1
|
Liu J, Yang Y, Yang Q, Lin X, Liu Y, Li Z, Swevers L. Successful oral RNA interference efficiency in the silkworm Bombyx mori through nanoparticle-shielded dsRNA delivery. JOURNAL OF INSECT PHYSIOLOGY 2025; 161:104749. [PMID: 39814333 DOI: 10.1016/j.jinsphys.2025.104749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/18/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Double-stranded RNA (dsRNA) mediated RNA interference (RNAi) is a tool in functional gene study and pest control. However, RNAi efficiency in Lepidoptera is low compared to the RNAi sensitive Coleoptera. Previous studies on RNAi in the silkworm Bombyx mori, the lepidopteran model insect, were performed by injection only. Successful oral RNAi in the silkworm has never been reported yet. This study aims to develop a successful oral dsRNA delivery method to the silkworm larvae. Chitosan is an economical and biodegradable polymer. Chitosan/dsRNA nanoparticles were prepared by self-assembly. These nanoparticles were found to be stable when incubated in the midgut juice of the silkworm larvae, whereas naked dsRNA underwent complete degradation. Chitosan/dsRNA nanoparticles targeting various immune genes in oral administration to the silkworm larvae mediated significant knockdown of gene transcript. This silencing effect resulted in smaller larvae and cocoons when the silkworms were fed with Chitosan/dsRNA nanoparticles targeting BmToll9-2 gene, indicating that immune genes might be used as targets in pest control. Optimization of the chitosan/dsRNA nanoparticles maintained an RNAi effect from 3-5 days. The efficient RNAi was due to the persistence of nanoparticle-shielded dsRNA in the larvae. The above findings contribute to the first oral RNAi report in the silkworm, which facilitates the application of RNAi in insects and oral RNAi in pest control.
Collapse
Affiliation(s)
- Jisheng Liu
- School of Life Sciences, Guangzhou University, Guangzhou, China.
| | - Yang Yang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Qiangjun Yang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xianfeng Lin
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yuming Liu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Ziyang Li
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Luc Swevers
- Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Athens, Greece
| |
Collapse
|
2
|
Afrin W, Yamada N, Furuya S, Yamamoto K. Characterization of glutathione-specific gamma glutamyl cyclotransferase (ChaC) in Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22027. [PMID: 37283485 DOI: 10.1002/arch.22027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
Glutathione (GSH) contributes to redox maintenance and detoxification of various xenobiotic and endogenous substances. γ-glutamyl cyclotransferase (ChaC) is involved in GSH degradation. However, the molecular mechanism underlying GSH degradation in silkworms (Bombyx mori) remains unknown. Silkworms are lepidopteran insects that are considered to be an agricultural pest model. We aimed to examine the metabolic mechanism underlying GSH degradation mediated by B. mori ChaC and successfully identified a novel ChaC gene in silkworms (herein, bmChaC). The amino acid sequence and phylogenetic tree revealed that bmChaC was closely related to mammalian ChaC2. We overexpressed recombinant bmChaC in Escherichia coli, and the purified bmChaC showed specific activity toward GSH. Additionally, we examined the degradation of GSH to 5-oxoproline and cysteinyl glycine via liquid chromatography-tandem mass spectrometry. Quantitative real-time polymerase chain reaction revealed that bmChaC mRNA expression was observed in various tissues. Our results suggest that bmChaC participates in tissue protection via GSH homeostasis. This study provides new insights into the activities of ChaC and the underlying molecular mechanisms that can aid the development of insecticides to control agricultural pests.
Collapse
Affiliation(s)
- Wazifa Afrin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Naotaka Yamada
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Shigeki Furuya
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kohji Yamamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Afrin W, Furuya S, Yamamoto K. Characterization of a glutamate-cysteine ligase in Bombyx mori. Mol Biol Rep 2023; 50:2623-2631. [PMID: 36637620 DOI: 10.1007/s11033-022-08191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/07/2022] [Indexed: 01/14/2023]
Abstract
Glutamate-cysteine ligase (GCL) is a crucial enzyme involved in the synthesis of glutathione (GSH). Despite various studies on glutathione transferase, and its essential role in detoxification and resistance to oxidative stress, GSH synthesis has not been described in Bombyx mori (silkworms) to date. Silkworms form part of the lepidopterans that are considered as a model of agricultural pests. This study aimed to understand the GSH synthesis by GCL in silkworms, which may help in developing insecticides to tackle agricultural pests. Based on the amino acid sequence and phylogenetic tree, the B. mori GCL belongs to group 2, and is designated bmGCL. Recombinant bmGCL was overexpressed and purified to ensure homogeneity. Biochemical studies revealed that bmGCL uses ATP and Mg2+ to ligate glutamate and cysteine. High expression levels of bmgcl mRNA and GSH were observed in the silkworm fat body after exposure to insecticides and UV-B irradiation. Moreover, we found an increase in bmgcl mRNA and GSH content during pupation in the silkworm fat body. In this study, we characterized the B. mori GCL and analyzed its biochemical properties. These observations indicate that bmGCL might play an important role in the resistance to oxidative stress in the silkworms.
Collapse
Affiliation(s)
- Wazifa Afrin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shigeki Furuya
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kohji Yamamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
4
|
Yamamoto K, Yamada N, Endo S, Kurogi K, Sakakibara Y, Suiko M. Novel silkworm (Bombyx mori) sulfotransferase swSULT ST3 is involved in metabolism of polyphenols from mulberry leaves. PLoS One 2022; 17:e0270804. [PMID: 35925958 PMCID: PMC9352109 DOI: 10.1371/journal.pone.0270804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022] Open
Abstract
Polyphenols in plants are important for defense responses against microorganisms, insect herbivory, and control of feeding. Owing to their antioxidant, anti-cancer, and anti-inflammatory activities, their importance in human nutrition has been acknowledged. However, metabolism of polyphenols derived from mulberry leaves in silkworms (Bombyx mori) remains unclear. Sulfotransferases (SULT) are involved in the metabolism of xenobiotics and endogenous compounds. The purpose of this study is to investigate the metabolic mechanism of polyphenols mediated by B. mori SULT. Here, we identified a novel SULT in silkworms (herein, swSULT ST3). Recombinant swSULT ST3 overexpressed in Escherichia coli effectively sulfated polyphenols present in mulberry leaves. swSULT ST3 showed high specific activity toward genistein among the polyphenols. Genistein-7-sulfate was produced by the activity of swSULT ST3. Higher expression of swSULT ST3 mRNA was observed in the midgut and fat body than in the hemocytes, testis, ovary, and silk gland. Polyphenols inhibited the aldo-keto reductase detoxification of reactive aldehydes from mulberry leaves, and the most noticeable inhibition was observed with genistein. Our results suggest that swSULT ST3 plays a role in the detoxification of polyphenols, including genistein, and contributes to the effects of aldo-keto reductase in the midgut of silkworms. This study provides new insight into the functions of SULTs and the molecular mechanism responsible for host plant selection in lepidopteran insects.
Collapse
Affiliation(s)
- Kohji Yamamoto
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, Fukuoka, Japan
- * E-mail:
| | - Naotaka Yamada
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, Fukuoka, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Katsuhisa Kurogi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Yoichi Sakakibara
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masahito Suiko
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
5
|
Kawamoto M, Kiuchi T, Katsuma S. SilkBase: an integrated transcriptomic and genomic database for Bombyx mori and related species. Database (Oxford) 2022; 2022:6603636. [PMID: 35670730 PMCID: PMC9216573 DOI: 10.1093/database/baac040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/21/2022] [Accepted: 05/21/2022] [Indexed: 11/13/2022]
Abstract
We introduce SilkBase as an integrated database for transcriptomic and genomic resources of the domesticated silkworm Bombyx mori and related species. SilkBase is the oldest B. mori database that was originally established as the expressed sequence tag database since 1999. Here, we upgraded the database by including the datasets of the newly assembled B. mori complete genome sequence, predicted gene models, bacterial artificial chromosome (BAC)-end and fosmid-end sequences, complementary DNA (cDNA) reads from 69 libraries, RNA-seq data from 10 libraries, PIWI-interacting RNAs (piRNAs) from 13 libraries, ChIP-seq data of 9 histone modifications and HP1 proteins and transcriptome and/or genome data of four B. mori-related species, i.e. Bombyx mandarina, Trilocha varians, Ernolatia moorei and Samia ricini. Our new integrated genome browser easily provides a snapshot of tissue- and stage-specific gene expression, alternative splicing, production of piRNAs and histone modifications at the gene locus of interest. Moreover, SilkBase is useful for performing comparative studies among five closely related lepidopteran insects. Database URL: https://silkbase.ab.a.u-tokyo.ac.jp
Collapse
Affiliation(s)
- Munetaka Kawamoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,Infinity Matrix, Shiohama, Koto-ku, Tokyo 135-0043, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
6
|
Bombyx mori-derived aldo-keto reductase AKR2E8 detoxifies aldehydes present in mulberry leaves. Chem Biol Interact 2022; 351:109717. [PMID: 34737151 DOI: 10.1016/j.cbi.2021.109717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/14/2021] [Accepted: 10/20/2021] [Indexed: 11/24/2022]
Abstract
Lepidopterans are agricultural pests. Since the silkworm is a model for lepidopterans, analysis of the enzymes produced by silkworms is of great interest for developing methods of pest control. The aldo-keto reductase (AKR) superfamily catalyzes the reduction of aldehydes by converting a carbonyl group to an alcohol group. Here, we characterized a new AKR present in the silkworm Bombyx mori, which has been designated as AKR2E8. Amino acid sequence and phylogenetic analyses showed that AKR2E8 is similar to human AKR1B1 and AKR1B10. Three amino acid residues in the active site were identical among AKR2E8, AKR1B1, and AKR1B10. Recombinant AKR2E8 overexpressed in Escherichia coli used nicotinamide adenine dinucleotide phosphate as a coenzyme to reduce the aldehydes present in mulberry (Morus alba) leaves. AKR2E8 was found to reduce benzaldehyde, hexanal, heptanal, nonanal, trans-2-nonenal, and citral. No nicotinamide adenine dinucleotide-dependent activity was detected. Akr2e8 mRNA was detected in the testes, ovaries, and fat body; the highest expression was found in the midgut. The substrate specificity and highest observed expression of AKR2E8 in the midgut suggests that AKR2E8 may play a major role in aldehyde detoxification in silkworms. The findings of this study may assist in the development of pest control methods for controlling the population of lepidopterans, such as silkworms, that damage crops.
Collapse
|
7
|
Alam K, Raviraj VS, Chowdhury T, Bhuimali A, Ghosh P, Saha S. Application of biotechnology in sericulture: Progress, scope and prospect. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00355-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Yamamoto K, Mohri S, Furuya S. D-3-phosphoglycerate dehydrogenase from the silkworm Bombyx mori: Identification, functional characterization, and expression. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21751. [PMID: 33058282 DOI: 10.1002/arch.21751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
D-3-phosphoglycerate dehydrogenase (PHGDH) is a key enzyme involved in the synthesis of l-serine. Despite the high serine content in silk proteins and the crucial role of PHGDH in serine biosynthesis, PHGDH has not been described in silkworms to date. Here, we identified PHGDH in the silkworm Bombyx mori and evaluated its biochemical properties. On the basis of the amino acid sequence and phylogenetic tree, this PHGDH has been categorized as a new type and designated as bmPHGDH. The recombinant bmPHGDH was overexpressed and purified to homogeneity. Kinetic studies revealed that PHGDH uses NADH as a coenzyme to reduce phosphohydroxypyruvate. High expression levels of bmphgdh messenger RNA (mRNA) were observed in the middle part of the silk gland and midgut in a standard strain of silkworm. Moreover, a sericin-deficient silkworm strain displayed reduced expression of bmphgdh mRNA. These findings indicate that bmPHGDH might play a crucial role in the provision of l-serine in the larva of B. mori.
Collapse
Affiliation(s)
- Kohji Yamamoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Shinya Mohri
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Shigeki Furuya
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Yamamoto K, Yamaguchi M, Endo S. Functional characterization of an aldose reductase (bmALD1) obtained from the silkworm Bombyx mori. INSECT MOLECULAR BIOLOGY 2020; 29:490-497. [PMID: 32681683 DOI: 10.1111/imb.12658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/22/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
We describe a new member of the aldo-keto reductase (AKR) superfamily in the silkworm Bombyx mori. On the basis of its amino acid sequence and phylogenetic tree, this AKR belongs to the AKR1B family and has been designated as bmALD1. In the current study, recombinant bmALD1 was overexpressed, purified to homogeneity and kinetically characterized. We discovered that bmALD1 uses NADPH as a coenzyme to reduce carbonyl compounds such as DL-glyceraldehyde, glucose and 2-nonenal. No NADH-dependent activity was detected. To the best of our knowledge, bmALD1 is only the third AKR characterized in silkworm which, given its substrate specificity, could play a major role in glucose metabolism and antioxidant reactions. Our data provide an increased understanding of insect AKR function.
Collapse
Affiliation(s)
- K Yamamoto
- Faculty of Agriculture, Kyushu University Graduate School, Fukuoka, Japan
| | - M Yamaguchi
- Faculty of Agriculture, Kyushu University Graduate School, Fukuoka, Japan
| | - S Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
10
|
Talla V, Pierce AA, Adams KL, de Man TJB, Nallu S, Villablanca FX, Kronforst MR, de Roode JC. Genomic evidence for gene flow between monarchs with divergent migratory phenotypes and flight performance. Mol Ecol 2020; 29:2567-2582. [PMID: 32542770 DOI: 10.1111/mec.15508] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 06/05/2020] [Indexed: 12/24/2022]
Abstract
Monarch butterflies are known for their spectacular annual migration in eastern North America, with millions of monarchs flying up to 4,500 km to overwintering sites in central Mexico. Monarchs also live west of the Rocky Mountains, where they travel shorter distances to overwinter along the Pacific Coast. It is often assumed that eastern and western monarchs form distinct evolutionary units, but genomic studies to support this notion are lacking. We used a tethered flight mill to show that migratory eastern monarchs have greater flight performance than western monarchs, consistent with their greater migratory distances. However, analysing more than 20 million SNPs in 43 monarch genomes, we found no evidence for genomic differentiation between eastern and western monarchs. Genomic analysis also showed identical and low levels of genetic diversity, and demographic analyses indicated similar effective population sizes and ongoing gene flow between eastern and western monarchs. Gene expression analysis of a subset of candidate genes during active flight revealed differential gene expression related to nonmuscular motor activity. Our results demonstrate that eastern and western monarchs maintain migratory differences despite ongoing gene flow, and suggest that migratory differences between eastern and western monarchs are not driven by select major-effects alleles. Instead, variation in migratory distance and destination may be driven by environmentally induced differential gene expression or by many alleles of small effect.
Collapse
Affiliation(s)
- Venkat Talla
- Department of Biology, Emory University, Atlanta, GA, USA
| | | | - Kandis L Adams
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Tom J B de Man
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Sumitha Nallu
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Francis X Villablanca
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Marcus R Kronforst
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
11
|
Bairam AF, Kermasha ZW, Liu MC, Kurogi K, Yamamoto K. Functional analysis of novel sulfotransferases in the silkworm Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21671. [PMID: 32227386 DOI: 10.1002/arch.21671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Sulfoconjugation plays a vital role in the detoxification of xenobiotics and in the metabolism of endogenous compounds. In this study, we aimed to identify new members of the sulfotransferase (SULT) superfamily in the silkworm Bombyx mori. Based on amino acid sequence and phylogenetic analyses, two new enzymes, swSULT ST1 and swSULT ST2, were identified that appear to belong to a distinct group of SULTs including several other insect SULTs. We expressed, purified, and characterized recombinant SULTs. While swSULT ST1 sulfated xanthurenic acid and pentachlorophenol, swSULT ST2 exclusively utilized xanthurenic acid as a substrate. Based on these results, and those concerning the tissue distribution and substrate specificity toward pentachlorophenol analyses, we hypothesize that swSULT ST1 plays a role in the detoxification of xenobiotics, including insecticides, in the silkworm midgut and in the induction of gametogenesis in silkworm ovary and testis. Collectively, the data obtained herein contribute to a better understanding of SULT enzymatic functions in insects.
Collapse
Affiliation(s)
- Ahsan F Bairam
- Department of Pharmacology, College of Pharmacy, University of Kufa, Najaf, Iraq
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio, USA
| | - Zainab W Kermasha
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio, USA
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio, USA
| | - Katsuhisa Kurogi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Kohji Yamamoto
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, Fukuoka, Japan
| |
Collapse
|
12
|
Zhu Z, Guan Z, Liu G, Wang Y, Zhang Z. SGID: a comprehensive and interactive database of the silkworm. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5677404. [PMID: 31836898 PMCID: PMC6911161 DOI: 10.1093/database/baz134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/27/2019] [Accepted: 11/01/2019] [Indexed: 11/12/2022]
Abstract
Although the domestic silkworm (Bombyx mori) is an important model and economic animal, there is a lack of comprehensive database for this organism. Here, we developed the silkworm genome informatics database (SGID). It aims to bring together all silkworm-related biological data and provide an interactive platform for gene inquiry and analysis. The function annotation in SGID is thorough and covers 98% of the silkworm genes. The annotation details include function description, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway, subcellular location, transmembrane topology, protein secondary/tertiary structure, homologous group and transcription factor. SGID provides genome-scale visualization of population genetics test results based on high-depth resequencing data of 158 silkworm samples. It also provides interactive analysis tools of transcriptomic and epigenomic data from 79 NCBI BioProjects. SGID will be extremely useful to silkworm research in the future.
Collapse
Affiliation(s)
- Zhenglin Zhu
- School of Life Sciences, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, China
| | - Zhufen Guan
- School of Life Sciences, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, China
| | - Gexin Liu
- School of Life Sciences, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, China
| | - Yawang Wang
- School of Life Sciences, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, China.,Khoury College of Computer Sciences, Northeastern University, 401 Terry Ave N, Seattle, WA, 98109, USA
| | - Ze Zhang
- School of Life Sciences, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, China
| |
Collapse
|
13
|
Liu G, Xuan N, Rajashekar B, Arnaud P, Offmann B, Picimbon JF. Comprehensive History of CSP Genes: Evolution, Phylogenetic Distribution and Functions. Genes (Basel) 2020; 11:genes11040413. [PMID: 32290210 PMCID: PMC7230875 DOI: 10.3390/genes11040413] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
In this review we present the developmental, histological, evolutionary and functional properties of insect chemosensory proteins (CSPs) in insect species. CSPs are small globular proteins folded like a prism and notoriously known for their complex and arguably obscure function(s), particularly in pheromone olfaction. Here, we focus on direct functional consequences on protein function depending on duplication, expression and RNA editing. The result of our analysis is important for understanding the significance of RNA-editing on functionality of CSP genes, particularly in the brain tissue.
Collapse
Affiliation(s)
- Guoxia Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.L.); (N.X.)
| | - Ning Xuan
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.L.); (N.X.)
| | - Balaji Rajashekar
- Institute of Computer Science, University of Tartu, Tartu 50090, Estonia;
| | - Philippe Arnaud
- Protein Engineering and Functionality Unit, University of Nantes, 44322 Nantes, France; (P.A.); (B.O.)
| | - Bernard Offmann
- Protein Engineering and Functionality Unit, University of Nantes, 44322 Nantes, France; (P.A.); (B.O.)
| | - Jean-François Picimbon
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.L.); (N.X.)
- School of Bioengineering, Qilu University of Technology, Jinan 250353, China
- Correspondence: ; Tel.: +86-531-89631190
| |
Collapse
|
14
|
Haque MR, Hirowatari A, Saruta F, Furuya S, Yamamoto K. Molecular survey of the phosphoserine phosphatase involved in L-serine synthesis by silkworms (Bombyx mori). INSECT MOLECULAR BIOLOGY 2020; 29:48-55. [PMID: 31294881 DOI: 10.1111/imb.12609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/16/2019] [Accepted: 07/04/2019] [Indexed: 06/09/2023]
Abstract
Phosphoserine phosphatase (PSP) catalyses the synthesis of l-serine via the phosphorylated pathway by facilitating the dephosphorylation of phosphoserine. A cDNA encoding PSP from the silkworm Bombyx mori (bmPSP) was isolated using reverse transcription-PCR and then sequenced. The resulting clone encoded 236 amino acids with a molecular weight of 26 150, exhibiting 14-60% sequence identity with other PSPs. The recombinant PSP was overexpressed in Escherichia coli and purified. Kinetic studies showed that bmPSP possessed activity toward l-phosphoserine, and Asp20, Asp22 and Asp204 in bmPSP were found to be critical for modulating bmPSP activity. Real-time PCR analysis provided evidence that the amount of bmpsp transcript was reduced in middle silk glands of a sericin-deficient silkworm strain. These findings revealed that bmPSP may play important roles in synthesizing one-carbon donors of l-serine, which is abundant in silk, as well as other cell metabolites in B. mori.
Collapse
Affiliation(s)
- M R Haque
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - A Hirowatari
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - F Saruta
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - S Furuya
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - K Yamamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Graduate School, Fukuoka, Japan
| |
Collapse
|
15
|
Hoang NV, Furtado A, Perlo V, Botha FC, Henry RJ. The Impact of cDNA Normalization on Long-Read Sequencing of a Complex Transcriptome. Front Genet 2019; 10:654. [PMID: 31396260 PMCID: PMC6664245 DOI: 10.3389/fgene.2019.00654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 06/20/2019] [Indexed: 11/13/2022] Open
Abstract
Normalization of cDNA is widely used to improve the coverage of rare transcripts in analysis of transcriptomes employing next-generation sequencing. Recently, long-read technology has been emerging as a powerful tool for sequencing and construction of transcriptomes, especially for complex genomes containing highly similar transcripts and transcript-spliced isoforms. Here, we analyzed the transcriptome of sugarcane, a highly polyploidy plant genome, by PacBio isoform sequencing (Iso-Seq) of two different cDNA library preparations, with and without a normalization step. The results demonstrated that, while the two libraries included many of the same transcripts, many longer transcripts were removed, and many new generally shorter transcripts were detected by normalization. For the same input cDNA and data yield, the normalized library recovered more total transcript isoforms and number of predicted gene families and orthologous groups, resulting in a higher representation for the sugarcane transcriptome, compared to the non-normalized library. The non-normalized library, on the other hand, included a wider transcript length range with more longer transcripts above ∼1.25 kb and more transcript isoforms per gene family and gene ontology terms per transcript. A large proportion of the unique transcripts comprising ∼52% of the normalized library were expressed at a lower level than the unique transcripts from the non-normalized library, across three tissue types tested including leaf, stalk, and root. About 83% of the total 5,348 predicted long noncoding transcripts was derived from the normalized library, of which ∼80% was derived from the lowly expressed fraction. Functional annotation of the unique transcripts suggested that each library enriched different functional transcript fractions. This demonstrated the complementation of the two approaches in obtaining a complete transcriptome of a complex genome at the sequencing depth used in this study.
Collapse
Affiliation(s)
- Nam V. Hoang
- College of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Virginie Perlo
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Frederik C. Botha
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
- Sugar Research Australia, Indooroopilly, QLD, Australia
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
16
|
Haque MR, Hirowatari A, Koyanagi A, Ichinose T, Abiru M, Mohri S, Furuya S, Yamamoto K. Molecular characterization and expression analysis of a phosphoserine aminotransferase involving l-serine synthesis from silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21553. [PMID: 31004387 DOI: 10.1002/arch.21553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/12/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
In this study, we identified and characterized a phosphoserine aminotransferase (bmPSAT) from Bombyx mori (B. mori) that is responsible for l-serine biosynthesis. A complementary DNA that encodes bmPSAT was cloned by reverse transcriptase polymerase reaction and sequenced. The presumed amino acid sequence revealed 47-87% identity with known PSATs from insects, humans, plants, and bacteria. Through phylogenetic analysis, we found that bmPSAT is evolutionary related to insect PSATs. Recombinant bmPSAT was produced in Escherichia coli by using a cold-shock promotor and purified to homogeneity. This enzyme utilizes phosphohydroxypyruvate and glutamate for transamination. bmPSAT messenger RNA (mRNA) was expressed at higher levels in several tissues of standard strain silkworm including the silk gland, whereas a sericin-deficient silkworm strain exhibited a diminished expression of bmPSAT mRNA in the silk gland. These findings indicate that bmPSAT may play an important role in synthesizing and supplying l-serine in the larva of B. mori.
Collapse
Affiliation(s)
- Mohammad R Haque
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Aiko Hirowatari
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ayumi Koyanagi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takashi Ichinose
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Maiko Abiru
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Shinya Mohri
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Shigeki Furuya
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kohji Yamamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
17
|
Vishnu Priya S, Somasundaram P. Bio-molecular characterization of stress enzyme profile on esterase in selected silkworm races of Bombyx mori (L.) for biomarker selection. ADVANCES IN BIOMARKER SCIENCES AND TECHNOLOGY 2019. [DOI: 10.1016/j.abst.2019.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
18
|
Zhao E, Jiang X, Cui H. Bombyx mori Dihydroorotate Dehydrogenase: Knockdown Inhibits Cell Growth and Proliferation via Inducing Cell Cycle Arrest. Int J Mol Sci 2018; 19:ijms19092581. [PMID: 30200251 PMCID: PMC6163951 DOI: 10.3390/ijms19092581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/22/2018] [Accepted: 08/26/2018] [Indexed: 12/03/2022] Open
Abstract
Dihydroorotate dehydrogenase (DHODH), in the de novo pyrimidine biosynthetic pathway, is the fourth enzyme of pyrimidine synthesis and is used to oxidize dihydroorotate and hence to orotat. We cloned and characterized here the dhod of silkworms, Bombyx mori. The full-length cDNA sequence of dhod is 1339 bp, including an open reading frame (ORF) of 1173 bp that encoded a 390 amino acid protein. And two domains were involved in the Dihydroorotate dehydrogenase amino acid sequence of silkworms, Bombyx mori (BmDHODH), namely a DHO_dh domain and a transmembrane domain in N-termina. The silkworm dhod is expressed throughout development and in nine tissues. Moreover, knockdown of the silkworm dhod gene reduced cell growth and proliferation through G2/M phase cell cycle arrest. Similarly, DHODH inhibitor (leflunomide) also reduced cell growth and proliferation, with a significant decrease of cyclin B and cdk2. DHODH is the fourth enzyme of pyrimidine synthesis, so we also found that leflunomide can inhibit, at least in part, the endomitotic DNA replication in silk glands cells. These findings demonstrate that downregulation of BmDHODH inhibits cell growth and proliferation in silkworm cells, and the endomitotic DNA replication in silk gland cells.
Collapse
Affiliation(s)
- Erhu Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400716, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China.
- Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China.
| | - Xiaolan Jiang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400716, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400716, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China.
- Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China.
| |
Collapse
|
19
|
Nakao H. A Bombyx homolog of ovo is a segmentation gene that acts downstream of Bm-wnt1(Bombyx wnt1 homolog). Gene Expr Patterns 2017; 27:1-7. [PMID: 28988845 DOI: 10.1016/j.gep.2017.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 12/14/2022]
Abstract
Insect embryogenesis is divided into long and short/intermediate germ types. The long germ type may exhibit Drosophila-like hierarchical segmentation mechanisms, whereas the short/intermediate type assumes some repeating mechanisms that are considered to be ancestral. Embryogenesis in Bombyx mori possesses both characteristics. Here, Bombyx ovo homolog (Bm-ovo) was identified as a gene involved in segmentation. Ovo is a Drosophila gene that encodes a zinc finger transcription factor and studies on its homolog functions in other systems have suggested that it acts as a switch to enable the initiation of differentiation from a progenitor cell state. This is the first description for ovo homologs being involved in insect segmentation. Bm-ovo is expressed dynamically during embryogenesis in a pattern that resembles that of gap and pair-rule genes. In Bm-ovo RNAi knockdown embryos, posterior segmentation does not proceed. In addition, defects in anterior segments are observed. In Bm-wnt1 knockdown embryos, the Bm-ovo expression pattern was changed, suggesting that Bm-wnt1 is an upstream regulator of Bm-ovo. The involvement of Bm-ovo may represent a novel ancestral step under the control of wnt genes in insect segmentation: this step may resemble those operating in cell differentiation processes.
Collapse
Affiliation(s)
- Hajime Nakao
- Insect Genome Research and Engineering Unit, Division of Applied Genetics, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Oowashi, Tsukuba, Ibaraki, 305-8634, Japan.
| |
Collapse
|
20
|
Identification of a diazinon-metabolizing glutathione S-transferase in the silkworm, Bombyx mori. Sci Rep 2016; 6:30073. [PMID: 27440377 PMCID: PMC4954967 DOI: 10.1038/srep30073] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/28/2016] [Indexed: 11/11/2022] Open
Abstract
The glutathione S-transferase superfamily play key roles in the metabolism of numerous xenobiotics. We report herein the identification and characterization of a novel glutathione S-transferase in the silkworm, Bombyx mori. The enzyme (bmGSTu2) conjugates glutathione to 1-chloro-2,4-dinitrobenzene, as well as metabolizing diazinon, one of the organophosphate insecticides. Quantitative reverse transcription–polymerase chain reaction analysis of transcripts demonstrated that bmGSTu2 expression was induced 1.7-fold in a resistant strain of B. mori. Mutagenesis of putative amino acid residues in the glutathione-binding site revealed that Ile54, Glu66, Ser67, and Asn68 are crucial for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTu2 and into the detoxification of organophosphate insecticides.
Collapse
|
21
|
Sehadová H, Markova EP, Sehnal F, Takeda M. Distribution of Circadian Clock-Related Proteins in the Cephalic Nervous System of the Silkworm, Bombyx Mori. J Biol Rhythms 2016; 19:466-82. [PMID: 15523109 DOI: 10.1177/0748730404269153] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the circadian timing systems, input pathways transmit information on the diurnal environmental changes to a core oscillator that generates signals relayed to the body periphery by output pathways. Cryptochrome (CRY) protein participates in the light perception; period (PER), Cycle (CYC), and Doubletime (DBT) proteins drive the core oscillator; and arylalkylamines are crucial for the clock output in vertebrates. Using antibodies to CRY, PER, CYC, DBT, and arylalkylamine N-acetyltransferase (aaNAT), the authors examined neuronal architecture of the circadian system in the cephalic ganglia of adult silkworms. The antibodies reacted in the cytoplasm, never in the nuclei, of specific neurons. Acluster of 4 large Ia1 neurons in each dorsolateral protocerebrum, a pair of cells in the frontal ganglion, and nerve fibers in the corpora cardiaca and corpora allata were stained with all antibodies. The intensity of PER staining in the Ia1 cells and in 2 to 4 adjacent small cells oscillated, being maximal late in subjective day and minimal in early night. No other oscillations were detected in any cell and with any antibody. Six small cells in close vicinity to the Ia1 neurons coexpressed CYC-like and DBT-like, and 4 to 5 of them also coexpressed aaNATlike immunoreactivity; the PER- and CRY-like antigens were each present in separate groups of 4 cells. The CYC- and aaNAT-like antigens were further colocalized in small groups of neurons in the pars intercerebralis, at the venter of the optic tract, and in the subesophageal ganglion. Remaining antibodies reacted with similarly positioned cells in the pars intercerebralis, and the DBT antibody also reacted with the cells in the subesophageal ganglion, but antigen colocalizations were not proven. The results imply that key components of the silkworm circadian system reside in the Ia1 neurons and that additional, hierarchically arranged oscillators contribute to overt pacemaking. The retrocerebral neurohemal organs seem to serve as outlets transmitting central neural oscillations to the hemolymph. The frontal ganglion may play an autonomous function in circadian regulations. The colocalization of aaNAT- and CYC-like antigens suggests that the enzyme is functionally linked to CYC as in vertebrates and that arylalkylamines are involved in the insect output pathway.
Collapse
Affiliation(s)
- Hana Sehadová
- Division of Molecular Science, Graduate School of Science and Technology, Kobe University, Japan
| | | | | | | |
Collapse
|
22
|
Singh D, Chetia H, Kabiraj D, Sharma S, Kumar A, Sharma P, Deka M, Bora U. A comprehensive view of the web-resources related to sericulture. Database (Oxford) 2016; 2016:baw086. [PMID: 27307138 PMCID: PMC4909305 DOI: 10.1093/database/baw086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/25/2016] [Accepted: 05/02/2016] [Indexed: 12/03/2022]
Abstract
Recent progress in the field of sequencing and analysis has led to a tremendous spike in data and the development of data science tools. One of the outcomes of this scientific progress is development of numerous databases which are gaining popularity in all disciplines of biology including sericulture. As economically important organism, silkworms are studied extensively for their numerous applications in the field of textiles, biomaterials, biomimetics, etc. Similarly, host plants, pests, pathogens, etc. are also being probed to understand the seri-resources more efficiently. These studies have led to the generation of numerous seri-related databases which are extremely helpful for the scientific community. In this article, we have reviewed all the available online resources on silkworm and its related organisms, including databases as well as informative websites. We have studied their basic features and impact on research through citation count analysis, finally discussing the role of emerging sequencing and analysis technologies in the field of seri-data science. As an outcome of this review, a web portal named SeriPort, has been created which will act as an index for the various sericulture-related databases and web resources available in cyberspace.Database URL: http://www.seriport.in/.
Collapse
Affiliation(s)
- Deepika Singh
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Hasnahana Chetia
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Debajyoti Kabiraj
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Swagata Sharma
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anil Kumar
- Centre for Biological Sciences (Bioinformatics), Central University of South Bihar (CUSB), Patna 800014, India
| | - Pragya Sharma
- Department of Bioengineering & Technology, Gauhati University Institute of Science & Technology, Gauhati University, Guwahati, Assam 781014, India
| | - Manab Deka
- Department of Bioengineering & Technology, Gauhati University Institute of Science & Technology, Gauhati University, Guwahati, Assam 781014, India
| | - Utpal Bora
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India Mugagen Laboratories Pvt. Ltd, Technology Incubation Centre, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
23
|
Yamamoto K, Higashiura A, Suzuki M, Shiotsuki T, Sugahara R, Fujii T, Nakagawa A. Structural characterization of an aldo-keto reductase (AKR2E5) from the silkworm Bombyx mori. Biochem Biophys Res Commun 2016; 474:104-110. [PMID: 27103441 DOI: 10.1016/j.bbrc.2016.04.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 11/27/2022]
Abstract
We report a new member of the aldo-keto reductase (AKR) superfamily in the silkworm Bombyx mori. Based on its amino acid sequence, the new enzyme belongs to the AKR2 family and was previously assigned the systematic name AKR2E5. In the present study, recombinant AKR2E5 was expressed, purified to homogeneity, and characterized. The X-ray crystal structures were determined at 2.2 Å for the apoenzyme and at 2.3 Å resolution for the NADPH-AKR2E5 complex. Our results demonstrate that AKR2E5 is a 40-kDa monomer and includes the TIM- or (β/α)8-barrel typical for other AKRs. We found that AKR2E5 uses NADPH as a cosubstrate to reduce carbonyl compounds such as DL-glyceraldehyde, xylose, 3-hydroxy benzaldehyde, 17α-hydroxy progesterone, 11-hexadecenal, and bombykal. No NADH-dependent activity was detected. Site-directed mutagenesis of AKR2E5 indicates that amino acid residues Asp70, Tyr75, Lys104, and His137 contribute to catalytic activity, which is consistent with the data on other AKRs. To the best of our knowledge, AKR2E5 is only the second AKR characterized in silkworm. Our data should contribute to further understanding of the functional activity of insect AKRs.
Collapse
Affiliation(s)
- Kohji Yamamoto
- Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | | | - Mamoru Suzuki
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Takahiro Shiotsuki
- Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki 305-8634, Japan
| | - Ryohei Sugahara
- Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki 305-8634, Japan
| | - Takeshi Fujii
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan; Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
24
|
Roller L, Čižmár D, Gáliková Z, Bednár B, Daubnerová I, Žitňan D. Molecular cloning, expression and identification of the promoter regulatory region for the neuropeptide trissin in the nervous system of the silkmoth Bombyx mori. Cell Tissue Res 2016; 364:499-512. [PMID: 26809512 DOI: 10.1007/s00441-015-2352-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/15/2015] [Indexed: 12/13/2022]
Abstract
Trissin has recently been identified as a conserved insect neuropeptide, but its cellular expression and function is unknown. We detected the presence of this neuropeptide in the silkworm Bombyx mori using in silico search and molecular cloning. In situ hybridisation was used to examine trissin expression in the entire central nervous system (CNS) and gut of larvae, pupae and adults. Surprisingly, its expression is restricted to only two pairs of small protocerebral interneurons and four to five large neurons in the frontal ganglion (FG). These neurons were further characterised by subsequent multiple staining with selected antibodies against insect neuropeptides. The brain interneurons innervate edges of the mushroom bodies and co-express trissin with myoinhibitory peptides (MIP) and CRF-like diuretic hormones (CRF-DH). In the FG, one pair of neurons co-express trissin with calcitonin-like diuretic hormone (CT-DH), short neuropeptide F (sNPF) and MIP. These neurons innervate the brain tritocerebrum and musculature of the anterior midgut. The other pair of trissin neurons in the FG co-express sNPF and project axons to the tritocerebrum and midgut. We also used the baculovirus expression system to identify the promoter regulatory region of the trissin gene for targeted expression of various molecular markers in these neurons. Dominant expression of trissin in the FG indicates its possible role in the regulation of foregut-midgut contractions and food intake.
Collapse
Affiliation(s)
- Ladislav Roller
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Daniel Čižmár
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Zuzana Gáliková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Branislav Bednár
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Ivana Daubnerová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Dušan Žitňan
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia.
| |
Collapse
|
25
|
Abstract
Bombyx mori is a valuable model organism of high economic importance. Its genome sequence is available, as well as basic genetic and molecular genetic tools and markers. The introduction of genome editing methods based on engineered nucleases enables precise manipulations with genomic DNA, including targeted DNA deletions, insertions, or replacements in the genome allowing gene analysis and various applications. We describe here the use of TALENs which have a simple modular design of their DNA-binding domains, are easy to prepare and proved to be efficient in targeting of a wide range of cleavage sites. Our procedure often allows the production of individuals carrying homozygous mutations as early as in the G1 generation.
Collapse
Affiliation(s)
- Yoko Takasu
- National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Toshiki Tamura
- National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan.
| | - Marian Goldsmith
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI, 02881-0816, USA
| | - Michal Zurovec
- Biology Centre, Czech Academy of Sciences, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic.
| |
Collapse
|
26
|
Matsumoto H, Ueno C, Nakamura Y, Kinjoh T, Ito Y, Shimura S, Noda H, Imanishi S, Mita K, Fujiwara H, Hiruma K, Shinoda T, Kamimura M. Identification of two juvenile hormone inducible transcription factors from the silkworm, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2015; 80:31-41. [PMID: 25770979 DOI: 10.1016/j.jinsphys.2015.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/30/2015] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
Juvenile hormone (JH) regulates many physiological processes in insects. However, the signal cascades in which JH is active have not yet been fully elucidated, particularly in comparison to another major hormone ecdysteroid. Here we identified two JH inducible transcription factors as candidate components of JH signaling pathways in the silkworm, Bombyx mori. DNA microarray analysis showed that expression of two transcription factor genes, E75 and Enhancer of split mβ (E(spl)mβ), was induced by juvenile hormone I (JH I) in NIAS-Bm-aff3 cells. Real time RT-PCR analysis confirmed that expression of four E75 isoforms (E75A, E75B, E75C and E75D) and E(spl)mβ was 3-8 times greater after JH I addition. Addition of the protein synthesis inhibitor cycloheximide did not suppress JH-induced expression of the genes, indicating that they were directly induced by JH. JH-induced expression of E75 and E(spl)mβ was also observed in four other B. mori cell lines and in larval hemocytes of final instar larvae. Notably, E75A expression was induced very strongly in larval hemocytes by topical application of the JH analog fenoxycarb; the level of induced expression was comparable to that produced by feeding larvae with 20-hydroxyecdysone. These results suggest that E75 and E(spl)mβ are general and direct target genes of JH and that the transcription factors encoded by these genes play important roles in JH signaling.
Collapse
Affiliation(s)
- Hitoshi Matsumoto
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Chihiro Ueno
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Yuki Nakamura
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Terunori Kinjoh
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan; Faculty of Agriculture and Life Sciences, Hirosaki University, Hirosaki, Aomori, Japan
| | - Yuka Ito
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Sachiko Shimura
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Hiroaki Noda
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Shigeo Imanishi
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Kazuei Mita
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Haruhiko Fujiwara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Kiyoshi Hiruma
- Faculty of Agriculture and Life Sciences, Hirosaki University, Hirosaki, Aomori, Japan
| | - Tetsuro Shinoda
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Manabu Kamimura
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
27
|
Sun W, Zhao XW, Zhang Z. Identification and evolution of the orphan genes in the domestic silkworm, Bombyx mori. FEBS Lett 2015; 589:2731-8. [PMID: 26296317 DOI: 10.1016/j.febslet.2015.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/24/2015] [Accepted: 08/01/2015] [Indexed: 10/23/2022]
Abstract
Orphan genes (OGs) which have no recognizable homology to any sequences in other species could contribute to the species specific adaptations. In this study, we identified 738 OGs in the silkworm genome. About 31% of the silkworm OGs is derived from transposable elements, and 5.1% of the silkworm OGs emerged from gene duplication followed by divergence of paralogs. Five de novo silkworm OGs originated from non-coding regions. Microarray data suggested that most of the silkworm OGs were expressed in limited tissues. RNA interference experiments suggested that five de novo OGs are not essential to the silkworm, implying that they may contribute to genetic redundancy or species-specific adaptation. Our results provide some new insights into the evolutionary significance of the silkworm OGs.
Collapse
Affiliation(s)
- Wei Sun
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Xin-Wei Zhao
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
28
|
Xuan N, Guo X, Xie HY, Lou QN, Lu XB, Liu GX, Picimbon JF. Increased expression of CSP and CYP genes in adult silkworm females exposed to avermectins. INSECT SCIENCE 2015; 22:203-219. [PMID: 24677614 DOI: 10.1111/1744-7917.12116] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/30/2013] [Indexed: 06/03/2023]
Abstract
We analyzed 20 chemosensory protein (CSP) genes of the silkworm Bombyx mori. We found a high number of retrotransposons inserted in introns. We then analyzed expression of the 20 BmorCSP genes across tissues using quantitative real-time polymerase chain reaction (PCR). Relatively low expression levels of BmorCSPs were found in the gut and fat body tissues. We thus tested the effects of endectocyte insecticide abamectin (B1a and B1b avermectins) on BmorCSP gene expression. Quantitative real-time PCR experiments showed that a single brief exposure to insecticide abamectin increased dramatically CSP expression not only in the antennae but in most tissues, including gut and fat body. Furthermore, our study showed coordinate expression of CSPs and metabolic cytochrome P450 enzymes in a tissue-dependent manner in response to the insecticide. The function of CSPs remains unknown. Based on our results, we suggest a role in detecting xenobiotics that are then detoxified by cytochrome P450 anti-xenobiotic enzymes.
Collapse
Affiliation(s)
- Ning Xuan
- Biotechnology Research Center, Shandong Provincial Key Laboratory for Genetic Improvement Cultivation, Ecology and Physiology of Crops, Shandong Academy of Agricultural Sciences, Jinan
| | | | | | | | | | | | | |
Collapse
|
29
|
Hossain MT, Yamamoto K. Structural insight into the active site of a Bombyx mori unclassified glutathione transferase. Biosci Biotechnol Biochem 2015; 79:989-91. [PMID: 25608724 DOI: 10.1080/09168451.2014.1002450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Glutathione transferases (GSTs) are major detoxification enzymes that play central roles in the defense against various environmental toxicants as well as oxidative stress. Here, we identify amino acid residues of an unclassified GST from Bombyx mori, bmGSTu-interacting glutathione (GSH). Site-directed mutagenesis of bmGSTu mutants indicated that amino acid residues Asp103, Ser162, and Ser166 contribute to catalytic activity.
Collapse
Affiliation(s)
- Md Tofazzal Hossain
- a Faculty of Agriculture , Kyushu University Graduate School , Fukuoka , Japan
| | | |
Collapse
|
30
|
Identification and characterization of the DNA replication origin recognition complex gene family in the silkworm Bombyx mori. Biosci Rep 2015; 31:353-61. [PMID: 21162711 DOI: 10.1042/bsr20100047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The ORC (origin recognition complex) binds to the DNA replication origin and recruits other replication factors to form the pre-replication complex. The cDNA and genomic sequences of all six subunits of ORC in Bombyx mori (BmORC1-6) were determined by RACE (rapid amplification of cDNA ends) and bioinformatic analysis. The conserved domains were identified in BmOrc1p-6p and the C-terminal of BmOrc6p features a short sequence that may be specific for Lepidoptera. As in other organisms, each of the six BmORC subunits had evolved individually from ancestral genes in early eukaryotes. During embryo development, the six genes were co-regulated, but different ratios of the abundance of mRNAs were observed in 13 tissues of the fifth instar day-6 larvae. Infection by BmNPV (B. mori nucleopolyhedrovirus) initially decreased and then increased the abundance of BmORC. We suggest that some of the BmOrc proteins may have additional functions and that BmOrc proteins participate in the replication of BmNPV.
Collapse
|
31
|
Ou J, Deng HM, Zheng SC, Huang LH, Feng QL, Liu L. Transcriptomic analysis of developmental features of Bombyx mori wing disc during metamorphosis. BMC Genomics 2014; 15:820. [PMID: 25261999 PMCID: PMC4196006 DOI: 10.1186/1471-2164-15-820] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 09/17/2014] [Indexed: 12/27/2022] Open
Abstract
Background Wing discs of B. mori are transformed to pupal wings during the larva-to-pupa metamorphosis with dramatic morphological and structural changes. To understand these changes at a transcriptional level, RNA-seq of the wing discs from 6-day-old fifth instar larvae (L5D6), prepupae (PP) and pupae (P0) was performed. Results In total, 12,254 transcripts were obtained from the wing disc, out of which 5,287 were identified to be differentially expressed from L5D6 to PP and from PP to P0. The results of comprehensive analysis of RNA-seq data showed that during larvae-to-pupae metamorphosis, many genes of 20E signaling pathway were up-regulated and those of JH signaling pathway were down-regulated. Seventeen transcription factors were significantly up-regulated. Cuticle protein genes (especially wing cuticle protein genes), were most abundant and significantly up-regulated at P0 stage. Genes responsible for the degradation and de novo synthesis of chitin were significantly up-regulated. There were A and B two types of chitin synthases in B. mori, whereas only chitin synthase A was up-regulated. Both trehalose and D-fructose, which are precursors of chitin synthesis, were detected in the hemolymph of L5D6, PP and P0, suggesting de novo synthesis of chitin. However, most of the genes that are related to early wing disc differentiation were down-regulated. Conclusions Extensive transcriptome and DGE profiling data of wing disc during metamorphosis of silkworm have been generated, which provided comprehensive gene expression information at the transcriptional level. These results implied that during the larva-to-pupa metamorphosis, pupal wing development and transition might be mainly controlled by 20E signaling in B. mori. The 17 up-regulated transcription factors might be involved in wing development. Chitin required for pupal wing development might be generated from both degradation of componential chitin and de novo synthesis. Chitin synthase A might be responsible for the chitin synthesis in the pupal wing, while both trehalose and D-fructose might contribute to the de novo synthesis of chitin during the formation of pupal wing. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-820) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Qi-Li Feng
- Laboratory of Molecular and Developmental Entomology, Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | | |
Collapse
|
32
|
Hattori K, Hirayama M, Suzuki H, Hamamoto H, Sekimizu K, Tamura HO. Cloning and Expression of a Novel Sulfotransferase with Unique Substrate Specificity fromBombyx mori. Biosci Biotechnol Biochem 2014; 71:1044-51. [PMID: 17420592 DOI: 10.1271/bbb.60703] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We identified a cDNA encoding a putative cytosolic sulfotransferase (SULT) by searching the expressed sequence tag database of Bombyx mori, and subsequently obtained the full-length cDNA for this gene via rapid amplification of cDNA ends (RACE). We designated this gene bmST1, and showed by sequence analysis that it belongs to a novel SULT family. The tissue specificity of bmST1 mRNA expression was examined in fifth instar larvae by reverse transcriptase-polymerase chain reaction (RT-PCR), and transcripts were detectable in the silk gland, gut, fat body, and Malpighian tube. A recombinant form of bmST1 was then expressed using a gluthathione S-transferase (GST) gene fusion system, and it was purified from Escherichia coli. Purified bmST1 did not exhibit sulfating activity toward SULT substrates such as 4-nitrophenol, vanillin, hydroxysteroids, or monoamines. Surprisingly, however, recombinant bmST1 showed considerable activity toward 4-nitrocatechol and also gallate esters, although the catechins are not sulfated by this enzyme.
Collapse
|
33
|
Hossain MDT, Yamada N, Yamamoto K. Glutathione-binding site of a bombyx mori theta-class glutathione transferase. PLoS One 2014; 9:e97740. [PMID: 24848539 PMCID: PMC4029803 DOI: 10.1371/journal.pone.0097740] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/23/2014] [Indexed: 11/18/2022] Open
Abstract
The glutathione transferase (GST) superfamily plays key roles in the detoxification of various xenobiotics. Here, we report the isolation and characterization of a silkworm protein belonging to a previously reported theta-class GST family. The enzyme (bmGSTT) catalyzes the reaction of glutathione with 1-chloro-2,4-dinitrobenzene, 1,2-epoxy-3-(4-nitrophenoxy)-propane, and 4-nitrophenethyl bromide. Mutagenesis of highly conserved residues in the catalytic site revealed that Glu66 and Ser67 are important for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTT and into the metabolism of exogenous chemical agents.
Collapse
Affiliation(s)
| | - Naotaka Yamada
- Faculty of Agriculture, Kyushu University Graduate School, Fukuoka, Japan
| | - Kohji Yamamoto
- Faculty of Agriculture, Kyushu University Graduate School, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
34
|
Li B, Zhang H, Ni M, Wang BB, Li FC, Xu KZ, Shen WD, Xia QY, Zhao P. Identification and characterization of six cytochrome P450 genes belonging to CYP4 and CYP6 gene families in the silkworm, Bombyx mori. Mol Biol Rep 2014; 41:5135-46. [DOI: 10.1007/s11033-014-3379-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/01/2014] [Indexed: 10/25/2022]
|
35
|
Sugahara R, Mon H, Lee JM, Kusakabe T. Middle region of FancM interacts with Mhf and Rmi1 in silkworms, a species lacking the Fanconi anaemia (FA) core complex. INSECT MOLECULAR BIOLOGY 2014; 23:185-198. [PMID: 24286570 DOI: 10.1111/imb.12072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Fanconi anaemia (FA) pathway is responsible for interstrand crosslink (ICL) repair. Among the FA core complex components, FANCM is believed to act as a damage sensor for the ICL-blocked replication fork and also as a molecular platform for FA core complex assembly and interaction with Bloom's syndrome (BS) complex that is thought to play an important role in the processing of DNA structures such as stalled replication forks. In the present study, we found that in silkworms, Bombyx mori, a species lacking the major FA core complex components (FANCA, B, C, E, F, and G), FancM is required for FancD2 monoubiquitination and cell proliferation in the presence of mitomycin C (MMC). Silkworm FancM (BmFancM) was phosphorylated in the middle regions, and the modification was associated with its subcellular localization. In addition, BmFancM interacted with Mhf1, a histone-fold protein, and Rmi1, a subunit of the BS complex, in the different regions. The interaction region containing at least these two protein-binding domains played an essential role in FancM-dependent resistance to MMC. Our results suggest that BmFancM also acts as a platform for recruitment of both the FA protein and the BS protein, although the silkworm genome seems to lose FAAP24, a FancM-binding partner protein in mammals.
Collapse
Affiliation(s)
- R Sugahara
- Laboratory of Silkworm Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
36
|
Nagaraju J, Gopinath G, Sharma V, Shukla J. Lepidopteran Sex Determination: A Cascade of Surprises. Sex Dev 2014; 8:104-12. [DOI: 10.1159/000357483] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
37
|
Firmino AAP, Fonseca FCDA, de Macedo LLP, Coelho RR, Antonino de Souza Jr JD, Togawa RC, Silva-Junior OB, Pappas-Jr GJ, da Silva MCM, Engler G, Grossi-de-Sa MF. Transcriptome analysis in cotton boll weevil (Anthonomus grandis) and RNA interference in insect pests. PLoS One 2013; 8:e85079. [PMID: 24386449 PMCID: PMC3874031 DOI: 10.1371/journal.pone.0085079] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/22/2013] [Indexed: 12/16/2022] Open
Abstract
Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi) as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families’ data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects.
Collapse
Affiliation(s)
- Alexandre Augusto Pereira Firmino
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail: (AAPF); (MFGS)
| | - Fernando Campos de Assis Fonseca
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Graduate Program in Biology Molecular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Leonardo Lima Pepino de Macedo
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Graduate Program in Genomic Sciences and Biotechnology, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Roberta Ramos Coelho
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Graduate Program in Biology Molecular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - José Dijair Antonino de Souza Jr
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Graduate Program in Biology Molecular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | | | | | | | | | - Gilbert Engler
- Plateau Microscopique, Institut National de la Recherche Agronomique, Sophia-Antipolis, France
| | - Maria Fatima Grossi-de-Sa
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Graduate Program in Genomic Sciences and Biotechnology, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
- * E-mail: (AAPF); (MFGS)
| |
Collapse
|
38
|
Heil M, Barajas-Barron A, Orona-Tamayo D, Wielsch N, Svatos A. Partner manipulation stabilises a horizontally transmitted mutualism. Ecol Lett 2013; 17:185-92. [PMID: 24188323 DOI: 10.1111/ele.12215] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/11/2013] [Accepted: 10/08/2013] [Indexed: 11/30/2022]
Abstract
Mutualisms require protection from non-reciprocating exploiters. Pseudomyrmex workers that engage in an obligate defensive mutualism with Acacia hosts feed exclusively on the sucrose-free extrafloral nectar (EFN) that is secreted by their hosts, a behaviour linking ant energy supply directly to host performance and thus favouring reciprocating behaviour. We tested the hypothesis that Acacia hosts manipulate this digestive specialisation of their ant mutualists. Invertase (sucrose hydrolytic) activity in the ant midguts was inhibited by chitinase, a dominant EFN protein. The inhibition occurred quickly in cell-free gut liquids and in native gels and thus likely results from an enzyme-enzyme interaction. Once a freshly eclosed worker ingests EFN as the first diet available, her invertase becomes inhibited and she, thus, continues feeding on host-derived EFN. Partner manipulation acts at the phenotypic level and means that one partner actively controls the phenotype of the other partner to enhance its dependency on host-derived rewards.
Collapse
Affiliation(s)
- Martin Heil
- Departamento de Ingeniería Genética, CINVESTAV-Irapuato, Irapuato, Guanajuato, México
| | | | | | | | | |
Collapse
|
39
|
New insights into the catalytic mechanism of Bombyx mori prostaglandin E synthase gained from structure–function analysis. Biochem Biophys Res Commun 2013; 440:762-7. [DOI: 10.1016/j.bbrc.2013.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 10/02/2013] [Indexed: 11/18/2022]
|
40
|
Yamamoto K, Aso Y, Yamada N. Catalytic function of an ε-class glutathione S-transferase of the silkworm. INSECT MOLECULAR BIOLOGY 2013; 22:523-531. [PMID: 23803169 DOI: 10.1111/imb.12041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The glutathione S-transferase (GST) superfamily is involved in the detoxification of various xenobiotics. A silkworm GST, belonging to a previously reported Epsilon-class GST family, was identified, named bmGSTE, cloned, and produced in Escherichia coli. Investigation of this enzyme's properties showed that it was able to catalyse glutathione (GSH) with 1-chloro-2,4-dinitrobenzene and ethacrynic acid, and also that it possessed GSH-dependent peroxidase activity. The enzyme's highly conserved amino acid residues, including Ser11, His53, Val55, Ser68 and Arg112, were of interest regarding their possible involvement in its catalytic activity. These residues were replaced with alanine by site-directed mutagenesis and subsequent kinetic analysis of bmGSTE mutants indicated that His53, Val55, and Ser68 were important for enzyme function.
Collapse
Affiliation(s)
- K Yamamoto
- Faculty of Agriculture, Kyushu University Graduate School, Fukuoka, Japan.
| | | | | |
Collapse
|
41
|
Yamamoto K, Wilson DK. Identification, characterization, and crystal structure of an aldo-keto reductase (AKR2E4) from the silkworm Bombyx mori. Arch Biochem Biophys 2013; 538:156-63. [PMID: 24012638 DOI: 10.1016/j.abb.2013.08.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/29/2013] [Accepted: 08/31/2013] [Indexed: 10/26/2022]
Abstract
A new member of the aldo-keto reductase (AKR) superfamily with 3-dehydroecdysone reductase activity was found in the silkworm Bombyx mori upon induction by the insecticide diazinon. The amino acid sequence showed that this enzyme belongs to the AKR2 family, and the protein was assigned the systematic name AKR2E4. In this study, recombinant AKR2E4 was expressed, purified to near homogeneity, and kinetically characterized. Additionally, its ternary structure in complex with NADP(+) and citrate was refined at 1.3Å resolution to elucidate substrate binding and catalysis. The enzyme is a 33-kDa monomer and reduces dicarbonyl compounds such as isatin and 17α-hydroxy progesterone using NADPH as a cosubstrate. No NADH-dependent activity was detected. Robust activity toward the substrate inhibitor 3-dehydroecdysone was observed, which suggests that this enzyme plays a role in regulation of the important molting hormone ecdysone. This structure constitutes the first insect AKR structure determined. Bound NADPH is located at the center of the TIM- or (β/α)8-barrel, and residues involved in catalysis are conserved.
Collapse
Affiliation(s)
- Kohji Yamamoto
- Faculty of Agriculture, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | | |
Collapse
|
42
|
Large scale full-length cDNA sequencing reveals a unique genomic landscape in a lepidopteran model insect, Bombyx mori. G3-GENES GENOMES GENETICS 2013; 3:1481-92. [PMID: 23821615 PMCID: PMC3755909 DOI: 10.1534/g3.113.006239] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The establishment of a complete genomic sequence of silkworm, the model species of Lepidoptera, laid a foundation for its functional genomics. A more complete annotation of the genome will benefit functional and comparative studies and accelerate extensive industrial applications for this insect. To realize these goals, we embarked upon a large-scale full-length cDNA collection from 21 full-length cDNA libraries derived from 14 tissues of the domesticated silkworm and performed full sequencing by primer walking for 11,104 full-length cDNAs. The large average intron size was 1904 bp, resulting from a high accumulation of transposons. Using gene models predicted by GLEAN and published mRNAs, we identified 16,823 gene loci on the silkworm genome assembly. Orthology analysis of 153 species, including 11 insects, revealed that among three Lepidoptera including Monarch and Heliconius butterflies, the 403 largest silkworm-specific genes were composed mainly of protective immunity, hormone-related, and characteristic structural proteins. Analysis of testis-/ovary-specific genes revealed distinctive features of sexual dimorphism, including depletion of ovary-specific genes on the Z chromosome in contrast to an enrichment of testis-specific genes. More than 40% of genes expressed in specific tissues mapped in tissue-specific chromosomal clusters. The newly obtained FL-cDNA sequences enabled us to annotate the genome of this lepidopteran model insect more accurately, enhancing genomic and functional studies of Lepidoptera and comparative analyses with other insect orders, and yielding new insights into the evolution and organization of lepidopteran-specific genes.
Collapse
|
43
|
Yamamoto K, Suzuki M, Higashiura A, Nakagawa A. Three-dimensional structure of a Bombyx mori Omega-class glutathione transferase. Biochem Biophys Res Commun 2013; 438:588-93. [PMID: 23939046 DOI: 10.1016/j.bbrc.2013.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/03/2013] [Indexed: 10/26/2022]
Abstract
Glutathione transferases (GSTs) are major phase II detoxification enzymes that play central roles in the defense against various environmental toxicants as well as oxidative stress. Here we report the crystal structure of an Omega-class glutathione transferase of Bombyx mori, bmGSTO, to gain insight into its catalytic mechanism. The structure of bmGSTO complexed with glutathione determined at a resolution of 2.5Å reveals that it exists as a dimer and is structurally similar to Omega-class GSTs with respect to its secondary and tertiary structures. Analysis of a complex between bmGSTO and glutathione showed that bound glutathione was localized to the glutathione-binding site (G-site). Site-directed mutagenesis of bmGSTO mutants indicated that amino acid residues Leu62, Lys65, Lys77, Val78, Glu91 and Ser92 in the G-site contribute to catalytic activity.
Collapse
Affiliation(s)
- Kohji Yamamoto
- Faculty of Agriculture, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | | | | | | |
Collapse
|
44
|
Wang Q, Shen B, Zheng P, Feng H, Guo Y, Cao W, Chen L, Liu X, Zhao G, Xu S, Shen W, Chen J, Teng J. BmCREC is an endoplasmic reticulum (ER) resident protein and required for ER/Golgi morphology. J Biol Chem 2013; 288:26649-57. [PMID: 23921381 DOI: 10.1074/jbc.m113.463018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Silkworm posterior silkgland is a model for studying intracellular trafficking. Here, using this model, we identify several potential cargo proteins of BmKinesin-1 and focus on one candidate, BmCREC. BmCREC (also known as Bombyx mori DNA supercoiling factor, BmSCF) was previously proposed to supercoil DNA in the nucleus. However, we show here that BmCREC is localized in the ER lumen. Its C-terminal tetrapeptide HDEF is recognized by the KDEL receptor, and subsequently it is retrogradely transported by coat protein I (COPI) vesicles to the ER. Lacking the HDEF tetrapeptide of BmCREC or knocking down COPI subunits results in decreased ER retention and simultaneously increased secretion of BmCREC. Furthermore, we find that BmCREC knockdown markedly disrupts the morphology of the ER and Golgi apparatus and leads to a defect of posterior silkgland tube expansion. Together, our results clarify the ER retention mechanism of BmCREC and reveal that BmCREC is indispensable for maintaining ER/Golgi morphology.
Collapse
Affiliation(s)
- Qiao Wang
- From the Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Biomembrane and Membrane Bioengineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jouraku A, Yamamoto K, Kuwazaki S, Urio M, Suetsugu Y, Narukawa J, Miyamoto K, Kurita K, Kanamori H, Katayose Y, Matsumoto T, Noda H. KONAGAbase: a genomic and transcriptomic database for the diamondback moth, Plutella xylostella. BMC Genomics 2013; 14:464. [PMID: 23837716 PMCID: PMC3711893 DOI: 10.1186/1471-2164-14-464] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 07/05/2013] [Indexed: 11/26/2022] Open
Abstract
Background The diamondback moth (DBM), Plutella xylostella, is one of the most harmful insect pests for crucifer crops worldwide. DBM has rapidly evolved high resistance to most conventional insecticides such as pyrethroids, organophosphates, fipronil, spinosad, Bacillus thuringiensis, and diamides. Therefore, it is important to develop genomic and transcriptomic DBM resources for analysis of genes related to insecticide resistance, both to clarify the mechanism of resistance of DBM and to facilitate the development of insecticides with a novel mode of action for more effective and environmentally less harmful insecticide rotation. To contribute to this goal, we developed KONAGAbase, a genomic and transcriptomic database for DBM (KONAGA is the Japanese word for DBM). Description KONAGAbase provides (1) transcriptomic sequences of 37,340 ESTs/mRNAs and 147,370 RNA-seq contigs which were clustered and assembled into 84,570 unigenes (30,695 contigs, 50,548 pseudo singletons, and 3,327 singletons); and (2) genomic sequences of 88,530 WGS contigs with 246,244 degenerate contigs and 106,455 singletons from which 6,310 de novo identified repeat sequences and 34,890 predicted gene-coding sequences were extracted. The unigenes and predicted gene-coding sequences were clustered and 32,800 representative sequences were extracted as a comprehensive putative gene set. These sequences were annotated with BLAST descriptions, Gene Ontology (GO) terms, and Pfam descriptions, respectively. KONAGAbase contains rich graphical user interface (GUI)-based web interfaces for easy and efficient searching, browsing, and downloading sequences and annotation data. Five useful search interfaces consisting of BLAST search, keyword search, BLAST result-based search, GO tree-based search, and genome browser are provided. KONAGAbase is publicly available from our website (http://dbm.dna.affrc.go.jp/px/) through standard web browsers. Conclusions KONAGAbase provides DBM comprehensive transcriptomic and draft genomic sequences with useful annotation information with easy-to-use web interfaces, which helps researchers to efficiently search for target sequences such as insect resistance-related genes. KONAGAbase will be continuously updated and additional genomic/transcriptomic resources and analysis tools will be provided for further efficient analysis of the mechanism of insecticide resistance and the development of effective insecticides with a novel mode of action for DBM.
Collapse
Affiliation(s)
- Akiya Jouraku
- National Institute of Agrobiological Sciences, Tsukuba 305-8634, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Crystal structure of a Bombyx mori sigma-class glutathione transferase exhibiting prostaglandin E synthase activity. Biochim Biophys Acta Gen Subj 2013; 1830:3711-8. [DOI: 10.1016/j.bbagen.2013.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/13/2013] [Accepted: 02/22/2013] [Indexed: 11/17/2022]
|
47
|
Watanabe S, Kakudo A, Ohta M, Mita K, Fujiyama K, Inumaru S. Molecular cloning and characterization of the α-glucosidase II from Bombyx mori and Spodoptera frugiperda. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:319-327. [PMID: 23376632 DOI: 10.1016/j.ibmb.2013.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 01/12/2013] [Accepted: 01/16/2013] [Indexed: 06/01/2023]
Abstract
The α-glucosidase II (GII) is a heterodimer of α- and β-subunits and important for N-glycosylation processing and quality control of nascent glycoproteins. Although high concentration of α-glucosidase inhibitors from mulberry leaves accumulate in silkworms (Bombyx mori) by feeding, silkworm does not show any toxic symptom against these inhibitors and N-glycosylation of recombinant proteins is not affected. We, therefore, hypothesized that silkworm GII is not sensitive to the α-glucosidase inhibitors from mulberry leaves. However, the genes for B. mori GII subunits have not yet been identified, and the protein has not been characterized. Therefore, we isolated the B. mori GII α- and β-subunit genes and the GII α-subunit gene of Spodoptera frugiperda, which does not feed on mulberry leaves. We used a baculovirus expression system to produce the recombinant GII subunits and identified their enzyme characteristics. The recombinant GII α-subunits of B. mori and S. frugiperda hydrolyzed p-nitrophenyl α-d-glucopyranoside (pNP-αGlc) but were inactive toward N-glycan. Although the B. mori GII β-subunit was not required for the hydrolysis of pNP-αGlc, a B. mori GII complex of the α- and β-subunits was required for N-glycan cleavage. As hypothesized, the B. mori GII α-subunit protein was less sensitive to α-glucosidase inhibitors than was the S. frugiperda GII α-subunit protein. Our observations suggest that the low sensitivity of GII contributes to the ability of B. mori to evade the toxic effect of α-glucosidase inhibitors from mulberry leaves.
Collapse
Affiliation(s)
- Satoko Watanabe
- Life Science and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Ayme-Southgate AJ, Turner L, Southgate RJ. Molecular analysis of the muscle protein projectin in Lepidoptera. JOURNAL OF INSECT SCIENCE (ONLINE) 2013; 13:88. [PMID: 24206568 PMCID: PMC3835035 DOI: 10.1673/031.013.8801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/08/2012] [Indexed: 06/02/2023]
Abstract
Striated muscles of both vertebrates and insects contain a third filament composed of the giant proteins, namely kettin and projectin (insects) and titin (vertebrates). All three proteins have been shown to contain several domains implicated in conferring elasticity, in particular a PEVK segment. In this study, the characterization of the projectin protein in the silkmoth, Bombyx mori L. (Lepidoptera: Bombycidae), and the monarch butterfly, Danaus plexippus L. (Lepidoptera: Nymphalidae), as well as a partial characterization in the Carolina sphinx, Manduca sexta L. (Lepidoptera: Sphingidae), are presented. This study showed that, similar to other insects, projectin's overall modular organization was conserved, but in contrast, the PEVK region had a highly divergent sequence. The analysis of alternative splicing in the PEVK region revealed a small number of possible isoforms and the lack of a flight-muscle specific variant, both characteristics being in sharp contrast with findings from other insects. The possible correlation with difference in flight muscle stiffness and physiology between Lepidoptera and other insect orders is discussed.
Collapse
Affiliation(s)
- A. J. Ayme-Southgate
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29401
| | - L. Turner
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29401
- Current address: Central Carolina Technical College, Sumter, SC
| | - R. J. Southgate
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29401
| |
Collapse
|
49
|
Peptidomic Analysis of the Brain and Corpora Cardiaca-Corpora Allata Complex in the Bombyx mori. INTERNATIONAL JOURNAL OF PEPTIDES 2012; 2012:640359. [PMID: 23316247 PMCID: PMC3534322 DOI: 10.1155/2012/640359] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 10/24/2012] [Accepted: 10/24/2012] [Indexed: 11/23/2022]
Abstract
The silkworm, Bombyx mori, is an important economic insect for silk production. However, many of the mature peptides relevant to its various life stages remain unknown. Using RP-HPLC, MALDI-TOF MS, and previously identified peptides from B. mori and other insects in the transcriptome database, we created peptide profiles showing a total of 6 ion masses that could be assigned to peptides in eggs, including one previously unidentified peptide. A further 49 peptides were assigned to larval brains. 17 new mature peptides were identified in isolated masses. 39 peptides were found in pupal brains with 8 unidentified peptides. 48 were found in adult brains with 12 unidentified peptides. These new unidentified peptides showed highly significant matches in all MS analysis. These matches were then searched against the National Center for Biotechnology Information (NCBI) database to provide new annotations for these mature peptides. In total, 59 mature peptides in 19 categories were found in the brains of silkworms at the larval, pupal, and adult stages. These results demonstrate that peptidomic variation across different developmental stages can be dramatic. Moreover, the corpora cardiaca-corpora allata (CC-CA) complex was examined during the fifth larval instar. A total of 41 ion masses were assigned to peptides.
Collapse
|
50
|
Wang W, Gao J, Wang J, Liu C, Meng Y. Cloning, expression and enzymatic properties analysis of dihydrofolate reductase gene from the silkworm, Bombyx mori. Mol Biol Rep 2012; 39:10285-91. [PMID: 23065260 DOI: 10.1007/s11033-012-1905-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 09/30/2012] [Indexed: 10/27/2022]
Abstract
Tetrahydrobiopterin (BH4) is an essential cofactor for aromatic acid hydroxylases, which control the levels of monoamine neurotransmitters. BH4 deficiency has been associated with many neuropsychological disorders. Dihydrofolate reductase (DHFR) can catalyze 7,8-dihydrobiopterin to 5,6,7,8-tetrahydrobiopterin (BH4) in the salvage pathway of BH4 synthesis from sepiapterin (SP), a major pigment component contained in the integument of silkworm Bombyx mori mutant lemon (lem) in high concentration. In this study, we report the cloning of DHFR gene from the silkworm B. mori (BmDhfr) and identification of enzymatic properties of BmDHFR. BmDhfr is located on scaffold Bm_199 with a predicted gene model BGIBMGA013340, which encodes a 185-aa polypeptide with a predicted molecular mass of about 21 kDa. Biochemical analyses showed that the recombinant BmDHFR protein exhibited high enzymatic activity and suitable parameters to substrate. Together with our previous studies on SP reductase of B. mori (BmSPR) and the lem mutant, it may be an effective way to industrially extract SP from the lem silkworms in large scale to produce BH4 in vitro by co-expressing BmSPR and BmDHFR and using the extracted SP as a substrate in the future.
Collapse
Affiliation(s)
- Wenjing Wang
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | | | | | | | | |
Collapse
|