|
Örd T, Örd D, Kaikkonen MU, Örd T. Pharmacological or TRIB3-Mediated Suppression of ATF4 Transcriptional Activity Promotes Hepatoma Cell Resistance to Proteasome Inhibitor Bortezomib. Cancers (Basel) 2021; 13:cancers13102341. [PMID: 34066165 PMCID: PMC8150958 DOI: 10.3390/cancers13102341] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/17/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Proteasome inhibitors are currently used in the treatment of certain blood cancers, and clinical trials to treat solid tumors, including liver cancer, have also been conducted. However, different malignancies are not equally susceptible to proteasome inhibitors, and resistance to the drug may develop during the therapy. Here, we characterize the molecular mechanisms underlying the resilience of liver cancer cells to the proteasome inhibitor bortezomib. The results demonstrate that the activity of the eIF2α–ATF4 stress response pathway affects the viability of cells treated with bortezomib. We found that the pseudokinase TRIB3, an endogenous regulator of ATF4 and a gene highly expressed in liver cancer, resides predominantly at the same chromatin sites as ATF4 and constrains ATF4 activity. The survival of bortezomib-exposed hepatoma cells proved sensitive to TRIB3 overexpression and inactivation. Thus, TRIB3 is a novel factor contributing to bortezomib resistance of liver cancer cells. Abstract The proteasome is an appealing target for anticancer therapy and the proteasome inhibitor bortezomib has been approved for the treatment of several types of malignancies. However, the molecular mechanisms underlying cancer cell resistance to bortezomib remain poorly understood. In the current article, we investigate how modulation of the eIF2α–ATF4 stress pathway affects hepatoma cell response to bortezomib. Transcriptome profiling revealed that many ATF4 transcriptional target genes are among the most upregulated genes in bortezomib-treated HepG2 human hepatoma cells. While pharmacological enhancement of the eIF2α–ATF4 pathway activity results in the elevation of the activities of all branches of the unfolded protein response (UPR) and sensitizes cells to bortezomib toxicity, the suppression of ATF4 induction delays bortezomib-induced cell death. The pseudokinase TRIB3, an inhibitor of ATF4, is expressed at a high basal level in hepatoma cells and is strongly upregulated in response to bortezomib. To map genome-wide chromatin binding loci of TRIB3 protein, we fused a Flag tag to endogenous TRIB3 in HepG2 cells and performed ChIP-Seq. The results demonstrate that TRIB3 predominantly colocalizes with ATF4 on chromatin and binds to genomic regions containing the C/EBP–ATF motif. Bortezomib treatment leads to a robust enrichment of TRIB3 binding near genes induced by bortezomib and involved in the ER stress response and cell death. Disruption of TRIB3 increases C/EBP–ATF-driven transcription, augments ER stress and cell death upon exposure to bortezomib, while TRIB3 overexpression enhances cell survival. Thus, TRIB3, colocalizing with ATF4 and limiting its transcriptional activity, functions as a factor increasing resistance to bortezomib, while pharmacological over-activation of eIF2α–ATF4 can overcome the endogenous restraint mechanisms and sensitize cells to bortezomib.
Collapse
Affiliation(s)
- Tiit Örd
- Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (T.Ö.); (D.Ö.)
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland;
| | - Daima Örd
- Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (T.Ö.); (D.Ö.)
| | - Minna U. Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland;
| | - Tõnis Örd
- Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (T.Ö.); (D.Ö.)
- Correspondence:
| |
Collapse
|
40
|
Anti-tumor activity of a novel proteasome inhibitor D395 against multiple myeloma and its lower cardiotoxicity compared with carfilzomib. Cell Death Dis 2021; 12:429. [PMID: 33931582 PMCID: PMC8087809 DOI: 10.1038/s41419-021-03701-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022]
Abstract
Carfilzomib, a second-generation proteasome inhibitor, has significantly improved the survival rate of multiple myeloma (MM) patients, but its clinical application is still restricted by drug resistance and cardiotoxicity. Here, we identified a novel proteasome inhibitor, D395, and assessed its efficacy in treating MM as well as its cardiotoxicity at the preclinical level. The activities of purified and intracellular proteasomes were measured to determine the effect of D395 on the proteasome. CCK-8 and flow cytometry experiments were designed to evaluate the effects of D395 on cell growth and apoptosis. The effects of D395 and carfilzomib on serum enzyme activity, echocardiography features, cardiomyocyte morphology, and hERG channels were also compared. In our study, D395 was highly cytotoxic to MM cell lines and primary MM cells but not normal cells, and it was well tolerated in vivo. Similar to carfilzomib, D395 inhibited osteoclast differentiation in a dose-dependent manner. In particular, D395 exhibited lower cardiotoxicity than carfilzomib in all experiments. In conclusion, D395 is a novel irreversible proteasome inhibitor that has remarkable anti-MM activity and mild cardiotoxicity in vitro and in vivo.
Collapse
|
41
|
Saavedra-García P, Roman-Trufero M, Al-Sadah HA, Blighe K, López-Jiménez E, Christoforou M, Penfold L, Capece D, Xiong X, Miao Y, Parzych K, Caputo VS, Siskos AP, Encheva V, Liu Z, Thiel D, Kaiser MF, Piazza P, Chaidos A, Karadimitris A, Franzoso G, Snijders AP, Keun HC, Oyarzún DA, Barahona M, Auner HW. Systems level profiling of chemotherapy-induced stress resolution in cancer cells reveals druggable trade-offs. Proc Natl Acad Sci U S A 2021; 118:e2018229118. [PMID: 33883278 PMCID: PMC8092411 DOI: 10.1073/pnas.2018229118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer cells can survive chemotherapy-induced stress, but how they recover from it is not known. Using a temporal multiomics approach, we delineate the global mechanisms of proteotoxic stress resolution in multiple myeloma cells recovering from proteasome inhibition. Our observations define layered and protracted programs for stress resolution that encompass extensive changes across the transcriptome, proteome, and metabolome. Cellular recovery from proteasome inhibition involved protracted and dynamic changes of glucose and lipid metabolism and suppression of mitochondrial function. We demonstrate that recovering cells are more vulnerable to specific insults than acutely stressed cells and identify the general control nonderepressable 2 (GCN2)-driven cellular response to amino acid scarcity as a key recovery-associated vulnerability. Using a transcriptome analysis pipeline, we further show that GCN2 is also a stress-independent bona fide target in transcriptional signature-defined subsets of solid cancers that share molecular characteristics. Thus, identifying cellular trade-offs tied to the resolution of chemotherapy-induced stress in tumor cells may reveal new therapeutic targets and routes for cancer therapy optimization.
Collapse
Affiliation(s)
- Paula Saavedra-García
- Cancer Cell Protein Metabolism, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, United Kingdom
- The Hugh and Josseline Langmuir Centre for Myeloma Research, Imperial College London, London W12 0NN, United Kingdom
| | - Monica Roman-Trufero
- Cancer Cell Protein Metabolism, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, United Kingdom
- The Hugh and Josseline Langmuir Centre for Myeloma Research, Imperial College London, London W12 0NN, United Kingdom
| | - Hibah A Al-Sadah
- Cancer Cell Protein Metabolism, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, United Kingdom
- The Hugh and Josseline Langmuir Centre for Myeloma Research, Imperial College London, London W12 0NN, United Kingdom
| | - Kevin Blighe
- Clinical Bioinformatics Research, London W1B 3HH, United Kingdom
| | - Elena López-Jiménez
- Cancer Cell Protein Metabolism, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, United Kingdom
- The Hugh and Josseline Langmuir Centre for Myeloma Research, Imperial College London, London W12 0NN, United Kingdom
| | - Marilena Christoforou
- Cancer Cell Protein Metabolism, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, United Kingdom
- The Hugh and Josseline Langmuir Centre for Myeloma Research, Imperial College London, London W12 0NN, United Kingdom
| | - Lucy Penfold
- Cancer Cell Protein Metabolism, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, United Kingdom
- Cellular Stress, MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom
| | - Daria Capece
- Centre for Molecular Immunology and Inflammation, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, United Kingdom
| | - Xiaobei Xiong
- Cancer Cell Protein Metabolism, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, United Kingdom
- The Hugh and Josseline Langmuir Centre for Myeloma Research, Imperial College London, London W12 0NN, United Kingdom
| | - Yirun Miao
- Cancer Cell Protein Metabolism, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, United Kingdom
- The Hugh and Josseline Langmuir Centre for Myeloma Research, Imperial College London, London W12 0NN, United Kingdom
| | - Katarzyna Parzych
- Cancer Cell Protein Metabolism, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, United Kingdom
| | - Valentina S Caputo
- The Hugh and Josseline Langmuir Centre for Myeloma Research, Imperial College London, London W12 0NN, United Kingdom
| | - Alexandros P Siskos
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, United Kingdom
| | - Vesela Encheva
- Proteomics Platform, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Zijing Liu
- Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Brain Sciences, Imperial College London, London W12 0NN, United Kingdom
- UK Dementia Research Institute at Imperial College, London W12 0NN, United Kingdom
| | - Denise Thiel
- Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Martin F Kaiser
- Myeloma Molecular Therapy, The Institute of Cancer Research, Sutton SW7 3RP, United Kingdom
| | - Paolo Piazza
- Imperial BRC Genomics Facility, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - Aristeidis Chaidos
- The Hugh and Josseline Langmuir Centre for Myeloma Research, Imperial College London, London W12 0NN, United Kingdom
| | - Anastasios Karadimitris
- The Hugh and Josseline Langmuir Centre for Myeloma Research, Imperial College London, London W12 0NN, United Kingdom
| | - Guido Franzoso
- Centre for Molecular Immunology and Inflammation, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, United Kingdom
| | - Ambrosius P Snijders
- Proteomics Platform, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Hector C Keun
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, United Kingdom
| | - Diego A Oyarzún
- School of Informatics, The University of Edinburgh, Edinburgh EH8 9AB, United Kingdom
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH8 9AB, United Kingdom
| | - Mauricio Barahona
- Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Holger W Auner
- Cancer Cell Protein Metabolism, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, United Kingdom;
- The Hugh and Josseline Langmuir Centre for Myeloma Research, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
42
|
Vasco-Mogorrón MA, Campillo JA, Periago A, Cabañas V, Berenguer M, García-Garay MC, Gimeno L, Soto-Ramírez MF, Martínez-Hernández MD, Muro M, Minguela A. Proliferation to Apoptosis Tumor Cell Ratio as a Biomarker to Improve Clinical Management of Pre-Malignant and Symptomatic Plasma Cell Neoplasms. Int J Mol Sci 2021; 22:ijms22083895. [PMID: 33918790 PMCID: PMC8068942 DOI: 10.3390/ijms22083895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/05/2022] Open
Abstract
Proliferation and apoptosis of neoplastic cells are prognostic biomarkers in plasma cell neoplasms (PCNs). The prognostic capacity of proliferation to apoptosis ratio (Ratio-PA) in the era of immunomodulatory treatments is re-evaluated in 316 gammopathy of undetermined significance (MGUS), 57 smoldering multiple myeloma (SMM), and 266 multiple myeloma (MM) patients. Ratio-PA of 0.77 ± 0.12, 1.94 ± 0.52, and 11.2 ± 0.7 (p < 0.0001) were observed in MGUS, SMM, and MM patients. Ten-year overall survival (10y-OS) rates for patients with low/high Ratio-PA were 93.5%/77.3% p < 0.0001) for MGUS, 82.5%/64.7% (p < 0.05) for SMM, and 62.3%/47.0% (p < 0.05) for MM. For patients with low, intermediate, and high risk, 10y-OS for low/high Ratio-PA were 95.5%/72.9% (p < 0.0001), 74.2%/50.4% (p < 0.0001), and 35.3%/20.0% (p = 0.836), respectively. Ratio-PA was an independent prognostic factor for OS (HR = 2.119, p < 0.0001, Harrell-C-statistic = 0.7440 ± 0.0194) when co-analyzed with sex, age, and standard risk. In patients with Ratio-PAhigh, only first-line therapy with VRd/VTd, but not PAD/VCD, coupled with ASCT was associated with high 10y-OS (82.7%). Tumor cell Ratio-PA estimated at diagnosis offers a prognostic biomarker that complements standard risk stratification and helps to guide the clinical management of pre-malignant and symptomatic PCNs. Every effort should be made to provide first-line therapies including VTd or VRd associated with ASCT to patients with Ratio-PAhigh at higher risk of progression and death.
Collapse
Affiliation(s)
- María A. Vasco-Mogorrón
- Immunology Service, Clinic University Hospital Virgen de la Arrrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.A.V.-M.); (J.A.C.); (L.G.); (M.F.S.-R.); (M.D.M.-H.); (M.M.)
| | - José A. Campillo
- Immunology Service, Clinic University Hospital Virgen de la Arrrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.A.V.-M.); (J.A.C.); (L.G.); (M.F.S.-R.); (M.D.M.-H.); (M.M.)
| | - Adela Periago
- Hematology Service, General University Hospital Rafael Méndez, Biomedical Research Institute of Murcia (IMIB), 30813 Murcia, Spain;
| | - Valentin Cabañas
- Hematology Service, Clinic University Hospital Virgen de la Arrrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (V.C.); (M.C.G.-G.)
| | - Mercedes Berenguer
- Hematology Service, General University Hospital Santa Lucía, Biomedical Research Institute of Murcia (IMIB), 30202 Murcia, Spain;
| | - María C. García-Garay
- Hematology Service, Clinic University Hospital Virgen de la Arrrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (V.C.); (M.C.G.-G.)
| | - Lourdes Gimeno
- Immunology Service, Clinic University Hospital Virgen de la Arrrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.A.V.-M.); (J.A.C.); (L.G.); (M.F.S.-R.); (M.D.M.-H.); (M.M.)
- Human Anatomy Department, Medicine Faculty, Biomedical Research Institute of Murcia (IMIB), Murcia University, 30120 Murcia, Spain
| | - María F. Soto-Ramírez
- Immunology Service, Clinic University Hospital Virgen de la Arrrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.A.V.-M.); (J.A.C.); (L.G.); (M.F.S.-R.); (M.D.M.-H.); (M.M.)
| | - María D. Martínez-Hernández
- Immunology Service, Clinic University Hospital Virgen de la Arrrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.A.V.-M.); (J.A.C.); (L.G.); (M.F.S.-R.); (M.D.M.-H.); (M.M.)
| | - Manuel Muro
- Immunology Service, Clinic University Hospital Virgen de la Arrrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.A.V.-M.); (J.A.C.); (L.G.); (M.F.S.-R.); (M.D.M.-H.); (M.M.)
| | - Alfredo Minguela
- Immunology Service, Clinic University Hospital Virgen de la Arrrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.A.V.-M.); (J.A.C.); (L.G.); (M.F.S.-R.); (M.D.M.-H.); (M.M.)
- Correspondence:
| |
Collapse
|
43
|
Xiong S, Chng WJ, Zhou J. Crosstalk between endoplasmic reticulum stress and oxidative stress: a dynamic duo in multiple myeloma. Cell Mol Life Sci 2021; 78:3883-3906. [PMID: 33599798 PMCID: PMC8106603 DOI: 10.1007/s00018-021-03756-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/19/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Under physiological and pathological conditions, cells activate the unfolded protein response (UPR) to deal with the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum. Multiple myeloma (MM) is a hematological malignancy arising from immunoglobulin-secreting plasma cells. MM cells are subject to continual ER stress and highly dependent on the UPR signaling activation due to overproduction of paraproteins. Mounting evidence suggests the close linkage between ER stress and oxidative stress, demonstrated by overlapping signaling pathways and inter-organelle communication pivotal to cell fate decision. Imbalance of intracellular homeostasis can lead to deranged control of cellular functions and engage apoptosis due to mutual activation between ER stress and reactive oxygen species generation through a self-perpetuating cycle. Here, we present accumulating evidence showing the interactive roles of redox homeostasis and proteostasis in MM pathogenesis and drug resistance, which would be helpful in elucidating the still underdefined molecular pathways linking ER stress and oxidative stress in MM. Lastly, we highlight future research directions in the development of anti-myeloma therapy, focusing particularly on targeting redox signaling and ER stress responses.
Collapse
Affiliation(s)
- Sinan Xiong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
| | - Wee-Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore.
- Centre for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Republic of Singapore.
| | - Jianbiao Zhou
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore.
- Centre for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
| |
Collapse
|
44
|
Delforge M, Vlayen S, Kint N. Immunomodulators in newly diagnosed multiple myeloma: current and future concepts. Expert Rev Hematol 2021; 14:365-376. [PMID: 33733978 DOI: 10.1080/17474086.2021.1905513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Impressive therapeutic progress is being made in the management of multiple myeloma (MM). his progress is related to the introduction of several new classes of therapeutic agents including proteasome inhibitors, immunomodulatory drugs (IMiDs) and monoclonal antibodies (MoAbs).Areas covered: In this manuscript, the role of the IMiDs thalidomide and lenalidomide in the management of newly diagnosed MM is discussed. The mode of action of IMiDs and their role in the management of newly diagnosed MM patients is highlighted. In addition, clinical data on how MoAbs such as the anti-CD38 antibody daratumumab can further increase the efficacy of IMiD-based first-line anti-myeloma regimens are provided. A database search in PubMed was carried out.Expert Opinion: Immunomodulation has become an indispensable part of successful anti-myeloma regimens both at relapse and at diagnosis. The combination of lenalidomide plus dexamethasone with an anti-CD38 MoAb such as daratumumab and a proteasome inhibitor such as bortezomib is currently one of the most potent first-line treatment regimens for MM. A better understanding on how IMiDs synergize with existing and new anti-myeloma treatments can further improve the outcome for patients. Optimal first-line therapy will continue to benefit the long-term outcome of a growing population of young and elderly MM patients.
Collapse
Affiliation(s)
- Michel Delforge
- Department of Hematology, University of Leuven and Leuven Cancer Institute, Leuven, Belgium
| | - Sophie Vlayen
- Department of Regeneration and Development, University of Leuven, Leuven, Belgium
| | - Nicolas Kint
- Department of Hematology, University of Leuven and Leuven Cancer Institute, Leuven, Belgium
| |
Collapse
|
45
|
Wu JH, Tung SY, Ho CC, Su LH, Gan SW, Liao JY, Cho CC, Lin BC, Chiu PW, Pan YJ, Kao YY, Liu YC, Sun CH. A myeloid leukemia factor homolog involved in encystation-induced protein metabolism in Giardia lamblia. Biochim Biophys Acta Gen Subj 2021; 1865:129859. [PMID: 33581251 DOI: 10.1016/j.bbagen.2021.129859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Giardia lamblia differentiates into resistant cysts as an established model for dormancy. Myeloid leukemia factor (MLF) proteins are important regulators of cell differentiation. Giardia possesses a MLF homolog which was up-regulated during encystation and localized to unknown cytosolic vesicles named MLF vesicles (MLFVs). METHODS We used double staining for visualization of potential factors with role in protein metabolism pathway and a strategy that employed a deletion mutant, CDK2m3, to test the protein degradation pathway. We also explored whether autophagy or proteasomal degradation are regulators of Giardia encystation by treatment with MG132, rapamycin, or chloroquine. RESULTS Double staining of MLF and ISCU or CWP1 revealed no overlap between their vesicles. The aberrant CDK2m3 colocalized with MLFVs and formed complexes with MLF. MG132 increased the number of CDK2m3-localized vesicles and its protein level. We further found that MLF colocalized and interacted with a FYVE protein and an ATG8-like (ATG8L) protein, which were up-regulated during encystation and their expression induced Giardia encystation. The addition of MG132, rapamycin, or chloroquine, increased their levels and the number of their vesicles, and inhibited the cyst formation. MLF and FYVE were detected in exosomes released from culture. CONCLUSIONS The MLFVs are not mitosomes or encystation-specific vesicles, but are related with degradative pathway for CDK2m3. MLF, FYVE, and ATG8L play a positive role in encystation and function in protein clearance pathway, which is important for encystation and coordinated with Exosomes. GENERAL SIGNIFICANCE MLF, FYVE, and ATG8L may be involved an encystation-induced protein metabolism during Giardia differentiation.
Collapse
Affiliation(s)
- Jui-Hsuan Wu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Szu-Yu Tung
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Chun-Che Ho
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Li-Hsin Su
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Soo-Wah Gan
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Jo-Yu Liao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Chao-Cheng Cho
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Bo-Chi Lin
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Pei-Wei Chiu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Yu-Jiao Pan
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Yu-Yun Kao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Yu-Chen Liu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Chin-Hung Sun
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC.
| |
Collapse
|
46
|
Goh Q, Nikolaou S, Shay‐Winkler K, Emmert ME, Cornwall R. Timing of proteasome inhibition as a pharmacologic strategy for prevention of muscle contractures in neonatal brachial plexus injury. FASEB J 2021; 35:e21214. [PMID: 33236396 PMCID: PMC7821701 DOI: 10.1096/fj.202002194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022]
Abstract
Neonatal brachial plexus injury (NBPI) causes disabling and incurable contractures, or limb stiffness, which result from proteasome-mediated protein degradation impairing the longitudinal growth of neonatally denervated muscles. We recently showed in a mouse model that the 20S proteasome inhibitor, bortezomib, prevents contractures after NBPI. Given that contractures uniquely follow neonatal denervation, the current study tests the hypothesis that proteasome inhibition during a finite window of neonatal development can prevent long-term contracture development. Following neonatal forelimb denervation in P5 mice, we first outlined the minimum period for proteasome inhibition to prevent contractures 4 weeks post-NBPI by treating mice with saline or bortezomib for varying durations between P8 and P32. We then compared the ability of varying durations of longer-term proteasome inhibition to prevent contractures at 8 and 12 weeks post-NBPI. Our findings revealed that proteasome inhibition can be delayed 3-4 days after denervation but is required throughout skeletal growth to prevent contractures long term. Furthermore, proteasome inhibition becomes less effective in preventing contractures beyond the neonatal period. These therapeutic effects are primarily associated with bortezomib-induced attenuation of 20S proteasome β1 subunit activity. Our collective results, therefore, demonstrate that temporary neonatal proteasome inhibition is not a viable strategy for preventing contractures long term. Instead, neonatal denervation causes a permanent longitudinal growth deficiency that must be continuously ameliorated during skeletal growth. Additional mechanisms must be explored to minimize the necessary period of proteasome inhibition and reduce the risk of toxicity from long-term treatment.
Collapse
Affiliation(s)
- Qingnian Goh
- Division of Orthopaedic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Sia Nikolaou
- Division of Orthopaedic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Kritton Shay‐Winkler
- Division of Orthopaedic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Marianne E. Emmert
- Department of Biomedical SciencesUniversity of Cincinnati College of MedicineCincinnatiOHUSA
| | - Roger Cornwall
- Division of Orthopaedic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOHUSA
- Division of Developmental BiologyCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
- Department of Orthopaedic SurgeryUniversity of Cincinnati College of MedicineCincinnatiOHUSA
| |
Collapse
|
47
|
Wirth M, Schick M, Keller U, Krönke J. Ubiquitination and Ubiquitin-Like Modifications in Multiple Myeloma: Biology and Therapy. Cancers (Basel) 2020; 12:cancers12123764. [PMID: 33327527 PMCID: PMC7764993 DOI: 10.3390/cancers12123764] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Multiple myeloma is a cancer of plasma cells causing bone fractures, anemia, renal insufficiency and hypercalcemia. Despite the introduction of new drugs in the past years, it still remains incurable and most patients die from the disease. Multiple myeloma cells are characterized by the production of high amounts of monoclonal antibodies. Therefore, maintaining protein homeostasis from synthesis through folding to degradation is crucial for multiple myeloma cells. While protein ubiquitination and organized degradation are typically considered critical for cellular health, an emerging strategy is to block these processes to induce cell death in disease-state cells characterized by protein over-production. Recent development of compounds that alter the ubiquitin proteasome pathway and drugs that affect ubiquitin-like modifications appear promising in both preclinically and in clinical trials. This review summarizes the impact of protein modifications such as ubiquitination and ubiquitin-like modifications in the biology of multiple myeloma and how it can be exploited to develop new effective therapies for multiple myeloma. Abstract Multiple myeloma is a genetically heterogeneous plasma cell malignancy characterized by organ damage and a massive production of (in-)complete monoclonal antibodies. Coping with protein homeostasis and post-translational regulation is therefore essential for multiple myeloma cells to survive. Furthermore, post-translational modifications such as ubiquitination and SUMOylation play key roles in essential pathways in multiple myeloma, including NFκB signaling, epigenetic regulation, as well as DNA damage repair. Drugs modulating the ubiquitin–proteasome system, such as proteasome inhibitors and thalidomide analogs, are approved and highly effective drugs in multiple myeloma. In this review, we focus on ubiquitin and ubiquitin-like modifications in the biology and current developments of new treatments for multiple myeloma.
Collapse
Affiliation(s)
- Matthias Wirth
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany; (M.W.); (M.S.); (U.K.)
| | - Markus Schick
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany; (M.W.); (M.S.); (U.K.)
| | - Ulrich Keller
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany; (M.W.); (M.S.); (U.K.)
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Max-Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Jan Krönke
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany; (M.W.); (M.S.); (U.K.)
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-30-450-513-538
| |
Collapse
|
48
|
Molecular and cellular dynamics of the 26S proteasome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140583. [PMID: 33321258 DOI: 10.1016/j.bbapap.2020.140583] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 01/16/2023]
Abstract
In eukaryotic cells, the ubiquitin-proteasome system serves to remove proteins that are either dysfunctional or no longer needed. The 26S proteasome is a 2.5 MDa multisubunit complex comprising the 20S core particle, where degradation is executed, and one or two regulatory particles which prepare substrates for degradation. Whereas the 20S core particles of several species had been studied extensively by X-ray crystallography, the 26S holocomplex structure had remained elusive for a long time. Recent advances in single-particle cryo-electron microscopy have changed the situation and provided atomic resolution models of this intriguing molecular machine and its dynamics. Besides, cryo-electron tomography enables structural studies in situ, providing molecular resolution images of macromolecules inside pristinely preserved cellular environments. This has greatly contributed to our understanding of proteasome dynamics in the context of cells.
Collapse
|
49
|
Cao Y, Smith W, Yan L, Kong L. Overview of Cellular Mechanisms and Signaling Pathways of Piceatannol. Curr Stem Cell Res Ther 2020; 15:4-10. [PMID: 30947674 DOI: 10.2174/1574888x14666190402100054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/26/2018] [Accepted: 02/07/2019] [Indexed: 11/22/2022]
Abstract
Stilbenoids are a group of naturally occurring phenolic compounds found in various plant species. They share a common backbone structure known as stilbene. However, differences in the nature and position of substituents have made it possible to produce many derivatives. Piceatannol [PT], a hydroxylated derivative from resveratrol, exerts various biological activities ranging from cancer prevention, cardio- protection, neuro-protection, anti-diabetic, depigmentation and so on. Although positive results were obtained in most cell culture and animal studies, the relevant cellular and molecular mechanisms of cytokines and signaling pathway about their biological effects still unclear. Thus, in the current review, we focus on the latest findings of PT on cellular biology in order to better understand the underlying therapeutic mechanisms of PT among various diseases.
Collapse
Affiliation(s)
- Yang Cao
- Honghui Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China.,Yan'an University Medical School, Yan'an, China
| | - Wanli Smith
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States
| | - Liang Yan
- Honghui Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Lingbo Kong
- Honghui Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| |
Collapse
|
50
|
Lankes K, Hassan Z, Doffo MJ, Schneeweis C, Lier S, Öllinger R, Rad R, Krämer OH, Keller U, Saur D, Reichert M, Schneider G, Wirth M. Targeting the ubiquitin-proteasome system in a pancreatic cancer subtype with hyperactive MYC. Mol Oncol 2020; 14:3048-3064. [PMID: 33099868 PMCID: PMC7718946 DOI: 10.1002/1878-0261.12835] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/11/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022] Open
Abstract
The myelocytomatosis oncogene (MYC) is an important driver in a subtype of pancreatic ductal adenocarcinoma (PDAC). However, MYC remains a challenging therapeutic target; therefore, identifying druggable synthetic lethal interactions in MYC‐active PDAC may lead to novel precise therapies. First, to identify networks with hyperactive MYC, we profiled transcriptomes of established human cell lines, murine primary PDAC cell lines, and accessed publicly available repositories to analyze transcriptomes of primary human PDAC. Networks active in MYC‐hyperactive subtypes were analyzed by gene set enrichment analysis. Next, we performed an unbiased pharmacological screen to define MYC‐associated vulnerabilities. Hits were validated by analysis of drug response repositories and genetic gain‐ and loss‐of‐function experiments. In these experiments, we discovered that the proteasome inhibitor bortezomib triggers a MYC‐associated vulnerability. In addition, by integrating publicly available data, we found the unfolded protein response as a signature connected to MYC. Furthermore, increased sensitivity of MYC‐hyperactive PDACs to bortezomib was validated in genetically modified PDAC cells. In sum, we provide evidence that perturbing the ubiquitin–proteasome system (UPS) might be an option to target MYC‐hyperactive PDAC cells. Our data provide the rationale to further develop precise targeting of the UPS as a subtype‐specific therapeutic approach.
Collapse
Affiliation(s)
- Katharina Lankes
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany
| | - Zonera Hassan
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany
| | - María Josefina Doffo
- Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Campus Benjamin Franklin, Berlin, Germany
| | - Christian Schneeweis
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany
| | - Svenja Lier
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, Technical University Munich, Munich, Germany.,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Technical University Munich, Munich, Germany.,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Ulrich Keller
- Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Campus Benjamin Franklin, Berlin, Germany.,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Dieter Saur
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.,Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, Munich, Germany
| | - Maximilian Reichert
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany.,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Günter Schneider
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany.,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Matthias Wirth
- Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|