1
|
Szeliga A, Grymowicz M, Kostrzak A, Smolarczyk R, Bala G, Smolarczyk K, Meczekalski B, Suchta K. Bone: A Neglected Endocrine Organ? J Clin Med 2024; 13:3889. [PMID: 38999458 PMCID: PMC11242793 DOI: 10.3390/jcm13133889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
Bone has traditionally been viewed in the context of its structural contribution to the human body. Foremost providing necessary support for mobility, its roles in supporting calcium homeostasis and blood cell production are often afterthoughts. Recent research has further shed light on the ever-multifaceted role of bone and its importance not only for structure, but also as a complex endocrine organ producing hormones responsible for the autoregulation of bone metabolism. Osteocalcin is one of the most important substances produced in bone tissue. Osteocalcin in circulation increases insulin secretion and sensitivity, lowers blood glucose, and decreases visceral adipose tissue. In males, it has also been shown to enhance testosterone production by the testes. Neuropeptide Y is produced by various cell types including osteocytes and osteoblasts, and there is evidence suggesting that peripheral NPY is important for regulation of bone formation. Hormonal disorders are often associated with abnormal levels of bone turnover markers. These include commonly used bone formation markers (bone alkaline phosphatase, osteocalcin, and procollagen I N-propeptide) and commonly used resorption markers (serum C-telopeptides of type I collagen, urinary N-telopeptides of type I collagen, and tartrate-resistant acid phosphatase type 5b). Bone, however, is not exclusively comprised of osseous tissue. Bone marrow adipose tissue, an endocrine organ often compared to visceral adipose tissue, is found between trabecula in the bone cortex. It secretes a diverse range of hormones, lipid species, cytokines, and other factors to exert diverse local and systemic effects.
Collapse
Affiliation(s)
- Anna Szeliga
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Monika Grymowicz
- Department of Gynecological Endocrinology, Warsaw Medical University, 00-315 Warsaw, Poland
| | - Anna Kostrzak
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Roman Smolarczyk
- Department of Gynecological Endocrinology, Warsaw Medical University, 00-315 Warsaw, Poland
| | - Gregory Bala
- UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | | | - Blazej Meczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Katarzyna Suchta
- Department of Gynecological Endocrinology, Warsaw Medical University, 00-315 Warsaw, Poland
| |
Collapse
|
2
|
Tangye SG, Mackie J, Pathmanandavel K, Ma CS. The trajectory of human B-cell function, immune deficiency, and allergy revealed by inborn errors of immunity. Immunol Rev 2024; 322:212-232. [PMID: 37983844 DOI: 10.1111/imr.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The essential role of B cells is to produce protective immunoglobulins (Ig) that recognize, neutralize, and clear invading pathogens. This results from the integration of signals provided by pathogens or vaccines and the stimulatory microenvironment within sites of immune activation, such as secondary lymphoid tissues, that drive mature B cells to differentiate into memory B cells and antibody (Ab)-secreting plasma cells. In this context, B cells undergo several molecular events including Ig class switching and somatic hypermutation that results in the production of high-affinity Ag-specific Abs of different classes, enabling effective pathogen neutralization and long-lived humoral immunity. However, perturbations to these key signaling pathways underpin immune dyscrasias including immune deficiency and autoimmunity or allergy. Inborn errors of immunity that disrupt critical immune pathways have identified non-redundant requirements for eliciting and maintaining humoral immune memory but concomitantly prevent immune dysregulation. Here, we will discuss our studies on human B cells, and how our investigation of cytokine signaling in B cells have identified fundamental requirements for memory B-cell formation, Ab production as well as regulating Ig class switching in the context of protective versus allergic immune responses.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Joseph Mackie
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Karrnan Pathmanandavel
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Desalegn G, Tamilselvi CS, Lemme-Dumit JM, Heine SJ, Dunn D, Ndungo E, Kapoor N, Oaks EV, Fairman J, Pasetti MF. Shigella virulence protein VirG is a broadly protective antigen and vaccine candidate. NPJ Vaccines 2024; 9:2. [PMID: 38167387 PMCID: PMC10761965 DOI: 10.1038/s41541-023-00797-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Diarrhea caused by Shigella has been associated with high morbidity and mortality in young children worldwide. There are no licensed vaccines, and those clinically advanced have restricted coverage as they elicit serotype-specific immunity while disease is caused by multiple circulating serotypes. Our group had previously reported a close association between serum antibodies to the Shigella virulence factor VirG (or IcsA) and clinical protection in infected individuals. VirG is highly conserved among Shigella strains and appealing as a broad-spectrum vaccine candidate. In this study, we investigated the immunogenicity and protective capacity of VirG as a subunit vaccine in mice. The surface-exposed alpha (α) domain of VirG (VirGα) was produced as a recombinant protein. This region has almost identical immune reactivity to full-length VirG. Administered intramuscularly with alum, VirGα elicited robust immune responses and high protective efficacy against S. flexneri 2a and S. sonnei. Almost complete protection was afforded by VirGα given intranasally with the E. coli double mutant heat-labile toxin (dmLT). VirGα-specific antibodies recognized VirG expressed on live Shigella, and blocked Shigella adhesion and invasion to human colonic cells. These results show for the first time that VirGα is a promising cross-protective vaccine candidate to prevent Shigella infection.
Collapse
Affiliation(s)
- Girmay Desalegn
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Chitradevi S Tamilselvi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Jose M Lemme-Dumit
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Shannon J Heine
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Dylan Dunn
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Esther Ndungo
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Neeraj Kapoor
- Vaxcyte, Inc., 825 Industrial Road, San Carlos, CA, 94070, USA
| | - Edwin V Oaks
- Patuxent Research and Consulting Group, 3106 Arrowhead Farm Rd, Gambrills, MD, 21054, USA
| | - Jeff Fairman
- Vaxcyte, Inc., 825 Industrial Road, San Carlos, CA, 94070, USA
| | - Marcela F Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685W. Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
4
|
Jiménez-Guerrero R, Karlsen C, Boudinot P, Afanasyev S, Mørkøre T, Krasnov A. Differentiation and traffic of IgM + B cells between focal dark spots in skeletal muscle of Atlantic salmon, lymphoid and adipose tissues. FISH & SHELLFISH IMMUNOLOGY 2023:108858. [PMID: 37302676 DOI: 10.1016/j.fsi.2023.108858] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/12/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023]
Abstract
Focal dark spots (DS) in farmed Atlantic salmon fillets contain a significant number of B cells as revealed by the high abundance of immunoglobulin (Ig) transcripts in transcriptome data. The immune response in DS remains unknown while they represent a major problem in commercial aquaculture. Here, we characterized the diversity and clonal composition of B cells in DS. Sixteen gene markers of immune cells and antigen presentation were analyzed with RT-qPCR. All genes expression showed a positive correlation with DS area and intensity. The flatter the DS, the higher the expression of cd28, csfr, ctla, igt, and sigm, the lower expression of cd83 and btla, and the larger the cumulative frequency within DS. The expression of most of the analyzed immune genes, including three Ig types and markers of B cells was lower in DS than in the lymphatic organs, head kidney and spleen, but significantly higher compared to skeletal muscle. High levels of ctla4 and cd28 in DS might indicate the recruitment of T cells. Sequencing of IgM repertoire (Ig-seq) assessed migration of B cells by co-occurrence of identical CDR3 sequences in different tissues. The combination of gene expression and Ig-seq revealed the presence of several stages of B cell differentiation in DS. B cells at the earliest stage, with high ratio of membrane to secretory IgM (migm and sigm), showed minor Ig repertoire overlap with other tissues. Further differentiation stage (increased sigm to migm ratio and high expression of pax5 and cd79) was associated with active movement of B cells from DS towards lymphatic organs and visceral fat. Traffic and expression of immune genes decreased at later stages. These B cells could be involved in a response directed against viruses, pathogenic or opportunistic bacteria in DS. Seven of eight fish were positive for salmon alphavirus, and levels were higher in DS than in unstained muscle. PCR with universal primers to the 16S rRNA gene did not detect bacteria in DS. Although the evolution of DS most likely implies local exposure to antigens, neither this nor previous studies have found a necessary association between DS and pathogens or self-antigens.
Collapse
Affiliation(s)
- Raúl Jiménez-Guerrero
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway.
| | | | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, 78350, France
| | - Sergey Afanasyev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Turid Mørkøre
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | |
Collapse
|
5
|
Ma Y, Yang X, Villalba N, Chatterjee V, Reynolds A, Spence S, Wu MH, Yuan SY. Circulating lymphocyte trafficking to the bone marrow contributes to lymphopenia in myocardial infarction. Am J Physiol Heart Circ Physiol 2022; 322:H622-H635. [PMID: 35179978 PMCID: PMC8934671 DOI: 10.1152/ajpheart.00003.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/22/2022]
Abstract
Some patients with myocardial infarction (MI) exhibit lymphopenia, a reduction in blood lymphocyte count. Moreover, lymphopenia inversely correlates with patient prognosis. The objective of this study was to elucidate the underlying mechanisms that cause lymphopenia after MI. Multiparameter flow cytometric analysis demonstrated that MI induced profound B and T lymphopenia in a mouse model, peaking at day 1 post-MI. The finding that non-MI control and MI mice exhibited similar apoptotic rate for blood B and T lymphocytes argues against apoptosis being essential for MI-induced lymphopenia. Interestingly, the bone marrow in day 1 post-MI mice contained more B and T cells but showed less B- and T-cell proliferation compared with day 0 controls. This suggests that blood lymphocytes may travel to the bone marrow after MI. This was confirmed by adoptive transfer experiments demonstrating that MI caused the loss of transferred lymphocytes in the blood, but the accumulation of transferred lymphocytes in the bone marrow. To elucidate the underlying signaling pathways, β2-adrenergic receptor or sphingosine-1-phosphate receptor type 1 (S1PR1) was pharmacologically blocked, respectively. β2-receptor inhibition had no significant effect on blood lymphocyte count, whereas S1PR1 blockade aggravated lymphopenia in MI mice. Furthermore, we discovered that MI-induced glucocorticoid release triggered lymphopenia. This was supported by the findings that adrenalectomy (ADX) completely prevented mice from MI-induced lymphopenia, and supplementation with corticosterone in adrenalectomized MI mice reinduced lymphopenia. In conclusion, our study demonstrates that MI-associated lymphopenia involves lymphocyte redistribution from peripheral blood to the bone marrow, which is mediated by glucocorticoids.NEW & NOTEWORTHY Lymphopenia, a reduction in blood lymphocyte count, is known to inversely correlate with the prognosis for patients with myocardial infarction (MI). However, the underlying mechanisms by which cardiac ischemia induces lymphopenia remain elusive. This study provides the first evidence that MI activates the hypothalamic-pituitary-adrenal (HPA) axis to increase glucocorticoid secretion, and elevated circulating glucocorticoids induce blood lymphocytes trafficking to the bone marrow, leading to lymphopenia.
Collapse
Affiliation(s)
- Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Nuria Villalba
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Amanda Reynolds
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Sam Spence
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Mack H Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| |
Collapse
|
6
|
Proportion versus absolute counts of B cell populations in the assessment of immunological profiles of kidney transplant recipients. Transpl Immunol 2021; 70:101519. [PMID: 34958918 DOI: 10.1016/j.trim.2021.101519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
Immunophenotyping lymphocytes in kidney transplant recipients often raises questions as to whether proportions or absolute counts should be considered, especially for longitudinal assessment. Several studies conclude the pathophysiology of rejection based on proportions of naive and memory B cells. We compared the two analytical methods for B cells sampled from 82 clinically stable, adult kidney transplant recipients. Time post-transplant was analyzed both as a continuous variable and as tertiles (<1.5 years, 1.5-8 years, and > 8 years). B cells were stained for CD38 and IgD and were classified according to mature B cells (Bm) classification. The proportion of cells in the naive Bm2 compartment decreased by more than half in the late versus the early tertile, whereas the percentages of memory early Bm5 tripled and that of memory Bm5 cells doubled. In contrast, we observed a substantial reduction in naive B cell counts, but very stable memory B cell counts. Linear regressions showed that the absolute reduction in the Bm2 cell compartment was independent of age, sex, graft function, immunosuppression scheme, and rejection occurrence. In conclusion, the physiological reservoir of naive cells decreases over time post-transplant in kidney recipients, whereas that of memory B cells remains stable. Peripheral B subset percentages should be interpreted cautiously when analyzing pathophysiological processes.
Collapse
|
7
|
Müller-Winkler J, Mitter R, Rappe JCF, Vanes L, Schweighoffer E, Mohammadi H, Wack A, Tybulewicz VLJ. Critical requirement for BCR, BAFF, and BAFFR in memory B cell survival. J Exp Med 2021; 218:211510. [PMID: 33119032 PMCID: PMC7604764 DOI: 10.1084/jem.20191393] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 07/22/2020] [Accepted: 09/14/2020] [Indexed: 01/23/2023] Open
Abstract
Memory B cells (MBCs) are long-lived cells that form a critical part of immunological memory, providing rapid antibody responses to recurring infections. However, very little is known about signals controlling MBC survival. Previous work has shown that antigen is not required for MBC survival, but a requirement for the B cell antigen receptor (BCR) has not been tested. Other studies have shown that, unlike naive B cells, MBCs do not express BAFFR and their survival is independent of BAFF, the ligand for BAFFR. Here, using inducible genetic ablation, we show that survival of MBCs is critically dependent on the BCR and on signaling through the associated CD79A protein. Unexpectedly, we found that MBCs express BAFFR and that their survival requires BAFF and BAFFR; hence, loss of BAFF or BAFFR impairs recall responses. Finally, we show that MBC survival requires IKK2, a kinase that transduces BAFFR signals. Thus, MBC survival is critically dependent on signaling from BCR and BAFFR.
Collapse
|
8
|
DiSano KD, Gilli F, Pachner AR. Memory B Cells in Multiple Sclerosis: Emerging Players in Disease Pathogenesis. Front Immunol 2021; 12:676686. [PMID: 34168647 PMCID: PMC8217754 DOI: 10.3389/fimmu.2021.676686] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022] Open
Abstract
Multiple Sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. Once thought to be primarily driven by T cells, B cells are emerging as central players in MS immunopathogenesis. Interest in multiple B cell phenotypes in MS expanded following the efficacy of B cell-depleting agents targeting CD20 in relapsing-remitting MS and inflammatory primary progressive MS patients. Interestingly, these therapies primarily target non-antibody secreting cells. Emerging studies seek to explore B cell functions beyond antibody-mediated roles, including cytokine production, antigen presentation, and ectopic follicle-like aggregate formation. Importantly, memory B cells (Bmem) are rising as a key B cell phenotype to investigate in MS due to their antigen-experience, increased lifespan, and rapid response to stimulation. Bmem display diverse effector functions including cytokine production, antigen presentation, and serving as antigen-experienced precursors to antibody-secreting cells. In this review, we explore the cellular and molecular processes involved in Bmem development, Bmem phenotypes, and effector functions. We then examine how these concepts may be applied to the potential role(s) of Bmem in MS pathogenesis. We investigate Bmem both within the periphery and inside the CNS compartment, focusing on Bmem phenotypes and proposed functions in MS and its animal models. Finally, we review how current immunomodulatory therapies, including B cell-directed therapies and other immunomodulatory therapies, modify Bmem and how this knowledge may be harnessed to direct therapeutic strategies in MS.
Collapse
Affiliation(s)
- Krista D. DiSano
- Department of Neurology, Geisel School of Medicine & Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | | | | |
Collapse
|
9
|
Diversity, localization, and (patho)physiology of mature lymphocyte populations in the bone marrow. Blood 2021; 137:3015-3026. [PMID: 33684935 DOI: 10.1182/blood.2020007592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
The bone marrow (BM) is responsible for generating and maintaining lifelong output of blood and immune cells. In addition to its key hematopoietic function, the BM acts as an important lymphoid organ, hosting a large variety of mature lymphocyte populations, including B cells, T cells, natural killer T cells, and innate lymphoid cells. Many of these cell types are thought to visit the BM only transiently, but for others, like plasma cells and memory T cells, the BM provides supportive niches that promote their long-term survival. Interestingly, accumulating evidence points toward an important role for mature lymphocytes in the regulation of hematopoietic stem cells (HSCs) and hematopoiesis in health and disease. In this review, we describe the diversity, migration, localization, and function of mature lymphocyte populations in murine and human BM, focusing on their role in immunity and hematopoiesis. We also address how various BM lymphocyte subsets contribute to the development of aplastic anemia and immune thrombocytopenia, illustrating the complexity of these BM disorders and the underlying similarities and differences in their disease pathophysiology. Finally, we summarize the interactions between mature lymphocytes and BM resident cells in HSC transplantation and graft-versus-host disease. A better understanding of the mechanisms by which mature lymphocyte populations regulate BM function will likely improve future therapies for patients with benign and malignant hematologic disorders.
Collapse
|
10
|
Chang HD, Radbruch A. Maintenance of quiescent immune memory in the bone marrow. Eur J Immunol 2021; 51:1592-1601. [PMID: 34010475 DOI: 10.1002/eji.202049012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 12/25/2022]
Abstract
The adaptive immune system has the important ability to generate and maintain a memory for antigens once encountered. Recent progress in understanding the organization of immunological memory has challenged the established paradigm of maintenance of memory by restless, circulating, and "homeostatically" proliferating lymphocytes. Among other tissues, the bone marrow has emerged as a preferred resting place for memory lymphocytes providing both local and systemic long-term protection. Why the bone marrow? There, mesenchymal stromal cells provide a privileged environment for quiescent memory B and T lymphocytes, the protagonists of secondary immune reactions, and for memory plasma cells providing persistent humoral immunity. In this review, we discuss the dedicated role of the bone marrow for the maintenance of memory lymphocytes and its implications for immunological memory.
Collapse
Affiliation(s)
- Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, Berlin, Germany.,Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, Berlin, Germany.,Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
11
|
Lamaison C, Tarte K. B cell/stromal cell crosstalk in health, disease, and treatment: Follicular lymphoma as a paradigm. Immunol Rev 2021; 302:273-285. [PMID: 34060097 DOI: 10.1111/imr.12983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
Stromal cells organize specific anatomic compartments within bone marrow (BM) and secondary lymphoid organs where they finely regulate the behavior of mature normal B cells. In particular, lymphoid stromal cells (LSCs) form a phenotypically heterogeneous compartment including various cell subsets variably supporting B-cell survival, activation, proliferation, and differentiation. In turn, activated B cells trigger in-depth remodeling of LSC networks within lymph nodes (LN) and BM. Follicular lymphoma (FL) is one of the best paradigms of a B-cell neoplasia depending on a specific tumor microenvironment (TME), including cancer-associated fibroblasts (CAFs) emerging from the reprogramming of LN LSCs or poorly characterized local BM precursors. FL-CAFs support directly malignant B-cell growth and orchestrate FL permissive cell niche by contributing, through a bidirectional crosstalk, to the recruitment and polarization of immune TME subsets. Recent studies have highlighted a previously unexpected level of heterogeneity of both FL B cells and FL TME, underlined by FL-CAF plasticity. A better understanding of the signaling pathways, molecular mechanisms, and kinetic of stromal cell remodeling in FL would be useful to delineate new predictive markers and new therapeutic approaches in this still fatal malignancy.
Collapse
Affiliation(s)
- Claire Lamaison
- UMR_S 1236, Université Rennes 1, INSERM, Etablissement Français du Sang, Rennes, France
| | - Karin Tarte
- UMR_S 1236, Université Rennes 1, INSERM, Etablissement Français du Sang, Rennes, France.,SITI, Pôle de Biologie, CHU Pontchaillou, Rennes, France
| |
Collapse
|
12
|
Dhenni R, Phan TG. The geography of memory B cell reactivation in vaccine-induced immunity and in autoimmune disease relapses. Immunol Rev 2020; 296:62-86. [PMID: 32472583 DOI: 10.1111/imr.12862] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/05/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Memory B cells (Bmem) provide an active second layer of defense against re-infection by pathogens that have bypassed the passive first layer provided by neutralizing antibodies. Here, we review recent progress in our understanding of Bmem heterogeneity in terms of their origin (germinal center-dependent vs center-independent), phenotype (canonical vs atypical vs age-associated B cells), trafficking (recirculating vs tissue-resident), and fate (plasma cell vs germinal center differentiation). The development of transgenic models and intravital imaging technologies has made it possible to track the cellular dynamics of Bmem reactivation by antigen, their interactions with follicular memory T cells, and differentiation into plasma cells in subcapsular proliferative foci in the lymph nodes of immune animals. Such in situ studies have reinforced the importance of geography in shaping the outcome of the secondary antibody response. We also review the evidence for Bmem reactivation and differentiation into short-lived plasma cells in the pathogenesis of disease flares in relapsing-remitting autoimmune diseases. Elucidating the mechanisms that control the Bmem fate decision to differentiate into plasma cells or germinal center B cells will aid future efforts to more precisely engineer fit-for-purpose vaccines as well as to treat antibody-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Rama Dhenni
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Tri Giang Phan
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Riedel R, Addo R, Ferreira-Gomes M, Heinz GA, Heinrich F, Kummer J, Greiff V, Schulz D, Klaeden C, Cornelis R, Menzel U, Kröger S, Stervbo U, Köhler R, Haftmann C, Kühnel S, Lehmann K, Maschmeyer P, McGrath M, Naundorf S, Hahne S, Sercan-Alp Ö, Siracusa F, Stefanowski J, Weber M, Westendorf K, Zimmermann J, Hauser AE, Reddy ST, Durek P, Chang HD, Mashreghi MF, Radbruch A. Discrete populations of isotype-switched memory B lymphocytes are maintained in murine spleen and bone marrow. Nat Commun 2020; 11:2570. [PMID: 32444631 PMCID: PMC7244721 DOI: 10.1038/s41467-020-16464-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/03/2020] [Indexed: 12/15/2022] Open
Abstract
At present, it is not clear how memory B lymphocytes are maintained over time, and whether only as circulating cells or also residing in particular tissues. Here we describe distinct populations of isotype-switched memory B lymphocytes (Bsm) of murine spleen and bone marrow, identified according to individual transcriptional signature and B cell receptor repertoire. A population of marginal zone-like cells is located exclusively in the spleen, while a population of quiescent Bsm is found only in the bone marrow. Three further resident populations, present in spleen and bone marrow, represent transitional and follicular B cells and B1 cells, respectively. A population representing 10-20% of spleen and bone marrow memory B cells is the only one qualifying as circulating. In the bone marrow, all cells individually dock onto VCAM1+ stromal cells and, reminiscent of resident memory T and plasma cells, are void of activation, proliferation and mobility.
Collapse
Affiliation(s)
- René Riedel
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
- Evolutionary Genomics Group, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Richard Addo
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
| | - Marta Ferreira-Gomes
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
| | - Gitta Anne Heinz
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
| | - Frederik Heinrich
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
| | - Jannis Kummer
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
| | - Victor Greiff
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH Zürich), CH-4058, Basel, Switzerland
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, 0424, Oslo, Norway
| | - Daniel Schulz
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
| | - Cora Klaeden
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
| | - Rebecca Cornelis
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
| | - Ulrike Menzel
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH Zürich), CH-4058, Basel, Switzerland
| | - Stefan Kröger
- Knowledge Management in Bioinformatics, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
- Department of Infectious Disease Epidemiology, Robert Koch Institute, 13353, Berlin, Germany
| | - Ulrik Stervbo
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Ralf Köhler
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
| | - Claudia Haftmann
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
- Institute of Experimental Immunology, Universitätsspital Zürich, 8057, Zürich, Switzerland
| | - Silvia Kühnel
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
| | - Katrin Lehmann
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
| | - Patrick Maschmeyer
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
| | - Mairi McGrath
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
| | - Sandra Naundorf
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
| | - Stefanie Hahne
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
| | - Özen Sercan-Alp
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
- R&D, TA Immunology & Inflammation Research, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, 65926, Frankfurt am Main, Germany
| | - Francesco Siracusa
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jonathan Stefanowski
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Melanie Weber
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
| | - Kerstin Westendorf
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
| | - Jakob Zimmermann
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
| | - Anja E Hauser
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH Zürich), CH-4058, Basel, Switzerland
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
| | - Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany.
- BCRT/DRFZ Single-Cell Laboratory for Advanced Cellular Therapies - Brandenburg Center for Regenerative Therapies (BCRT), 13353, Berlin, Germany.
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117, Berlin, Germany.
| |
Collapse
|
14
|
Lyashchenko KP, Vordermeier HM, Waters WR. Memory B cells and tuberculosis. Vet Immunol Immunopathol 2020; 221:110016. [PMID: 32050091 DOI: 10.1016/j.vetimm.2020.110016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/30/2019] [Accepted: 01/29/2020] [Indexed: 02/09/2023]
Abstract
Immunological memory is a central feature of adaptive immunity. Memory B cells are generated upon stimulation with antigen presented by follicular dendritic cells in the peripheral lymphoid tissues. This process typically involves class-switch recombination and somatic hypermutation and it can be dependent or independent on germinal centers or T cell help. The mature B cell memory pool is generally characterized by remarkable heterogeneity of functionally and phenotypically distinct sub-populations supporting multi-layer immune plasticity. Memory B cells found in human patients infected with Mycobacterium tuberculosis include IgD+ CD27+ and IgM+ CD27+ subsets. In addition, expansion of atypical memory B cells characterized by the lack of CD27 expression and by inability to respond to antigen-induced re-activation is documented in human tuberculosis. These functionally impaired memory B cells are believed to have adverse effects on host immunity. Human and animal studies demonstrate recruitment of antigen-activated B cells to the infection sites and their presence in lung granulomas where proliferating B cells are organized into discrete clusters resembling germinal centers of secondary lymphoid organs. Cattle studies show development of IgM+, IgG+, and IgA+ memory B cells in M. bovis infection with the ability to rapidly differentiate into antibody-producing plasma cells upon antigen re-exposure. This review discusses recent advances in research on generation, re-activation, heterogeneity, and immunobiological functions of memory B cells in tuberculosis. The role of memory B cells in post-skin test recall antibody responses in bovine tuberculosis and implications for development of improved immunodiagnostics are also reviewed.
Collapse
Affiliation(s)
| | - H Martin Vordermeier
- Tuberculosis Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom; Institute for Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - W Ray Waters
- National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA, USA
| |
Collapse
|
15
|
Mitsunaga EM, Snyder MP. Deep Characterization of the Human Antibody Response to Natural Infection Using Longitudinal Immune Repertoire Sequencing. Mol Cell Proteomics 2020; 19:278-293. [PMID: 31767621 PMCID: PMC7000125 DOI: 10.1074/mcp.ra119.001633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/30/2019] [Indexed: 01/01/2023] Open
Abstract
Human antibody response studies are largely restricted to periods of high immune activity (e.g. vaccination). To comprehensively understand the healthy B cell immune repertoire and how this changes over time and through natural infection, we conducted immune repertoire RNA sequencing on flow cytometry-sorted B cell subsets to profile a single individual's antibodies over 11 months through two periods of natural viral infection. We found that 1) a baseline of healthy variable (V) gene usage in antibodies exists and is stable over time, but antibodies in memory cells consistently have a different usage profile relative to earlier B cell stages; 2) a single complementarity-determining region 3 (CDR3) is potentially generated from more than one VJ gene combination; and 3) IgG and IgA antibody transcripts are found at low levels in early human B cell development, suggesting that class switching may occur earlier than previously realized. These findings provide insight into immune repertoire stability, response to natural infections, and human B cell development.
Collapse
Affiliation(s)
- Erin M Mitsunaga
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305.
| |
Collapse
|
16
|
Lymphoplasmacytic lymphoma and Waldenström macroglobulinaemia: clinicopathological features and differential diagnosis. Pathology 2020; 52:6-14. [DOI: 10.1016/j.pathol.2019.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022]
|
17
|
Tracing IgE-Producing Cells in Allergic Patients. Cells 2019; 8:cells8090994. [PMID: 31466324 PMCID: PMC6769703 DOI: 10.3390/cells8090994] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Immunoglobulin E (IgE) is the key immunoglobulin in the pathogenesis of IgE associated allergic diseases affecting 30% of the world population. Recent data suggest that allergen-specific IgE levels in serum of allergic patients are sustained by two different mechanisms: inducible IgE production through allergen exposure, and continuous IgE production occurring even in the absence of allergen stimulus that maintains IgE levels. This assumption is supported by two observations. First, allergen exposure induces transient increases of systemic IgE production. Second, reduction in IgE levels upon depletion of IgE from the blood of allergic patients using immunoapheresis is only temporary and IgE levels quickly return to pre-treatment levels even in the absence of allergen exposure. Though IgE production has been observed in the peripheral blood and locally in various human tissues (e.g., nose, lung, spleen, bone marrow), the origin and main sites of IgE production in humans remain unknown. Furthermore, IgE-producing cells in humans have yet to be fully characterized. Capturing IgE-producing cells is challenging not only because current staining technologies are inadequate, but also because the cells are rare, they are difficult to discriminate from cells bearing IgE bound to IgE-receptors, and plasma cells express little IgE on their surface. However, due to the central role in mediating both the early and late phases of allergy, free IgE, IgE-bearing effector cells and IgE-producing cells are important therapeutic targets. Here, we discuss current knowledge and unanswered questions regarding IgE production in allergic patients as well as possible therapeutic approaches targeting IgE.
Collapse
|
18
|
Palm AKE, Henry C. Remembrance of Things Past: Long-Term B Cell Memory After Infection and Vaccination. Front Immunol 2019; 10:1787. [PMID: 31417562 PMCID: PMC6685390 DOI: 10.3389/fimmu.2019.01787] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/16/2019] [Indexed: 02/03/2023] Open
Abstract
The success of vaccines is dependent on the generation and maintenance of immunological memory. The immune system can remember previously encountered pathogens, and memory B and T cells are critical in secondary responses to infection. Studies in mice have helped to understand how different memory B cell populations are generated following antigen exposure and how affinity for the antigen is determinant to B cell fate. Additionally, such studies were fundamental in defining memory B cell niches and how B cells respond following subsequent exposure with the same antigen. On the other hand, human studies are essential to the development of better, newer vaccines but sometimes limited by the difficulty to access primary and secondary lymphoid organs. However, work using human influenza and HIV virus infection and/or immunization in particular has significantly advanced today's understanding of memory B cells. This review will focus on the generation, function, and longevity of B-cell mediated immunological memory (memory B cells and plasma cells) in response to infection and vaccination both in mice and in humans.
Collapse
Affiliation(s)
- Anna-Karin E Palm
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Carole Henry
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
19
|
Stalin Raj V, Okba NMA, Gutierrez-Alvarez J, Drabek D, van Dieren B, Widagdo W, Lamers MM, Widjaja I, Fernandez-Delgado R, Sola I, Bensaid A, Koopmans MP, Segalés J, Osterhaus ADME, Bosch BJ, Enjuanes L, Haagmans BL. Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection. SCIENCE ADVANCES 2018; 4:eaas9667. [PMID: 30101189 PMCID: PMC6082650 DOI: 10.1126/sciadv.aas9667] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/01/2018] [Indexed: 05/08/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) continues to cause outbreaks in humans as a result of spillover events from dromedaries. In contrast to humans, MERS-CoV-exposed dromedaries develop only very mild infections and exceptionally potent virus-neutralizing antibody responses. These strong antibody responses may be caused by affinity maturation as a result of repeated exposure to the virus or by the fact that dromedaries-apart from conventional antibodies-have relatively unique, heavy chain-only antibodies (HCAbs). These HCAbs are devoid of light chains and have long complementarity-determining regions with unique epitope binding properties, allowing them to recognize and bind with high affinity to epitopes not recognized by conventional antibodies. Through direct cloning and expression of the variable heavy chains (VHHs) of HCAbs from the bone marrow of MERS-CoV-infected dromedaries, we identified several MERS-CoV-specific VHHs or nanobodies. In vitro, these VHHs efficiently blocked virus entry at picomolar concentrations. The selected VHHs bind with exceptionally high affinity to the receptor binding domain of the viral spike protein. Furthermore, camel/human chimeric HCAbs-composed of the camel VHH linked to a human Fc domain lacking the CH1 exon-had an extended half-life in the serum and protected mice against a lethal MERS-CoV challenge. HCAbs represent a promising alternative strategy to develop novel interventions not only for MERS-CoV but also for other emerging pathogens.
Collapse
Affiliation(s)
- V. Stalin Raj
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Nisreen M. A. Okba
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Javier Gutierrez-Alvarez
- Department of Molecular and Cell Biology, National Center for Biotechnology–Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Dubravka Drabek
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Brenda van Dieren
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - W. Widagdo
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Mart M. Lamers
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Ivy Widjaja
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Raul Fernandez-Delgado
- Department of Molecular and Cell Biology, National Center for Biotechnology–Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology, National Center for Biotechnology–Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Albert Bensaid
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal [CReSA, IRTA–Universitat Autònoma de Barcelona (UAB)], Campus de la UAB, 08193 Bellaterra, Spain
| | - Marion P. Koopmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Joaquim Segalés
- UAB, CReSA (IRTA-UAB), Campus de la UAB, 08193 Bellaterra, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193 Bellaterra, Spain
| | - Albert D. M. E. Osterhaus
- Artemis One Health, Utrecht, Netherlands
- Center for Infection Medicine and Zoonoses Research, University of Veterinary Medicine, Hannover, Germany
| | - Berend Jan Bosch
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center for Biotechnology–Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Bart L. Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
20
|
Abstract
Memory for antigens once encountered is a hallmark of the immune system of vertebrates, providing us with an immunity adapted to pathogens of our environment. Despite its fundamental relevance, the cells and genes representing immunological memory are still poorly understood. Here we discuss the concept of a circulating, proliferating, and ubiquitous population of effector lymphocytes vs concepts of resting and dormant populations of dedicated memory lymphocytes, distinct from effector lymphocytes and residing in defined tissues, particularly in barrier tissues and in the bone marrow. The lifestyle of memory plasma cells of the bone marrow may serve as a paradigm, showing that persistence of memory lymphocytes is not defined by intrinsic "half-lives", but rather conditional on distinct survival signals provided by dedicated niches. These niches are organized by individual mesenchymal stromal cells. They define the capacity of immunological memory and regulate its homeostasis.
Collapse
Affiliation(s)
- Hyun‐Dong Chang
- Deutsches Rheuma‐Forschungszentrum Berlina Leibniz InstituteBerlinGermany
| | - Koji Tokoyoda
- Deutsches Rheuma‐Forschungszentrum Berlina Leibniz InstituteBerlinGermany
| | - Andreas Radbruch
- Deutsches Rheuma‐Forschungszentrum Berlina Leibniz InstituteBerlinGermany
- Charité University MedicineBerlinGermany
| |
Collapse
|
21
|
Phan TG, Tangye SG. Memory B cells: total recall. Curr Opin Immunol 2017; 45:132-140. [PMID: 28363157 DOI: 10.1016/j.coi.2017.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/27/2016] [Accepted: 03/02/2017] [Indexed: 12/18/2022]
Abstract
Immunological memory is a cornerstone of adaptive immune responses in higher vertebrates. The remarkable ability to generate memory cells following Ag exposure, in the context of natural infection or immunization, provides long-lived protection against infectious diseases, often for the hosts' lifetime. Indeed, the generation of memory B cells and long-lived plasma cells underpins the success of most vaccines. The concept of immunological memory is not new-it was first proposed nearly 2500 years ago. While our understanding of the complexities of humoral and cell-mediated memory continues to evolve, important aspects of this process remain unresolved. Here, we will provide an overview of recent advances in B-cell memory in mice and humans, and in health and disease.
Collapse
Affiliation(s)
- Tri Giang Phan
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincent's Clinical School, University of NSW, Australia.
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincent's Clinical School, University of NSW, Australia.
| |
Collapse
|
22
|
Vaccination to gain humoral immune memory. Clin Transl Immunology 2016; 5:e120. [PMID: 28090322 PMCID: PMC5192068 DOI: 10.1038/cti.2016.81] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/04/2016] [Accepted: 11/06/2016] [Indexed: 02/08/2023] Open
Abstract
The concept of immune memory forms the biological basis for vaccination programs. Despite advancements in the field of immune memory and vaccination, most current vaccines are evaluated by magnitude of antigen-specific antibody titers in serum or mucosa after vaccination. It has been shown, however, that antibody-mediated humoral immune memory is established regardless of the magnitude and duration of immune reactions, suggesting that assessment of vaccine efficacy should be performed for several years after vaccination. This long-term investigation is disadvantageous for prevalent and pandemic infections. Long-lived memory plasma cells and memory helper T cells which contribute to humoral immune memory are generated in the bone marrow after migration of memory cell precursors through bloodstream. Thus, it may be a novel evaluation strategy to assess the precursors of memory cells in the blood in the early phase of the immune reaction(s). We here review recent advances on the generation and maintenance of immune memory cells involved in humoral immunity and introduce a current concept of direct and short-term assessment of humoral immune memory formation upon vaccination as a correlate of protection.
Collapse
|
23
|
Wu GC, Cheung NKV, Georgiou G, Marcotte EM, Ippolito GC. Temporal stability and molecular persistence of the bone marrow plasma cell antibody repertoire. Nat Commun 2016; 7:13838. [PMID: 28000661 PMCID: PMC5187582 DOI: 10.1038/ncomms13838] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/04/2016] [Indexed: 12/15/2022] Open
Abstract
Plasma cells in human bone marrow (BM) are thought to be responsible for sustaining lifelong immunity, but its underlying basis is controversial. Here we use high-throughput sequence analysis of the same individual across 6.5 years to show that the BM plasma cell immunoglobulin heavy chain repertoire is remarkably stable over time. We find a nearly static bias in individual and combinatorial gene usage across time. Analysis of a second donor corroborates these observations. We also report the persistence of numerous BM plasma cell clonotypes (∼2%) identifiable at all points assayed across 6.5 years, supporting a model of serological memory based upon intrinsic longevity of human plasma cells. Donors were adolescents who completely recovered from neuroblastoma prior to the start of this study. Our work will facilitate differentiation between healthy and diseased antibody repertoires, by serving as a point of comparison with future deep-sequencing studies involving immune intervention.
Longevity of antibody responses has been attributed to persistence of plasma cells in mice. Here the authors provide human data in support of this model by immunoglobulin sequencing bone marrow sections from two human donors over 6.5 years to show temporal stability of plasma cell clonotypes, but not other B cells.
Collapse
Affiliation(s)
- Gabriel C Wu
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - George Georgiou
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA.,Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, USA.,Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA.,Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Edward M Marcotte
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA.,Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Gregory C Ippolito
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
24
|
Pojero F, Casuccio A, Giambanco C, Bulati M, Buffa S, Di Bassiano F, Gervasi F, Caruso C, Colonna Romano G. Bone marrow B lymphocytes in multiple myeloma and MGUS: Focus on distribution of naïve cells and memory subsets. Leuk Res 2016; 49:51-9. [PMID: 27552680 DOI: 10.1016/j.leukres.2016.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/12/2016] [Accepted: 08/12/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND/AIMS Multiple myeloma (MM) is caused by proliferation of clonal plasma cells (cPCs) in bone marrow (BM), associated with numerical and functional defects in immune subsets. An impairment of B cell compartment is involved in onset/progression of the disease. METHODS By flow cytometry, we studied distribution of naïve/transitional (IgD(+)CD27(-)), memory unswitched (IgD(+)CD27(+)), memory switched (IgD(-)CD27(+)) and double negative (DN) (IgD(-)CD27(-)) B lymphocytes in BM of control subjects, and responding and relapsing patients. RESULTS We observed an increased percentage of IgD(+)CD27(+) B cells in healthy controls vs responding patients (p<0.05). Treated non complete responders exhibited an expanded DN compartment vs stringent complete responders (p=0.011); in turn IgD(+)CD27(-) subpopulation was larger in stringent complete responders vs other responding patients (p=0.006). None of the studied B cell subsets showed clonal restriction. Correlation analysis revealed negative correlations between naïve/transitional and DN B cells in all groups, except in newly diagnosed subjects. CONCLUSIONS This may be considered a feasible start point to explore the importance of B cells in the immunosuppressive MM BM microenvironment, correlating these findings with immunosenescence and therapy related increased risk of infection. Moreover, we propose a possible role of naïve/transitional and DN B cells as predictive markers in treated patients.
Collapse
Affiliation(s)
- Fanny Pojero
- Dipartimento di Biopatologia e Biotecnologie Mediche, Universita' degli Studi di Palermo, Corso Tukory 211, 90134 Palermo, Italy; U.O.S.D. Laboratorio Specialistico Oncologia, Ematologia e Colture Cellulari per Uso Clinico, ARNAS Civico, Piazza Nicola Leotta 4, 90127 Palermo, Italy.
| | - Alessandra Casuccio
- Dipartimento di Scienze per la Promozione della Salute e Materno Infantile "G. D'Alessandro", Universita' degli Studi di Palermo, Via del Vespro 133, 90133 Palermo, Italy
| | - Caterina Giambanco
- U.O.S.D. Laboratorio Specialistico Oncologia, Ematologia e Colture Cellulari per Uso Clinico, ARNAS Civico, Piazza Nicola Leotta 4, 90127 Palermo, Italy
| | - Matteo Bulati
- Dipartimento di Biopatologia e Biotecnologie Mediche, Universita' degli Studi di Palermo, Corso Tukory 211, 90134 Palermo, Italy
| | - Silvio Buffa
- Dipartimento di Biopatologia e Biotecnologie Mediche, Universita' degli Studi di Palermo, Corso Tukory 211, 90134 Palermo, Italy
| | - Francesco Di Bassiano
- U.O.C. di Oncoematologia, ARNAS Civico, Piazza Nicola Leotta 4, 90127 Palermo, Italy
| | - Francesco Gervasi
- U.O.S.D. Laboratorio Specialistico Oncologia, Ematologia e Colture Cellulari per Uso Clinico, ARNAS Civico, Piazza Nicola Leotta 4, 90127 Palermo, Italy
| | - Calogero Caruso
- Dipartimento di Biopatologia e Biotecnologie Mediche, Universita' degli Studi di Palermo, Corso Tukory 211, 90134 Palermo, Italy
| | - Giuseppina Colonna Romano
- Dipartimento di Biopatologia e Biotecnologie Mediche, Universita' degli Studi di Palermo, Corso Tukory 211, 90134 Palermo, Italy
| |
Collapse
|
25
|
Kumata K, Nagata K, Matsushita M, Kuwamoto S, Kato M, Murakami I, Fukata S, Hayashi K. Thyrotropin Receptor Antibody (TRAb)-IgM Levels Are Markedly Higher Than TRAb-IgG Levels in Graves' Disease Patients and Controls, and TRAb-IgM Production Is Related to Epstein-Barr Virus Reactivation. Viral Immunol 2016; 29:459-463. [PMID: 27529807 PMCID: PMC7307640 DOI: 10.1089/vim.2016.0043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Graves' disease is an autoimmune thyroid disorder that mainly presents as hyperthyroidism and is caused by thyrotropin receptor antibodies (TRAbs) that stimulate thyroid-stimulating hormone receptors. We previously reported that Graves' disease patients and healthy controls both had Epstein–Barr virus (EBV)-infected TRAb-positive B cells and the EBV-reactivated induction of these B cells in cultures may induce the production of TRAbs. In the present study, we quantified serum TRAb-IgG and TRAb-IgM levels in 34 Graves' disease patients and 15 controls using ELISA to elucidate the mechanisms underlying EBV-related antibody production. As expected, TRAb-IgG and TRAb-IgM levels were higher in Graves' disease patients than in controls; however, TRAb-IgM levels were significantly higher than those of TRAb-IgG levels, whereas total IgM levels were lower than total IgG levels. On the other hand, the enhanced production of TRAb-IgM was frequently observed in patients with EBV reactivation. These results are consistent with the fact that the percentage of autoreactive IgM B cells are higher than that of autoreactive IgG B cells, and support the EBV-related polyclonal B cell activation. It is necessary to clarify the biological characteristics of TRAb-IgM and the relationship between TRAb isotypes and the biology of Graves' disease.
Collapse
Affiliation(s)
- Keisuke Kumata
- 1 Division of Molecular Pathology, Department of Pathology, Faculty of Medicine, Tottori University , Yonago, Japan
| | - Keiko Nagata
- 1 Division of Molecular Pathology, Department of Pathology, Faculty of Medicine, Tottori University , Yonago, Japan
| | - Michiko Matsushita
- 1 Division of Molecular Pathology, Department of Pathology, Faculty of Medicine, Tottori University , Yonago, Japan
| | - Satoshi Kuwamoto
- 1 Division of Molecular Pathology, Department of Pathology, Faculty of Medicine, Tottori University , Yonago, Japan
| | - Masako Kato
- 1 Division of Molecular Pathology, Department of Pathology, Faculty of Medicine, Tottori University , Yonago, Japan
| | - Ichiro Murakami
- 2 Department of Pathology, Kochi Medical School , Nankoku, Japan
| | - Shuji Fukata
- 3 Internal Medicine, Kuma Hospital , Kobe, Japan
| | - Kazuhiko Hayashi
- 1 Division of Molecular Pathology, Department of Pathology, Faculty of Medicine, Tottori University , Yonago, Japan
| |
Collapse
|
26
|
Rao M, Valentini D, Poiret T, Dodoo E, Parida S, Zumla A, Brighenti S, Maeurer M. B in TB: B Cells as Mediators of Clinically Relevant Immune Responses in Tuberculosis. Clin Infect Dis 2016; 61Suppl 3:S225-34. [PMID: 26409285 PMCID: PMC4583574 DOI: 10.1093/cid/civ614] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The protective role of B cells and humoral immune responses in tuberculosis infection has been regarded as inferior to cellular immunity directed to the intracellular pathogen Mycobacterium tuberculosis. However, B-cell–mediated immune responses in tuberculosis have recently been revisited in the context of B-cell physiology and antigen presentation. We discuss in this review the diverse functions of B cells in tuberculosis, with a focus on their biological and clinical relevance to progression of active disease. We also present the peptide microarray platform as a promising strategy to discover unknown antigenic targets of M. tuberculosis that could contribute to the better understanding of epitope focus of the humoral immune system against M. tuberculosis.
Collapse
Affiliation(s)
- Martin Rao
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet
| | - Davide Valentini
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Thomas Poiret
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet
| | - Ernest Dodoo
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet
| | - Shreemanta Parida
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London, and NIHR Biomedical Research Centre at University College Hospitals NHS Foundation Trust, United Kingdom
| | - Susanna Brighenti
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Markus Maeurer
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
27
|
Mavropoulos A, Simopoulou T, Varna A, Liaskos C, Katsiari CG, Bogdanos DP, Sakkas LI. Breg Cells Are Numerically Decreased and Functionally Impaired in Patients With Systemic Sclerosis. Arthritis Rheumatol 2016; 68:494-504. [DOI: 10.1002/art.39437] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 09/10/2015] [Indexed: 12/13/2022]
|
28
|
Suan D, Nguyen A, Moran I, Bourne K, Hermes JR, Arshi M, Hampton HR, Tomura M, Miwa Y, Kelleher AD, Kaplan W, Deenick EK, Tangye SG, Brink R, Chtanova T, Phan TG. T follicular helper cells have distinct modes of migration and molecular signatures in naive and memory immune responses. Immunity 2015; 42:704-18. [PMID: 25840682 DOI: 10.1016/j.immuni.2015.03.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/24/2014] [Accepted: 02/05/2015] [Indexed: 12/13/2022]
Abstract
B helper follicular T (Tfh) cells are critical for long-term humoral immunity. However, it remains unclear how these cells are recruited and contribute to secondary immune responses. Here we show that primary Tfh cells segregate into follicular mantle (FM) and germinal center (GC) subpopulations that display distinct gene expression signatures. Restriction of the primary Tfh cell subpopulation in the GC was mediated by downregulation of chemotactic receptor EBI2. Following collapse of the GC, memory T cells persisted in the outer follicle where they scanned CD169(+) subcapsular sinus macrophages. Reactivation and intrafollicular expansion of these follicular memory T cells in the subcapsular region was followed by their extrafollicular dissemination via the lymphatic flow. These data suggest that Tfh cells integrate their antigen-experience history to focus T cell help within the GC during primary responses but act rapidly to provide systemic T cell help after re-exposure to the antigen.
Collapse
Affiliation(s)
- Dan Suan
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, 390 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Akira Nguyen
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, 390 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Imogen Moran
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, 390 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Katherine Bourne
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Jana R Hermes
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Mehreen Arshi
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Centre for Applied Medical Research, 405 Liverpool Street, Darlinghurst, NSW 2010 Australia
| | - Henry R Hampton
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, 390 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Michio Tomura
- Kyoto University Graduate School of Medicine, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshihiro Miwa
- University of Tsukuba, Ibaraki Prefecture, Tsukuba 305-8572, Japan
| | - Anthony D Kelleher
- St Vincent's Centre for Applied Medical Research, 405 Liverpool Street, Darlinghurst, NSW 2010 Australia
| | - Warren Kaplan
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, 390 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Elissa K Deenick
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, 390 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, 390 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Robert Brink
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, 390 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Tatyana Chtanova
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, 390 Victoria Street, Darlinghurst, NSW 2010, Australia.
| | - Tri Giang Phan
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, 390 Victoria Street, Darlinghurst, NSW 2010, Australia.
| |
Collapse
|
29
|
Hwang SE, Kim JH, Yu HC, Murakami G, Cho BH. Lymphocyte Subpopulations in the Liver, Spleen, Intestines, and Mesenteric Nodes: An Immunohistochemical Study Using Human Fetuses at 15-16 Weeks. Anat Rec (Hoboken) 2014; 297:1478-89. [DOI: 10.1002/ar.22940] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/23/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Si Eun Hwang
- Department of Surgery; Daejeon Sun Hospital; Daejeon Korea
| | - Ji Hyun Kim
- Department of Anatomy; Chonbuk National University Medical School; Jeonju Korea
| | - Hee Chul Yu
- Department of Surgery and Biomedical Research Institute; Chonbuk National University Hospital; Jeonju Korea
| | - Gen Murakami
- Division of Internal Medicine; Iwamizawa Kojin-kai Hospital; Iwamizawa Japan
| | - Baik Hwan Cho
- Department of Surgery and Biomedical Research Institute; Chonbuk National University Hospital; Jeonju Korea
| |
Collapse
|
30
|
Kim JH, Hwang SE, Yu HC, Hwang HP, Katori Y, Murakami G, Cho BH. Distribution of CD10-positive epithelial and mesenchymal cells in human mid-term fetuses: a comparison with CD34 expression. Anat Cell Biol 2014; 47:28-39. [PMID: 24693480 PMCID: PMC3968264 DOI: 10.5115/acb.2014.47.1.28] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/13/2013] [Accepted: 12/06/2013] [Indexed: 11/27/2022] Open
Abstract
CD10, a marker of immature B lymphocytes, is expressed in the developing epithelium of mammary glands, hair follicles, and renal tubules of human fetuses. To assess mesenchymal and stromal expression of CD10, we performed immunohistochemical assays in whole body sections from eight fetuses of gestational ages 15-20 weeks. In addition to expression in urinary tract and intestinal epithelium, CD10 was strongly expressed at both gestational ages in fibrous tissues surrounding the airways from the larynx to lung alveoli, in the periosteum and ossification center, and in the glans of external genitalia. CD10 was not expressed, however, in other cavernous tissues. These findings suggest that mesenchymal, in addition to epithelial cells at specific sites, are likely to express CD10. The glomeruli, alveoli, and glans are all end products of budding or outgrowth processes in the epithelium or skin. However, in contrast to the CD34 marker of stromal stem cells, CD10 was not expressed in vascular progenitor cells and in differentiated vascular endothelium. The alternating pattern of CD10 and CD34 expression suggests that these factors play different roles in cellular differentiation and proliferation of the kidneys, airway and external genitalia.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Anatomy, Chonbuk National University Medical School, Jeonju, Korea
| | - Si Eun Hwang
- Department of Surgery, Daejeon Sun Hospital, Daejeon, Korea
| | - Hee Chul Yu
- Department of Surgery and Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Hong Pil Hwang
- Department of Surgery and Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Yukio Katori
- Division of Otorhinolaryngology, Sendai Municipal Hospital, Sendai, Japan
| | - Gen Murakami
- Division of Internal Medicine, Iwamizawa Kojin-kai Hospital, Iwamizawa, Japan
| | - Baik Hwan Cho
- Department of Surgery and Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
31
|
Wang YY, Zhang L, Zhao PW, Ma L, Li C, Zou HB, Jiang YF. Functional implications of regulatory B cells in human IgA nephropathy. Scand J Immunol 2014; 79:51-60. [PMID: 24219615 DOI: 10.1111/sji.12128] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/14/2013] [Indexed: 12/14/2022]
Abstract
IgA nephropathy (IgAN) diagnosis remains largely based upon immunohistologic detection of IgA- and IgG-containing glomerular deposits in renal mesangial cells, and little is known about the underlying pathogenic mechanisms. This study examines the putative contribution of B cell types, including the Breg type, to IgAN pathogenesis. Twenty-four patients with IgAN and proteinuria (Group A: <3.5 g/24 h, n = 13; Group B: >3.5 g/24 h, n = 11) and 10 healthy controls were enrolled. The frequencies of B cell subtypes in venous blood were measured by flow cytometry. Galactose-deficient IgA1 was measurement by ELISA. Needle biopsies were analysed by histology and immunofluorescence microscopy. Correlation between clinical features and B cell subtypes, including the regulatory B (Breg) cells, and Breg cell-derived immunomodulatory cytokine IL-10 was assessed by Spearman's rank correlation test. IgAN patients had significantly higher frequencies of CD27(+) CD19(+) , CD38(+) CD19(+) , CD86(+) CD19(+) and CD5(+) CD19(+) B cells than the healthy controls, but significantly lower levels of Breg cells and intracellular expression of IL-10 protein in the Breg subtype. Serum IgA concentration positively correlated with CD27(+) CD19(+) B cell frequency and negatively correlated with IL-10(+) Breg cell frequency in IgAN patients, and the percentage of CD19(+) CD5(+) CD1d(+) in CD19(+) cells was negatively correlated with the level of serum Gd-IgA1. Furthermore, the frequencies of CD19(+) CD38(+) and CD19(+) CD86(+) in the CD19(+) subpopulation negatively correlated with the estimated glomerular filtration rate of IgAN patients. Several of the CD19(+) B cell subtypes and the IL-10(+) Breg cells are differentially expressed in IgAN patients and may contribute to the disease pathogenesis.
Collapse
Affiliation(s)
- Y-Y Wang
- Key Laboratory for Zoonosis Research, Department of Central Laboratory, Ministry of Education, The First Hospital of Jilin University, Changchun, China; Department of Nephropathy, Jining No. 1 People's Hospital, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Giesecke C, Frölich D, Reiter K, Mei HE, Wirries I, Kuhly R, Killig M, Glatzer T, Stölzel K, Perka C, Lipsky PE, Dörner T. Tissue Distribution and Dependence of Responsiveness of Human Antigen-Specific Memory B Cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:3091-100. [DOI: 10.4049/jimmunol.1302783] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Waldenström macroglobulinemia: clinical and immunological aspects, natural history, cell of origin, and emerging mouse models. ISRN HEMATOLOGY 2013; 2013:815325. [PMID: 24106612 PMCID: PMC3782845 DOI: 10.1155/2013/815325] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/26/2013] [Indexed: 12/22/2022]
Abstract
Waldenström macroglobulinemia (WM) is a rare and currently incurable neoplasm of IgM-expressing B-lymphocytes that is characterized by the occurrence of a monoclonal IgM (mIgM) paraprotein in blood serum and the infiltration of the hematopoietic bone marrow with malignant lymphoplasmacytic cells. The symptoms of patients with WM can be attributed to the extent and tissue sites of tumor cell infiltration and the magnitude and immunological specificity of the paraprotein. WM presents fascinating clues on neoplastic B-cell development, including the recent discovery of a specific gain-of-function mutation in the MYD88 adapter protein. This not only provides an intriguing link to new findings that natural effector IgM+IgD+ memory B-cells are dependent on MYD88 signaling, but also supports the hypothesis that WM derives from primitive, innate-like B-cells, such as marginal zone and B1 B-cells. Following a brief review of the clinical aspects and natural history of WM, this review discusses the thorny issue of WM's cell of origin in greater depth. Also included are emerging, genetically engineered mouse models of human WM that may enhance our understanding of the biologic and genetic underpinnings of the disease and facilitate the design and testing of new approaches to treat and prevent WM more effectively.
Collapse
|
34
|
Treon SP. XIII. Waldenström's macroglobulinaemia: an indolent B-cell lymphoma with distinct molecular and clinical features. Hematol Oncol 2013; 31 Suppl 1:76-80. [DOI: 10.1002/hon.2071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Steven P. Treon
- Bing Center for Waldenstrom's Macroglobulinemia, Dana Farber Cancer Institute; Harvard Medical School; Boston; MA; USA
| |
Collapse
|
35
|
Piątosa B, Birbach M, Siewiera K, Ussowicz M, Kałwak K, Drabko K, Rękawek A, Tkaczyk K, Kurowski PN. Significant changes in the composition of the precursor B-cell compartment in children less than 2 years old. CYTOMETRY PART B-CLINICAL CYTOMETRY 2013; 84:179-86. [DOI: 10.1002/cyto.b.21085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 01/20/2013] [Accepted: 02/04/2013] [Indexed: 11/11/2022]
|
36
|
The role of memory B cell in tonsil and peripheral blood in the clinical progression of IgA nephropathy. Hum Immunol 2013; 74:708-12. [PMID: 23313256 DOI: 10.1016/j.humimm.2012.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 10/03/2012] [Accepted: 10/26/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND B cells in tonsil, which may produce the nephritogenic IgA, have been incriminated in the pathogenesis of IgAN. The aim of the present study was to assess the role of memory B cell in clinical progression of IgAN. Methods we investigated 28 IgAN patients and 27 age-matched patients with chronic tonsillitis without IgAN, who were treated by tonsillectomy, meanwhile, the peripheral blood (PB) of 10 healthy individuals were also as control groups. In tonsil and PB, the frequency of memory B cells were tested by Flow cytometric (FCM). RESULTS In this study, higher percentage of memory B cells were observed in tonsil and PB of IgAN patients. After tonsillectomy, the percentage of memory B cells in IgAN patients were significantly (P<0.05) lower than before tonsillectomy. Meanwhile, in tonsil and PB, the percentage of memory B cells variated with the variation of urinary finding of IgAN patients. CONCLUSIONS The percentage of memory B cell in tonsil and PB could predict disease progression of IgAN to a certain extend; it's variation in pre- and post- tonsillectomy can provide theoretical basis to cure IgAN patients indirectly.
Collapse
|
37
|
Shenoy GN, Chatterjee P, Kaw S, Mukherjee S, Rathore DK, Bal V, Rath S, George A. Recruitment of memory B cells to lymph nodes remote from the site of immunization requires an inflammatory stimulus. THE JOURNAL OF IMMUNOLOGY 2012; 189:521-8. [PMID: 22675203 DOI: 10.4049/jimmunol.1102814] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Successful recall Ab responses require recruitment of quiescent memory B cells to secondary lymphoid organs. However, the cellular dynamics of memory cells responding to local antigenic challenge at lymphoid sites distal from the initial Ag encounter are not well understood. We show in this study that memory B cells generated following s.c. immunization in one footpad generate secondary responses to soluble Ag given i.p. but not to Ag given s.c. in the contralateral footpad unless LPS is coadministered. Memory B cells do not express CD62L, and CD62L(-ve) cells cannot enter lymph nodes unless LPS-mediated inflammation is induced there. Functional TLR4 is required on the B cells, as well as on non-B cells, in the lymph node to achieve full recruitment. Furthermore, splenectomized mice fail to respond to such inflammatory s.c. challenge in contralateral footpads, unlike lymphadenectomized mice lacking the original draining lymph nodes. Splenectomized mice also fail to respond to i.p. challenge with soluble Ag. Together, these data indicate that, unlike the central memory pool of T cells, which circulates through resting lymph nodes, the majority of long-lived memory B cells are spleen resident and require inflammatory signals for mounting recall responses at distal challenge sites.
Collapse
|
38
|
Das A, Xu H, Wang X, Yau CL, Veazey RS, Pahar B. Double-positive CD21+CD27+ B cells are highly proliferating memory cells and their distribution differs in mucosal and peripheral tissues. PLoS One 2011; 6:e16524. [PMID: 21304587 PMCID: PMC3029363 DOI: 10.1371/journal.pone.0016524] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 01/03/2011] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Several B-cell defects arise in HIV infected patients, particularly in patients with chronic infection and high viral load. Loss of memory B cells (CD27(+) B cells) in peripheral blood and lymphoid tissues is one of the major B cell dysfunctions in HIV and simian immunodeficiency virus (SIV) infection. Despite several studies, definitive identification of memory B cells based on CD27 surface expression has not been described. Similarly, the rates of cell turnover in different B cell subpopulation from lymphoid and mucosal tissues have not been well documented. In this study, we demonstrate the presence of memory B cell populations and define their distribution, frequency and immunophenotype with regards to activation, proliferation, maturation, and antibody production in normal rhesus macaques from different lymphoid tissues. METHODOLOGY/PRINCIPAL FINDINGS Thirteen healthy, uninfected rhesus macaques were selected for this study. CD20(+) B cells were isolated from peripheral blood and sorted based on CD27 and CD21 surface markers to define memory B cell population. All the B cell subpopulation was further characterized phenotypically and their cell turnover rates were evaluated in vivo following bromodeoxyuridine (BrdU) inoculation. Double positive (DP) CD21(+)CD27(+) B cells in both peripheral and lymphoid tissues are memory B cells, able to produce antibody by polyclonal activation, and without T cell help. Peripheral and lymphoid DP CD21(+)CD27(+) B cells were also able to become activated and proliferate at higher rates than other B cell subpopulations. Increased turnover of tonsillar memory B cells were identified compared to other tissues examined. CONCLUSIONS/SIGNIFICANCE We suggest that this DP memory B cells play a major role in the immune system and their function and proliferation might have an important role in HIV/SIV mediated B cell dysregulation and pathogenesis.
Collapse
Affiliation(s)
- Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, Louisiana, United States of America
| | - Huanbin Xu
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, Louisiana, United States of America
| | - Xiaolei Wang
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, Louisiana, United States of America
| | - Canddy L. Yau
- Department of Biostatistics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Ronald S. Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, Louisiana, United States of America
| | - Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, Louisiana, United States of America
| |
Collapse
|
39
|
Tangye SG, Tarlinton DM. Memory B cells: Effectors of long-lived immune responses. Eur J Immunol 2009; 39:2065-75. [PMID: 19637202 DOI: 10.1002/eji.200939531] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Rudnicka W, Burakowski T, Warnawin E, Jastrzebska M, Bik M, Kontny E, Chorazy-Massalska M, Radzikowska A, Buler M, Maldyk P, Maslinski W. Functional TLR9 modulates bone marrow B cells from rheumatoid arthritis patients. Eur J Immunol 2009; 39:1211-20. [PMID: 19384869 DOI: 10.1002/eji.200838617] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
TLR9 recognizes unmethylated CpG-rich, pathogen-derived DNA sequences and represents the component of the innate immune system that heavily influences adaptive immunity and may contribute to the immunological disturbances in rheumatoid arthritis (RA). Accumulating data indicate that BM of RA patients participates in the pathogenesis of this disease as a site of proinflammatory cytokines overproduction and lymphocytes activation. Here, we investigated the functionality of TLR9 and its role in the modulation of RA BM B-cell functions. We report that BM B cells isolated from RA patients express TLR9 at the mRNA and protein levels acquired at the stage of preB/immature B-cell maturation. Stimulation of BM CD20(+) B cells by CpG-containing oligodeoxynucleotide-enhanced expression of activation markers (CD86 and CD54) triggered IL-6 and TNF-alpha secretion and cell proliferation. Significantly higher levels of eubacterial DNA encoding 16S-rRNA were found in BM samples from RA than osteoarthritis patients. Moreover, RA BM B cells exerted higher expression of CD86 than their osteoarthritis counterparts, suggesting their in situ activation via TLR9. Thus, our data indicate that TLR9 may participate in direct activation and proliferation of B cells in BM, and therefore could play a role in the pathogenesis of RA.
Collapse
|
41
|
Lanzavecchia A, Sallusto F. Human B cell memory. Curr Opin Immunol 2009; 21:298-304. [PMID: 19497721 PMCID: PMC7134627 DOI: 10.1016/j.coi.2009.05.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 05/18/2009] [Accepted: 05/18/2009] [Indexed: 01/31/2023]
Abstract
Following an immune response two types of differentiated B cells persist in the memory pool: plasma cells, which confer immediate protection by the secretion of specific antibodies; and memory B cells, which confer rapid and enhanced response to secondary challenge. We will review recent advances in understanding the heterogeneity, dynamics, and persistence of human memory B cells and plasma cells as well as new methods to isolate human monoclonal antibodies. These findings offer new insights into the human B cell response, which are relevant for vaccination and therapeutic intervention.
Collapse
|
42
|
Abstract
Human marginal zone (MZ) B cells are, in a sense, a new entity. Although they share many properties with their mouse counterpart, they also display striking differences, such as the capacity to recirculate and the presence of somatic mutations in their B cell receptor. These differences are the reason they are often not considered a separate, rodent-like B cell lineage, but rather are considered IgM memory B cells. We review here our present knowledge concerning this subset and the arguments in favor of the proposition that humans have evolved for their MZ B cell compartment a separate B cell population that develops and diversifies its Ig receptor during ontogeny outside T-dependent or T-independent immune responses.
Collapse
Affiliation(s)
- Jean-Claude Weill
- INSERM U783, Développement du Système Immunitaire, Université Paris Descartes, Faculté de Médecine, Site Necker-Enfants Malades, 75730 Paris Cedex 15, France.
| | | | | |
Collapse
|
43
|
The bone marrow perisinusoidal niche for recirculating B cells and the positive selection of bone marrow-derived B lymphocytes. Immunol Cell Biol 2008; 87:16-9. [PMID: 19030017 DOI: 10.1038/icb.2008.89] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A unique 'second' niche for follicular B cells has been described in the extravascular compartment of the bone marrow surrounding vascular sinusoids. The occupancy of this niche by B cells presumably evolved to facilitate humoral immune responses to blood-borne pathogens. B cells appear to be sustained in this niche by bone marrow dendritic cells and are lost from this compartment in certain mutant mice. We discuss here what is known regarding the mechanisms of entry and egress of B cells from the perisinusoidal niche and also consider the function of the bone marrow as a secondary lymphoid organ. Although immature B cells can mature into follicular B cells in this niche as well as in the spleen, the lineage commitment event that accompanies positive selection of B cells occurs only in the spleen.
Collapse
|
44
|
Scheeren FA, Nagasawa M, Weijer K, Cupedo T, Kirberg J, Legrand N, Spits H. T cell-independent development and induction of somatic hypermutation in human IgM+ IgD+ CD27+ B cells. ACTA ACUST UNITED AC 2008; 205:2033-42. [PMID: 18695003 PMCID: PMC2526198 DOI: 10.1084/jem.20070447] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
IgM+IgD+CD27+ B cells from peripheral blood have been described as circulating marginal zone B cells. It is still unknown when and where these cells develop. These IgM+IgD+CD27+ B cells exhibit somatic hypermutations (SHMs) in their B cell receptors, but the exact nature of the signals leading to induction of these SHMs remains elusive. Here, we show that IgM+IgD+CD27+ B cells carrying SHMs are observed during human fetal development. To examine the role of T cells in human IgM+IgD+CD27+ B cell development we used an in vivo model in which Rag2−/−γC−/− mice were repopulated with human hematopoietic stem cells. Using Rag2−/−γC−/− mice on a Nude background, we demonstrated that development and induction of SHMs of human IgM+IgD+CD27+ B cells can occur in a T cell–independent manner.
Collapse
Affiliation(s)
- Ferenc A Scheeren
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
45
|
Traggiai E, Volpi S, Schena F, Gattorno M, Ferlito F, Moretta L, Martini A. Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients. Stem Cells 2008; 26:562-9. [PMID: 18024418 DOI: 10.1634/stemcells.2007-0528] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human bone marrow multipotent mesenchymal stromal cells are progenitor cells that can be expanded in vitro and differentiate into various cells of mesodermal origin. They contribute to the bone marrow reticular niche, where mature B cells and long-lived plasma cells are maintained. Multipotent mesenchymal stromal cells were recently shown to modulate T- and B-cell proliferation and differentiation, dendritic cell maturation, and natural killer activity. These immunoregulatory properties encouraged a possible use of these cells to modulate autoimmune responses in humans. We studied the influence of bone marrow mesenchymal stem cells on highly purified B-cell subsets isolated from healthy donors and total B cells from pediatric systemic lupus erythematosus patients. Bone marrow mesenchymal stem cells promoted proliferation and differentiation into immunoglobulin-secreting cells of transitional and naive B cells stimulated with an agonist of Toll-like receptor 9, in the absence of B cell receptor triggering. They strongly enhanced proliferation and differentiation into plasma cells of memory B-cell populations. A similar effect was observed in response to polyclonal stimulation of B cells isolated from pediatric patients with systemic lupus erythematosus. This study casts important questions on bone marrow mesenchymal stem cells as a therapeutic tool in autoimmune diseases in which B-cell activation is crucially implicated in the pathogenesis of the disease.
Collapse
|
46
|
Abstract
The fact that you can vaccinate a child at 5 years of age and find lymphoid B cells and antibodies specific for this vaccination 70 years later remains an immunologic enigma. It has never been determined how these long-lived memory B cells are maintained and whether they are protected by storage in a special niche. We report that, whereas blood and spleen compartments present similar frequencies of IgG(+) cells, antismallpox memory B cells are specifically enriched in the spleen where they account for 0.24% of all IgG(+) cells (ie, 10-20 million cells) more than 30 years after vaccination. They represent, in contrast, only 0.07% of circulating IgG(+) B cells in blood (ie, 50-100,000 cells). An analysis of patients either splenectomized or rituximab-treated confirmed that the spleen is a major reservoir for long-lived memory B cells. No significant correlation was observed between the abundance of these cells in blood and serum titers of antivaccinia virus antibodies in this study, including in the contrasted cases of B cell-depleting treatments. Altogether, these data provide evidence that in humans, the two arms of B-cell memory--long-lived memory B cells and plasma cells--have specific anatomic distributions--spleen and bone marrow--and homeostatic regulation.
Collapse
|
47
|
Affiliation(s)
- Stephen M Jackson
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
48
|
Samuel S, Azar Y, Corchia N, Or R. Improved Immune Function with Donor B-cell Infusion after Semi-Allogeneic Bone Marrow Transplantation in Mice. Arch Med Res 2008; 39:61-8. [DOI: 10.1016/j.arcmed.2007.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Accepted: 06/25/2007] [Indexed: 11/25/2022]
|
49
|
Roulland S, Suarez F, Hermine O, Nadel B. Pathophysiological aspects of memory B-cell development. Trends Immunol 2007; 29:25-33. [PMID: 18061541 DOI: 10.1016/j.it.2007.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 10/08/2007] [Accepted: 10/08/2007] [Indexed: 01/26/2023]
Abstract
B cells follow two functionally distinct pathways of development: a classical germinal center (GC) T-dependent pathway in which diversification and maturation generate a slow, but virtually unlimited high-affinity response to cognate antigens; and a marginal zone (MZ) T-independent pathway providing a first line of 'innate-like' defense against specific pathogens. Cells populating these two distinct locations are the normal counterparts of two clinically important pathological entities, follicular lymphoma (FL) and MZ lymphoma (MZL). FL and MZ represent paradigms of two rising concepts of lymphomagenesis, protracted preclinical and antigen-driven lymphoproliferation, respectively. Integrating the mechanisms and functions of MZ and GC B cells and the distinctive features of their pathological counterparts should provide essential clues to the understanding of their malignant development, and should offer new insights into the design of effective treatments for B-cell lymphomas.
Collapse
Affiliation(s)
- Sandrine Roulland
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, 13288 Marseille, France
| | | | | | | |
Collapse
|
50
|
Vaskova M, Fronkova E, Starkova J, Kalina T, Mejstrikova E, Hrusak O. CD44 and CD27 delineate B-precursor stages with different recombination status and with an uneven distribution in nonmalignant and malignant hematopoiesis. ACTA ACUST UNITED AC 2007; 71:57-66. [PMID: 18005092 DOI: 10.1111/j.1399-0039.2007.00968.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The expression of CD27 and CD44 correlate with the genotype of B-precursor acute lymphoblastic leukemia (ALL). Based on the expression of these antigens, we identified counterparts of TEL/AML1(pos) and TEL/AML1(neg) leukemic cells in nonmalignant bone marrow. Although CD27 is known as a marker of mature memory B cells, we recently showed that CD27 is also expressed by malignant and nonmalignant B precursors. Here, we show that CD27 and CD44 delineate stages of B-precursor development. Well-established differentiation markers showed that the developmental sequence starts from undetermined progenitors, expressing CD44. Upon B-lineage commitment, cells gain CD27 and lose CD44. The CD27(pos)CD44(neg) (CD27 single positive, 27SP) cells are the earliest stage within CD10(pos)CD19(pos) B precursors and express RAG-1 and TDT. These cells correspond to TEL/AML1(pos) ALL (1/4 pediatric B-precursor ALL). The development follows to CD27/CD44 double-positive (27/44DP) stage, 44SP stage and CD27/CD44 double-negative (27/44DN) stage. Before exit to periphery, CD44 is reexpressed. The 27/44DP cells are mostly large and profoundly suppress RAG-1. Despite their presumably high proliferation potential, 27/44DP cells rarely dominate in leukemia. At 44SP stage, which corresponds to TEL/AML1(neg) leukemias, RAG-1 is reexpressed and Ig light chain gene starts to be rearranged.
Collapse
Affiliation(s)
- M Vaskova
- Department of Pediatric Hematology and Oncology, 2nd Medical School, Charles University Prague, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|