1
|
Xu H, Palpant T, Wang Q, Shaw DE. Design of immunogens to present a tumor-specific cryptic epitope. Sci Rep 2025; 15:11322. [PMID: 40175576 PMCID: PMC11965450 DOI: 10.1038/s41598-025-94295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 03/12/2025] [Indexed: 04/04/2025] Open
Abstract
In many cancers, the epidermal growth factor receptor (EGFR) gene is amplified, mutated, or both. The monoclonal antibody mAb806 binds selectively to cancer cells that overexpress EGFR or express the truncated mutant EGFRvIII, but not to normal cells. This suggests that a promising avenue for developing cancer vaccines may be to design immunogens that elicit mAb806-like antibodies. In this study, we designed immunogens that present the mAb806-binding epitope in the same conformation as in overexpressed or truncated EGFR. We first used molecular dynamics simulations to identify conformations of EGFR in which the residues of the mAb806-binding epitope are accessible. We then designed immunogens by substituting that epitope in place of a structurally similar loop in a different protein and generating mutants that could potentially stabilize the mAb806-binding conformation in this new context. Two mutants in which the epitope remained stable in subsequent simulations were chosen for evaluation in vitro. Binding kinetics experiments with these designed immunogens provided strong evidence that the epitope was successfully stabilized in the mAb806-binding conformation, suggesting that they could potentially form the basis of vaccines that elicit cancer-selective antibodies.
Collapse
Affiliation(s)
- Huafeng Xu
- D. E. Shaw Research, New York, NY, 10036, USA.
- Atommap Corporation, New York, NY, 10065, USA.
| | - Timothy Palpant
- D. E. Shaw Research, New York, NY, 10036, USA
- Atommap Corporation, New York, NY, 10065, USA
| | - Qi Wang
- D. E. Shaw Research, New York, NY, 10036, USA
| | - David E Shaw
- D. E. Shaw Research, New York, NY, 10036, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Liu L, Yang M, Chen Z. Surface functionalized nanomaterial systems for targeted therapy of endocrine related tumors: a review of recent advancements. Drug Deliv 2024; 31:2390022. [PMID: 39138394 PMCID: PMC11328606 DOI: 10.1080/10717544.2024.2390022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
The application of multidisciplinary techniques in the management of endocrine-related cancers is crucial for harnessing the advantages of multiple disciplines and their coordinated efforts in eliminating tumors. Due to the malignant characteristics of cancer cells, they possess the capacity to develop resistance to traditional treatments such as chemotherapy and radiotherapy. Nevertheless, despite diligent endeavors to enhance the prediction of outcomes, the overall survival rate for individuals afflicted with endocrine-related malignancy remains quite miserable. Hence, it is imperative to investigate innovative therapy strategies. The latest advancements in therapeutic tactics have offered novel approaches for the therapy of various endocrine tumors. This paper examines the advancements in nano-drug delivery techniques and the utilization of nanomaterials for precise cancer cures through targeted therapy. This review provides a thorough analysis of the potential of combined drug delivery strategies in the treatment of thyroid cancer, adrenal gland tumors, and pancreatic cancer. The objective of this study is to gain a deeper understanding of current therapeutic approaches, stimulate the development of new drug DDS, and improve the effectiveness of treatment for patients with these diseases. The intracellular uptake of pharmaceuticals into cancer cells can be significantly improved through the implantation of synthetic or natural substances into nanoparticles, resulting in a substantial reduction in the development of endocrine malignancies.
Collapse
Affiliation(s)
- Limei Liu
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Miao Yang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ziyang Chen
- Department of Gastroenterology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Zhou D, Zhu X, Xiao Y. Advances in CAR-T therapy for central nervous system tumors. Biomark Res 2024; 12:132. [PMID: 39506843 PMCID: PMC11539471 DOI: 10.1186/s40364-024-00679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024] Open
Abstract
The application of chimeric antigen receptor T-cell therapy in central nervous system tumors has significantly advanced; however, challenges pertaining to the blood-brain barrier, immunosuppressive microenvironment, and antigenic heterogeneity continue to be encountered, unlike its success in hematological malignancies such as acute lymphoblastic leukemia and diffuse large B-cell lymphomas. This review examined the research progress of chimeric antigen receptor T-cell therapy in gliomas, medulloblastomas, and lymphohematopoietic tumors of the central nervous system, focusing on chimeric antigen receptor T-cells targeting antigens such as EGFRvIII, HER2, B7H3, GD2, and CD19 in preclinical and clinical studies. It synthesized current research findings to offer valuable insights for future chimeric antigen receptor T-cell therapeutic strategies for central nervous system tumors and advance the development and application of this therapeutic modality in this domain.
Collapse
Affiliation(s)
- Delian Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
4
|
Bagchi A, Stayrook SE, Xenaki KT, Starbird CA, Doulkeridou S, El Khoulati R, Roovers RC, Schmitz KR, van Bergen En Henegouwen PMP, Ferguson KM. Structural insights into the role and targeting of EGFRvIII. Structure 2024; 32:1367-1380.e6. [PMID: 38908376 PMCID: PMC11380598 DOI: 10.1016/j.str.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/06/2024] [Accepted: 05/28/2024] [Indexed: 06/24/2024]
Abstract
The epidermal growth factor receptor (EGFR) is a well-known oncogenic driver in lung and other cancers. In glioblastoma multiforme (GBM), the EGFR deletion variant III (EGFRvIII) is frequently found alongside EGFR amplification. Agents targeting the EGFR axis have shown limited clinical benefits in GBM and the role of EGFRvIII in GBM is poorly understood. To shed light on the role of EGFRvIII and its potential as a therapeutic target, we determined X-ray crystal structures of a monomeric EGFRvIII extracellular region (ECR). The EGFRvIII ECR resembles the unliganded conformation of EGFR, including the orientation of the C-terminal region of domain II. Domain II is mostly disordered, but the ECR structure is compact. We selected a nanobody with preferential binding to EGFRvIII relative to EGFR and structurally defined an epitope on domain IV that is occluded in the unliganded intact EGFR. These findings suggest new avenues for EGFRvIII targeting in GBM.
Collapse
Affiliation(s)
- Atrish Bagchi
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven E Stayrook
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Katerina T Xenaki
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584CH, the Netherlands
| | - Chrystal A Starbird
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Sofia Doulkeridou
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584CH, the Netherlands
| | - Rachid El Khoulati
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584CH, the Netherlands
| | - Rob C Roovers
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584CH, the Netherlands
| | - Karl R Schmitz
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Paul M P van Bergen En Henegouwen
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584CH, the Netherlands
| | - Kathryn M Ferguson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA.
| |
Collapse
|
5
|
Sferruzza G, Consoli S, Dono F, Evangelista G, Giugno A, Pronello E, Rollo E, Romozzi M, Rossi L, Pensato U. A systematic review of immunotherapy in high-grade glioma: learning from the past to shape future perspectives. Neurol Sci 2024; 45:2561-2578. [PMID: 38308708 DOI: 10.1007/s10072-024-07350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
High-grade gliomas (HGGs) constitute the most common malignant primary brain tumor with a poor prognosis despite the standard multimodal therapy. In recent years, immunotherapy has changed the prognosis of many cancers, increasing the hope for HGG therapy. We conducted a comprehensive search on PubMed, Scopus, Embase, and Web of Science databases to include relevant studies. This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Fifty-two papers were finally included (44 phase II and eight phase III clinical trials) and further divided into four different subgroups: 14 peptide vaccine trials, 15 dendritic cell vaccination (DCV) trials, six immune checkpoint inhibitor (ICI) trials, and 17 miscellaneous group trials that included both "active" and "passive" immunotherapies. In the last decade, immunotherapy created great hope to increase the survival of patients affected by HGGs; however, it has yielded mostly dismal results in the setting of phase III clinical trials. An in-depth analysis of these clinical results provides clues about common patterns that have led to failures at the clinical level and helps shape the perspective for the next generation of immunotherapies in neuro-oncology.
Collapse
Affiliation(s)
- Giacomo Sferruzza
- Vita-Salute San Raffaele University, Milan, Italy.
- Neurology Unit, IRCCS Ospedale San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.
| | - Stefano Consoli
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center of Advanced Studies and Technologies (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center of Advanced Studies and Technologies (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giacomo Evangelista
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center of Advanced Studies and Technologies (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Alessia Giugno
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Edoardo Pronello
- Neurology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Eleonora Rollo
- Department of Neurosciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marina Romozzi
- Department of Neurosciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lucrezia Rossi
- Neurology Unit, Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, ASUGI, University of Trieste, Trieste, Italy
| | - Umberto Pensato
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| |
Collapse
|
6
|
Bagley SJ, Logun M, Fraietta JA, Wang X, Desai AS, Bagley LJ, Nabavizadeh A, Jarocha D, Martins R, Maloney E, Lledo L, Stein C, Marshall A, Leskowitz R, Jadlowsky JK, Christensen S, Oner BS, Plesa G, Brennan A, Gonzalez V, Chen F, Sun Y, Gladney W, Barrett D, Nasrallah MP, Hwang WT, Ming GL, Song H, Siegel DL, June CH, Hexner EO, Binder ZA, O'Rourke DM. Intrathecal bivalent CAR T cells targeting EGFR and IL13Rα2 in recurrent glioblastoma: phase 1 trial interim results. Nat Med 2024; 30:1320-1329. [PMID: 38480922 DOI: 10.1038/s41591-024-02893-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/24/2024]
Abstract
Recurrent glioblastoma (rGBM) remains a major unmet medical need, with a median overall survival of less than 1 year. Here we report the first six patients with rGBM treated in a phase 1 trial of intrathecally delivered bivalent chimeric antigen receptor (CAR) T cells targeting epidermal growth factor receptor (EGFR) and interleukin-13 receptor alpha 2 (IL13Rα2). The study's primary endpoints were safety and determination of the maximum tolerated dose. Secondary endpoints reported in this interim analysis include the frequency of manufacturing failures and objective radiographic response (ORR) according to modified Response Assessment in Neuro-Oncology criteria. All six patients had progressive, multifocal disease at the time of treatment. In both dose level 1 (1 ×107 cells; n = 3) and dose level 2 (2.5 × 107 cells; n = 3), administration of CART-EGFR-IL13Rα2 cells was associated with early-onset neurotoxicity, most consistent with immune effector cell-associated neurotoxicity syndrome (ICANS), and managed with high-dose dexamethasone and anakinra (anti-IL1R). One patient in dose level 2 experienced a dose-limiting toxicity (grade 3 anorexia, generalized muscle weakness and fatigue). Reductions in enhancement and tumor size at early magnetic resonance imaging timepoints were observed in all six patients; however, none met criteria for ORR. In exploratory endpoint analyses, substantial CAR T cell abundance and cytokine release in the cerebrospinal fluid were detected in all six patients. Taken together, these first-in-human data demonstrate the preliminary safety and bioactivity of CART-EGFR-IL13Rα2 cells in rGBM. An encouraging early efficacy signal was also detected and requires confirmation with additional patients and longer follow-up time. ClinicalTrials.gov identifier: NCT05168423 .
Collapse
Affiliation(s)
- Stephen J Bagley
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Meghan Logun
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xin Wang
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Arati S Desai
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Linda J Bagley
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ali Nabavizadeh
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Danuta Jarocha
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rene Martins
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eileen Maloney
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lester Lledo
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Carly Stein
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amy Marshall
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rachel Leskowitz
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Julie K Jadlowsky
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shannon Christensen
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bike Su Oner
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gabriela Plesa
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Andrea Brennan
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Vanessa Gonzalez
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Fang Chen
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yusha Sun
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - David Barrett
- Kite Pharma, a Gilead Company, Santa Monica, CA, USA
| | - MacLean P Nasrallah
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hongjun Song
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Donald L Siegel
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth O Hexner
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zev A Binder
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Donald M O'Rourke
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Lucke-Wold B, Rangwala BS, Shafique MA, Siddiq MA, Mustafa MS, Danish F, Nasrullah RMU, Zainab N, Haseeb A. Focus on current and emerging treatment options for glioma: A comprehensive review. World J Clin Oncol 2024; 15:482-495. [PMID: 38689623 PMCID: PMC11056857 DOI: 10.5306/wjco.v15.i4.482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 02/28/2024] [Indexed: 04/22/2024] Open
Abstract
This comprehensive review delves into the current updates and challenges associated with the management of low-grade gliomas (LGG), the predominant primary tumors in the central nervous system. With a general incidence rate of 5.81 per 100000, gliomas pose a significant global concern, necessitating advancements in treatment techniques to reduce mortality and morbidity. This review places a particular focus on immunotherapies, discussing promising agents such as Zotiraciclib and Lerapolturev. Zotiraciclib, a CDK9 inhibitor, has demonstrated efficacy in glioblastoma treatment in preclinical and clinical studies, showing its potential as a therapeutic breakthrough. Lerapolturev, a viral immunotherapy, induces inflammation in glioblastoma and displays positive outcomes in both adult and pediatric patients. Exploration of immunotherapy extends to Pembrolizumab, Nivolumab, and Entrectinib, revealing the challenges and variabilities in patient responses. Despite promising preclinical data, the monoclonal antibody Depatuxizumab has proven ineffective in glioblastoma treatment, emphasizing the critical need to understand resistance mechanisms. The review also covers the success of radiation therapy in pediatric LGG, with evolving techniques, such as proton therapy, showing potential improvements in patient quality of life. Surgical treatment is discussed in the context of achieving a balance between preserving the patient's quality of life and attaining gross total resection, with the extent of surgical resection significantly influencing the survival outcomes. In addition to advancements in cancer vaccine development, this review highlights the evolving landscape of LGG treatment, emphasizing a shift toward personalized and targeted therapies. Ongoing research is essential for refining strategies and enhancing outcomes in the management of LGG.
Collapse
Affiliation(s)
- Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, United States
| | | | | | - Mohammad Arham Siddiq
- Department of Neurosurgery, Jinnah Sindh Medical University, Karachi 75510, Pakistan
| | | | - Fnu Danish
- Department of Neurosurgery, Jinnah Sindh Medical University, Karachi 75510, Pakistan
| | | | - Noor Zainab
- Department of Neurosurgery, Army Medical College, Rawalpindi 46000, Pakistan
| | - Abdul Haseeb
- Department of Neurosurgery, Jinnah Sindh Medical University, Karachi 75510, Pakistan
| |
Collapse
|
8
|
Dobersberger M, Sumesgutner D, Zajc CU, Salzer B, Laurent E, Emminger D, Sylvander E, Lehner E, Teufl M, Seigner J, Bobbili MR, Kunert R, Lehner M, Traxlmayr MW. An engineering strategy to target activated EGFR with CAR T cells. CELL REPORTS METHODS 2024; 4:100728. [PMID: 38492569 PMCID: PMC11045874 DOI: 10.1016/j.crmeth.2024.100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/18/2024] [Accepted: 02/16/2024] [Indexed: 03/18/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have shown remarkable response rates in hematological malignancies. In contrast, CAR T cell treatment of solid tumors is associated with several challenges, in particular the expression of most tumor-associated antigens at lower levels in vital organs, resulting in on-target/off-tumor toxicities. Thus, innovative approaches to improve the tumor specificity of CAR T cells are urgently needed. Based on the observation that many human solid tumors activate epidermal growth factor receptor (EGFR) on their surface through secretion of EGFR ligands, we developed an engineering strategy for CAR-binding domains specifically directed against the ligand-activated conformation of EGFR. We show, in several experimental systems, that the generated binding domains indeed enable CAR T cells to distinguish between active and inactive EGFR. We anticipate that this engineering concept will be an important step forward to improve the tumor specificity of CAR T cells directed against EGFR-positive solid cancers.
Collapse
Affiliation(s)
- Markus Dobersberger
- Department of Chemistry, Institute of Biochemistry, BOKU University, 1190 Vienna, Austria
| | - Delia Sumesgutner
- Department of Chemistry, Institute of Biochemistry, BOKU University, 1190 Vienna, Austria; CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria
| | - Charlotte U Zajc
- Department of Chemistry, Institute of Biochemistry, BOKU University, 1190 Vienna, Austria; CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria
| | - Benjamin Salzer
- CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria; St. Anna Children's Cancer Research Institute, CCRI, 1090 Vienna, Austria
| | - Elisabeth Laurent
- BOKU Core Facility Biomolecular & Cellular Analysis, BOKU University, 1190 Vienna, Austria
| | - Dominik Emminger
- CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria; St. Anna Children's Cancer Research Institute, CCRI, 1090 Vienna, Austria
| | - Elise Sylvander
- CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria; St. Anna Children's Cancer Research Institute, CCRI, 1090 Vienna, Austria
| | - Elisabeth Lehner
- Department of Chemistry, Institute of Biochemistry, BOKU University, 1190 Vienna, Austria; CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria
| | - Magdalena Teufl
- Department of Chemistry, Institute of Biochemistry, BOKU University, 1190 Vienna, Austria; CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria
| | - Jacqueline Seigner
- Department of Chemistry, Institute of Biochemistry, BOKU University, 1190 Vienna, Austria; Department of Biotechnology, Institute of Animal Cell Technology and Systems Biology, BOKU University, 1190 Vienna, Austria
| | - Madhusudhan Reddy Bobbili
- Department of Biotechnology, Institute of Molecular Biotechnology, BOKU University, 1190 Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, Research Center in Cooperation with AUVA, 1200 Vienna, Austria
| | - Renate Kunert
- Department of Biotechnology, Institute of Animal Cell Technology and Systems Biology, BOKU University, 1190 Vienna, Austria
| | - Manfred Lehner
- CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria; St. Anna Children's Cancer Research Institute, CCRI, 1090 Vienna, Austria; St. Anna Children's Hospital, Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael W Traxlmayr
- Department of Chemistry, Institute of Biochemistry, BOKU University, 1190 Vienna, Austria; CD Laboratory for Next Generation CAR T Cells, 1090 Vienna, Austria.
| |
Collapse
|
9
|
Dewdney B, Jenkins MR, Best SA, Freytag S, Prasad K, Holst J, Endersby R, Johns TG. From signalling pathways to targeted therapies: unravelling glioblastoma's secrets and harnessing two decades of progress. Signal Transduct Target Ther 2023; 8:400. [PMID: 37857607 PMCID: PMC10587102 DOI: 10.1038/s41392-023-01637-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Glioblastoma, a rare, and highly lethal form of brain cancer, poses significant challenges in terms of therapeutic resistance, and poor survival rates for both adult and paediatric patients alike. Despite advancements in brain cancer research driven by a technological revolution, translating our understanding of glioblastoma pathogenesis into improved clinical outcomes remains a critical unmet need. This review emphasises the intricate role of receptor tyrosine kinase signalling pathways, epigenetic mechanisms, and metabolic functions in glioblastoma tumourigenesis and therapeutic resistance. We also discuss the extensive efforts over the past two decades that have explored targeted therapies against these pathways. Emerging therapeutic approaches, such as antibody-toxin conjugates or CAR T cell therapies, offer potential by specifically targeting proteins on the glioblastoma cell surface. Combination strategies incorporating protein-targeted therapy and immune-based therapies demonstrate great promise for future clinical research. Moreover, gaining insights into the role of cell-of-origin in glioblastoma treatment response holds the potential to advance precision medicine approaches. Addressing these challenges is crucial to improving outcomes for glioblastoma patients and moving towards more effective precision therapies.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia.
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia.
| | - Misty R Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Sarah A Best
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Saskia Freytag
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Krishneel Prasad
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Jeff Holst
- School of Biomedical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Raelene Endersby
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| | - Terrance G Johns
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
10
|
Ho ECH, Qiu R, Miller E, Bilotta MT, FitzGerald D, Antignani A. Antibody drug conjugates, targeting cancer-expressed EGFR, exhibit potent and specific antitumor activity. Biomed Pharmacother 2023; 157:114047. [PMID: 36459711 PMCID: PMC9840435 DOI: 10.1016/j.biopha.2022.114047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
The monoclonal antibody '40H3' binds to EGFRvIII and to full-length EGFR when it is overexpressed on cancer cells. To generate candidate cytotoxic antibody-drug conjugates (ADCs), 40H3 was modified by the addition of small molecular weight payloads that included two tubulin-modifying agents, two topoisomerase inhibitors and a pyrrolobenzodiazepine (PBD) dimer. Conjugates retained antigen binding activity comparable to the unmodified 40H3 antibody. The cytotoxicity of five distinct ADCs was evaluated on a variety of EGFR-expressing cells including three triple negative breast cancer (TNBC) lines. Generally, the 40H3 conjugate with the PBD dimer (40H3-Tesirine) was the most active killing agent. The killing of EGFR-positive cells by 40H3-Tesirine correlated with the number of surface binding sites for 40H3. However, bystander killing was also evident in experiments with antigen-negative cells. In vivo tumor xenograft experiments were conducted on two TNBC tumor lines. Three treatments with the 40H3-Tesirine ADC at 1 mg/kg were sufficient to achieve complete remissions without evidence of mouse toxicity. Data support the development of ADCs derived from the 40H3 antibody for the treatment of cancers that express EGFRvIII or high levels of EGFR.
Collapse
Affiliation(s)
- Eric Chun Hei Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, United States
| | - Rong Qiu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, United States
| | - Ellis Miller
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, United States
| | - Maria Teresa Bilotta
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, United States
| | - David FitzGerald
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, United States.
| | - Antonella Antignani
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, United States.
| |
Collapse
|
11
|
Subham S, Jeppson JD, Worcester C, Schatmeyer B, Zhao J, Madan R, Lakis NS, Kimler BF, McGuirk JP, Chen RC, Stecklein SR, Akhavan D. EGFR as a potent CAR T target in triple negative breast cancer brain metastases. Breast Cancer Res Treat 2023; 197:57-69. [PMID: 36318382 PMCID: PMC10987173 DOI: 10.1007/s10549-022-06783-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE There is currently no curative treatment for patients diagnosed with triple-negative breast cancer brain metastases (TNBC-BM). CAR T cells hold potential for curative treatment given they retain the cytolytic activity of a T cell combined with the specificity of an antibody. In this proposal we evaluated the potential of EGFR re-directed CAR T cells as a therapeutic treatment against TNBC cells in vitro and in vivo. METHODS We leveraged a TNBC-BM tissue microarray and a large panel of TNBC cell lines and identified elevated epidermal growth factor receptor (EGFR) expression. Next, we designed a second-generation anti-EGFR CAR T construct incorporating a clinically relevant mAb806 tumor specific single-chain variable fragment (scFv) and intracellular 4-1BB costimulatory domain and CD3ζ using a lentivirus system and evaluated in vitro and in vivo anti-tumor activity. RESULTS We demonstrate EGFR is enriched in TNBC-BM patient tissue after neurosurgical resection, with six of 13 brain metastases demonstrating both membranous and cytoplasmic EGFR. Eleven of 13 TNBC cell lines have EGFR surface expression ≥ 85% by flow cytometry. EGFR806 CAR T treated mice effectively eradicated TNBC-BM and enhanced mouse survival (log rank p < 0.004). CONCLUSION Our results demonstrates anti-tumor activity of EGFR806 CAR T cells against TNBC cells in vitro and in vivo. Given EGFR806 CAR T cells are currently undergoing clinical trials in primary brain tumor patients without obvious toxicity, our results are immediately actionable against the TNBC-BM patient population.
Collapse
Affiliation(s)
- Siddharth Subham
- Department of Radiation Oncology, University of Kansas Cancer Center, Kansas City, KS, USA
- Department of Cancer Biology, University of Kansas Cancer Center, Kansas City, KS, USA
- BioEngineering Program, University of Kansas, Lawrence, KS, USA
| | - John D Jeppson
- Department of Radiation Oncology, University of Kansas Cancer Center, Kansas City, KS, USA
| | - Colette Worcester
- Department of Radiation Oncology, University of Kansas Cancer Center, Kansas City, KS, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bryan Schatmeyer
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jie Zhao
- Department of Cancer Biology, University of Kansas Cancer Center, Kansas City, KS, USA
| | - Rashna Madan
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nelli S Lakis
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bruce F Kimler
- Department of Radiation Oncology, University of Kansas Cancer Center, Kansas City, KS, USA
| | - Joseph P McGuirk
- Department of Hematology and Stem Cell Transplantation, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ronald C Chen
- Department of Radiation Oncology, University of Kansas Cancer Center, Kansas City, KS, USA
| | - Shane R Stecklein
- Department of Radiation Oncology, University of Kansas Cancer Center, Kansas City, KS, USA
- Department of Cancer Biology, University of Kansas Cancer Center, Kansas City, KS, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - David Akhavan
- Department of Radiation Oncology, University of Kansas Cancer Center, Kansas City, KS, USA.
- Department of Cancer Biology, University of Kansas Cancer Center, Kansas City, KS, USA.
- BioEngineering Program, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
12
|
Cheng C, Cui H, Liu H, Wu Y, Ding N, Weng Y, Zhang W, Cui Y. Role of Epidermal Growth Factor Receptor-Specific CAR-T Cells in the Suppression of Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14246021. [PMID: 36551506 PMCID: PMC9775531 DOI: 10.3390/cancers14246021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/17/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
ESCC is a highly malignant tumor, and its morbidity and mortality in China account for more than 50% of the world's total rates. As effective treatments are lacking, the 5-year survival rate of patients does not exceed 30%. CAR-T-cell-based immunotherapy has emerged as one of the most promising cancer treatments; however, there are relatively fewer reports regarding its application for ESCC. In this study, we conducted large-sample whole-genome sequencing (WGS) and RNA-seq analysis of patients with ESCC from China to examine the feasibility of EGFR-targeting CAR-T cells in the treatment of ESCC. We found much higher levels of EGFR gene amplification and overexpression in tumors than in the normal tissues, indicating that EGFR could be a promising target of CAR-T-cell-based immunotherapy in ESCC. Therefore, we tested EGFR-targeting CAR-T cells for lytic activity against ESCC cells as a model to establish cellular immunotherapy for ESCC. Five types of CAR-T cells targeting EGFR were constructed, two of which, CAR1-T and CAR2-T, showed a strong cytotoxicity against ESCC in in vitro and in vivo experiments. The results of this study suggest that CAR1-T and CAR2-T have the potential to be used for anti-ESCC immunotherapy in clinics.
Collapse
Affiliation(s)
- Chen Cheng
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518028, China
- Shenzhen Bay Laboratory, Institute of Cancer Research, Shenzhen 518028, China
| | - Heyang Cui
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518028, China
| | - Huijuan Liu
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518028, China
| | - Yueguang Wu
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518028, China
| | - Ning Ding
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518028, China
| | - Yongjia Weng
- Shenzhen Bay Laboratory, Institute of Cancer Research, Shenzhen 518028, China
| | - Weimin Zhang
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518028, China
- Shenzhen Bay Laboratory, Institute of Cancer Research, Shenzhen 518028, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
- Correspondence: (W.Z.); (Y.C.)
| | - Yongping Cui
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518028, China
- Shenzhen Bay Laboratory, Institute of Cancer Research, Shenzhen 518028, China
- Correspondence: (W.Z.); (Y.C.)
| |
Collapse
|
13
|
Lin B, Ziebro J, Smithberger E, Skinner KR, Zhao E, Cloughesy TF, Binder ZA, O’Rourke DM, Nathanson DA, Furnari FB, Miller CR. EGFR, the Lazarus target for precision oncology in glioblastoma. Neuro Oncol 2022; 24:2035-2062. [PMID: 36125064 PMCID: PMC9713527 DOI: 10.1093/neuonc/noac204] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Lazarus effect is a rare condition that happens when someone seemingly dead shows signs of life. The epidermal growth factor receptor (EGFR) represents a target in the fatal neoplasm glioblastoma (GBM) that through a series of negative clinical trials has prompted a vocal subset of the neuro-oncology community to declare this target dead. However, an argument can be made that the core tenets of precision oncology were overlooked in the initial clinical enthusiasm over EGFR as a therapeutic target in GBM. Namely, the wrong drugs were tested on the wrong patients at the wrong time. Furthermore, new insights into the biology of EGFR in GBM vis-à-vis other EGFR-driven neoplasms, such as non-small cell lung cancer, and development of novel GBM-specific EGFR therapeutics resurrects this target for future studies. Here, we will examine the distinct EGFR biology in GBM, how it exacerbates the challenge of treating a CNS neoplasm, how these unique challenges have influenced past and present EGFR-targeted therapeutic design and clinical trials, and what adjustments are needed to therapeutically exploit EGFR in this devastating disease.
Collapse
Affiliation(s)
- Benjamin Lin
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Julia Ziebro
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Erin Smithberger
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Pathobiology and Translational Sciences Program, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kasey R Skinner
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Neurosciences Curriculum, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eva Zhao
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Zev A Binder
- Department of Neurosurgery and Glioblastoma Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Donald M O’Rourke
- Department of Neurosurgery and Glioblastoma Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Frank B Furnari
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, San Diego, California, USA
- Ludwig Cancer Research, San Diego, California, USA
| | - C Ryan Miller
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
14
|
Dewdney B, Ursich L, Fletcher EV, Johns TG. Anoctamins and Calcium Signalling: An Obstacle to EGFR Targeted Therapy in Glioblastoma? Cancers (Basel) 2022; 14:cancers14235932. [PMID: 36497413 PMCID: PMC9740065 DOI: 10.3390/cancers14235932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Glioblastoma is the most common form of high-grade glioma in adults and has a poor survival rate with very limited treatment options. There have been no significant advancements in glioblastoma treatment in over 30 years. Epidermal growth factor receptor is upregulated in most glioblastoma tumours and, therefore, has been a drug target in recent targeted therapy clinical trials. However, while many inhibitors and antibodies for epidermal growth factor receptor have demonstrated promising anti-tumour effects in preclinical models, they have failed to improve outcomes for glioblastoma patients in clinical trials. This is likely due to the highly plastic nature of glioblastoma tumours, which results in therapeutic resistance. Ion channels are instrumental in the development of many cancers and may regulate cellular plasticity in glioblastoma. This review will explore the potential involvement of a class of calcium-activated chloride channels called anoctamins in brain cancer. We will also discuss the integrated role of calcium channels and anoctamins in regulating calcium-mediated signalling pathways, such as epidermal growth factor signalling, to promote brain cancer cell growth and migration.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-6319-1023
| | - Lauren Ursich
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Emily V. Fletcher
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
| | - Terrance G. Johns
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
15
|
Lange JT, Rose JC, Chen CY, Pichugin Y, Xie L, Tang J, Hung KL, Yost KE, Shi Q, Erb ML, Rajkumar U, Wu S, Taschner-Mandl S, Bernkopf M, Swanton C, Liu Z, Huang W, Chang HY, Bafna V, Henssen AG, Werner B, Mischel PS. The evolutionary dynamics of extrachromosomal DNA in human cancers. Nat Genet 2022; 54:1527-1533. [PMID: 36123406 PMCID: PMC9534767 DOI: 10.1038/s41588-022-01177-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/01/2022] [Indexed: 12/21/2022]
Abstract
Oncogene amplification on extrachromosomal DNA (ecDNA) is a common event, driving aggressive tumor growth, drug resistance and shorter survival. Currently, the impact of nonchromosomal oncogene inheritance-random identity by descent-is poorly understood. Also unclear is the impact of ecDNA on somatic variation and selection. Here integrating theoretical models of random segregation, unbiased image analysis, CRISPR-based ecDNA tagging with live-cell imaging and CRISPR-C, we demonstrate that random ecDNA inheritance results in extensive intratumoral ecDNA copy number heterogeneity and rapid adaptation to metabolic stress and targeted treatment. Observed ecDNAs benefit host cell survival or growth and can change within a single cell cycle. ecDNA inheritance can predict, a priori, some of the aggressive features of ecDNA-containing cancers. These properties are facilitated by the ability of ecDNA to rapidly adapt genomes in a way that is not possible through chromosomal oncogene amplification. These results show how the nonchromosomal random inheritance pattern of ecDNA contributes to poor outcomes for patients with cancer.
Collapse
Affiliation(s)
- Joshua T Lange
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- ChEM-H, Stanford University, Stanford, CA, USA
| | - John C Rose
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Celine Y Chen
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yuriy Pichugin
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Liangqi Xie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California, Berkeley, CA, USA
| | - Jun Tang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- ChEM-H, Stanford University, Stanford, CA, USA
| | - King L Hung
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathryn E Yost
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Quanming Shi
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Marcella L Erb
- University of California San Diego Light Microscopy Core Facility, Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Utkrisht Rajkumar
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Sihan Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Marie Bernkopf
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Medical Oncology, University College London Hospitals, London, UK
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Weini Huang
- Group of Theoretical Biology, The State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China.
- Department of Mathematics, Queen Mary University of London, London, UK.
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
| | - Anton G Henssen
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Benjamin Werner
- Evolutionary Dynamics Group, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- ChEM-H, Stanford University, Stanford, CA, USA.
| |
Collapse
|
16
|
Huang L, He H, Wang K, Ma X, Chen X, Chen W, Wang X, Jiang X, Feng M. EGFRvⅢ-targeted immunotoxin combined with temozolomide and bispecific antibody for the eradication of established glioblastoma. Biomed Pharmacother 2022; 155:113659. [PMID: 36095959 DOI: 10.1016/j.biopha.2022.113659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
EGFRvⅢ is an established target for immunotherapy of glioblastoma (GBM). Current study aims to explore the efficacy of EGFRvⅢ-targeted immunotoxin combined with temozolomide (TMZ) or T cell-engaged bispecific antibody for the treatment of GBM. We generated three rabbit monoclonal antibodies (R1, R2, and R6) that specifically bound to EGFRvⅢ, but not EGFR, with high affinity. Immunotoxins were made by fusing the scFv of these antibodies with engineered Pseudomonas exotoxin PE24. The in vitro cytotoxicity and specificity of the immunotoxins was rigorously validated by EGFRvⅢ and EGFR-expressed cell lines. The in vivo efficacy of immunotoxin monotherapy and in combination with TMZ or EGFRvⅢ-targeted bispecific antibody was evaluated in orthotopic and subcutaneous xenograft mouse models. EGFRvⅢ immunotoxins potently killed U87, U251 and GL261 cells that were forcefully expressing EGFRvⅢ, with IC50 values bellow 1.2 ng/ml. In a subcutaneous model, multiple intratumoral injections of immunotoxin at a dose of 2 mg/kg resulted in complete tumor regression in 3/5 of mice. In a C57BL/6 orthotopic glioblastoma model transplanted with GL261 cells that expressed a mouse version of EGFRvⅢ, two injections of 10 micrograms of immunotoxin in the lateral ventricles significantly improved the survival, with 2/5 mice being completely cured. Furthermore, in a subcutaneous xenograft model transplanted with EGFRvⅢ-expressed U87 cells, a single intratumoral injection of immuntoxin followed by i.v. injections of TMZ or EGFRvⅢ-targeted bispecific antibody achieved complete regression in mice. Taken together, EGFRvⅢ immunotoxin combined with TMZ or T cell-engaged bispecific antibody offers promise for curative treatment of GBM.
Collapse
Affiliation(s)
- Le Huang
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Huixia He
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ke Wang
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xuqian Ma
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xin Chen
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wenxin Chen
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xuan Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430070, China
| | - Xiaobing Jiang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430070, China.
| | - Mingqian Feng
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
17
|
Lassman AB, Pugh SL, Wang TJC, Aldape K, Gan HK, Preusser M, Vogelbaum MA, Sulman EP, Won M, Zhang P, Moazami G, Macsai MS, Gilbert MR, Bain EE, Blot V, Ansell PJ, Samanta S, Kundu MG, Armstrong TS, Wefel JS, Seidel C, de Vos FY, Hsu S, Cardona AF, Lombardi G, Bentsion D, Peterson RA, Gedye C, Bourg V, Wick A, Curran WJ, Mehta MP. Depatuxizumab mafodotin in EGFR-amplified newly diagnosed glioblastoma: A phase III randomized clinical trial. Neuro Oncol 2022; 25:339-350. [PMID: 35849035 PMCID: PMC9925712 DOI: 10.1093/neuonc/noac173] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Approximately 50% of newly diagnosed glioblastomas (GBMs) harbor epidermal growth factor receptor gene amplification (EGFR-amp). Preclinical and early-phase clinical data suggested efficacy of depatuxizumab mafodotin (depatux-m), an antibody-drug conjugate comprised of a monoclonal antibody that binds activated EGFR (overexpressed wild-type and EGFRvIII-mutant) linked to a microtubule-inhibitor toxin in EGFR-amp GBMs. METHODS In this phase III trial, adults with centrally confirmed, EGFR-amp newly diagnosed GBM were randomized 1:1 to radiotherapy, temozolomide, and depatux-m/placebo. Corneal epitheliopathy was treated with a combination of protocol-specified prophylactic and supportive measures. There was 85% power to detect a hazard ratio (HR) ≤0.75 for overall survival (OS) at a 2.5% 1-sided significance level (ie traditional two-sided p ≤ 0.05) by log-rank testing. RESULTS There were 639 randomized patients (median age 60, range 22-84; 62% men). Prespecified interim analysis found no improvement in OS for depatux-m over placebo (median 18.9 vs. 18.7 months, HR 1.02, 95% CI 0.82-1.26, 1-sided p = 0.63). Progression-free survival was longer for depatux-m than placebo (median 8.0 vs. 6.3 months; HR 0.84, 95% confidence interval [CI] 0.70-1.01, p = 0.029), particularly among those with EGFRvIII-mutant (median 8.3 vs. 5.9 months, HR 0.72, 95% CI 0.56-0.93, 1-sided p = 0.002) or MGMT unmethylated (HR 0.77, 95% CI 0.61-0.97; 1-sided p = 0.012) tumors but without an OS improvement. Corneal epitheliopathy occurred in 94% of depatux-m-treated patients (61% grade 3-4), causing 12% to discontinue. CONCLUSIONS Interim analysis demonstrated no OS benefit for depatux-m in treating EGFR-amp newly diagnosed GBM. No new important safety risks were identified.
Collapse
Affiliation(s)
- Andrew B Lassman
- Corresponding Author: Andrew B. Lassman, MD, Division of Neuro-Oncology, Department of Neurology, Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, and New York-Presbyterian Hospital, 710 West 168th Street, New York, NY, USA. ()
| | - Stephanie L Pugh
- RTOG Foundation Statistics and Data Management Center, American College of Radiology, Philadelphia, Pennsylvania
| | - Tony J C Wang
- Department of Radiation Oncology (in Neurological Surgery), Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Hospital, New York, New York, USA,Herbert Irving Comprehensive Cancer Center, New York, New York, USA
| | - Kenneth Aldape
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Hui K Gan
- Cancer Therapies and Biology Group, Centre of Research Excellence in Brain Tumours, Olivia Newton-John Cancer Wellness and Research Centre, Austin Hospital, Heidelberg, Melbourne, Australia,La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia,Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Erik P Sulman
- Department of Radiation Oncology, New York University, Grossman School of Medicine, New York, New York, USA,Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Minhee Won
- RTOG Foundation Statistics and Data Management Center, American College of Radiology, Philadelphia, Pennsylvania
| | | | - Golnaz Moazami
- Department of Ophthalmology, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Hospital, New York, New York, USA
| | - Marian S Macsai
- NorthShore University HealthSystem, Department of Ophthalmology, University of Chicago Pritzker School of Medicine, Evanston, Illinois, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | | | | | | | - Jeffrey S Wefel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Filip Y de Vos
- University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - Sigmund Hsu
- Department of Neurosurgery, University of Texas Health Sciences Center, McGovern School of Medicine, Houston, Texas, USA
| | - Andrés F Cardona
- Foundation for Clinical and Applied Cancer Research-FICMAC/Clinical and Translational Oncology Group, Brain Tumor Section, Bogotá, Colombia
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | | | - Craig Gedye
- Calvary Mater Newcastle, Waratah, New South Wales, Australia
| | - Véronique Bourg
- Department of Neurology, Côte d’Azur University, Nice, France
| | - Antje Wick
- Heidelberg University Medical Center, Heidelberg, Germany
| | | | - Minesh P Mehta
- Miami Cancer Institute, Baptist Hospital, Miami, Florida, USA
| |
Collapse
|
18
|
Loberg LI, Henriques TA, Johnson JK, Miller PE, Ralston SL. Characterization and Potential Mitigation of Corneal Effects in Nonclinical Toxicology Studies in Animals Administered Depatuxizumab Mafodotin. J Ocul Pharmacol Ther 2022; 38:471-480. [PMID: 35537481 DOI: 10.1089/jop.2022.0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purpose: To characterize the ocular toxicity of an antibody-drug conjugate (ADC), depatuxizumab mafodotin (Depatux-m), in nonclinical species and to evaluate the effects of drug-antibody ratios (DARs), variations of the ADC construct, and potential methods for mitigation of the corneal toxicity. Depatux-m contains the potent cytotoxic agent monomethyl auristatin F as the ADC payload. Methods: Depatux-m was administered intravenously to cynomolgus monkeys at doses up to 30 mg/kg and to mice up to 100 mg/kg. Ocular toxicity was evaluated by clinical ophthalmic examinations and histopathology. Potential mitigation was tested through agents to block target engagement and multiple topical ophthalmic treatments (antioxidant, vasoconstrictor, tear stimulant). Results: Effects primarily involved corneal epithelium and were dose-dependent with respect to onset, severity, and time to reversal in both monkeys and mice. On slit lamp biomicroscopy, the initial effect in monkeys was superficial multifocal punctate opacities (granularity), which migrated axially and were followed by pigmentation and multifocal punctate fluorescein staining. Microscopically, findings were characterized by single-cell necrosis, pigmentation, disordered basilar layer, and thinning of the corneal epithelium. Increased toxicity was associated with a higher DAR or more stably attached linker. Treatment with agents to block target engagement did not affect toxicity, and none of the topical treatments was successful. Conclusions: The corneal findings observed were similar to the effects described in clinical trials with Depatux-m and other ADCs. Collectively, these studies and available literature support the hypothesis that ADC-mediated toxicity is driven primarily by mechanism of action of the payload.
Collapse
Affiliation(s)
- Lise I Loberg
- Preclinical Safety, AbbVie, Inc., North Chicago, Illinois, USA
| | | | - Julie K Johnson
- Preclinical Safety, AbbVie, Inc., North Chicago, Illinois, USA
| | - Paul E Miller
- Ocular Services on Demand (OSOD), Madison, Wisconsin, USA
| | | |
Collapse
|
19
|
Mazurek M, Szczepanek D, Orzyłowska A, Rola R. Analysis of Factors Affecting 5-ALA Fluorescence Intensity in Visualizing Glial Tumor Cells-Literature Review. Int J Mol Sci 2022; 23:ijms23020926. [PMID: 35055109 PMCID: PMC8779265 DOI: 10.3390/ijms23020926] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
Glial tumors are one of the most common lesions of the central nervous system. Despite the implementation of appropriate treatment, the prognosis is not successful. As shown in the literature, maximal tumor resection is a key element in improving therapeutic outcome. One of the methods to achieve it is the use of fluorescent intraoperative navigation with 5-aminolevulinic acid. Unfortunately, often the level of fluorescence emitted is not satisfactory, resulting in difficulties in the course of surgery. This article summarizes currently available knowledge regarding differences in the level of emitted fluorescence. It may depend on both the histological type and the genetic profile of the tumor, which is reflected in the activity and expression of enzymes involved in the intracellular metabolism of fluorescent dyes, such as PBGD, FECH, UROS, and ALAS. The transport of 5-aminolevulinic acid and its metabolites across the blood–brain barrier and cell membranes mediated by transporters, such as ABCB6 and ABCG2, is also important. Accompanying therapies, such as antiepileptic drugs or steroids, also have an impact on light emission by tumor cells. Accurate determination of the factors influencing the fluorescence of 5-aminolevulinic acid-treated cells may contribute to the improvement of fluorescence navigation in patients with highly malignant gliomas.
Collapse
|
20
|
Oliveira MC, Correia JDG. Clinical application of radioiodinated antibodies: where are we? Clin Transl Imaging 2022. [DOI: 10.1007/s40336-021-00477-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Marin BM, Porath KA, Jain S, Kim M, Conage-Pough JE, Oh JH, Miller CL, Talele S, Kitange GJ, Tian S, Burgenske DM, Mladek AC, Gupta SK, Decker PA, McMinn MH, Stopka SA, Regan MS, He L, Carlson BL, Bakken K, Burns TC, Parney IF, Giannini C, Agar NYR, Eckel-Passow JE, Cochran JR, Elmquist WF, Vaubel RA, White FM, Sarkaria JN. Heterogeneous delivery across the blood-brain barrier limits the efficacy of an EGFR-targeting antibody drug conjugate in glioblastoma. Neuro Oncol 2021; 23:2042-2053. [PMID: 34050676 PMCID: PMC8643472 DOI: 10.1093/neuonc/noab133] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Antibody drug conjugates (ADCs) targeting the epidermal growth factor receptor (EGFR), such as depatuxizumab mafodotin (Depatux-M), is a promising therapeutic strategy for glioblastoma (GBM) but recent clinical trials did not demonstrate a survival benefit. Understanding the mechanisms of failure for this promising strategy is critically important. METHODS PDX models were employed to study efficacy of systemic vs intracranial delivery of Depatux-M. Immunofluorescence and MALDI-MSI were performed to detect drug levels in the brain. EGFR levels and compensatory pathways were studied using quantitative flow cytometry, Western blots, RNAseq, FISH, and phosphoproteomics. RESULTS Systemic delivery of Depatux-M was highly effective in nine of 10 EGFR-amplified heterotopic PDXs with survival extending beyond one year in eight PDXs. Acquired resistance in two PDXs (GBM12 and GBM46) was driven by suppression of EGFR expression or emergence of a novel short-variant of EGFR lacking the epitope for the Depatux-M antibody. In contrast to the profound benefit observed in heterotopic tumors, only two of seven intrinsically sensitive PDXs were responsive to Depatux-M as intracranial tumors. Poor efficacy in orthotopic PDXs was associated with limited and heterogeneous distribution of Depatux-M into tumor tissues, and artificial disruption of the BBB or bypass of the BBB by direct intracranial injection of Depatux-M into orthotopic tumors markedly enhanced the efficacy of drug treatment. CONCLUSIONS Despite profound intrinsic sensitivity to Depatux-M, limited drug delivery into brain tumor may have been a key contributor to lack of efficacy in recently failed clinical trials.
Collapse
Affiliation(s)
- Bianca-Maria Marin
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kendra A Porath
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sonia Jain
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Minjee Kim
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jason E Conage-Pough
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ju-Hee Oh
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Caitlyn L Miller
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Surabhi Talele
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gaspar J Kitange
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shulan Tian
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ann C Mladek
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shiv K Gupta
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul A Decker
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Madison H McMinn
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Sylwia A Stopka
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael S Regan
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lihong He
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Brett L Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Katrina Bakken
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Terence C Burns
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Ian F Parney
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology; Mayo Clinic, Rochester, Minnesota, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - William F Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rachael A Vaubel
- Department of Laboratory Medicine and Pathology; Mayo Clinic, Rochester, Minnesota, USA
| | - Forest M White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
22
|
Gan HK, Burge M, Solomon B, Lee ST, Holen KD, Zhang Y, Ciprotti M, Lee FT, Munasinghe W, Fischer J, Ansell P, Fox G, Xiong H, Reilly EB, Humerickhouse R, Scott AM. A Phase 1 and Biodistribution Study of ABT-806i, an 111In-Radiolabeled Conjugate of the Tumor-Specific Anti-EGFR Antibody ABT-806. J Nucl Med 2021; 62:787-794. [PMID: 33509972 DOI: 10.2967/jnumed.120.253146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022] Open
Abstract
ABT-806 is a tumor-specific antibody targeting the epidermal growth factor receptor (EGFR). This study assessed safety, biodistribution, and pharmacokinetics of 111In-radiolabeled ABT-806 (ABT-806i) and effects of repeated doses of ABT-806 on receptor occupancy. Methods: Eligible patients had advanced tumors likely to express EGFR/EGFRvIII; adequate performance status and organ function; and measurable disease by RECIST 1.1. In cohort 1, 6 patients received a bolus administration of ABT-806i and underwent SPECT followed by whole-body planar scans. In cohort 2, 12 patients were imaged similarly as in 1 initially; thereafter, they received 3 doses of unlabeled ABT-806, before another dose of ABT-806i with associated SPECT and whole-body planar scans. At the end of both cohorts, patients who had stable or responding disease were able to enroll into an extension study (M12-326) in which they received unlabeled ABT-806 every 2 wk until disease progression, withdrawal of consent, or intolerable toxicity. Results: No toxicity related to ABT-806i infusion was observed. ABT-806i showed minimal uptake in normal tissues and cleared gradually from blood with a half-life of 6.0 ± 1.5 d. The mean effective dose of ABT-806i was 0.137 mSv/MBq for males and 0.183 mSv/MBq for females. ABT-806i tumor uptake varied and did not correlate with archived tumor EGFR expression. No change in ABT-806i uptake was observed after interval ABT-806 treatment, indicating stable EGFR expression in tumor. The patient with highest tumor uptake of ABT-806i had advanced head and neck cancer and experienced a partial response. Conclusion: ABT-806i allows for real-time imaging of EGFR conformational expression in tumors, has an acceptable radiation dosimetry, and provides important additional information about antigen expression compared with standard approaches using archival tissue. Its role to assist in patient selection for EGFR-based therapeutics and investigate treatment resistance should be further investigated.
Collapse
Affiliation(s)
- Hui K Gan
- Olivia Newton-John Cancer Research Institute, Austin Health, Melbourne, Australia .,School of Cancer Medicine, La Trobe University, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Matthew Burge
- Royal Brisbane and Women's Hospital, Brisbane, Australia.,University of Queensland, Brisbane, Australia
| | - Benjamin Solomon
- Department of Medicine, University of Melbourne, Melbourne, Australia.,Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sze Ting Lee
- Olivia Newton-John Cancer Research Institute, Austin Health, Melbourne, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia.,Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
| | | | - Yumin Zhang
- Sinotau Pharmaceutical Group, Beijing, China
| | - Marika Ciprotti
- Olivia Newton-John Cancer Research Institute, Austin Health, Melbourne, Australia
| | - F T Lee
- Olivia Newton-John Cancer Research Institute, Austin Health, Melbourne, Australia
| | | | | | | | | | - Hao Xiong
- AbbVie, North Chicago, Illinois; and
| | | | | | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute, Austin Health, Melbourne, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia.,Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
| |
Collapse
|
23
|
Advances in immunotherapeutic targets for childhood cancers: A focus on glypican-2 and B7-H3. Pharmacol Ther 2021; 223:107892. [PMID: 33992682 DOI: 10.1016/j.pharmthera.2021.107892] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
Cancer immunotherapies have revolutionized how we can treat adult malignancies and are being translated to pediatric oncology. Chimeric antigen receptor T-cell therapy and bispecific antibodies targeting CD19 have shown success for the treatment of pediatric patients with B-cell acute lymphoblastic leukemia. Anti-GD2 monoclonal antibody has demonstrated efficacy in neuroblastoma. In this review, we summarize the immunotherapeutic agents that have been approved for treating childhood cancers and provide an updated review of molecules expressed by pediatric cancers that are under study or are emerging candidates for future immunotherapies. Advances in our knowledge of tumor immunology and in genome profiling of cancers has led to the identification of new tumor-specific/associated antigens. While cell surface antigens are normally targeted in a major histocompatibility complex (MHC)-independent manner using antibody-based therapies, intracellular antigens are normally targeted with MHC-dependent T cell therapies. Glypican 2 (GPC2) and B7-H3 (CD276) are two cell surface antigens that are expressed by a variety of pediatric tumors such as neuroblastoma and potentially can have a positive impact on the treatment of pediatric cancers in the clinic.
Collapse
|
24
|
Kadioglu O, Saeed MEM, Mahmoud N, Azawi S, Mrasek K, Liehr T, Efferth T. Identification of novel drug resistance mechanisms by genomic and transcriptomic profiling of glioblastoma cells with mutation-activated EGFR. Life Sci 2021; 284:119601. [PMID: 33991550 DOI: 10.1016/j.lfs.2021.119601] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 11/29/2022]
Abstract
AIMS Epidermal growth factor receptor (EGFR) is not only involved in carcinogenesis, but also in chemoresistance. We characterized U87.MGΔEGFR glioblastoma cells with constitutively active EGFR due to deletion at the ligand binding domain in terms of gene expression profiling and chromosomal aberrations. Wild-type U87.MG cells served as control. MATERIALS AND METHODS RNA sequencing and network analyses (Ingenuity Pathway Analysis) were performed to identify novel drug resistance mechanisms related to expression of mutation activated EGFR. Chromosomal aberrations were characterized by multicolor fluorescence in situ hybridization (mFISH) and array comparative genomic hybridization (aCGH). KEY FINDINGS U87.MGΔEGFR cells presented much more chromosomal aberrations, amplifications and deletions than wild-type U87.MG cells. Still, both cell lines were near-triploid. Numerous genes were overexpressed in U87.MGΔEGFR cells, some of which have been already linked to drug resistance. PXDN, which is associated with epithelial mesenchymal transition, was the most upregulated gene (901.8-fold). TENM1 was 331.6-fold upregulated, and it was previously reported to modulate neural development. EGFR-AS1 (161.2-fold upregulated) has been reported to increase the EGFR mRNA stability and its expression - in accordance with that of EGFR - was upregulated (85.5-fold). In addition to well-known resistance genes, numerous novel genes and genomic aberrations were identified. ANGPT2 upregulation and CPM downregulation were validated by Western blotting. SIGNIFICANCE Transcriptomics and genomics analyses in U87.MGΔEGFR cells unraveled a range of novel drug resistance mechanisms including apoptosis, DNA repair, ferroptosis, glutathione related gene activities, heat shock, oxidative stress, transcription factor activities, which may have important implications for future treatment strategies.
Collapse
Affiliation(s)
- Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Nuha Mahmoud
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Shaymaa Azawi
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Kristin Mrasek
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
25
|
Lezcano C, Müller AM, Frosina D, Hernandez E, Geronimo JA, Busam KJ, Jungbluth AA. Immunohistochemical Detection of Cancer-Testis Antigen PRAME. Int J Surg Pathol 2021; 29:826-835. [PMID: 33890816 DOI: 10.1177/10668969211012085] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cancer-testis (CT) antigens were identified by their ability to elicit T- or B-cell immune responses in the autologous host. They are typically expressed in a wide variety of neoplasms and in normal adult tissues are restricted to testicular germ cells. PReferentially expressed Antigen of Melanoma (PRAME) is a member of the family of nonclassical CT antigens being expressed in a few other normal tissues besides testis. Interestingly, knowledge about the protein expression of many CT antigens is still incomplete due to the limited availability of reagents for their immunohistochemical detection. Here, we tested several commercially available serological reagents and identified a monoclonal antibody suitable for the immunohistochemical detection of PRAME in formalin-fixed paraffin-embedded specimens. We also tested a wide array of normal and neoplastic tissues. PRAME protein expression in normal tissues is congruent with original molecular data being present in the testis, and at low levels in the endometrium, adrenal cortex, and adult as well as fetal ovary. In tumors, there is diffuse PRAME immunoreactivity in most metastatic melanomas, myxoid liposarcomas, and synovial sarcomas. Other neoplasms such as seminomas and carcinomas of various origins including endometrial, serous ovarian, mammary ductal, lung, and renal showed an intermediate proportion of cases and variable extent of tumor cells positive for PRAME protein expression. As seen with other CT antigens, hepatocellular and colorectal carcinoma, Leydig cell tumors, mesothelioma, and leiomyosarcoma are poor expressers of PRAME.
Collapse
Affiliation(s)
| | | | - Denise Frosina
- 5803Memorial Sloan-Kettering Cancer Center, New York, USA
| | | | | | - Klaus J Busam
- 5803Memorial Sloan-Kettering Cancer Center, New York, USA
| | | |
Collapse
|
26
|
Kumar K, Ghosh A. Radiochemistry, Production Processes, Labeling Methods, and ImmunoPET Imaging Pharmaceuticals of Iodine-124. Molecules 2021; 26:E414. [PMID: 33466827 PMCID: PMC7830191 DOI: 10.3390/molecules26020414] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 01/01/2023] Open
Abstract
Target-specific biomolecules, monoclonal antibodies (mAb), proteins, and protein fragments are known to have high specificity and affinity for receptors associated with tumors and other pathological conditions. However, the large biomolecules have relatively intermediate to long circulation half-lives (>day) and tumor localization times. Combining superior target specificity of mAbs and high sensitivity and resolution of the PET (Positron Emission Tomography) imaging technique has created a paradigm-shifting imaging modality, ImmunoPET. In addition to metallic PET radionuclides, 124I is an attractive radionuclide for radiolabeling of mAbs as potential immunoPET imaging pharmaceuticals due to its physical properties (decay characteristics and half-life), easy and routine production by cyclotrons, and well-established methodologies for radioiodination. The objective of this report is to provide a comprehensive review of the physical properties of iodine and iodine radionuclides, production processes of 124I, various 124I-labeling methodologies for large biomolecules, mAbs, and the development of 124I-labeled immunoPET imaging pharmaceuticals for various cancer targets in preclinical and clinical environments. A summary of several production processes, including 123Te(d,n)124I, 124Te(d,2n)124I, 121Sb(α,n)124I, 123Sb(α,3n)124I, 123Sb(3He,2n)124I, natSb(α, xn)124I, natSb(3He,n)124I reactions, a detailed overview of the 124Te(p,n)124I reaction (including target selection, preparation, processing, and recovery of 124I), and a fully automated process that can be scaled up for GMP (Good Manufacturing Practices) production of large quantities of 124I is provided. Direct, using inorganic and organic oxidizing agents and enzyme catalysis, and indirect, using prosthetic groups, 124I-labeling techniques have been discussed. Significant research has been conducted, in more than the last two decades, in the development of 124I-labeled immunoPET imaging pharmaceuticals for target-specific cancer detection. Details of preclinical and clinical evaluations of the potential 124I-labeled immunoPET imaging pharmaceuticals are described here.
Collapse
Affiliation(s)
- Krishan Kumar
- Laboratory for Translational Research in Imaging Pharmaceuticals, The Wright Center of Innovation in Biomedical Imaging, Department of Radiology, The Ohio State University, Columbus, OH 43212, USA;
| | | |
Collapse
|
27
|
Chia PL, Parakh S, Russell P, Gan HK, Asadi K, Gebski V, Murone C, Walkiewicz M, Liu Z, Thapa B, Scott FE, Scott AM, John T. Expression of EGFR and conformational forms of EGFR in malignant pleural mesothelioma and its impact on survival. Lung Cancer 2020; 153:35-41. [PMID: 33453471 DOI: 10.1016/j.lungcan.2020.12.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 01/24/2023]
Abstract
AIM Conformational forms of the epidermal growth factor receptor (EGFR) are pro-tumorigenic. The prevalence and impact of conformational forms of EGFR in malignant mesothelioma (MM) is unknown. We investigated expression of EGFR and conformational forms of EGFR by immunohistochemistry using EGFR-targeting monoclonal antibodies (mAb). In addition, EGFR gene amplification was investigated by fluorescent in-situ hybridization (FISH). Findings were correlated with survival. METHODS Patients treated between 1988 and 2014 were identified from the thoracic surgery database of the Austin Hospital, Melbourne, Australia. Tissue microarrays (TMAs) were constructed, subjected to wild type (wt) EGFR IHC staining and FISH analysis. Conformational and mutation forms of EGFR were detected by IHC using mAb806, and LMH-151 which detects EGFRVIII. `H-scores` were derived and EGFR expression correlated with survival by Kaplan-Meier and log rank analysis. RESULTS WtEGFR expression was seen in 93 % (299/321) of cases with overexpression (defined as an H-score ≥200) seen in more than half of cases (64 %). EGFR overexpression in MM was seen more commonly in the epithelioid subtype. EGFR overexpression was not associated with true EGFR amplification, although multiple copies were appreciated in samples with polysomy. EGFR expression did not correlate with survival. A conformational form of EGFR associated with EGFR dysregulation was found in 8.2 % of cases, and patients with these tumors had a trend towards a poorer outcome. No cases of the EGFRVIII mutation were identified. CONCLUSION MM consistently demonstrated high expression of EGFR, with a subset of tumors showing conformational EGFR forms consistent with EGFR dysregulation, but withoutEGFR amplification or EGFR VIII mutation. wtEGFR expression did not influence survival. The impact of EGFR conformation on survival warrants further investigation.
Collapse
Affiliation(s)
- Puey Ling Chia
- Department of Medical Oncology, Austin Health, Melbourne, Australia; Olivia-Newton John Cancer Research Institute, Melbourne, Australia; Faculty of Medicine, University of Melbourne, Melbourne, Australia
| | - Sagun Parakh
- Department of Medical Oncology, Austin Health, Melbourne, Australia; Olivia-Newton John Cancer Research Institute, Melbourne, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Prudence Russell
- Faculty of Medicine, University of Melbourne, Melbourne, Australia; Department of Pathology, St Vincent's, Melbourne, Australia
| | - Hui K Gan
- Department of Medical Oncology, Austin Health, Melbourne, Australia; Olivia-Newton John Cancer Research Institute, Melbourne, Australia; Faculty of Medicine, University of Melbourne, Melbourne, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Khashayer Asadi
- Department of Pathology, Austin Health, Melbourne, Australia
| | - Val Gebski
- NHMRC Clinical Trials Centre, Sydney, Australia
| | - Carmel Murone
- Olivia-Newton John Cancer Research Institute, Melbourne, Australia
| | | | - Zhanqi Liu
- Olivia-Newton John Cancer Research Institute, Melbourne, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Bibhusal Thapa
- Olivia-Newton John Cancer Research Institute, Melbourne, Australia
| | - Fiona E Scott
- Olivia-Newton John Cancer Research Institute, Melbourne, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Andrew M Scott
- Olivia-Newton John Cancer Research Institute, Melbourne, Australia; Faculty of Medicine, University of Melbourne, Melbourne, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia; Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia.
| | - Thomas John
- Department of Medical Oncology, Austin Health, Melbourne, Australia; Olivia-Newton John Cancer Research Institute, Melbourne, Australia; Faculty of Medicine, University of Melbourne, Melbourne, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia
| |
Collapse
|
28
|
Pan PC, Magge RS. Mechanisms of EGFR Resistance in Glioblastoma. Int J Mol Sci 2020; 21:E8471. [PMID: 33187135 PMCID: PMC7696540 DOI: 10.3390/ijms21228471] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. Despite numerous efforts to target epidermal growth factor receptor (EGFR), commonly dysregulated in GBM, approaches directed against EGFR have not achieved the same degree of success as seen in other tumor types, particularly as compared to non-small cell lung cancer (NSCLC). EGFR alterations in glioblastoma lie primarily in the extracellular domain, unlike the kinase domain alterations seen in NSCLC. Small molecule inhibitors are difficult to develop for the extracellular domain. Monoclonal antibodies can be developed to target the extracellular domain but must contend with the blood brain barrier (BBB). We review the role of EGFR in GBM, the history of trialed treatments, and the potential paths forward to target the pathway that may have greater success.
Collapse
Affiliation(s)
- Peter C. Pan
- Division of Neuro-Oncology, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rajiv S. Magge
- Division of Neuro-Oncology, NewYork-Presbyterian/Weill Cornell Medicine, New York, NY 10021, USA;
| |
Collapse
|
29
|
Genetic Alterations of Epidermal Growth Factor Receptor in Glioblastoma: The Usefulness of Immunohistochemistry. Appl Immunohistochem Mol Morphol 2020; 27:589-598. [PMID: 29912767 DOI: 10.1097/pai.0000000000000669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Epidermal growth factor receptor (EGFR) amplification is one of the common alterations in IDH-wildtype glioblastoma. It is frequently associated with EGFRvIII mutation. To evaluate the correlation between EGFR overexpression, gene amplification, and EGFRvIII mutation, we performed immunohistochemical (IHC) analysis, fluorescence in situ hybridization by Vysis LSI EGFR/CEP7 dual color probe, and polymerase chain reaction studies in 76 patients diagnosed with glioblastomas (67 IDH-wildtype and 9 IDH-mutant). EGFR expression was scored ranging from 0 to 3+. Using formalin-fixed paraffin-embedded sections, real-time reverse transcription-polymerase chain reaction was carried out with primers specific for EGFRvIII and EGFR wildtype. In addition, we evaluated the impact of EGFR status on prognosis. EGFR gene amplifications and EGFRvIII mutations were identified in 30.3% and 15.5% of all cases, respectively. All the EGFR-amplified or EGFRvIII mutant cases were IDH-wildtype glioblastomas and tested positive with IHC. The sensitivity and specificity of EGFR IHC predicting EGFR gene amplification status were 100.0% and 46.5%, respectively. The EGFR-amplified cases tended to show more intense immunostaining (3+) in a considerable number of tumor cells (≥50%). Survival analyses of 37 IDH-wildtype glioblastoma patients revealed that none of the EGFR alterations significantly affected prognosis. EGFR IHC displayed high sensitivity and low specificity in predicting EGFR gene amplification, and interpretation of IHC results is a challenge. Therefore, EGFR IHC represents a possible screening tool for evaluation of EGFR gene amplification in clinical neuropathology, and both the intensity and proportion score facilitate interpretation of EGFR IHC.
Collapse
|
30
|
Kopylov AM, Zavyalova EG, Pavlova GV, Pronin IN. [Theranostics for glioblastoma with monoclonal antibodies to the epidermal growth factor receptor]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2020; 84:113-118. [PMID: 32649821 DOI: 10.17116/neiro202084031113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A review is devoted to analysis of the prospects of theranostics for multiform glioblastoma with monoclonal antibodies to the epidermal growth factor receptor (EGFR). Treatment of various malignancies demonstrated high potential of the use of EGFR. However, in case of glioblastoma, the effectiveness of monoclonal antibodies to EGFR is constrained by the absence of informative criteria for assessing the effectiveness of diagnosis and treatment of disease.
Collapse
Affiliation(s)
- A M Kopylov
- Lomonosov Moscow State University, Moscow, Russia.,Apto-Pharm LLC, Moscow, Russia
| | - E G Zavyalova
- Lomonosov Moscow State University, Moscow, Russia.,Apto-Pharm LLC, Moscow, Russia
| | - G V Pavlova
- Apto-Pharm LLC, Moscow, Russia.,Institute of Gene Biology of RAS, Moscow, Russia.,Burdenko Neurosurgical Center, Moscow, Russia
| | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
31
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
32
|
Altshuler DB, Kadiyala P, Núñez FJ, Núñez FM, Carney S, Alghamri MS, Garcia-Fabiani MB, Asad AS, Nicola Candia AJ, Candolfi M, Lahann J, Moon JJ, Schwendeman A, Lowenstein PR, Castro MG. Prospects of biological and synthetic pharmacotherapies for glioblastoma. Expert Opin Biol Ther 2020; 20:305-317. [PMID: 31959027 PMCID: PMC7059118 DOI: 10.1080/14712598.2020.1713085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/06/2020] [Indexed: 01/05/2023]
Abstract
Introduction: The field of neuro-oncology has experienced significant advances in recent years. More is known now about the molecular and genetic characteristics of glioma than ever before. This knowledge leads to the understanding of glioma biology and pathogenesis, guiding the development of targeted therapeutics and clinical trials. The goal of this review is to describe the state of basic, translational, and clinical research as it pertains to biological and synthetic pharmacotherapy for gliomas.Areas covered: Challenges remain in designing accurate preclinical models and identifying patients that are likely to respond to a particular targeted therapy. Preclinical models for therapeutic assessment are critical to identify the most promising treatment approaches.Expert opinion: Despite promising new therapeutics, there have been no significant breakthroughs in glioma treatment and patient outcomes. Thus, there is an urgent need to better understand the mechanisms of treatment resistance and to design effective clinical trials.
Collapse
Affiliation(s)
- David B. Altshuler
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Felipe J. Núñez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Fernando M. Núñez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Stephen Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mahmoud S. Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maria B. Garcia-Fabiani
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Antonela S. Asad
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires. Argentina
| | - Alejandro J. Nicola Candia
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires. Argentina
| | - Marianela Candolfi
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires. Argentina
| | - Joerg Lahann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
33
|
Bibi N, Awan IT, Awan AT. New Adsorption-Based Biosensors for Cancer Detections and Role of Nano-medicine in Its Prognosis and Inhibition. 'ESSENTIALS OF CANCER GENOMIC, COMPUTATIONAL APPROACHES AND PRECISION MEDICINE 2020:107-140. [DOI: 10.1007/978-981-15-1067-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
34
|
Ravanpay AC, Gust J, Johnson AJ, Rolczynski LS, Cecchini M, Chang CA, Hoglund VJ, Mukherjee R, Vitanza NA, Orentas RJ, Jensen MC. EGFR806-CAR T cells selectively target a tumor-restricted EGFR epitope in glioblastoma. Oncotarget 2019; 10:7080-7095. [PMID: 31903167 PMCID: PMC6925027 DOI: 10.18632/oncotarget.27389] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/02/2019] [Indexed: 12/31/2022] Open
Abstract
Targeting solid tumor antigens with chimeric antigen receptor (CAR) T cell therapy requires tumor specificity and tolerance toward variability in antigen expression levels. Given the relative paucity of unique cell surface proteins on tumor cells for CAR targeting, we have focused on identifying tumor-specific epitopes that arise as a consequence of target protein posttranslational modification. We designed a CAR using a mAb806-based binder, which recognizes tumor-specific untethered EGFR. The mAb806 epitope is also exposed in the EGFRvIII variant transcript. By varying spacer domain elements of the CAR, we structurally tuned the CAR to recognize low densities of EGFR representative of non-gene amplified expression levels in solid tumors. The appropriately tuned short-spacer 2nd generation EGFR806-CAR T cells showed efficient in vitro cytokine secretion and glioma cell lysis, which was competitively blocked by a short peptide encompassing the mAb806 binding site. Unlike the nonselective Erbitux-based CAR, EGFR806-CAR T cells did not target primary human fetal brain astrocytes expressing wild-type EGFR, but showed a similar level of activity compared to Erbitux-CAR when the tumor-specific EGFRvIII transcript variant was overexpressed in astrocytes. EGFR806-CAR T cells successfully treated orthotopic U87 glioma implants in NSG mice, with 50% of animals surviving to 90 days. With additional IL-2 support, all tumors were eradicate without recurrence after 90 days. In a novel human induced pluripotent stem cell (iPSC)-derived teratoma xenograft model, EGFR806-CAR T cells infiltrated but were not activated in EGFR+ epidermal cell nests as assessed by Granzyme B expression. These results indicate that EGFR806-CAR T cells effectively and selectively target EGFR-expressing tumor cells.
Collapse
Affiliation(s)
- Ali C Ravanpay
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, U.S.A.,University of Washington, Department of Neurological Surgery, Seattle, WA, U.S.A
| | - Juliane Gust
- University of Washington, Department of Neurology, Seattle, WA, U.S.A.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, U.S.A
| | - Adam J Johnson
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, U.S.A
| | - Lisa S Rolczynski
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, U.S.A
| | - Michelle Cecchini
- University of Washington, Department of Neurological Surgery, Seattle, WA, U.S.A
| | - Cindy A Chang
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, U.S.A
| | - Virginia J Hoglund
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, U.S.A
| | - Rithun Mukherjee
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, U.S.A
| | - Nicholas A Vitanza
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, U.S.A.,University of Washington, Department of Pediatrics, Seattle, WA, U.S.A
| | - Rimas J Orentas
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, U.S.A.,University of Washington, Department of Pediatrics, Seattle, WA, U.S.A
| | - Michael C Jensen
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, U.S.A.,University of Washington, Department of Pediatrics, Seattle, WA, U.S.A.,University of Washington, Department of Bioengineering, Seattle, WA, U.S.A
| |
Collapse
|
35
|
Rutkowska A, Stoczyńska-Fidelus E, Janik K, Włodarczyk A, Rieske P. EGFR vIII: An Oncogene with Ambiguous Role. JOURNAL OF ONCOLOGY 2019; 2019:1092587. [PMID: 32089685 PMCID: PMC7024087 DOI: 10.1155/2019/1092587] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
Epidermal growth factor receptor variant III (EGFRvIII) seems to constitute the perfect therapeutic target for glioblastoma (GB), as it is specifically present on up to 28-30% of GB cells. In case of other tumor types, expression and possible role of this oncogene still remain controversial. In spite of EGFRvIII mechanism of action being crucial for the design of small active anticancer molecules and immunotherapies, i.e., CAR-T technology, it is yet to be precisely defined. EGFRvIII is known to be resistant to degradation, but it is still unclear whether it heterodimerizes with EGF-activated wild-type EGFR (EGFRWT) or homodimerizes (including covalent homodimerization). Constitutive kinase activity of this mutated receptor is relatively low, and some researchers even claim that a nuclear, but not a membrane function, is crucial for its activity. Based on the analyses of recurrent tumors that are often lacking EGFRvIII expression despite its initial presence in corresponding primary foci, this oncogene is suggested to play a marginal role during later stages of carcinogenesis, while even in primary tumors EGFRvIII expression is detected only in a small percentage of tumor cells, undermining the rationality of EGFRvIII-targeting therapies. On the other hand, EGFRvIII-positive cells are resistant to apoptosis, more invasive, and characterized with enhanced proliferation rate. Moreover, expression of this oncogenic receptor was also postulated to be a marker of cancer stem cells. Opinions regarding the role that EGFRvIII plays in tumorigenesis and for tumor aggressiveness are clearly contradictory and, therefore, it is crucial not only to determine its mechanism of action, but also to unambiguously define its role at early and advanced cancer stages.
Collapse
Affiliation(s)
- Adrianna Rutkowska
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Ewelina Stoczyńska-Fidelus
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193 Lodz, Poland
- Department of Research and Development, Personather Ltd., Milionowa 23, 93-193 Lodz, Poland
| | - Karolina Janik
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Aneta Włodarczyk
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193 Lodz, Poland
- Department of Research and Development, Personather Ltd., Milionowa 23, 93-193 Lodz, Poland
| |
Collapse
|
36
|
Jameson NM, Ma J, Benitez J, Izurieta A, Han JY, Mendez R, Parisian A, Furnari F. Intron 1-Mediated Regulation of EGFR Expression in EGFR-Dependent Malignancies Is Mediated by AP-1 and BET Proteins. Mol Cancer Res 2019; 17:2208-2220. [PMID: 31444232 DOI: 10.1158/1541-7786.mcr-19-0747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 11/16/2022]
Abstract
The epidermal growth factor receptor (EGFR) is overexpressed in numerous solid tumors and is the subject of extensive therapeutic efforts. Much of the research on EGFR is focused on protein dynamics and downstream signaling; however, few studies have explored its transcriptional regulation. Here, we identified two enhancers (CE1 and CE2) present within the first intron of the EGFR gene in models of glioblastoma (GBM) and head and neck squamous cell carcinoma (HNSCC). CE1 and CE2 contain open chromatin and H3K27Ac histone marks, enhance transcription in reporter assays, and interact with the EGFR promoter. Enhancer genetic deletion by CRISPR/Cas9 significantly reduces EGFR transcript levels, with double deletion exercising an additive effect. Targeted repression of CE1 and CE2 by dCas9-KRAB demonstrates repression of transcription similar to that of genomic deletion. We identify AP-1 transcription factor family members in concert with BET bromodomain proteins as modulators of CE1 and CE2 activity in HNSCC and GBM through de novo motif identification and validate their presence. Genetic inhibition of AP-1 or pharmacologic disruption of BET/AP-1 binding results in downregulated EGFR protein and transcript levels, confirming a role for these factors in CE1 and CE2. Our results identify and characterize these novel enhancers, shedding light on the role that epigenetic mechanisms play in regulating EGFR transcription in EGFR-dependent cancers. IMPLICATIONS: We identify critical constituent enhancers present in the first intron of the EGFR gene, and provide a rationale for therapeutic targeting of EGFR intron 1 enhancers through perturbation of AP-1 and BET in EGFR-positive malignancies.
Collapse
Affiliation(s)
- Nathan M Jameson
- Ludwig Cancer Research, San Diego Branch, University of California at San Diego, La Jolla, California
| | - Jianhui Ma
- Ludwig Cancer Research, San Diego Branch, University of California at San Diego, La Jolla, California.,Zeno Pharmaceuticals, San Diego, California
| | - Jorge Benitez
- Ludwig Cancer Research, San Diego Branch, University of California at San Diego, La Jolla, California.,Celgene Corporation, San Diego, California
| | - Alejandro Izurieta
- Ludwig Cancer Research, San Diego Branch, University of California at San Diego, La Jolla, California
| | - Jee Yun Han
- Center for Epigenomics, University of California at San Diego, La Jolla, California
| | - Robert Mendez
- Center for Epigenomics, University of California at San Diego, La Jolla, California
| | - Alison Parisian
- Ludwig Cancer Research, San Diego Branch, University of California at San Diego, La Jolla, California
| | - Frank Furnari
- Ludwig Cancer Research, San Diego Branch, University of California at San Diego, La Jolla, California. .,The Department of Pathology, University of California San Diego, La Jolla, California
| |
Collapse
|
37
|
Oncogenic mutations at the EGFR ectodomain structurally converge to remove a steric hindrance on a kinase-coupled cryptic epitope. Proc Natl Acad Sci U S A 2019; 116:10009-10018. [PMID: 31028138 DOI: 10.1073/pnas.1821442116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) signaling is initiated by a large ligand-favored conformational change of the extracellular domain (ECD) from a closed, self-inhibited tethered monomer, to an open untethered state, which exposes a loop required for strong dimerization and activation. In glioblastomas (GBMs), structurally heterogeneous missense and deletion mutations concentrate at the ECD for unclear reasons. We explore the conformational impact of GBM missense mutations, combining elastic network models (ENMs) with multiple molecular dynamics (MD) trajectories. Our simulations reveal that the main missense class, located at the I-II interface away from the self-inhibitory tether, can unexpectedly favor spontaneous untethering to a compact intermediate state, here validated by small-angle X-ray scattering (SAXS). Significantly, such intermediate is characterized by the rotation of a large ECD fragment (N-TR1), deleted in the most common GBM mutation, EGFRvIII, and that makes accessible a cryptic epitope characteristic of cancer cells. This observation suggested potential structural equivalence of missense and deletion ECD changes in GBMs. Corroborating this hypothesis, our FACS, in vitro, and in vivo data demonstrate that entirely different ECD variants all converge to remove N-TR1 steric hindrance from the 806-epitope, which we show is allosterically coupled to an intermediate kinase and hallmarks increased oncogenicity. Finally, the detected extraintracellular coupling allows for synergistic cotargeting of the intermediate with mAb806 and inhibitors, which is proved herein.
Collapse
|
38
|
Chakraborty K, Dey A, Bhattacharyya A, Dasgupta SC. Anti-fibrotic effect of black tea (Camellia sinensis) extract in experimental pulmonary fibrosis. Tissue Cell 2019; 56:14-22. [DOI: 10.1016/j.tice.2018.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022]
|
39
|
Zebertavage L, Bambina S, Shugart J, Alice A, Zens KD, Lauer P, Hanson B, Gough MJ, Crittenden MR, Bahjat KS. A microbial-based cancer vaccine for induction of EGFRvIII-specific CD8+ T cells and anti-tumor immunity. PLoS One 2019; 14:e0209153. [PMID: 30601871 PMCID: PMC6314576 DOI: 10.1371/journal.pone.0209153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 12/02/2018] [Indexed: 12/19/2022] Open
Abstract
Dysregulated signaling via the epidermal growth factor receptor (EGFR)-family is believed to contribute to the progression of a diverse array of cancers. The most common variant of EGFR is EGFRvIII, which results from a consistent and tumor-specific in-frame deletion of exons 2-7 of the EGFR gene. This deletion generates a novel glycine at the junction and leads to constitutive ligand-independent activity. This junction forms a novel shared tumor neo-antigen with demonstrated immunogenicity in both mice and humans. A 21-amino acid peptide spanning the junctional region was selected, and then one or five copies of this 21-AA neo-peptide were incorporated into live-attenuated Listeria monocytogenes-based vaccine vector. These vaccine candidates demonstrated efficient secretion of the recombinant protein and potent induction of EGFRvIII-specific CD8+ T cells, which prevented growth of an EGFRvIII-expressing squamous cell carcinoma. These data demonstrate the potency of a novel cancer-specific vaccine candidate that can elicit EGFRvIII-specific cellular immunity, for the purpose of targeting EGFRvIII positive cancers that are resistant to conventional therapies.
Collapse
Affiliation(s)
- Lauren Zebertavage
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, United States of America
- Oregon Health and Sciences University, Portland, OR, United States of America
| | - Shelly Bambina
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, United States of America
| | - Jessica Shugart
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, United States of America
| | - Alejandro Alice
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, United States of America
| | - Kyra D. Zens
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, United States of America
| | - Peter Lauer
- Aduro Biotech, Berkeley, CA, United States of America
| | - Bill Hanson
- Aduro Biotech, Berkeley, CA, United States of America
| | - Michael J. Gough
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, United States of America
| | - Marka R. Crittenden
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, United States of America
- The Oregon Clinic, Portland, OR, United States of America
| | - Keith S. Bahjat
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, United States of America
| |
Collapse
|
40
|
Jiang H, Gao H, Kong J, Song B, Wang P, Shi B, Wang H, Li Z. Selective Targeting of Glioblastoma with EGFRvIII/EGFR Bitargeted Chimeric Antigen Receptor T Cell. Cancer Immunol Res 2018; 6:1314-1326. [PMID: 30201736 DOI: 10.1158/2326-6066.cir-18-0044] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/21/2018] [Accepted: 08/28/2018] [Indexed: 11/16/2022]
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/genetics
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/metabolism
- Cell Line, Tumor
- Cytokines/metabolism
- Epitopes/metabolism
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Female
- Glioblastoma/immunology
- Glioblastoma/pathology
- Glioblastoma/therapy
- Humans
- Mice, SCID
- Molecular Targeted Therapy
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/metabolism
- T-Lymphocytes/transplantation
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hua Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiping Gao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Kong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Song
- CARsgen Therapeutics, Shanghai, China
| | - Peng Wang
- CARsgen Therapeutics, Shanghai, China
| | - Bizhi Shi
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- CARsgen Therapeutics, Shanghai, China
| |
Collapse
|
41
|
Mitchell RA, Luwor RB, Burgess AW. Epidermal growth factor receptor: Structure-function informing the design of anticancer therapeutics. Exp Cell Res 2018; 371:1-19. [PMID: 30098332 DOI: 10.1016/j.yexcr.2018.08.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022]
Abstract
Research on the epidermal growth factor (EGF) family and the family of receptors (EGFR) has progressed rapidly in recent times. New crystal structures of the ectodomains with different ligands, the activation of the kinase domain through oligomerisation and the use of fluorescence techniques have revealed profound conformational changes on ligand binding. The control of cell signaling from the EGFR-family is complex, with heterodimerisation, ligand affinity and signaling cross-talk influencing cellular outcomes. Analysis of tissue homeostasis indicates that the control of pro-ligand processing is likely to be as important as receptor activation events. Several members of the EGFR-family are overexpressed and/or mutated in cancer cells. The perturbation of EGFR-family signaling drives the malignant phenotype of many cancers and both inhibitors and antagonists of signaling from these receptors have already produced therapeutic benefits for patients. The design of affibodies, antibodies, small molecule inhibitors and even immunotherapeutic drugs targeting the EGFR-family has yielded promising new approaches to improving outcomes for cancer patients. In this review, we describe recent discoveries which have increased our understanding of the structure and dynamics of signaling from the EGFR-family, the roles of ligand processing and receptor cross-talk. We discuss the relevance of these studies to the development of strategies for designing more effective targeted treatments for cancer patients.
Collapse
Affiliation(s)
- Ruth A Mitchell
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Rodney B Luwor
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Antony W Burgess
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| |
Collapse
|
42
|
Gedeon PC, Schaller TH, Chitneni SK, Choi BD, Kuan CT, Suryadevara CM, Snyder DJ, Schmittling RJ, Szafranski SE, Cui X, Healy PN, Herndon JE, McLendon RE, Keir ST, Archer GE, Reap EA, Sanchez-Perez L, Bigner DD, Sampson JH. A Rationally Designed Fully Human EGFRvIII:CD3-Targeted Bispecific Antibody Redirects Human T Cells to Treat Patient-derived Intracerebral Malignant Glioma. Clin Cancer Res 2018; 24:3611-3631. [PMID: 29703821 PMCID: PMC6103776 DOI: 10.1158/1078-0432.ccr-17-0126] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/18/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022]
Abstract
Purpose: Conventional therapy for malignant glioma fails to specifically target tumor cells. In contrast, substantial evidence indicates that if appropriately redirected, T cells can precisely eradicate tumors. Here we report the rational development of a fully human bispecific antibody (hEGFRvIII-CD3 bi-scFv) that redirects human T cells to lyse malignant glioma expressing a tumor-specific mutation of the EGFR (EGFRvIII).Experimental Design: We generated a panel of bispecific single-chain variable fragments and optimized design through successive rounds of screening and refinement. We tested the ability of our lead construct to redirect naïve T cells and induce target cell-specific lysis. To test for efficacy, we evaluated tumor growth and survival in xenogeneic and syngeneic models of glioma. Tumor penetrance following intravenous drug administration was assessed in highly invasive, orthotopic glioma models.Results: A highly expressed bispecific antibody with specificity to CD3 and EGFRvIII was generated (hEGFRvIII-CD3 bi-scFv). Antibody-induced T-cell activation, secretion of proinflammatory cytokines, and proliferation was robust and occurred exclusively in the presence of target antigen. hEGFRvIII-CD3 bi-scFv was potent and target-specific, mediating significant lysis of multiple malignant glioma cell lines and patient-derived malignant glioma samples that heterogeneously express EGFRvIII. In both subcutaneous and orthotopic models, well-engrafted, patient-derived malignant glioma was effectively treated despite heterogeneity of EGFRvIII expression; intravenous hEGFRvIII-CD3 bi-scFv administration caused significant regression of tumor burden (P < 0.0001) and significantly extended survival (P < 0.0001). Similar efficacy was obtained in highly infiltrative, syngeneic glioma models, and intravenously administered hEGFRvIII-CD3 bi-scFv localized to these orthotopic tumors.Conclusions: We have developed a clinically translatable bispecific antibody that redirects human T cells to safely and effectively treat malignant glioma. On the basis of these results, we have developed a clinical study of hEGFRvIII-CD3 bi-scFv for patients with EGFRvIII-positive malignant glioma. Clin Cancer Res; 24(15); 3611-31. ©2018 AACR.
Collapse
Affiliation(s)
- Patrick C Gedeon
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Teilo H Schaller
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Satish K Chitneni
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Bryan D Choi
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Chien-Tsun Kuan
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Carter M Suryadevara
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - David J Snyder
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Robert J Schmittling
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Scott E Szafranski
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Xiuyu Cui
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Patrick N Healy
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - James E Herndon
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - Roger E McLendon
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Stephen T Keir
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Gary E Archer
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Elizabeth A Reap
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Luis Sanchez-Perez
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Darell D Bigner
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - John H Sampson
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
43
|
Li H, Zeitelhofer M, Nilsson I, Liu X, Allan L, Gloria B, Perani A, Murone C, Catimel B, Neville AM, Scott FE, Scott AM, Eriksson U. Development of monoclonal anti-PDGF-CC antibodies as tools for investigating human tissue expression and for blocking PDGF-CC induced PDGFRα signalling in vivo. PLoS One 2018; 13:e0201089. [PMID: 30052660 PMCID: PMC6063412 DOI: 10.1371/journal.pone.0201089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/09/2018] [Indexed: 01/06/2023] Open
Abstract
PDGF-CC is a member of the platelet-derived growth factor (PDGF) family that stimulates PDGFRα phosphorylation and thereby activates intracellular signalling events essential for development but also in cancer, fibrosis and neuropathologies involving blood-brain barrier (BBB) disruption. In order to elucidate the biological and pathological role(s) of PDGF-CC signalling, we have generated high affinity neutralizing monoclonal antibodies (mAbs) recognizing human PDGF-CC. We determined the complementarity determining regions (CDRs) of the selected clones, and mapped the binding epitope for clone 6B3. Using the monoclonal 6B3, we determined the expression pattern for PDGF-CC in different human primary tumours and control tissues, and explored its ability to neutralize PDGF-CC-induced phosphorylation of PDGFRα. In addition, we showed that PDGF-CC induced disruption of the blood-retinal barrier (BRB) was significantly reduced upon intraperitoneal administration of a chimeric anti-PDGF-CC antibody. In summary, we report on high affinity monoclonal antibodies against PDGF-CC that have therapeutic efficacy in vivo.
Collapse
Affiliation(s)
- Hong Li
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Zeitelhofer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Nilsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xicong Liu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Laura Allan
- Ludwig institute for Cancer Research, Melbourne Austin Branch, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Benjamin Gloria
- Ludwig institute for Cancer Research, Melbourne Austin Branch, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Angelo Perani
- Ludwig institute for Cancer Research, Melbourne Austin Branch, Melbourne, Australia
| | - Carmel Murone
- Ludwig institute for Cancer Research, Melbourne Austin Branch, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Bruno Catimel
- Ludwig institute for Cancer Research, Melbourne Austin Branch, Melbourne, Australia
| | - A. Munro Neville
- Ludwig Institute for Cancer Research, New York, New York, United States of America
| | - Fiona E. Scott
- Ludwig institute for Cancer Research, Melbourne Austin Branch, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Andrew M. Scott
- Ludwig institute for Cancer Research, Melbourne Austin Branch, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Ulf Eriksson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
44
|
Gan HK, Reardon DA, Lassman AB, Merrell R, van den Bent M, Butowski N, Lwin Z, Wheeler H, Fichtel L, Scott AM, Gomez EJ, Fischer J, Mandich H, Xiong H, Lee HJ, Munasinghe WP, Roberts-Rapp LA, Ansell PJ, Holen KD, Kumthekar P. Safety, pharmacokinetics, and antitumor response of depatuxizumab mafodotin as monotherapy or in combination with temozolomide in patients with glioblastoma. Neuro Oncol 2018; 20:838-847. [PMID: 29077941 PMCID: PMC5961429 DOI: 10.1093/neuonc/nox202] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background We recently reported an acceptable safety and pharmacokinetic profile of depatuxizumab mafodotin (depatux-m), formerly called ABT-414, plus radiation and temozolomide in newly diagnosed glioblastoma (arm A). The purpose of this study was to evaluate the safety and pharmacokinetics of depatux-m, either in combination with temozolomide in newly diagnosed or recurrent glioblastoma (arm B) or as monotherapy in recurrent glioblastoma (arm C). Methods In this multicenter phase I dose escalation study, patients received depatux-m (0.5-1.5 mg/kg in arm B, 1.25 mg/kg in arm C) every 2 weeks by intravenous infusion. Maximum tolerated dose (MTD), recommended phase II dose (RP2D), and preliminary efficacy were also determined. Results Thirty-eight patients were enrolled as of March 1, 2016. The most frequent toxicities were ocular, occurring in 35/38 (92%) patients. Keratitis was the most common grade 3 adverse event observed in 6/38 (16%) patients; thrombocytopenia was the most common grade 4 event seen in 5/38 (13%) patients. The MTD was set at 1.5 mg/kg in arm B and was not reached in arm C. RP2D was declared as 1.25 mg/kg for both arms. Depatux-m demonstrated a linear pharmacokinetic profile. In recurrent glioblastoma patients, the progression-free survival (PFS) rate at 6 months was 30.8% and the median overall survival was 10.7 months. Best Response Assessment in Neuro-Oncology responses were 1 complete and 2 partial responses. Conclusion Depatux-m alone or in combination with temozolomide demonstrated an acceptable safety and pharmacokinetic profile in glioblastoma. Further studies are currently under way to evaluate its efficacy in newly diagnosed (NCT02573324) and recurrent glioblastoma (NCT02343406).
Collapse
Affiliation(s)
- Hui K Gan
- Department of Medical Oncology, Austin Health and Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Andrew B Lassman
- Department of Neurology & Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
| | - Ryan Merrell
- Department of Neurology, NorthShore University HealthSystem, Evanston, Illinois, USA
| | | | - Nicholas Butowski
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Zarnie Lwin
- Department of Medical Oncology, University of Queensland School of Medicine, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
| | - Helen Wheeler
- Medical Oncology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Lisa Fichtel
- South Texas Accelerated Research Therapeutics, San Antonio, Texas, USA
| | - Andrew M Scott
- Department of Medical Oncology, Austin Health and Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | - Hao Xiong
- AbbVie Inc., North Chicago, Illinois, USA
| | - Ho-Jin Lee
- AbbVie Inc., North Chicago, Illinois, USA
| | | | | | | | | | - Priya Kumthekar
- Department of Neurology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
45
|
Komuro A, Raja E, Iwata C, Soda M, Isogaya K, Yuki K, Ino Y, Morikawa M, Todo T, Aburatani H, Suzuki H, Ranjit M, Natsume A, Mukasa A, Saito N, Okada H, Mano H, Miyazono K, Koinuma D. Identification of a novel fusion gene HMGA2-EGFR in glioblastoma. Int J Cancer 2017; 142:1627-1639. [PMID: 29193056 DOI: 10.1002/ijc.31179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/30/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022]
Abstract
Glioblastoma is one of the most malignant forms of cancer, for which no effective targeted therapy has been found. Although The Cancer Genome Atlas has provided a list of fusion genes in glioblastoma, their role in progression of glioblastoma remains largely unknown. To search for novel fusion genes, we obtained RNA-seq data from TGS-01 human glioma-initiating cells, and identified a novel fusion gene (HMGA2-EGFR), encoding a protein comprising the N-terminal region of the high-mobility group AT-hook protein 2 (HMGA2) fused to the C-terminal region of epidermal growth factor receptor (EGFR), which retained the transmembrane and kinase domains of the EGFR. This fusion gene product showed transforming potential and a high tumor-forming capacity in cell culture and in vivo. Mechanistically, HMGA2-EGFR constitutively induced a higher level of phosphorylated STAT5B than EGFRvIII, an in-frame exon deletion product of the EGFR gene that is commonly found in primary glioblastoma. Forced expression of HMGA2-EGFR enhanced orthotopic tumor formation of the U87MG human glioma cell line. Furthermore, the EGFR kinase inhibitor erlotinib blocked sphere formation of TGS-01 cells in culture and inhibited tumor formation in vivo. These findings suggest that, in addition to gene amplification and in-frame exon deletion, EGFR signaling can also be activated by gene fusion, suggesting a possible avenue for treatment of glioblastoma.
Collapse
Affiliation(s)
- Akiyoshi Komuro
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Biochemistry, Kindai University Faculty of Medicine, Osaka, Japan
| | - Erna Raja
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Caname Iwata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Manabu Soda
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazunobu Isogaya
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keiko Yuki
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Ino
- Division of Innovative Cancer Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masato Morikawa
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiromichi Suzuki
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Melissa Ranjit
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Atsushi Natsume
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Okada
- Department of Biochemistry, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hiroyuki Mano
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
46
|
Hosen N, Matsunaga Y, Hasegawa K, Matsuno H, Nakamura Y, Makita M, Watanabe K, Yoshida M, Satoh K, Morimoto S, Fujiki F, Nakajima H, Nakata J, Nishida S, Tsuboi A, Oka Y, Manabe M, Ichihara H, Aoyama Y, Mugitani A, Nakao T, Hino M, Uchibori R, Ozawa K, Baba Y, Terakura S, Wada N, Morii E, Nishimura J, Takeda K, Oji Y, Sugiyama H, Takagi J, Kumanogoh A. The activated conformation of integrin β 7 is a novel multiple myeloma-specific target for CAR T cell therapy. Nat Med 2017; 23:1436-1443. [PMID: 29106400 DOI: 10.1038/nm.4431] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 10/02/2017] [Indexed: 12/15/2022]
Abstract
Cancer-specific cell-surface antigens are ideal targets for monoclonal antibody (mAb)-based immunotherapy but are likely to have previously been identified in transcriptome or proteome analyses. Here, we show that the active conformer of an integrin can serve as a specific therapeutic target for multiple myeloma (MM). We screened >10,000 anti-MM mAb clones and identified MMG49 as an MM-specific mAb specifically recognizing a subset of integrin β7 molecules. The MMG49 epitope, in the N-terminal region of the β7 chain, is predicted to be inaccessible in the resting integrin conformer but exposed in the active conformation. Elevated expression and constitutive activation of integrin β7 conferred high MMG49 reactivity on MM cells, whereas MMG49 binding was scarcely detectable in other cell types including normal integrin β7+ lymphocytes. T cells transduced with MMG49-derived chimeric antigen receptor (CAR) exerted anti-MM effects without damaging normal hematopoietic cells. Thus, MMG49 CAR T cell therapy is promising for MM, and a receptor protein with a rare but physiologically relevant conformation can serve as a cancer immunotherapy target.
Collapse
Affiliation(s)
- Naoki Hosen
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yukiko Matsunaga
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kana Hasegawa
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Matsuno
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuki Nakamura
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mio Makita
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kouki Watanabe
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mikako Yoshida
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kei Satoh
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Soyoko Morimoto
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Fumihiro Fujiki
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroko Nakajima
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Nakata
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sumiyuki Nishida
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akihiro Tsuboi
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshihiro Oka
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masahiro Manabe
- Department of Hematology, Osaka General Hospital of West Japan Railway Company, Osaka, Japan
| | | | | | | | - Takafumi Nakao
- Department of Hematology, Osaka City General Hospital, Osaka, Japan
| | - Masayuki Hino
- Department of Hematology and Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ryosuke Uchibori
- Division of Immuno-Gene & Cell Therapy (Takara Bio), Jichi Medical University, Tochigi, Japan
| | - Keiya Ozawa
- Division of Immuno-Gene & Cell Therapy (Takara Bio), Jichi Medical University, Tochigi, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Wada
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Junichi Nishimura
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kiyoshi Takeda
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Japan
| | - Yusuke Oji
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Japan
| |
Collapse
|
47
|
Yu J, Wang X, Xu T, Jin Q, Duan J, Wu J, Wu H, Xu T, Ye S. A rational approach to enhancing antibody Fc homodimer formation for robust production of antibody mixture in a single cell line. J Biol Chem 2017; 292:17885-17896. [PMID: 28878018 DOI: 10.1074/jbc.m116.771188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 08/19/2017] [Indexed: 11/06/2022] Open
Abstract
Combinations of different antibodies have been shown to be more effective for managing certain diseases than monotherapy. Co-expression of the antibody mixture in a single cell line is key to reducing complexity during antibody development and manufacturing. However, co-transfection of multiple light and heavy chains into cells often leads to production of mismatched, heterodimeric by-products that are inactive, making the development of co-expression systems that robustly and efficiently produce highly active antibody mixtures a high priority. In this study, we modified the CH3 domain interface of the antibody fragment crystallizable (Fc) region by changing several charge pairs to create electrostatic interactions favoring Fc homodimer formation and disfavoring Fc heterodimer formation. When co-expressed, these modified antibodies with altered charge polarity across the Fc dimer interface preferentially formed homodimers that fully preserved the functions of each component, rather than inactive heterodimers whose formation was reduced because of rationally designed repulsive interactions. We designed eight different combinations and experimentally screened the best one, which enabled us to produce a binary antibody mixture against the EGF receptor with a minimal heterodimer contaminant. We further determined the crystal structure of a triple-mutated Fc variant in the best combination, and we elucidated the molecular interactions favoring Fc homodimer over heterodimer formation, which provided a structural basis for further optimization. The approach presented here demonstrates the feasibility of rational antibody modification for efficient and consistent production of monoclonal antibody mixtures in a single cell line and thus broadens our options for manufacturing more effective antibody-based therapeutic agents.
Collapse
Affiliation(s)
- Jie Yu
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058 and
| | | | - Tao Xu
- Alphamab Co. Ltd., Suzhou 215125, China
| | - Qiuheng Jin
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058 and
| | - Jinyuan Duan
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058 and
| | - Jie Wu
- Alphamab Co. Ltd., Suzhou 215125, China
| | - Haiyan Wu
- Alphamab Co. Ltd., Suzhou 215125, China
| | - Ting Xu
- Alphamab Co. Ltd., Suzhou 215125, China
| | - Sheng Ye
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058 and
| |
Collapse
|
48
|
Chistiakov DA, Chekhonin IV, Chekhonin VP. The EGFR variant III mutant as a target for immunotherapy of glioblastoma multiforme. Eur J Pharmacol 2017; 810:70-82. [DOI: 10.1016/j.ejphar.2017.05.064] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/15/2017] [Accepted: 05/31/2017] [Indexed: 12/26/2022]
|
49
|
Gan HK, van den Bent M, Lassman AB, Reardon DA, Scott AM. Antibody-drug conjugates in glioblastoma therapy: the right drugs to the right cells. Nat Rev Clin Oncol 2017; 14:695-707. [PMID: 28675164 DOI: 10.1038/nrclinonc.2017.95] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glioblastomas are high-grade brain tumours with a poor prognosis and, currently, few available therapeutic options. This lack of effective treatments has been linked to diverse factors, including target selection, tumour heterogeneity and poor penetrance of therapeutic agents through the blood-brain barrier and into tumours. Therapies using monoclonal antibodies, alone or linked to cytotoxic payloads, have proved beneficial for patients with different solid tumours; these approaches are currently being explored in patients with glioblastoma. In this Review, we summarise clinical data regarding antibody-drug conjugates (ADCs) against a variety of targets in glioblastoma, and compare the efficacy and toxicity of targeting EGFR with ADCs versus naked antibodies in order to illustrate key aspects of the use of ADCs in this malignancy. Finally, we discuss the complex challenges related to the biology and mutational changes of glioblastoma that can affect the use of ADC-based therapies in patients with this disease, and highlight potential strategies to improve efficacy.
Collapse
Affiliation(s)
- Hui K Gan
- Austin Health and Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Victoria 3084, Australia.,La Trobe University School of Cancer Medicine, 145 Studley Road, Heidelberg, Victoria 3084, Australia.,Department of Medicine, University of Melbourne, 145 Studley Road, Heidelberg, Victoria 3084, Australia
| | - Martin van den Bent
- Brain Tumour Centre, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA Rotterdam, Netherlands
| | - Andrew B Lassman
- Department of Neurology & Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, 161 Fort Washington Avenue, New York, New York 10032, USA
| | - David A Reardon
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana 2134, Boston, Massachusetts 02215, USA
| | - Andrew M Scott
- Austin Health and Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Victoria 3084, Australia.,La Trobe University School of Cancer Medicine, 145 Studley Road, Heidelberg, Victoria 3084, Australia.,Department of Medicine, University of Melbourne, 145 Studley Road, Heidelberg, Victoria 3084, Australia
| |
Collapse
|
50
|
Reardon DA, Lassman AB, van den Bent M, Kumthekar P, Merrell R, Scott AM, Fichtel L, Sulman EP, Gomez E, Fischer J, Lee HJ, Munasinghe W, Xiong H, Mandich H, Roberts-Rapp L, Ansell P, Holen KD, Gan HK. Efficacy and safety results of ABT-414 in combination with radiation and temozolomide in newly diagnosed glioblastoma. Neuro Oncol 2017; 19:965-975. [PMID: 28039367 PMCID: PMC5570193 DOI: 10.1093/neuonc/now257] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The purpose of this study was to determine the maximum tolerated dose (MTD), recommended phase II dose (RPTD), safety, and pharmacokinetics of ABT-414 plus radiation and temozolomide in newly diagnosed glioblastoma. ABT-414 is a first-in-class, tumor-specific antibody-drug conjugate that preferentially targets tumors expressing overactive epidermal growth factor receptor (EGFR). METHODS In this multicenter phase I study, patients received 0.5-3.2 mg/kg ABT-414 every 2 weeks by intravenous infusion. EGFR alterations, O6-methylguanine-DNA methyltransferase (MGMT) promoter hypermethylation, and isocitrate dehydrogenase (IDH1) gene mutations were assessed in patient tumors. Distinct prognostic classes were assigned to patients based on a Molecular Classification Predictor model. RESULTS As of January 7, 2016, forty-five patients were enrolled to receive ABT-414 plus radiation and temozolomide. The most common treatment emergent adverse events were ocular: blurred vision, dry eye, keratitis, photophobia, and eye pain. Ocular toxicity at any grade occurred in 40 patients and at grades 3/4 in 12 patients. RPTD and MTD were set at 2 mg/kg and 2.4 mg/kg, respectively. Among 38 patients with pretreatment tumor tested centrally, 39% harbored EGFR amplification, of which 73% had EGFRvIII mutation. Among patients with available tumor tissue (n = 30), 30% showed MGMT promoter methylation and none had IDH1 mutations. ABT-414 demonstrated an approximately dose proportional pharmacokinetic profile. The median duration of progression-free survival was 6.1 months; median overall survival has not been reached. CONCLUSION ABT-414 plus chemoradiation demonstrated an acceptable safety and pharmacokinetic profile in newly diagnosed glioblastoma. Randomized studies are ongoing to determine efficacy in newly diagnosed (NCT02573324) and recurrent glioblastoma (NCT02343406).
Collapse
Affiliation(s)
- David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Neurology & Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Neuro-Oncology Unit, Erasmus MC Cancer Center, Rotterdam, the Netherlands; Department of Neurology, Northwestern University, Chicago, Illinois; Department of Neurology, NorthShore University HealthSystem, Evanston, Illinois; Department of Medical Oncology, Austin Health and Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia; School of Cancer Medicine, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia; South Texas Accelerated Research Therapeutics (START), San Antonio, Texas; Department of Radiation Oncology, The University of Texas M.D.Anderson Cancer Center, Houston, Texas; AbbVie Inc., North Chicago, Illinois; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew B Lassman
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Neurology & Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Neuro-Oncology Unit, Erasmus MC Cancer Center, Rotterdam, the Netherlands; Department of Neurology, Northwestern University, Chicago, Illinois; Department of Neurology, NorthShore University HealthSystem, Evanston, Illinois; Department of Medical Oncology, Austin Health and Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia; School of Cancer Medicine, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia; South Texas Accelerated Research Therapeutics (START), San Antonio, Texas; Department of Radiation Oncology, The University of Texas M.D.Anderson Cancer Center, Houston, Texas; AbbVie Inc., North Chicago, Illinois; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Martin van den Bent
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Neurology & Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Neuro-Oncology Unit, Erasmus MC Cancer Center, Rotterdam, the Netherlands; Department of Neurology, Northwestern University, Chicago, Illinois; Department of Neurology, NorthShore University HealthSystem, Evanston, Illinois; Department of Medical Oncology, Austin Health and Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia; School of Cancer Medicine, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia; South Texas Accelerated Research Therapeutics (START), San Antonio, Texas; Department of Radiation Oncology, The University of Texas M.D.Anderson Cancer Center, Houston, Texas; AbbVie Inc., North Chicago, Illinois; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Priya Kumthekar
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Neurology & Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Neuro-Oncology Unit, Erasmus MC Cancer Center, Rotterdam, the Netherlands; Department of Neurology, Northwestern University, Chicago, Illinois; Department of Neurology, NorthShore University HealthSystem, Evanston, Illinois; Department of Medical Oncology, Austin Health and Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia; School of Cancer Medicine, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia; South Texas Accelerated Research Therapeutics (START), San Antonio, Texas; Department of Radiation Oncology, The University of Texas M.D.Anderson Cancer Center, Houston, Texas; AbbVie Inc., North Chicago, Illinois; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Ryan Merrell
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Neurology & Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Neuro-Oncology Unit, Erasmus MC Cancer Center, Rotterdam, the Netherlands; Department of Neurology, Northwestern University, Chicago, Illinois; Department of Neurology, NorthShore University HealthSystem, Evanston, Illinois; Department of Medical Oncology, Austin Health and Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia; School of Cancer Medicine, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia; South Texas Accelerated Research Therapeutics (START), San Antonio, Texas; Department of Radiation Oncology, The University of Texas M.D.Anderson Cancer Center, Houston, Texas; AbbVie Inc., North Chicago, Illinois; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew M Scott
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Neurology & Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Neuro-Oncology Unit, Erasmus MC Cancer Center, Rotterdam, the Netherlands; Department of Neurology, Northwestern University, Chicago, Illinois; Department of Neurology, NorthShore University HealthSystem, Evanston, Illinois; Department of Medical Oncology, Austin Health and Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia; School of Cancer Medicine, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia; South Texas Accelerated Research Therapeutics (START), San Antonio, Texas; Department of Radiation Oncology, The University of Texas M.D.Anderson Cancer Center, Houston, Texas; AbbVie Inc., North Chicago, Illinois; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Lisa Fichtel
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Neurology & Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Neuro-Oncology Unit, Erasmus MC Cancer Center, Rotterdam, the Netherlands; Department of Neurology, Northwestern University, Chicago, Illinois; Department of Neurology, NorthShore University HealthSystem, Evanston, Illinois; Department of Medical Oncology, Austin Health and Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia; School of Cancer Medicine, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia; South Texas Accelerated Research Therapeutics (START), San Antonio, Texas; Department of Radiation Oncology, The University of Texas M.D.Anderson Cancer Center, Houston, Texas; AbbVie Inc., North Chicago, Illinois; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Erik P Sulman
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Neurology & Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Neuro-Oncology Unit, Erasmus MC Cancer Center, Rotterdam, the Netherlands; Department of Neurology, Northwestern University, Chicago, Illinois; Department of Neurology, NorthShore University HealthSystem, Evanston, Illinois; Department of Medical Oncology, Austin Health and Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia; School of Cancer Medicine, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia; South Texas Accelerated Research Therapeutics (START), San Antonio, Texas; Department of Radiation Oncology, The University of Texas M.D.Anderson Cancer Center, Houston, Texas; AbbVie Inc., North Chicago, Illinois; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Erica Gomez
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Neurology & Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Neuro-Oncology Unit, Erasmus MC Cancer Center, Rotterdam, the Netherlands; Department of Neurology, Northwestern University, Chicago, Illinois; Department of Neurology, NorthShore University HealthSystem, Evanston, Illinois; Department of Medical Oncology, Austin Health and Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia; School of Cancer Medicine, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia; South Texas Accelerated Research Therapeutics (START), San Antonio, Texas; Department of Radiation Oncology, The University of Texas M.D.Anderson Cancer Center, Houston, Texas; AbbVie Inc., North Chicago, Illinois; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - JuDee Fischer
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Neurology & Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Neuro-Oncology Unit, Erasmus MC Cancer Center, Rotterdam, the Netherlands; Department of Neurology, Northwestern University, Chicago, Illinois; Department of Neurology, NorthShore University HealthSystem, Evanston, Illinois; Department of Medical Oncology, Austin Health and Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia; School of Cancer Medicine, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia; South Texas Accelerated Research Therapeutics (START), San Antonio, Texas; Department of Radiation Oncology, The University of Texas M.D.Anderson Cancer Center, Houston, Texas; AbbVie Inc., North Chicago, Illinois; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Ho-Jin Lee
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Neurology & Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Neuro-Oncology Unit, Erasmus MC Cancer Center, Rotterdam, the Netherlands; Department of Neurology, Northwestern University, Chicago, Illinois; Department of Neurology, NorthShore University HealthSystem, Evanston, Illinois; Department of Medical Oncology, Austin Health and Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia; School of Cancer Medicine, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia; South Texas Accelerated Research Therapeutics (START), San Antonio, Texas; Department of Radiation Oncology, The University of Texas M.D.Anderson Cancer Center, Houston, Texas; AbbVie Inc., North Chicago, Illinois; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Wijith Munasinghe
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Neurology & Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Neuro-Oncology Unit, Erasmus MC Cancer Center, Rotterdam, the Netherlands; Department of Neurology, Northwestern University, Chicago, Illinois; Department of Neurology, NorthShore University HealthSystem, Evanston, Illinois; Department of Medical Oncology, Austin Health and Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia; School of Cancer Medicine, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia; South Texas Accelerated Research Therapeutics (START), San Antonio, Texas; Department of Radiation Oncology, The University of Texas M.D.Anderson Cancer Center, Houston, Texas; AbbVie Inc., North Chicago, Illinois; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Hao Xiong
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Neurology & Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Neuro-Oncology Unit, Erasmus MC Cancer Center, Rotterdam, the Netherlands; Department of Neurology, Northwestern University, Chicago, Illinois; Department of Neurology, NorthShore University HealthSystem, Evanston, Illinois; Department of Medical Oncology, Austin Health and Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia; School of Cancer Medicine, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia; South Texas Accelerated Research Therapeutics (START), San Antonio, Texas; Department of Radiation Oncology, The University of Texas M.D.Anderson Cancer Center, Houston, Texas; AbbVie Inc., North Chicago, Illinois; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Helen Mandich
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Neurology & Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Neuro-Oncology Unit, Erasmus MC Cancer Center, Rotterdam, the Netherlands; Department of Neurology, Northwestern University, Chicago, Illinois; Department of Neurology, NorthShore University HealthSystem, Evanston, Illinois; Department of Medical Oncology, Austin Health and Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia; School of Cancer Medicine, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia; South Texas Accelerated Research Therapeutics (START), San Antonio, Texas; Department of Radiation Oncology, The University of Texas M.D.Anderson Cancer Center, Houston, Texas; AbbVie Inc., North Chicago, Illinois; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Lisa Roberts-Rapp
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Neurology & Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Neuro-Oncology Unit, Erasmus MC Cancer Center, Rotterdam, the Netherlands; Department of Neurology, Northwestern University, Chicago, Illinois; Department of Neurology, NorthShore University HealthSystem, Evanston, Illinois; Department of Medical Oncology, Austin Health and Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia; School of Cancer Medicine, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia; South Texas Accelerated Research Therapeutics (START), San Antonio, Texas; Department of Radiation Oncology, The University of Texas M.D.Anderson Cancer Center, Houston, Texas; AbbVie Inc., North Chicago, Illinois; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter Ansell
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Neurology & Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Neuro-Oncology Unit, Erasmus MC Cancer Center, Rotterdam, the Netherlands; Department of Neurology, Northwestern University, Chicago, Illinois; Department of Neurology, NorthShore University HealthSystem, Evanston, Illinois; Department of Medical Oncology, Austin Health and Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia; School of Cancer Medicine, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia; South Texas Accelerated Research Therapeutics (START), San Antonio, Texas; Department of Radiation Oncology, The University of Texas M.D.Anderson Cancer Center, Houston, Texas; AbbVie Inc., North Chicago, Illinois; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Kyle D Holen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Neurology & Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Neuro-Oncology Unit, Erasmus MC Cancer Center, Rotterdam, the Netherlands; Department of Neurology, Northwestern University, Chicago, Illinois; Department of Neurology, NorthShore University HealthSystem, Evanston, Illinois; Department of Medical Oncology, Austin Health and Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia; School of Cancer Medicine, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia; South Texas Accelerated Research Therapeutics (START), San Antonio, Texas; Department of Radiation Oncology, The University of Texas M.D.Anderson Cancer Center, Houston, Texas; AbbVie Inc., North Chicago, Illinois; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Hui K Gan
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Neurology & Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Neuro-Oncology Unit, Erasmus MC Cancer Center, Rotterdam, the Netherlands; Department of Neurology, Northwestern University, Chicago, Illinois; Department of Neurology, NorthShore University HealthSystem, Evanston, Illinois; Department of Medical Oncology, Austin Health and Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia; School of Cancer Medicine, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia; South Texas Accelerated Research Therapeutics (START), San Antonio, Texas; Department of Radiation Oncology, The University of Texas M.D.Anderson Cancer Center, Houston, Texas; AbbVie Inc., North Chicago, Illinois; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|