1
|
Vogg L, Winkler TH. Nurturing the phenotype: Environmental signals and transcriptional regulation of intestinal γδ T cells. Eur J Immunol 2024; 54:e2451076. [PMID: 39136644 DOI: 10.1002/eji.202451076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 11/08/2024]
Abstract
The intestinal epithelium harbours a unique lymphocyte population, the intraepithelial lymphocytes (IELs). A large fraction of IELs is represented by γδ T cells. Their role in epithelial homeostasis and immune response is well documented, but a conclusive view of their developmental pathway is still missing. In this review, we discuss the existing literature as well as recent advances regarding the tissue adaptation of γδ IELs, both for the characteristic cytotoxic subset and the newly described noncytotoxic subset. We particularly highlight the environmental cues and the transcriptional regulation that equip γδ T cells with their IEL phenotype.
Collapse
Affiliation(s)
- Lisa Vogg
- Division of Genetics, Department of Biology, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas H Winkler
- Division of Genetics, Department of Biology, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther 2023; 8:434. [PMID: 37989744 PMCID: PMC10663641 DOI: 10.1038/s41392-023-01653-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/23/2023] Open
Abstract
The intricacy of diseases, shaped by intrinsic processes like immune system exhaustion and hyperactivation, highlights the potential of immune renormalization as a promising strategy in disease treatment. In recent years, our primary focus has centered on γδ T cell-based immunotherapy, particularly pioneering the use of allogeneic Vδ2+ γδ T cells for treating late-stage solid tumors and tuberculosis patients. However, we recognize untapped potential and optimization opportunities to fully harness γδ T cell effector functions in immunotherapy. This review aims to thoroughly examine γδ T cell immunology and its role in diseases. Initially, we elucidate functional differences between γδ T cells and their αβ T cell counterparts. We also provide an overview of major milestones in γδ T cell research since their discovery in 1984. Furthermore, we delve into the intricate biological processes governing their origin, development, fate decisions, and T cell receptor (TCR) rearrangement within the thymus. By examining the mechanisms underlying the anti-tumor functions of distinct γδ T cell subtypes based on γδTCR structure or cytokine release, we emphasize the importance of accurate subtyping in understanding γδ T cell function. We also explore the microenvironment-dependent functions of γδ T cell subsets, particularly in infectious diseases, autoimmune conditions, hematological malignancies, and solid tumors. Finally, we propose future strategies for utilizing allogeneic γδ T cells in tumor immunotherapy. Through this comprehensive review, we aim to provide readers with a holistic understanding of the molecular fundamentals and translational research frontiers of γδ T cells, ultimately contributing to further advancements in harnessing the therapeutic potential of γδ T cells.
Collapse
Affiliation(s)
- Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinglin Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Zheng Xiang
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
3
|
Zeiser R, Warnatz K, Rosshart S, Sagar, Tanriver Y. GVHD, IBD and primary immunodeficiencies: The gut as a target of immunopathology resulting from impaired immunity. Eur J Immunol 2022; 52:1406-1418. [PMID: 35339113 DOI: 10.1002/eji.202149530] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/10/2021] [Accepted: 01/21/2022] [Indexed: 11/11/2022]
Abstract
The intestinal tract is the largest immunological organ in the body and has a central function of regulating local immune responses, as the intestinal epithelial barrier is a location where the immune system interacts with the gut microbiome including bacteria, fungi and viruses. Impaired immunity in the intestinal tract can lead to immunopathology, which manifests in different diseases such as inflammatory bowel disease (IBD) or intestinal graft-versus-host disease (GVHD). A disturbed communication between epithelial cells, immune cells and microbiome will shape pathogenic immune responses to antigens, which need to be counterbalanced by tolerogenic mechanisms and repair mechanisms. Here, we review how impaired intestinal immune function leads to immunopathology with a specific focus on innate immune cells, the role of the microbiome and the resulting clinical manifestations including intestinal GVHD, IBD and enteropathy in primary immunodeficiency. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Robert Zeiser
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Signalling Research Centres BIOSS and CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology - Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Rosshart
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sagar
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yakup Tanriver
- Department of Medicine IV (Nephrology and Primary Care), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Microbiology and Hygiene, Institute for Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Suzuki T, Hayman L, Kilbey A, Edwards J, Coffelt SB. Gut γδ T cells as guardians, disruptors, and instigators of cancer. Immunol Rev 2020; 298:198-217. [PMID: 32840001 DOI: 10.1111/imr.12916] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 08/17/2023]
Abstract
Colorectal cancer is the third most common cancer worldwide with nearly 2 million cases per year. Immune cells and inflammation are a critical component of colorectal cancer progression, and they are used as reliable prognostic indicators of patient outcome. With the growing appreciation for immunology in colorectal cancer, interest is growing on the role γδ T cells have to play, as they represent one of the most prominent immune cell populations in gut tissue. This group of cells consists of both resident populations-γδ intraepithelial lymphocytes (γδ IELs)-and transient populations that each has unique functions. The homeostatic role of these γδ T cell subsets is to maintain barrier integrity and prevent microorganisms from breaching the mucosal layer, which is accomplished through crosstalk with enterocytes and other immune cells. Recent years have seen a surge in discoveries regarding the regulation of γδ IELs in the intestine and the colon with particular new insights into the butyrophilin family. In this review, we discuss the development, specialities, and functions of γδ T cell subsets during cancer progression. We discuss how these cells may be used to predict patient outcome, as well as how to exploit their behavior for cancer immunotherapy.
Collapse
Affiliation(s)
- Toshiyasu Suzuki
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Liam Hayman
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Anna Kilbey
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Seth B Coffelt
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| |
Collapse
|
5
|
Johnson MD, Witherden DA, Havran WL. The Role of Tissue-resident T Cells in Stress Surveillance and Tissue Maintenance. Cells 2020; 9:E686. [PMID: 32168884 PMCID: PMC7140644 DOI: 10.3390/cells9030686] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
While forming a minor population in the blood and lymphoid compartments, T cells are significantly enriched within barrier tissues. In addition to providing protection against infection, these tissue-resident T cells play critical roles in tissue homeostasis and repair. T cells in the epidermis and intestinal epithelium produce growth factors and cytokines that are important for the normal turnover and maintenance of surrounding epithelial cells and are additionally required for the efficient recognition of, and response to, tissue damage. A role for tissue-resident T cells is emerging outside of the traditional barrier tissues as well, with recent research indicating that adipose tissue-resident T cells are required for the normal maintenance and function of the adipose tissue compartment. Here we review the functions of tissue-resident T cells in the epidermis, intestinal epithelium, and adipose tissue, and compare the mechanisms of their activation between these sites.
Collapse
Affiliation(s)
| | - Deborah A. Witherden
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA; (M.D.J.); (W.L.H.)
| | | |
Collapse
|
6
|
Hahn AM, Winkler TH. Resolving the mystery-How TCR transgenic mouse models shed light on the elusive case of gamma delta T cells. J Leukoc Biol 2020; 107:993-1007. [PMID: 32068302 DOI: 10.1002/jlb.1mr0120-237r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 12/22/2022] Open
Abstract
Cutting-edge questions in αβ T cell biology were addressed by investigating a range of different genetically modified mouse models. In comparison, the γδ T cell field lacks behind on the availability of such models. Nevertheless, transgenic mouse models proved useful for the investigation of γδ T cell biology and their stepwise development in the thymus. In general, animal models and especially mouse models give access to a wide range of opportunities of modulating γδ T cells, which is unachievable in human beings. Because of their complex biology and specific tissue tropism, it is especially challenging to investigate γδ T cells in in vitro experiments since they might not reliably reflect their behavior and phenotype under physiologic conditions. This review aims to provide a comprehensive historical overview about how different transgenic mouse models contributed in regards of the understanding of γδ T cell biology, whereby a special focus is set on studies including the elusive role of the γδTCR. Furthermore, evolutionary and translational remarks are discussed under the aspect of future implications for the field. The ultimate full understanding of γδ T cells will pave the way for their usage as a powerful new tool in immunotherapy.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Lineage/genetics
- Cell Lineage/immunology
- Cell Movement
- Founder Effect
- Gene Expression
- Humans
- Immunotherapy/methods
- Mice
- Mice, Transgenic/genetics
- Mice, Transgenic/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction
- Species Specificity
- T-Lymphocytes/classification
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Anne M Hahn
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Thomas H Winkler
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| |
Collapse
|
7
|
Van Kaer L, Olivares-Villagómez D. Development, Homeostasis, and Functions of Intestinal Intraepithelial Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2019; 200:2235-2244. [PMID: 29555677 PMCID: PMC5863587 DOI: 10.4049/jimmunol.1701704] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/25/2018] [Indexed: 12/13/2022]
Abstract
The intestine is continuously exposed to commensal microorganisms, food, and environmental agents and also serves as a major portal of entry for many pathogens. A critical defense mechanism against microbial invasion in the intestine is the single layer of epithelial cells that separates the gut lumen from the underlying tissues. The barrier function of the intestinal epithelium is supported by cells and soluble factors of the intestinal immune system. Chief among them are intestinal intraepithelial lymphocytes (iIELs), which are embedded in the intestinal epithelium and represent one of the single largest populations of lymphocytes in the body. Compared with lymphocytes in other parts of the body, iIELs exhibit unique phenotypic, developmental, and functional properties that reflect their key roles in maintaining the intestinal epithelial barrier. In this article, we review the biology of iIELs in supporting normal health and how their dysregulation can contribute to disease.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
8
|
Reyes VE, Peniche AG. Helicobacter pylori Deregulates T and B Cell Signaling to Trigger Immune Evasion. Curr Top Microbiol Immunol 2019; 421:229-265. [PMID: 31123892 DOI: 10.1007/978-3-030-15138-6_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is a prevalent human pathogen that successfully establishes chronic infection, which leads to clinically significant gastric diseases including chronic gastritis, peptic ulcer disease (PUD), and gastric cancer (GC). H. pylori is able to produce a persistent infection due in large part to its ability to hijack the host immune response. The host adaptive immune response is activated to strategically and specifically attack pathogens and normally clears them from the infected host. Since B and T lymphocytes are central mediators of adaptive immunity, in this chapter we review their development and the fundamental mechanisms regulating their activation in order to understand how some of the normal processes are subverted by H. pylori. In this review, we place particular emphasis on the CD4+ T cell responses, their subtypes, and regulatory mechanisms because of the expanding literature in this area related to H. pylori. T lymphocyte differentiation and function are finely orchestrated through a series of cell-cell interactions, which include immune checkpoint receptors. Among the immune checkpoint receptor family, there are some with inhibitory properties that are exploited by tumor cells to facilitate their immune evasion. Gastric epithelial cells (GECs), which act as antigen-presenting cells (APCs) in the gastric mucosa, are induced by H. pylori to express immune checkpoint receptors known to sway T lymphocyte function and thus circumvent effective T effector lymphocyte responses. This chapter reviews these and other mechanisms used by H. pylori to interfere with host immunity in order to persist.
Collapse
Affiliation(s)
- Victor E Reyes
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| | - Alex G Peniche
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
9
|
Khairallah C, Chu TH, Sheridan BS. Tissue Adaptations of Memory and Tissue-Resident Gamma Delta T Cells. Front Immunol 2018; 9:2636. [PMID: 30538697 PMCID: PMC6277633 DOI: 10.3389/fimmu.2018.02636] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/26/2018] [Indexed: 12/29/2022] Open
Abstract
Epithelial and mucosal barriers are critical interfaces physically separating the body from the outside environment and are the tissues most exposed to microorganisms and potential inflammatory agents. The integrity of these tissues requires fine tuning of the local immune system to enable the efficient elimination of invasive pathogens while simultaneously preserving a beneficial relationship with commensal organisms and preventing autoimmunity. Although they only represent a small fraction of circulating and lymphoid T cells, γδ T cells form a substantial population at barrier sites and even outnumber conventional αβ T cells in some tissues. After their egress from the thymus, several γδ T cell subsets naturally establish residency in predetermined mucosal and epithelial locations, as exemplified by the restricted location of murine Vγ5+ and Vγ3Vδ1+ T cell subsets to the intestinal epithelium and epidermis, respectively. Because of their preferential location in barrier sites, γδ T cells are often directly or indirectly influenced by the microbiota or the pathogens that invade these sites. More recently, a growing body of studies have shown that γδ T cells form long-lived memory populations upon local inflammation or bacterial infection, some of which permanently populate the affected tissues after pathogen clearance or resolution of inflammation. Natural and induced resident γδ T cells have been implicated in many beneficial processes such as tissue homeostasis and pathogen control, but their presence may also exacerbate local inflammation under certain circumstances. Further understanding of the biology and role of these unconventional resident T cells in homeostasis and disease may shed light on potentially novel vaccines and therapies.
Collapse
Affiliation(s)
- Camille Khairallah
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Timothy H Chu
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Brian S Sheridan
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
10
|
Park Y, Moon SJ, Lee SW. Lineage re-commitment of CD4CD8αα intraepithelial lymphocytes in the gut. BMB Rep 2016; 49:11-7. [PMID: 26592937 PMCID: PMC4914207 DOI: 10.5483/bmbrep.2016.49.1.242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Indexed: 12/28/2022] Open
Abstract
The gastrointestinal tract forms the largest surface in our body with constantly
being exposed to various antigens, which provides unique microenvironment for
the immune system in the intestine. Accordingly, the gut epithelium harbors the
most T lymphocytes in the body as intraepithelial
lymphocytes (IELs), which are phenotypically and
functionally heterogeneous populations, distinct from the conventional mature T
cells in the periphery. IELs arise either from pre-committed thymic precursors
(natural IELs) or from conventional CD4 or CD8αβ T cells in response
to peripheral antigens (induced IELs), both of which commonly express CD8α
homodimers (CD8αα). Although lineage commitment to either conventional
CD4 T helper (Th) or cytotoxic CD8αβ T cells as well as their
respective co-receptor expression are mutually exclusive and irreversible
process, CD4 T cells can be redirected to the CD8 IELs with high cytolytic
activity upon migration to the gut epithelium. Recent reports show that master
transcription factors for CD4 and CD8 T cells, ThPOK (Th-inducing
BTB/POZ-Kruppel-like factor) and Runx3 (Runt related transcription factor 3),
respectively, are the key regulators for re-programming of CD4 T cells to CD8
lineage in the intestinal epithelium. This review will focus on the unique
differentiation process of IELs, particularly lineage re-commitment of CD4 IELs.
[BMB Reports 2016; 49(1): 11-17]
Collapse
Affiliation(s)
- Yunji Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Sook-Jin Moon
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Seung-Woo Lee
- Division of Integrative Biosciences and Biotechnology and Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
11
|
Qiu Y, Peng K, Liu M, Xiao W, Yang H. CD8αα TCRαβ Intraepithelial Lymphocytes in the Mouse Gut. Dig Dis Sci 2016; 61:1451-60. [PMID: 26769056 DOI: 10.1007/s10620-015-4016-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
The epithelium of the mouse small intestine harbors an abundant CD8αα(+)TCRαβ(+) intraepithelial lymphocyte (IEL) population. This unique IEL subset is a self-reactive population that requires exposure to self-agonists for selection in the thymus, similarly to other regulatory T cell populations. After leaving the thymus, these cells directly seed the intestinal epithelium, which provides a unique combination of cellular interactions together with cytokines, nutrients, and antigens that guide the lineage-specific differentiation and function of these IELs. For instance, epithelial cells and nearby immune cells secrete a number of cytokines, including interleukin-15 (IL-15), IL-7, and transforming growth factor-β, resulting in an assortment of cellular responses, including activation of master transcription factors, cell proliferation, and cytokine secretion. Recent advances have also highlighted the importance of diet-derived substances and commensal metabolites, such as the aryl hydrocarbon receptor ligands and vitamin D, in controlling the survival and gene expression of CD8αα(+)TCRαβ(+) IELs. Furthermore, these cells function in the epithelium and require constant communication between cells in the form of cell-to-cell contacts. These interactions tune the antigen sensitivity of the TCR and maintain the quiescence of the CD8αα(+)TCRαβ(+) IELs. Finally, we discuss how these cells might contribute to tolerance and immunopathological responses in the gut. Therefore, an increased understanding of CD8αα(+)TCRαβ(+) IELs in the gut will help us understand how these cells participate in immune regulation and protection.
Collapse
Affiliation(s)
- Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Shapingba, Chongqing, 400037, China
| | - Ke Peng
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Shapingba, Chongqing, 400037, China
| | - Minqiang Liu
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Shapingba, Chongqing, 400037, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Shapingba, Chongqing, 400037, China.
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Shapingba, Chongqing, 400037, China.
| |
Collapse
|
12
|
Becker AM, Callahan DJ, Richner JM, Choi J, DiPersio JF, Diamond MS, Bhattacharya D. GPR18 Controls Reconstitution of Mouse Small Intestine Intraepithelial Lymphocytes following Bone Marrow Transplantation. PLoS One 2015. [PMID: 26197390 PMCID: PMC4510063 DOI: 10.1371/journal.pone.0133854] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Specific G protein coupled receptors (GPRs) regulate the proper positioning, function, and development of immune lineage subsets. Here, we demonstrate that GPR18 regulates the reconstitution of intraepithelial lymphocytes (IELs) of the small intestine following bone marrow transplantation. Through analysis of transcriptional microarray data, we find that GPR18 is highly expressed in IELs, lymphoid progenitors, and mature follicular B cells. To establish the physiological role of this largely uncharacterized GPR, we generated Gpr18-/- mice. Despite high levels of GPR18 expression in specific hematopoietic progenitors, Gpr18-/- mice have no defects in lymphopoiesis or myelopoiesis. Moreover, antibody responses following immunization with hapten-protein conjugates or infection with West Nile virus are normal in Gpr18-/- mice. Steady-state numbers of IELs are also normal in Gpr18-/- mice. However, competitive bone marrow reconstitution experiments demonstrate that GPR18 is cell-intrinsically required for the optimal restoration of small intestine TCRγδ+ and TCRαβ+ CD8αα+ IELs. In contrast, GPR18 is dispensable for the reconstitution of large intestine IELs. Moreover, Gpr18-/- bone marrow reconstitutes small intestine IELs similarly to controls in athymic recipients. Gpr18-/- chimeras show no changes in susceptibility to intestinal insults such as Citrobacter rodentium infections or graft versus host disease. These data reveal highly specific requirements for GPR18 in the development and reconstitution of thymus-derived intestinal IEL subsets in the steady-state and after bone marrow transplantation.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/cytology
- Bone Marrow Cells/cytology
- Bone Marrow Transplantation
- Citrobacter
- Female
- Graft vs Host Disease
- Hematopoietic Stem Cells/cytology
- Intestinal Mucosa/metabolism
- Intestine, Small/metabolism
- Lymphocytes/cytology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Myelopoiesis
- Oligonucleotide Array Sequence Analysis
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Thymus Gland/metabolism
- Transplantation, Homologous
- West Nile virus
Collapse
Affiliation(s)
- Amy M. Becker
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Derrick J. Callahan
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Justin M. Richner
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Jaebok Choi
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Division of Oncology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - John F. DiPersio
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Division of Oncology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Michael S. Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Deepta Bhattacharya
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
13
|
|
14
|
Rombout JHWM, Yang G, Kiron V. Adaptive immune responses at mucosal surfaces of teleost fish. FISH & SHELLFISH IMMUNOLOGY 2014; 40:634-43. [PMID: 25150451 DOI: 10.1016/j.fsi.2014.08.020] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 05/13/2023]
Abstract
This review describes the extant knowledge on the teleostean mucosal adaptive immune mechanisms, which is relevant for the development of oral or mucosal vaccines. In the last decade, a number of studies have shed light on the presence of new key components of mucosal immunity: a distinct immunoglobulin class (IgT or IgZ) and the polymeric Ig receptor (pIgR). In addition, intestinal T cells and their putative functions, antigen uptake mechanisms at mucosal surfaces and new mucosal vaccination strategies have been reported. New information on pIgR of Atlantic cod and common carp and comparison of natural and specific cell-mediated cytotoxicity in the gut of common carp and European seabass, is also included in this review. Based on the known facts about intestinal immunology and mucosal vaccination, suggestions are made for the advancement of fish vaccines.
Collapse
Affiliation(s)
- Jan H W M Rombout
- Faculty of Biosciences and Aquaculture, University of Nordland, 8049 Bodø, Norway; Cell Biology and Immunology Group, Wageningen University, Wageningen, The Netherlands
| | - Guiwen Yang
- Cell Biology and Immunology Group, Wageningen University, Wageningen, The Netherlands; Shandong Provincial Key Laboratory of Animal Resistance Biology, School of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, University of Nordland, 8049 Bodø, Norway.
| |
Collapse
|
15
|
Sullivan SA, Zhu M, Bao S, Lewis CA, Ou-Yang CW, Zhang W. The role of LAT-PLCγ1 interaction in γδ T cell development and homeostasis. THE JOURNAL OF IMMUNOLOGY 2014; 192:2865-74. [PMID: 24523509 DOI: 10.4049/jimmunol.1302493] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
LAT is a transmembrane adaptor protein that is vital for integrating TCR-mediated signals to modulate T cell development, activation, and proliferation. Upon T cell activation, LAT is phosphorylated and associates with Grb2, Gads, and PLCγ1 through its four distal tyrosine residues. Mutation of one of these tyrosines, Y136, abolishes LAT binding to PLCγ1. This results in impaired TCR-mediated calcium mobilization and Erk activation. CD4 αβ T cells in LATY136F knock-in mice undergo uncontrolled expansion, resulting in a severe autoimmune syndrome. In this study, we investigated the importance of the LAT-PLCγ1 interaction in γδ T cells by crossing LATY136F mice with TCRβ(-/-) mice. Our data showed that the LATY136F mutation had no major effect on homeostasis of epithelial γδ T cells, which could be found in the skin and small intestine. Interestingly, a population of CD4(+) γδ T cells in the spleen and lymph nodes underwent continuous expansion and produced elevated amounts of IL-4, resulting in an autoimmune syndrome similar to that caused by αβ T cells in LATY136F mice. Development of these hyperproliferative γδ T cells was not dependent on MHC class II expression or CD4, and their proliferation could be suppressed, in part, by regulatory T cells. Our data indicated that a unique subset of CD4 γδ T cells can hyperproliferate in LATY136F mice and suggested that LAT-PLCγ1 signaling may function differently in various subsets of γδ T cells.
Collapse
Affiliation(s)
- Sarah A Sullivan
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | | | | | | | | | | |
Collapse
|
16
|
Fusco A, Panico L, Gorrese M, Bianchino G, Barone MV, Grieco V, Vitiello L, D’Assante R, Romano R, Palamaro L, Scalia G, Vecchio LD, Pignata C. Molecular evidence for a thymus-independent partial T cell development in a FOXN1-/- athymic human fetus. PLoS One 2013; 8:e81786. [PMID: 24349129 PMCID: PMC3857207 DOI: 10.1371/journal.pone.0081786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/16/2013] [Indexed: 11/19/2022] Open
Abstract
The thymus is the primary organ able to support T cell ontogeny, abrogated in FOXN1(-/-) human athymia. Although evidence indicates that in animal models T lymphocytes may differentiate at extrathymic sites, whether this process is really thymus-independent has still to be clarified. In an athymic FOXN1(-/-) fetus, in which we previously described a total blockage of CD4(+) and partial blockage of CD8(+) cell development, we investigated whether intestine could play a role as extrathymic site of T-lymphopoiesis in humans. We document the presence of few extrathymically developed T lymphocytes and the presence in the intestine of CD3(+) and CD8(+), but not of CD4(+) cells, a few of them exhibiting a CD45RA(+) naïve phenotype. The expression of CD3εεpTα, RAG1 and RAG2 transcripts in the intestine and TCR gene rearrangement was also documented, thus indicating that in humans the partial T cell ontogeny occurring at extrathymic sites is a thymus- and FOXN1-independent process.
Collapse
Affiliation(s)
- Anna Fusco
- Department of Translational Medical Sciences, Pediatric Section, “Federico II” University, Naples, Italy
| | - Luigi Panico
- Unit of Pathology, National Relevance Hospital “S.G. Moscati”, Avellino, Italy
| | - Marisa Gorrese
- Department of Biochemistry and Medical Biotechnology–CEINGE, “Federico II” University, Naples, Italy
| | - Gabriella Bianchino
- Molecular Oncology Unit, IRCCS, “Centro di Riferimento Oncologico della Basilicata”, Rionero in Vulture, Pz, Italy
| | - Maria V. Barone
- Department of Translational Medical Sciences, Pediatric Section, “Federico II” University, Naples, Italy
| | - Vitina Grieco
- Molecular Oncology Unit, IRCCS, “Centro di Riferimento Oncologico della Basilicata”, Rionero in Vulture, Pz, Italy
| | - Laura Vitiello
- Department of Cellular and Molecular Biology and Pathology, “Federico II” University, Naples, Italy
| | - Roberta D’Assante
- Department of Translational Medical Sciences, Pediatric Section, “Federico II” University, Naples, Italy
| | - Rosa Romano
- Department of Translational Medical Sciences, Pediatric Section, “Federico II” University, Naples, Italy
| | - Loredana Palamaro
- Department of Translational Medical Sciences, Pediatric Section, “Federico II” University, Naples, Italy
| | - Giulia Scalia
- Department of Biochemistry and Medical Biotechnology–CEINGE, “Federico II” University, Naples, Italy
| | - Luigi Del Vecchio
- Department of Biochemistry and Medical Biotechnology–CEINGE, “Federico II” University, Naples, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Pediatric Section, “Federico II” University, Naples, Italy
- * E-mail:
| |
Collapse
|
17
|
Shitara S, Hara T, Liang B, Wagatsuma K, Zuklys S, Holländer GA, Nakase H, Chiba T, Tani-ichi S, Ikuta K. IL-7 produced by thymic epithelial cells plays a major role in the development of thymocytes and TCRγδ+ intraepithelial lymphocytes. THE JOURNAL OF IMMUNOLOGY 2013; 190:6173-9. [PMID: 23686483 DOI: 10.4049/jimmunol.1202573] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
IL-7 is a cytokine essential for T cell development and survival. However, the local function of IL-7 produced by thymic epithelial cells (TECs) is poorly understood. To address this question, we generated IL-7-floxed mice and crossed them with FoxN1 promoter-driven Cre (FoxN1-Cre) mice to establish knockout mice conditionally deficient for the expression of IL-7 by TECs. We found that αβ and γδ T cells were significantly reduced in the thymus of IL-7(f/f) FoxN1-Cre mice. Proportion of mature single-positive thymocytes was increased. In lymph nodes and the spleen, the numbers of T cells were partially restored in IL-7(f/f) FoxN1-Cre mice. In addition, γδ T cells were absent from the fetal thymus and epidermis of IL-7(f/f) FoxN1-Cre mice. Furthermore, TCRγδ(+) intraepithelial lymphocytes (IELs) were significantly decreased in the small intestines of IL-7(f/f) FoxN1-Cre mice. To evaluate the function of IL-7 produced in the intestine, we crossed the IL-7(f/f) mice with villin promoter-driven Cre (Vil-Cre) mice to obtain the mice deficient in IL-7 production from intestinal epithelial cells. We observed that αβ and γδ IELs of IL-7(f/f) Vil-Cre mice were comparable to control mice. Collectively, our results suggest that TEC-derived IL-7 plays a major role in proliferation, survival, and maturation of thymocytes and is indispensable for γδ T cell development. This study also demonstrates that IL-7 produced in the thymus is essential for the development of γδ IELs and indicates the thymic origin of γδ IELs.
Collapse
Affiliation(s)
- Soichiro Shitara
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
López MC. Fluorescence microscopy and flow cytometric analysis of Peyer's patches and intestinal immune cells. ACTA ACUST UNITED AC 2013; Chapter 18:Unit18.13. [PMID: 23045140 DOI: 10.1002/0471140856.tx1813s33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In recent years researchers have become more aware of the importance of the gut-associated immune system since it is in direct interaction with the entry site for virus, bacteria, and all type of food contaminants, including numerous toxins that can alter mucosal immunity. Peyer's patches (PP) are considered the inductive site for protein antigen presentation in the gut as well as the starting point for IgA B-cell differentiation. The IgA found in feces comes from IgA secreted by IgA lamina propria lymphocytes (LPL), and its presence is a sign of normal physiology, in that IgA plays a role in absorption and immune defense against gut-associated pathogens. Methods presented in this unit are intended to analyze PP and intestinal intraepithelial and LPL to determine whether the complexity of the mucosal-associated lymphoid tissue and its components have been altered by any form of external damage. The protocols explain how to isolate and culture isolated cells; how to stain and analyze; and also how to cryopreserve the gut.
Collapse
|
19
|
Duncan LG, Nair SV, Deane EM. Immunohistochemical localization of T-lymphocyte subsets in the developing lymphoid tissues of the tammar wallaby (Macropus eugenii). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:475-486. [PMID: 22929957 DOI: 10.1016/j.dci.2012.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 06/25/2012] [Accepted: 06/29/2012] [Indexed: 06/01/2023]
Abstract
Research into marsupial adaptive immunity during ontogeny has been hampered by the lack of antibodies that react to marsupial immunological cell populations. In this study, newly synthesised polyclonal antibodies to the T cell marker, CD8, have been developed and used to investigate the ontogeny and distribution of this T cell population in the tammar wallaby. Immunohistochemical analysis indicated that the distribution of the CD8 lymphocytes in the lymphoid tissues of tammar neonates during the first 144 days of pouch life was similar to that of the eutherian mammals. However, CD8α(+) lymphocytes were observed in the intestines of tammar neonates prior to their first appearance in the cervical thymus, an observation that has not been found in eutherians. A dual labelling immunohistochemical approach was used for the indirect demonstration of CD4 and enabled the simultaneous detection in the tammar wallaby tissues of the two major T-lymphocyte populations, CD4 and CD8 that are associated with adaptive immunity. As in eutherian mammals, CD4(+) cells were the predominant T cell lymphocyte subset observed in the spleen while in the nodal tissues, an age-related decrease in the CD4(+)/CD8(+) ratio was noted. These antibodies provide a new immunological tool to study the role of T cell subsets in marsupial immunity and disease pathogenesis studies.
Collapse
Affiliation(s)
- Louise G Duncan
- Department of Biological Sciences, Faculty of Science, Macquarie University, NSW, Australia
| | | | | |
Collapse
|
20
|
Pang DJ, Neves JF, Sumaria N, Pennington DJ. Understanding the complexity of γδ T-cell subsets in mouse and human. Immunology 2012; 136:283-90. [PMID: 22385416 DOI: 10.1111/j.1365-2567.2012.03582.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
γδ T cells are increasingly recognized as having important functional roles in a range of disease scenarios such as infection, allergy, autoimmunity and cancer. With this has come realization that γδ cells are not a homogeneous population of cells with a single physiological role. Instead, ever increasing complexity in both phenotype and function is being ascribed to γδ cell subsets from various tissues and locations, and in both mouse and human. Here, we review this complexity by describing how diverse γδ cell subsets are generated in the murine thymus, and how these events relate to subsequent γδ subset function in the periphery. We then review the two major γδ cell populations in human, highlighting the several similarities of Vδ1(+) cells to certain murine γδ subsets, and describing the remarkable functional plasticity of human Vδ2(+) cells. A better understanding of this spectrum of γδ cell phenotypes should facilitate more targeted approaches to utilise their tremendous functional potential in the clinic.
Collapse
Affiliation(s)
- Dick J Pang
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | | | | | | |
Collapse
|
21
|
Abadie V, Discepolo V, Jabri B. Intraepithelial lymphocytes in celiac disease immunopathology. Semin Immunopathol 2012; 34:551-66. [PMID: 22660791 DOI: 10.1007/s00281-012-0316-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 12/21/2022]
Abstract
Celiac disease is a T cell-mediated immune disorder induced by dietary gluten that is characterized by the development of an inflammatory anti-gluten CD4 T cell response, anti-gluten antibodies, and autoantibodies against tissue transglutaminase 2 and the activation of intraepithelial lymphocytes (IELs) leading to the destruction of the intestinal epithelium. Intraepithelial lymphocytes represent a heterogeneous population of T cells composed mainly of cytotoxic CD8 T cells residing within the epithelial layer, whose main role is to maintain the integrity of the epithelium by eliminating infected cells and promoting epithelial repair. Dysregulated activation of IELs is a hallmark of CD and is critically involved in epithelial cell destruction and the subsequent development of villous atrophy. In this review, we compare and contrast the phenotype and function of human and mouse small intestinal IELs under physiological conditions. Furthermore, we discuss how conditions of epithelial distress associated with overexpression of IL-15 and non-classical MHC class I molecules induce cytotoxic IELs to become licensed killer cells that upregulate activating NKG2D and CD94/NKG2C natural killer receptors, acquiring lymphokine killer activity. Pathways leading to dysregulated IEL activation could eventually be targeted to prevent villous atrophy and treat patients who respond poorly to gluten-free diet.
Collapse
Affiliation(s)
- Valérie Abadie
- Sainte-Justine Hospital Research Centre, Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1C5, Canada.
| | | | | |
Collapse
|
22
|
Shekhar S, Milling S, Yang X. Migration of γδ T cells in steady-state conditions. Vet Immunol Immunopathol 2012; 147:1-5. [PMID: 22520944 DOI: 10.1016/j.vetimm.2012.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 03/21/2012] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
Abstract
The orchestrated migration of T lymphocytes is important for generating immunity and maintaining immunological tolerance. T lymphocytes can be divided into two populations, αβ T cells and γδ T cells, on the basis of their expression of different forms of the T cell receptor (TCR). γδ T cells represent an innate subset of T lymphocytes that play an important role in early immune response against a variety of pathogens, including bacteria and viruses. γδ T cells are abundant in the epithelial tissues. In ruminants and pigs, they constitute a major proportion of the blood lymphocyte pool, unlike in rodents and humans. Although recent studies using large animals have suggested that epithelial γδ T cells are the major source of γδ T cells in peripheral blood, and that they recirculate between epithelial tissues and blood via lymphatics, the migration pattern of these cells is largely unknown. The aim of this review is to provide an overview of the current knowledge on γδ T cell migration under steady-state conditions. A deeper understanding of γδ T cell migration may enable therapeutic modulation of innate immune responses.
Collapse
Affiliation(s)
- Sudhanshu Shekhar
- Laboratory for Infection and Immunity, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Room-523, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada.
| | | | | |
Collapse
|
23
|
Poole DH, Pate JL. Luteal Microenvironment Directs Resident T Lymphocyte Function in Cows1. Biol Reprod 2012; 86:29. [DOI: 10.1095/biolreprod.111.092296] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
24
|
Rombout JHWM, Abelli L, Picchietti S, Scapigliati G, Kiron V. Teleost intestinal immunology. FISH & SHELLFISH IMMUNOLOGY 2011; 31:616-26. [PMID: 20832474 DOI: 10.1016/j.fsi.2010.09.001] [Citation(s) in RCA: 330] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/24/2010] [Accepted: 09/02/2010] [Indexed: 05/12/2023]
Abstract
Teleosts clearly have a more diffuse gut associated lymphoid system, which is morphological and functional clearly different from the mammalian GALT. All immune cells necessary for a local immune response are abundantly present in the gut mucosa of the species studied and local immune responses can be monitored after intestinal immunization. Fish do not produce IgA, but a special mucosal IgM isotype seems to be secreted and may (partly) be the recently described IgZ/IgT. Fish produce a pIgR in their mucosal tissues but it is smaller (2 ILD) than the 4-5 ILD pIgR of higher vertebrates. Whether teleost pIgR is transcytosed and cleaved off in the same way needs further investigation, especially because a secretory component (SC) is only reported in one species. Teleosts also have high numbers of IEL, most of them are CD3-ɛ+/CD8-α+ and have cytotoxic and/or regulatory function. Possibly many of these cells are TCRγδ cells and they may be involved in the oral tolerance induction observed in fish. Innate immune cells can be observed in the teleost gut from first feeding onwards, but B cells appear much later in mucosal compartments compared to systemic sites. Conspicuous is the very early presence of putative T cells or their precursors in the fish gut, which together with the rag-1 expression of intestinal lymphoid cells may be an indication for an extra-thymic development of certain T cells. Teleosts can develop enteritis in their antigen transporting second gut segment and epithelial cells, IEL and eosinophils/basophils seem to play a crucial role in this intestinal inflammation model. Teleost intestine can be exploited for oral vaccination strategies and probiotic immune stimulation. A variety of encapsulation methods, to protect vaccines against degradation in the foregut, are reported with promising results but in most cases they appear not to be cost effective yet. Microbiota in fish are clearly different from terrestrial animals. In the past decade a fast increasing number of papers is dedicated to the oral administration of a variety of probiotics that can have a strong health beneficial effect, but much more attention has to be paid to the immune mechanisms behind these effects. The recent development of gnotobiotic fish models may be very helpful to study the immune effects of microbiota and probiotics in teleosts.
Collapse
Affiliation(s)
- Jan H W M Rombout
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
25
|
Cheroutre H, Lambolez F, Mucida D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat Rev Immunol 2011; 11:445-56. [PMID: 21681197 PMCID: PMC3140792 DOI: 10.1038/nri3007] [Citation(s) in RCA: 489] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The intraepithelial lymphocytes (IELs) that reside within the epithelium of the intestine form one of the main branches of the immune system. As IELs are located at this critical interface between the core of the body and the outside environment, they must balance protective immunity with an ability to safeguard the integrity of the epithelial barrier: failure to do so would compromise homeostasis of the organism. In this Review, we address how the unique development and functions of intestinal IELs allow them to achieve this balance.
Collapse
Affiliation(s)
- Hilde Cheroutre
- Laboratory of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
26
|
Picchietti S, Guerra L, Bertoni F, Randelli E, Belardinelli MC, Buonocore F, Fausto AM, Rombout JH, Scapigliati G, Abelli L. Intestinal T cells of Dicentrarchus labrax (L.): gene expression and functional studies. FISH & SHELLFISH IMMUNOLOGY 2011; 30:609-617. [PMID: 21168509 DOI: 10.1016/j.fsi.2010.12.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 11/29/2010] [Accepted: 12/12/2010] [Indexed: 05/30/2023]
Abstract
Cellular and molecular data have evidenced a gut-associated lymphoid tissue in a variety of teleost species, abundantly containing T cells, whose origin, selection and functions are still unclear. This study reports CD4, CD8-α, MHCI-α, MHCII-β, rag-1 and TCR-β gene transcription along the intestine (anterior, middle and posterior segments) and in the thymus of one year-old Dicentrarchus labrax (L.). Real-time PCR findings depicted a main role of the thymus in T-cell development, but also rag-1 and CD8-α transcripts are detected in the intestine, having significant expression in the posterior segment. In the whole intestine TCR-β and CD8-α exceeded CD4 transcripts. RNA ISH confirmed these data and detailed that mucosal CD8-α+ cells were especially numerous in the epithelium and in aggregates in the lamina propria. Regional differences in T-cell-specific gene expressions are first described in the intestine of a bony fish. High non-specific cytotoxic activity against xenogeneic and allogeneic cells was found in lymphocytes purified from the intestinal mucosa, providing further insight into their local defence roles.
Collapse
Affiliation(s)
- S Picchietti
- Department of Environmental Sciences, Tuscia University, Viterbo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
The role of the gut as a primary lymphoid organ: CD8αα intraepithelial T lymphocytes in euthymic mice derive from very immature CD44+ thymocyte precursors. Mucosal Immunol 2011; 4:93-101. [PMID: 20737000 DOI: 10.1038/mi.2010.47] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intestinal CD8αα intraepithelial T lymphocytes (T-IELs) have a key role in mucosal immunity and, unlike other T cells, were proposed to differentiate locally. In apparent contradiction, these cells were also shown to originate from a wave of thymus migrants colonizing the gut in the first 3 weeks after birth. We here identify previously uncharacterized very immature CD4(-)CD8(-)CD3(-)CD44(+)CD25(int) thymocytes, which have not yet rearranged their T-cell antigen receptor (TCR), as having the capacity to leave the thymus, migrate to the blood, colonize the gut, and reconstitute CD8αα T-IEL, and show that this cell set is fully responsible for the generation of the CD8αα T-IEL pool. Thus, although the thymus may be fundamental for efficient T-cell commitment, CD8αα T-IEL' complete TCR rearrangements and TCR-αβ/γδ lineage commitment must occur in the gut. These results demonstrate a major role of the gut environment as a primary lymphoid organ.
Collapse
|
28
|
Olivares-Villagómez D, Van Kaer L. TL and CD8αα: Enigmatic partners in mucosal immunity. Immunol Lett 2010; 134:1-6. [PMID: 20850477 PMCID: PMC2967663 DOI: 10.1016/j.imlet.2010.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 09/09/2010] [Indexed: 11/23/2022]
Abstract
The intestinal mucosa represents a large surface area that is in contact with an immense antigenic load. The immune system associated with the intestinal mucosa needs to distinguish between innocuous food antigens, commensal microorganisms, and pathogenic microorganisms, without triggering an exaggerated immune response that may lead to excessive inflammation and/or development of inflammatory bowel disease. The thymus leukemia (TL) antigen and CD8αα are interacting surface molecules that are expressed at the frontline of the mucosal immune system: TL is expressed in intestinal epithelial cells (IEC) whereas CD8αα is expressed in lymphocytes, known as intraepithelial lymphocytes, that reside in between the IEC. In this review we discuss the significance of the interaction between TL and CD8αα in mucosal immunity during health and disease.
Collapse
Affiliation(s)
- Danyvid Olivares-Villagómez
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232, USA.
| | | |
Collapse
|
29
|
Emami CN, Petrosyan M, Giuliani S, Williams M, Hunter C, Prasadarao NV, Ford HR. Role of the host defense system and intestinal microbial flora in the pathogenesis of necrotizing enterocolitis. Surg Infect (Larchmt) 2010; 10:407-17. [PMID: 19943775 DOI: 10.1089/sur.2009.054] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a devastating disease that affects primarily the intestine of premature infants. Despite recent advances in neonatology, NEC remains a major cause of morbidity and mortality in neonates. Neonatal mucosal defenses and adherence of bacterial pathogens may play an important role in the pathogenesis of NEC. METHODS Review and synthesis of pertinent literature. RESULTS Putative factors that have been implicated in the pathogenesis of NEC include abnormal patterns of gut colonization by bacteria, immaturity of the host immune system and mucosal defense mechanisms, intestinal ischemia, formula feeding, and loss of intestinal epithelial barrier integrity. CONCLUSION Host defenses and intestinal microbial ecology are believed to play important roles in the pathogenesis of NEC. Commensal bacteria and probiotic therapy may be of therapeutic utility in the maintenance of the gut epithelial barrier.
Collapse
Affiliation(s)
- Claudia N Emami
- Department of Surgery, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, California 90027, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Sivick KE, Mobley HLT. Waging war against uropathogenic Escherichia coli: winning back the urinary tract. Infect Immun 2010; 78:568-85. [PMID: 19917708 PMCID: PMC2812207 DOI: 10.1128/iai.01000-09] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Urinary tract infection (UTI) caused by uropathogenic Escherichia coli (UPEC) is a substantial economic and societal burden-a formidable public health issue. Symptomatic UTI causes significant discomfort in infected patients, results in lost productivity, predisposes individuals to more serious infections, and usually necessitates antibiotic therapy. There is no licensed vaccine available for prevention of UTI in humans in the United States, likely due to the challenge of targeting a relatively heterogeneous group of pathogenic strains in a unique physiological niche. Despite significant advances in the understanding of UPEC biology, mechanistic details regarding the host response to UTI and full comprehension of genetic loci that influence susceptibility require additional work. Currently, there is an appreciation for the role of classic innate immune responses-from pattern receptor recognition to recruitment of phagocytic cells-that occur during UPEC-mediated UTI. There is, however, a clear disconnect regarding how factors involved in the innate immune response to UPEC stimulate acquired immunity that facilitates enhanced clearance upon reinfection. Unraveling the molecular details of this process is vital in the development of a successful vaccine for prevention of human UTI. Here, we survey the current understanding of host responses to UPEC-mediated UTI with an eye on molecular and cellular factors whose activity may be harnessed by a vaccine that stimulates lasting and sterilizing immunity.
Collapse
Affiliation(s)
- Kelsey E. Sivick
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
31
|
Alonzo ES, Gottschalk RA, Das J, Egawa T, Hobbs RM, Pandolfi PP, Pereira P, Nichols KE, Koretzky GA, Jordan MS, Sant'Angelo DB. Development of promyelocytic zinc finger and ThPOK-expressing innate gamma delta T cells is controlled by strength of TCR signaling and Id3. THE JOURNAL OF IMMUNOLOGY 2009; 184:1268-79. [PMID: 20038637 DOI: 10.4049/jimmunol.0903218] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The broad-complex tramtrack and bric a brac-zinc finger transcriptional regulator (BTB-ZF), promyelocytic leukemia zinc finger (PLZF), was recently shown to control the development of the characteristic innate T cell phenotype and effector functions of NK T cells. Interestingly, the ectopic expression of PLZF was shown to push conventional T cells into an activated state that seems to be proinflammatory. The factors that control the normal expression of PLZF in lymphocytes are unknown. In this study, we show that PLZF expression is not restricted to NK T cells but is also expressed by a subset of gammadelta T cells, functionally defining distinct subsets of this innate T cell population. A second BTB-ZF gene, ThPOK, is important for the phenotype of the PLZF-expressing gammadelta T cells. Most importantly, TCR signal strength and expression of inhibitor of differentiation gene 3 control the frequency of PLZF-expressing gammadelta T cells. This study defines the factors that control the propensity of the immune system to produce potentially disease-causing T cell subsets.
Collapse
Affiliation(s)
- Eric S Alonzo
- Immunology Program, Sloan-Kettering Institute, New York, NY, 10065, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Shang L, Thirunarayanan N, Viejo-Borbolla A, Martin AP, Bogunovic M, Marchesi F, Unkeless JC, Ho Y, Furtado GC, Alcami A, Merad M, Mayer L, Lira SA. Expression of the chemokine binding protein M3 promotes marked changes in the accumulation of specific leukocytes subsets within the intestine. Gastroenterology 2009; 137:1006-18, 1018.e1-3. [PMID: 19501588 PMCID: PMC2736321 DOI: 10.1053/j.gastro.2009.05.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 05/12/2009] [Accepted: 05/28/2009] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Chemokines are small proteins that direct leukocyte trafficking under homeostatic and inflammatory conditions. We analyzed the differential expression of chemokines in distinct segments of the intestine and investigated the importance of chemokines for the distribution of leukocytes in the intestine during homeostatic and inflammatory conditions. METHODS We analyzed messenger RNA for all known chemokines in different segments of the gut by quantitative polymerase chain reaction. To study the effect of multiple-chemokine blockade in the gut, we generated transgenic mice that expressed the chemokine binding protein M3 in the intestine (V-M3 mice). We used flow cytometry to evaluate the changes in the numbers of leukocytes. RESULTS We observed distinct chemokine expression profiles in the 6 segments of the gut. Some chemokines were expressed throughout the intestine (CCL28, CCL6, CXCL16, and CX3CL1), whereas others were expressed preferentially in the small (CCL25 and CCL5) or large intestine (CCL19, CCL21, and CXCL5). Expression of the chemokine blocker M3 in intestinal epithelial cells resulted in reduced numbers of B and T cells in Peyer's patches, reduced numbers of intraepithelial CD8alphabeta(+)/TCRalphabeta(+) and CD8alphaalpha(+)/TCRalphabeta(+) T cells, and reduced numbers of lamina propria CD8(+) T cells. Strikingly, M3 expression markedly reduced the number of eosinophils and macrophages in the small and large intestines. Dextran sulfate sodium treatment of control mice led to marked changes in the expression of chemokines and in the number of myeloid cells in the colon. These cellular changes were significantly attenuated in the presence of M3. CONCLUSIONS Our study reveals a complex pattern of chemokine expression in the intestine and indicates that chemokines are critical for leukocyte accumulation in the intestine during homeostasis and inflammation.
Collapse
Affiliation(s)
- Limin Shang
- Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029
| | | | - Abel Viejo-Borbolla
- Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, 28049, Spain
| | - Andrea P. Martin
- Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029
| | | | - Federica Marchesi
- Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029
| | - Jay C. Unkeless
- Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029
| | - Yin Ho
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 2QQ, United Kingdom
| | - Glaucia C. Furtado
- Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029
| | - Antonio Alcami
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 2QQ, United Kingdom
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, 28049, Spain
| | - Miriam Merad
- Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029
| | - Lloyd Mayer
- Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029
| | - Sergio A. Lira
- Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|
33
|
Lee JS, Kamada S, Takami Y, Oka K, Ochiai Y, Iwaya H, Hara H, Ishizuka S. Depletion of CD8α+ lymphocytes attenuates CCL28 expression in villus epithelia in rats. Immunol Lett 2009; 124:50-4. [DOI: 10.1016/j.imlet.2009.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 04/03/2009] [Accepted: 04/13/2009] [Indexed: 10/20/2022]
|
34
|
Lai YG, Hou MS, Hsu YW, Chang CL, Liou YH, Tsai MH, Lee F, Liao NS. IL-15 does not affect IEL development in the thymus but regulates homeostasis of putative precursors and mature CD8 alpha alpha+ IELs in the intestine. THE JOURNAL OF IMMUNOLOGY 2008; 180:3757-65. [PMID: 18322181 DOI: 10.4049/jimmunol.180.6.3757] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mice devoid of the IL-15 system lose over 90% of CD8alphaalpha(+) TCRalphabeta and TCRgammadelta intestinal intraepithelial lymphocytes (iIELs). Previous work revealed that IL-15Ralpha and IL-15 expressed by parenchymal cells, but not by bone marrow-derived cells, are required for normal CD8alphaalpha(+) iIEL homeostasis. However, it remains unclear when and how the IL-15 system affects CD8alphaalpha(+) iIELs through their development. This study found that IL-15Ralpha is dispensable for the thymic stage of CD8alphaalpha(+) TCRalphabeta and TCRgammadelta iIEL development but is required for the maintenance and/or differentiation of the putative lineage marker negative precursors in the intestinal epithelium, especially for the most mature CD8 single positive subset. Moreover, the IL-15 system directly supports the survival of mature CD8alphaalpha(+) iIEL in vivo. Taken together, this study suggests that regulation of CD8alphaalpha(+) iIEL homeostasis by the IL-15 system does not occur in the thymus but involves mature cells and putative precursors in the intestine.
Collapse
Affiliation(s)
- Yein-Gei Lai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei. Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Reeves JP, Reeves PA, Chin LT. Survival surgery: removal of the spleen or thymus. ACTA ACUST UNITED AC 2008; Chapter 1:1.10.1-1.10.11. [PMID: 18432668 DOI: 10.1002/0471142735.im0110s02] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Although for most experiments lymphoid tissue is removed from the freshly sacrificed animal, there are several circumstances which require the surgical removal, under anesthesia, of either the thymus or spleen, and the recovery of the animal for further investigation. This unit describes survival surgery for removal of the adult spleen as well as the adult and neonatal thymus of the mouse.
Collapse
Affiliation(s)
- J P Reeves
- Food and Drug Administration, Bethesda, Maryland
| | - P A Reeves
- Food and Drug Administration, Bethesda, Maryland
| | - L Thomas Chin
- University of Massachusetts, Worcester, Massachusetts
| |
Collapse
|
36
|
Cheroutre H, Lambolez F. The thymus chapter in the life of gut-specific intra epithelial lymphocytes. Curr Opin Immunol 2008; 20:185-91. [PMID: 18456487 PMCID: PMC2527581 DOI: 10.1016/j.coi.2008.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/13/2008] [Accepted: 03/14/2008] [Indexed: 11/28/2022]
Abstract
The intestinal intraepithelial lymphocytes (IEL) represent multi-lineage T cell populations. In addition to a major gammadeltaTCR(+) T cell subset, many IEL express alphabetaTCRs and they can be separated into alphabeta sublineages. Some TCRalphabeta(+)IEL have characteristics in common with conventional TCRalphabeta(+)T cells whereas others share an unconventional phenotype with their TCRgammadelta(+) counterparts. Because the latter are enriched for autoreactive TCRs and can be generated in the absence of a thymus, it has long been postulated that some IEL subsets develop locally in the intestine. Several new data however, indicate that under physiological conditions, IEL require a thymic education that directs lineage commitment and functional differentiation. This review will discuss the contributions of the thymus in shaping the various intestinal IEL sublineages.
Collapse
Affiliation(s)
- Hilde Cheroutre
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9240 Athena Circle, La Jolla, CA 92037, USA.
| | | |
Collapse
|
37
|
Abstract
The etiology and immunologic states of autoimmune diseases have mainly been discussed without consideration of extrathymic T cells, which exist in the liver, intestine, and excretion glands. Because extrathymic T cells are autoreactive and are often simultaneously activated along with autoantibody-producing B-1 cells, these extrathymic T cells and B-1 cells should be introduced when considering the immunologic states of autoimmune diseases. The immunologic states of autoimmune diseases resemble those of aging, chronic GVH disease, and malarial infection. Namely, under all these conditions, conventional T and B cells are rather suppressed concomitant with thymic atrophy or involution. In contrast, extrathymic T cells and B-1 cells are inversely activated at this time. These facts suggest that the immunologic states of autoimmune diseases should be reevaluated by introducing the concept of extrathymic T cells and autoantibody-producing B-1 cells, which might be primordial lymphocytes in phylogeny.
Collapse
Affiliation(s)
- Toru Abo
- Department of Immunology, Niigata University School of Medicine, Niigata, Japan.
| | | | | |
Collapse
|
38
|
Takahashi S, Kawamura T, Kanda Y, Taniguchi T, Nishizawa T, Iiai T, Hatakeyama K, Abo T. Multipotential acceptance of Peyer's patches in the intestine for both thymus-derived T cells and extrathymic T cells in mice. Immunol Cell Biol 2008; 83:504-10. [PMID: 16174100 DOI: 10.1111/j.1440-1711.2005.01361.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Peyer's patches (PP) are important inductive sites for the mucosal immune response. It is well known that lymphocytes that migrate into PP are mainly of T-cell lineage from thymus-derived cells (i.e. alphabetaTCR(high) cells). In this study, we further characterized the properties of PP lymphocytes in mice using a mouse model of colitis induced by dextran sulphate sodium (DSS). Although the major site of the inflammation induced by DSS is known to be the large intestine, the small intestine was also damaged. When mice developed DSS-induced colitis, CD3+CD8+B220+ gammadelta T cells increased in PP in the small intestine. These gammadelta T cells, which are not seen in the PP of normal mice, resembled intraepithelial lymphocytes (IEL) in the small intestine in terms of their expression of CD5, CD103 and Thy1.2. In addition, the Vgamma/delta repertoire of these gammadelta T cells was similar to that of gammadelta IEL. When DSS-treated mice were injected with IEL isolated from normal mice, IEL including gammadelta T cells preferentially migrated to PP, raising the possibility that B220+ T cells seen in PP of diseased mice may derive from IEL in the small intestine. Our present study suggests that PP might be able to accept T-cell lineages from intestinal IEL as well as from thymus-derived T cells.
Collapse
Affiliation(s)
- Satoshi Takahashi
- Department of Immunology, Niigata University School of Medicine, Niigata, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Candolfi M, Curtin JF, Nichols WS, Muhammad AG, King GD, Pluhar GE, McNiel EA, Ohlfest JR, Freese AB, Moore PF, Lerner J, Lowenstein PR, Castro MG. Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression. J Neurooncol 2007; 85:133-48. [PMID: 17874037 PMCID: PMC2384236 DOI: 10.1007/s11060-007-9400-9] [Citation(s) in RCA: 262] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 04/23/2007] [Indexed: 01/30/2023]
Abstract
Although rodent glioblastoma (GBM) models have been used for over 30 years, the extent to which they recapitulate the characteristics encountered in human GBMs remains controversial. We studied the histopathological features of dog GBM and human xenograft GBM models in immune-deficient mice (U251 and U87 GBM in nude Balb/c), and syngeneic GBMs in immune-competent rodents (GL26 cells in C57BL/6 mice, CNS-1 cells in Lewis rats). All GBMs studied exhibited neovascularization, pleomorphism, vimentin immunoreactivity, and infiltration of T-cells and macrophages. All the tumors showed necrosis and hemorrhages, except the U87 human xenograft, in which the most salient feature was its profuse neovascularization. The tumors differed in the expression of astrocytic intermediate filaments: human and dog GBMs, as well as U251 xenografts expressed glial fibrillary acidic protein (GFAP) and vimentin, while the U87 xenograft and the syngeneic rodent GBMs were GFAP(-) and vimentin(+). Also, only dog GBMs exhibited endothelial proliferation, a key feature that was absent in the murine models. In all spontaneous and implanted GBMs we found histopathological features compatible with tumor invasion into the non-neoplastic brain parenchyma. Our data indicate that murine models of GBM appear to recapitulate several of the human GBM histopathological features and, considering their reproducibility and availability, they constitute a valuable in vivo system for preclinical studies. Importantly, our results indicate that dog GBM emerges as an attractive animal model for testing novel therapies in a spontaneous tumor in the context of a larger brain.
Collapse
Affiliation(s)
- Marianela Candolfi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Holler PD, Yamagata T, Jiang W, Feuerer M, Benoist C, Mathis D. The same genomic region conditions clonal deletion and clonal deviation to the CD8alphaalpha and regulatory T cell lineages in NOD versus C57BL/6 mice. Proc Natl Acad Sci U S A 2007; 104:7187-92. [PMID: 17438291 PMCID: PMC1855402 DOI: 10.1073/pnas.0701777104] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Clonal deviation is a mechanism by which immature thymocytes expressing a self-reactive T cell antigen receptor (TCR) are rescued from clonal deletion by adopting an alternative differentiation pathway resistant to apoptosis. Here, we confirm and generalize previous indications that genetic alleles in NOD mice condition ineffective clonal deviation toward the CD8alphaalpha lineage, a peculiar population of TCRalphabeta lymphocytes that electively colonizes the intraepithelial lymphocyte pool in the gut. Thymic selection of CD8alphaalpha cells was very age-dependent, occurring almost exclusively in the postnatal period. Fewer CD8alphaalpha cells were found in the thymus and intraepithelial lymphocytes of BDC2.5 TCR transgenic mice on the NOD than on the C57BL/6 (B6) background; this paucity extended to standard NOD mice, albeit to a lesser extent. CD8alphaalpha cells resided in the BDC2.5 pancreatic infiltrate, and they were more abundant on the B6 than the NOD background, correlating with aggressivity of the lesion. A (B6(g7) x NOD)F(2) intercross in agonist-challenged BDC2.5 fetal thymic organ cultures demonstrated the existence of a major quantitative trait locus on chromosome 3, coincident with an interval associated with resistance to clonal deletion. A replicate linkage confirmed these positions and showed that the same region also controls clonal deviation toward the CD4(+)FoxP3(+) regulatory T cell lineage. That clonal deviation toward the CD8alphaalpha and regulatory T cell pathways share genetic control further highlights the similarities between these two "rescue lineages," consistent with an immunoregulatory role for CD8alphaalpha cells.
Collapse
Affiliation(s)
- Phillip D. Holler
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School, Boston, MA 02215
| | - Tetsuya Yamagata
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School, Boston, MA 02215
| | - Wenyu Jiang
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School, Boston, MA 02215
| | - Markus Feuerer
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School, Boston, MA 02215
| | - Christophe Benoist
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School, Boston, MA 02215
- *To whom correspondence should be addressed. E-mail:
| | - Diane Mathis
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School, Boston, MA 02215
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Probert CSJ, Saubermann LJ, Balk S, Blumberg RS. Repertoire of the alpha beta T-cell receptor in the intestine. Immunol Rev 2007; 215:215-25. [PMID: 17291291 DOI: 10.1111/j.1600-065x.2006.00480.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The majority of T cells in the human and mouse intestine express the T-cell receptor (TCR) as an alphabeta heterodimer on their cell surface. As the major recognition element of antigens in the context of major histocompatibility complex-derived proteins, an examination of the structure of the alpha beta TCR in intestines has provided significant insights into the potential function of these cells and the major determinants that drive their selection. Studies in the human intestine have shown that the repertoires of intraepithelial lymphocytes (IELs), and likely lamina propria lymphocytes, are polyclonal before and shortly after birth, with the repertoire becoming oligoclonal in adults. Similarly, in adult mice the repertoire is oligoclonal, while in the newborn it is polyclonal. Investigations in mice have shown that some T cells may evade thymic selection. The population size and oligoclonality of IELs is influenced by the microbial content of the luminal microenvironment. This microenvironment probably directly determines the TCR repertoire. Studies in human inflammatory bowel disease (IBD) indicate that inflammation further skews the TCR repertoire. We speculate that dominant antigens associated with the pathogenesis of IBD are responsible for such skewing and that identifying the antigenic drivers may shed light on the environmental factors that trigger or potentiate human IBD.
Collapse
MESH Headings
- Animals
- Epithelial Cells/immunology
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Humans
- Immunity, Mucosal
- Inflammatory Bowel Diseases/immunology
- Intestinal Mucosa/immunology
- Phenotype
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Christopher S J Probert
- Bristol Royal Infirmary, Clinical Science at South Bristol, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
42
|
O'Brien RL, Roark CL, Jin N, Aydintug MK, French JD, Chain JL, Wands JM, Johnston M, Born WK. gammadelta T-cell receptors: functional correlations. Immunol Rev 2007; 215:77-88. [PMID: 17291280 DOI: 10.1111/j.1600-065x.2006.00477.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The gammadelta T-cell receptors (TCRs) are limited in their diversity, suggesting that their natural ligands may be few in number. Ligands for gammadeltaTCRs that have thus far been determined are predominantly of host rather than foreign origin. Correlations have been noted between the Vgamma and/or Vdelta genes a gammadelta T cell expresses and its functional role. The reason for these correlations is not yet known, but several different mechanisms are conceivable. One possibility is that interactions between particular TCR-V domains and ligands determine function or functional development. However, a recent study showed that at least for one ligand, receptor specificity is determined by the complementarity-determining region 3 (CDR3) component of the TCR-delta chain, regardless of the Vgamma and/or Vdelta. To determine what is required in the TCR for other specificities and to test whether recognition of certain ligands is connected to cell function, more gammadeltaTCR ligands must be defined. The use of recombinant soluble versions of gammadeltaTCRs appears to be a promising approach to finding new ligands, and recent results using this method are reviewed.
Collapse
Affiliation(s)
- Rebecca L O'Brien
- Integrated Deaprtment of Immunology, National Jewish Medical and Research Center, Denver, CO 80206, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jabri B, Ebert E. Human CD8+intraepithelial lymphocytes: a unique model to study the regulation of effector cytotoxic T lymphocytes in tissue. Immunol Rev 2007; 215:202-14. [PMID: 17291290 DOI: 10.1111/j.1600-065x.2006.00481.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The epithelium of the human small intestine contains a large population of intraepithelial cytolytic alphabeta T-cell receptor (TCR) CD8 alpha beta T lymphocytes (IE-CTLs), whose main role is to sustain epithelial integrity by rapidly eliminating infected and damaged cells. In mouse, the recognition of inducible/modified self-molecules, i.e. non-classical major histocompatibility complex (MHC) class I molecules, is mediated by the TCR and natural killer receptors (NKRs) co-expressed on the cell surface of a non-conventional autoreactive CD8 alpha alpha alpha beta TCR cell subset. In contrast, in humans, the recognition of non-classical MHC class I molecules induced by stress and inflammation on intestinal epithelial cells (IECs) is principally mediated by NKRs expressed on conventional CD8 alpha beta alpha beta TCR cells. By sensing microenvironmental signals of inflammation and stress through NKRs, IE-CTLs fine tune their TCR activation threshold. Furthermore, IE-CTLs under particular conditions, involving interleukin-15 upregulation, acquire the capacity to kill distressed intestinal epithelial cells in an antigen non-specific manner. Adaptive IE-CTLs appear hence to have autoreactive properties and modulate their immune response based on innate signals, reflecting the fitness of the tissue.
Collapse
Affiliation(s)
- Bana Jabri
- Department of Pathology, Medicine and Pediatrics, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
44
|
Ishikawa H, Naito T, Iwanaga T, Takahashi-Iwanaga H, Suematsu M, Hibi T, Nanno M. Curriculum vitae of intestinal intraepithelial T cells: their developmental and behavioral characteristics. Immunol Rev 2007; 215:154-65. [PMID: 17291286 DOI: 10.1111/j.1600-065x.2006.00473.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The alimentary tract has an epithelial layer, consisting mainly of intestinal epithelial cells (IECs), that is exposed to the exterior world through the intestinal lumen. The IEC layer contains many intestinal intraepithelial T cells (IELs), and the total number of IELs constitutes the largest population in the peripheral T-cell pool. Virtually all gammadelta-IELs and many alphabeta-IELs in the mouse small intestine are known to express CD8 alpha alpha homodimers. A wide range of evidence that supports extrathymic development of these CD8 alpha alpha(+) IELs has been collected. In addition, while several studies identified cells with precursor T-cell phenotypes within the gut epithelium, how these precursors, which are dispersed along the length of the intestine, develop into gammadelta-IELs and/or alphabeta-IELs has not been clarified. The identification of lymphoid cell aggregations named 'cryptopatches' (CPs) in the intestinal crypt lamina propria of mice as sites rich in T-cell precursors in 1996 by our research group, however, provided evidence for a central site, whereby precursor IELs could give rise to T-cell receptor-bearing IELs. In this review, we discuss the development of IELs in the intestinal mucosa and examine the possibility that CPs serve as a production site of extrathymic IELs.
Collapse
Affiliation(s)
- Hiromichi Ishikawa
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The gut epithelial border is in continuous contact with exogenous antigens and harbors a distinctive and very abundant CD8 alpha alpha intraepithelial T-lymphocyte effector population. We describe here the characteristics of these cells that distinguish them from all other T-cell types in the body as well as their functions in local protection. We also describe how these cells differentiate from local precursors present in the gut cryptopatches (CPs) following a pathway of T-cell differentiation unique to the gut wall. Finally, we describe the origin of the precursors of CD8 alpha alpha T cells, which come from the bone marrow in athymic mice but are first imprinted in the thymus in euthymic mice. Indeed, CD3(-)CD4(-)CD8(-) T-cell-committed precursors can leave the thymus before T-cell receptor rearrangements and then colonize the gut CPs, proceeding with their differentiation within the gut wall.
Collapse
Affiliation(s)
- Benedita Rocha
- Institut National de la Santé et de la Recherche Médicale (INSERM), U591, Faculté de Médecine René Descarte Paris V, Institut Necker, Paris, France.
| |
Collapse
|
46
|
Abstract
Intraepithelial lymphocytes (IELs) contain several subsets, but the origin of the T-cell receptor (TCR)alphabeta(+) CD8 alpha alpha(+) IELs has been particularly controversial. Here we provide a synthesis, based on recent work, that attempts to unify the divergent views. The intestine has a primordial function in lymphopoiesis, and precursors with the potential to differentiate into T cells are found both in the epithelium and underlying lamina propria. Moreover, the thymus has been reported to export cells to the intestine that are not fully differentiated. TCR alpha beta(+) CD8 alpha alpha(+) IELs can differentiate in the intestine from each of these sources, but in normal euthymic mice, the thymus appears to be the major source for TCR alpha beta(+) CD8 alpha alpha(+) IELs. This unique IEL subset is a self-reactive population that requires exposure to self-agonists for selection in the thymus, similar to other regulatory T-cell populations. IELs transition through a double-positive (DP) intermediate in the thymus, but they originate from a subset of the DP cells that can be identified by its expression of CD8 alpha alpha homodimers. The agonist-selected cells in the thymus are TCRbeta(+) but CD4 and CD8 double negative. The evidence suggests that reacquired expression of CD8 alpha alpha and downregulation of CD5 occur after thymus export, perhaps in the intestine under the influence of interleukin-15. As a result of agonist exposure, a new gene expression program is activated. Therefore, the increased understanding of the developmental origin of TCR alpha beta(+) CD8 alpha alpha(+) IELs may help us to understand how they participate in immune regulation and protection in the intestine.
Collapse
Affiliation(s)
- Florence Lambolez
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
47
|
Podd BS, Thoits J, Whitley N, Cheng HY, Kudla KL, Taniguchi H, Halkias J, Goth K, Camerini V. T cells in cryptopatch aggregates share TCR gamma variable region junctional sequences with gamma delta T cells in the small intestinal epithelium of mice. THE JOURNAL OF IMMUNOLOGY 2006; 176:6532-42. [PMID: 16709810 DOI: 10.4049/jimmunol.176.11.6532] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The role of cryptopatch aggregates in the development of intestinal intraepithelial lymphocytes (IEL) is a matter of controversy. Therefore, an important question is whether T cells in cryptopatch aggregates are lineally related to IEL. We hypothesized that if gammadelta+ IEL derive from T cells in cryptopatch aggregates, then a clonal relationship would exist between the two populations. To test this hypothesis, we compared the sequence of rearranged TCR gamma variable region 5 genes in gammadelta+ IEL and cryptopatch cells. We purified IEL by FACS and cryptopatch cells were isolated from frozen sections of the intestine by laser-assisted microdissection. PCR showed that TCR gamma variable region 5 was rearranged in gammadelta+ IEL and in CD3+ cryptopatch cells, but not in CD3- cryptopatch cells. DNA sequence analysis showed that the frequency of in-frame junctions in cryptopatch aggregates was at a level consistent with positive selection in both wild-type and athymic nude mice. In addition, the predicted amino acid sequences of V-J junctions present in gammadelta+ IEL and cryptopatch cells were encoded by identical nucleotide sequences. By contrast, the frequency of in-frame joints was significantly reduced in cryptopatch cells isolated from TCR delta-deficient mice, indicating that the enrichment of in-frame joints in cryptopatch cells must normally depend on expression of surface gammadelta TCR. Our results are consistent with the hypothesis that a subset of gammadelta+ IEL are related to T cells in cryptopatch aggregates. The precise role of cryptopatch aggregates in intestinal gammadelta+ T cell homeostasis still needs to be determined.
Collapse
MESH Headings
- Animals
- CD3 Complex/biosynthesis
- Cell Aggregation/immunology
- Cell Separation
- Exons/genetics
- Female
- Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor
- Intestinal Mucosa/cytology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestine, Small/cytology
- Intestine, Small/immunology
- Intestine, Small/metabolism
- Lasers
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Nude
- Microdissection
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Bradley S Podd
- Department of Pediatrics, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Newton DJ, Andrew EM, Dalton JE, Mears R, Carding SR. Identification of novel gammadelta T-cell subsets following bacterial infection in the absence of Vgamma1+ T cells: homeostatic control of gammadelta T-cell responses to pathogen infection by Vgamma1+ T cells. Infect Immun 2006; 74:1097-105. [PMID: 16428757 PMCID: PMC1360339 DOI: 10.1128/iai.74.2.1097-1105.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although gammadelta T cells are a common feature of many pathogen-induced immune responses, the factors that influence, promote, or regulate the response of individual gammadelta T-cell subsets to infection is unknown. Here we show that in the absence of Vgamma1+ T cells, novel subsets of gammadelta T cells, expressing T-cell receptor (TCR)-Vgamma chains that normally define TCRgammadelta+ dendritic epidermal T cells (DETCs) (Vgamma5+), intestinal intraepithelial lymphocytes (iIELs) (Vgamma7+), and lymphocytes associated with the vaginal epithelia (Vgamma6+), are recruited to the spleen in response to bacterial infection in TCR-Vgamma1-/- mice. By comparison of phenotype and structure of TCR-Vgamma chains and/or -Vdelta chains expressed by these novel subsets with those of their epithelium-associated counterparts, the Vgamma6+ T cells elicited in infected Vgamma1-/- mice were shown to be identical to those found in the reproductive tract, from where they are presumably recruited in the absence of Vgamma1+ T cells. By contrast, Vgamma5+ and Vgamma7+ T cells found in infected Vgamma1-/- mice were distinct from Vgamma5+ DETCs and Vgamma7+ iIELs. Functional analyses of the novel gammadelta T-cell subsets identified for infected Vgamma1-/- mice showed that whereas the Vgamma5+ and Vgamma7+ subsets may compensate for the absence of Vgamma1+ T cells by producing similar cytokines, they do not possess cytocidal activity and they cannot replace the macrophage homeostasis function of Vgamma1+ T cells. Collectively, these findings identify novel subsets of gammadelta T cells, the recruitment and activity of which is under the control of Vgamma1+ T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Female
- Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor
- Genes, T-Cell Receptor gamma
- Homeostasis
- Humans
- Listeria monocytogenes/immunology
- Listeria monocytogenes/pathogenicity
- Listeriosis/immunology
- Listeriosis/microbiology
- Lymphocyte Activation
- Macrophages, Peritoneal/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Sequence Analysis, DNA
- Spleen/cytology
- Spleen/immunology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Darren J Newton
- Research Institute of Cellular and Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | | | | | | | | |
Collapse
|
49
|
Little MC, Bell LV, Cliffe LJ, Else KJ. The characterization of intraepithelial lymphocytes, lamina propria leukocytes, and isolated lymphoid follicles in the large intestine of mice infected with the intestinal nematode parasite Trichuris muris. THE JOURNAL OF IMMUNOLOGY 2006; 175:6713-22. [PMID: 16272327 DOI: 10.4049/jimmunol.175.10.6713] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite a growing understanding of the role of cytokines in immunity to the parasitic helminth Trichuris muris, the local effector mechanism culminating in the expulsion of worms from the large intestine is not known. We used flow cytometry and immunohistochemistry to characterize the phenotype of large intestinal intraepithelial lymphocytes (IEL) and lamina propria leukocytes (LPL) from resistant and susceptible strains of mouse infected with T. muris. Leukocytes accumulated in the epithelium and lamina propria after infection, revealing marked differences between the different strains of mouse. In resistant mice, which mount a Th2 response, the number of infiltrating CD4+, CD8+, B220+, and F4/80+ IEL and LPL was generally highest around the time of worm expulsion from the gut, at which point the inflammation was dominated by CD4+ IEL and F4/80+ LPL. In contrast, in susceptible mice, which mount a Th1 response, the number of IEL and LPL increased more gradually and was highest after a chronic infection had developed. At this point, CD8+ IEL and F4/80+ LPL were predominant. Therefore, this study reveals the local immune responses underlying the expulsion of worms or the persistence of a chronic infection in resistant and susceptible strains of mouse, respectively. In addition, for the first time, we illustrate isolated lymphoid follicles in the large intestine, consisting of B cells interspersed with CD4+ T cells and having a central zone of rapidly proliferating cells. Furthermore, we demonstrate the organogenesis of these structures in response to T. muris infection.
Collapse
Affiliation(s)
- Matthew C Little
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| | | | | | | |
Collapse
|
50
|
Lambolez F, Arcangeli ML, Joret AM, Pasqualetto V, Cordier C, Di Santo JP, Rocha B, Ezine S. The thymus exports long-lived fully committed T cell precursors that can colonize primary lymphoid organs. Nat Immunol 2005; 7:76-82. [PMID: 16341216 DOI: 10.1038/ni1293] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 11/14/2005] [Indexed: 12/29/2022]
Abstract
Thymic export of cells is believed to be restricted to mature T cells. Here we show that the thymus also exports fully committed T cell precursors that colonize primary lymphoid organs. These precursor cells exited the thymus before T cell receptor rearrangements and colonized lymphoid organs such as the thymus and the gut. Migration of the thymic T cell-committed precursors led to permanent colonization of the gut precursor compartment, improved the capacity of gut precursors to further differentiate into T cells and was sufficient for the generation of 'euthymic like' CD8alphaalpha(+) intraepithelial lymphocytes. These data demonstrate a new function for the thymus in peripheral seeding with T cell precursors that become long lived after thymus export.
Collapse
Affiliation(s)
- Florence Lambolez
- Institut National de la Santé et de la Recherche Médicale U591, Necker Institute, Medical Faculty René Descartes, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|