1
|
Borar P, Biswas T, Chaudhuri A, Rao T P, Raychaudhuri S, Huxford T, Chakrabarti S, Ghosh G, Polley S. Dual-specific autophosphorylation of kinase IKK2 enables phosphorylation of substrate IκBα through a phosphoenzyme intermediate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.27.546692. [PMID: 37732175 PMCID: PMC10508718 DOI: 10.1101/2023.06.27.546692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Rapid and high-fidelity phosphorylation of two serines (S32 and S36) of IκBα by a prototype Ser/Thr kinase IKK2 is critical for fruitful canonical NF-κB activation. Here, we report that IKK2 is a dual specificity Ser/Thr kinase that autophosphorylates itself at tyrosine residues in addition to its activation loop serines. Mutation of one such tyrosine, Y169, located in proximity to the active site, to phenylalanine, renders IKK2 inactive for phosphorylation of S32 of IκBα. Surprisingly, auto-phosphorylated IKK2 relayed phosphate group(s) to IκBα without ATP when ADP is present. We also observed that mutation of K44, an ATP-binding lysine conserved in all protein kinases, to methionine renders IKK2 inactive towards specific phosphorylation of S32 or S36 of IκBα, but not non-specific substrates. These observations highlight an unusual evolution of IKK2, in which autophosphorylation of tyrosine(s) in the activation loop and the invariant ATP-binding K44 residue define its signal-responsive substrate specificity ensuring the fidelity of NF-κB activation.
Collapse
Affiliation(s)
- Prateeka Borar
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Tapan Biswas
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, USA
| | - Ankur Chaudhuri
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pallavi Rao T
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Swasti Raychaudhuri
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Tom Huxford
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, USA
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, USA
| | - Smarajit Polley
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
2
|
Ferreira Alves G, Aimaretti E, da Silveira Hahmeyer ML, Einaudi G, Porchietto E, Rubeo C, Marzani E, Aragno M, da Silva-Santos JE, Cifani C, Fernandes D, Collino M. Pharmacological inhibition of CK2 by silmitasertib mitigates sepsis-induced circulatory collapse, thus improving septic outcomes in mice. Biomed Pharmacother 2024; 178:117191. [PMID: 39079263 DOI: 10.1016/j.biopha.2024.117191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/25/2024] Open
Abstract
Casein kinase II (CK2) has recently emerged as a pivotal mediator in the propagation of inflammation across various diseases. Nevertheless, its role in the pathogenesis of sepsis remains unexplored. Here, we investigated the involvement of CK2 in sepsis progression and the potential beneficial effects of silmitasertib, a selective and potent CK2α inhibitor, currently under clinical trials for COVID-19 and cancer. Sepsis was induced by caecal ligation and puncture (CLP) in four-month-old C57BL/6OlaHsd mice. One hour after the CLP/Sham procedure, animals were assigned to receive silmitasertib (50 mg/kg/i.v.) or vehicle. Plasma/organs were collected at 24 h for analysis. A second set of experiments was performed for survival rate over 120 h. Septic mice developed multiorgan failure, including renal dysfunction due to hypoperfusion (reduced renal blood flow) and increased plasma levels of creatinine. Renal derangements were associated with local overactivation of CK2, and downstream activation of the NF-ĸB-iNOS-NO axis, paralleled by a systemic cytokine storm. Interestingly, all markers of injury/inflammation were mitigated following silmitasertib administration. Additionally, when compared to sham-operated mice, sepsis led to vascular hyporesponsiveness due to an aberrant systemic and local release of NO. Silmitasertib restored sepsis-induced vascular abnormalities. Overall, these pharmacological effects of silmitasertib significantly reduced sepsis mortality. Our findings reveal, for the first time, the potential benefits of a selective and potent CK2 inhibitor to counteract sepsis-induced hyperinflammatory storm, vasoplegia, and ultimately prolonging the survival of septic mice, thus suggesting a pivotal role of CK2 in sepsis and silmitasertib as a novel powerful pharmacological tool for drug repurposing in sepsis.
Collapse
Affiliation(s)
- Gustavo Ferreira Alves
- Department of Neurosciences (Rita Levi Montalcini), University of Turin, Turin, Italy; Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil; Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Eleonora Aimaretti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Giacomo Einaudi
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Elisa Porchietto
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Chiara Rubeo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Enrica Marzani
- Department of Neurosciences (Rita Levi Montalcini), University of Turin, Turin, Italy
| | - Manuela Aragno
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Daniel Fernandes
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Massimo Collino
- Department of Neurosciences (Rita Levi Montalcini), University of Turin, Turin, Italy.
| |
Collapse
|
3
|
Stephenson AA, Taggart DJ, Xu G, Fowler JD, Wu H, Suo Z. The inhibitor of κB kinase β (IKKβ) phosphorylates IκBα twice in a single binding event through a sequential mechanism. J Biol Chem 2023; 299:102796. [PMID: 36528060 PMCID: PMC9843440 DOI: 10.1016/j.jbc.2022.102796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/16/2022] Open
Abstract
Phosphorylation of Inhibitor of κB (IκB) proteins by IκB Kinase β (IKKβ) leads to IκB degradation and subsequent activation of nuclear factor κB transcription factors. Of particular interest is the IKKβ-catalyzed phosphorylation of IκBα residues Ser32 and Ser36 within a conserved destruction box motif. To investigate the catalytic mechanism of IKKβ, we performed pre-steady-state kinetic analysis of the phosphorylation of IκBα protein substrates catalyzed by constitutively active, human IKKβ. Phosphorylation of full-length IκBα catalyzed by IKKβ was characterized by a fast exponential phase followed by a slower linear phase. The maximum observed rate (kp) of IKKβ-catalyzed phosphorylation of IκBα was 0.32 s-1 and the binding affinity of ATP for the IKKβ•IκBα complex (Kd) was 12 μM. Substitution of either Ser32 or Ser36 with Ala, Asp, or Cys reduced the amplitude of the exponential phase by approximately 2-fold. Thus, the exponential phase was attributed to phosphorylation of IκBα at Ser32 and Ser36, whereas the slower linear phase was attributed to phosphorylation of other residues. Interestingly, the exponential rate of phosphorylation of the IκBα(S32D) phosphomimetic amino acid substitution mutant was nearly twice that of WT IκBα and 4-fold faster than any of the other IκBα amino acid substitution mutants, suggesting that phosphorylation of Ser32 increases the phosphorylation rate of Ser36. These conclusions were supported by parallel experiments using GST-IκBα(1-54) fusion protein substrates bearing the first 54 residues of IκBα. Our data suggest a model wherein, IKKβ phosphorylates IκBα at Ser32 followed by Ser36 within a single binding event.
Collapse
Affiliation(s)
- Anthony A Stephenson
- The Department of Biochemistry, The Ohio State University, Columbus, Ohio, USA; The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
| | - David J Taggart
- The Department of Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Guozhou Xu
- The Department of Biochemistry, Weill Medical College of Cornell University, New York, New York, USA
| | - Jason D Fowler
- The Department of Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Hao Wu
- The Department of Biochemistry, Weill Medical College of Cornell University, New York, New York, USA
| | - Zucai Suo
- The Department of Biochemistry, The Ohio State University, Columbus, Ohio, USA; The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA; The Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA.
| |
Collapse
|
4
|
Yu M, Chen J, Bao Y, Li J. Genomic analysis of NF-κB signaling pathway reveals its complexity in Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2018; 72:510-518. [PMID: 29162540 DOI: 10.1016/j.fsi.2017.11.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/09/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
NF-κB signaling pathway is an evolutionarily conserved pathway that plays highly important roles in several developmental, cellular and immune response processes. With the recent release of the draft Pacific oyster (Crassostra gigas) genome sequence, we have sought to identify the various components of the NF-κB signaling pathway in these mollusks and investigate their gene structure. We further constructed phylogenetic trees to establish the evolutionary relationship of the oyster proteins with their homologues in vertebrates and invertebrates using BLASTX and neighbor-joining method. We report the presence of two classic NF-κB/Rel homologues in the pacific oyster namely Cgp100 and CgRel, which possess characteristic RHD domain and a consensus nuclear localization signal, similar to mammalian homologues and an additional CgRel-like protein, unique to C. gigas. Further, in addition to two classical IκB homologues, CgIκB1 and CgIκB2, we have identified three atypical IκB family members namely CgIκB3, CgIκB4 and CgBCL3 which lack the IκB degradation motif and consist of only one exon that might have arisen by retrotransposition from CgIκB1. Finally, we report the presence of three IKKs and one NEMO genes in oyster genome, named CgIKK1, CgIKK2, CgIKK3 and CgNEMO, respectively. While CgIKK1 and CgIKK3 domain structure is similar to their mammalian homologues, CgIKK2 was found to lack the HLH and NBD domains. Overall, the high conservation of the NF-κB/Rel, IκB and IKK family components in the pacific oyster and their structural similarity to the vertebrate and invertebrate homologues underline the functional importance of this pathway in regulation of critical cellular processes across species.
Collapse
Affiliation(s)
- Mingjia Yu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
| | - Jianming Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, China.
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
5
|
Shi Z, Liang H, Hou Y. Functional analysis of a NF-κB transcription factor in the immune defense of Oriental fruit fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2017; 107:251-260. [PMID: 27871341 DOI: 10.1017/s0007485316000845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although some novel antimicrobial peptides (AMP) have been successfully isolated from Bactrocera dorsalis Hendel, the mechanisms underlying the induction of these peptides are still elusive. The homolog of NF-κB transcription factor Relish, designated as BdRelish, was cloned from B. dorsalis. The full length cDNA of BdRelish is 3954 bp with an open reading frame that encodes 1013 amino acids. Similar to Drosophila Relish and the mammalian p100, it is a compound protein containing a conserved Rel homology domain, an IPT (Ig-like, plexins, transcription factors) domain and an IκB-like domain (four ankyrin repeats), the nuclear localization signal RKRRR is also detected at the residues 449-453, suggesting that it has homology to Relish and it is a member of the Rel family of transcription activator proteins. Reverse transcription quantitative polymerase chain reaction analysis reveals that BdRelish mRNAs are detected in different quantities from various tissues and the highest transcription level of BdRelish is determined in fat body. The injection challenge of Escherichia coli and Staphylococcus aureas significantly upregulated the expression of BdRelish. The injection of BdRelish dsRNA markedly reduced the expression of BdRelish and decreased the transcription magnitude of antimicrobial peptides. Individuals injected BdRelish dsRNA died at a significantly faster rate compared with the control groups. Therefore, BdRelish is vital for the transcription of AMPs to attack the invading bacteria.
Collapse
Affiliation(s)
- Z Shi
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops,Fujian Agriculture and Forestry University,Fuzhou, 350002,China
| | - H Liang
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops,Fujian Agriculture and Forestry University,Fuzhou, 350002,China
| | - Y Hou
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops,Fujian Agriculture and Forestry University,Fuzhou, 350002,China
| |
Collapse
|
6
|
Qaiser F, Trembley JH, Sadiq S, Muhammad I, Younis R, Hashmi SN, Murtaza B, Rector TS, Naveed AK, Ahmed K. Examination of CK2α and NF-κB p65 expression in human benign prostatic hyperplasia and prostate cancer tissues. Mol Cell Biochem 2016; 420:43-51. [PMID: 27435858 PMCID: PMC6668611 DOI: 10.1007/s11010-016-2765-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/09/2016] [Indexed: 02/08/2023]
Abstract
Protein kinase CK2 plays a critical role in cell growth, proliferation, and suppression of cell death. CK2 is overexpressed, especially in the nuclear compartment, in the majority of cancers, including prostate cancer (PCa). CK2-mediated activation of transcription factor nuclear factor kappa B (NF-κB) p65 is a key step in cellular proliferation, resulting in translocation of NF-κB p65 from the cytoplasm to the nucleus. As CK2 expression and activity are also elevated in benign prostatic hyperplasia (BPH), we sought to increase the knowledge of CK2 function in benign and malignant prostate by examination of the relationships between nuclear CK2 and nuclear NF-κB p65 protein expression. The expression level and localization of CK2α and NF-κB p65 proteins in PCa and BPH tissue specimens was determined. Nuclear CK2α and NF-κB p65 protein levels are significantly higher in PCa compared with BPH, and these proteins are positively correlated with each other in both diseases. Nuclear NF-κB p65 levels correlated with Ki-67 or with cytoplasmic NF-κB p65 expression in BPH, but not in PCa. The findings provide information that combined analysis of CK2α and NF-κB p65 expression in prostate specimens relates to the disease status. Increased nuclear NF-κB p65 expression levels in PCa specifically related to nuclear CK2α levels, indicating a possible CK2-dependent relationship in malignancy. In contrast, nuclear NF-κB p65 protein levels related to both Ki-67 and cytoplasmic NF-κB p65 levels exclusively in BPH, suggesting a potential separate impact for NF-κB p65 function in proliferation for benign disease as opposed to malignant disease.
Collapse
Affiliation(s)
- Fatima Qaiser
- Department of Biochemistry and Molecular Biology, Army Medical College, National University of Sciences and Technology, Islamabad, Pakistan
| | - Janeen H Trembley
- Department of Veterans Affairs, Cellular and Molecular Biochemistry Research Laboratory (151) Research Service, Minneapolis VA Health Care System, One Veterans Drive, Minneapolis, MN, 55417, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Sarah Sadiq
- Department of Biochemistry and Molecular Biology, Army Medical College, National University of Sciences and Technology, Islamabad, Pakistan
| | - Iqbal Muhammad
- Department of Histopathology, Army Medical College, Rawalpindi, Pakistan
| | - Rubina Younis
- Department of Histopathology, Army Medical College, Rawalpindi, Pakistan
| | - Shoaib Naiyar Hashmi
- Department of Histopathology, Armed Forces Institute of Pathology, Combined Military Hospital, Rawalpindi, Pakistan
| | - Badar Murtaza
- Armed Forces Institute of Urology, Combined Military Hospital, Rawalpindi, Pakistan
| | - Thomas S Rector
- Department of Veterans Affairs, Cellular and Molecular Biochemistry Research Laboratory (151) Research Service, Minneapolis VA Health Care System, One Veterans Drive, Minneapolis, MN, 55417, USA
| | - Abdul Khaliq Naveed
- Department of Biochemistry and Molecular Biology, Army Medical College, National University of Sciences and Technology, Islamabad, Pakistan
- Al-Mizan Campus, Riphah International University, 274 Peshawar Road, Rawalpindi, Pakistan
| | - Khalil Ahmed
- Department of Veterans Affairs, Cellular and Molecular Biochemistry Research Laboratory (151) Research Service, Minneapolis VA Health Care System, One Veterans Drive, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
7
|
Jin CH, Jun KY, Lee E, Kim S, Kwon Y, Kim K, Na Y. Ethyl 2-(benzylidene)-7-methyl-3-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate analogues as a new scaffold for protein kinase casein kinase 2 inhibitor. Bioorg Med Chem 2014; 22:4553-65. [PMID: 25131958 DOI: 10.1016/j.bmc.2014.07.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/20/2014] [Accepted: 07/22/2014] [Indexed: 10/25/2022]
Abstract
Protein kinase casein kinase 2 (PKCK2) is a constitutively active, growth factor-independent serine/threonine kinase, and changes in PKCK2 expression or its activity are reported in many cancer cells. To develop a novel PKCK2 inhibitor(s), we first performed cell-based phenotypic screening using 4000 chemicals purchased from ChemDiv chemical libraries (2000: randomly selected; 2000: kinase-biased) and performed in vitro kinase assay-based screening using hits found from the first screening. We identified compound 24 (C24)[(Z)-ethyl 5-(4-chlorophenyl)-2-(3,4-dihydroxybenzylidene)-7-methyl-3-oxo-3,5-dihydro-2H-thiazolo[3,2-a] pyrimidine-6-carboxylate] as a novel inhibitor of PKCK2 that is more potent and selective than 4,5,6,7-tetrabromobenzotriazole (TBB). In particular, compound 24 [half maximal inhibitory concentration (IC50)=0.56μM] inhibited PKCK2 2.2-fold more efficiently than did TBB (IC50=1.24μM), which is quite specific toward PKCK2 with respect to ATP binding, in a panel of 31 human protein kinases. The Ki values of compound 24 and TBB for PKCK2 were 0.78μM and 2.70μM, respectively. Treatment of cells with compound 24 inhibited endogenous PKCK2 activity and showed anti-proliferative and pro-apoptotic effects against stomach and hepatocellular cancer cell lines more efficiently than did TBB. As expected, compound 24 also enabled tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-resistant cancer cells to be sensitive toward TRAIL. In comparing the molecular docking of compound 24 bound to PKCK2α versus previously reported complexes of PKCK2 with other inhibitors, our findings suggest a new scaffold for specific PKCK2α inhibitors. Thus, compound 24 appears to be a selective, cell-permeable, potent, and novel PKCK2 inhibitor worthy of further characterization.
Collapse
Affiliation(s)
- Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-750, Republic of Korea
| | - Kyu-Yeon Jun
- College of Pharmacy, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Eunjung Lee
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-750, Republic of Korea
| | - Seongrak Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-750, Republic of Korea; Integrated Genomic Research Center for Metabolic Regulation, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Kunhong Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-750, Republic of Korea; Integrated Genomic Research Center for Metabolic Regulation, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea.
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon 487-010, Republic of Korea.
| |
Collapse
|
8
|
Micheva-Viteva SN, Shou Y, Nowak-Lovato KL, Rector KD, Hong-Geller E. c-KIT signaling is targeted by pathogenic Yersinia to suppress the host immune response. BMC Microbiol 2013; 13:249. [PMID: 24206648 PMCID: PMC3827001 DOI: 10.1186/1471-2180-13-249] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/31/2013] [Indexed: 12/27/2022] Open
Abstract
Background The pathogenic Yersinia species exhibit a primarily extracellular lifestyle through manipulation of host signaling pathways that regulate pro-inflammatory gene expression and cytokine release. To identify host genes that are targeted by Yersinia during the infection process, we performed an RNA interference (RNAi) screen based on recovery of host NF-κB-mediated gene activation in response to TNF-α stimulation upon Y. enterocolitica infection. Results We screened shRNAs against 782 genes in the human kinome and 26 heat shock genes, and identified 19 genes that exhibited ≥40% relative increase in NF-κB reporter gene activity. The identified genes function in multiple cellular processes including MAP and ERK signaling pathways, ion channel activity, and regulation of cell growth. Pre-treatment with small molecule inhibitors specific for the screen hits c-KIT and CKII recovered NF-κB gene activation and/or pro-inflammatory TNF-α cytokine release in multiple cell types, in response to either Y. enterocolitica or Y. pestis infection. Conclusions We demonstrate that pathogenic Yersinia exploits c-KIT signaling in a T3SS-dependent manner to downregulate expression of transcription factors EGR1 and RelA/p65, and pro-inflammatory cytokines. This study is the first major functional genomics RNAi screen to elucidate virulence mechanisms of a pathogen that is primarily dependent on extracellular-directed immunomodulation of host signaling pathways for suppression of host immunity.
Collapse
|
9
|
The IRAK homolog Pelle is the functional counterpart of IκB kinase in the Drosophila Toll pathway. PLoS One 2013; 8:e75150. [PMID: 24086459 PMCID: PMC3781037 DOI: 10.1371/journal.pone.0075150] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/09/2013] [Indexed: 12/30/2022] Open
Abstract
Toll receptors transduce signals that activate Rel-family transcription factors, such as NF-κB, by directing proteolytic degradation of inhibitor proteins. In mammals, the IκB Kinase (IKK) phosphorylates the inhibitor IκBα. A βTrCP protein binds to phosphorylated IκBα, triggering ubiquitination and proteasome mediated degradation. In Drosophila, Toll signaling directs Cactus degradation via a sequence motif that is highly similar to that in IκBα, but without involvement of IKK. Here we show that Pelle, the homolog of a mammalian regulator of IKK, acts as a Cactus kinase. We further find that the fly βTrCP protein Slimb is required in cultured cells to mediate Cactus degradation. These findings enable us for the first time to trace an uninterrupted pathway from the cell surface to the nucleus for Drosophila Toll signaling.
Collapse
|
10
|
Arockiaraj J, Avin FA, Vanaraja P, Easwvaran S, Singh A, Othman RY, Bhassu S. Immune role of MrNFκBI-α, an IκB family member characterized in prawn M. rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2012; 33:619-625. [PMID: 22750025 DOI: 10.1016/j.fsi.2012.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/06/2012] [Accepted: 06/15/2012] [Indexed: 06/01/2023]
Abstract
NF kappa B inhibitor alpha (MrNFκBI-α) was sequenced from a freshwater prawn Macrobrachium rosenbergii. The MrNFκBI-α protein contains a long ankyrin repeat region circular domain between 193 and 413 along with its 6 repeats (ankyrin repeat 1,2,3,4,5 and 6). An IκB degradation motif and a putative PEST motif is present at 37-64 and 418-471 of the N- and C-terminal regions of MrNFκBI-α respectively. The gene expressions of MrNFκBI-α in healthy and infectious hematopoietic and hypodermal necrosis virus (IHHNV), poly I:C, Aeromonas hydrophila and Enterococcus faecium injected M. rosenbergii were examined using quantitative real time PCR. The MrNFκBI-α is expressed in all the tissues taken for examination and the highest is observed in hemocytes. The MrNFκBI-α gene expression is strongly up-regulated in hemocytes of prawn after IHHNV, poly I:C, A. hydrophila and E. faecium infection. This result indicates an important role of MrNFκBI-α in M. rosenbergii immune system. This, however, remains to be verified by further studies.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM University, SRM Nagar, Kattankulathur 603203, Chennai, Tamil Nadu, India.
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The nuclear factor-κB (NF-κB) signaling pathway is a busy ground for the action of the ubiquitin-proteasome system; many of the signaling steps are coordinated by protein ubiquitination. The end point of this pathway is to induce transcription, and to this end, there is a need to overcome a major obstacle, a set of inhibitors (IκBs) that bind NF-κB and prohibit either the nuclear entry or the DNA binding of the transcription factor. Two major signaling steps are required for the elimination of the inhibitors: activation of the IκB kinase (IKK) and degradation of the phosphorylated inhibitors. IKK activation and IκB degradation involve different ubiquitination modes; the latter is mediated by a specific E3 ubiquitin ligase SCF(β-TrCP) . The F-box component of this E3, β-TrCP, recognizes the IκB degron formed following phosphorylation by IKK and thus couples IκB phosphorylation to ubiquitination. SCF(β-TrCP) -mediated IκB ubiquitination and degradation is a very efficient process, often resulting in complete degradation of the key inhibitor IκBα within a few minutes of cell stimulation. In vivo ablation of β-TrCP results in accumulation of all the IκBs and complete NF-κB inhibition. As many details of IκB-β-TrCP interaction have been worked out, the development of β-TrCP inhibitors might be a feasible therapeutic approach for NF-κB-associated human disease. However, we may still need to advance our understanding of the mechanism of IκB degradation as well as of the diverse functions of β-TrCP in vivo.
Collapse
Affiliation(s)
- Naama Kanarek
- Lautenberg Centre for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
12
|
Yang Q, Yang Z, Li H. Molecular characterization and expression analysis of an inhibitor of NF-κB (IκB) from Asiatic hard clam Meretrix meretrix. FISH & SHELLFISH IMMUNOLOGY 2011; 31:485-490. [PMID: 21689757 DOI: 10.1016/j.fsi.2011.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 05/29/2011] [Accepted: 06/05/2011] [Indexed: 05/30/2023]
Abstract
Inhibitor of NF-κB (IκB) is an important member of Rel/NF-κB signaling pathway, which is an important mediator of immune responses in innate immune system. In this study, the IκB cDNA of hard clam Meretrix meretrix (designated as Mm-IκB) was cloned and characterized. The full-length cDNA of Mm-IκB was of 2098 bp, containing a 5' untranslated region (UTR) of 123 bp, a 3' UTR of 810 bp with a poly (A) tail, and an open reading frame (ORF) of 1164 bp encoding a polypeptide of 387 amino acids. The high similarity of Mm-IκB with other IκBs from invertebrates indicated that Mm-IκB should be a member of IκB family. Similar to most IκBs, Mm-IκB possessed all conserved features critical for the fundamental structure and function of IκBs, such as five ankyrin repeats and a conserved degradation motif (DS(44)RYSS(48)). Two PEST domains and a phosphorylation site motif (S(367)EEE(370)) at the C-terminus of Mm-IκB were identified. By quantitative real-time RT-PCR analysis, mRNA level of Mm-IκB was found to be most abundantly expressed in the tissues of mantle, gill and hepatopancreas, weakly expressed in muscle, foot and haemocyte. The Mm-IκB gene expression was significantly up-regulated at 24 h in haemocyte and at 12 h in gill after Vibrio anguillarum challenge, respectively. The results suggested the involvement of Mm-IκB in response against bacterial infection and further highlighted its functional importance in the immune system of M. meretrix.
Collapse
Affiliation(s)
- Qing Yang
- National Marine Environmental Monitoring Center, Dalian, China
| | | | | |
Collapse
|
13
|
Zhang Y, He X, Yu Z. Two homologues of inhibitor of NF-kappa B (IκB) are involved in the immune defense of the Pacific oyster, Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2011; 30:1354-1361. [PMID: 21414410 DOI: 10.1016/j.fsi.2011.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/07/2011] [Accepted: 03/07/2011] [Indexed: 05/30/2023]
Abstract
A novel homologue of IκB was cloned from a hemocyte cDNA of Crassostrea gigas (designed as CgIκB2). The complete cDNA of CgIκB2 includes an open reading frame (ORF) of 1032 bp, and 3' and 5'untranslated regions (UTR's) of 141 bp and 279 bp, respectively. The ORF encodes a putative protein of 343 amino acids with a calculated molecular weight of approximately 37.8 kDa. Alignment analysis reveals that CgIκB2 contains a conserved degradation motif and six ankyrin repeats. A phylogenetic analysis suggests that a gene duplication event prior to the gastropod-bivalve divergence resulted in the emergence of two IκB homologues in C. gigas. Distinct maximal expression patterns of CgIκB1 in hemocytes and CgIκB2 in the gonad were observed. CgIκB1 and CgIκB2 expression in response to bacterial challenge is similar and inducible. Moreover, both CgIκB1 and CgIκB2 are able to inhibit NF-κb/Rel activating transcription in S2 or HEK293 cells. Our findings demonstrate that both CgIκB1 and CgIκB2 are involved in immune defense in C. gigas through regulation of NF-κB/Rel activity.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Marine Bio-resources Sustainable Utilization, Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | | | | |
Collapse
|
14
|
Abstract
Inhibitor of κB (IκB) kinase (IKK) phosphorylates IκB proteins leading to their degradation and liberation of nuclear factor κB (NF-κB) for gene transcription. Here we report the crystal structure of IKKβ in complex with an inhibitor at 3.6 Å resolution. The structure reveals a tri-modular architecture with the kinase domain (KD), a ubiquitin-like domain (ULD) and an elongated, α-helical scaffold/dimerization domain (SDD). Surprisingly, the predicted leucine zipper and helix-loop-helix motifs do not form these structures but are part of SDD. The ULD and SDD mediate a critical interaction with IκBα that restricts substrate specificity, and the ULD is also required for catalytic activity. The SDD mediates IKKβ dimerization, but dimerization per se is not important for maintaining IKKβ activity, and instead is required for IKKβ activation. Other IKK family members IKKα, TBK1 and IKKi may share the similar tri-modular architecture and function.
Collapse
|
15
|
Kanarek N, London N, Schueler-Furman O, Ben-Neriah Y. Ubiquitination and degradation of the inhibitors of NF-kappaB. Cold Spring Harb Perspect Biol 2010; 2:a000166. [PMID: 20182612 DOI: 10.1101/cshperspect.a000166] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The key step in NF-kappaB activation is the release of the NF-kappaB dimers from their inhibitory proteins, achieved via proteolysis of the IkappaBs. This irreversible signaling step constitutes a commitment to transcriptional activation. The signal is eventually terminated through nuclear expulsion of NF-kappaB, the outcome of a negative feedback loop based on IkappaBalpha transcription, synthesis, and IkappaBalpha-dependent nuclear export of NF-kappaB (Karin and Ben-Neriah 2000). Here, we review the process of signal-induced IkappaB ubiquitination and degradation by comparing the degradation of several IkappaBs and discussing the characteristics of IkappaBs' ubiquitin machinery.
Collapse
Affiliation(s)
- Naama Kanarek
- Department of Immunology and Genetics and Biotechnology, Hebrew University-Hadassah Medical School, Institute of Medical Research Israel-Canada, Jerusalem, 91120, Israel
| | | | | | | |
Collapse
|
16
|
Regulation of IkappaBalpha function and NF-kappaB signaling: AEBP1 is a novel proinflammatory mediator in macrophages. Mediators Inflamm 2010; 2010:823821. [PMID: 20396415 PMCID: PMC2855089 DOI: 10.1155/2010/823821] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 01/12/2010] [Indexed: 02/08/2023] Open
Abstract
NF-κB comprises a family of transcription factors that are critically involved in various inflammatory processes. In this paper, the role of NF-κB in inflammation and atherosclerosis and the regulation of the NF-κB signaling pathway are summarized. The structure, function, and regulation of the NF-κB inhibitors, IκBα and IκBβ, are reviewed. The regulation of NF-κB activity by glucocorticoid receptor (GR) signaling and IκBα sumoylation is also discussed. This paper focuses on the recently reported regulatory function that adipocyte enhancer-binding protein 1 (AEBP1) exerts on NF-κB transcriptional activity in macrophages, in which AEBP1 manifests itself as a potent modulator of NF-κB via physical interaction with IκBα and a critical mediator of inflammation. Finally, we summarize the regulatory roles that recently identified IκBα-interacting proteins play in NF-κB signaling. Based on its proinflammatory roles in macrophages, AEBP1 is anticipated to serve as a therapeutic target towards the treatment of various inflammatory conditions and disorders.
Collapse
|
17
|
Mu C, Yu Y, Zhao J, Wang L, Song X, Zhang H, Qiu L, Song L. An inhibitor kappaB homologue from bay scallop Argopecten irradians. FISH & SHELLFISH IMMUNOLOGY 2010; 28:687-694. [PMID: 20074646 DOI: 10.1016/j.fsi.2010.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 01/04/2010] [Accepted: 01/05/2010] [Indexed: 05/28/2023]
Abstract
IkappaB is an important member of NF-kappaB pathway in the innate immune system. In the present study, the full-length cDNA sequence encoding IkappaB protein (designated AiIkappaB) was isolated from bay scallop Argopecten irradians. The complete sequence of AiIkappaB cDNA containing a 5' untranslated region (UTR) of 237 bp, a 3' UTR of 1023 bp with a poly (A) tail, and an open reading frame (ORF) of 1086 bp encoding a polypeptide of 361 amino acids with the predicted molecular weight of 39.9 kDa and theoretical isoelectric point of 4.7. Six ankyrin repeats which were necessary for specific binding to NF-kappaB and two potential phosphorylation sites responsible for IkappaB degradation were identified in the N-terminus of AiIkappaB. No PEST domain but a phosphorylation site motif (S(357)DSD(360)) was present at the C-terminus of AiIkappaB. Predicted three-dimensional structure of AiIkappaB shared high similarity with mammalian IkappaBalpha. Similarity and phylogenetic analysis revealed that AiIkappaB was clustered into IkappaBs from invertebrate. All these typical characteristics indicated that the AiIkappaB should be classified into IkappaB family proteins. Quantitative real-time RT-PCR was employed to assess the mRNA expression of AiIkappaB in various tissues and its temporal expression in haemocytes of scallops challenged with Listonella anguillarum. The mRNA transcript of AiIkappaB could be detected in all the examined tissues with highest expression level in hepatopancreas. Bacteria infection inhibited the transcription level of AiIkappaB. The results suggested the involvement of AiIkappaB in responses against bacterial infection and further highlighted its functional importance in the immune system of A. irradians.
Collapse
Affiliation(s)
- Changkao Mu
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
NF-κB transcription factors are critical regulators of many biological processes such as innate and adaptive immune responses, inflammation, cell proliferation and programmed cell death. This versatility necessitates a highly complex and tightly coordinated control of the signaling pathways leading to their activation. Here, we review the role of proteolysis in the regulation of NF-κB activity, more specifically the contribution of the well-known ubiquitin-proteasome system and the involvement of proteolytic activity of caspases and calpains.
Collapse
|
19
|
Lászlí CF, Wu S. Old target new approach: an alternate NF-kappaB activation pathway via translation inhibition. Mol Cell Biochem 2009; 328:9-16. [PMID: 19224334 PMCID: PMC2740372 DOI: 10.1007/s11010-009-0067-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 02/05/2009] [Indexed: 11/24/2022]
Abstract
Activation of the transcription factor NF-kappaB is a highly regulated multi-level process. The critical step during activation is the release from its inhibitor IkappaB, which as any other protein is under the direct influence of translation regulation. In this review, we summarize in detail the current understanding of the impact of translational regulation on NF-kappaB activation. We illustrate a newly developed mechanism of eIF2alpha kinase-mediated IkappaB depletion and subsequent NF-kappaB activation. We also show that the classical NF-kappaB activation pathways occur simultaneously with, and are complemented by, translational down regulation of the inhibitor molecule IkappaB, the importance of one or the other being shifted in accordance with the type and magnitude of the stressing agent or stimuli.
Collapse
Affiliation(s)
- Csaba F. Lászlí
- Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Shiyong Wu
- Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
20
|
Abstract
BACKGROUND NF-kappaB includes a family of signal-activated transcription factors that normally regulate responses to injury and infection but which are aberrantly activated in many carcinomas. OBJECTIVE To review the activation and role of NF-kappaB in pathogenesis and as a target for treatment and prevention in carcinoma. METHODS Evidence from experimental, epidemiological, preclinical studies and clinical trials cited in the literature are reviewed. RESULTS/CONCLUSION Cumulative evidence implicates NF-kappaB in cell survival, inflammation, angiogenesis, spread and therapeutic resistance during tumor development, progression and metastasis of carcinomas. Non-specific natural and synthetic agents that inhibit NF-kappaB have demonstrated activity and safety in prevention or therapy. NF-kappaB-activating kinases and the proteasome are under investigation for targeted prevention and therapy of carcinoma.
Collapse
Affiliation(s)
- Matthew Brown
- National Institute on Deafness and Other Communication Disorders, Head and Neck Surgery Branch, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
21
|
Shaul JD, Farina A, Huxford T. The human IKKβ subunit kinase domain displays CK2-like phosphorylation specificity. Biochem Biophys Res Commun 2008; 374:592-7. [DOI: 10.1016/j.bbrc.2008.07.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 07/17/2008] [Indexed: 10/21/2022]
|
22
|
Kil IS, Kim SY, Park JW. Glutathionylation regulates IkappaB. Biochem Biophys Res Commun 2008; 373:169-73. [PMID: 18555796 DOI: 10.1016/j.bbrc.2008.06.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Accepted: 06/05/2008] [Indexed: 10/21/2022]
Abstract
Although there has been considerable interest in the regulation of NFkappaB activation by glutathionylation, the possibility of IkappaB as a target for glutathionylation has not been investigated. We now report that Cys(189) of IkappaB alpha is a target for S-glutathionylation. This modification is reversed by thiols such as dithiothreitol and GSH. The glutathionylated IkappaB alpha appears to be significantly less susceptible than is native protein to phosphorylation by IkappaB kinase and casein kinase II, as well as to in vitro ubiquitination. This finding suggests that glutathionylation plays a regulatory role, presumably through structural alterations. HeLa cells treated with oxidant inducing GSH oxidation such as diamide showed the accumulation of glutathionylated IkappaB alpha. This mechanism suggests an alternative modification to the redox regulation of cysteine in IkappaB alpha and a possible mechanism in the regulation of NFkappaB activation.
Collapse
Affiliation(s)
- In Sup Kil
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Republic of Korea
| | | | | |
Collapse
|
23
|
Duncan JS, Gyenis L, Lenehan J, Bretner M, Graves LM, Haystead TA, Litchfield DW. An Unbiased Evaluation of CK2 Inhibitors by Chemoproteomics. Mol Cell Proteomics 2008; 7:1077-88. [DOI: 10.1074/mcp.m700559-mcp200] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
24
|
Belguise K, Guo S, Yang S, Rogers AE, Seldin DC, Sherr DH, Sonenshein GE. Green tea polyphenols reverse cooperation between c-Rel and CK2 that induces the aryl hydrocarbon receptor, slug, and an invasive phenotype. Cancer Res 2008; 67:11742-50. [PMID: 18089804 DOI: 10.1158/0008-5472.can-07-2730] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exposure to and bioaccumulation of lipophilic environmental pollutants, such as polycyclic aromatic hydrocarbons (PAHs), has been implicated in breast cancer. Treatment of female rats with the prototypic xenobiotic PAH 7,12-dimethylbenz(a)anthracene (DMBA) induces mammary tumors with an invasive phenotype. Here, we show that green tea prevents or reverses loss of the epithelial marker E-cadherin on the surface of DMBA-induced in situ cancers. To investigate the mechanism(s) leading to a less invasive phenotype, the effects of the green tea polyphenol epigallocatechin-3 gallate (EGCG) on mammary tumor cells were assessed. EGCG reversed epithelial to mesenchymal transition (EMT) in DMBA-treated NF-kappaB c-Rel-driven mammary tumor cells and reduced levels of c-Rel and the protein kinase CK2. Ectopic coexpression of c-Rel and CK2alpha in untransformed mammary epithelial cells was sufficient to induce a mesenchymal gene profile. Mammary tumors and cell lines derived from MMTV-c-Rel x CK2alpha bitransgenic mice displayed a highly invasive phenotype. Coexpression of c-Rel and CK2, or DMBA exposure induced the aryl hydrocarbon receptor (AhR) and putative target gene product Slug, an EMT master regulator, which could be reversed by EGCG treatment. Thus, activation of c-Rel and CK2 and downstream targets AhR and Slug by DMBA induces EMT; EGCG can inhibit this signaling.
Collapse
Affiliation(s)
- Karine Belguise
- Departments of Biochemistry, Boston University School of Public Health, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Too much of a good thing: The role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:33-47. [DOI: 10.1016/j.bbapap.2007.08.017] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 08/21/2007] [Accepted: 08/23/2007] [Indexed: 11/24/2022]
|
26
|
Mandrekar P, Jeliazkova V, Catalano D, Szabo G. Acute alcohol exposure exerts anti-inflammatory effects by inhibiting IkappaB kinase activity and p65 phosphorylation in human monocytes. THE JOURNAL OF IMMUNOLOGY 2007; 178:7686-93. [PMID: 17548605 DOI: 10.4049/jimmunol.178.12.7686] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acute alcohol use is associated with impaired immune responses and decreased proinflammatory cytokine production. Our earlier studies have shown that acute alcohol intake inhibits NF-kappaB DNA binding in an IkappaBalpha-independent manner. We report using human peripheral blood monocytes and Chinese hamster ovary cells transfected with CD14 cells that acute alcohol treatment in vitro exerts NF-kappaB inhibition by disrupting phosphorylation of p65. Immunoprecipitation of p65 and IkappaBalpha revealed that acute alcohol exposure for 1 h decreased NF-kappaB-IkappaBalpha complexes in the cytoplasm. Phosphorylation of p65 at Ser(536) is mediated by IkappaB kinase (IKK)beta and is required for NF-kappaB-dependent cellular responses. We show that acute alcohol treatment decreased LPS-induced IKKalpha and IKKbeta activity resulting in decreased phosphorylation of p65 at Ser(536). Furthermore, nuclear expression of IKKalpha increased after alcohol treatment, which may contribute to inhibition of NF-kappaB. Decreased phosphorylation of nuclear p65 at Ser(276) was likely not due to alcohol-induced inhibition of protein kinase A and mitogen- and stress-activated protein kinase-1 activity. Although decreased IkappaBalpha phosphorylation after acute alcohol treatment was attributable to reduced IKKbeta activity, degradation of IkappaBalpha during alcohol exposure was IKKbeta-independent. Alcohol-induced degradation of IkappaBalpha in the presence of a 26S proteasome inhibitor suggested proteasome-independent IkappaBalpha degradation. Collectively, our studies suggest that acute alcohol exposure modulates IkappaBalpha-independent NF-kappaB activity primarily by affecting phosphorylation of p65. These findings further implicate an important role for IKKbeta in the acute effects of alcohol in immune cells.
Collapse
Affiliation(s)
- Pranoti Mandrekar
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
27
|
Parhar K, Morse J, Salh B. The role of protein kinase CK2 in intestinal epithelial cell inflammatory signaling. Int J Colorectal Dis 2007; 22:601-9. [PMID: 17009010 DOI: 10.1007/s00384-006-0193-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2006] [Indexed: 02/04/2023]
Abstract
BACKGROUND The transcription factor NF-kappaB is believed to play a key pathophysiological role in chronic intestinal inflammation. Further characterization of its mechanism of regulation, predominantly through cell signaling pathways, may provide clues as to the means of its intervention. One such potential signaling candidate is the protein kinase CK2. Despite its known ability to influence NF-kappaB activation, it has received no attention in this particular setting. AIM To characterize the aspects of its activation in response to IL-1beta in the colonic cell lines Caco2 and HCT116. MATERIALS AND METHODS A biochemical analysis of kinase activation was performed using phospho-specific antibodies as well as immune complex kinase assays; transcription factor activity was measured by transient transfection and luciferase-based NF-kappaB reporter assays; pro-inflammatory molecule expression was determined using RT-PCR. RESULTS In this report, we show an enhanced activation of CK2 bound to IKKgamma or the p65 subunit of the NF-kappaB in response to IL-1beta stimulation of intestinal epithelial cells. Using two established NF-kappaB reporters, we demonstrate that CK2 is involved in NF-kappaB regulation through the p65 serine 529 site. Using co-immunoprecipitation studies, we also show that p65 is bound to CK2 predominantly in the nucleus. From a functional perspective, two CK2 specific inhibitors were then shown to attenuate IL-8 reporter activation. Finally, the expression of a series of pro-inflammatory molecules including IL-8, GRO-alpha, MCP-1, TNFalpha and iNOS were variably affected in response to CK2 inhibition. CONCLUSION CK2 plays an active role in NF-kappaB signaling in intestinal epithelial cell lines and may represent a possible target for intervention.
Collapse
Affiliation(s)
- Kuljit Parhar
- The Jack Bell Research Center, 2660 Oak Street, V6H 3Z6, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
28
|
Nogalski MT, Podduturi JP, DeMeritt IB, Milford LE, Yurochko AD. The human cytomegalovirus virion possesses an activated casein kinase II that allows for the rapid phosphorylation of the inhibitor of NF-kappaB, IkappaBalpha. J Virol 2007; 81:5305-14. [PMID: 17344282 PMCID: PMC1900216 DOI: 10.1128/jvi.02382-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We documented that the NF-kappaB signaling pathway was rapidly induced following human cytomegalovirus (HCMV) infection of human fibroblasts and that this induced NF-kappaB activity promoted efficient transactivation of the major immediate-early promoter (MIEP). Previously, we showed that the major HCMV envelope glycoproteins, gB and gH, initiated this NF-kappaB signaling event. However, we also hypothesized that there were additional mechanisms utilized by the virus to rapidly upregulate NF-kappaB. In this light, we specifically hypothesized that the HCMV virion contained IkappaBalpha kinase activity, allowing for direct phosphorylation of IkappaBalpha following virion entry into infected cells. In vitro kinase assays performed on purified HCMV virion extract identified bona fide IkappaBalpha kinase activity in the virion. The enzyme responsible for this kinase activity was identified as casein kinase II (CKII), a cellular serine-threonine protein kinase. CKII activity was necessary for efficient transactivation of the MIEP and IE gene expression. CKII is generally considered to be a constitutively active kinase. We suggest that this molecular characteristic of CKII represents the biologic rationale for the viral capture and utilization of this kinase early after infection. The packaging of CKII into the HCMV virion identifies that diverse molecular mechanisms are utilized by HCMV for rapid NF-kappaB activation. We propose that HCMV possesses multiple pathways to increase NF-kappaB activity to ensure that the correct temporal regulation of NF-kappaB occurs following infection and that sufficient threshold levels of NF-kappaB are reached in the diverse array of cells, including monocytes and endothelial cells, infected in vivo.
Collapse
Affiliation(s)
- Maciej T Nogalski
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Nuclear factor kappaB (NF-kappaB), a transcription factor, plays an important role in carcinogenesis as well as in the regulation of immune and inflammatory responses. NF-kappaB induces the expression of diverse target genes that promote cell proliferation, regulate apoptosis, facilitate angiogenesis and stimulate invasion and metastasis. Furthermore, many cancer cells show aberrant or constitutive NF-kappaB activation which mediates resistance to chemo- and radio-therapy. Therefore, the inhibition of NF-kappaB activation and its signaling pathway offers a potential cancer therapy strategy. In addition, recent studies have shown that NF-kappaB can also play a tumor suppressor role in certain settings. In this review, we focus on the role of NF-kappaB in carcinogenesis and the therapeutic potential of targeting NF-kappaB in cancer therapy.
Collapse
Affiliation(s)
- Chae Hyeong Lee
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|
30
|
Kim YS, Cho KO, Lee HJ, Kim SY, Sato Y, Cho YJ. Down syndrome candidate region 1 increases the stability of the IkappaBalpha protein: implications for its anti-inflammatory effects. J Biol Chem 2006; 281:39051-61. [PMID: 17062574 DOI: 10.1074/jbc.m604659200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Down syndrome candidate region 1 (DSCR1), an endogenous inhibitor of calcineurin, inhibits the expression of genes involved in the inflammatory response. To elucidate the molecular basis of these anti-inflammatory effects, we analyzed the role of DSCR1 in the regulation of NF-kappaB transactivation using glioblastoma cells stably transfected with DSCR1.4 or its truncation mutants (DSCR1.4-(1-133) and DSCR1.4-(134-197)). Overexpression of DSCR1.4 significantly attenuated the induction of cyclooxygenase-2 (COX-2) expression by phorbol 12-myristate 13-acetate (PMA) via a calcineurin-independent mechanism. Experiments using inhibitors of the signaling molecules for NF-kappaB activation showed that NF-kappaB is responsible for the induction of COX-2. Full-length and truncated DSCR1.4 decreased the steady-state activity of NF-kappaB as well as PMA-induced activation of NF-kappaB, which correlated with attenuation of COX-2 induction. DSCR1.4 did not affect the PMA-stimulated phosphorylation or degradation kinetics of IkappaBalpha; however, DSCR1.4 significantly decreased the basal turnover rate of IkappaBalpha and consequently up-regulated its steady-state level. In the same context, knockdown of endogenous DSCR1.4 increased the turnover rate of IkappaBalpha as well as COX-2 induction. These results suggest that DSCR1 attenuates NF-kappaB-mediated transcriptional activation by stabilizing its inhibitory protein, IkappaBalpha.
Collapse
Affiliation(s)
- Young Sun Kim
- Department of Pharmacology, Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | | | | | |
Collapse
|
31
|
Piazza FA, Ruzzene M, Gurrieri C, Montini B, Bonanni L, Chioetto G, Di Maira G, Barbon F, Cabrelle A, Zambello R, Adami F, Trentin L, Pinna LA, Semenzato G. Multiple myeloma cell survival relies on high activity of protein kinase CK2. Blood 2006; 108:1698-1707. [PMID: 16684960 DOI: 10.1182/blood-2005-11-013672] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Casein kinase 2 (CK2) is a ubiquitous cellular serine-threonine kinase that regulates relevant biologic processes, many of which are dysregulated in malignant plasma cells. Here we investigated its role in multiple myeloma (MM). Analysis of MM cell lines and highly purified malignant plasma cells in patients with MM revealed higher protein and CK2 activity levels than in controls (normal in vitro-generated polyclonal plasma cells and B lymphocytes). The inhibition of CK2 with specific synthetic compounds or by means of RNA interference caused a cytotoxic effect on MM plasma cells that could not be overcome by IL-6 or IGF-I and that was associated with the activation of extrinsic and intrinsic caspase cascades. CK2 blockage lowered the sensitivity threshold of MM plasma cells to the cytotoxic effect of melphalan. CK2 inhibition also resulted in impaired IL-6-dependent STAT3 activation and in decreased basal and TNF-alpha-dependent I kappaB alpha degradation and NF-kappaB-driven transcription. Our data show that CK2 was involved in the pathophysiology of MM, suggesting that it might play a crucial role in controlling survival and sensitivity to chemotherapeutics of malignant plasma cells.
Collapse
Affiliation(s)
- Francesco A Piazza
- Department of Clinical and Experimental Medicine, Hematology-Immunology Division, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Eddy SF, Guo S, Demicco EG, Romieu-Mourez R, Landesman-Bollag E, Seldin DC, Sonenshein GE. Inducible IkappaB kinase/IkappaB kinase epsilon expression is induced by CK2 and promotes aberrant nuclear factor-kappaB activation in breast cancer cells. Cancer Res 2006; 65:11375-83. [PMID: 16357145 DOI: 10.1158/0008-5472.can-05-1602] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aberrant activation of nuclear factor-kappaB (NF-kappaB) transcription factors has been implicated in the pathogenesis of breast cancer. We previously showed elevated activity of IkappaB kinase alpha (IKKalpha), IKKbeta, and protein kinase CK2 in primary human breast cancer specimens and cultured cells. A novel inducible IKK protein termed IKK-i/IKKepsilon has been characterized as a potential NF-kappaB activator. Here, we provide evidence that implicates IKK-i/IKKepsilon in the pathogenesis of breast cancer. We show IKK-i/IKKepsilon expression in primary human breast cancer specimens and carcinogen-induced mouse mammary tumors. Multiple breast cancer cell lines showed higher levels of IKK-i/IKKepsilon and kinase activity compared with untransformed MCF-10F breast epithelial cells. Interestingly, IKK-i/IKKepsilon expression correlated with CK2alpha expression in mammary glands and breast tumors derived from MMTV-CK2alpha transgenic mice. Ectopic CK2 expression in untransformed cells led to increased IKK-i/IKKepsilon mRNA and protein levels. Inhibition of CK2alpha via the pharmacologic inhibitor apigenin or upon transfection of a CK2 kinase-inactive subunit reduced IKK-i/IKKepsilon levels. Expression of a kinase-inactive IKK-i/IKKepsilon mutant in breast cancer cells reduced NF-kappaB activity as judged by transfection assays of reporters driven either by NF-kappaB elements or the promoters of two NF-kappaB target genes, cyclin D1 and relB. Importantly, the kinase-inactive IKK-i/IKKepsilon mutant reduced the endogenous levels of these genes as well as the ability of breast cancer cells to grow in soft agar or form invasive colonies in Matrigel. Thus, CK2 induces functional IKK-i/IKKepsilon, which is an important mediator of the activation of NF-kappaB that plays a critical role in the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Sean F Eddy
- Department of Biochemistry, Boston University School of Medicine, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Le Page C, Koumakpayi IH, Lessard L, Saad F, Mes-Masson AM. Independent role of phosphoinositol-3-kinase (PI3K) and casein kinase II (CK-2) in EGFR and Her-2-mediated constitutive NF-kappaB activation in prostate cancer cells. Prostate 2005; 65:306-15. [PMID: 16015604 DOI: 10.1002/pros.20291] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Recent research has highlighted the potential role of EGFR and Her-2 in the constitutive activation of NF-kappaB (NF-kappaB) in prostate cancer cells, although the mechanism by which these receptors activate NF-kappaB in these cells remains unclear. METHODS AND RESULTS Using pharmacological and genetic approaches we show that in PC-3 cells, EGFR and Her-2 are involved in the constitutive activation of NF-kappaB through two different mechanisms. EGFR activates NF-kappaB through the PI3K/Akt pathway that leads to the phosphorylation of IkappaBalpha on serines 32 and 36, thereby promoting the nuclear translocation of the p65 subunit. In contrast, Her-2 activates NF-kappaB through Casein Kinase II (CK-2) activation independently of IkappaBalpha phosphorylation on serines 32 and 36. CONCLUSIONS Our study not only directly clarifies the signaling pathways involved in NF-kappaB activation in prostate cancer cell lines and but also provides a framework for further studies in the clinical characterization and management of prostate cancer.
Collapse
Affiliation(s)
- Cécile Le Page
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), 1560 rue Sherbrooke est, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
34
|
Dessauge F, Lizundia R, Langsley G. Constitutively activated CK2 potentially plays a pivotal role in Theileria-induced lymphocyte transformation. Parasitology 2005; 130 Suppl:S37-44. [PMID: 16281991 DOI: 10.1017/s0031182005008140] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Activation of casein kinase II (CK2) was one of the first observations made on how Theileria parasites manipulate host cell signal transduction pathways and we argue that CK2 induction may in fact contribute to many of the different activation events that have been described since 1993 for Theileria-infected lymphocytes such as sustained activation of transcription factors c-Myc and NF-κB. CK2 also contributes to infected lymphocyte survival by inhibiting caspase activation and is probably behind constitutive PI3-K activation by phosphorylating PTEN. Finally, we also discuss how CK2A may act not only as a kinase, but also as a stimulatory subunit for the protein phosphatase PP2A, so dampening down the MEK/ERK and Akt/PKB pathways and for all these reasons we propose CK2 as a central player in Theileria-induced lymphocyte transformation.
Collapse
Affiliation(s)
- F Dessauge
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, UMR 8104 CNRS/U567 INSERM, Département Maladies Infectieuses, Hôpital Cochin-Bâtiment Gustave Roussy, Institut Cochin, Paris, France
| | | | | |
Collapse
|
35
|
Gross S, Piwnica-Worms D. Real-time imaging of ligand-induced IKK activation in intact cells and in living mice. Nat Methods 2005; 2:607-14. [PMID: 16094386 DOI: 10.1038/nmeth779] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 06/24/2005] [Indexed: 01/01/2023]
Abstract
The transcription factor NF-kappaB is a key regulator of cellular activation, proliferation and apoptosis. Defects in the NF-kappaB pathway contribute to a broad array of malignant, neurodegenerative and chronic inflammatory diseases. IKK-dependent IkappaB alpha degradation by the 26S proteasome is a critical NF-kappaB regulatory control point, which is emerging as an important target for drug development. To directly monitor regulation of IKK activation in intact organisms, we engineered an IkappaB alpha-firefly luciferase (IkappaB alpha-FLuc) fusion reporter. In cultured cells and living animals, the reporter provided a continuous, noninvasive readout of the kinetics of ligand-induced IKK activation and the pharmacodynamics of selective inhibitors of both IKK and the 26S proteasome. This IkappaB alpha-FLuc reporter now permits continuous readout of IKK activation in vivo, facilitates development and validation of target-specific therapeutics, and complements conventional NF-kappaB transcriptional reporters for more complete temporal and regional investigations of the NF-kappaB signaling pathway in health and disease.
Collapse
Affiliation(s)
- Shimon Gross
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., Box 8225, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
36
|
Lee SM, Kleiboeker SB. Porcine arterivirus activates the NF-kappaB pathway through IkappaB degradation. Virology 2005; 342:47-59. [PMID: 16129468 PMCID: PMC7111765 DOI: 10.1016/j.virol.2005.07.034] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 05/25/2005] [Accepted: 07/29/2005] [Indexed: 01/07/2023]
Abstract
Nuclear factor-kappaB (NF-κB) is a critical regulator of innate and adaptive immune function as well as cell proliferation and survival. The present study demonstrated for the first time that a virus belonging to the Arteriviridae family activates NF-κB in MARC-145 cells and alveolar macrophages. In porcine reproductive and respiratory syndrome virus (PRRSV)-infected cells, NF-κB activation was characterized by translocation of NF-κB from the cytoplasm to the nucleus, increased DNA binding activity, and NF-κB-regulated gene expression. NF-κB activation was increased as PRRSV infection progressed and in a viral dose-dependent manner. UV-inactivation of PRRSV significantly reduced the level of NF-κB activation. Degradation of IκB protein was detected late in PRRSV infection, and overexpression of the dominant negative form of IκBα (IκBαDN) significantly suppressed NF-κB activation induced by PRRSV. However, IκBαDN did not affect viral replication and viral cytopathic effect. PRRSV infection induced oxidative stress in cells by generating reactive oxygen species (ROS), and antioxidants inhibited NF-κB DNA binding activity in PRRSV-infected cells, suggesting ROS as a mechanism by which NF-κB was activated by PRRSV infection. Moreover, NF-κB-dependent expression of matrix metalloproteinase (MMP)-2 and MMP-9 was observed in PRRSV-infected cells, an observation which implies that NF-κB activation is a biologically significant aspect of PRRSV pathogenesis. The results presented here provide a basis for understanding molecular pathways of pathology and immune evasion associated with disease caused by PRRSV.
Collapse
Affiliation(s)
- Sang-Myeong Lee
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, MO 65211, USA
| | - Steven B. Kleiboeker
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, MO 65211, USA
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri-Columbia, MO 65211, USA
- Corresponding author. Department of Veterinary Pathobiology, University of Missouri, 1600 E. Rollins, Columbia, MO 65211, USA. Fax: +1 573 882 1411.
| |
Collapse
|
37
|
Arsura M, Cavin LG. Nuclear factor-kappaB and liver carcinogenesis. Cancer Lett 2005; 229:157-69. [PMID: 16125305 DOI: 10.1016/j.canlet.2005.07.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 07/10/2005] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third deadliest and fifth most common human cancer worldwide. Hepatitis C virus (HCV) and hepatitis B virus (HBV) infections along with alcohol and aflatoxin B1 intake are widely recognized etiological agents in HCCs. It is anticipated that HCCs will constitute a major health problem in the next two decades because of the rising incidence of HCV infections in the US. The poor survival rate achieved by current surgical procedures and chemotherapy treatment has prompted the scientific community to gain a better understanding of the molecular events involved in hepatocarcinogenesis in order to define new targets for more effective treatment. Recent findings from several laboratories have implicated constitutive activation of the transcription factor NF-kappaB as one of the early key events involved in neoplastic progression of the liver. Data is summarized here from recently published studies illustrating a crucial role of NF-kappaB in bridging the action of growth factors and inflammation to hepatic oncogenesis. Although additional work is needed to fully understand the precise role of NF-kappaB in the regulation of the various transitions of HCC development, these new findings raise the intriguing possibility that pharmacologic inhibition of NF-kappaB in the liver could selectively eradicate malignant liver cells without affecting normal liver homeostasis.
Collapse
Affiliation(s)
- Marcello Arsura
- Department of Pharmacology, College of Medicine, University of Tennessee Cancer Institute, University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN 38163, USA.
| | | |
Collapse
|
38
|
Gross S, Piwnica-Worms D. Monitoring proteasome activity in cellulo and in living animals by bioluminescent imaging: technical considerations for design and use of genetically encoded reporters. Methods Enzymol 2005; 399:512-30. [PMID: 16338379 DOI: 10.1016/s0076-6879(05)99035-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ubiquitin-proteasome pathway is the central mediator of regulated proteolysis, instrumental for switching on and off a variety of signaling cascades. Deregulation of proteasomal activity or improper substrate recognition and processing by the ubiquitin-proteasome machinery may lead to cancer, stroke, chronic inflammation, and neurodegenerative diseases. Quantifying total and substrate-specific proteasome activity in intact cells and living animals would enable analysis in vivo of proteasomal regulation and facilitate the screening and validation of potential modulators of the proteasome or its substrates. We discuss examples of tetra-ubiquitin or IkappaBalpha fused to firefly luciferase as genetically encoded reporters for monitoring total and IkappaBalpha-specific proteasomal activity by bioluminescence imaging. Such technology enables repetitive, temporally resolved, and regionally targeted assessment of proteasomal activity in vivo.
Collapse
Affiliation(s)
- Shimon Gross
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
39
|
Quélo I, Gauthier C, St-Arnaud R. Casein kinase II phosphorylation regulates alphaNAC subcellular localization and transcriptional coactivating activity. Gene Expr 2005; 12:151-63. [PMID: 16128000 PMCID: PMC6009118 DOI: 10.3727/000000005783992070] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The subcellular localization of the alphaNAC coactivator is regulated, but the signaling pathways controlling its nucleocytoplasmic shuttling and coactivation function are not completely characterized. We report here that casein kinase II (CK2) phosphorylated alphaNAC on several phosphoacceptor sites, especially in an amino-terminal cluster. Deletion or mutation of the clustered CK2 sites induced nuclear accumulation of alphaNAC in cells. alphaNAC also localized to the nucleus when endogenous CK2 activity was inhibited by quercetin or 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB). These observations suggested that phosphorylation by CK2 might play a signaling role in the nuclear export of alphaNAC. Interestingly, inhibition of the chromosome region maintenance 1 (CRM1) exportin by leptomycin B (LMB) led to accumulation of alphaNAC in the nucleus. We conclude that CK2 phosphorylation of the N-terminal cluster corresponds to the signal for alphaNAC's nuclear export via a CRM1-dependent pathway. Finally, the nuclear accumulation of the protein resulting from the lack of CK2 phosphorylation mediated a slight but significant increase of the alphaNAC coactivating function on AP-1 transcriptional activity. Thus, alphaNAC's exit from the nucleus and capacity to potentiate transcription appear dependent on its phosphorylation status.
Collapse
Affiliation(s)
- Isabelle Quélo
- *Genetics Unit, Shriners Hospital for Children, Montreal (Quebec) Canada H3G 1A6
| | - Claude Gauthier
- *Genetics Unit, Shriners Hospital for Children, Montreal (Quebec) Canada H3G 1A6
| | - René St-Arnaud
- *Genetics Unit, Shriners Hospital for Children, Montreal (Quebec) Canada H3G 1A6
- †Departments of Medicine, Surgery and Human Genetics, McGill University, Montreal (Quebec), Canada H3A 2T5
| |
Collapse
|
40
|
Wu Y, Adam S, Hamann L, Heine H, Ulmer AJ, Buwitt-Beckmann U, Stamme C. Accumulation of Inhibitory κB-α as a Mechanism Contributing to the Anti-Inflammatory Effects of Surfactant Protein–A. Am J Respir Cell Mol Biol 2004; 31:587-94. [PMID: 15308505 DOI: 10.1165/rcmb.2004-0003oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The collectin surfactant protein (SP)-A has been implicated in multiple immunoregulatory functions of innate pulmonary host defense via modulating immune responses both in vitro and in vivo. The aim of the present study was to investigate mechanisms responsible for the anti-inflammatory effects of human (hu) SP-A on the inhibitory kappaB (IkappaB)/nuclear factor (NF)-kappaB signaling pathway in alveolar macrophages (AMs). Initial CD25 expression analysis by flow cytometry of CD14/hu Toll-like receptor 4-transfected Chinese hamster ovary reporter cells demonstrated that SP-A alone does not induce any NF-kappaB-dependent CD25 expression in these cells. In AMs, SP-A pretreatment caused a marked inhibition of lipopolysaccharide (LPS)-induced NF-kappaB activation independent of the LPS chemotype used as determined by electrophoretic mobility shift assay. Western blot analysis revealed that SP-A by itself increased the protein expression of IkappaB-alpha, the predominant regulator for rapidly induced NF-kappaB, in a dose- and time-dependent manner without enhancing IkappaB-alpha messenger RNA as determined by reverse transcription-polymerase chain reaction. SP-A did not interfere with LPS-induced serine(32) phosphorylation of IkappaB-alpha but significantly enhanced IkappaB-alpha abundance under LPS-coupled conditions. The data suggest that anti-inflammatory effects of SP-A on LPS-challenged AMs are associated with a SP-A-mediated direct modulation of the IkappaB-alpha turnover in these cells.
Collapse
Affiliation(s)
- Yingda Wu
- Department of Immunochemistry and Biochemical Microbiology, Research Center Borstel, Parkallee 22, 23845 Borstel, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The transcription factor NF-kappaB has been the focus of intense investigation for nearly two decades. Over this period, considerable progress has been made in determining the function and regulation of NF-kappaB, although there are nuances in this important signaling pathway that still remain to be understood. The challenge now is to reconcile the regulatory complexity in this pathway with the complexity of responses in which NF-kappaB family members play important roles. In this review, we provide an overview of established NF-kappaB signaling pathways with focus on the current state of research into the mechanisms that regulate IKK activation and NF-kappaB transcriptional activity.
Collapse
Affiliation(s)
- Matthew S Hayden
- Section of Immunobiology and Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
42
|
McNulty SE, del Rosario R, Cen D, Meyskens FL, Yang S. Comparative expression of NFkappaB proteins in melanocytes of normal skin vs. benign intradermal naevus and human metastatic melanoma biopsies. ACTA ACUST UNITED AC 2004; 17:173-80. [PMID: 15016307 DOI: 10.1111/j.1600-0749.2004.00128.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nuclear factor kappa B (NFkappaB) is an essential regulator of gene transcription for hundreds of genes, including many critically involved in apoptosis. NFkappaB complexes containing cRel generally activate pro-apoptotic genes, while those with RelA activate anti-apoptotic genes. We have previously shown that NFkappaB binding by RelA is constitutively elevated in human metastatic melanoma cultures relative to normal melanocytes. Here we extended our investigation to immunohistochemical analysis of human tissue biopsies. We found that RelA expression is significantly elevated in melanocytes of human naevi and melanomas relative to normal skin, but expression of its inhibitor IkappaB-alpha is significantly lower in metastatic melanomas than in intradermal naevi. Antibodies specific for the nuclear localization signal of RelA also showed significantly increased staining in metastatic melanoma biopsies. Notably, in melanomas and in naevi, we also found that RelA is phosphorylated at serine 529, and this activated form accumulates in the nuclei of melanomas. This suggests that increased expression and phosphorylation of RelA occurs at the stage of the benign naevus, but IkappaB-alpha is able to sequester RelA in the cytoplasm and regulate RelA transcriptional transactivation. We also found that antibodies against cRel show a progressive increase in staining from naevi to melanoma. However, staining for IkappaB-epsilon, which primarily inhibits the nuclear localization of cRel was also progressively increased, and cRel expression was predominantly cytoplasmic in melanomas. These results confirm that the altered expression of RelA found in metastatic melanoma cells in tissue culture is relevant to human tumors and offer new insights into the deregulation of NFkappaB signaling.
Collapse
Affiliation(s)
- Susan E McNulty
- Department of Medicine, University of California, Irvine, Orange, CA 29868,
| | | | | | | | | |
Collapse
|
43
|
DeMeritt IB, Milford LE, Yurochko AD. Activation of the NF-kappaB pathway in human cytomegalovirus-infected cells is necessary for efficient transactivation of the major immediate-early promoter. J Virol 2004; 78:4498-507. [PMID: 15078930 PMCID: PMC387686 DOI: 10.1128/jvi.78.9.4498-4507.2004] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We previously demonstrated that human cytomegalovirus (HCMV) infection induced the activation of the cellular transcription factor NF-kappaB. Here, we investigate the mechanism for the HCMV-induced NF-kappaB activation and the role that the induced NF-kappaB plays in transactivation of the major immediate-early promoter (MIEP) and production of immediate-early (IE) proteins. Using a dominant-negative inhibitor of NF-kappaB, the IkappaB-superrepressor, we demonstrated that active NF-kappaB is critical for transactivation of the HCMV MIEP. Investigation of the mechanisms of NF-kappaB activation following HCMV infection showed a rapid and sustained decrease in the inhibitors of NF-kappaB, IkappaBalpha and IkappaBbeta. Because the IkappaB kinases (IKKs) regulate the degradation of the IkappaBs, virus-mediated changes in the IKKs were examined next. Using dominant-negative forms of the IKKs, we showed significant decreases in transactivation of the MIEP in the presence of these mutants. In addition, protein levels of members of the IKK complex and IKK kinase activity were upregulated throughout the time course of infection. Lastly, the role NF-kappaB plays in HCMV IE mRNA and protein production during infection was examined. Using aspirin and MG-132, we demonstrated that production of IE protein and mRNA was significantly decreased and delayed in infected cells treated with these drugs. Together, the results of these studies suggest that virus-mediated NF-kappaB activation, through the dysregulation of the IKK complex, plays a primary role in the initiation of the HCMV gene cascade in fibroblasts and may provide new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ian B DeMeritt
- Department of Microbiology and Immunology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | | | |
Collapse
|
44
|
Chantôme A, Pance A, Gauthier N, Vandroux D, Chenu J, Solary E, Jeannin JF, Reveneau S. Casein kinase II-mediated phosphorylation of NF-kappaB p65 subunit enhances inducible nitric-oxide synthase gene transcription in vivo. J Biol Chem 2004; 279:23953-60. [PMID: 15033982 DOI: 10.1074/jbc.m313731200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nitric oxide (NO) produced by inducible nitric-oxide synthase (NOSII) is mainly regulated at the transcriptional level by the nuclear factor-kappaB (NF-kappaB). In the present study, we further analyzed the role of NF-kappaB in the in vivo transcriptional regulation of NOSII gene by comparing two clones isolated from the EMT-6 mouse mammary cancer cell line. In response to interleukin (IL)-1beta or lipopolysaccharide (LPS), EMT-6 clone J (EMT-6J) cells produce 3-fold more NO than EMT-6 clone H (EMT-6H) cells, an effect correlated with enhanced activation of NF-kappaB in EMT-6J cells. In response to IL-1beta, the kinetics of degradation of NF-kappaB inhibitors IkappaB-alpha and IkappaB-beta, the nucleo-cytoplasmic shuttling of the transcription factor and its binding to a specific DNA sequence were similar in both clones. In contrast, an IL-1beta-induced phosphorylation of serine residues in NF-kappaB p65 subunit was observed in EMT-6J, but not in EMT-6H, cells. This IL-1beta-induced phosphorylation of p65 was specifically prevented by pretreatment of EMT-6J cells with the casein kinase II inhibitor DRB. Small interfering RNA-mediated depletion of casein kinase II-alpha subunit also decreased NF-kappaB transcriptional activity and NOSII gene transcription in IL-1beta and LPS-stimulated EMT-6J cells to the levels observed in EMT-6H cells treated in the same conditions. Altogether, these data indicate that casein kinase II-mediated phosphorylation of p65 subunit can enhance the transcriptional activity of NF-kappaB in vivo. This post-translational modification of the transcription factor can be responsible for increased NOSII gene transcription and NO production in tumor cells exposed to either IL-1beta or LPS.
Collapse
Affiliation(s)
- Aurélie Chantôme
- Cancer Immunotherapy Laboratory, Ecole Pratique des Hautes Etudes, INSERM U517, Faculty of Medicine, Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Phelps CB, Ghosh G. Discreet mutations from c-Rel to v-Rel alter kappaB DNA recognition, IkappaBalpha binding, and dimerization: implications for v-Rel oncogenicity. Oncogene 2004; 23:1229-38. [PMID: 14961076 DOI: 10.1038/sj.onc.1207242] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The avian Rev-T retrovirus encodes the oncoprotein v-Rel, a member of the Rel/nuclear factor (NF)-kappaB transcription factor family. The aggressive oncogenic potential of v-Rel has arisen from multiple mutations within the coding sequence of the avian cellular protein c-Rel. In this study, using quantitative biochemical experiments, we have tested the role of a limited set of alterations between v-Rel and c-Rel located within the Rel homology region (RHR) of the family that might confer functional differences. Our results show that only a set of six mutations within the RHR of v-Rel are responsible for its ability to bind to a broad spectrum of kappaB-DNA that are normally regulated by distinct NF-kappaB dimers. We also observe that both v-Rel homodimer and p50/v-Rel heterodimer bind IkappaBalpha weakly compared to other cellular Rel/NF-kappaB dimers with transcription activation potential. We suggest that the ability of v-Rel homodimer to deregulate subunit-specific gene expression and its ability to evade IkappaB inhibition are crucial to its strong oncogenic potential.
Collapse
Affiliation(s)
- Christopher B Phelps
- Department of Chemistry and Biochemistry, University of California, San Deigo, USA
| | | |
Collapse
|
46
|
Kato T, Delhase M, Hoffmann A, Karin M. CK2 Is a C-Terminal IkappaB Kinase Responsible for NF-kappaB Activation during the UV Response. Mol Cell 2003; 12:829-39. [PMID: 14580335 DOI: 10.1016/s1097-2765(03)00358-7] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
NF-kappaB is activated in response to proinflammatory stimuli, infections, and physical stress. While activation of NF-kappaB by many stimuli depends on the IkappaB kinase (IKK) complex, which phosphorylates IkappaBs at N-terminal sites, the mechanism of NF-kappaB activation by ultraviolet (UV) radiation remained enigmatic, as it is IKK independent. We now show that UV-induced NF-kappaB activation depends on phosphorylation of IkappaBalpha at a cluster of C-terminal sites that are recognized by CK2 (formerly casein kinase II). Furthermore, CK2 activity toward IkappaB is UV inducible through a mechanism that depends on activation of p38 MAP kinase. Inhibition of this pathway prevents UV-induced IkappaBalpha degradation and increases UV-induced cell death. Thus, the p38-CK2-NF-kappaB axis is an important component of the mammalian UV response.
Collapse
Affiliation(s)
- Tomohisa Kato
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
47
|
Cavin LG, Romieu-Mourez R, Panta GR, Sun J, Factor VM, Thorgeirsson SS, Sonenshein GE, Arsura M. Inhibition of CK2 activity by TGF-beta1 promotes IkappaB-alpha protein stabilization and apoptosis of immortalized hepatocytes. Hepatology 2003; 38:1540-51. [PMID: 14647065 DOI: 10.1016/j.hep.2003.09.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nuclear factor kappaB (NF-kappaB) is an antiapoptotic factor involved in development, regeneration, and neoplastic progression of the liver. Previously, we have shown that stabilization of inhibitor kappaB (IkappaB)-alpha protein following treatment of hepatocytes with transforming growth factor (TGF)-beta1 promoted NF-kappaB repression, which then permitted induction of AP-1/SMAD-mediated liver cell death. Because basal IkappaB-alpha protein turnover is regulated by protein kinase CK2, here we have elucidated the regulation of CK2 kinase activity and its role in control of NF-kappaB levels following treatment with TGF-beta1. We show that both messenger RNA (mRNA) and protein levels of the CK2alpha catalytic subunit are down-regulated following TGF-beta1 stimulation in murine hepatocyte cells. The ensuing inhibition of CK2 kinase activity promotes stabilization of IkappaB protein, which is followed by the shutoff of constitutive NF-kappaB activity and induction of apoptosis. Ectopic expression of CK2alpha inhibits TGF-beta1-induced apoptosis through sustained activation of NF-kappaB. Conversely, expression of a kinase-dead mutant of CK2alpha potentiates TGF-beta1 cell killing. Importantly, we show that hepatocellular carcinomas (HCCs) derived from TGF-beta1 transgenic mice and human HCC cell lines display enhanced CK2 IkappaB kinase activity that contributes in part to an elevated NF-kappaB activity in vivo. In conclusion, inhibition of CK2 expression levels by TGF-beta1 is crucial for the induction of apoptosis of hepatocytes. Circumvention of this process by up-regulation of CK2 activity in transformed cells may contribute to the promotion of TGF-beta1-induced liver carcinogenesis.
Collapse
Affiliation(s)
- Lakita G Cavin
- Department of Pharmacology, Center for Anticancer Drug Research, University of Tennessee Cancer Institute, College of Medicine, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Place RF, Haspeslagh D, Giardina C. Induced stabilization of IkappaBalpha can facilitate its re-synthesis and prevent sequential degradation. J Cell Physiol 2003; 195:470-8. [PMID: 12704657 DOI: 10.1002/jcp.10262] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The transcription factor NF-kappaB is responsible for regulating genes that can profoundly impact cell proliferation, apoptosis, inflammation, and immune responses. The NF-kappaB inhibitor IkappaBalpha is rapidly degraded and then re-synthesized after an NF-kappaB stimulus. We have found that the re-synthesis of IkappaBalpha in a human colon-derived cell line (HT-29) includes the post-translational stabilization of newly synthesized IkappaBalpha. The TNF-alpha-induced stabilization of newly synthesized IkappaBalpha involves the C-terminal PEST region of the protein: N-terminal deletion mutants (lacking the IkappaB kinase phosphorylation sites) were readily stabilized by TNF-alpha, whereas deletion of the C-terminus resulted in a constitutively stable protein. The role of the C-terminus in stabilization was further supported by the finding that fusion of the IkappaBalpha C-terminus to GFP generated a protein that could also be stabilized by TNF-alpha. The p38 mitogen-activated protein (MAP) kinase inhibitor SB203580 prevented stabilization of IkappaBalpha and delayed the re-emergence of IkappaBalpha following TNF-alpha-induced degradation. The IkappaBalpha stabilization pathway could prevent sequential rounds of IkappaBalpha degradation without preventing IkappaBalpha phosphorylation. Analysis of two other cell lines (SW480 and THP-1) revealed similarities and cell-specific differences in the regulation of IkappaBalpha stabilization. We propose that cytokine stabilization of newly synthesized IkappaBalpha in some cell types is a critical homeostatic mechanism that limits inflammatory gene expression.
Collapse
Affiliation(s)
- Robert F Place
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269, USA
| | | | | |
Collapse
|
49
|
Han HS, Karabiyikoglu M, Kelly S, Sobel RA, Yenari MA. Mild hypothermia inhibits nuclear factor-kappaB translocation in experimental stroke. J Cereb Blood Flow Metab 2003; 23:589-98. [PMID: 12771574 DOI: 10.1097/01.wcb.0000059566.39780.8d] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nuclear factor-kappaB (NFkappaB) is a transcription factor that is activated after cerebral ischemia. NFkappaB activation leads to the expression of many inflammatory genes involved in the pathogenesis of stroke. The authors previously showed that mild hypothermia is protective even when cooling begins 2 h after stroke onset. In the present study, they examined the influence of hypothermia on NFkappaB activation. Rats underwent 2 h of transient middle cerebral artery occlusion. Brains were cooled to 33 degrees C immediately after or 2 h after occlusion, and maintained for 2 h. After normothermic ischemia (brain temperature at 38 degrees C), NFkappaB cytoplasmic expression, nuclear translocation, and binding activity were observed as early as 2 h in the ischemic hemisphere and persisted at 24 h. Hypothermia decreased NFkappaB translocation and binding activity but did not alter overall expression. Hypothermia also affected the levels of NFkappaB regulatory proteins by suppressing phosphorylation of NFkappaB's inhibitory protein (IkappaB-alpha) and IkappaB kinase (IKK-gamma) and decreasing IKK activity, but did not alter overall IKK levels. Hypothermia suppressed the expression of two NFkappaB target genes: inducible nitric oxide synthase and TNF-alpha. These data suggest that the protective effect of hypothermia on cerebral injury is, in part, related to NFkappaB inhibition due to decreased activity of IKK.
Collapse
Affiliation(s)
- Hyung Soo Han
- Department of Neurosurgery, Stanford University Medical Center, Stanford, California 94305, U.S.A
| | | | | | | | | |
Collapse
|
50
|
Arsura M, Panta GR, Bilyeu JD, Cavin LG, Sovak MA, Oliver AA, Factor V, Heuchel R, Mercurio F, Thorgeirsson SS, Sonenshein GE. Transient activation of NF-kappaB through a TAK1/IKK kinase pathway by TGF-beta1 inhibits AP-1/SMAD signaling and apoptosis: implications in liver tumor formation. Oncogene 2003; 22:412-25. [PMID: 12545162 DOI: 10.1038/sj.onc.1206132] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
NF-kappaB has been implicated in the regulation of apoptosis, a key mechanism of normal and malignant growth control. Previously, we demonstrated that inhibition of NF-kappaB activity by TGF-beta1 leads directly to induction of apoptosis of murine B-cell lymphomas and hepatocytes. Thus, we were surprised to determine that NF-kappaB is transiently activated in response to TGF-beta1 treatment. Here we elucidate the mechanism of TGF-beta1-mediated regulation of NF-kappaB and induction of apoptosis in epithelial cells. We report that TGF-beta1 activates IKK kinase, which mediates IkappaB-alpha phosphorylation. In turn, the activation of IKK following TGF-beta1 treatment is mediated by the TAK1 kinase. As a result of NF-kappaB activation, IkappaB-alpha mRNA and protein levels are increased leading to postrepression of NF-kappaB and induction of cell death. Inhibition of NF-kappaB following TGF-beta1 treatment increased AP-1 complex transcriptional activity through sustained c-Jun phosphorylation, thereby potentiating AP-1/SMADs-mediated cell killing. Furthermore, TGF-beta1-mediated upregulation of Smad7 appeared independent of NF-kappaB. In hepatocellular carcinomas of TGF-beta1 or TGF-alpha/c-myc transgenic mice, we observed constitutive activation of NF-kappaB that led to inhibition of JNK signaling. Overall, our data illustrate an autocrine mechanism based on the ability of IKK/NF-kappaB/IkappaB-alpha signaling to negatively regulate NF-kappaB levels thereby permitting TGF-beta1-induced apoptosis through AP-1 activity.
Collapse
Affiliation(s)
- Marcello Arsura
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis 38163, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|