1
|
Bullert A, Wang H, Valenzuela AE, Neier K, Wilson RJ, Badley JR, LaSalle JM, Hu X, Lein PJ, Lehmler HJ. Interactions of Polychlorinated Biphenyls and Their Metabolites with the Brain and Liver Transcriptome of Female Mice. ACS Chem Neurosci 2024; 15:3991-4009. [PMID: 39392776 PMCID: PMC11587508 DOI: 10.1021/acschemneuro.4c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
Exposure to polychlorinated biphenyls (PCBs) is linked to neurotoxic effects. This study aims to close knowledge gaps regarding the specific modes of action of PCBs in female C57BL/6J mice (>6 weeks) orally exposed for 7 weeks to a human-relevant PCB mixture (MARBLES mix) at 0, 0.1, 1, and 6 mg/kg body weight/day. PCB and hydroxylated PCB (OH-PCBs) levels were quantified in the brain, liver, and serum; RNA sequencing was performed in the striatum, prefrontal cortex, and liver, and metabolomic analyses were performed in the striatum. Profiles of PCBs but not their hydroxylated metabolites were similar in all tissues. In the prefrontal cortex, PCB exposure activated the oxidative phosphorylation respiration pathways, while suppressing the axon guidance pathway. PCB exposure significantly changed the expression of genes associated with neurodevelopmental and neurodegenerative diseases in the striatum, impacting pathways like growth hormone synthesis and dendrite development. PCBs did not affect the striatal metabolome. In contrast to the liver, which showed activation of metabolic processes following PCB exposure and the induction of cytochrome P450 enzymes, the expression of xenobiotic processing genes was not altered by PCB exposure in either brain region. Network analysis revealed complex interactions between individual PCBs (e.g., PCB28 [2,4,4'-trichlorobiphenyl]) and their hydroxylated metabolites and specific differentially expressed genes (DEGs), underscoring the need to characterize the association between specific PCBs and DEGs. These findings enhance the understanding of PCB neurotoxic mechanisms and their potential implications for human health.
Collapse
Affiliation(s)
- Amanda
J. Bullert
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary
Graduate Program in Neuroscience, University
of Iowa, Iowa City, Iowa 52242, United States
| | - Hui Wang
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Anthony E. Valenzuela
- Department
of Molecular Biosciences, University of
California, Davis, California 95616, United States
| | - Kari Neier
- Department
of Medical Microbiology and Immunology, University of California, Davis, California 95616, United States
| | - Rebecca J. Wilson
- Department
of Molecular Biosciences, University of
California, Davis, California 95616, United States
| | - Jessie R. Badley
- Department
of Molecular Biosciences, University of
California, Davis, California 95616, United States
| | - Janine M. LaSalle
- Department
of Medical Microbiology and Immunology, University of California, Davis, California 95616, United States
| | - Xin Hu
- Gangarosa
Department of Environmental Health, Emory
University, Atlanta, Georgia 30329, United States
| | - Pamela J. Lein
- Department
of Molecular Biosciences, University of
California, Davis, California 95616, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary
Graduate Program in Human Toxicology, University
of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
2
|
Wu MH, Valenca-Pereira F, Cendali F, Giddings EL, Pham-Danis C, Yarnell MC, Novak AJ, Brunetti TM, Thompson SB, Henao-Mejia J, Flavell RA, D'Alessandro A, Kohler ME, Rincon M. Deleting the mitochondrial respiration negative regulator MCJ enhances the efficacy of CD8 + T cell adoptive therapies in pre-clinical studies. Nat Commun 2024; 15:4444. [PMID: 38789421 PMCID: PMC11126743 DOI: 10.1038/s41467-024-48653-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Mitochondrial respiration is essential for the survival and function of T cells used in adoptive cellular therapies. However, strategies that specifically enhance mitochondrial respiration to promote T cell function remain limited. Here, we investigate methylation-controlled J protein (MCJ), an endogenous negative regulator of mitochondrial complex I expressed in CD8 cells, as a target for improving the efficacy of adoptive T cell therapies. We demonstrate that MCJ inhibits mitochondrial respiration in murine CD8+ CAR-T cells and that deletion of MCJ increases their in vitro and in vivo efficacy against murine B cell leukaemia. Similarly, MCJ deletion in ovalbumin (OVA)-specific CD8+ T cells also increases their efficacy against established OVA-expressing melanoma tumors in vivo. Furthermore, we show for the first time that MCJ is expressed in human CD8 cells and that the level of MCJ expression correlates with the functional activity of CD8+ CAR-T cells. Silencing MCJ expression in human CD8 CAR-T cells increases their mitochondrial metabolism and enhances their anti-tumor activity. Thus, targeting MCJ may represent a potential therapeutic strategy to increase mitochondrial metabolism and improve the efficacy of adoptive T cell therapies.
Collapse
Affiliation(s)
- Meng-Han Wu
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Felipe Valenca-Pereira
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily L Giddings
- Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Catherine Pham-Danis
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Michael C Yarnell
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Amanda J Novak
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Tonya M Brunetti
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Scott B Thompson
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - M Eric Kohler
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA.
| | - Mercedes Rincon
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
- Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
3
|
Mahata D, Mukherjee D, Biswas D, Basak S, Basak AJ, Jamir I, Pandey N, Khatoon H, Samanta D, Basak A, Mukherjee G. Activation and differentiation of cognate T cells by a dextran-based antigen-presenting system for cancer immunotherapy. Eur J Immunol 2023; 53:e2350528. [PMID: 37698527 DOI: 10.1002/eji.202350528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/14/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
Immunotherapeutic modulation of antigen-specific T-cell responses instead of the whole repertoire helps avoid immune-related adverse events. We have developed an artificial antigen-presenting system (aAPS) where multiple copies of a multimeric peptide-MHC class I complex presenting a murine class I MHC restricted ovalbumin-derived peptide (signal 1), along with a costimulatory ligand (signal 2) are chemically conjugated to a dextran backbone. Cognate naive CD8+ T cells, when treated with this aAPS underwent significant expansion and showed an activated phenotype. Furthermore, elevated expression of effector cytokines led to the differentiation of these cells to cytotoxic T lymphocytes which resulted in target cell lysis, indicative of the functional efficacy of the aAPS. CD8+ T cells with decreased proliferative potential due to repeated antigenic stimulation could also be re-expanded by the developed aAPS. Thus, the developed aAPS warrants further engineering for future application as a rapidly customizable personalized immunotherapeutic agent, incorporating patient-specific MHC-restricted tumor antigens and different costimulatory signals to modulate both naive and antigen-experienced but exhausted tumor-specific T cells in cancer.
Collapse
Affiliation(s)
- Dhrubajyoti Mahata
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Debangshu Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Debarati Biswas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Shyam Basak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Aditya Jyoti Basak
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Imlilong Jamir
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Nidhi Pandey
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Huma Khatoon
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Amit Basak
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Gayatri Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
4
|
Trapping or slowing the diffusion of T cell receptors at close contacts initiates T cell signaling. Proc Natl Acad Sci U S A 2021; 118:2024250118. [PMID: 34526387 PMCID: PMC8488633 DOI: 10.1073/pnas.2024250118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 12/27/2022] Open
Abstract
T cell activation is initiated by T cell receptor (TCR) phosphorylation. This requires the local depletion of large receptor-type phosphatases from "close contacts" formed when T cells interact with surfaces presenting agonistic TCR ligands, but exactly how the ligands potentiate signaling is unclear. It has been proposed that TCR ligands could enhance receptor phosphorylation and signaling just by holding TCRs in phosphatase-depleted close contacts, but this has not been directly tested. We devised simple methods to move the TCR in and out of close contacts formed by T cells interacting with supported lipid bilayers (SLBs) and to slow the receptor's diffusion in the contacts, using a series of anti-CD3ε Fab- and ligand-based adducts of the receptor. TCRs engaging a Fab extended with the large extracellular region of CD45 were excluded from contacts and produced no signaling. Conversely, allowing the extended Fab to become tethered to the SLB trapped the TCR in the close contacts, leading to very strong signaling. Importantly, attaching untethered anti-CD3ε Fab or peptide/MHC ligands, each of which were largely inactive in solution but both of which reduced TCR diffusion in close contacts approximately fivefold, also initiated signaling during cell/SLB contact. Our findings indicate that holding TCRs in close contacts or simply slowing their diffusion in phosphatase-depleted regions of the cell surface suffices to initiate signaling, effects we could reproduce in single-particle stochastic simulations. Our study shows that the TCR is preconfigured for signaling in a way that allows it to be triggered by ligands acting simply as receptor "traps."
Collapse
|
5
|
Prior JT, Davitt C, Kurtz J, Gellings P, McLachlan JB, Morici LA. Bacterial-Derived Outer Membrane Vesicles are Potent Adjuvants that Drive Humoral and Cellular Immune Responses. Pharmaceutics 2021; 13:pharmaceutics13020131. [PMID: 33498352 PMCID: PMC7909432 DOI: 10.3390/pharmaceutics13020131] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Discovery and development of novel adjuvants that can improve existing or next generation vaccine platforms have received considerable interest in recent years. In particular, adjuvants that can elicit both humoral and cellular immune responses would be particularly advantageous because the majority of licensed vaccines are formulated with aluminum hydroxide (alum) which predominantly promotes antibodies. We previously demonstrated that bacterial-derived outer membrane vesicles (OMV) possess inherent adjuvanticity and drive antigen-specific antibody and cellular immune responses to OMV components. Here, we investigated the ability of OMVs to stimulate innate and adaptive immunity and to function as a stand-alone adjuvant. We show that OMVs are more potent than heat-inactivated and live-attenuated bacteria in driving dendritic cell activation in vitro and in vivo. Mice immunized with OMVs admixed with heterologous peptides generated peptide-specific CD4 and CD8 T cells responses. Notably, OMV adjuvant induced much greater antibody and B cell responses to co-delivered ovalbumin compared to the responses elicited by the adjuvants alum and CpG DNA. Additionally, pre-existing antibodies raised against the OMVs did not impair OMV adjuvanticity upon repeat immunization. These results indicate that vaccines adjuvanted with OMVs elicit robust cellular and humoral immune responses, supporting further development of OMV adjuvant for use in next-generation vaccines.
Collapse
|
6
|
Mørch AM, Bálint Š, Santos AM, Davis SJ, Dustin ML. Coreceptors and TCR Signaling - the Strong and the Weak of It. Front Cell Dev Biol 2020; 8:597627. [PMID: 33178706 PMCID: PMC7596257 DOI: 10.3389/fcell.2020.597627] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/28/2020] [Indexed: 12/02/2022] Open
Abstract
The T-cell coreceptors CD4 and CD8 have well-characterized and essential roles in thymic development, but how they contribute to immune responses in the periphery is unclear. Coreceptors strengthen T-cell responses by many orders of magnitude - beyond a million-fold according to some estimates - but the mechanisms underlying these effects are still debated. T-cell receptor (TCR) triggering is initiated by the binding of the TCR to peptide-loaded major histocompatibility complex (pMHC) molecules on the surfaces of other cells. CD4 and CD8 are the only T-cell proteins that bind to the same pMHC ligand as the TCR, and can directly associate with the TCR-phosphorylating kinase Lck. At least three mechanisms have been proposed to explain how coreceptors so profoundly amplify TCR signaling: (1) the Lck recruitment model and (2) the pseudodimer model, both invoked to explain receptor triggering per se, and (3) two-step coreceptor recruitment to partially triggered TCRs leading to signal amplification. More recently it has been suggested that, in addition to initiating or augmenting TCR signaling, coreceptors effect antigen discrimination. But how can any of this be reconciled with TCR signaling occurring in the absence of CD4 or CD8, and with their interactions with pMHC being among the weakest specific protein-protein interactions ever described? Here, we review each theory of coreceptor function in light of the latest structural, biochemical, and functional data. We conclude that the oldest ideas are probably still the best, i.e., that their weak binding to MHC proteins and efficient association with Lck allow coreceptors to amplify weak incipient triggering of the TCR, without comprising TCR specificity.
Collapse
Affiliation(s)
- Alexander M. Mørch
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Štefan Bálint
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Ana Mafalda Santos
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon J. Davis
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Michael L. Dustin
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Han BW, Layman H, Rode NA, Conway A, Schaffer DV, Boudreau NJ, Jackson WM, Healy KE. Multivalent Conjugates of Sonic Hedgehog Accelerate Diabetic Wound Healing. Tissue Eng Part A 2016; 21:2366-78. [PMID: 26154888 DOI: 10.1089/ten.tea.2014.0281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite their preclinical promise, few recombinant growth factors have been fully developed into effective therapies, in part, due to the short interval of therapeutic activity after administration. To address this problem, we developed nanoscale polymer conjugates for multivalent presentation of therapeutic proteins that enhance the activation of targeted cellular responses. As an example of this technology, we conjugated multiple Sonic hedgehog (Shh) proteins onto individual hyaluronic acid biopolymers to generate multivalent protein clusters at defined ratios (i.e., valencies) that yield enhanced Shh pathway activation at equivalent concentrations relative to unconjugated Shh. In this study, we investigated whether these multivalent conjugates (mvShh) could be used to improve the therapeutic function of Shh. We found that a single treatment with mvShh significantly accelerated the closure of full-thickness wounds in diabetic (db/db) mice compared to either an equivalent dose of unconjugated Shh or the vehicle control. Furthermore, we identified specific indicators of wound healing in fibroblasts and endothelial cells (i.e., transcriptional activation and cell migration) that were activated by mvShh in vitro and at concentrations approximately an order of magnitude lower than the unconjugated Shh. Taken together, our findings suggest that mvShh conjugates exhibit greater potency to activate the Shh pathway, and this multivalency advantage improves its therapeutic effect to accelerate wound closure in a diabetic animal model. Our strategy of multivalent protein presentation using nanoscale polymer conjugates has the potential to make a significant impact on the development of protein-based therapies by improving their in vivo performance.
Collapse
Affiliation(s)
- Bruce W Han
- 1 Department of Bioengineering, University of California at Berkeley , Berkeley, California
| | - Hans Layman
- 2 Department of Surgery, University of California at San Francisco , San Francisco, California
| | - Nikhil A Rode
- 3 Department of Materials Science and Engineering, University of California at Berkeley , Berkeley, California
| | - Anthony Conway
- 4 Department of Chemical and Biomolecular Engineering, University of California at Berkeley , Berkeley, California
| | - David V Schaffer
- 1 Department of Bioengineering, University of California at Berkeley , Berkeley, California.,4 Department of Chemical and Biomolecular Engineering, University of California at Berkeley , Berkeley, California
| | - Nancy J Boudreau
- 2 Department of Surgery, University of California at San Francisco , San Francisco, California
| | - Wesley M Jackson
- 1 Department of Bioengineering, University of California at Berkeley , Berkeley, California
| | - Kevin E Healy
- 1 Department of Bioengineering, University of California at Berkeley , Berkeley, California.,3 Department of Materials Science and Engineering, University of California at Berkeley , Berkeley, California
| |
Collapse
|
8
|
Walsh MC, Pearce EL, Cejas PJ, Lee J, Wang LS, Choi Y. IL-18 synergizes with IL-7 to drive slow proliferation of naive CD8 T cells by costimulating self-peptide-mediated TCR signals. THE JOURNAL OF IMMUNOLOGY 2014; 193:3992-4001. [PMID: 25200954 DOI: 10.4049/jimmunol.1400396] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Naive T cell populations are maintained in the periphery at relatively constant levels via mechanisms that control expansion and contraction and are associated with competition for homeostatic cytokines. It has been shown that in a lymphopenic environment naive T cells undergo expansion due, at least in part, to additional availability of IL-7. We have previously found that T cell-intrinsic deletion of TNFR-associated factor (TRAF) 6 (TRAF6ΔT) in mice results in diminished peripheral CD8 T cell numbers. In this study, we report that whereas naive TRAF6ΔT CD8 T cells exhibit normal survival when transferred into a normal T cell pool, proliferation of naive TRAF6ΔT CD8 T cells under lymphopenic conditions is defective. We identified IL-18 as a TRAF6-activating factor capable of enhancing lymphopenia-induced proliferation (LIP) in vivo, and that IL-18 synergizes with high-dose IL-7 in a TRAF6-dependent manner to induce slow, LIP/homeostatic-like proliferation of naive CD8 T cells in vitro. IL-7 and IL-18 act synergistically to upregulate expression of IL-18R genes, thereby enhancing IL-18 activity. In this context, IL-18R signaling increases PI3K activation and was found to sensitize naive CD8 T cells to a model noncognate self-peptide ligand in a way that conventional costimulation via CD28 could not. We propose that synergistic sensitization by IL-7 and IL-18 to self-peptide ligand may represent a novel costimulatory pathway for LIP.
Collapse
Affiliation(s)
- Matthew C Walsh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104; and
| | - Erika L Pearce
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104; and
| | - Pedro J Cejas
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104; and
| | - JangEun Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104; and
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104; and Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104; and
| |
Collapse
|
9
|
Allard M, Oger R, Benlalam H, Florenceau L, Echasserieau K, Bernardeau K, Labarrière N, Lang F, Gervois N. Soluble HLA-I/peptide monomers mediate antigen-specific CD8 T cell activation through passive peptide exchange with cell-bound HLA-I molecules. THE JOURNAL OF IMMUNOLOGY 2014; 192:5090-7. [PMID: 24752447 DOI: 10.4049/jimmunol.1303226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Accumulating evidence that serum levels of soluble class I HLA molecules (sHLA-I) can, under various pathological conditions, correlate with disease stage and/or patient survival, has stimulated interest in defining whether sHLA-I can exert immunological functions. However, despite a mounting number of publications suggesting the ability of sHLA-I to affect immune effectors in vitro, the precise underlying mechanism still remains controversial. In this article, we address potential functions of both classical and nonclassical sHLA-I, using soluble recombinant HLA-I/peptide monomers, and clearly demonstrate their ability to trigger Ag-specific activation of CD8 T cells in vitro. Furthermore, we provide strong evidence that this behavior results from the passive transfer of peptides from monomers to T cell-bound HLA-I molecules, allowing for fratricide representation and activation. Hence, we proposed a unifying model of T cell activation by HLA-I/peptide monomers, reappraising the potential involvement of sHLA-I molecules in the immune response.
Collapse
Affiliation(s)
- Mathilde Allard
- INSERM, U892, Nantes F-44007, France; Centre National de la Recherche Scientifique, U6299, Nantes F-44007, France; Université de Nantes, Nantes F-44007 France; and
| | - Romain Oger
- INSERM, U892, Nantes F-44007, France; Centre National de la Recherche Scientifique, U6299, Nantes F-44007, France; Université de Nantes, Nantes F-44007 France; and
| | - Houssem Benlalam
- INSERM, U892, Nantes F-44007, France; Centre National de la Recherche Scientifique, U6299, Nantes F-44007, France; Université de Nantes, Nantes F-44007 France; and
| | - Laetitia Florenceau
- INSERM, U892, Nantes F-44007, France; Centre National de la Recherche Scientifique, U6299, Nantes F-44007, France; Université de Nantes, Nantes F-44007 France; and
| | - Klara Echasserieau
- INSERM, U892, Nantes F-44007, France; Centre National de la Recherche Scientifique, U6299, Nantes F-44007, France; Université de Nantes, Nantes F-44007 France; and Recombinant Protein Production Facility, Federative Research Structure François Bonamy, Nantes, F-44007, France
| | - Karine Bernardeau
- INSERM, U892, Nantes F-44007, France; Recombinant Protein Production Facility, Federative Research Structure François Bonamy, Nantes, F-44007, France
| | - Nathalie Labarrière
- INSERM, U892, Nantes F-44007, France; Centre National de la Recherche Scientifique, U6299, Nantes F-44007, France; Université de Nantes, Nantes F-44007 France; and
| | - François Lang
- INSERM, U892, Nantes F-44007, France; Centre National de la Recherche Scientifique, U6299, Nantes F-44007, France; Université de Nantes, Nantes F-44007 France; and Recombinant Protein Production Facility, Federative Research Structure François Bonamy, Nantes, F-44007, France
| | - Nadine Gervois
- INSERM, U892, Nantes F-44007, France; Centre National de la Recherche Scientifique, U6299, Nantes F-44007, France; Université de Nantes, Nantes F-44007 France; and
| |
Collapse
|
10
|
Schmidt J, Dojcinovic D, Guillaume P, Luescher I. Analysis, Isolation, and Activation of Antigen-Specific CD4(+) and CD8(+) T Cells by Soluble MHC-Peptide Complexes. Front Immunol 2013; 4:218. [PMID: 23908656 PMCID: PMC3726995 DOI: 10.3389/fimmu.2013.00218] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/15/2013] [Indexed: 11/24/2022] Open
Abstract
T cells constitute the core of adaptive cellular immunity and protect higher organisms against pathogen infections and cancer. Monitoring of disease progression as well as prophylactic or therapeutic vaccines and immunotherapies call for conclusive detection, analysis, and sorting of antigen-specific T cells. This is possible by means of soluble recombinant ligands for T cells, i.e., MHC class I-peptide (pMHC I) complexes for CD8(+) T cells and MHC class II-peptide (pMHC II) complexes for CD4(+) T cells and flow cytometry. Here we review major developments in the development of pMHC staining reagents and their diverse applications and discuss perspectives of their use for basic and clinical investigations.
Collapse
Affiliation(s)
- Julien Schmidt
- Ludwig Center, University of Lausanne, Epalinges, Switzerland
| | | | | | | |
Collapse
|
11
|
A polymeric protein induces specific cytotoxicity in a TLR4 dependent manner in the absence of adjuvants. PLoS One 2012; 7:e45705. [PMID: 23029192 PMCID: PMC3454435 DOI: 10.1371/journal.pone.0045705] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 08/22/2012] [Indexed: 11/19/2022] Open
Abstract
Lumazine synthase from Brucella spp. (BLS) is a highly immunogenic decameric protein. It is possible to insert foreign peptides or proteins at its ten-amino acid termini. These chimeras elicit systemic and oral immunity without adjuvants, which are commonly needed in the formulation of subunit-based vaccines. Here, we show that BLS induces the cross presentation of a covalently attached peptide OVA257–264 and a specific cytotoxic response to this peptide in the absence of adjuvants. Unlike other subunit-based vaccines, this chimera induces rapid activation of CTLs and a specific cytotoxic response, making this polymeric protein an ideal antigen carrier for vaccine development. Adoptive transfer of transgenic OT-I T cells revealed efficient cross presentation of BLS-OVA257–264in vivo. BLS-OVA257–264 immunization induced the proliferation of OVA257–264-specific CD8+ lymphocytes and also increased the percentage of OVA257–264-specific CD8+ cells expressing the early activation marker CD69; after 5 days, the percentage of OVA257–264-specific CD8+ cells expressing high levels of CD44 increased. This cell subpopulation showed decreased expression of IL-7Rα, indicating that BLS-OVA257–264 induced the generation of CD8+ effector cells. BLS-OVA257–264 was cross presented in vitro independently of the presence of a functional TLR4 in the DCs. Finally, we show that immunization of wild type mice with the chimera BLS-OVA257–264 without adjuvants induced a strong OVA257–264-specific effector cytotoxic response. This cytotoxicity is dependent on TLR4 as is not induced in mice lacking a functional receptor. These data show that TLR4 signaling is necesary for the induction of a cytotoxic response but not for antigen cross presentation.
Collapse
|
12
|
Adelson JD, Barreto GE, Xu L, Kim T, Brott BK, Ouyang YB, Naserke T, Djurisic M, Xiong X, Shatz CJ, Giffard RG. Neuroprotection from stroke in the absence of MHCI or PirB. Neuron 2012; 73:1100-7. [PMID: 22445338 DOI: 10.1016/j.neuron.2012.01.020] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2012] [Indexed: 10/28/2022]
Abstract
Recovery from stroke engages mechanisms of neural plasticity. Here we examine a role for MHC class I (MHCI) H2-Kb and H2-Db, as well as PirB receptor. These molecules restrict synaptic plasticity and motor learning in the healthy brain. Stroke elevates neuronal expression not only of H2-Kb and H2-Db, but also of PirB and downstream signaling. KbDb knockout (KO) or PirB KO mice have smaller infarcts and enhanced motor recovery. KO hippocampal organotypic slices, which lack an intact peripheral immune response, have less cell death after in vitro ischemia. In PirB KO mice, corticospinal projections from the motor cortex are enhanced, and the reactive astrocytic response is dampened after MCAO. Thus, molecules that function in the immune system act not only to limit synaptic plasticity in healthy neurons, but also to exacerbate brain injury after ischemia. These results suggest therapies for stroke by targeting MHCI and PirB.
Collapse
Affiliation(s)
- Jaimie D Adelson
- Department of Biology and Neurobiology, Stanford University, Stanford, CA 94305-5437, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Solid-state capture and real-time analysis of individual T cell activation via self-assembly of binding multimeric proteins on functionalized materials surfaces. Acta Biomater 2012; 8:99-107. [PMID: 21945827 DOI: 10.1016/j.actbio.2011.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 08/16/2011] [Accepted: 09/01/2011] [Indexed: 11/21/2022]
Abstract
Polyfunctional T cell responses are increasingly underpinning new and improved vaccination regimens. Studies of the nature and extent of these T cell responses may be facilitated if specific T cell populations can be assessed from mixed populations by ligand-mediated capture in a solid-state assay format. Accordingly, we report here the development of a novel strategy for the solid-state capture and real-time activation analyses of individual cognate T cells which utilizes a spontaneous self-assembly process for generating multimers of biotinylated class I major histocompatibility-peptide complex (MHCp) directly on the solid-state assay surface while also ensuring stability by covalent interfacial binding. The capture surface was constructed by the fabrication of multilayer coatings onto standard slides. The first layer was a thin polymer coating with surface aldehyde groups, onto which streptavidin was covalently immobilized, followed by the docking of multimers of biotinylated MHCp or biotinylated anti-CD45.1 monoclonal antibody. The high binding strength at each step of this immobilization sequence aims to ensure that artefacts such as (partial) detachment, or displacement by proteins from solution, would not interfere with the intended biological assays. The multilayer coating steps were monitored by X-ray photoelectron spectroscopy; data indicated that the MHCp proteins self-assembled in a multimeric form onto the streptavidin surface. Immobilized multimeric MHCp demonstrated the capacity to bind and retain antigen-specific T cells from mixed populations of cells onto the solid carrier. Furthermore, real-time confocal microscopic detection and quantification of subsequent calcium flux using paired fluorescent ratiometric probes facilitated the analysis of individual T cell response profiles, as well as population analyses using a combination of individual T cell events.
Collapse
|
14
|
Schmidt J, Guillaume P, Irving M, Baumgaertner P, Speiser D, Luescher IF. Reversible major histocompatibility complex I-peptide multimers containing Ni(2+)-nitrilotriacetic acid peptides and histidine tags improve analysis and sorting of CD8(+) T cells. J Biol Chem 2011; 286:41723-41735. [PMID: 21990358 DOI: 10.1074/jbc.m111.283127] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MHC-peptide multimers containing biotinylated MHC-peptide complexes bound to phycoerythrin (PE) streptavidin (SA) are widely used for analyzing and sorting antigen-specific T cells. Here we describe alternative T cell-staining reagents that are superior to conventional reagents. They are built on reversible chelate complexes of Ni(2+)-nitrilotriacetic acid (NTA) with oligohistidines. We synthesized biotinylated linear mono-, di-, and tetra-NTA compounds using conventional solid phase peptide chemistry and studied their interaction with HLA-A*0201-peptide complexes containing a His(6), His(12), or 2×His(6) tag by surface plasmon resonance on SA-coated sensor chips and equilibrium dialysis. The binding avidity increased in the order His(6) < His(12) < 2×His(6) and NTA(1) < NTA(2) < NTA(4), respectively, depending on the configuration of the NTA moieties and increased to picomolar K(D) for the combination of a 2×His(6) tag and a 2×Ni(2+)-NTA(2). We demonstrate that HLA-A2-2×His(6)-peptide multimers containing either Ni(2+)-NTA(4)-biotin and PE-SA- or PE-NTA(4)-stained influenza and Melan A-specific CD8+ T cells equal or better than conventional multimers. Although these complexes were highly stable, they very rapidly dissociated in the presence of imidazole, which allowed sorting of bona fide antigen-specific CD8+ T cells without inducing T cell death as well as assessment of HLA-A2-peptide monomer dissociation kinetics on CD8+ T cells.
Collapse
Affiliation(s)
- Julien Schmidt
- Ludwig Center of the University of Lausanne, 1066 Epalinges, Switzerland
| | - Philippe Guillaume
- Ludwig Center of the University of Lausanne, 1066 Epalinges, Switzerland
| | - Melita Irving
- Swiss Institute of Bioinformatics, Batiment Genopode, 1015 Lausanne Switzerland
| | - Petra Baumgaertner
- Division of Clinical Onco-Immunology, Ludwig Center of the University of Lausanne, 1011 Lausanne, Switzerland
| | - Daniel Speiser
- Division of Clinical Onco-Immunology, Ludwig Center of the University of Lausanne, 1011 Lausanne, Switzerland
| | | |
Collapse
|
15
|
Samanta D, Mukherjee G, Ramagopal UA, Chaparro RJ, Nathenson SG, DiLorenzo TP, Almo SC. Structural and functional characterization of a single-chain peptide-MHC molecule that modulates both naive and activated CD8+ T cells. Proc Natl Acad Sci U S A 2011; 108:13682-7. [PMID: 21825122 PMCID: PMC3158197 DOI: 10.1073/pnas.1110971108] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Peptide-MHC (pMHC) multimers, in addition to being tools for tracking and quantifying antigen-specific T cells, can mediate downstream signaling after T-cell receptor engagement. In the absence of costimulation, this can lead to anergy or apoptosis of cognate T cells, a property that could be exploited in the setting of autoimmune disease. Most studies with class I pMHC multimers used noncovalently linked peptides, which can allow unwanted CD8(+) T-cell activation as a result of peptide transfer to cellular MHC molecules. To circumvent this problem, and given the role of self-reactive CD8(+) T cells in the development of type 1 diabetes, we designed a single-chain pMHC complex (scK(d).IGRP) by using the class I MHC molecule H-2K(d) and a covalently linked peptide derived from islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP(206-214)), a well established autoantigen in NOD mice. X-ray diffraction studies revealed that the peptide is presented in the groove of the MHC molecule in canonical fashion, and it was also demonstrated that scK(d).IGRP tetramers bound specifically to cognate CD8(+) T cells. Tetramer binding induced death of naive T cells and in vitro- and in vivo-differentiated cytotoxic T lymphocytes, and tetramer-treated cytotoxic T lymphocytes showed a diminished IFN-γ response to antigen stimulation. Tetramer accessibility to disease-relevant T cells in vivo was also demonstrated. Our study suggests the potential of single-chain pMHC tetramers as possible therapeutic agents in autoimmune disease. Their ability to affect the fate of naive and activated CD8(+) T cells makes them a potential intervention strategy in early and late stages of disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Teresa P. DiLorenzo
- Departments of Microbiology and Immunology
- Medicine/Division of Endocrinology, and
| | - Steven C. Almo
- Biochemistry
- Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
16
|
Signaling thresholds govern heterogeneity in IL-7-receptor-mediated responses of naïve CD8(+) T cells. Immunol Cell Biol 2011; 89:581-94. [PMID: 21339767 PMCID: PMC3342499 DOI: 10.1038/icb.2011.5] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Variable sensitivity to T-cell-receptor (TCR)- and IL-7-receptor (IL-7R)-mediated homeostatic signals among naïve T cells has thus far been largely attributed to differences in TCR specificity. We show here that even when withdrawn from self-peptide-induced TCR stimulation, CD8+ T cells exhibit heterogeneous responses to interleukin-7 (IL-7) that are mechanistically associated with IL-7R expression differences that correlate with relative CD5 expression. Whereas CD5hi and CD5lo T cells survive equivalently in the presence of saturating IL-7 levels in vitro, CD5hi T cells proliferate more robustly. Conversely, CD5lo T cells exhibit prolonged survival when withdrawn from homeostatic stimuli. Through quantitative experimental analysis of signaling downstream of IL-7R, we find that the enhanced IL-7 responsiveness of CD5hi T cells is directly related to their greater surface IL-7R expression. Further, we identify a quantitative threshold in IL-7R-mediated signaling capacity required for proliferation that lies well above an analogous threshold requirement for survival. These distinct thresholds allow subtle differences in IL-7R expression between CD5lo and CD5hi T cells to give rise to significant variations in their respective IL-7-induced proliferation, without altering survival. Heterogeneous IL-7 responsiveness is observed similarly in vivo, with CD5hi naïve T cells proliferating preferentially in lymphopenic mice or lymphoreplete mice administered with exogenous IL-7. However, IL-7 in lymphoreplete mice appears to be maintained at an effective level for preserving homeostasis, such that neither CD5hi IL-7Rhi nor CD5lo IL-7Rlo T cells proliferate or survive preferentially. Our findings indicate that IL-7R-mediated signaling not only maintains the size but also impacts the diversity of the naïve T-cell repertoire.
Collapse
|
17
|
Priyadharshini B, Welsh RM, Greiner DL, Gerstein RM, Brehm MA. Maturation-dependent licensing of naive T cells for rapid TNF production. PLoS One 2010; 5:e15038. [PMID: 21124839 PMCID: PMC2991336 DOI: 10.1371/journal.pone.0015038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/10/2010] [Indexed: 12/20/2022] Open
Abstract
The peripheral naïve T cell pool is comprised of a heterogeneous population of cells at various stages of development, which is a process that begins in the thymus and is completed after a post-thymic maturation phase in the periphery. One hallmark of naïve T cells in secondary lymphoid organs is their unique ability to produce TNF rapidly after activation and prior to acquiring other effector functions. To determine how maturation influences the licensing of naïve T cells to produce TNF, we compared cytokine profiles of CD4+ and CD8+ single positive (SP) thymocytes, recent thymic emigrants (RTEs) and mature-naïve (MN) T cells during TCR activation. SP thymocytes exhibited a poor ability to produce TNF when compared to splenic T cells despite expressing similar TCR levels and possessing comparable activation kinetics (upregulation of CD25 and CD69). Provision of optimal antigen presenting cells from the spleen did not fully enable SP thymocytes to produce TNF, suggesting an intrinsic defect in their ability to produce TNF efficiently. Using a thymocyte adoptive transfer model, we demonstrate that the ability of T cells to produce TNF increases progressively with time in the periphery as a function of their maturation state. RTEs that were identified in NG-BAC transgenic mice by the expression of GFP showed a significantly enhanced ability to express TNF relative to SP thymocytes but not to the extent of fully MN T cells. Together, these findings suggest that TNF expression by naïve T cells is regulated via a gradual licensing process that requires functional maturation in peripheral lymphoid organs.
Collapse
Affiliation(s)
- Bhavana Priyadharshini
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Raymond M. Welsh
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Dale L. Greiner
- Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Rachel M. Gerstein
- Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Molecular Genetics & Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Michael A. Brehm
- Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Stelekati E, Bahri R, D'Orlando O, Orinska Z, Mittrücker HW, Langenhaun R, Glatzel M, Bollinger A, Paus R, Bulfone-Paus S. Mast cell-mediated antigen presentation regulates CD8+ T cell effector functions. Immunity 2009; 31:665-76. [PMID: 19818652 DOI: 10.1016/j.immuni.2009.08.022] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 07/09/2009] [Accepted: 08/03/2009] [Indexed: 01/08/2023]
Abstract
The characteristics, importance, and molecular requirements for interactions between mast cells (MCs) and CD8(+) T cells have not been elucidated. Here, we demonstrated that MCs induced antigen-specific CD8(+) T cell activation and proliferation. This process required direct cell contact and MHC class I-dependent antigen cross-presentation by MCs and induced the secretion of interleukin-2, interferon-gamma, and macrophage inflammatory protein-1alpha by CD8(+) T cells. MCs regulated antigen-specific CD8(+) T cell cytotoxicity by increasing granzyme B expression and by promoting CD8(+) T cell degranulation. Because MCs also upregulated their expression of costimulatory molecules (4-1BB) and released osteopontin upon direct T cell contact, MC-T cell interactions probably are bidirectional. In vivo, adoptive transfer of antigen-pulsed MCs induced MHC class I-dependent, antigen-specific CD8(+) T cell proliferation, and MCs regulated CD8(+) T cell-specific priming in experimental autoimmune encephalomyelitis. Thus, MCs are important players in antigen-specific regulation of CD8(+) T cells.
Collapse
Affiliation(s)
- Erietta Stelekati
- Department of Immunology and Cell Biology, Research Center Borstel, D-23845 Borstel, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chervin AS, Stone JD, Holler PD, Bai A, Chen J, Eisen HN, Kranz DM. The impact of TCR-binding properties and antigen presentation format on T cell responsiveness. THE JOURNAL OF IMMUNOLOGY 2009; 183:1166-78. [PMID: 19553539 DOI: 10.4049/jimmunol.0900054] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TCR interactions with cognate peptide-MHC (pepMHC) ligands are generally low affinity. This feature, together with the requirement for CD8/CD4 participation, has made it difficult to dissect relationships between TCR-binding parameters and T cell activation. Interpretations are further complicated when comparing different pepMHC, because these can vary greatly in stability. To examine the relationships between TCR-binding properties and T cell responses, in this study we characterized the interactions and activities mediated by a panel of TCRs that differed widely in their binding to the same pepMHC. Monovalent binding of soluble TCR was characterized by surface plasmon resonance, and T cell hybridomas that expressed these TCR, with or without CD8 coexpression, were tested for their binding of monomeric and oligomeric forms of the pepMHC and for subsequent responses (IL-2 release). The binding threshold for eliciting this response in the absence of CD8 (K(D) = 600 nM) exhibited a relatively sharp cutoff between full activity and no activity, consistent with a switchlike response to pepMHC on APCs. However, when the pepMHC was immobilized (plate bound), T cells with the lowest affinity TCRs (e.g., K(D) = 30 microM) responded, even in the absence of CD8, indicating that these TCR are signaling competent. Surprisingly, even cells that expressed high-affinity (K(D) = 16 nM) TCRs along with CD8 were unresponsive to oligomers in solution. The findings suggest that to drive downstream T cell responses, pepMHC must be presented in a form that supports formation of appropriate supramolecular clusters.
Collapse
Affiliation(s)
- Adam S Chervin
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Mercier BC, Cottalorda A, Coupet CA, Marvel J, Bonnefoy-Bérard N. TLR2 engagement on CD8 T cells enables generation of functional memory cells in response to a suboptimal TCR signal. THE JOURNAL OF IMMUNOLOGY 2009; 182:1860-7. [PMID: 19201838 DOI: 10.4049/jimmunol.0801167] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
TLR are involved in the detection of microbial infection as well as endogenous ligands that signal tissue and cell damage in mammals. This recognition plays an essential role in innate immune response and the initiation of adaptive immune response. We have previously shown that murine CD8 T cells express TLR2, and that costimulation of Ag-activated CD8 T cells with TLR2 ligands enhances their proliferation, survival, and effector functions. We also demonstrated that TLR2 engagement on CD8 T cells significantly reduces their need for costimulatory signals delivered by APC. We show in this study that TLR2 engagement on CD8 T cells lowers the Ag concentration required for optimal activation, and converts a partial activation into a productive process leading to a significant expansion of cells. Using altered peptide ligands, we demonstrate that TLR2 engagement increases CD8 T cell activation and enables the generation of functional memory cells in response to a low TCR signal. This increased activation is associated with an augmented activation of the PI3K. Taken together, our results demonstrate that TLR2 engagement on CD8 T cells lowers their activation threshold for TCR signal strength and enables efficient memory cell generation in response to a weak TCR signal.
Collapse
|
21
|
Wooldridge L, Lissina A, Cole DK, van den Berg HA, Price DA, Sewell AK. Tricks with tetramers: how to get the most from multimeric peptide-MHC. Immunology 2009; 126:147-64. [PMID: 19125886 PMCID: PMC2632693 DOI: 10.1111/j.1365-2567.2008.02848.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/18/2008] [Accepted: 03/18/2008] [Indexed: 01/16/2023] Open
Abstract
The development of fluorochrome-conjugated peptide-major histocompatibility complex (pMHC) multimers in conjunction with continuing advances in flow cytometry has transformed the study of antigen-specific T cells by enabling their visualization, enumeration, phenotypic characterization and isolation from ex vivo samples. Here, we bring together and discuss some of the 'tricks' that can be used to get the most out of pMHC multimers. These include: (1) simple procedures that can substantially enhance the staining intensity of cognate T cells with pMHC multimers; (2) the use of pMHC multimers to stain T cells with very-low-affinity T-cell receptor (TCR)/pMHC interactions, such as those that typically predominate in tumour-specific responses; and (3) the physical grading and clonotypic dissection of antigen-specific T cells based on the affinity of their cognate TCR using mutant pMHC multimers in conjunction with new approaches to the molecular analysis of TCR gene expression. We also examine how soluble pMHC can be used to examine T-cell activation, manipulate T-cell responses and study allogeneic and superantigen interactions with TCRs. Finally, we discuss the problems that arise with pMHC class II (pMHCII) multimers because of the low affinity of TCR/pMHCII interactions and lack of 'coreceptor help'.
Collapse
Affiliation(s)
- Linda Wooldridge
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
22
|
Chattopadhyay PK, Melenhorst JJ, Ladell K, Gostick E, Scheinberg P, Barrett AJ, Wooldridge L, Roederer M, Sewell AK, Price DA. Techniques to improve the direct ex vivo detection of low frequency antigen-specific CD8+ T cells with peptide-major histocompatibility complex class I tetramers. Cytometry A 2008; 73:1001-9. [PMID: 18836993 DOI: 10.1002/cyto.a.20642] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ability to quantify and characterize antigen-specific CD8+ T cells irrespective of functional readouts using fluorochrome-conjugated peptide-major histocompatibility complex class I (pMHCI) tetramers in conjunction with flow cytometry has transformed our understanding of cellular immune responses over the past decade. In the case of prevalent CD8+ T cell populations that engage cognate pMHCI tetramers with high avidities, direct ex vivo identification and subsequent data interpretation is relatively straightforward. However, the accurate identification of low frequency antigen-specific CD8+ T cell populations can be complicated, especially in situations where T cell receptor-mediated tetramer binding occurs at low avidities. Here, we highlight a few simple techniques that can be employed to improve the visual resolution, and hence the accurate quantification, of tetramer binding CD8+ T cell populations by flow cytometry. These methodological modifications enhance signal intensity, especially in the case of specific CD8+ T cell populations that bind cognate antigen with low avidities, minimize background noise, and enable improved discrimination of true pMHCI tetramer binding events from nonspecific uptake.
Collapse
Affiliation(s)
- Pratip K Chattopadhyay
- Immunotechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Regulation of cytotoxic T lymphocyte triggering by PIR-B on dendritic cells. Proc Natl Acad Sci U S A 2008; 105:14515-20. [PMID: 18787130 DOI: 10.1073/pnas.0804571105] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Priming of cytotoxic T lymphocytes (CTLs) by dendritic cells (DCs) is crucial for elimination of pathogens and malignant cells. To activate CTLs, DCs present antigenic peptide-complexed MHC class I molecules (MHC-I) that will be recognized by the CTLs with T cell receptors and CD8 molecules. Here we show that paired Ig-like receptor (PIR)-B, an MHC-I receptor expressed on antigen-presenting cells, can regulate CTL triggering by blocking the access of CD8 molecules to MHC-I. PIR-B-deficient DCs evoked CTLs more efficiently, leading to accelerated graft and tumor rejection. PIR-B(+) non-DC transfectant cells served as less efficient stimulators and targets for CTLs than PIR-B(-) cells at the effector phase in vitro. On surface plasmon resonance analysis, PIR-B and CD8alpha alpha were revealed to compete in binding to MHC-I. Our results may provide a novel strategy for regulating CTL-mediated immunity and diseases in a sterical manner.
Collapse
|
24
|
Held W, Mariuzza RA. Cis interactions of immunoreceptors with MHC and non-MHC ligands. Nat Rev Immunol 2008; 8:269-78. [PMID: 18309314 DOI: 10.1038/nri2278] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The conventional wisdom is that cell-surface receptors interact with ligands expressed on other cells to mediate cell-to-cell communication (trans interactions). Unexpectedly, it has recently been found that two classes of receptors specific for MHC class I molecules not only interact with MHC class I molecules expressed on opposing cells, but also with those on the same cell. These cis interactions are a feature of immunoreceptors that inhibit, rather than activate, cellular functions. Here, we review situations in which cis interactions have been observed, the characteristics of receptors that bind in trans and cis, and the biological roles of cis recognition.
Collapse
Affiliation(s)
- Werner Held
- Ludwig Institute for Cancer Research, Lausanne Branch and University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.
| | | |
Collapse
|
25
|
Truscott SM, Wang X, Lybarger L, Biddison WE, McBerry C, Martinko JM, Connolly JM, Linette GP, Fremont DH, Hansen TH, Carreno BM. Human major histocompatibility complex (MHC) class I molecules with disulfide traps secure disease-related antigenic peptides and exclude competitor peptides. J Biol Chem 2008; 283:7480-90. [PMID: 18195006 DOI: 10.1074/jbc.m709935200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ongoing discovery of disease-associated epitopes detected by CD8 T cells greatly facilitates peptide-based vaccine approaches and the construction of multimeric soluble recombinant proteins (e.g. tetramers) for isolation and enumeration of antigen-specific CD8 T cells. Related to these outcomes of epitope discovery is the recent demonstration that MHC class I/peptide complexes can be expressed as single chain trimers (SCTs) with peptide, beta(2)m and heavy chain connected by linkers to form a single polypeptide chain. Studies using clinically relevant mouse models of human disease have shown that SCTs expressed by DNA vaccination are potent stimulators of cytotoxic T lymphocytes. Their vaccine efficacy has been attributed to the fact that SCTs contain a preprocessed and preloaded peptide that is stably displayed on the cell surface. Although SCTs of HLA class I/peptide complexes have been previously reported, they have not been characterized for biochemical stability or susceptibility to exogenous peptide binding. Here we demonstrate that human SCTs remain almost exclusively intact when expressed in cells and can incorporate a disulfide trap that dramatically excludes the binding of exogenous peptides. The mechanistic and practical applications of these findings for vaccine development and T cell isolation/enumeration are discussed.
Collapse
Affiliation(s)
- Steven M Truscott
- Department of Pathology and Immunology, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kario E, Tirosh B, Ploegh HL, Navon A. N-linked glycosylation does not impair proteasomal degradation but affects class I major histocompatibility complex presentation. J Biol Chem 2007; 283:244-254. [PMID: 17951257 DOI: 10.1074/jbc.m706237200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The addition of N-linked glycans to nascent polypeptides occurs cotranslationally in the endoplasmic reticulum (ER). For many proteins the state of the glycans serves as an indicator, which allows the ER quality control system to monitor the conformation of polypeptides upon folding. Proteins that fail to fold in the ER are often dislocated to the cytoplasm, where they are subjected to proteasomal degradation. Although the addition of N-linked glycans occurs within the ER, non-lysosomal removal of the glycans occurs in the cytosol by the action of peptide N-glycanase (PNGase). In this study, we investigated the interplay between PNGase action and proteasomal degradation of ER misfolded proteins (i.e. whether PNGase acts prior to or following proteasomal degradation). Interestingly, we found that glycan removal from N-terminally extended peptides modulates the presentation of class I major histocompatibility complex-restricted epitopes. Our findings provide direct evidence that the proteasome is capable of degrading glycoproteins without prior removal of their glycans. This degradation is independent of either the identity of the glycosylated protein or the type and number of N-linked glycans it harbors. We also captured and characterized glycopeptides generated following proteasomal degradation of RNaseB. Although the carbohydrate moiety reduced the variability of the degradation products that include the glycosylated residue (local effect), the overall global digestion pattern of RNaseB was unaffected. Together with earlier findings by others, our data support a model in which PNGase may act both upstream and downstream to proteasomal degradation and demonstrates its important role in class I major histocompatibility complex antigen presentation.
Collapse
Affiliation(s)
- Edith Kario
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Boaz Tirosh
- Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Hidde L Ploegh
- Whitehead Institute of Biomedical Research, Cambridge, Massachusetts 02142
| | - Ami Navon
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
27
|
Hommel M, Hodgkin PD. TCR affinity promotes CD8+ T cell expansion by regulating survival. THE JOURNAL OF IMMUNOLOGY 2007; 179:2250-60. [PMID: 17675486 DOI: 10.4049/jimmunol.179.4.2250] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ligation with high affinity ligands are known to induce T lymphocytes to become fully activated effector cells while ligation with low affinity ligands (or partial agonists) may result in a delayed or incomplete response. We have examined the quantitative features of CD8(+) T cell proliferation induced by peptides of different TCR affinities at a range of concentrations in the mouse OT-I model. Both the frequency of cells responding and the average time taken for cells to reach their first division are affected by peptide concentration and affinity. Consecutive division times, however, remained largely unaffected by these variables. Importantly, we identified affinity to be the sole regulator of cell death in subsequent division. These results suggest a mechanism whereby TCR affinity detection can modulate the subsequent rate of T cell growth and ensure the dominance of higher affinity clones over time.
Collapse
Affiliation(s)
- Mirja Hommel
- Immunology Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia.
| | | |
Collapse
|
28
|
Derkow K, Loddenkemper C, Mintern J, Kruse N, Klugewitz K, Berg T, Wiedenmann B, Ploegh HL, Schott E. Differential priming of CD8 and CD4 T-cells in animal models of autoimmune hepatitis and cholangitis. Hepatology 2007; 46:1155-65. [PMID: 17657820 DOI: 10.1002/hep.21796] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED The pathogenesis of autoimmune liver diseases is poorly understood. Animal models are necessary to investigate antigen presentation and priming of T-cells in the context of autoimmunity in the liver. Transgenic mouse models were generated in which the model antigen ovalbumin is expressed in hepatocytes (TF-OVA) or cholangiocytes (ASBT-OVA). Transgenic OT-I (CD8) or OT-II (CD4) T-cells specific for ovalbumin were adoptively transferred into TF-OVA and ASBT-OVA mice to induce in vivo priming of antigen-specific T-cells. T-cell migration and activation, as well as induction of liver inflammation, were studied. OT-I T-cells preferentially located to the liver of both mouse strains whereas no migration of OT-II T-cells to the liver was observed. OT-I T-cells proliferated in the liver of TF-OVA mice and the liver and liver draining lymph nodes of ASBT-OVA mice. OT-II CD4 T-cells were activated in spleen and liver draining lymph node of TF-OVA mice but not in ASBT-OVA mice. Transfer of OT-I T-cells led to histologically distinct inflammatory conditions in the liver of ASBT-OVA and TF-OVA mice and caused liver injury as determined by the elevation of serum alanine aminotransferase. CONCLUSION An antigen expressed in hepatocytes is presented to CD8 and CD4 T-cells, whereas the same antigen expressed in cholangiocytes is presented to CD8 but not CD4 T-cells. In both models, activation of CD8 T-cells occurs within the liver and causes liver inflammation. The models presented here are valuable to investigate the priming of T-cells in the liver and their role in the development of autoimmune disease of the liver.
Collapse
Affiliation(s)
- Katja Derkow
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, CVK, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mitaksov V, Truscott SM, Lybarger L, Connolly J, Hansen TH, Fremont DH. Structural engineering of pMHC reagents for T cell vaccines and diagnostics. CHEMISTRY & BIOLOGY 2007; 14:909-22. [PMID: 17719490 PMCID: PMC3601489 DOI: 10.1016/j.chembiol.2007.07.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 04/19/2007] [Accepted: 07/02/2007] [Indexed: 11/15/2022]
Abstract
MHC class I peptide complexes (pMHC) are routinely used to enumerate T cell populations and are currently being evaluated as vaccines to tumors and specific pathogens. Herein, we describe the structures of three generations of single-chain pMHC progressively designed for the optimal presentation of covalently associated epitopes. Our ultimate design employs a versatile disulfide trap between an invariant MHC residue and a short C-terminal peptide extension. This general strategy is nondisruptive of native pMHC conformation and T cell receptor engagement. Indeed, cell-surface-expressed MHC complexes with disulfide-trapped epitopes are refractory to peptide exchange, suggesting they will make safe and effective vaccines. Furthermore, we find that disulfide-trap stabilized, recombinant pMHC reagents reliably detect polyclonal CD8 T cell populations as proficiently as conventional reagents and are thus well suited to monitor or modulate immune responses during pathogenesis.
Collapse
Affiliation(s)
- Vesselin Mitaksov
- Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven M. Truscott
- Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lonnie Lybarger
- Cell Biology & Anatomy, University of Arizona Health Sciences Center, Tucson, AZ 85724, U.S.A
| | - Janet Connolly
- Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ted H. Hansen
- Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daved H. Fremont
- Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Biochem. & Mol. Biophysics, Washington University School of Medicine, St. Louis, MO 63110, U.S.A
| |
Collapse
|
30
|
Cesson V, Stirnemann K, Robert B, Luescher I, Filleron T, Corradin G, Mach JP, Donda A. Active antiviral T-lymphocyte response can be redirected against tumor cells by antitumor antibody x MHC/viral peptide conjugates. Clin Cancer Res 2007; 12:7422-30. [PMID: 17189415 DOI: 10.1158/1078-0432.ccr-06-1862] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To redirect an ongoing antiviral T-cell response against tumor cells in vivo, we evaluated conjugates consisting of antitumor antibody fragments coupled to class I MHC molecules loaded with immunodominant viral peptides. EXPERIMENTAL DESIGN First, lymphochoriomeningitis virus (LCMV)-infected C57BL/6 mice were s.c. grafted on the right flank with carcinoembryonic antigen (CEA)-transfected MC38 colon carcinoma cells precoated with anti-CEA x H-2D(b)/GP33 LCMV peptide conjugate and on the left flank with the same cells precoated with control anti-CEA F(ab')(2) fragments. Second, influenza virus-infected mice were injected i.v., to induce lung metastases, with HER2-transfected B16F10 cells, coated with either anti-HER2 x H-2D(b)/NP366 influenza peptide conjugates, or anti-HER2 F(ab')(2) fragments alone, or intact anti-HER2 monoclonal antibody. Third, systemic injections of anti-CEA x H-2D(b) conjugates with covalently cross-linked GP33 peptides were tested for the growth inhibition of MC38-CEA(+) cells, s.c. grafted in LCMV-infected mice. RESULTS In the LCMV-infected mice, five of the six grafts with conjugate-precoated MC38-CEA(+) cells did not develop into tumors, whereas all grafts with F(ab')(2)-precoated MC38-CEA(+) cells did so (P = 0.0022). In influenza virus-infected mice, the group injected with cells precoated with specific conjugate had seven times less lung metastases than control groups (P = 0.0022 and P = 0.013). Most importantly, systemic injection in LCMV-infected mice of anti-CEA x H-2D(b)/cross-linked GP33 conjugates completely abolished tumor growth in four of five mice, whereas the same tumor grew in all five control mice (P = 0.016). CONCLUSION The results show that a physiologic T-cell antiviral response in immunocompetent mice can be redirected against tumor cells by the use of antitumor antibody x MHC/viral peptide conjugates.
Collapse
MESH Headings
- Animals
- Antibodies, Neoplasm/immunology
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Antigens, Viral/chemistry
- Antigens, Viral/immunology
- Carcinoembryonic Antigen/chemistry
- Carcinoembryonic Antigen/immunology
- Carcinoma/immunology
- Carcinoma/metabolism
- Carcinoma/therapy
- Colonic Neoplasms/immunology
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/therapy
- Glycoproteins/immunology
- H-2 Antigens/immunology
- Histocompatibility Antigen H-2D
- Immunization/methods
- Immunoconjugates/chemistry
- Immunoconjugates/immunology
- Immunoconjugates/therapeutic use
- Immunoglobulin Fab Fragments/biosynthesis
- Immunoglobulin Fab Fragments/therapeutic use
- Immunotherapy/methods
- Influenza A virus/immunology
- Lymphocytic choriomeningitis virus/immunology
- Major Histocompatibility Complex/immunology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Peptide Fragments/immunology
- Receptor, ErbB-2/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Viral Core Proteins/immunology
- Viral Proteins/immunology
- Xenograft Model Antitumor Assays/methods
Collapse
Affiliation(s)
- Valérie Cesson
- Department of Biochemistry, Lausanne Branch, University of Lausanne, Epalinges, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Carr JM, Carrasco MJ, Thaventhiran JED, Bambrough PJ, Kraman M, Edwards AD, Al-Shamkhani A, Fearon DT. CD27 mediates interleukin-2-independent clonal expansion of the CD8+ T cell without effector differentiation. Proc Natl Acad Sci U S A 2006; 103:19454-9. [PMID: 17159138 PMCID: PMC1697827 DOI: 10.1073/pnas.0609706104] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Indexed: 11/18/2022] Open
Abstract
The clonal expansion of antigen-specific CD8+ T cells in response to microbial infections is essential for adaptive immunity. Although IL-2 has been considered to be primarily responsible for this process, quantitatively normal expansion occurs in the absence of IL-2 receptor signaling. Here, we show that ligating CD27 on CD8+ T cells that have been stimulated through the T cell receptor causes their expansion in the absence of IL-2 by mediating two distinct cellular processes: enhancing cell cycling and promoting cell survival by maintaining the expression of IL-7 receptor alpha. This pathway for clonal expansion of the CD8+ T cell is not associated with the development of a capacity either for production of IFN-gamma or for cytotoxic T lymphocyte function and, therefore, is uncoupled from differentiation. Furthermore, ligating CD27 increases the threshold concentration at which IL-2 induces IFN-gamma-producing capability by the CD8+ T cell, suggesting that CD27 signaling may suppress effector differentiation. Finally, CD8+ T cells that have been stimulated by the TCR/CD27 pathway maintain their capacity for subsequent expansion and effector differentiation in response to a viral challenge in vivo. Thus, the TCR/CD27 pathway enables the CD8+ T cell to replicate by a process of self-renewal, which may contribute to the continuous generation of new effector CD8+ T cells in persistent viral infections.
Collapse
Affiliation(s)
- James M. Carr
- Wellcome Trust Immunology Unit, Department of Medicine, University of Cambridge, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Marlene J. Carrasco
- Wellcome Trust Immunology Unit, Department of Medicine, University of Cambridge, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - James E. D. Thaventhiran
- Wellcome Trust Immunology Unit, Department of Medicine, University of Cambridge, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Paul J. Bambrough
- Wellcome Trust Immunology Unit, Department of Medicine, University of Cambridge, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Matthew Kraman
- Wellcome Trust Immunology Unit, Department of Medicine, University of Cambridge, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Alexander D. Edwards
- Wellcome Trust Immunology Unit, Department of Medicine, University of Cambridge, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Aymen Al-Shamkhani
- Wellcome Trust Immunology Unit, Department of Medicine, University of Cambridge, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Douglas T. Fearon
- Wellcome Trust Immunology Unit, Department of Medicine, University of Cambridge, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| |
Collapse
|
32
|
Guillaume P, Baumgaertner P, Angelov GS, Speiser D, Luescher IF. Fluorescence-activated cell sorting and cloning of bona fide CD8+ CTL with reversible MHC-peptide and antibody Fab' conjugates. THE JOURNAL OF IMMUNOLOGY 2006; 177:3903-12. [PMID: 16951353 DOI: 10.4049/jimmunol.177.6.3903] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The isolation of subsets of Ag-specific T cells for in vitro and in vivo studies by FACS is compromised by the fact that the soluble MHC-peptide complexes and Abs used for staining, especially when combined, induce unwanted T cell activation and eventually apoptosis. This is especially a problem for CD8+ CTL, which are susceptible to activation-dependent cell death. In this study, we show that reversible MHC-peptide complexes (tetramers) can be prepared by conjugating MHC-peptide monomers with desthiobiotin (DTB; also called dethiobiotin) and multimerization by reaction with fluorescent streptavidin. While in the cold these reagents are stable and allow good staining, they rapidly dissociate in monomers at elevated temperatures, especially in the presence of free biotin. FACS cloning of Melan-A (MART-1)-specific CTL from a melanoma-infiltrated lymph node with reversible HLA-A2 Melan-A26-35 multimers yielded over two times more clones than when using the conventional biotin-containing multimers. CTL clones obtained by means of reversible multimers killed Melan-A-positive tumor cells more efficiently as compared with clones obtained with the stable multimers. Among the CTL obtained with the reversible multimers, but much less among those obtained with the stable multimers, a high proportion of clones exhibited high functional and physical avidity and died upon incubation with soluble MHC-peptide complexes. Finally, we show that Fab' of an anti-CD8 Ab can be converted in reversible DTB streptavidin conjugates the same way. These DTB reagents efficiently and reversibly stained murine and human CTL without affecting their viability.
Collapse
Affiliation(s)
- Philippe Guillaume
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland
| | | | | | | | | |
Collapse
|
33
|
Rickert U, Welke J, Behrens D, Zavazava N. A divalent human leukocyte antigen-B7 fusion-protein up-regulates CD25 and CD69 in alloreactive CD8+ T cells bypassing CD28 costimulation. Transplantation 2006; 81:1337-44. [PMID: 16699464 DOI: 10.1097/01.tp.0000205770.07196.e6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND T cells recognize major histocompatibility complex (MHC) molecules and their cryptic antigenic peptides on antigen-presenting cells and are generally triggered to proliferate, and when sufficient, co-stimulation is available. In soluble form, monomeric MHC molecules can induce apoptosis, anergy, or decreases of the T-cell receptor (TCR). METHODS A dimeric fusion protein of the human leukocyte antigens (HLA)-B7 was molecularly engineered and expressed in a B-cell line to allow secretion. Alloreactive T cells were generated according to the standard protocol. RESULTS A dimer of approximately 160 kD was obtained, affinity purified, and used to study T-cell interaction. In immobilized form, this protein efficiently stimulated alloreactive T cells to proliferate and produce interleukin (IL)-2 and interferon (IFN)-gamma in a concentration-dependent manner, up-regulating CD25 and CD69 expression. In contrast, the soluble fusion protein induced T-cell apoptosis. CONCLUSIONS The dichotomy in T-cell regulation by a divalent MHC fusion protein warrants the use of MHC multimers as custom-designed immune-regulatory molecules both in transplantation and autoimmune disease.
Collapse
Affiliation(s)
- Uta Rickert
- Institute of Anatomy, University of Kiel, Germany
| | | | | | | |
Collapse
|
34
|
Angelov GS, Guillaume P, Cebecauer M, Bosshard G, Dojcinovic D, Baumgaertner P, Luescher IF. Soluble MHC-peptide complexes containing long rigid linkers abolish CTL-mediated cytotoxicity. THE JOURNAL OF IMMUNOLOGY 2006; 176:3356-65. [PMID: 16517703 DOI: 10.4049/jimmunol.176.6.3356] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Soluble MHC-peptide (pMHC) complexes induce intracellular calcium mobilization, diverse phosphorylation events, and death of CD8+ CTL, given that they are at least dimeric and co-engage CD8. By testing dimeric, tetrameric, and octameric pMHC complexes containing spacers of different lengths, we show that their ability to activate CTL decreases as the distance between their subunit MHC complexes increases. Remarkably, pMHC complexes containing long rigid polyproline spacers (> or =80 A) inhibit target cell killing by cloned S14 CTL in a dose- and valence-dependent manner. Long octameric pMHC complexes abolished target cell lysis, even very strong lysis, at nanomolar concentrations. By contrast, an altered peptide ligand antagonist was only weakly inhibitory and only at high concentrations. Long D(b)-gp33 complexes strongly and specifically inhibited the D(b)-restricted lymphocytic choriomeningitis virus CTL response in vitro and in vivo. We show that complications related to transfer of peptide from soluble to cell-associated MHC molecules can be circumvented by using covalent pMHC complexes. Long pMHC complexes efficiently inhibited CTL target cell conjugate formation by interfering with TCR-mediated activation of LFA-1. Such reagents provide a new and powerful means to inhibit Ag-specific CTL responses and hence should be useful to blunt autoimmune disorders such as diabetes type I.
Collapse
Affiliation(s)
- Georgi S Angelov
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| | | | | | | | | | | | | |
Collapse
|
35
|
Stone JD, Stern LJ. CD8 T cells, like CD4 T cells, are triggered by multivalent engagement of TCRs by MHC-peptide ligands but not by monovalent engagement. THE JOURNAL OF IMMUNOLOGY 2006; 176:1498-505. [PMID: 16424178 DOI: 10.4049/jimmunol.176.3.1498] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell activation is initiated by recognition of antigenic peptide presented in complex with MHC molecules on the surface of APCs. The mechanism by which this recognition occurs is still unclear, and many models exist in the literature. CD4 T cells have been shown to respond to soluble oligomers of activating class II MHC-peptide complexes, but not to soluble monomers. In determining the reactivity of CD8 T cells to soluble activating class I MHC-peptide complexes, a complicating phenomenon had been observed whereby peptide from soluble complexes was loaded onto cell surface MHCs on the T cells and re-presented to other T cells, clouding the true valency requirement for activation. This study uses soluble allogeneic class I MHC-peptide monomers and oligomers to stimulate murine CD8 T cells without the possible complication of peptide re-presentation. The results show that MHC class I monomers bind to, but do not activate, CD8 T cells whether the cells are in solution or adhered to a surface. Monomeric MHC class I binding can antagonize the stimulation triggered by soluble oligomers, a phenomenon also observed for CD4 T cells. Dimeric engagement is necessary and sufficient to stimulate downstream activation processes including TCR down-regulation, Zap70 phosphorylation, and CD25 and CD69 up-regulation, even in T cells that do not express the MHC coreceptor CD8. Thus, the valency dependence of the response of CD8 T cells to soluble MHC-peptide reagents is the same as previously observed for CD4 T cells.
Collapse
Affiliation(s)
- Jennifer D Stone
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
36
|
Cebecauer M, Guillaume P, Hozák P, Mark S, Everett H, Schneider P, Luescher IF. Soluble MHC-peptide complexes induce rapid death of CD8+ CTL. THE JOURNAL OF IMMUNOLOGY 2005; 174:6809-19. [PMID: 15905522 DOI: 10.4049/jimmunol.174.11.6809] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Soluble MHC-peptide (pMHC) complexes, commonly referred to as tetramers, are widely used to enumerate and to isolate Ag-specific CD8(+) CTL. It has been noted that such complexes, as well as microsphere- or cell-associated pMHC molecules compromise the functional integrity of CTL, e.g., by inducing apoptosis of CTL, which limits their usefulness for T cell sorting or cloning. By testing well-defined soluble pMHC complexes containing linkers of different length and valence, we find that complexes comprising short linkers (i.e., short pMHC-pMHC distances), but not those containing long linkers, induce rapid death of CTL. This cell death relies on CTL activation, the coreceptor CD8 and cytoskeleton integrity, but is not dependent on death receptors (i.e., Fas, TNFR1, and TRAILR2) or caspases. Within minutes of CTL exposure to pMHC complexes, reactive oxygen species emerged and mitochondrial membrane depolarized, which is reminiscent of caspase-independent T cell death. The morphological changes induced during this rapid CTL death are characteristic of programmed necrosis and not apoptosis. Thus, soluble pMHC complexes containing long linkers are recommended to prevent T cell death, whereas those containing short linkers can be used to eliminate Ag-specific CTL.
Collapse
MESH Headings
- Antioxidants/pharmacology
- Apoptosis/drug effects
- Apoptosis/immunology
- Cells, Cultured
- Clone Cells
- Cyclosporine/pharmacology
- Cytotoxicity, Immunologic/drug effects
- Cytotoxicity, Immunologic/immunology
- Dimerization
- Dose-Response Relationship, Immunologic
- Growth Inhibitors/physiology
- H-2 Antigens/physiology
- Kinetics
- Membrane Potentials/physiology
- Mitochondria/metabolism
- Mitochondria/physiology
- Necrosis
- Oligopeptides/physiology
- Reactive Oxygen Species/metabolism
- Resting Phase, Cell Cycle/drug effects
- Resting Phase, Cell Cycle/immunology
- Solubility
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- beta-Alanine/analogs & derivatives
- beta-Alanine/pharmacology
Collapse
Affiliation(s)
- Marek Cebecauer
- Ludwig Institute for Cancer Research, Lausanne Branch, Epalinges, Switzerland
| | | | | | | | | | | | | |
Collapse
|
37
|
Hudrisier D, Riond J, Garidou L, Duthoit C, Joly E. T cell activation correlates with an increasedproportion of antigen among the materials acquiredfrom target cells. Eur J Immunol 2005; 35:2284-94. [PMID: 16021601 DOI: 10.1002/eji.200526266] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have investigated the density of peptides required to elicit different biological responses in cytotoxic T lymphocytes (CTL), including trogocytosis (i.e., the phenomenon whereby the lymphocytes actively capture fragments of plasma membrane from those cells with which they establish an immune synapse). We have used two separate mouse models of CTL recognising defined peptides presented by MHC class I molecules. In both systems, triggering of cytotoxicity and capture of membrane components reached saturation with low densities of ligand. On the other hand, down-modulation of cell-surface levels of TCR, induction of IFN-gamma production and detection of peptide captured required much higher ligand densities. Interestingly, fratricide (i.e., killing between CTL sharing the same specificity), a mechanism proposed to account for CTL exhaustion, was detected only at antigen concentrations still well above that second threshold leading to full blown activation. Taken together, our results show that the different thresholds that govern the elicitation of different CTL functions correlate with different proportions of antigen among the target cell components being captured via trogocytosis.
Collapse
MESH Headings
- Animals
- Antigens/biosynthesis
- Biotin/metabolism
- Cell Line, Tumor
- Cells, Cultured
- Cytokines/metabolism
- Histocompatibility Antigens/immunology
- Interferon-gamma/biosynthesis
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Peptide Fragments/immunology
- Plasma Cells/immunology
- Plasma Cells/metabolism
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Denis Hudrisier
- CPTP, INSERM U563, Institut Claude de Préval, Toulouse, France.
| | | | | | | | | |
Collapse
|
38
|
Wooldridge L, van den Berg HA, Glick M, Gostick E, Laugel B, Hutchinson SL, Milicic A, Brenchley JM, Douek DC, Price DA, Sewell AK. Interaction between the CD8 coreceptor and major histocompatibility complex class I stabilizes T cell receptor-antigen complexes at the cell surface. J Biol Chem 2005; 280:27491-501. [PMID: 15837791 PMCID: PMC2441837 DOI: 10.1074/jbc.m500555200] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The off-rate (k(off)) of the T cell receptor (TCR)/peptide-major histocompatibility complex class I (pMHCI) interaction, and hence its half-life, is the principal kinetic feature that determines the biological outcome of TCR ligation. However, it is unclear whether the CD8 coreceptor, which binds pMHCI at a distinct site, influences this parameter. Although biophysical studies with soluble proteins show that TCR and CD8 do not bind cooperatively to pMHCI, accumulating evidence suggests that TCR associates with CD8 on the T cell surface. Here, we titrated and quantified the contribution of CD8 to TCR/pMHCI dissociation in membrane-constrained interactions using a panel of engineered pMHCI mutants that retain faithful TCR interactions but exhibit a spectrum of affinities for CD8 of >1,000-fold. Data modeling generates a "stabilization factor" that preferentially increases the predicted TCR triggering rate for low affinity pMHCI ligands, thereby suggesting an important role for CD8 in the phenomenon of T cell cross-reactivity.
Collapse
MESH Headings
- Antigens/chemistry
- Biophysics/methods
- Biotinylation
- CD8 Antigens/biosynthesis
- CD8 Antigens/chemistry
- Cell Membrane/metabolism
- Dose-Response Relationship, Drug
- Epitopes/chemistry
- Flow Cytometry
- Genes, MHC Class I/genetics
- Genetic Engineering
- HIV-1/metabolism
- Herpesvirus 4, Human/metabolism
- Humans
- Kinetics
- Ligands
- Models, Chemical
- Mutation
- Protein Binding
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Time Factors
Collapse
Affiliation(s)
- Linda Wooldridge
- T Cell Modulation Group, Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, United Kingdom
| | - Hugo A. van den Berg
- Institute of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7NF, United Kingdom
| | - Meir Glick
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts 02139
| | - Emma Gostick
- T Cell Modulation Group, Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, United Kingdom
| | - Bruno Laugel
- T Cell Modulation Group, Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, United Kingdom
| | - Sarah L. Hutchinson
- T Cell Modulation Group, Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, United Kingdom
| | - Anita Milicic
- T Cell Modulation Group, Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, United Kingdom
| | - Jason M. Brenchley
- Human Immunology Section, Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - David A. Price
- Human Immunology Section, Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Andrew K. Sewell
- T Cell Modulation Group, Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, United Kingdom
| |
Collapse
|
39
|
Kerry SE, Maile R, Collins EJ, Frelinger JA. Memory CD8 T cells require CD8 coreceptor engagement for calcium mobilization and proliferation, but not cytokine production. Immunology 2005; 114:44-52. [PMID: 15606794 PMCID: PMC1782059 DOI: 10.1111/j.1365-2567.2004.02070.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Memory T-cell responses are faster and more robust than those of their naive counterparts. The mechanisms by which memory T cells respond better to subsequent antigenic exposure remain unresolved. A portion of the more rapid response is undoubtedly the result of the increased frequency of antigen-specific cells. In addition, there are also differences in the cells themselves with respect to their requirements for costimulation and the apparent avidity of the T cells. We used major histocompatibility complex (MHC) class I tetramers to stimulate T cells to focus on the interaction of T-cell receptor (TCR)/MHC and CD8 in the absence of other molecules that are present on cell surfaces and so contribute to the activation of T cells by undefined mechanisms. Mutated MHC class I tetramers that are unable to engage CD8 were used to investigate the role of CD8 engagement in memory cell activation. Either wild-type tetramers or tetramers carrying the mutation were used to stimulate both memory and naive TCR transgenic T cells in vitro. Surprisingly, like naive cells, memory CD8(+) T cells required CD8 engagement for calcium mobilization and optimum proliferation. In contrast, the requirements for cytokine production differed. Unlike naive cells, memory cells were able to produce cytokine in the absence of CD8 engagement. This suggests both a CD8-dependent pathway for early events and a CD8-independent pathway for cytokine production in memory cells.
Collapse
Affiliation(s)
- Samantha E Kerry
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | | | | | | |
Collapse
|
40
|
Betts MR, Price DA, Brenchley JM, Loré K, Guenaga FJ, Smed-Sorensen A, Ambrozak DR, Migueles SA, Connors M, Roederer M, Douek DC, Koup RA. The functional profile of primary human antiviral CD8+ T cell effector activity is dictated by cognate peptide concentration. THE JOURNAL OF IMMUNOLOGY 2004; 172:6407-17. [PMID: 15128832 DOI: 10.4049/jimmunol.172.10.6407] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Antiviral CD8(+) T cells can elaborate at least two effector functions, cytokine production and cytotoxicity. Which effector function is elaborated can determine whether the CD8(+) T cell response is primarily inflammatory (cytokine producing) or antiviral (cytotoxic). In this study we demonstrate that cytotoxicity can be triggered at peptide concentrations 10- to 100-fold less than those required for cytokine production in primary HIV- and CMV-specific human CD8(+) T cells. Cytolytic granule exocytosis occurs at peptide concentrations insufficient to cause substantial TCR down-regulation, providing a mechanism by which a CD8(+) T cell could engage and lyse multiple target cells. TCR sequence analysis of virus-specific cells shows that individual T cell clones can degranulate or degranulate and produce cytokine depending on the Ag concentration, indicating that response heterogeneity exists within individual CD8(+) T cell clonotypes. Thus, antiviral CD8(+) T cell effector function is determined primarily by Ag concentration and is not an inherent characteristic of a virus-specific CD8(+) T cell clonotype or the virus to which the response is generated. The inherent ability of viruses to induce high or low Ag states may be the primary determinant of the cytokine vs cytolytic nature of the virus-specific CD8(+) T cell response.
Collapse
Affiliation(s)
- Michael R Betts
- Immunology Laboratory, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kunstfeld R, Hirakawa S, Hong YK, Schacht V, Lange-Asschenfeldt B, Velasco P, Lin C, Fiebiger E, Wei X, Wu Y, Hicklin D, Bohlen P, Detmar M. Induction of cutaneous delayed-type hypersensitivity reactions in VEGF-A transgenic mice results in chronic skin inflammation associated with persistent lymphatic hyperplasia. Blood 2004; 104:1048-57. [PMID: 15100155 DOI: 10.1182/blood-2003-08-2964] [Citation(s) in RCA: 246] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
Vascular endothelial growth factor-A (VEGF-A) expression is up-regulated in several inflammatory diseases including psoriasis, delayed-type hypersensitivity (DTH) reactions, and rheumatoid arthritis. To directly characterize the biologic function of VEGF-A in inflammation, we evaluated experimental DTH reactions induced in the ear skin of transgenic mice that overexpress VEGF-A specifically in the epidermis. VEGF-A transgenic mice underwent a significantly increased inflammatory response that persisted for more than 1 month, whereas inflammation returned to baseline levels within 7 days in wild-type mice. Inflammatory lesions in VEGF-A transgenic mice closely resembled human psoriasis and were characterized by epidermal hyperplasia, impaired epidermal differentiation, and accumulation of dermal CD4+ T-lymphocytes and epidermal CD8+ lymphocytes. Surprisingly, VEGF-A also promoted lymphatic vessel proliferation and enlargement, which might contribute to the increased inflammatory response, as lymphatic vessel enlargement was also detected in human psoriatic skin lesions. Combined systemic treatment with blocking antibodies against VEGF receptor-1 (VEGFR-1) and VEGFR-2 potently inhibited inflammation and also decreased lymphatic vessel size. Together, these findings reveal a central role of VEGF-A in promoting lymphatic enlargement, vascular hyperpermeability, and leukocyte recruitment, thereby leading to persistent chronic inflammation. They also indicate that inhibition of VEGF-A bioactivity might be a new approach to anti-inflammatory therapy.
Collapse
Affiliation(s)
- Rainer Kunstfeld
- Cutaneous Biology Research Center, Massachusetts General Hospital, Bldg 149, 13th St, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Starr TK, Daniels MA, Lucido MM, Jameson SC, Hogquist KA. Thymocyte sensitivity and supramolecular activation cluster formation are developmentally regulated: a partial role for sialylation. THE JOURNAL OF IMMUNOLOGY 2004; 171:4512-20. [PMID: 14568924 DOI: 10.4049/jimmunol.171.9.4512] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
TCR reactivity is tuned during thymic development. Immature thymocytes respond to low-affinity self-ligands resulting in positive selection. Following differentiation, T cells no longer respond to low-affinity ligands, but respond well to high-affinity (foreign) ligands. We show in this study that this response includes integrin activation, supramolecular activation cluster formation, Ca(2+) flux, and CD69 expression. Because glycosylation patterns are known to change during T cell development, we tested whether alterations in sialylation influence CD8 T cell sensitivity to low affinity TCR ligands. Using neuraminidase treatment or genetic deficiency in the ST3Gal-I sialyltransferase, we show that desialylation of mature CD8 T cells enhances their sensitivity to low-affinity ligands, although these treatments do not completely recapitulate the dynamic range of immature T cells. These studies identify sialylation as one of the factors that regulate CD8 T cell tuning during development.
Collapse
Affiliation(s)
- Timothy K Starr
- Center for Immunology, Laboratory of Medicine and Pathology, University of Minnesota, Minneapolis MN 55455, USA
| | | | | | | | | |
Collapse
|
43
|
Mintern JD, Maurice MM, Ploegh HL, Schott E. Thymic Selection and Peripheral Activation of CD8 T Cells by the Same Class I MHC/Peptide Complex. THE JOURNAL OF IMMUNOLOGY 2003; 172:699-708. [PMID: 14688383 DOI: 10.4049/jimmunol.172.1.699] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thymic selection is controlled by the interaction between TCR and MHC/peptide. Strength and quality of the signal determine whether thymocytes are selected or deleted. The factors that contribute to this signal remain poorly defined. Here we show that fetal thymic organ cultures (FTOCs) derived from OT-I transgenic mice (the OT-I TCR is restricted by K(b)-SIINFEKL) on a K(b)D(b-/-) background support positive selection, but only when provided with soluble H-2K(b)-SIINFEKL complexes. Selection of CD8 T cells is independent of the valency of the ligand or its capability to coengage CD8 molecules. Both CD8alphaalpha and CD8alphabeta T cells are selected by H-2K(b)-SIINFEKL, but only CD8alphabeta cells are capable of releasing IFN-gamma in response to the same ligand. The alpha(4)beta(7) integrin is up-regulated on postselection thymocytes from FTOCs. After adoptive transfer, FTOC-derived OT-I CD8 T cells divide in response to the agonist peptide SIINFEKL. These results establish that CD8 T cells responsive to their nominal peptide-Ag can be generated in FTOC supplemented with soluble MHC class I molecules equipped with the same peptide.
Collapse
Affiliation(s)
- Justine D Mintern
- Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115
| | | | | | | |
Collapse
|
44
|
Randriamampita C, Delon J, Trautmann A. Response to Davis and van der Merwe: No model fully explains how TCR signaling begins. Trends Immunol 2003. [DOI: 10.1016/j.it.2003.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Abstract
Natural killer cells gauge the absence of self class I MHC on susceptible target cells by means of inhibitory receptors such as members of the Ly49 family. To initiate killing by natural killer cells, a lack of inhibitory signals must be accompanied by the presence of activating ligands on the target cell. Although natural killer cell–mediated rejection of class I MHC–deficient bone marrow (BM) grafts is a matter of record, little is known about the targeting in vivo of specific cellular subsets by natural killer cells. We show here that development of class I MHC–negative thymocytes is delayed as a result of natural killer cell toxicity after grafting of a class I MHC–positive host with class I MHC–negative BM. Double positive thymocytes that persist in the presence of natural killer cells display an unusual T cell receptor–deficient phenotype, yet nevertheless give rise to single positive thymocytes and yield mature class I MHC–deficient lymphocytes that accumulate in the class I MHC–positive host. The resulting class I MHC–deficient CD8 T cells are functional and upon activation remain susceptible to natural killer cell toxicity in vivo. Reconstitution of class I MHC–deficient BM precursors with H2-Kb by retroviral transduction fully restores normal thymic development.
Collapse
Affiliation(s)
- Eckart Schott
- Department of Pathology, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | |
Collapse
|
46
|
Kerry SE, Buslepp J, Cramer LA, Maile R, Hensley LL, Nielsen AI, Kavathas P, Vilen BJ, Collins EJ, Frelinger JA. Interplay between TCR affinity and necessity of coreceptor ligation: high-affinity peptide-MHC/TCR interaction overcomes lack of CD8 engagement. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:4493-503. [PMID: 14568922 PMCID: PMC3755740 DOI: 10.4049/jimmunol.171.9.4493] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8 engagement is believed to be a critical event in the activation of naive T cells. In this communication, we address the effects of peptide-MHC (pMHC)/TCR affinity on the necessity of CD8 engagement in T cell activation of primary naive cells. Using two peptides with different measured avidities for the same pMHC-TCR complex, we compared biochemical affinity of pMHC/TCR and the cell surface binding avidity of pMHC/TCR with and without CD8 engagement. We compared early signaling events and later functional activity of naive T cells in the same manner. Although early signaling events are altered, we find that high-affinity pMHC/TCR interactions can overcome the need for CD8 engagement for proliferation and CTL function. An integrated signal over time allows T cell activation with a high-affinity ligand in the absence of CD8 engagement.
Collapse
MESH Headings
- Animals
- Antigens, Viral/immunology
- Aspartic Acid/genetics
- CD8 Antigens/immunology
- CD8 Antigens/metabolism
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- COS Cells
- Chlorocebus aethiops
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- Glycoproteins/immunology
- H-2 Antigens/genetics
- H-2 Antigens/immunology
- H-2 Antigens/metabolism
- Histocompatibility Antigen H-2D
- Ligands
- Lymphocyte Activation/genetics
- Lymphocytic choriomeningitis virus/immunology
- Lysine/genetics
- Membrane Microdomains/genetics
- Membrane Microdomains/immunology
- Membrane Microdomains/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutagenesis, Site-Directed
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding/genetics
- Protein Binding/immunology
- Protein Structure, Tertiary/genetics
- Receptor Cross-Talk/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Viral Proteins/immunology
Collapse
Affiliation(s)
- Samantha E. Kerry
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| | - Jennifer Buslepp
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| | - Lorraine A. Cramer
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| | - Robert Maile
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| | - Lucinda L. Hensley
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| | - Alma I. Nielsen
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| | - Paula Kavathas
- Department of Laboratory Medicine, Yale University, New Haven, CT 06520
| | - Barbara J. Vilen
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| | - Edward J. Collins
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Jeffrey A. Frelinger
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
47
|
Abstract
HLA-G regulates immune responses as it binds different receptors expressed on natural killer (NK) cells, T cells and myeloid cells. HLA-G1 can inhibit NK- and T-cell-mediated lysis of target cells by its interaction with the inhibitory receptors ILT2 and ILT4. Engaging KIR2DL4 triggers different reactions depending on the activation state of the effector cells. The indirect recognition of HLA-G as peptide presented by HLA-E and recognized by the CD94/NKG2 receptor family might further power the battle between the immune system and tumor cells. Secreted HLA-G5 can also bind CD8 and induces Fas/Fas ligand-mediated apoptosis in activated CD8+ lymphocytes.
Collapse
Affiliation(s)
- Valeska Hofmeister
- Department Biologie II der Ludwig-Maximilians-Universität München, Anthropologie und Humangenetik, Richard-Wagner Str. 10/I, D-80333 Munich, Germany
| | | |
Collapse
|
48
|
Affiliation(s)
- Alain Trautmann
- Institut COCHIN, INSERM-CNRS, 22 rue Méchain, 75014 Paris, France.
| | | |
Collapse
|
49
|
Doucey MA, Legler DF, Faroudi M, Boucheron N, Baumgaertner P, Naeher D, Cebecauer M, Hudrisier D, Rüegg C, Palmer E, Valitutti S, Bron C, Luescher IF. The beta1 and beta3 integrins promote T cell receptor-mediated cytotoxic T lymphocyte activation. J Biol Chem 2003; 278:26983-91. [PMID: 12690105 DOI: 10.1074/jbc.m302709200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recognition by CD8+ cytotoxic T lymphocytes (CTLs) of antigenic peptides bound to major histocompatibility class (MHC) I molecules on target cells leads to sustained calcium mobilization and CTL degranulation resulting in perforin-dependent killing. We report that beta1 and beta3 integrin-mediated adhesion to extracellular matrix proteins on target cells and/or surfaces dramatically promotes CTL degranulation. CTLs, when adhered to fibronectin but not CTL in suspension, efficiently degranulate upon exposure to soluble MHC.peptide complexes, even monomeric ones. This adhesion induces recruitment and activation of the focal adhesion kinase Pyk2, the cytoskeleton linker paxillin, and the Src kinases Lck and Fyn in the contact site. The T cell receptor, by association with Pyk2, becomes part of this adhesion-induced activation cluster, which greatly increases its signaling.
Collapse
Affiliation(s)
- Marie-Agnès Doucey
- Institute for Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
After a brief overview of the themes and variations that occur in the family of receptors containing immunoreceptor tyrosine-based activation motifs (ITAMs), and of recent structural data on the ligand-binding subunits of these receptors, we use these data to revisit how information on the state and quality of occupancy of the binding site of the T cell antigen receptor (TCR) is conveyed to the proximal components of the TCR transduction cassette.
Collapse
Affiliation(s)
- Bernard Malissen
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, Marseille, France.
| |
Collapse
|