1
|
Montaser H, Leppänen S, Vähäkangas E, Bäck N, Grace A, Eurola S, Ibrahim H, Lithovius V, Stephens SB, Barsby T, Balboa D, Saarimäki-Vire J, Otonkoski T. IER3IP1 Mutations Cause Neonatal Diabetes Due to Impaired Proinsulin Trafficking. Diabetes 2025; 74:514-527. [PMID: 39441964 PMCID: PMC11926274 DOI: 10.2337/db24-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
ARTICLE HIGHLIGHTS IER3IP1 mutations are linked to the development of microcephaly, epilepsy, and early-onset diabetes syndrome 1. However, the underlying molecular mechanisms of cell dysfunction are unknown. Using targeted genome editing, we generated specific IER3IP1 mutations in human embryonic stem cell lines that were differentiated into pancreatic islet lineages. Loss of IER3IP1 resulted in a threefold reduction in endoplasmic reticulum-to-Golgi trafficking of proinsulin in stem cell-derived β-cells, leading to β-cell dysfunction both in vitro and in vivo. Loss of IER3IP1 also triggered increased markers of endoplasmic reticulum stress, indicating the pivotal role of the endoplasmic reticulum-to-Golgi trafficking pathway for β-cell homeostasis and function.
Collapse
Affiliation(s)
- Hossam Montaser
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sonja Leppänen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eliisa Vähäkangas
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nils Bäck
- Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Alicia Grace
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Solja Eurola
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Väinö Lithovius
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Samuel B. Stephens
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - Tom Barsby
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Diego Balboa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
2
|
Ahn M, Dhawan S, McCown EM, Garcia PA, Bhattacharya S, Stein R, Thurmond DC. Beta cell-specific PAK1 enrichment ameliorates diet-induced glucose intolerance in mice by promoting insulin biogenesis and minimising beta cell apoptosis. Diabetologia 2025; 68:152-165. [PMID: 39404845 DOI: 10.1007/s00125-024-06286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/16/2024] [Indexed: 12/22/2024]
Abstract
AIMS/HYPOTHESIS p21 (CDC42/RAC1) activated kinase 1 (PAK1) is depleted in type 2 diabetic human islets compared with non-diabetic human islets, and acute PAK1 restoration in the islets can restore insulin secretory function ex vivo. We hypothesised that beta cell-specific PAK1 enrichment in vivo can mitigate high-fat-diet (HFD)-induced glucose intolerance by increasing the functional beta cell mass. METHODS Human islets expressing exogenous PAK1 specifically in beta cells were used for bulk RNA-seq. Human EndoC-βH1 cells overexpressing myc-tagged PAK1 were used for chromatin immunoprecipitation (ChIP) and ChIP-sequencing (ChIP-seq). Novel doxycycline-inducible beta cell-specific PAK1-expressing (iβPAK1-Tg) mice were fed a 45% HFD pre-induction for 3 weeks and for a further 3 weeks with or without doxycycline induction. These HFD-fed mice were evaluated for GTT, ITT, 6 h fasting plasma insulin and blood glucose, body composition, islet insulin content and apoptosis. RESULTS Beta cell-specific PAK1 enrichment in type 2 diabetes human islets resulted in decreased beta cell apoptosis and increased insulin content. RNA-seq showed an upregulation of INS gene transcription by PAK1. Using clonal human beta cells, we found that PAK1 protein was localised in the cytoplasm and the nucleus. ChIP studies revealed that nuclear PAK1 enhanced pancreatic and duodenal homeobox1 (PDX1) and neuronal differentiation 1 (NEUROD1) binding to the INS promoter in a glucose-responsive manner. Importantly, the iβPAK1-Tg mice, when challenged with HFD and doxycycline induction displayed enhanced glucose tolerance, increased islet insulin content and reduced beta cell apoptosis when compared with iβPAK1-Tg mice without doxycycline induction. CONCLUSIONS/INTERPRETATION PAK1 plays an unforeseen and beneficial role in beta cells by promoting insulin biogenesis via enhancing the expression of PDX1, NEUROD1 and INS, along with anti-apoptotic effects, that culminate in increased insulin content and beta cell mass in vivo and ameliorate diet-induced glucose intolerance. DATA AVAILABILITY The raw and processed RNA-seq data and ChIP-seq data, which has been made publicly available at Gene Expression Omnibus (GEO) at https://www.ncbi.nlm.nih.gov/geo/ , can be accessed in GSE239382.
Collapse
Affiliation(s)
- Miwon Ahn
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Erika M McCown
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Pablo A Garcia
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | | | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
3
|
Jain C, Bilekova S, Lickert H. Targeting pancreatic β cells for diabetes treatment. Nat Metab 2022; 4:1097-1108. [PMID: 36131204 DOI: 10.1038/s42255-022-00618-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/13/2022] [Indexed: 11/09/2022]
Abstract
Insulin is a life-saving drug for patients with type 1 diabetes; however, even today, no pharmacotherapy can prevent the loss or dysfunction of pancreatic insulin-producing β cells to stop or reverse disease progression. Thus, pancreatic β cells have been a main focus for cell-replacement and regenerative therapies as a curative treatment for diabetes. In this Review, we highlight recent advances toward the development of diabetes therapies that target β cells to enhance proliferation, redifferentiation and protection from cell death and/or enable selective killing of senescent β cells. We describe currently available therapies and their mode of action, as well as insufficiencies of glucagon-like peptide 1 (GLP-1) and insulin therapies. We discuss and summarize data collected over the last decades that support the notion that pharmacological targeting of β cell insulin signalling might protect and/or regenerate β cells as an improved treatment of patients with diabetes.
Collapse
Affiliation(s)
- Chirag Jain
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Immunology Discovery, Genentech Inc., South San Francisco, CA, USA
| | - Sara Bilekova
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Chair of β-Cell Biology, Technische Universität München, School of Medicine, Klinikum Rechts der Isar, München, Germany.
| |
Collapse
|
4
|
Liu T, Wang Y, Zhao M, Jiang J, Li T, Zhang M. Differential expression of aerobic oxidative metabolism-related proteins in diabetic urinary exosomes. Front Endocrinol (Lausanne) 2022; 13:992827. [PMID: 36187097 PMCID: PMC9515495 DOI: 10.3389/fendo.2022.992827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND As a metabolic disease, any abnormality in the aerobic oxidation pathway of glucose may lead to the occurrence of diabetes. This study aimed to investigate the changes in proteins related to aerobic oxidative metabolism in urinary exosomes of diabetic patients and normal controls of different ages, and to further verify their correlation with the pathogenesis of diabetes. METHODS Samples were collected, and proteomic information of urinary exosomes was collected by LC-MS/MS. ELISA was used to further detect the expression of aerobic and oxidative metabolism-related proteins in urinary exosomes of diabetic patients and normal controls of different ages, and to draw receiver operating characteristic (ROC) curve to evaluate its value in diabetes monitoring. RESULTS A total of 17 proteins involved in aerobic oxidative metabolism of glucose were identified in urinary exosome proteins. Compared with normal control, the expressions of PFKM, GAPDH, ACO2 and MDH2 in diabetic patients were decreased, and the expression of IDH3G was increased. The concentrations of PFKM, GAPDH and ACO2 in urinary exosomes were linearly correlated with the expression of MDH2 (P<0.05). These four proteins vary with age, with the maximum concentration in the 45-59 age group. PFKM, GAPDH, ACO2, and MDH2 in urinary exosomes have certain monitoring value. When used in combination, the AUC was 0.840 (95% CI 0.764-0.915). CONCLUSIONS In diabetic patients, aerobic oxidative metabolism is reduced, and the expression of aerobic oxidative metabolism-related proteins PFKM, GAPDH, ACO2, and MDH2 in urinary exosomes is reduced, which may become potential biomarkers for monitoring changes in diabetes.
Collapse
Affiliation(s)
- Tianci Liu
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Yizhao Wang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Man Zhao
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Jun Jiang
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
- Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Tao Li
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
- Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China
- *Correspondence: Man Zhang,
| |
Collapse
|
5
|
Hogan MF, Ziemann M, K N H, Rodriguez H, Kaspi A, Esser N, Templin AT, El-Osta A, Kahn SE. RNA-seq-based identification of Star upregulation by islet amyloid formation. Protein Eng Des Sel 2020; 32:67-76. [PMID: 31504890 DOI: 10.1093/protein/gzz022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 06/24/2019] [Accepted: 07/05/2019] [Indexed: 12/26/2022] Open
Abstract
Aggregation of islet amyloid polypeptide (IAPP) into islet amyloid results in β-cell toxicity in human type 2 diabetes. To determine the effect of islet amyloid formation on gene expression, we performed ribonucleic acid (RNA) sequencing (RNA-seq) analysis using cultured islets from either wild-type mice (mIAPP), which are not amyloid prone, or mice that express human IAPP (hIAPP), which develop amyloid. Comparing mIAPP and hIAPP islets, 5025 genes were differentially regulated (2439 upregulated and 2586 downregulated). When considering gene sets (reactomes), 248 and 52 pathways were up- and downregulated, respectively. Of the top 100 genes upregulated under two conditions of amyloid formation, seven were common. Of these seven genes, only steroidogenic acute regulatory protein (Star) demonstrated no effect of glucose per se to modify its expression. We confirmed this differential gene expression using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and also demonstrated the presence of STAR protein in islets containing amyloid. Furthermore, Star is a part of reactomes representing metabolism, metabolism of lipids, metabolism of steroid hormones, metabolism of steroids and pregnenolone biosynthesis. Thus, examining gene expression that is differentially regulated by islet amyloid has the ability to identify new molecules involved in islet physiology and pathology applicable to type 2 diabetes.
Collapse
Affiliation(s)
- Meghan F Hogan
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, WA 98018, USA
| | - Mark Ziemann
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC 3004, Australia
| | - Harikrishnan K N
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC 3004, Australia
| | - Hanah Rodriguez
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC 3004, Australia
| | - Antony Kaspi
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC 3004, Australia
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, WA 98018, USA
| | - Andrew T Templin
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, WA 98018, USA
| | - Assam El-Osta
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC 3004, Australia.,Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, 3/F Lui Che Woo Clinical Sciences Building, 30-32 Ngan Shing Street, Sha Tin, Hong Kong SAR.,University College Copenhagen, Faculty of Health, Department of Technology, Biomedical Laboratory Science, Copenhagen, Denmark
| | - Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, WA 98018, USA
| |
Collapse
|
6
|
Rachdaoui N. Insulin: The Friend and the Foe in the Development of Type 2 Diabetes Mellitus. Int J Mol Sci 2020; 21:ijms21051770. [PMID: 32150819 PMCID: PMC7084909 DOI: 10.3390/ijms21051770] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
Insulin, a hormone produced by pancreatic β-cells, has a primary function of maintaining glucose homeostasis. Deficiencies in β-cell insulin secretion result in the development of type 1 and type 2 diabetes, metabolic disorders characterized by high levels of blood glucose. Type 2 diabetes mellitus (T2DM) is characterized by the presence of peripheral insulin resistance in tissues such as skeletal muscle, adipose tissue and liver and develops when β-cells fail to compensate for the peripheral insulin resistance. Insulin resistance triggers a rise in insulin demand and leads to β-cell compensation by increasing both β-cell mass and insulin secretion and leads to the development of hyperinsulinemia. In a vicious cycle, hyperinsulinemia exacerbates the metabolic dysregulations that lead to β-cell failure and the development of T2DM. Insulin and IGF-1 signaling pathways play critical roles in maintaining the differentiated phenotype of β-cells. The autocrine actions of secreted insulin on β-cells is still controversial; work by us and others has shown positive and negative actions by insulin on β-cells. We discuss findings that support the concept of an autocrine action of secreted insulin on β-cells. The hypothesis of whether, during the development of T2DM, secreted insulin initially acts as a friend and contributes to β-cell compensation and then, at a later stage, becomes a foe and contributes to β-cell decompensation will be discussed.
Collapse
Affiliation(s)
- Nadia Rachdaoui
- Department of Animal Sciences, Room 108, Foran Hall, Rutgers, the State University of New Jersey, 59 Dudley Rd, New Brunswick, NJ 08901, USA
| |
Collapse
|
7
|
Nie Y, Li J, Jin Y, Nyomba BLG, Cattini PA, Vakili H. Negative Effects of Cyclic Palmitate Treatment on Glucose Responsiveness and Insulin Production in Mouse Insulinoma Min6 Cells Are Reversible. DNA Cell Biol 2019; 38:395-403. [PMID: 30702352 DOI: 10.1089/dna.2018.4558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pancreatic β-cell failure is characterized by compromised insulin secretion in response to glucose, which ultimately results in hyperglycemia, the clinical hallmark of type 2 diabetes mellitus (T2DM). Acute exposure to plasma free fatty acids (FFAs) potentiates glucose stimulated insulin secretion (GSIS), while chronic exposure impairs GSIS, and the latter has been associated with the mechanism of β cell failure in obesity linked T2DM. By contrast, growth hormone (GH) signaling has been linked positively to GSIS in β cells. Numerous studies have examined chronic exposure of β cells to elevated FFAs both with in vivo cohorts and in vitro models. Little attention, however, has been given to the fluctuation of plasma FFA levels due to rhythmic effects that are affected by daily diet and fat intake. Mouse insulinoma Min6 cells were exposed to cyclic/daily palmitate treatment over 2 and 3 days to assess effects on GSIS. Cyclic/daily palmitate treatment with a period of recovery negatively affected GSIS in a dose-dependent manner. Removal of palmitate after two cycles/day resulted in reversal of the effect on GSIS, which was also reflected by relative gene expression involved in insulin biosynthesis (Ins1, Ins2, Pdx1, and MafA) and GSIS (glucose 2 transporter and glucokinase). Modest positive effects on GSIS and glucokinase transcript levels were also observed when Min6 cells were cotreated with human GH and palmitate. These observations indicate that like continuous palmitate treatment, cyclic exposure to palmitate can acutely impair GSIS over 48 and 72 h. However, they also suggest that the negative effects of short periods of exposure to FFAs on β cell function remain reversible.
Collapse
Affiliation(s)
- Yuanyuan Nie
- 1 Stem Cell and Cancer Center, Jilin University, Changchun, Jilin, China
| | - Jiaxuan Li
- 1 Stem Cell and Cancer Center, Jilin University, Changchun, Jilin, China
| | - Yan Jin
- 2 Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - B L Grégoire Nyomba
- 3 Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter A Cattini
- 2 Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hana Vakili
- 4 Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
8
|
Park JE, Han JS. A Portulaca oleracea L. extract promotes insulin secretion via a K +ATP channel dependent pathway in INS-1 pancreatic β-cells. Nutr Res Pract 2018; 12:183-190. [PMID: 29854323 PMCID: PMC5974063 DOI: 10.4162/nrp.2018.12.3.183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/08/2018] [Accepted: 02/28/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND/OBJECTIVE This study was designed to investigate how a Portulaca oleracea L. extract (POE) stimulates insulin secretion in INS-1 pancreatic β-cells. MATERIALS/METHOD INS-1 pancreatic β-cells were incubated in the presence of various glucose concentrations: 1.1 or 5.6, 16.7 mM glucose. The cells were treated with insulin secretagogues or insulin secretion inhibitor for insulin secretion assay using an insulin ELISA kit. In order to quantify intracellular influx of Ca2+ caused by POE treatment, the effect of POE on intracellular Ca2+ in INS-1 pancreatic β-cells was examined using Fluo-2 AM dye. RESULTS POE at 10 to 200 µg/mL significantly increased insulin secretion dose-dependently as compared to the control. Experiments at three glucose concentrations (1.1, 5.6, and 16.7 mM) confirmed that POE significantly stimulated insulin secretion on its own as well as in a glucose-dependent manner. POE also exerted synergistic effects on insulin secretion with secretagogues, such as L-alanine, 3-isobutyl-1-methylxanthine, and especially tolbutamide, and at a depolarizing concentration of KCl. The insulin secretion caused by POE was significantly attenuated by treatment with diazoxide, an opener of the K+ATP channel (blocking insulin secretion) and by verapamil (a Ca2+ channel blocker). The insulinotropic effect of POE was not observed under Ca2+-free conditions in INS-1 pancreatic β-cells. When the cells were preincubated with a Ca2+ fluorescent dye, Fluo-2 (acetoxymethyl ester), the cells treated with POE showed changes in fluorescence in red, green, and blue tones, indicating a significant increase in intracellular Ca2+, which closely correlated with increases in the levels of insulin secretion. CONCLUSIONS These findings indicate that POE stimulates insulin secretion via a K+ATP channel-dependent pathway in INS-1 pancreatic β-cells.
Collapse
Affiliation(s)
- Jae Eun Park
- Department of Food Science and Nutrition, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Ji Sook Han
- Department of Food Science and Nutrition, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
9
|
Kang T, Jensen P, Solovyeva V, Brewer JR, Larsen MR. Dynamic Changes in the Protein Localization in the Nuclear Environment in Pancreatic β-Cell after Brief Glucose Stimulation. J Proteome Res 2018. [PMID: 29518335 DOI: 10.1021/acs.jproteome.7b00930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Characterization of molecular mechanisms underlying pancreatic β-cell function in relation to glucose-stimulated insulin secretion is incomplete, especially with respect to global response in the nuclear environment. We focus on the characterization of proteins in the nuclear environment of β-cells after brief, high glucose stimulation. We compared purified nuclei derived from β-cells stimulated with 17 mM glucose for 0, 2, and 5 min using quantitative proteomics, a time frame that most likely does not result in translation of new protein in the cell. Among the differentially regulated proteins, we identified 20 components of the nuclear organization processes, including nuclear pore organization, ribonucleoprotein complex, and pre-mRNA transcription. We found alteration of the nuclear pore complex, together with calcium/calmodulin-binding chaperones that facilitate protein and RNA import or export to/from the nucleus to the cytoplasm. Putative insulin mRNA transcription-associated factors were identified among the regulated proteins, and they were cross-validated by Western blotting and confocal immunofluorescence imaging. Collectively, our data suggest that protein translocation between the nucleus and the cytoplasm is an important process, highly involved in the initial molecular mechanism underlying glucose-stimulated insulin secretion in pancreatic β-cells.
Collapse
Affiliation(s)
- Taewook Kang
- Protein Research Group, Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Pia Jensen
- Protein Research Group, Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Vita Solovyeva
- MEMPHYS-Centre for Biomembrane Physics, Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Jonathan R Brewer
- MEMPHYS-Centre for Biomembrane Physics, Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Martin R Larsen
- Protein Research Group, Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense M , Denmark
| |
Collapse
|
10
|
Chia LL, Jantan I, Chua KH, Lam KW, Rullah K, Aluwi MFM. Effects of Tocotrienols on Insulin Secretion-Associated Genes Expression of Rat Pancreatic Islets in a Dynamic Culture. Front Pharmacol 2016; 7:291. [PMID: 27625609 PMCID: PMC5003849 DOI: 10.3389/fphar.2016.00291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/19/2016] [Indexed: 01/25/2023] Open
Abstract
Tocotrienols (T3) are well-known for their antioxidant properties besides showing therapeutic potential in clinical complications such as hyperlipidemia induced by diabetes. The aim of this study was to determine the effects of δ-T3, γ-T3, and α-T3 on insulin secretion-associated genes expression of rat pancreatic islets in a dynamic culture. Pancreatic islets freshly isolated from male Wistar rats were treated with T3 for 1 h at 37°C in a microfluidic system with continuous operation. The cells were collected for total RNA extraction and reverse-transcribed, followed by measurement of insulin secretion-associated genes expression using quantitative real-time polymerase chain reaction. Molecular docking experiments were performed to gain insights on how the T3 bind to the receptors. Short-term exposure of δ- and γ-T3 to pancreatic β cells in a stimulant glucose condition (16.7 mM) significantly regulated preproinsulin mRNA levels and insulin gene transcription. In contrast, α-T3 possessed less ability in the activation of insulin synthesis level. Essentially, potassium chloride (KCl), a β cell membrane depolarising agent added into the treatment further enhanced the insulin production. δ- and γ-T3 revealed significantly higher quantitative expression in most of the insulin secretion-associated genes groups containing 16.7 mM glucose alone and 16.7 mM glucose with 30 mM KCl ranging from 600 to 1200 μM (p < 0.05). The findings suggest the potential of δ-T3 in regulating insulin synthesis and glucose-stimulated insulin secretion through triggering pathway especially in the presence of KCl.
Collapse
Affiliation(s)
- Ling L Chia
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur Malaysia
| | - Ibrahim Jantan
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur Malaysia
| | - Kien H Chua
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur Malaysia
| | - Kok W Lam
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur Malaysia
| | - Kamal Rullah
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur Malaysia
| | - Mohd F M Aluwi
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur Malaysia
| |
Collapse
|
11
|
Khamaisi M, Katagiri S, Keenan H, Park K, Maeda Y, Li Q, Qi W, Thomou T, Eschuk D, Tellechea A, Veves A, Huang C, Orgill DP, Wagers A, King GL. PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts. J Clin Invest 2016; 126:837-53. [PMID: 26808499 DOI: 10.1172/jci82788] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022] Open
Abstract
Abnormal fibroblast function underlies poor wound healing in patients with diabetes; however, the mechanisms that impair wound healing are poorly defined. Here, we evaluated fibroblasts from individuals who had type 1 diabetes (T1D) for 50 years or more (Medalists, n = 26) and from age-matched controls (n = 7). Compared with those from controls, Medalist fibroblasts demonstrated a reduced migration response to insulin, lower VEGF expression, and less phosphorylated AKT (p-AKT), but not p-ERK, activation. Medalist fibroblasts were also functionally less effective at wound closure in nude mice. Activation of the δ isoform of protein kinase C (PKCδ) was increased in postmortem fibroblasts from Medalists, fibroblasts from living T1D subjects, biopsies of active wounds of living T1D subjects, and granulation tissues from mice with streptozotocin-induced diabetes. Diabetes-induced PKCD mRNA expression was related to a 2-fold increase in the mRNA half-life. Pharmacologic inhibition and siRNA-mediated knockdown of PKCδ or expression of a dominant-negative isoform restored insulin signaling of p-AKT and VEGF expression in vitro and improved wound healing in vivo. Additionally, increasing PKCδ expression in control fibroblasts produced the same abnormalities as those seen in Medalist fibroblasts. Our results indicate that persistent PKCδ elevation in fibroblasts from diabetic patients inhibits insulin signaling and function to impair wound healing and suggest PKCδ inhibition as a potential therapy to improve wound healing in diabetic patients.
Collapse
|
12
|
Li J, Li Q, Tang J, Xia F, Wu J, Zeng R. Quantitative Phosphoproteomics Revealed Glucose-Stimulated Responses of Islet Associated with Insulin Secretion. J Proteome Res 2015; 14:4635-46. [PMID: 26437020 DOI: 10.1021/acs.jproteome.5b00507] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As central tissue of glucose homeostasis, islet has been an important focus of diabetes research. Phosphorylation plays pivotal roles in islet function, especially in islet glucose-stimulated insulin secretion. A systematic view on how phosphorylation networks were coordinately regulated in this process remains lacking, partially due to the limited amount of islets from an individual for a phosphoproteomic analysis. Here we optimized the in-tip and best-ratio phosphopeptide enrichment strategy and a SILAC-based workflow for processing rat islet samples. With limited islet lysates from each individual rat (20-47 μg), we identified 8539 phosphosites on 2487 proteins. Subsequent quantitative analyses uncovered that short-term (30 min) high glucose stimulation induced coordinate responses of islet phosphoproteome on multiple biological levels, including insulin secretion related pathways, cytoskeleton dynamics, protein processing in ER and Golgi, transcription and translation, and so on. Furthermore, three glucose-responsive phosphosites (Prkar1a pT75pS77 and Tagln2 pS163) from the data set were proved to be correlated with insulin secretion. Overall, we initially gave an in-depth map of islet phosphoproteome regulated by glucose on individual rat level. This was a significant addition to our knowledge about how phosphorylation networks responded in insulin secretion. Also, the list of changed phosphosites was a valuable resource for molecular researchers in diabetes field.
Collapse
Affiliation(s)
- Jiaming Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , 320 Yueyang Road, Shanghai 200031, China
| | - Qingrun Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , 320 Yueyang Road, Shanghai 200031, China
| | - Jiashu Tang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , 320 Yueyang Road, Shanghai 200031, China
| | - Fangying Xia
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , 320 Yueyang Road, Shanghai 200031, China
| | - Jiarui Wu
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , 320 Yueyang Road, Shanghai 200031, China.,Department of Life Sciences, ShanghaiTech University , 100 Haike Road, Shanghai 201210, China.,Shanghai Institutes for Advanced Study, Chinese Academy of Sciences , 99 Haike Road, Shanghai 201210, China
| | - Rong Zeng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , 320 Yueyang Road, Shanghai 200031, China.,Department of Life Sciences, ShanghaiTech University , 100 Haike Road, Shanghai 201210, China.,Shanghai Institutes for Advanced Study, Chinese Academy of Sciences , 99 Haike Road, Shanghai 201210, China
| |
Collapse
|
13
|
Kim JK, Lim Y, Lee JO, Lee YS, Won NH, Kim H, Kim HS. PRMT4 is involved in insulin secretion via the methylation of histone H3 in pancreatic β cells. J Mol Endocrinol 2015; 54:315-24. [PMID: 25917831 DOI: 10.1530/jme-14-0325] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2015] [Indexed: 11/08/2022]
Abstract
The relationship between protein arginine methyltransferases (PRMTs) and insulin synthesis in β cells is not yet well understood. In the present study, we showed that PRMT4 expression was increased in INS-1 and HIT-T15 pancreatic β cells under high-glucose conditions. In addition, asymmetric dimethylation of Arg17 in histone H3 was significantly increased in both cell lines in the presence of glucose. The inhibition or knockdown of PRMT4 suppressed glucose-induced insulin gene expression in INS-1 cells by 81.6 and 79% respectively. Additionally, the overexpression of mutant PRMT4 also significantly repressed insulin gene expression. Consistently, insulin secretion induced in response to high levels of glucose was decreased by both PRMT4 inhibition and knockdown. Moreover, the inhibition of PRMT4 blocked high-glucose-induced insulin gene expression and insulin secretion in primary pancreatic islets. These results indicate that PRMT4 might be a key regulator of high-glucose-induced insulin secretion from pancreatic β cells via H3R17 methylation.
Collapse
Affiliation(s)
- Joong Kwan Kim
- Department of AnatomyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaDepartment of SurgerySamsung Medical Center, 81, Irwon-Ro, Gangnam-Gu, Seoul 135-710, KoreaDepartment of PathologyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaLee Gil Ya Cancer and Diabetes InstituteGachon University, Inchon, Kyunggi do, Korea
| | - Yongchul Lim
- Department of AnatomyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaDepartment of SurgerySamsung Medical Center, 81, Irwon-Ro, Gangnam-Gu, Seoul 135-710, KoreaDepartment of PathologyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaLee Gil Ya Cancer and Diabetes InstituteGachon University, Inchon, Kyunggi do, Korea
| | - Jung Ok Lee
- Department of AnatomyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaDepartment of SurgerySamsung Medical Center, 81, Irwon-Ro, Gangnam-Gu, Seoul 135-710, KoreaDepartment of PathologyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaLee Gil Ya Cancer and Diabetes InstituteGachon University, Inchon, Kyunggi do, Korea
| | - Young-Sun Lee
- Department of AnatomyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaDepartment of SurgerySamsung Medical Center, 81, Irwon-Ro, Gangnam-Gu, Seoul 135-710, KoreaDepartment of PathologyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaLee Gil Ya Cancer and Diabetes InstituteGachon University, Inchon, Kyunggi do, Korea
| | - Nam Hee Won
- Department of AnatomyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaDepartment of SurgerySamsung Medical Center, 81, Irwon-Ro, Gangnam-Gu, Seoul 135-710, KoreaDepartment of PathologyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaLee Gil Ya Cancer and Diabetes InstituteGachon University, Inchon, Kyunggi do, Korea
| | - Hyun Kim
- Department of AnatomyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaDepartment of SurgerySamsung Medical Center, 81, Irwon-Ro, Gangnam-Gu, Seoul 135-710, KoreaDepartment of PathologyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaLee Gil Ya Cancer and Diabetes InstituteGachon University, Inchon, Kyunggi do, Korea
| | - Hyeon Soo Kim
- Department of AnatomyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaDepartment of SurgerySamsung Medical Center, 81, Irwon-Ro, Gangnam-Gu, Seoul 135-710, KoreaDepartment of PathologyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaLee Gil Ya Cancer and Diabetes InstituteGachon University, Inchon, Kyunggi do, Korea
| |
Collapse
|
14
|
Karstoft K, Mortensen SP, Knudsen SH, Solomon TPJ. Direct effect of incretin hormones on glucose and glycerol metabolism and hemodynamics. Am J Physiol Endocrinol Metab 2015; 308:E426-33. [PMID: 25564476 DOI: 10.1152/ajpendo.00520.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The objective of this study was to assess the insulin-independent effects of incretin hormones on glucose and glycerol metabolism and hemodynamics under euglycemic and hyperglycemic conditions. Young, healthy men (n=10) underwent three trials in a randomized, controlled, crossover study. Each trial consisted of a two-stage (euglycemia and hyperglycemia) pancreatic clamp (using somatostatin to prevent endogenous insulin secretion). Glucose and lipid metabolism was measured via infusion of stable glucose and glycerol isotopic tracers. Hemodynamic variables (femoral, brachial, and common carotid artery blood flow and flow-mediated dilation of the brachial artery) were also measured. The three trials differed as follows: 1) saline [control (CON)], 2) glucagon-like peptide (GLP-1, 0.5 pmol·kg(-1)·min(-1)), and 3) glucose-dependent insulinotropic polypeptide (GIP, 1.5 pmol·kg(-1)·min(-1)). No between-trial differences in glucose infusion rates (GIR) or glucose or glycerol kinetics were seen during euglycemia, whereas hyperglycemia resulted in increased GIR and glucose rate of disappearance during GLP-1 compared with CON and GIP (P<0.01 for all). However, when normalized to insulin levels, no differences between trials were seen for GIR or glucose rate of disappearance. Besides a higher femoral blood flow during hyperglycemia with GIP (vs. CON and GLP-1, P<0.001), no between-trial differences were seen for the hemodynamic variables. In conclusion, GLP-1 and GIP have no direct effect on whole body glucose metabolism or hemodynamics during euglycemia. On the contrary, during hyperglycemia, GIP increases femoral artery blood flow with no effect on glucose metabolism, whereas GLP-1 increases glucose disposal, potentially due to increased insulin levels.
Collapse
Affiliation(s)
- Kristian Karstoft
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefan P Mortensen
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; University of Southern Denmark, Odense, Denmark; and
| | - Sine H Knudsen
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas P J Solomon
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Andoh T. Plasma insulin levels are regulated by release, rather than transcription or translation, in barfin flounder, Verasper moseri. Comp Biochem Physiol A Mol Integr Physiol 2015; 184:27-33. [PMID: 25660295 DOI: 10.1016/j.cbpa.2015.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 11/19/2022]
Abstract
We evaluated whether transcription or translation of the preproinsulin gene or insulin release into plasma is the primary regulator of plasma insulin level in barfin flounder. Three experimental groups were used: one tested 2h after feeding (Fed), one tested after fasting for 5 days (Fasted), and one tested 2 h after feeding following 5 days of fasting (Refed). No significant differences in insulin transcription, insulin concentrations in the principal islets (PI), or plasma total insulin-like growth factor-I (IGF-I) levels were observed between the three groups. In contrast, plasma insulin level in the Fasted group was significantly lower (P<0.002) than that in the other groups. These results suggest that insulin release is the primary regulator of plasma insulin level and is more sensitive to short-term changes in nutritional conditions than IGF-I level. Furthermore, we estimated the capacity for insulin release. Based on various individual measures, the average insulin stored in the PI was 82.8 μg/kg body weight (BW), and the maximum plasma content of insulin was estimated to be <1.7 μg/kg BW. The half-life of plasma insulin in diabetogenic chemically (alloxan) treated flounder injected with insulin was estimated to be 2.79 h, which is much longer than that in mammals, assuming a two-compartment model for the β phase. These results suggest that the capacity for insulin release in fish is ensured by at least two systems, such as the ability to store excess insulin in Brockman bodies, and enhanced efficiency of insulin storage by elongating its half-life.
Collapse
Affiliation(s)
- Tadashi Andoh
- Seikai National Fisheries Research Institute, Fisheries Research Agency, Taira-machi 1551-8, Nagasaki 851-2213, Japan.
| |
Collapse
|
16
|
Ojo OO, Srinivasan DK, Owolabi BO, Flatt PR, Abdel-Wahab YH. Beneficial effects of tigerinin-1R on glucose homeostasis and beta cell function in mice with diet-induced obesity-diabetes. Biochimie 2015; 109:18-26. [DOI: 10.1016/j.biochi.2014.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/28/2014] [Indexed: 11/29/2022]
|
17
|
Huang HH, Stehno-Bittel L. Differences in insulin biosynthesis pathway between small and large islets do not correspond to insulin secretion. Islets 2015; 7:e1129097. [PMID: 26752360 PMCID: PMC4878277 DOI: 10.1080/19382014.2015.1129097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In a variety of mammalian species, small islets secrete more insulin per volume than large islets. This difference may be due to diffusional limitations of large islets, or inherent differences in the insulin production pathways. The purpose of this study was to identify possible differences in the early phase of glucose-stimulated insulin biosynthesis between large and small islets. Isolated small and large rat islets were challenged with 30 minutes of high glucose. The expression of insulin gene transcription factors (MafA, NeuroD/ Beta2, and PDX-1), preproinsulin mRNA, proinsulin and insulin were compared between large and small islets. Under basal (low glucose) conditions, MafA and NeuroD had higher mRNA levels and greater protein amounts in large islets compared to small when normalized to GAPDH levels. 30 minutes of high glucose stimulation failed to alter the mRNA or subsequent protein levels of either gene. However, 30 minutes of high glucose suppressed activated PDX-1 protein levels in both small and large islets. High glucose stimulation did not statistically alter the preproinsulin mRNA (insulin 1 and insulin 2) levels. At the translational level, high glucose increased the proinsulin levels, and large islets showed a higher proinsulin content per cell than small islets. Insulin content per cell was not significantly different between small and large islets under basal or high glucose levels. The results fail to explain the higher level of insulin secretion noted in small versus large islets and may suggest that possible differences lie downstream in the secretory pathway rather than insulin biosynthesis.
Collapse
Affiliation(s)
- Han-Hung Huang
- Department of Physical Therapy Angelo State University; Texas Tech System; San Angelo, TX USA
| | - Lisa Stehno-Bittel
- Department of Physical Therapy and Rehabilitation Science; University of Kansas Medical Center; Kansas City, KS USA
- Likarda, LLC; Kansas City, KS USA
- Correspondence to: Lisa Stehno-Bittel;
| |
Collapse
|
18
|
Molina J, Rodriguez-Diaz R, Fachado A, Jacques-Silva MC, Berggren PO, Caicedo A. Control of insulin secretion by cholinergic signaling in the human pancreatic islet. Diabetes 2014; 63:2714-26. [PMID: 24658304 PMCID: PMC4113066 DOI: 10.2337/db13-1371] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Acetylcholine regulates hormone secretion from the pancreatic islet and is thus crucial for glucose homeostasis. Little is known, however, about acetylcholine (cholinergic) signaling in the human islet. We recently reported that in the human islet, acetylcholine is primarily a paracrine signal released from α-cells rather than primarily a neural signal as in rodent islets. In this study, we demonstrate that the effects acetylcholine produces in the human islet are different and more complex than expected from studies conducted on cell lines and rodent islets. We found that endogenous acetylcholine not only stimulates the insulin-secreting β-cell via the muscarinic acetylcholine receptors M3 and M5, but also the somatostatin-secreting δ-cell via M1 receptors. Because somatostatin is a strong inhibitor of insulin secretion, we hypothesized that cholinergic input to the δ-cell indirectly regulates β-cell function. Indeed, when all muscarinic signaling was blocked, somatostatin secretion decreased and insulin secretion unexpectedly increased, suggesting a reduced inhibitory input to β-cells. Endogenous cholinergic signaling therefore provides direct stimulatory and indirect inhibitory input to β-cells to regulate insulin secretion from the human islet.
Collapse
Affiliation(s)
- Judith Molina
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Rayner Rodriguez-Diaz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FLDiabetes Research Institute, University of Miami Miller School of Medicine, Miami, FLThe Rolf Luft Research Center for Diabetes & Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Alberto Fachado
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | - Per-Olof Berggren
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FLThe Rolf Luft Research Center for Diabetes & Endocrinology, Karolinska Institutet, Stockholm, SwedenDivision of Integrative Biosciences and Biotechnology, WCU Program, University of Science and Technology, Pohang, Korea
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FLDiabetes Research Institute, University of Miami Miller School of Medicine, Miami, FLDepartment of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FLProgram in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|
19
|
Setyowati Karolina D, Sepramaniam S, Tan HZ, Armugam A, Jeyaseelan K. miR-25 and miR-92a regulate insulin I biosynthesis in rats. RNA Biol 2014; 10:1365-78. [PMID: 24084692 DOI: 10.4161/rna.25557] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The 3' UTR of insulin has been identified as a critical region that confers mRNA stability, which is crucial for promoting transcription in response to glucose challenge. miRNAs are endogenously encoded non-coding RNAs that function as regulators of gene expression. This regulatory function is generally mediated by complementary binding to the 3'UTR of its mRNA targets that affects subsequent translational process. Genes involved in the regulation of glucose homeostasis, particularly in insulin production, have been found as targets of several miRNAs. Yet, no direct miRNA-based regulators of insulin biosynthesis have been identified. In this study, identification of possible miRNA-based regulators of insulin production is explored. Members of a miRNA family, miR-25 and miR-92a, are found as direct modulators of insulin expression. Overexpression of miR-25 or miR-92a reduced insulin expression while inhibition of miR-25 and miR-92a expression using corresponding antagomiRs promoted insulin expression and ultimately enhanced glucose-induced insulin secretion. Furthermore, suppression of insulin secretion by pre miR-9 could be attenuated by treatment with anti-miR-25 or miR-92a. Interestingly, we found the binding site of miR-25 and miR-92a to overlap with that of PTBP1, an important RNA binding molecule that stabilizes insulin mRNA for translation. Despite the increase in PTBP1 protein in the pancreas of diabetic rats, we observed insulin expression to be reduced alongside upregulation of miR-25 and miR-92a, suggesting an intricate regulation of insulin (bio)synthesis at its mRNA level.
Collapse
Affiliation(s)
- Dwi Setyowati Karolina
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University Health System; Singapore
| | | | | | | | | |
Collapse
|
20
|
Abstract
Peptide hormones are powerful regulators of various biological processes. To guarantee continuous availability and function, peptide hormone secretion must be tightly coupled to its biosynthesis. A simple but efficient way to provide such regulation is through an autocrine feedback mechanism in which the secreted hormone is "sensed" by its respective receptor and initiates synthesis at the level of transcription and/or translation. Such a secretion-biosynthesis coupling has been demonstrated for insulin; however, because of insulin's unique role as the sole blood glucose-decreasing peptide hormone, this coupling is considered an exception rather than a more generally used mechanism. Here we provide evidence of a secretion-biosynthesis coupling for glucagon, one of several peptide hormones that increase blood glucose levels. We show that glucagon, secreted by the pancreatic α cell, up-regulates the expression of its own gene by signaling through the glucagon receptor, PKC, and PKA, supporting the more general applicability of an autocrine feedback mechanism in regulation of peptide hormone synthesis.
Collapse
|
21
|
Lombardi A, Ulianich L, Treglia AS, Nigro C, Parrillo L, Lofrumento DD, Nicolardi G, Garbi C, Beguinot F, Miele C, Di Jeso B. Increased hexosamine biosynthetic pathway flux dedifferentiates INS-1E cells and murine islets by an extracellular signal-regulated kinase (ERK)1/2-mediated signal transmission pathway. Diabetologia 2012; 55:141-53. [PMID: 22006246 DOI: 10.1007/s00125-011-2315-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 08/25/2011] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS Beta cell failure is caused by loss of cell mass, mostly by apoptosis, but also by simple dysfunction (decline of glucose-stimulated insulin secretion, downregulation of specific gene expression). Apoptosis and dysfunction are caused, at least in part, by lipoglucotoxicity. The mechanisms implicated are oxidative stress, increase in the hexosamine biosynthetic pathway (HBP) flux and endoplasmic reticulum (ER) stress. Oxidative stress plays a role in glucotoxicity-induced beta cell dedifferentiation, while glucotoxicity-induced ER stress has been mostly linked to beta cell apoptosis. We sought to clarify whether ER stress caused by increased HBP flux participates in a dedifferentiating response of beta cells, in the absence of relevant apoptosis. METHODS We used INS-1E cells and murine islets. We analysed the unfolded protein response and the expression profile of beta cells by real-time RT-PCR and western blot. The signal transmission pathway elicited by ER stress was investigated by real-time RT-PCR and immunofluorescence. RESULTS Glucosamine and high glucose induced ER stress, but did not decrease cell viability in INS-1E cells. ER stress caused dedifferentiation of beta cells, as shown by downregulation of beta cell markers and of the transcription factor, pancreatic and duodenal homeobox 1. Glucose-stimulated insulin secretion was inhibited. These effects were prevented by the chemical chaperone, 4-phenyl butyric acid. The extracellular signal-regulated kinase (ERK) signal transmission pathway was implicated, since its inhibition prevented the effects induced by glucosamine and high glucose. CONCLUSIONS/INTERPRETATION Glucotoxic ER stress dedifferentiates beta cells, in the absence of apoptosis, through a transcriptional response. These effects are mediated by the activation of ERK1/2.
Collapse
Affiliation(s)
- A Lombardi
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università degli Studi del Salento, 73100 Lecce, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bellomo EA, Meur G, Rutter GA. Glucose regulates free cytosolic Zn²⁺ concentration, Slc39 (ZiP), and metallothionein gene expression in primary pancreatic islet β-cells. J Biol Chem 2011; 286:25778-89. [PMID: 21613223 PMCID: PMC3138249 DOI: 10.1074/jbc.m111.246082] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/13/2011] [Indexed: 12/15/2022] Open
Abstract
Zn²⁺ is an important cofactor for insulin biosynthesis and storage in pancreatic β-cells. Correspondingly, polymorphisms in the SLC30A8 gene, encoding the secretory granule Zn²⁺ transporter ZnT8, are associated with type 2 diabetes risk. Using a genetically engineered (FRET)-based sensor (eCALWY-4), we show here that elevated glucose time-dependently increases free cytosolic Zn²⁺ ([Zn²⁺](cyt)) in mouse pancreatic β-cells. These changes become highly significant (853 ± 96 pm versus 452 ± 42 pm, p < 0.001) after 24 h and are associated with increased expression of the Zn²⁺ importer family members Slc39a6, Slc39a7, and Slc39a8, and decreased expression of metallothionein 1 and 2. Arguing that altered expression of the above genes is not due to altered [Zn²⁺](cyt), elevation of extracellular (and intracellular) [Zn²⁺] failed to mimic the effects of high glucose. By contrast, increases in intracellular cAMP prompted by 3-isobutyl-1-methylxanthine and forskolin partially mimicked the effects of glucose on metallothionein, although not ZiP, gene expression. Modulation of intracellular Ca²⁺ and insulin secretion with pharmacological agents (tolbutamide and diazoxide) suggested a possible role for changes in these parameters in the regulation of Slc39a6 and Slc39a7 but not Slc39a8, nor metallothionein expression. In summary, 1) glucose induces increases in [Zn²⁺](cyt), which are then likely to facilitate the processing and/or the storage of insulin and its cocrystallization with Zn²⁺, and 2) these increases are associated with elevated expression of zinc importers. Conversely, a chronic increase in [Zn²⁺](cyt) following sustained hyperglycemia may contribute to β-cell dysfunction and death in some forms of diabetes.
Collapse
Affiliation(s)
- Elisa A. Bellomo
- From the Section of Cell Biology, Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Gargi Meur
- From the Section of Cell Biology, Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Guy A. Rutter
- From the Section of Cell Biology, Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
23
|
Meur G, Qian Q, da Silva Xavier G, Pullen TJ, Tsuboi T, McKinnon C, Fletcher L, Tavaré JM, Hughes S, Johnson P, Rutter GA. Nucleo-cytosolic shuttling of FoxO1 directly regulates mouse Ins2 but not Ins1 gene expression in pancreatic beta cells (MIN6). J Biol Chem 2011; 286:13647-56. [PMID: 21335550 PMCID: PMC3075709 DOI: 10.1074/jbc.m110.204248] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 02/14/2011] [Indexed: 01/26/2023] Open
Abstract
The Forkhead box transcription factor FoxO1 regulates metabolic gene expression in mammals. FoxO1 activity is tightly controlled by phosphatidylinositol 3-kinase (PI3K) signaling, resulting in its phosphorylation and nuclear exclusion. We sought here to determine the mechanisms involved in glucose and insulin-stimulated nuclear shuttling of FoxO1 in pancreatic β cells and its consequences for preproinsulin (Ins1, Ins2) gene expression. Nuclear-localized endogenous FoxO1 translocated to the cytosol in response to elevated glucose (3 versus 16.7 mM) in human islet β cells. Real-time confocal imaging of nucleo-cytosolic shuttling of a FoxO1-EGFP chimera in primary mouse and clonal MIN6 β cells revealed a time-dependent glucose-responsive nuclear export, also mimicked by exogenous insulin, and blocked by suppressing insulin secretion. Constitutively active PI3K or protein kinase B/Akt exerted similar effects, while inhibitors of PI3K, but not of glycogen synthase kinase-3 or p70 S6 kinase, blocked nuclear export. FoxO1 overexpression reversed the activation by glucose of pancreatic duodenum homeobox-1 (Pdx1) transcription. Silencing of FoxO1 significantly elevated the expression of mouse Ins2, but not Ins1, mRNA at 3 mM glucose. Putative FoxO1 binding sites were identified in the distal promoter of rodent Ins2 genes and direct binding of FoxO1 to the Ins2 promoter was demonstrated by chromatin immunoprecipitation. A 915-bp glucose-responsive Ins2 promoter was inhibited by constitutively active FoxO1, an effect unaltered by simultaneous overexpression of PDX1. We conclude that nuclear import of FoxO1 contributes to the suppression of Pdx1 and Ins2 gene expression at low glucose, the latter via a previously unsuspected and direct physical interaction with the Ins2 promoter.
Collapse
Affiliation(s)
- Gargi Meur
- From the Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Qingwen Qian
- From the Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Gabriela da Silva Xavier
- From the Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Timothy J. Pullen
- From the Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Takashi Tsuboi
- the Department of Life Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Caroline McKinnon
- From the Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
- the Henry Wellcome Laboratories for Integrated Cell Signalling and Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Laura Fletcher
- the Henry Wellcome Laboratories for Integrated Cell Signalling and Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Jeremy M. Tavaré
- the Henry Wellcome Laboratories for Integrated Cell Signalling and Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Stephen Hughes
- the Nuffield Department of Surgery, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom, and
| | - Paul Johnson
- the Nuffield Department of Surgery, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom, and
| | - Guy A. Rutter
- From the Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
24
|
Cao H, Chu Y, Zhu H, Sun J, Pu Y, Gao Z, Yang C, Peng S, Dou Z, Hua J. Characterization of immortalized mesenchymal stem cells derived from foetal porcine pancreas. Cell Prolif 2011; 44:19-32. [PMID: 21199007 DOI: 10.1111/j.1365-2184.2010.00714.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Islet replacement therapy is limited by shortage of donor islet cells. Usage of islet cells derived from porcine pancreatic stem cells (PSCs) is currently viewed as the most promising alternative for human islet transplantation. However, PSCs are rare and have a finite proliferative lifespan. In this study, we isolated and established an immortalized mesenchymal stem cell (MSC) line derived from foetal porcine pancreas, by transfecting human telomerase reverse transcriptase (hTERT) and called these immortalized pancreatic mesenchymal stem cells (iPMSCs). The iPMSCs have been cultured for more than 80 passages and have capacity to differentiate into neurons, cardiomyocytes, germ cells and islet-like cells, analysed by morphology, RT-PCR, western blotting, immunofluorescence, immunocytochemistry and transplantation assay. Islets derived from iPMSCs reversed hyperglycaemia in streptozotocin-induced diabetic mice and secreted insulin and C-peptide in vitro. These results demonstrated that iPMSCs might provide unlimited resources for islet replacement therapy and models for functional cell differentiation.
Collapse
Affiliation(s)
- H Cao
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Key Lab for Reproductive Physiology and Embryo Biotechnology of Agriculture Ministry of China, Shaanxi, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zmuda EJ, Qi L, Zhu MX, Mirmira RG, Montminy MR, Hai T. The roles of ATF3, an adaptive-response gene, in high-fat-diet-induced diabetes and pancreatic beta-cell dysfunction. Mol Endocrinol 2010; 24:1423-33. [PMID: 20519332 PMCID: PMC2903910 DOI: 10.1210/me.2009-0463] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 04/30/2010] [Indexed: 01/09/2023] Open
Abstract
Most people with type 2 diabetes (T2D) have reduced beta-cell mass, and apoptosis is a key factor for this reduction. Previously, we showed that ATF3, an adaptive-response gene, is induced by various stress signals relevant to T2D, such as high glucose and high fatty acid. Because ATF3 is proapoptotic in beta-cells, we tested the hypothesis that ATF3 plays a detrimental role and contributes to the development of T2D. We compared wild-type (WT) and ATF3 knockout (KO) mice in an animal model for T2D, high-fat diet-induced diabetes. We also used INS-1 beta-cells and primary islets to analyze the roles of ATF3 in beta-cell function, including insulin gene expression and glucose-induced insulin secretion. Surprisingly, WT mice performed better in glucose tolerance test than KO mice, suggesting a protective, rather than detrimental, role of ATF3. At 12 wk on high-fat diet, no beta-cell apoptosis was observed, and the WT and KO mice had comparable beta-cell areas. However, ATF3 deficiency significantly reduced serum insulin levels in the KO mice without affecting insulin sensitivity, suggesting reduced beta-cell function in the KO mice. Analyses using INS-1 cells and primary islets support the notion that this defect is due, at least partly, to reduced insulin gene transcription in the KO islets without detectable reduction in glucose-induced calcium influx, a critical step for insulin secretion. In conclusion, our results support a model in which, before apoptosis becomes obvious, expression of ATF3 can be beneficial by helping beta-cells to cope with higher metabolic demand.
Collapse
Affiliation(s)
- Erik J Zmuda
- Molecular, Cellular and Developmental Biology Program, Department of Molecular and Cellular Biochemistry, Center for Molecular Neurobiology, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
26
|
Insulin expressed from endogenously active glucose-responsive EGR1 promoter in bone marrow mesenchymal stromal cells as diabetes therapy. Gene Ther 2010; 17:592-605. [PMID: 20182520 DOI: 10.1038/gt.2010.12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in islet transplantation have encouraged efforts to create alternative insulin-secreting cells that overcome limitations associated with current therapies. We have recently demonstrated durable correction of murine and porcine diabetes by syngeneic and autologous implantation, respectively, of primary hepatocytes non-virally modified with a glucose-responsive promoter-regulated insulin transgene. As surgical procurement of hepatocytes may be clinically unappealing, we here describe primary bone marrow-derived mesenchymal stromal cells (BMMSC) as alternative insulin-secreting bioimplants. BMMSC are abundant and less invasively procured for clinical autologous transplantation. Electroporation achieved high transgene transfection efficiencies in human BMMSC (HBMMSC) and porcine BMMSC (PBMMSC). We transcriptomically identified an HBMMSC glucose-responsive promoter, EGR1. This endogenously active promoter drove rapid glucose-induced transgene secretions in BMMSC with near-physiological characteristics during static and kinetic induction assays simulating normal human islets. Preparatory to preclinical transplantation, PBMMSC transfected with the circular insulin transgene vector or stably integrated with the linearized vector were evaluated by intrahepatic or intraperitoneal xenotransplantation in streptozotocin-diabetic and non-diabetic NOD-SCID mice. Hyperglycemia, glucose tolerance and body weight were corrected in a dose-responsive manner. Hypoglycemia was not observed even in identically implanted non-diabetic mice. These results establish human EGR1 promoter-insulin construct-modified BMMSC as safe and efficient insulin-secreting bioimplants for diabetes treatment.
Collapse
|
27
|
Microassay for glucose-induced preproinsulin mRNA expression to assess islet functional potency for islet transplantation. Transplantation 2010; 89:146-54. [PMID: 20098276 DOI: 10.1097/tp.0b013e3181c4218d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The capacity for insulin synthesis in islets is important for islet transplantation to succeed. We developed a microassay that evaluates the potency of human islets by measuring changes in glucose-induced human insulin gene (INS) expression using a single islet in octuplicate samples. METHODS Poly (A) messenger RNA (mRNA) was purified from a set of single handpicked human islets. Glucose-induced mature (postspliced) and premature (prespliced) insulin mRNA were quantified by reverse-transcriptase polymerase chain reaction using several insulin mRNA primers designed at different locations including, intron, exon, and an exon-intron junction. RESULTS The synthesis of premature INS mRNA was significantly increased in islets exposed to high glucose for 16 vs. 4 hr (P<0.01), whereas mature INS mRNA showed no difference. Glucose-induced premature INS mRNA synthesis was attenuated in heat-damaged islets. Stimulation index (SI) calculated by normalizing premature by mature INS mRNA (SI_INS mRNA) positively correlated with SI of insulin release (SI_16h insulin) from the same set of islets during 16-hr incubation in high or low glucose media, and SI of glucose-mediated insulin release obtained from the same islet lot in a perifusion system (n=12). Furthermore, linear multiple regression analysis using SI_INS mRNA and SI_16h insulin predicted islet transplantation outcome in nonobese diabetic (NOD) scid mice (n=8). CONCLUSION The measurement of glucose-induced premature INS mRNA normalized by mature INS mRNA can be used to assess the functional quality of human islets and may predict islet function after transplantation in type 1 diabetic patients.
Collapse
|
28
|
Leibiger B, Moede T, Uhles S, Barker CJ, Creveaux M, Domin J, Berggren PO, Leibiger IB. Insulin-feedback via PI3K-C2alpha activated PKBalpha/Akt1 is required for glucose-stimulated insulin secretion. FASEB J 2010; 24:1824-37. [PMID: 20061534 DOI: 10.1096/fj.09-148072] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Phosphatidylinositide 3-kinases (PI3Ks) play central roles in insulin signal transduction. While the contribution of class Ia PI3K members has been extensively studied, the role of class II members remains poorly understood. The diverse actions of class II PI3K-C2alpha have been attributed to its lipid product PI(3)P. By applying pharmacological inhibitors, transient overexpression and small-interfering RNA-based knockdown of PI3K and PKB/Akt isoforms, together with PI-lipid profiling and live-cell confocal and total internal reflection fluorescence microscopy, we now demonstrate that in response to insulin, PI3K-C2alpha generates PI(3,4)P(2), which allows the selective activation of PKBalpha/Akt1. Knockdown of PI3K-C2alpha expression and subsequent reduction of PKBalpha/Akt1 activity in the pancreatic beta-cell impaired glucose-stimulated insulin release, at least in part, due to reduced glucokinase expression and increased AS160 activity. Hence, our results identify signal transduction via PI3K-C2alpha as a novel pathway whereby insulin activates PKB/Akt and thus discloses PI3K-C2alpha as a potential drugable target in type 2 diabetes. The high degree of codistribution of PI3K-C2alpha and PKBalpha/Akt1 with insulin receptor B type, but not A type, in the same plasma membrane microdomains lends further support to the concept that selectivity in insulin signaling is achieved by the spatial segregation of signaling events.
Collapse
Affiliation(s)
- Barbara Leibiger
- Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Fontés G, Semache M, Hagman DK, Tremblay C, Shah R, Rhodes CJ, Rutter J, Poitout V. Involvement of Per-Arnt-Sim Kinase and extracellular-regulated kinases-1/2 in palmitate inhibition of insulin gene expression in pancreatic beta-cells. Diabetes 2009; 58:2048-58. [PMID: 19502418 PMCID: PMC2731539 DOI: 10.2337/db08-0579] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Prolonged exposure of pancreatic beta-cells to simultaneously elevated levels of fatty acids and glucose (glucolipotoxicity) impairs insulin gene transcription. However, the intracellular signaling pathways mediating these effects are mostly unknown. This study aimed to ascertain the role of extracellular-regulated kinases (ERKs)1/2, protein kinase B (PKB), and Per-Arnt-Sim kinase (PASK) in palmitate inhibition of insulin gene expression in pancreatic beta-cells. RESEARCH DESIGN AND METHODS MIN6 cells and isolated rat islets were cultured in the presence of elevated glucose, with or without palmitate or ceramide. ERK1/2 phosphorylation, PKB phosphorylation, and PASK expression were examined by immunoblotting and real-time PCR. The role of these kinases in insulin gene expression was assessed using pharmacological and molecular approaches. RESULTS Exposure of MIN6 cells and islets to elevated glucose induced ERK1/2 and PKB phosphorylation, which was further enhanced by palmitate. Inhibition of ERK1/2, but not of PKB, partially prevented the inhibition of insulin gene expression in the presence of palmitate or ceramide. Glucose-induced expression of PASK mRNA and protein levels was reduced in the presence of palmitate. Overexpression of wild-type PASK increased insulin and pancreatic duodenal homeobox-1 gene expression in MIN6 cells and rat islets incubated with glucose and palmitate, whereas overexpression of a kinase-dead PASK mutant in rat islets decreased expression of insulin and pancreatic duodenal homeobox-1 and increased C/EBPbeta expression. CONCLUSIONS Both the PASK and ERK1/2 signaling pathways mediate palmitate inhibition of insulin gene expression. These findings identify PASK as a novel mediator of glucolipotoxicity on the insulin gene in pancreatic beta-cells.
Collapse
Affiliation(s)
- Ghislaine Fontés
- Montreal Diabetes Research Center, CRCHUM, University of Montréal, Québec, Canada
- Department of Medicine, University of Montréal, Québec, Canada
| | - Meriem Semache
- Montreal Diabetes Research Center, CRCHUM, University of Montréal, Québec, Canada
| | - Derek K. Hagman
- Montreal Diabetes Research Center, CRCHUM, University of Montréal, Québec, Canada
- Department of Medicine, University of Montréal, Québec, Canada
| | - Caroline Tremblay
- Montreal Diabetes Research Center, CRCHUM, University of Montréal, Québec, Canada
| | - Ramila Shah
- Kovler Diabetes Center, University of Chicago, Chicago, Illinois
| | | | - Jared Rutter
- Division of Endocrinology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Vincent Poitout
- Montreal Diabetes Research Center, CRCHUM, University of Montréal, Québec, Canada
- Department of Medicine, University of Montréal, Québec, Canada
- Corresponding author: Vincent Poitout,
| |
Collapse
|
30
|
Martens GA, Pipeleers D. Glucose, regulator of survival and phenotype of pancreatic beta cells. VITAMINS AND HORMONES 2009; 80:507-39. [PMID: 19251048 DOI: 10.1016/s0083-6729(08)00617-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The key role of glucose in regulating insulin release by the pancreatic beta cell population is not only dependent on acute stimulus-secretion coupling mechanisms but also on more long-term influences on beta cell survival and phenotype. Glucose serves as a major survival factor for beta cells via at least three actions: it prevents an oxidative redox state, it suppresses a mitochondrial apoptotic program that is triggered at reduced mitochondrial metabolic activity and it induces genes needed for the cellular responsiveness to glucose and to growth factors. Glucose-regulated pathways may link protein synthetic and proliferative activities, making glucose a permissive factor for beta cell proliferation, in check with metabolic needs. Conditions of inadequate glucose metabolism in beta cells are not only leading to deregulation of acute secretory responses but should also be considered as causes for increased apoptosis and reduced formation of beta cells, and loss of their normal differentiated state.
Collapse
|
31
|
Khoo S, Gibson TB, Arnette D, Lawrence M, January B, McGlynn K, Vanderbilt CA, Griffen SC, German MS, Cobb MH. MAP kinases and their roles in pancreatic beta-cells. Cell Biochem Biophys 2009; 40:191-200. [PMID: 15289654 DOI: 10.1385/cbb:40:3:191] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We discuss our work examining regulation and functions of mitogen-activated protein kinases, particularly ERK1 and ERK2, in pancreatic beta-cells. These enzymes are activated by glucose, other nutrients, and insulinogenic hormones. Their activation by these agents is calcium-dependent. A number of other stimuli also activate ERK1/2, but by mechanisms distinct from those involved in nutrient sensing. Inhibition of ERK1/2 has no apparent effect on insulin secretion measured after 2 h. On the other hand, ERK1/2 activity is required for maximal glucose-dependent activation of the insulin gene promoter. The primary effort has focused on INS-1 cell lines, with supporting and confirmatory studies in intact islets and other beta-cell lines, indicating the generality of our findings in beta-cell function. Thus ERK1/2 participate in transmitting glucose-sensing information to beta-cell functions. These kinases most likely act directly and indirectly on multiple pathways that regulate beta-cell function and, in particular, to transduce an elevated glucose signal into insulin gene transcription.
Collapse
Affiliation(s)
- Shih Khoo
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hult M, Ortsäter H, Schuster G, Graedler F, Beckers J, Adamski J, Ploner A, Jörnvall H, Bergsten P, Oppermann U. Short-term glucocorticoid treatment increases insulin secretion in islets derived from lean mice through multiple pathways and mechanisms. Mol Cell Endocrinol 2009; 301:109-16. [PMID: 18984029 DOI: 10.1016/j.mce.2008.09.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 09/30/2008] [Accepted: 09/30/2008] [Indexed: 11/15/2022]
Abstract
Chronic exposure to elevated levels of glucocorticoids leads to metabolic dysfunctions with hyperglycemia and insulin resistance. Long-term treatment with glucocorticoids induces severe impairment of glucose-stimulated insulin secretion. We analyzed the effects of short-, and medium-term (2-120h) treatment with 50-200nM glucocorticoids on primary pancreatic islet cultures derived from lean C57BL/6J mice. In contrast to animal models of insulin resistance, beta-cells from lean mice respond with an increased glucose-stimulated insulin secretion, with a peak effect around 18-24h of treatment. Analyses of the insulin secretion response reveal that early and late phase responses are dissociated upon glucocorticoid treatment. Whereas late phase responses return to basal levels after long treatment, early phase responses remain increased over several days. Increased insulin secretion is also obtained by incubation with the inactive glucocorticoid dehydrocorticosterone, pointing to an important role of the enzyme 11beta-hydroxysteroid dehydrogenase type 1 in mediating glucocorticoid effects in beta-cells. Transcript profiling revealed differential regulation of genes involved in mediation of signal transduction, insulin secretion, stress and inflammatory responses. The results show that short- to medium-term glucocorticoid treatment of pancreatic islets derived from lean mice leads to an increased insulin release and may constitute an important parameter in changing towards a pro-diabetic phenotype.
Collapse
Affiliation(s)
- Malin Hult
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Abstract
The appropriate function of insulin-producing pancreatic beta-cells is crucial for the regulation of glucose homeostasis, and its impairment leads to diabetes mellitus, the most common metabolic disorder in man. In addition to glucose, the major nutrient factor, inputs from the nervous system, humoral components, and cell-cell communication within the islet of Langerhans act together to guarantee the release of appropriate amounts of insulin in response to changes in blood glucose levels. Data obtained within the past decade in several laboratories have revitalized controversy over the autocrine feedback action of secreted insulin on beta-cell function. Although insulin historically has been suggested to exert a negative effect on beta-cells, recent data provide evidence for a positive role of insulin in transcription, translation, ion flux, insulin secretion, proliferation, and beta-cell survival. Current insights on the role of insulin on pancreatic beta-cell function are discussed.
Collapse
Affiliation(s)
- Ingo B Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
35
|
Nino-Fong R, Collins T, Chan C. Nutrigenomics, beta-cell function and type 2 diabetes. Curr Genomics 2008; 8:1-29. [PMID: 18645625 PMCID: PMC2474685 DOI: 10.2174/138920207780076947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 08/12/2006] [Accepted: 10/13/2006] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION The present investigation was designed to investigate the accuracy and precision of lactate measurement obtained with contemporary biosensors (Chiron Diagnostics, Nova Biomedical) and standard enzymatic photometric procedures (Sigma Diagnostics, Abbott Laboratories, Analyticon). MATERIALS AND METHODS Measurements were performed in vitro before and after the stepwise addition of 1 molar sodium lactate solution to samples of fresh frozen plasma to systematically achieve lactate concentrations of up to 20 mmol/l. RESULTS Precision of the methods investigated varied between 1% and 7%, accuracy ranged between 2% and -33% with the variability being lowest in the Sigma photometric procedure (6%) and more than 13% in both biosensor methods. CONCLUSION Biosensors for lactate measurement provide adequate accuracy in mean with the limitation of highly variable results. A true lactate value of 6 mmol/l was found to be presented between 4.4 and 7.6 mmol/l or even with higher difference. Biosensors and standard enzymatic photometric procedures are only limited comparable because the differences between paired determinations presented to be several mmol. The advantage of biosensors is the complete lack of preanalytical sample preparation which appeared to be the major limitation of standard photometry methods.
Collapse
Affiliation(s)
- R Nino-Fong
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PE C1A 4P3 Canada
| | | | | |
Collapse
|
36
|
Collier JJ, Zhang P, Pedersen KB, Burke SJ, Haycock JW, Scott DK. c-Myc and ChREBP regulate glucose-mediated expression of the L-type pyruvate kinase gene in INS-1-derived 832/13 cells. Am J Physiol Endocrinol Metab 2007; 293:E48-56. [PMID: 17341548 DOI: 10.1152/ajpendo.00357.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased glucose flux generates metabolic signals that control transcriptional programs through poorly understood mechanisms. Previously, we demonstrated a necessity in hepatocytes for c-Myc in the regulation of a prototypical glucose-responsive gene, L-type pyruvate kinase (L-PK) (Collier JJ, Doan TT, Daniels MC, Schurr JR, Kolls JK, Scott DK. J Biol Chem 278: 6588-6595, 2003). Pancreatic beta-cells have many features in common with hepatocytes with respect to glucose-regulated gene expression, and in the present study we determined whether c-Myc was required for the L-PK glucose response in insulin-secreting (INS-1)-derived 832/13 cells. Glucose increased c-Myc abundance and association with its heterodimer partner, Max. Manipulations that prevented the formation of a functional c-Myc/Max heterodimer reduced the expression of the L-PK gene. In addition, glucose augmented the binding of carbohydrate response element binding protein (ChREBP), c-Myc, and Max to the promoter of the L-PK gene in situ. The transactivation of ChREBP, but not of c-Myc, was dependent on high glucose concentrations in the contexts of either the L-PK promoter or a heterologous promoter. The glucose-mediated transactivation of ChREBP was independent of mutations that alter phosphorylation sites thought to regulate the cellular location of ChREBP. We conclude that maximal glucose-induced expression of the L-PK gene in INS-1-derived 832/13 cells involves increased c-Myc abundance, recruitment of c-Myc, Max, and ChREBP to the promoter, and a glucose-stimulated increase in ChREBP transactivation.
Collapse
Affiliation(s)
- J Jason Collier
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, E1147 BST, 200 Lothrop St., Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
37
|
Clark GO, Yochem RL, Axelman J, Sheets TP, Kaczorowski DJ, Shamblott MJ. Glucose responsive insulin production from human embryonic germ (EG) cell derivatives. Biochem Biophys Res Commun 2007; 356:587-93. [PMID: 17383613 PMCID: PMC1924909 DOI: 10.1016/j.bbrc.2007.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 03/01/2007] [Indexed: 01/05/2023]
Abstract
Type 1 diabetes mellitus subjects millions to a daily burden of disease management, life threatening hypoglycemia and long-term complications such as retinopathy, nephropathy, heart disease, and stroke. Cell transplantation therapies providing a glucose-regulated supply of insulin have been implemented clinically, but are limited by safety, efficacy and supply considerations. Stem cells promise a plentiful and flexible source of cells for transplantation therapies. Here, we show that cells derived from human embryonic germ (EG) cells express markers of definitive endoderm, pancreatic and beta-cell development, glucose sensing, and production of mature insulin. These cells integrate functions necessary for glucose responsive regulation of preproinsulin mRNA and expression of insulin C-peptide in vitro. Following transplantation into mice, cells become insulin and C-peptide immunoreactive and produce plasma C-peptide in response to glucose. These findings suggest that EG cell derivatives may eventually serve as a source of insulin producing cells for the treatment of diabetes.
Collapse
Affiliation(s)
- Gregory O Clark
- Division of Endocrinology and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | |
Collapse
|
38
|
Uhles S, Moede T, Leibiger B, Berggren PO, Leibiger IB. Selective gene activation by spatial segregation of insulin receptor B signaling. FASEB J 2007; 21:1609-21. [PMID: 17264162 DOI: 10.1096/fj.06-7589com] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Insulin exerts pleiotropic effects at the cellular level. Signaling via the two isoforms of the insulin receptor (IR) may explain the activation of different signaling cascades, while it remains to be explored how selectivity is achieved when utilizing the same IR isoform. We now demonstrate that insulin-stimulated transcription of c-fos and glucokinase genes is activated simultaneously in the insulin-producing beta-cell via IR-B localized in different cellular compartments. Insulin activates the glucokinase gene from plasma membrane-standing IR-B, while c-fos gene activation is dependent on clathrin-mediated IR-B-endocytosis and signaling from early endosomes. Moreover, glucokinase gene up-regulation requires the integrity of the juxtamembrane IR-B NPEY-motif and signaling via PI3K-C2alpha-like/PDK1/PKB, while c-fos gene activation requires the intact C-terminal YTHM-motif and signaling via PI3K Ia/Shc/MEK1/ERK. By using IR-B as an example it is thus possible to demonstrate how spatial segregation allows simultaneous and selective signaling via the same receptor isoform in the same cell.
Collapse
Affiliation(s)
- Sabine Uhles
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
39
|
Castillo AF, Cornejo Maciel F, Castilla R, Duarte A, Maloberti P, Paz C, Podestá EJ. cAMP increases mitochondrial cholesterol transport through the induction of arachidonic acid release inside this organelle in Leydig cells. FEBS J 2007; 273:5011-21. [PMID: 17087723 DOI: 10.1111/j.1742-4658.2006.05496.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have investigated the direct effect of arachidonic acid on cholesterol transport in intact cells or isolated mitochondria from steroidogenic cells and the effect of cyclic-AMP on the specific release of this fatty acid inside the mitochondria. We show for the first time that cyclic-AMP can regulate the release of arachidonic acid in a specialized compartment of MA-10 Leydig cells, e.g. the mitochondria, and that the fatty acid induces cholesterol transport through a mechanism different from the classical pathway. Arachidonic acid and arachidonoyl-CoA can stimulate cholesterol transport in isolated mitochondria from nonstimulated cells. The effect of arachidonoyl-CoA is inhibited by the reduction in the expression or in the activity of a mitochondrial thioesterase that uses arachidonoyl-CoA as a substrate to release arachidonic acid. cAMP-induced arachidonic acid accumulation into the mitochondria is also reduced when the mitochondrial thioesterase activity or expression is blocked. This new feature in the regulation of cholesterol transport by arachidonic acid and the release of arachidonic acid in specialized compartment of the cells could offer novel means for understanding the regulation of steroid synthesis but also would be important in other situations such as neuropathological disorders or oncology disorders, where cholesterol transport plays an important role.
Collapse
Affiliation(s)
- Ana Fernanda Castillo
- Department of Biochemistry, School of Medicine, University of Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
40
|
Ren J, Jin P, Wang E, Liu E, Harlan DM, Li X, Stroncek DF. Pancreatic islet cell therapy for type I diabetes: understanding the effects of glucose stimulation on islets in order to produce better islets for transplantation. J Transl Med 2007; 5:1. [PMID: 17201925 PMCID: PMC1769476 DOI: 10.1186/1479-5876-5-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 01/03/2007] [Indexed: 01/28/2023] Open
Abstract
While insulin replacement remains the cornerstone treatment for type I diabetes mellitus (T1DM), the transplantation of pancreatic islets of Langerhans has the potential to become an important alternative. And yet, islet transplant therapy is limited by several factors, including far too few donor pancreases. Attempts to expand mature islets or to produce islets from stem cells are far from clinical application. The production and expansion of the insulin-producing cells within the islet (so called beta cells), or even creating cells that secrete insulin under appropriate physiological control, has proven difficult. The difficulty is explained, in part, because insulin synthesis and release is complex, unique, and not entirely characterized. Understanding beta-cell function at the molecular level will likely facilitate the development of techniques to manufacture beta-cells from stem cells. We will review islet transplantation, as well as the mechanisms underlying insulin transcription, translation and glucose stimulated insulin release.
Collapse
Affiliation(s)
- Jiaqiang Ren
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ping Jin
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ena Wang
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eric Liu
- National Institute of Diabetes, Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David M Harlan
- National Institute of Diabetes, Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xin Li
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David F Stroncek
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
41
|
Solinas G, Naugler W, Galimi F, Lee MS, Karin M. Saturated fatty acids inhibit induction of insulin gene transcription by JNK-mediated phosphorylation of insulin-receptor substrates. Proc Natl Acad Sci U S A 2006; 103:16454-9. [PMID: 17050683 PMCID: PMC1637603 DOI: 10.1073/pnas.0607626103] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
JNKs are attractive targets for treatment of obesity and type-2 diabetes. A sustained increase in JNK activity was observed in dietary and genetic models of obesity in mice, whereas JNK deficiency prevented obesity-induced insulin resistance. A similar insulin-sensitizing effect was seen upon treatment of obese mice with JNK inhibitors. We now demonstrate that treatment with the saturated fatty acid palmitic acid results in sustained JNK activation and insulin resistance in primary mouse hepatocytes and pancreatic beta-cells. In the latter, palmitic acid treatment inhibits glucose-induced insulin gene transcription, in part, by interfering with autocrine insulin signaling through phosphorylation of insulin-receptor substrates 1 and 2 at sites that interfere with binding to activated insulin receptors. This mechanism may account for the induction of central insulin resistance by free fatty acids.
Collapse
Affiliation(s)
- Giovanni Solinas
- *Laboratory of Gene Regulation and Signal Transduction, School of Medicine, University of California at San Diego, 9500 Gilman Drive, MC 0723, La Jolla, CA 92093-0723
| | - Willscott Naugler
- *Laboratory of Gene Regulation and Signal Transduction, School of Medicine, University of California at San Diego, 9500 Gilman Drive, MC 0723, La Jolla, CA 92093-0723
| | - Francesco Galimi
- Department of Biomedical Sciences/Instituto Nazionale di Biostrutture e Biosistemi, University of Sassari Medical School, 07100 Sassari, Italy; and
| | - Myung-Shik Lee
- Department of Medicine, Samsung Medical Center, 50 Irwon-dong Kangnam-ku, Seoul 135-710, Korea
| | - Michael Karin
- *Laboratory of Gene Regulation and Signal Transduction, School of Medicine, University of California at San Diego, 9500 Gilman Drive, MC 0723, La Jolla, CA 92093-0723
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Muller D, Huang GC, Amiel S, Jones PM, Persaud SJ. Identification of insulin signaling elements in human beta-cells: autocrine regulation of insulin gene expression. Diabetes 2006; 55:2835-42. [PMID: 17003350 DOI: 10.2337/db06-0532] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although many studies using rodent islets and insulinoma cell lines have been performed to determine the role of insulin in the regulation of islet function, the autocrine effect of insulin on insulin gene expression is still controversial, and no consensus has yet been achieved. Because very little is known about the insulin signaling pathway in human islets, we used single-cell RT-PCR to profile the expression of genes potentially involved in the insulin signaling cascade in human beta-cells. The detection of mRNAs for insulin receptor (IR)A and IRB; insulin receptor substrate (IRS)-1 and IRS-2; phosphoinositide 3-kinase (PI3K) catalytic subunits p110alpha, p110beta, PI3KC2alpha, and PI3KC2gamma; phosphoinositide-dependent protein kinase-1; protein kinase B (PKB)alpha, PKBbeta, and PKBgamma in the beta-cell population suggests the presence of a functional insulin signaling cascade in human beta-cells. Small interfering RNA-induced reductions in IR expression in human islets completely suppressed glucose-stimulated insulin gene expression, suggesting that insulin regulates its own gene expression in human beta-cells. Defects in this regulation may accentuate the metabolic dysfunction associated with type 2 diabetes.
Collapse
Affiliation(s)
- Dany Muller
- Beta Cell Development & Function Group, Division of Reproduction and Endocrinology, School of Biomedical and Health Sciences, King's College London, London SE1 1UL, UK.
| | | | | | | | | |
Collapse
|
43
|
Hernández-Sánchez C, Mansilla A, de la Rosa EJ, de Pablo F. Proinsulin in development: New roles for an ancient prohormone. Diabetologia 2006; 49:1142-50. [PMID: 16596360 DOI: 10.1007/s00125-006-0232-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 09/27/2005] [Indexed: 10/24/2022]
Abstract
In postnatal organisms, insulin is well known as an essential anabolic hormone responsible for maintaining glucose homeostasis. Its biosynthesis by the pancreatic beta cell has been considered a model of tissue-specific gene expression. However, proinsulin mRNA and protein have been found in embryonic stages before the formation of the pancreatic primordium, and later, in extrapancreatic tissues including the nervous system. Phylogenetic studies have also confirmed that production of insulin-like peptides antecedes the morphogenesis of a pancreas, and that these peptides contribute to normal development. In recent years, other roles for insulin distinct from its metabolic function have emerged also in vertebrates. During embryonic development, insulin acts as a survival factor and is involved in early morphogenesis. These findings are consistent with the observation that, at these stages, the proinsulin gene product remains as the precursor form, proinsulin. Independent of its low metabolic activity, proinsulin stimulates proliferation in developing neuroretina, as well as cell survival and cardiogenesis in early embryos. Insulin/proinsulin levels are finely regulated during development, since an excess of the protein interferes with correct morphogenesis and is deleterious for the embryo. This fine-tuned regulation is achieved by the expression of alternative embryonic proinsulin transcripts that have diminished translational activity.
Collapse
Affiliation(s)
- C Hernández-Sánchez
- Group of Growth Factors in Vertebrate Development, Centre of Biological Investigations (CIB), Spanish Council for Research (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| | | | | | | |
Collapse
|
44
|
Hernández-Sánchez C, Bártulos O, de Pablo F. Proinsulin: much more than a hormone precursor in development. Rev Endocr Metab Disord 2005; 6:211-6. [PMID: 16151625 DOI: 10.1007/s11154-005-3052-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Catalina Hernández-Sánchez
- Group of Growth Factors in Vertebrate Development, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040, Madrid, Spain.
| | | | | |
Collapse
|
45
|
Lawrence MC, McGlynn K, Park BH, Cobb MH. ERK1/2-dependent Activation of Transcription Factors Required for Acute and Chronic Effects of Glucose on the Insulin Gene Promoter. J Biol Chem 2005; 280:26751-9. [PMID: 15899886 DOI: 10.1074/jbc.m503158200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The insulin promoter is both positively and negatively regulated in response to conditions to which pancreatic beta-cells are exposed. Exposure of intact rat islets and INS-1 pancreatic beta-cells to 11 mm glucose for minutes to hours results in an enhancement in the rate of insulin gene transcription assessed with a reporter linked to the insulin gene promoter. In contrast, chronic exposure of rat islets or beta-cells to 11 mm glucose results in loss of the glucose responsiveness of the insulin gene promoter. By 48 h, glucose inhibits insulin gene promoter activity. Here we show that not only the acute effect of elevated glucose to stimulate the insulin gene promoter but also the chronic effect of elevated glucose to inhibit the insulin gene promoter depend on ERK1/2 mitogen-activated protein kinase activity. In examining the underlying mechanism, we found that acute exposure to 11 mm glucose resulted in the binding of the transcription factors NFAT and Maf to the glucose-responsive A2C1 element of the insulin gene promoter. An NFAT and C/EBP-beta complex was observed in cells chronically exposed to 11 mm glucose. Formation of NFAT-Maf and NFAT-C/EBP-beta complexes was sensitive to inhibitors of ERK1/2 and calcineurin, consistent with our previous finding that activation of ERK1/2 by glucose required calcineurin activity and the well documented regulation of NFAT by calcineurin. These results indicate that the ERK1/2 pathway modulates partners of NFAT, which may either stimulate or repress insulin gene transcription during stimulatory and chronic exposure to elevated glucose.
Collapse
Affiliation(s)
- Michael C Lawrence
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
46
|
Maloberti P, Castilla R, Castillo F, Cornejo Maciel F, Mendez CF, Paz C, Podestá EJ. Silencing the expression of mitochondrial acyl-CoA thioesterase I and acyl-CoA synthetase 4 inhibits hormone-induced steroidogenesis. FEBS J 2005; 272:1804-14. [PMID: 15794766 DOI: 10.1111/j.1742-4658.2005.04616.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Arachidonic acid and its lypoxygenated metabolites play a fundamental role in the hormonal regulation of steroidogenesis. Reduction in the expression of the mitochondrial acyl-CoA thioesterase (MTE-I) by antisense or small interfering RNA (siRNA) and of the arachidonic acid-preferring acyl-CoA synthetase (ACS4) by siRNA produced a marked reduction in steroid output of cAMP-stimulated Leydig cells. This effect was blunted by a permeable analog of cholesterol that bypasses the rate-limiting step in steroidogenesis, the transport of cholesterol from the outer to the inner mitochondrial membrane. The inhibition of steroidogenesis was overcome by addition of exogenous arachidonic acid, indicating that the enzymes are part of the mechanism responsible for arachidonic acid release involved in steroidogenesis. Knocking down the expression of MTE-I leads to a significant reduction in the expression of steroidogenic acute regulatory protein. This protein is induced by arachidonic acid and controls the rate-limiting step. Overexpression of MTE-I resulted in an increase in cAMP-induced steroidogenesis. In summary, our results demonstrate a critical role for ACS4 and MTE-I in the hormonal regulation of steroidogenesis as a new pathway of arachidonic acid release different from the classical phospholipase A2 cascade.
Collapse
Affiliation(s)
- Paula Maloberti
- Department of Biochemistry, School of Medicine, University of Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Type 2 diabetes is a complex disorder with diminished insulin secretion and insulin action contributing to the hyperglycemia and wide range of metabolic defects that underlie the disease. The contribution of glucose metabolic pathways per se in the pathogenesis of the disease remains unclear. The cellular fate of glucose begins with glucose transport and phosphorylation. Subsequent pathways of glucose utilization include aerobic and anaerobic glycolysis, glycogen formation, and conversion to other intermediates in the hexose phosphate or hexosamine biosynthesis pathways. Abnormalities in each pathway may occur in diabetic subjects; however, it is unclear whether perturbations in these may lead to diabetes or are a consequence of the multiple metabolic abnormalities found in the disease. This review is focused on the cellular fate of glucose and relevance to human type 2 diabetes.
Collapse
Affiliation(s)
- Clara Bouché
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
48
|
Bernier M. Protein tyrosine phosphatases. Cell Biochem Biophys 2004. [DOI: 10.1385/cbb:40:3:209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Håkelien AM, Gaustad KG, Collas P. Transient alteration of cell fate using a nuclear and cytoplasmic extract of an insulinoma cell line. Biochem Biophys Res Commun 2004; 316:834-41. [PMID: 15033476 DOI: 10.1016/j.bbrc.2004.02.127] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Indexed: 10/26/2022]
Abstract
We report a transient modulation of cell fate in fibroblasts briefly exposed to an extract derived from the rat insulin-producing beta cell line, INS-1E. Primary fetal rat fibroblasts were reversibly permeabilized with Streptolysin O, incubated for 1h in a 15,000g INS-1E nuclear and cytoplasmic extract, resealed, and cultured. A first marker of change in cell fate was a reduction of cell and nuclear size within days of exposure to extract such that in some instances the fibroblasts resembled INS-1E cells. Second, two beta cell transcripts, Pdx-1 and insulin, were detected in the fibroblasts for up to 4 weeks. Third, (pro)insulin labeling was detected in 5-30% of the cells for a period of 8-14 days after incubation in extract. These phenotypes were absent from fibroblasts exposed to heat-treated INS-1E extracts, a human fibroblast cell line-derived extract or buffer. The results indicate that the extract of an insulinoma-derived cell line can promote at least a transient modification of cell fate towards a beta cell phenotype in non-beta cells. Because they are easily accessible, cell extracts may represent a practical source of material for investigating the mechanisms of alteration of a nuclear and cellular program.
Collapse
Affiliation(s)
- Anne-Mari Håkelien
- Institute of Medical Biochemistry, University of Oslo, Oslo 0317, Norway
| | | | | |
Collapse
|
50
|
Uhles S, Moede T, Leibiger B, Berggren PO, Leibiger IB. Isoform-specific insulin receptor signaling involves different plasma membrane domains. ACTA ACUST UNITED AC 2004; 163:1327-37. [PMID: 14691140 PMCID: PMC2173728 DOI: 10.1083/jcb.200306093] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In pancreatic beta-cells, insulin selectively up-regulates the transcription of its own gene and that of the glucokinase gene by signaling through the two isoforms of the insulin receptor, i.e., A-type (Ex11-) and B-type (Ex11+), using different signaling pathways. However, the molecular mechanism(s) that allows the discrete activation of signaling cascades via the two receptor isoforms remains unclear. Here we show that activation of the insulin promoter via A-type and of the glucokinase promoter via B-type insulin receptor is not dependent on receptor isoform-specific differences in internalization but on the different localization of the receptor types in the plasma membrane. Our data demonstrate that localization and function of the two receptor types depend on the 12-amino acid string encoded by exon 11, which acts as a sorting signal rather than as a physical spacer. Moreover, our data suggest that selective activation of the insulin and glucokinase promoters occurs by signaling from noncaveolae lipid rafts that are differently sensitive toward cholesterol depletion.
Collapse
Affiliation(s)
- Sabine Uhles
- The Rolf Luft Center for Diabetes Research, Department of Molecular Medicine, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | | | | | | | | |
Collapse
|