1
|
Zhang C, Gu L, Xie H, Liu Y, Huang P, Zhang J, Luo D, Zhang J. Glucose transport, transporters and metabolism in diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166995. [PMID: 38142757 DOI: 10.1016/j.bbadis.2023.166995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Diabetic retinopathy (DR) is the most common reason for blindness in working-age individuals globally. Prolonged high blood glucose is a main causative factor for DR development, and glucose transport is prerequisite for the disturbances in DR caused by hyperglycemia. Glucose transport is mediated by its transporters, including the facilitated transporters (glucose transporter, GLUTs), the "active" glucose transporters (sodium-dependent glucose transporters, SGLTs), and the SLC50 family of uniporters (sugars will eventually be exported transporters, SWEETs). Glucose transport across the blood-retinal barrier (BRB) is crucial for nourishing the neuronal retina in the context of retinal physiology. This physiological process primarily relies on GLUTs and SGLTs, which mediate the glucose transportation across both the cell membrane of retinal capillary endothelial cells and the retinal pigment epithelium (RPE). Under diabetic conditions, increased accumulation of extracellular glucose enhances the retinal cellular glucose uptake and metabolism via both glycolysis and glycolytic side branches, which activates several biochemical pathways, including the protein kinase C (PKC), advanced glycation end-products (AGEs), polyol pathway and hexosamine biosynthetic pathway (HBP). These activated biochemical pathways further increase the production of reactive oxygen species (ROS), leading to oxidative stress and activation of Poly (ADP-ribose) polymerase (PARP). The activated PARP further affects all the cellular components in the retina, and finally resulting in microangiopathy, neurodegeneration and low-to-moderate grade inflammation in DR. This review aims to discuss the changes of glucose transport, glucose transporters, as well as its metabolism in DR, which influences the retinal neurovascular unit (NVU) and implies the possible therapeutic strategies for treating DR.
Collapse
Affiliation(s)
- Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Limin Gu
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, China.
| | - Hai Xie
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Yan Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Peirong Huang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Jingting Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Dawei Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| |
Collapse
|
2
|
Lindell M, Kar D, Sedova A, Kim YJ, Packer OS, Schmidt-Erfurth U, Sloan KR, Marsh M, Dacey DM, Curcio CA, Pollreisz A. Volumetric Reconstruction of a Human Retinal Pigment Epithelial Cell Reveals Specialized Membranes and Polarized Distribution of Organelles. Invest Ophthalmol Vis Sci 2023; 64:35. [PMID: 38133501 PMCID: PMC10746928 DOI: 10.1167/iovs.64.15.35] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/04/2023] [Indexed: 12/23/2023] Open
Abstract
Purpose Despite the centrality of the retinal pigment epithelium (RPE) in vision and retinopathy our picture of RPE morphology is incomplete. With a volumetric reconstruction of human RPE ultrastructure, we aim to characterize major membranous features including apical processes and their interactions with photoreceptor outer segments, basolateral infoldings, and the distribution of intracellular organelles. Methods A parafoveal retinal sample was acquired from a 21-year-old male organ donor. With serial block-face scanning electron microscopy, a tissue volume from the inner-outer segment junction to basal RPE was captured. Surface membranes and complete internal ultrastructure of an individual RPE cell were achieved with a combination of manual and automated segmentation methods. Results In one RPE cell, apical processes constitute 69% of the total cell surface area, through a dense network of over 3000 terminal branches. Single processes contact several photoreceptors. Basolateral infoldings facing the choriocapillaris resemble elongated filopodia and comprise 22% of the cell surface area. Membranous tubules and sacs of endoplasmic reticulum represent 20% of the cell body volume. A dense basal layer of mitochondria extends apically to partly overlap electron-dense pigment granules. Pores in the nuclear envelope form a distinct pattern of rows aligned with chromatin. Conclusions Specialized membranes at the apical and basal side of the RPE cell body involved in intercellular uptake and transport represent over 90% of the total surface area. Together with the polarized distribution of organelles within the cell body, these findings are relevant for retinal clinical imaging, therapeutic approaches, and disease pathomechanisms.
Collapse
Affiliation(s)
- Maximilian Lindell
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Deepayan Kar
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Aleksandra Sedova
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Yeon Jin Kim
- Department of Biological Structure, University of Washington, Seattle, Washington, United States
| | - Orin S. Packer
- Department of Biological Structure, University of Washington, Seattle, Washington, United States
| | | | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Mike Marsh
- Object Research Systems, Montreal, Quebec, Canada
| | - Dennis M. Dacey
- Department of Biological Structure, University of Washington, Seattle, Washington, United States
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Andreas Pollreisz
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Barooah N, Karmakar P, Sharanya MK, Mishra M, Bhasikuttan AC, Mohanty J. Spectroscopic features of a perylenediimide probe for sensing amyloid fibrils: in vivo imaging of Aβ-aggregates in a Drosophila model organism. J Mater Chem B 2023; 11:9545-9554. [PMID: 37753638 DOI: 10.1039/d3tb01233f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Customised perylenediimide (PDI) chromophores find diverse applications not only as chemosensors, inorganic-organic semiconductors, photovoltaics, photocatalysts, etc., but also in protein surface engineering, bio-sensors and drug delivery systems. This study focuses on the interaction of a custom synthesized phenylalanine derivatized perylenediimide (L-Phe-PDI) dye with a model protein, insulin, and its structurally distinct fibrils to develop fluorescence sensors for fibrillar aggregates and in vivo imaging applications. Detailed photophysical studies revealed that L-Phe-PDI gets aggregated in the presence of insulin and causes emission quenching at pH 7.4, which in the absence of insulin occurs only at pH ∼2. During in vitro incubation of insulin to its fibrils, the fluorescence intensity of the L-Phe-PDI probe is enhanced to ∼150 fold in a two-stage manner, manifesting the pathways of structural transformation to β-sheet rich mature fibrils. The in vivo sensing has further been validated in living models of the Aβ-mutant Drosophila fly, which is known to develop progressive neurodegeneration comparable to that of human brains with Alzheimer's disease (AD). Bioimaging of the L-Phe-PDI treated Aβ-mutant Drosophila documented the blood-brain/blood-retina-barrier cross-over ability of L-Phe-PDI with no toxic effects. Comparison of the fibrillar images from the brain and eye region with the reference thioflavin T (ThT) probe established the uptake of L-Phe-PDI by the aggregate/fibrillar moieties. The samples from L-Phe-PDI-treated flies apparently displayed reduced fibrillar spots, a possible case of L-Phe-PDI-induced disintegration of fibrillar aggregates at large, an observation substantiated by the improved phenotype activities as compared to the untreated flies. The findings reported both in vitro and in vivo with the L-Phe-PDI material for the first time open up avenues to explore the therapeutic potential of custom-designed PDI derivatives for amyloid fibril sensors and bioimaging.
Collapse
Affiliation(s)
- Nilotpal Barooah
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Puja Karmakar
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India.
| | - M K Sharanya
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Monalisa Mishra
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India.
| | - Achikanath C Bhasikuttan
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Jyotirmayee Mohanty
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
4
|
Jaroszynska N, Harding P, Moosajee M. Metabolism in the Zebrafish Retina. J Dev Biol 2021; 9:10. [PMID: 33804189 PMCID: PMC8006245 DOI: 10.3390/jdb9010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Retinal photoreceptors are amongst the most metabolically active cells in the body, consuming more glucose as a metabolic substrate than even the brain. This ensures that there is sufficient energy to establish and maintain photoreceptor functions during and after their differentiation. Such high dependence on glucose metabolism is conserved across vertebrates, including zebrafish from early larval through to adult retinal stages. As the zebrafish retina develops rapidly, reaching an adult-like structure by 72 hours post fertilisation, zebrafish larvae can be used to study metabolism not only during retinogenesis, but also in functionally mature retinae. The interplay between rod and cone photoreceptors and the neighbouring retinal pigment epithelium (RPE) cells establishes a metabolic ecosystem that provides essential control of their individual functions, overall maintaining healthy vision. The RPE facilitates efficient supply of glucose from the choroidal vasculature to the photoreceptors, which produce metabolic products that in turn fuel RPE metabolism. Many inherited retinal diseases (IRDs) result in photoreceptor degeneration, either directly arising from photoreceptor-specific mutations or secondary to RPE loss, leading to sight loss. Evidence from a number of vertebrate studies suggests that the imbalance of the metabolic ecosystem in the outer retina contributes to metabolic failure and disease pathogenesis. The use of larval zebrafish mutants with disease-specific mutations that mirror those seen in human patients allows us to uncover mechanisms of such dysregulation and disease pathology with progression from embryonic to adult stages, as well as providing a means of testing novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Philippa Harding
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK;
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK;
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
5
|
Gote V, Ansong M, Pal D. Prodrugs and nanomicelles to overcome ocular barriers for drug penetration. Expert Opin Drug Metab Toxicol 2020; 16:885-906. [PMID: 32729364 DOI: 10.1080/17425255.2020.1803278] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Ocular barriers hinder drug delivery and reduce drug bioavailability. This article focuses on enhancing drug absorption across the corneal and conjunctival epithelium. Both, transporter targeted prodrug formulations and nanomicellar strategy is proven to enhance the drug permeation of therapeutic agents across various ocular barriers. These strategies can increase aqueous drug solubility and stability of many hydrophobic drugs for topical ophthalmic formulations. AREAS COVERED The article discusses various ocular barriers, ocular influx, and efflux transporters. It elaborates various prodrug strategies used for enhancing drug absorption. Along with this, the article also describes nanomicellar formulation, its characteristic and advantages, and applications in for anterior and posterior segment drug delivery. EXPERT OPINION Prodrugs and nanomicellar formulations provide an effective strategy for improving drug absorption and drug bioavailability across various ocular barriers. It will be exciting to see the efficacy of nanomicelles for treating back of the eye disorders after their topical application. This is considered as a holy grail of ocular drug delivery due to the dynamic and static ocular barriers, restricting posterior entry of topically applied drug formulations.
Collapse
Affiliation(s)
- Vrinda Gote
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| | - Michael Ansong
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| | - Dhananjay Pal
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| |
Collapse
|
6
|
Cura AJ, Carruthers A. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr Physiol 2013; 2:863-914. [PMID: 22943001 DOI: 10.1002/cphy.c110024] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The facilitated diffusion of glucose, galactose, fructose, urate, myoinositol, and dehydroascorbicacid in mammals is catalyzed by a family of 14 monosaccharide transport proteins called GLUTs. These transporters may be divided into three classes according to sequence similarity and function/substrate specificity. GLUT1 appears to be highly expressed in glycolytically active cells and has been coopted in vitamin C auxotrophs to maintain the redox state of the blood through transport of dehydroascorbate. Several GLUTs are definitive glucose/galactose transporters, GLUT2 and GLUT5 are physiologically important fructose transporters, GLUT9 appears to be a urate transporter while GLUT13 is a proton/myoinositol cotransporter. The physiologic substrates of some GLUTs remain to be established. The GLUTs are expressed in a tissue specific manner where affinity, specificity, and capacity for substrate transport are paramount for tissue function. Although great strides have been made in characterizing GLUT-catalyzed monosaccharide transport and mapping GLUT membrane topography and determinants of substrate specificity, a unifying model for GLUT structure and function remains elusive. The GLUTs play a major role in carbohydrate homeostasis and the redistribution of sugar-derived carbons among the various organ systems. This is accomplished through a multiplicity of GLUT-dependent glucose sensing and effector mechanisms that regulate monosaccharide ingestion, absorption,distribution, cellular transport and metabolism, and recovery/retention. Glucose transport and metabolism have coevolved in mammals to support cerebral glucose utilization.
Collapse
Affiliation(s)
- Anthony J Cura
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
7
|
Reis H, Tschirdewahn S, Szarvas T, Rübben H, Schmid KW, Grabellus F. Expression of GLUT1 is associated with increasing grade of malignancy in non-invasive and invasive urothelial carcinomas of the bladder. Oncol Lett 2011; 2:1149-1153. [PMID: 22848280 DOI: 10.3892/ol.2011.394] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 08/02/2011] [Indexed: 01/31/2023] Open
Abstract
Glucose Transporter 1 (GLUT1) belongs to the expanding mammalian facilitative glucose transporter family. Elevated GLUT1 protein expression has been observed in the majority of urothelial carcinomas, with various effects on clinicopathological parameters. Whereas malignant cells have an accelerated metabolism with increased energy requirements, the membranous expression of GLUTs is amplified. GLUT1 protein expression was evaluated in urothelial tumours of increasing grade of malignancy, supplemented by a tumour proliferation analysis. Particular attention was paid to non-invasive precursors of urothelial carcinoma. A total of 105 paraffin-embedded samples were classified (normal urothelium, low/high-grade papillary carcinoma, carcinoma in situ and invasive carcinoma). Grading and staging were conducted using the 1998 ISUP/2004 WHO criteria. The staining intensity of GLUT1 was assessed with a standard immunoreactive score (IRS). The Ki-67 index was assessed by counting positive nuclei in representative urothelial hot spots. Results showed that an increased GLUT1-IRS and mean count of Ki-67-positive cells were significantly associated with an increased grade of malignancy (p<0.0001), particularly in non-invasive tumours. GLUT1-IRS was significantly associated with a Ki-67-labelled proliferative fraction (p<0.0001). No significant association regarding tumour grade or stage was observed within the invasive carcinoma group. GLUT1 protein expression was found to be strongly correlated with increased malignant potential, particularly in non-invasive urothelial carcinomas. The increase of GLUT1 expression may reflect a preinvasive metabolic switch in terms of enhanced cell metabolism concomitant to known genetic alterations. A further increase in invasive carcinomas may be related to hypoxic conditions.
Collapse
Affiliation(s)
- Henning Reis
- Institute of Pathology and Neuropathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Kim JH, Kim JH, Kim KW, Kim MH, Yu YS. Intravenously administered gold nanoparticles pass through the blood-retinal barrier depending on the particle size, and induce no retinal toxicity. NANOTECHNOLOGY 2009; 20:505101. [PMID: 19923650 DOI: 10.1088/0957-4484/20/50/505101] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The retina maintains homeostasis through the blood-retinal barrier (BRB). Although it is ideal to deliver the drug to the retina via systemic administration, it is still challenging due to the BRB strictly regulating permeation from blood to the retina. Herein, we demonstrated that intravenously administered gold nanoparticles could pass through the BRB and are distributed in all retinal layers without cytotoxicity. After intravenous injection of gold nanoparticles into C57BL/6 mice, 100 nm nanoparticles were not detected in the retina whereas 20 nm nanoparticles passed through the BRB and were distributed in all retinal layers. 20 nm nanoparticles in the retina were observed in neurons (75 +/- 5%), endothelial cells (17 +/- 6%) and peri-endothelial glial cells (8 +/- 3%), where nanoparticles were bound on the membrane. In the retina, cells containing nanoparticles did not show any structural abnormality and increase of cell death compared to cells without nanoparticles. Gold nanoparticles never affected the viability of retinal endothelial cells, astrocytes and retinoblastoma cells. Furthermore, gold nanoparticles never led to any change in expression of representative biological molecules including zonula occludens-1 and glut-1 in retinal endothelial cells, neurofilaments in differentiated retinoblastoma cells and glial fibrillary acidic protein in astrocytes. Therefore, our data suggests that small gold nanoparticles (20 nm) could be an alternative for drug delivery across the BRB, which could be safely applied in vivo.
Collapse
Affiliation(s)
- Jeong Hun Kim
- Department of Ophthalmology, Seoul National University College of Medicine and Seoul Artificial Eye Center, Clinical Research Institute, Seoul National University Hospital, Seoul 151744, Korea.
| | | | | | | | | |
Collapse
|
9
|
Belloni-Olivi L, Bressler JP, Goldstein GW. Retinal microvessels express less gamma-glutamyl transpeptidase than brain microvessels. Curr Eye Res 2009; 11:203-11. [PMID: 1350241 DOI: 10.3109/02713689209001771] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this investigation we localized and compared the level of gamma-glutamyl transpeptidase (GGTP) activity in retinal and brain preparations using histochemical, enzymatic and in situ hybridization assays. We compared GGTP distribution to another microvessel specific enzyme, alkaline phosphatase (AP). In the rat brain, GGTP activity was observed in microvessels and choroid plexus by a histochemical method. Similar studies in the rat retina revealed activity in the pigment epithelium but only a very weak reaction in microvessels. Histochemical staining for alkaline phosphatase was observed in both retinal and brain microvessels choroid plexus and pigment epithelium. Biochemical analysis verified that GGTP activity was significantly lower in retinal than brain microvessels, while alkaline phosphatase activity was similar in both types of microvessels. GGTP specific activity of bovine brain and retinal microvessels was 185 +/- 39 mUnits and 8.5 +/- 1.5 mUnits (p less than 0.001), respectively. By contrast, alkaline phosphatase specific activity in brain and retinal microvessels was 732 +/- 139 and 471 +/- 114 (p greater than 0.1), respectively. Choroid plexus and retinal pigment epithelium exhibited similar levels of GGTP and alkaline phosphatase. Differences in GGTP expression between retinal and brain microvessels were also observed on the mRNA level. In situ hybridization studies revealed that brain microvessels expressed four times more GGTP specific mRNA than retinal microvessels. We conclude that retinal microvessels do not express high levels of GGTP which may make them more vulnerable than brain microvessels to injuries mediated by leukotrienes and oxidative stress.
Collapse
Affiliation(s)
- L Belloni-Olivi
- Kennedy Research Institute, Johns Hopkins Medical Institutions, Baltimore, MD
| | | | | |
Collapse
|
10
|
Affiliation(s)
- F Simonelli
- Department of Ophthalmology, Second University of Naples, Napoli, Italy.
| | | | | |
Collapse
|
11
|
Baca JT, Finegold DN, Asher SA. Tear glucose analysis for the noninvasive detection and monitoring of diabetes mellitus. Ocul Surf 2008; 5:280-93. [PMID: 17938838 DOI: 10.1016/s1542-0124(12)70094-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
One approach to the noninvasive monitoring of blood glucose concentration is to monitor glucose concentrations in tear fluid. While several methods for sensing glucose in tear fluid have been proposed, controversy remains as to the precise concentrations of tear glucose in normal and diabetic subjects and as to whether tear fluid glucose concentrations correlate with blood glucose concentrations. This review covers the present understanding of the physiology of glucose transport in tears, the regulation of the aqueous tear fraction, and studies of tear glucose concentration over the last 80 years. The various tear collection methods employed greatly influence the measured tear glucose concentrations. Studies that involve mechanical irritation of the conjunctiva during sampling measure the highest tear glucose concentrations, while studies that avoid tear stimulation measure the lowest concentrations. Attempts to monitor tear glucose concentration in situ by using contact lens-based sensing devices are discussed, and new observations are presented of tear glucose concentration obtained by a method designed to avoid tear stimulation. These studies indicate the importance of the sampling method in determining tear glucose concentrations. On the basis of these results, we discuss the future of in vivo tear glucose sensing and outline the studies needed to resolve the remaining questions about the relationship between tear and blood glucose concentrations.
Collapse
Affiliation(s)
- Justin T Baca
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
12
|
Norsted E, Gömüç B, Meister B. Protein components of the blood-brain barrier (BBB) in the mediobasal hypothalamus. J Chem Neuroanat 2008; 36:107-21. [PMID: 18602987 DOI: 10.1016/j.jchemneu.2008.06.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 06/09/2008] [Accepted: 06/09/2008] [Indexed: 01/27/2023]
Abstract
The blood-brain barrier (BBB) plays an important role in controlling the access of substances to the brain. Of the circumventricular organs (CVO), i.e. areas that lack a BBB, the median eminence and its close relationship with the hypothalamic arcuate nucleus plays an important role in controlling the entry of blood-borne substances to neurons of the mediobasal hypothalamus. In order to clarify the nature of the BBB in the median eminence-arcuate nucleus complex, we have used immunohistochemistry and antisera to protein components of the BBB-(1) tight junctions, claudin-5 and zona occludens-1 (ZO-1); (2) endothelial cells: (a) all endothelial cells: rat endothelial cell antigen-1 (RECA-1), (b) endothelial cells at BBB: endothelial barrier antigen (EBA), glucose transporter 1 (GLUT1) and transferrin receptor (TfR), and (c) endothelial cells at CVOs: dysferlin; (3) basal lamina: laminin; (4) vascular smooth muscle cells: smooth muscle actin (SMA); (5) pericytes: chondroitin sulfate proteoglycan (NG2); (6) glial cells: (a) astrocytes: glial fibrillary acidic protein (GFAP), (b) tanycytes: dopamine- and cAMP-regulated phosphoprotein of 32kDA (DARPP-32), (c) microglia: CD11b. Neuronal cell bodies located in the ventromedial aspect of the arcuate nucleus were visualized by antiserum to agouti-related protein (AgRP). The study provides a detailed analysis on the cellular localization of BBB components in the mediobasal hypothalamus. Some vessels in the ventromedial aspect of the arcuate nucleus lacked the BBB markers EBA and TfR, suggesting an absence of an intact BBB. These vessels may represent a route of entry for circulating substances to a subpopulation of arcuate nucleus neurons.
Collapse
Affiliation(s)
- Ebba Norsted
- Department of Neuroscience, The Retzius Laboratory, Karolinska Institutet, Retzius väg 8, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
13
|
Chan CY, Guggenheim JA, To CH. Is active glucose transport present in bovine ciliary body epithelium? Am J Physiol Cell Physiol 2006; 292:C1087-93. [PMID: 17020938 DOI: 10.1152/ajpcell.00048.2006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperglycemia is a major risk factor for diabetic cataract formation. Effective regulation of glucose transport by the ciliary body epithelium (CBE) is pivotal to normal glycemic control in the anterior eye, which in turn affects the glucose level of the crystalline lens. The present study aimed to characterize the glucose transport mechanisms across the bovine blood-aqueous barrier (BAB) represented by the CBE. With an Ussing-type chamber, the glucose transport kinetics were measured and characterized in the presence and absence of various glucose transporter inhibitors. The saturation characteristics of the CBE to glucose were estimated from an Eadie-Hofstee plot. The mRNA expression of glucose transporters in specific regions of the bovine CBE was assessed using RT-PCR. The trans-CBE glucose flux was found to be sensitive to the glucose transporter inhibitors cytochalasin B, phloretin, and phlorizin. The transport system had a kinetic constant of 5.3 mM and a maximum velocity of 349.5 nmol.h(-1).cm(-2). Gene expression for GLUT1, GLUT3, GLUT4, GLUT5, and SGLT2 was observed in both the pars plana and pars plicata regions of the bovine CBE. This study demonstrates that glucose transport across the bovine CBE is primarily passive in nature. However, the novel findings of 1) the presence of a phlorizin-sensitive glucose flux and 2) gene expression for SGLT2 mean that a potential role for active glucose transport cannot be ruled out. The elucidation of the exact function of SGLT2 in the bovine CBE may shed important light on the glucose transport and physiology of the BAB and inform future studies of glycemic control in relation to diabetic cataract formation.
Collapse
Affiliation(s)
- Chu Yan Chan
- School of Optometry and Vision Sciences, Cardiff University, Wales, UK
| | | | | |
Collapse
|
14
|
Senanayake PD, Calabro A, Hu JG, Bonilha VL, Darr A, Bok D, Hollyfield JG. Glucose utilization by the retinal pigment epithelium: Evidence for rapid uptake and storage in glycogen, followed by glycogen utilization. Exp Eye Res 2006; 83:235-46. [PMID: 16690055 DOI: 10.1016/j.exer.2005.10.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 10/05/2005] [Accepted: 10/28/2005] [Indexed: 10/24/2022]
Abstract
Glucose utilization and glycogen metabolism by human retinal pigment epithelium (RPE) cultures with high transepithelial resistance maintained on porous Millicell polycarbonate filters, were quantified by fluorophore-assisted carbohydrate electrophoresis (FACE). Glucose uptake was more efficient at the apical surface of the RPE. The utilization of glucose when restricted to either the apical or basal medium was also evaluated. Under both conditions, glucose was quickly transported to the opposite compartment and rapidly utilized. However, glucose from the apical compartment was depleted to a greater extent than from the basal compartment. The de novo synthesis and accumulation of glycogen accompanied glucose utilization. This was paralleled by a concomitant increase in lysosomal glycogen degradation measured as an increase in cell-associated maltodextrins. The highest levels of glucose in glycogen and maltodextrins occurred at 24 h, declining to basal levels at 72 h. Glucose transporter expression in the RPE cultures was evaluated with the reverse transcriptase-polymerase chain reaction. Glucose transporter-1 (GLUT 1) was the isoform expressed in these cells. GLUT 1 localization was determined by immunocytochemistry. GLUT 1 localizes to the apical and basolateral border of the RPE. The intensity of fluorescence was higher on the apical border. The rapid depletion of medium glucose suggests that RPE culture studies should replenish medium glucose more frequently than every 72 h to maintain physiologically relevant glucose concentrations. These studies are the first to demonstrate glucose, glycogen and maltodextrin metabolism by RPE cells, and their detection and quantitation by FACE.
Collapse
Affiliation(s)
- Preenie deS Senanayake
- Department of Ophthalmic Research, The Cole Eye Institute, The Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
We present a detailed glucose regulation model using fuzzy inference system (FIS) descriptions of hormonal control action and the familiar Michaelis-Menten (M-M) kinetic description for glucose transport. The fuzzy M-M model is compared and contrasted with a well-known comprehensive glucose model. The two models give similar results for glucose response, endogenous glucose production, and total uptake. The fuzzy M-M model features a renal subsystem that provides 25% of the endogenous glucose production. The work demonstrates the successful application of fuzzy logic and fuzzy inference to biological modelling. The flexibility of fuzzy inference, a linguistic description technique, permits conceptually simple statements about nonlinear processes.
Collapse
Affiliation(s)
- Em Ward
- Biomedical and Electrical Engineering, University of Arkansas, Fayetteville 72701, USA
| | | |
Collapse
|
16
|
Bonilha VL, Rayborn ME, Saotome I, McClatchey AI, Hollyfield JG. Microvilli defects in retinas of ezrin knockout mice. Exp Eye Res 2006; 82:720-9. [PMID: 16289046 DOI: 10.1016/j.exer.2005.09.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 09/14/2005] [Accepted: 09/19/2005] [Indexed: 10/25/2022]
Abstract
Ezrin, a member of the ezrin/moesin/radixin (ERM) family, localizes to microvilli of epithelia in vivo, where it functions as a bridge between actin filaments and plasma membrane proteins. In the eye, ezrin has been localized to both apical microvilli of Müller cells and retinal pigment epithelium (RPE) apical microvilli and basal infoldings. In the present study, we analyze these structures in the eyes of early postnatal ezrin knockout mice. This analysis indicates that the loss of ezrin leads to substantial reductions in the apical microvilli and basal infoldings in RPE cells and in the Müller cell apical microvilli. The absence of apical microvilli in the RPE is accompanied by the presence of microvilli-like inclusions (MIs) in the RPE cytoplasm. Finally, photoreceptors in the ezrin knockout animals show substantial retardation in development as compared to their wild type littermates.
Collapse
Affiliation(s)
- Vera L Bonilha
- Department of Ophthalmic Research, The Cole Eye Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | | | | | | | |
Collapse
|
17
|
Bonilha VL, Bhattacharya SK, West KA, Sun J, Crabb JW, Rayborn ME, Hollyfield JG. Proteomic characterization of isolated retinal pigment epithelium microvilli. Mol Cell Proteomics 2004; 3:1119-27. [PMID: 15367653 DOI: 10.1074/mcp.m400106-mcp200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polarized epithelial cells are characterized by displaying compartmentalized functions associated with differential distribution of transporters, structural proteins, and signaling molecules on their apical and basolateral surfaces. Their apical surfaces frequently elaborate microvilli, which vary in structure according to the specific type and function of each epithelium. The molecular basis of this heterogeneity is poorly understood. However, differences in function will undoubtedly be reflected in the specific molecular composition of the apical surface in each epithelial subtype. We have exploited a method for isolating microvilli from the mouse eye using wheat germ agglutinin (WGA)-agarose beads to begin to understand the specific molecular composition of apical microvilli of the retinal pigment epithelium (RPE) and expand our knowledge of the potential function of this interface. Initially, apical RPE plasma membranes bound to WGA beads were processed for morphological analysis using known apical and basolateral surface markers. The protein composition of the apical microvilli was then established using proteomic analysis. Over 200 proteins were identified, including a number of proteins previously known to be localized to RPE microvilli, as well as others not known to be present at this surface. Localization of novel proteins identified with proteomics was confirmed by immunohistochemistry in both mouse and rat eye tissue. The data generated provides new information on the protein composition of the RPE apical microvilli. The isolation technique used should be amenable for isolating microvilli in other epithelia as well, allowing new insights into additional functions of this important epithelial compartment.
Collapse
Affiliation(s)
- Vera L Bonilha
- The Cole Eye Institute, Department of Ophthalmic Research, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Garcia CM, Darland DC, Massingham LJ, D'Amore PA. Endothelial cell-astrocyte interactions and TGF beta are required for induction of blood-neural barrier properties. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 152:25-38. [PMID: 15283992 DOI: 10.1016/j.devbrainres.2004.05.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/16/2004] [Indexed: 11/25/2022]
Abstract
We sought to establish a blood-neural barrier (BNB) model of astrocyte contact with endothelial cells (EC) to test the hypothesis that transforming growth factor beta (TGF beta) promotes an EC barrier-phenotype. Astrocyte-EC contact induced BNB properties in EC. Transendothelial resistance was augmented by direct contact between astrocytes-EC, but not by astrocyte-conditioned medium or astrocyte-EC coculture conditioned medium. Coculture of EC and astrocytes led to significant increase in endothelial occludin levels and junctional localization. EC gamma-glutamyl-transferase (GGT) activity was increased by direct contact with astrocytes, by conditioned medium from cocultures or by TGF beta1. Coculture inhibited EC proliferation with no effect on astrocyte proliferation. A neutralizing antibody to TGF beta decreased GGT activity in cocultures and increased cell number. Whereas total TGF beta was not significantly altered by coculture, activated TGF beta increased in astrocyte-EC cocultures. In summary, astrocyte-EC contact induces BNB characteristics in EC and locally activated TGF beta is responsible for part of the induction.
Collapse
Affiliation(s)
- Claudia M Garcia
- Biological and Biomedical Sciences Graduate Program, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
19
|
Yoshizawa M, Feinberg SE, Marcelo CL, Elner VM. Ex vivo produced human conjunctiva and oral mucosa equivalents grown in a serum-free culture system. J Oral Maxillofac Surg 2004; 62:980-8. [PMID: 15278863 DOI: 10.1016/j.joms.2004.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE We sought to develop full-thickness ex vivo produced human conjunctiva and oral mucosa equivalents using a serum-free culture system without a feeder layer and to compare conjunctiva and oral mucosa equivalents to assess their suitability as graft materials for eyelid reconstruction. MATERIALS AND METHODS Human conjunctival and oral mucosal keratinocytes were cultured, expanded, and seeded onto AlloDerm (LifeCell Corp, Branchburg, NJ), a cadaveric, acellular dermis, to produce ex vivo produced full-thickness mucosa equivalents. Histology of equivalents and their expression of immunoreactive Ki-67, a proliferation marker, and GLUT1, a membrane antigen seen in barrier tissues, were examined at 4, 11, and 18 days after seeding onto AlloDerm. RESULTS Progressive epithelial stratification was observed on day 4, 11, and 18 conjunctiva and oral mucosa equivalents. Ki-67 immunoreactivity progressively increased with cultured time in both types of equivalent, indicating the continued presence of actively proliferating cells. GLUT1 immunoreactivity, concentrated in the basal keratinocytes of stratified epithelia of both types of equivalents, mimicked native tissue and indicated a high glycolytic state of the basal cells. CONCLUSIONS Conjunctival and oral mucosal equivalents are similar to native tissue and demonstrate high proliferative and glycolytic states. Due to the similarity to conjunctiva, oral mucosal equivalents may be useful for eyelid reconstruction. Their advantages for surgical reconstruction include 1) ease of obtaining autogenous oral epithelium for expansion in vitro without the possibility of contaminating cellular- or serum-borne biologic agents, 2) growth of intact, confluent epithelia on rigid, transplantable human allogeneic dermis that may be surgically transplanted, and 3) reduced donor site morbidity and surgical time.
Collapse
Affiliation(s)
- Michiko Yoshizawa
- Department of Oral and Maxillofacial Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
20
|
Atluri H, Anand BS, Patel J, Mitra AK. Mechanism of a model dipeptide transport across blood-ocular barriers following systemic administration. Exp Eye Res 2004; 78:815-22. [PMID: 15037116 DOI: 10.1016/j.exer.2003.10.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Accepted: 10/26/2003] [Indexed: 02/09/2023]
Abstract
The purposes of this study were to provide functional evidence for the presence of a peptide transporter on blood-ocular barriers and to elucidate the mechanism of a dipeptide transport across these barriers following systemic administration. Glycylsarcosine was chosen as a model dipeptide and [(3)H] glycylsarcosine was administered through the marginal ear vein of New Zealand white rabbits. At the end of an experimental period, vitreous humor, retina and aqueous humor were collected. Time dependent uptake of glycylsarcosine into ocular tissues was studied at 5, 10, 15 and 30 min. Competitive inhibition studies were performed by intravenous administration of [(3)H] glycylsarcosine with and without various inhibitors. Concentration-dependent ocular uptake of glycylsarcosine was carried out by administration of various concentrations of unlabelled glycylsarcosine spiked with a fixed amount of [(3)H] glycylsarcosine. Time-dependent uptake of glycylsarcosine into vitreous humor, retina and aqueous humor for a period of 30 min following systemic administration was linear. Ocular uptake of glycylsarcosine was inhibited by peptide transporter substrates such as dipeptides (glycylproline and carnosine) and captopril but not by non-substrates such as amino acids. Concentration-dependent self-inhibition of glycylsarcosine ocular uptake was also observed. The results indicate that model dipeptide is transported across blood-ocular barriers via a carrier-mediated process. In conclusion, an oligopeptide transport system is involved in the transport of glycylsarcosine across blood-ocular barriers. This information may be utilized to design transporter/receptor targeted drug delivery systems for efficient ocular uptake from systemic administration.
Collapse
Affiliation(s)
- Harisha Atluri
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 5005 Rockhill Road, Kansas City, MO 64112-2499, USA
| | | | | | | |
Collapse
|
21
|
Puchowicz MA, Xu K, Magness D, Miller C, Lust WD, Kern TS, LaManna JC. Comparison of glucose influx and blood flow in retina and brain of diabetic rats. J Cereb Blood Flow Metab 2004; 24:449-57. [PMID: 15087714 DOI: 10.1097/00004647-200404000-00010] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diabetes is associated with extensive microvascular pathology and decreased expression of the glucose transporter (GLUT-1) in retina, but not brain. To explore the basis of these differences, the authors simultaneously measured glucose influx (micromol x g(-1) x min(-1)) and blood flow (mL x g(-1) x min(-1)) in retina and brain cortex of nondiabetic control rats (normoglycemic and acute-hyperglycemic) and in rats with streptozotocin-induced diabetes (with or without aminoguanidine (AMG) treatment) using a single-pass, dual-label indicator method. In addition, tissue glucose and adenosine triphosphate (nmol/mg dry weight) levels were measured. Glucose influx in retina exceeded that of cortex by about threefold for both the nondiabetic and diabetic groups. In contrast, blood flow in retina was significantly lower than in cortex by about threefold for each group. Retinal and cortical glucose influx in the diabetic rats was lower than in the nondiabetic acute-hyperglycemic group, but not in the normoglycemic group. Blood flow in these tissues remained relatively unchanged with glycemic conditions. The glucose levels in the diabetic retina (aminoguanidine untreated and aminoguanidine treated) were fourfold to sixfold greater than the nondiabetic retina. The cortical glucose levels remained unchanged in all groups. These data suggest that the accumulation of glucose in the diabetic retina cannot be explained by increased endothelial-glucose uptake or increased vascular membrane permeability.
Collapse
Affiliation(s)
- Michelle A Puchowicz
- Department of Anatomy, Case Western Reserve University, School of Medicine, Cleveland, OH 44106-4938, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
One of the important functions of the cornea is to maintain normal vision by refracting light onto the lens and retina. This property is dependent in part on the ability of the corneal epithelium to undergo continuous renewal. Epithelial renewal is essential because it enables this tissue to act as a barrier that protects the corneal interior from becoming infected by noxious environmental agents. Furthermore, the smooth optical properties of the corneal epithelial surface are sustained through this renewal process. The rate of renewal is dependent on a highly integrated balance between the processes of corneal epithelial proliferation, differentiation, and cell death. One experimental approach to characterize these three aspects of the renewal process has been to study the kinetics and dynamics of corneal re-epithelialization in a wound-healing model. This effort has employed in vivo and in vitro studies. From such studies it is evident that the appropriate integration and coordination of corneal epithelial proliferation, adhesion, migration, and cell demise is dependent on the actions of a myriad of cytokines. Our goal here is to provide an overview into how these mediators and environmental factors elicit control of cellular proliferation, adhesion, migration, and apoptosis. To this end we review the pertinent literature dealing with the receptor and the cell signaling events that are responsible for mediating cytokine control of corneal epithelial renewal. It is our hope that a better appreciation can be obtained about the complexity of the control processes that are responsible for assuring continuous corneal epithelial renewal in health and disease.
Collapse
Affiliation(s)
- L Lu
- Department of Physiology and Biophysics, Wright State University School of Medicine, Dayton, OH 45435, USA.
| | | | | |
Collapse
|
23
|
DeBosch BJ, Baur E, Deo BK, Hiraoka M, Kumagai AK. Effects of insulin-like growth factor-1 on retinal endothelial cell glucose transport and proliferation. J Neurochem 2001; 77:1157-67. [PMID: 11359881 DOI: 10.1046/j.1471-4159.2001.00325.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) plays important roles in the developing and mature retina and in pathological states characterized by retinal neovascularization, such as diabetic retinopathy. The effects of IGF-1 on glucose transport and proliferation and the signal transduction pathways underlying these effects were studied in a primary bovine retinal endothelial cell (BREC) culture model. IGF-1 stimulated uptake of the glucose analog 2-deoxyglucose in a dose-dependent manner, with a maximal uptake at 25 ng/mL (3.3 nM) after 24 h. Increased transport occurred in the absence of an increase in total cellular GLUT1 transcript or protein. IGF-1 stimulated activity of both protein kinase C (PKC) and phosphatidylinositol-3 kinase (PI3 kinase), and both pathways were required for IGF-1-mediated BREC glucose transport and thymidine incorporation. Use of a selective inhibitor of the beta isoform of PKC, LY379196, revealed that IGF-1 stimulation of glucose transport was mediated by PKC-beta; however, inhibition of PKC-beta had no effect on BREC proliferation. Taken together, these data suggest that the actions of IGF-1 in retinal endothelial cells couple proliferation with delivery of glucose, an essential metabolic substrate. The present studies extend our general understanding of the effects of IGF-1 on vital cellular activities within the retina in normal physiology and in pathological states such as diabetic retinopathy.
Collapse
Affiliation(s)
- B J DeBosch
- Department of Internal Medicine, Michigan Diabetes Research and Training Center, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
24
|
Boulton M, Dayhaw-Barker P. The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye (Lond) 2001; 15:384-9. [PMID: 11450762 DOI: 10.1038/eye.2001.141] [Citation(s) in RCA: 313] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a single layer of post-mitotic cells, which functions both as a selective barrier to and a vegetative regulator of the overlying photoreceptor layer, thereby playing a key role in its maintenance. Through the expression and activity of specific proteins, it regulates the transport of nutrients and waste products to and from the retina, it contributes to outer segment renewal by ingesting and degrading the spent tips of photoreceptor outer segments, it protects the outer retina from excessive high-energy light and light-generated oxygen reactive species and maintains retinal homeostasis through the release of diffusible factors. The ageing characteristics of the RPE suggest that in addition to cell loss, pleomorphic changes and loss of intact melanin granules, significant metabolic changes occur resulting, at least in part, from the intracellular accumulation of lipofuscin. This pigment has been shown to be highly phototoxic and has been linked to several oxidative changes, some leading to cell death. While the aetiology of age-related macular degeneration is complex and is as yet unresolved, it is likely that accelerated ageing-like changes in the RPE play a fundamental role in the development of this condition.
Collapse
Affiliation(s)
- M Boulton
- Department of Optometry and Vision Sciences, Cardiff University, UK.
| | | |
Collapse
|
25
|
Seatter MJ, Gould GW. The mammalian facilitative glucose transporter (GLUT) family. PHARMACEUTICAL BIOTECHNOLOGY 2000; 12:201-28. [PMID: 10742976 DOI: 10.1007/0-306-46812-3_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- M J Seatter
- Division of Biochemistry and Molecular Biology, University of Glasgow, Scotland
| | | |
Collapse
|
26
|
Abstract
Neural tissue is entirely dependent on glucose for normal metabolic activity. Since glucose stores in the brain and retina are negligible compared to glucose demand, metabolism in these tissues is dependent upon adequate glucose delivery from the systemic circulation. In the brain, the critical interface for glucose transport is at the brain capillary endothelial cells which comprise the blood-brain barrier (BBB). In the retina, transport occurs across the retinal capillary endothelial cells of the inner blood-retinal barrier (BRB) and the retinal pigment epithelium of the outer BRB. Because glucose transport across these barriers is mediated exclusively by the sodium-independent glucose transporter GLUT1, changes in endothelial glucose transport and GLUT1 abundance in the barriers of the brain and retina may have profound consequences on glucose delivery to these tissues and major implications in the development of two major diabetic complications, namely insulin-induced hypoglycemia and diabetic retinopathy. This review discusses the regulation of brain and retinal glucose transport and glucose transporter expression and considers the role of changes in glucose transporter expression in the development of two of the most devastating complications of long-standing diabetes mellitus and its management.
Collapse
Affiliation(s)
- A K Kumagai
- Department of Internal Medicine, Michigan Diabetes Research and Training Center, University of Michigan Medical School, Ann Arbor, MI 48109-0678, USA.
| |
Collapse
|
27
|
Bergersen L, Jóhannsson E, Veruki ML, Nagelhus EA, Halestrap A, Sejersted OM, Ottersen OP. Cellular and subcellular expression of monocarboxylate transporters in the pigment epithelium and retina of the rat. Neuroscience 1999; 90:319-31. [PMID: 10188957 DOI: 10.1016/s0306-4522(98)00427-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The cellular and subcellular expression of the monocarboxylate transporters MCT1, MCT2 and MCT4 [corresponding to MCT3 of Price N. T. et al. (1998) Biochem. J. 329, 321-328] were investigated in the pigment epithelium and outer retina of rats. Immunofluorescence and postembedding immunogold analyses revealed strong MCT1 labelling in the apical membrane of the pigment epithelial and no detectable signal in the basolateral membrane. In contrast, antibodies to the glucose transporter GLUT1 produced intense labelling in both membranes. Neither MCT1 nor GLUT1 was enriched in intracellular compartments. The monocarboxylate transporter MCT4 was very weakly expressed in the retinal pigment epithelium of adult animals, but occurred at higher concentrations at this site in 14-day-old rats. However, even at the latter stage, the immunolabelling of MCT4 was weak compared to that of MCT1. In the neural retina, the data were consistent with a predominant glial localization of MCT1. Specifically, immunogold particles signalling MCT1 occurred in Müller cell microvilli and in the velate processes between the photoreceptors. No labelling was obtained with antibodies to MCT2. Taken together with previous biochemical analyses, the present findings indicate that MCT1 is involved in the outward transport of lactate through the retinal pigment epithelial cells, and in the transfer of lactate between Müller cells and photoreceptors.
Collapse
Affiliation(s)
- L Bergersen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
28
|
Watanabe T, Nagamatsu S, Matsushima S, Kirino T, Uchimura H. Colocalization of GLUT3 and choline acetyltransferase immunoreactivity in the rat retina. Biochem Biophys Res Commun 1999; 256:505-11. [PMID: 10080928 DOI: 10.1006/bbrc.1999.0369] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Toward elucidating the functional aspects ofGLUT3, a primary neuronal glucose transporter isoform in the vertebrate central nervous system, this study examined its expression in cholinergic amacrine cells made identifiable by the presence of acetylcholine-synthesizing enzyme, choline acetyltransferase (ChAT), in the rat retina. Double-immunofluorescence staining of adult rat retinal tissue with anti-GLUT3 and anti-ChAT antibodies revealed characteristic stratified GLUT3 immunoreactivity (GLUT3-IR) in the inner plexiform layer (IPL) that was identical to the arborization pattern of ChAT-positive neuronal processes there. In addition, approximately 30-50% of intensely GLUT3-immunoreactive cell bodies in the inner nuclear layer and ganglion cell layer showed ChAT-IR, while the majority of ChAT-positive cell bodies were also intensely GLUT3 immunoreactive. Analysis at the cellular level using retinal cells in culture revealed similar findings. These results collectively indicate that cholinergic amacrine cells constitute the major component of GLUT3-expressing cells in the rat retina. It is expected that the link demonstrated here between GLUT3 expression and cholinergic amacrine cell population will provide clues for further analyzing GLUT3 function in the retina.
Collapse
Affiliation(s)
- T Watanabe
- Department of Clinical Pathology, Kyorin University School of Medicine, Tokyo, Mitaka, 181-8611, Japan.
| | | | | | | | | |
Collapse
|
29
|
Schlingemann RO, Hofman P, Klooster J, Blaauwgeers HG, Van der Gaag R, Vrensen GF. Ciliary muscle capillaries have blood-tissue barrier characteristics. Exp Eye Res 1998; 66:747-54. [PMID: 9657907 DOI: 10.1006/exer.1998.0483] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It was determined whether the capillaries in the ciliary muscle are of the blood-tissue barrier or of the permeable non-barrier type. Ciliary body and iris of normal human and animal eyes were examined by electron microscopy and by immunohistochemical staining with a panel of antibodies recognizing endothelial blood-brain barrier markers. In addition, horseradish peroxidase (HRP) tracer studies of the anterior segment were carried out in rabbits. Our results demonstrated that the capillary endothelium in human and rabbit ciliary muscle has few luminal pinocytotic vesicles and a morphological aspect suggesting the presence of tight junctions. Ciliary muscle and iris capillaries stained positive for the blood-brain barrier markers Glucose-Transporter-1 and P-Glycoprotein, while staining for the PAL-E antigen and the transferrin receptor was absent. In the rabbit ciliary muscle, vascular leakage of exogenous HRP tracer was absent. It was concluded that this functional barrier and the observed phenotype of ciliary muscle capillaries are consistent with a blood-tissue barrier function similar to that of the iris microvasculature.
Collapse
Affiliation(s)
- R O Schlingemann
- Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
30
|
Holtkamp GM, Van Rossem M, de Vos AF, Willekens B, Peek R, Kijlstra A. Polarized secretion of IL-6 and IL-8 by human retinal pigment epithelial cells. Clin Exp Immunol 1998; 112:34-43. [PMID: 9566787 PMCID: PMC1904947 DOI: 10.1046/j.1365-2249.1998.00560.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A number of cell types situated along interfaces of various tissues and organs such as the peritoneum and the intestine have been shown to secrete inflammatory cytokines in a polarized fashion. Retinal pigment epithelial (RPE) cells are positioned at the interface between the vascularized choroid and the avascular retina, forming part of the blood-retina barrier. These cells are potent producers of inflammatory cytokines and are therefore considered to play an important role in the pathogenesis of ocular inflammation. Whether cytokine secretion by these cells also follows a vectorial pattern is not yet known, and was therefore the subject of this study. Monolayers of human RPE cells (primary cultures and the ARPE-19 cell line) cultured on transwell filters were stimulated to produce IL-6 and IL-8 by adding IL-1beta (100 U/ml) to either the upper or the lower compartment. After stimulation, the human RPE cell lines showed polarized secretion of IL-6 and IL-8 towards the basal side, irrespective of the side of stimulation. The ARPE- 19 cell line also secreted IL-6 and IL-8 in a polarized fashion towards the basal side after basal stimulation; polarized secretion was, however, not apparent after apical stimulation. The observation that human RPE cells secrete IL-6 and IL-8 in a polarized fashion towards the choroid may represent a mechanism to prevent damage to the adjacent fragile retinal tissue.
Collapse
Affiliation(s)
- G M Holtkamp
- Department of Ophthalmo-Immunology, The Netherlands Ophthalmic Research Institute, Amsterdam
| | | | | | | | | | | |
Collapse
|
31
|
Shin BC, Fujikura K, Suzuki T, Tanaka S, Takata K. Glucose transporter GLUT3 in the rat placental barrier: a possible machinery for the transplacental transfer of glucose. Endocrinology 1997; 138:3997-4004. [PMID: 9275091 DOI: 10.1210/endo.138.9.5369] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glucose transfer across the placental barrier is crucial for fetal development. To investigate the role of glucose transporter isoforms in the transplacental transfer of glucose, we investigated the localization of glucose transporters GLUT1 and GLUT3 immunohistochemically in the rat placenta. In the labyrinth, the site of maternofetal exchange of substances, both GLUT1 and GLUT3 were present, whereas only GLUT1 was detected in the junctional region. In the labyrinthine wall, which lies between maternal and fetal circulations, GLUT3 exhibited polarized localization; i.e. it was present at the plasma membranes of the maternal blood side in the syncytiotrophoblast layers. GLUT1 was concentrated at plasma membranes of the maternal and fetal blood sides of syncytiotrophoblast layers. The asymmetric distribution of GLUT3 across the placental barrier may suggest asymmetric transfer of glucose, which would be beneficial to provide a stable milieu for fetal development.
Collapse
Affiliation(s)
- B C Shin
- Department of Cell Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | | | | | | | | |
Collapse
|
32
|
Abstract
Glucose is one of the most important substances transferred from the maternal blood to the fetal circulation in the placenta, and its transport across the cellular membranes is mediated by glucose transporters. Facilitated-diffusion glucose transporter GLUT1 is abundant in the placental barrier, as is the case in other blood-tissue barriers, where GLUT1 is present at the critical plasma membranes of the barrier cells. In the human placenta, the microvillous apical and the basal plasma membranes of the syncytiotrophoblast are rich in GLUT1, which molecule seems to be responsible for the transcellular transport of glucose across the placental barrier. In the rat placental labyrinth, two layers of syncytiotrophoblasts (termed syncytiotrophoblasts I and II from the maternal side) serve as a barrier. GLUT1 is abundant at the plasma membrane of syncytiotrophoblast I facing the maternal side, and the plasma membrane of syncytiotrophoblast II facing the fetal side. Numerous gap junctions, made of connexin 26, connect syncytiotrophoblasts I and II, comprising a channel for the transfer of glucose between them. GLUT1 in combination with the gap junction, therefore, seems to serve as the structural basis for the transport of glucose across the rat placental barrier.
Collapse
Affiliation(s)
- K Takata
- Laboratory of Molecular and Cellular Morphology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | | |
Collapse
|
33
|
Voldstedlund M, Dabelsteen E. Expression of GLUT1 in stratified squamous epithelia and oral carcinoma from humans and rats. APMIS 1997; 105:537-45. [PMID: 9269300 DOI: 10.1111/j.1699-0463.1997.tb05051.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Most cells express facilitative glucose transporters. Four isoforms (GLUT1-4) transporting D-glucose across the plasma membrane show a specific tissue distribution, which is the basis for tissue-specific patterns in glucose metabolism. GLUT1 is expressed at high levels in tissue barriers such as the blood-brain barrier, and this isoform has been suggested as an indicator of such barriers. GLUT1 has been found in basal layers of human epidermis where no such tissue barrier is present. To further clarify these issues, we examined the distribution of GLUT1 and GLUT4 in skin, different types of oral mucosa from rat and man, and a human oral carcinoma by indirect immunofluorescence microscopy. The results showed that GLUT1 was expressed in the basal and parabasal layers of the different stratified squamous epithelia, with some variations between keratinized and non-keratinized subtypes. GLUT1 was also expressed in ductal- and myoepithelial cells of minor salivary glands and perineural sheath located in the lamina propra, and furthermore in the cells of an oral carcinoma. GLUT4 was not expressed in any of the tissues examined. This distribution of GLUT1 does not fit with the idea of GLUT1 as a general indicator of tissue barriers. In contrast, our results support the prevailing, but limited knowledge of glucose metabolism in squamous stratified epithelia, a metabolism believed to depend mostly on glycolysis, especially in the basal layers. High-level expression seemed to be confined to keratinocytes without glycogen stores.
Collapse
Affiliation(s)
- M Voldstedlund
- Department of Medical Physiology, Faculty of Health Sciences, Panum Institute, University of Copenhagen, Denmark
| | | |
Collapse
|
34
|
Takata K, Hirano H, Kasahara M. Transport of glucose across the blood-tissue barriers. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 172:1-53. [PMID: 9102392 DOI: 10.1016/s0074-7696(08)62357-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In specialized parts of the body, free exchange of substances between blood and tissue cells is hindered by the presence of a barrier cell layer(s). Specialized milieu of the compartments provided by these "blood-tissue barriers" seems to be important for specific functions of the tissue cells guarded by the barriers. In blood-tissue barriers, such as the blood-brain barrier, blood-cerebrospinal fluid barrier, blood-nerve barrier, blood-retinal barrier, blood-aqueous barrier, blood-perilymph barrier, and placental barrier, endothelial or epithelial cells sealed by tight junctions, or a syncytial cell layer(s), serve as a structural basis of the barrier. A selective transport system localized in the cells of the barrier provides substances needed by the cells inside the barrier. GLUT1, an isoform of facilitated-diffusion glucose transporters, is abundant in cells of the barrier. GLUT1 is concentrated at the critical plasma membranes of cells of the barriers and thereby constitutes the major machinery for the transport of glucose across these barriers where transport occurs by a transcellular mechanism. In the barrier composed of double-epithelial layers, such as the epithelium of the ciliary body in the case of the blood-aqueous barrier, gap junctions appear to play an important role in addition to GLUT1 for the transfer of glucose across the barrier.
Collapse
Affiliation(s)
- K Takata
- Laboratory of Molecular and Cellular Morphology, Gunma University, Japan
| | | | | |
Collapse
|
35
|
Shin BC, Suzuki T, Tanaka S, Kuraoka A, Shibata Y, Takata K. Connexin 43 and the glucose transporter, GLUT1, in the ciliary body of the rat. Histochem Cell Biol 1996; 106:209-14. [PMID: 8877381 DOI: 10.1007/bf02484402] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To investigate the relationship between the gap junction protein connexin 43 and the glucose transporter GLUT1, their localization was visualized by double-immunofluorescence microscopy using frozen sections as well as immunogold staining of ultrathin frozen sections. In pigmented epithelial cells, most of the GLUT1 was localized along the plasma membrane facing the blood vessels, whereas in non-pigmented epithelial cells, it was present along the plasma membrane facing the aqueous humor. Connexin 43 was abundant in the ciliary body and localized mainly in the gap junctions connecting the pigmented and non-pigmented epithelial cells. Localization of GLUT1 and connexin 43 in the blood-aqueous barrier suggests that GLUT1, connexin 43, and GLUT1 disposed in this order could be a machinery responsible for the transport of glucose across the blood-aqueous barrier.
Collapse
Affiliation(s)
- B C Shin
- Laboratory of Molecular and Cellular Morphology, Gunma University, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Lawrenson JG, Ghabriel MN, Reid AR, Gajree TN, Allt G. Distribution of a putative endothelial barrier antigen in the ocular and orbital tissues of the rat. Br J Ophthalmol 1995; 79:462-6. [PMID: 7612560 PMCID: PMC505136 DOI: 10.1136/bjo.79.5.462] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND A rat endothelial barrier antigen (EBA) recognised by a monoclonal antibody has been shown to be expressed strongly by endothelial cells of brain capillaries possessing a blood-brain barrier and only weakly expressed by fenestrated brain vessels. METHODS In this study immunocytochemical methods for light and electron microscopy were used to study EBA distribution in the eye and orbital tissues of the rat. RESULTS Blood-ocular barrier vessels in the optic nerve, retina, iris, and some vessels in th choroid and ciliary body were immunopositive for EBA. By pre-embedding immunocytochemistry for electron microscopy the antigen was observed on the luminal endothelial cell surface. CONCLUSION Surprisingly, some non-barrier vessels in the ciliary body and choroid expressed EBA suggesting that it may play a broader role in endothelial properties than previously recognised. The functional significance of EBA remains to be elucidated.
Collapse
Affiliation(s)
- J G Lawrenson
- Reta Lila Weston Institute of Neurological Studies, University College London Medical School
| | | | | | | | | |
Collapse
|
37
|
Takata K, Kasahara T, Kasahara M, Ezaki O, Hirano H. Immunolocalization of glucose transporter GLUT1 in the rat placental barrier: possible role of GLUT1 and the gap junction in the transport of glucose across the placental barrier. Cell Tissue Res 1994; 276:411-8. [PMID: 8062336 DOI: 10.1007/bf00343939] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
GLUT1 is an isoform of facilitated-diffusion glucose transporters and has been shown to be abundant in cells of blood-tissue barriers. Using antibodies against GLUT1, we investigated the immunohistochemical localization of GLUT1 in the rat placenta. Rat placenta is of the hemotrichorial type. Three cell layers (from the maternal blood side inward) cytotrophoblast and syncytiotrophoblasts I and II, lie between the maternal and fetal bloodstreams. GLUT1 was abundant along the invaginating plasma membrane facing the cytotrophoblast and the syncytiotrophoblast I. Also, the infolded basal plasma membrane of the syncytiotrophoblast II was rich in GLUT1. Apposing plasma membranes of syncytiotrophoblasts I and II, however, had only a small amount of GLUT1. Numerous gap junctions were seen between syncytiotrophoblasts I and II. Taking into account the localization of GLUT1 and the gap junctions, we suggest a possible major transport route of glucose across the placental barrier, as follows: glucose in the maternal blood passes freely through pores of the cytotrophoblast. Glucose is then transported into the cytoplasm of the syncytiotrophoblast I via GLUT1. Glucose enters the syncytiotrophoblast II through the gap junctions. Finally glucose leaves the syncytiotrophoblast II via GLUT1 and enters the fetal blood through pores of the endothelial cells.
Collapse
Affiliation(s)
- K Takata
- Department of Anatomy, Kyorin University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
38
|
Holash JA, Harik SI, Perry G, Stewart PA. Barrier properties of testis microvessels. Proc Natl Acad Sci U S A 1993; 90:11069-73. [PMID: 7902579 PMCID: PMC47923 DOI: 10.1073/pnas.90.23.11069] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The blood-testis barrier is believed to be constituted by tight junctions between Sertoli cells in seminiferous tubules and possibly by myoid cells that encircle these tubules. We now show that testis microvessels are endowed with several markers of barrier properties of brain microvessels, such as the glucose transporter, P-glycoprotein, and gamma-glutamyl transpeptidase. Quantitative EM studies show that the endothelium in testis, as in brain, is continuous and has long junctional profiles and few vesicles. However, a small proportion of testis capillaries have expansions in their junctional clefts suggestive of patent paracellular channels, which may explain their higher permeability. Because barrier features are thought to be induced and/or maintained in brain microvessels by astrocytes, we assessed whether astrocyte-like cells exist in the testis. We found that the intertubular Leydig cells, adjacent to microvessels, express the astrocyte markers: glial fibrillary acidic protein, glutamine synthetase, and S-100 protein. We suggest that the testis endothelium contributes to the blood-testis barrier and that these endothelial barrier features are influenced by Leydig cells. We believe that the endothelial and the epithelial (Sertoli) components of the blood-testis barrier are "in series" and complement each other in achieving a stable milieu for spermatogenesis.
Collapse
Affiliation(s)
- J A Holash
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Toronto, ON, Canada
| | | | | | | |
Collapse
|
39
|
Holash JA, Noden DM, Stewart PA. Re-evaluating the role of astrocytes in blood-brain barrier induction. Dev Dyn 1993; 197:14-25. [PMID: 8400408 DOI: 10.1002/aja.1001970103] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Neural tissue induces brain capillary endothelial cells to express a diverse array of characteristics that allow them to regulate the passage of solutes between the blood and the brain; these features are collectively referred to as the blood-brain barrier (BBB). Because astrocytes are intimately associated with brain capillaries, they have been thought to be the cell type responsible for barrier induction. Widely accepted support of this hypothesis has been derived from experiments showing that astrocytes implanted into the anterior chamber of the rat eye, or onto the chorioallantoic membrane of the chicken embryo, remain unstained by circulating Evan's blue, while grafts of fibroblasts in these sites stain intensely. We have found several limitations associated with placing grafts in either site, leading us to believe that previously reported results are inconclusive. Astrocytes implanted into the anterior chamber form grafts that are poorly vascularized, whereas fibroblast grafts are richly vascularized by vessels which are often fenestrated. This likely accounts for apparent differences in vessel permeability reported by others. We have found that iridial vessels associated with astrocyte grafts do not change their ultrastructure to resemble brain capillaries. Grafting of cells to the chorioallantoic membrane elicits an extensive inflammatory response. Inflammation results in poor delivery of tracers to graft vasculature as well as altering vessel permeability. Treatment of hosts with steroidal anti-inflammatory agents in doses compatible with survival of the host does allow improved graft survival. Even after treatment with anti-inflammatory agents, however, astrocyte graft vasculature fails to express high levels of a barrier marker, the GLUT-1 isoform of the glucose transporter. Transplantation of avascular embryonic spinal cord, that induces robust vessel ingrowth and GLUT-1 expression in intra-embryonic vessels, was unable to elicit the ingrowth of more than a few vessels from the chorioallantoic membrane vasculature, and none of these expressed glucose transporter. We conclude that the anterior chamber and chorioallantoic membrane are not suitable sites for studying BBB induction, and that there is, at present, no conclusive evidence that mature astrocytes play a significant role in the initial expression of the BBB.
Collapse
Affiliation(s)
- J A Holash
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
40
|
Muona P, Jaakkola S, Salonen V, Peltonen J. Expression of glucose transporter 1 in adult and developing human peripheral nerve. Diabetologia 1993; 36:133-40. [PMID: 7681417 DOI: 10.1007/bf00400694] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Northern hybridization of total RNA isolated from adult human sciatic nerve demonstrated a readily detectable hybridization signal for glucose transporter 1 (GLUT 1) mRNA. Western blot analysis demonstrated that GLUT 1 proteins extracted from adult human and from mature rat sciatic nerves had different electrophoretical mobilities. The migration positions of human and rat GLUT 1 proteins corresponded to 60-70 kDa and 55-60 kDa, respectively, as estimated by markers with known molecular masses. Indirect immunofluorescence staining localized GLUT 1 to the perineurium in the adult human sciatic nerve. Only a few endoneurial capillaries of human adult nerve stained positively for GLUT 1, which was in contrast to rat peripheral nerve where most endoneurial capillaries were positive for GLUT 1. In developing human nerves, the staining pattern for GLUT 1 was markedly different from that of the adult nerves: at 14 weeks, the perineurial cells were entirely negative for GLUT 1. Between 22 and 26 weeks of gestation, the staining reaction for GLUT 1 in the perineurium became markedly more prominent, and by 35 weeks the intense perineurial staining resembled that observed in the adult human nerves. In contrast to adult nerves, both endo- and epineurial blood vessels stained intensely for GLUT 1 in the fetal samples. Thus, the immunoreactivity for GLUT 1 in the perineurium seems to increase concomitant with the maturation of barrier properties of perineurium, whereas the transient expression of GLUT 1 in the vasculature of developing nerve may have a specific role in the proliferating endothelial cells.
Collapse
Affiliation(s)
- P Muona
- Department of Medical Biochemistry, University of Turku, Finland
| | | | | | | |
Collapse
|
41
|
Friden PM, Walus LR, Watson P, Doctrow SR, Kozarich JW, Bäckman C, Bergman H, Hoffer B, Bloom F, Granholm AC. Blood-brain barrier penetration and in vivo activity of an NGF conjugate. Science 1993; 259:373-7. [PMID: 8420006 DOI: 10.1126/science.8420006] [Citation(s) in RCA: 217] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nerve growth factor (NGF) is essential for the survival of both peripheral ganglion cells and central cholinergic neurons of the basal forebrain. The accelerated loss of central cholinergic neurons during Alzheimer's disease may be a determinant of dementia in these patients and may therefore suggest a therapeutic role for NGF. However, NGF does not significantly penetrate the blood-brain barrier, which makes its clinical utility dependent on invasive neurosurgical procedures. When conjugated to an antibody to the transferrin receptor, however, NGF crossed the blood-brain barrier after peripheral injection. This conjugated NGF increased the survival of both cholinergic and noncholinergic neurons of the medial septal nucleus that had been transplanted into the anterior chamber of the rat eye. This approach may prove useful for the treatment of Alzheimer's disease and other neurological disorders that are amenable to treatment by proteins that do not readily cross the blood-brain barrier.
Collapse
|
42
|
La Selva M, Beltramo E, Passera P, Porta M, Molinatti GM. The role of endothelium in the pathogenesis of diabetic microangiopathy. Acta Diabetol 1993; 30:190-200. [PMID: 8180411 DOI: 10.1007/bf00569929] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Damage caused to the vessel wall by diverse mechanisms may lead to diabetic microangiopathy. Consequently, research work is more and more focusing on the pathophysiology of vascular cells, with particular emphasis on endothelium. This paper reviews the present knowledge on the alterations of small vessel endothelium in diabetes. The most important risk factors for diabetic microangiopathy are the duration of disease and the degree of metabolic control maintained throughout the years. However, genetic factors may also contribute. These are examined first, followed by the presumed roles played by increased protein glycation and the production of Advanced Glycosylation End Products, the "polyol pathway" and free radical generation. Endothelium is a widespread, extremely active organ which regulates complex physiologic functions and its structure and function are discussed in the second section of this review. The third part deals with how diabetes can affect endothelium and describes observations on endothelial metabolism in vitro as well as morphologic and functional alterations in the patients. Unfortunately, the mechanisms leading to progressive degeneration of the microcirculation and organ damage in diabetic patients remain largely unaccounted for.
Collapse
|
43
|
Holash JA, Stewart PA. Chorioallantoic membrane (CAM) vessels do not respond to blood-brain barrier (BBB) induction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 331:223-8. [PMID: 8333337 DOI: 10.1007/978-1-4615-2920-0_35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- J A Holash
- Department of Anatomy and Cell Biology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
44
|
Pelligrino DA, LaManna JC, Duckrow RB, Bryan RM, Harik SI. Hyperglycemia and blood-brain barrier glucose transport. J Cereb Blood Flow Metab 1992; 12:887-99. [PMID: 1400643 DOI: 10.1038/jcbfm.1992.126] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- D A Pelligrino
- Department of Anesthesiology, University of Illinois, Chicago
| | | | | | | | | |
Collapse
|
45
|
Takata K, Kasahara T, Kasahara M, Ezaki O, Hirano H. Localization of erythrocyte/HepG2-type glucose transporter (GLUT1) in human placental villi. Cell Tissue Res 1992; 267:407-12. [PMID: 1571954 DOI: 10.1007/bf00319362] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The syncytiotrophoblast covering the surface of the placental villi contains the machinery for the transfer of specific substances between maternal and fetal blood, and also serves as a barrier. Existence of a facilitated-diffusion transporter for glucose in the syncytiotrophoblast has been suggested. Using antibodies to erythrocyte/HepG2-type glucose transporter (GLUT1), one isoform of the facilitated-diffusion glucose transporters, we detected a 50 kD protein in human placenta at term. By use of immunohistochemistry, GLUT1 was found to be abundant in both the syncytiotrophoblast and cytotrophoblast. Endothelial cells of the fetal capillaries also showed positive staining for GLUT1. Electron-microscopic examination revealed that GLUT1 was concentrated at both the microvillous apical plasma membrane and the infolded basal plasma membrane of the syncytiotrophoblast. Plasma membrane of the cytotrophoblast was also positive for GLUT1. GLUT1 at the apical plasma membrane of the syncytiotrophoblast may function for the entry of glucose into its cytoplasm, while GLUT1 at the basal plasma membrane may be essential for the exit of glucose from the cytoplasm into the stroma of the placental villi. Thus, GLUT1 at the plasma membranes of syncytiotrophoblast and endothelial cells may play an important role in the transport of glucose across the placental barrier.
Collapse
Affiliation(s)
- K Takata
- Department of Anatomy, Kyorin University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
46
|
Gherzi R, Melioli G, de Luca M, D'Agostino A, Distefano G, Guastella M, D'Anna F, Franzi AT, Cancedda R. "HepG2/erythroid/brain" type glucose transporter (GLUT1) is highly expressed in human epidermis: keratinocyte differentiation affects GLUT1 levels in reconstituted epidermis. J Cell Physiol 1992; 150:463-74. [PMID: 1537878 DOI: 10.1002/jcp.1041500306] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In mature animals, the "HepG2/erythroid/brain" glucose transporter isoform (GLUT1) appears to be expressed at the highest levels at blood tissue barriers; however, these levels may still be lower than the levels of expression seen in fetal tissues. Also, glucose transporters might serve as water channels. Therefore, we decided to investigate GLUT1 expression in human epidermis, a very active tissue, in terms of metabolism, even if not directly vascularized. We found GLUT1 transcripts in human skin and demonstrated, by immunohistochemistry, that GLUT1 protein is highly expressed in the basal layer and, to a lower extent, in the immediately suprabasal layer of the epidermis. This distribution pattern suggested that GLUT1 expression is affected by keratinocyte differentiation. To investigate this possibility, we used human epidermis reconstituted in culture. Our culture system allows the reconstruction of a stratified squamous epithelium which has been successfully grafted onto patients presenting large skin defects. Human keratinocytes have been cultured under conditions which allow a modulation of cellular differentiation and stratification. We observed that (i) GLUT1 expression is 4-6-fold higher in "stem-like" basal cells than in large, differentiated keratinocytes; (ii) culture conditions causing cell differentiation reduce GLUT1 expression, while conditions which minimize either differentiation or stratification of keratinocytes enhance GLUT1 expression. Finally, we found that IGF-1 and insulin, probably acting through the IGF-1 receptor, increase GLUT1 expression and stimulate glucose transport activity in epidermis reconstituted in culture. In conclusion, our data demonstrate that GLUT1 is highly expressed in the basal layers of human epidermis and that its expression is modulated by keratinocyte differentiation.
Collapse
Affiliation(s)
- R Gherzi
- Cellife Biotecnologie s.r.l., Università di Genova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chapter 6 Mechanisms of active and passive transport in a family of homologous sugar transporters found in both prokaryotes and eukaryotes. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0167-7306(08)60068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
48
|
Zinke H, Möckel B, Frey A, Weiler-Güttler H, Meckelein B, Gassen HG. Chapter 17: Blood-brain barrier: a molecular approach to its structural and functional characterization. PROGRESS IN BRAIN RESEARCH 1992; 91:103-16. [PMID: 1357718 DOI: 10.1016/s0079-6123(08)62324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Our approach to analyze molecular components of the blood-brain barrier led to the identification of additional transcripts which can be regarded as "BBB markers". Other candidates are presently analyzed in order to find hitherto unknown cell type-specific transcripts. We investigated the expression of these marker-genes in cell culture and found all genes still being transcribed after 10 days in primary cultures, although at a lower level. This is surprising, since other authors report the disappearance of BBB characteristics under such conditions. Moreover, the BBB marker gamma-GT is found to be not only expressed in BMEC, but also in the closely associated pericytes. The hitherto unknown physiological function of the enzyme, especially the abundance in pericytes is still under investigation. Since the method of subtractive cloning has been proven as a fruitful approach, we consider to establish further subtractive cDNA libraries, using different subtraction parameters. The PCR method is applicable for amplification of subtracted cDNA (Timblin et al., 1990) and we expect to find additional clones, mainly of lower abundance which are of functional importance for the BBB phenomenon. The described characterization of cultured BMEC now allows to proceed to study BBB-specific gene expression with special regard to regulatory elements. We will perform these experiments by use of enhancer trap vectors transfected into BMEC. The isolation of the corresponding genomic DNA fragments of the BBB markers is in progress.
Collapse
Affiliation(s)
- H Zinke
- Institut für Biochemie, Technische Hochschule Darmstadt, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- W Risau
- Max-Planck-Institut für Psychiatrie, Martinsried, FRG
| |
Collapse
|
50
|
De Vivo DC, Trifiletti RR, Jacobson RI, Ronen GM, Behmand RA, Harik SI. Defective glucose transport across the blood-brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med 1991; 325:703-9. [PMID: 1714544 DOI: 10.1056/nejm199109053251006] [Citation(s) in RCA: 487] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- D C De Vivo
- Department of Pediatrics, Columbia-Presbyterian Medical Center, New York, NY
| | | | | | | | | | | |
Collapse
|