1
|
Rodríguez-Fernández JL, Criado-García O. A meta-analysis indicates that the regulation of cell motility is a non-intrinsic function of chemoattractant receptors that is governed independently of directional sensing. Front Immunol 2022; 13:1001086. [PMID: 36341452 PMCID: PMC9630654 DOI: 10.3389/fimmu.2022.1001086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Chemoattraction, defined as the migration of a cell toward a source of a chemical gradient, is controlled by chemoattractant receptors. Chemoattraction involves two basic activities, namely, directional sensing, a molecular mechanism that detects the direction of a source of chemoattractant, and actin-based motility, which allows the migration of a cell towards it. Current models assume first, that chemoattractant receptors govern both directional sensing and motility (most commonly inducing an increase in the migratory speed of the cells, i.e. chemokinesis), and, second, that the signaling pathways controlling both activities are intertwined. We performed a meta-analysis to reassess these two points. From this study emerge two main findings. First, although many chemoattractant receptors govern directional sensing, there are also receptors that do not regulate cell motility, suggesting that is the ability to control directional sensing, not motility, that best defines a chemoattractant receptor. Second, multiple experimental data suggest that receptor-controlled directional sensing and motility can be controlled independently. We hypothesize that this independence may be based on the existence of separated signalling modules that selectively govern directional sensing and motility in chemotactic cells. Together, the information gathered can be useful to update current models representing the signalling from chemoattractant receptors. The new models may facilitate the development of strategies for a more effective pharmacological modulation of chemoattractant receptor-controlled chemoattraction in health and disease.
Collapse
|
2
|
Polat A, Tunc T, Erdem G, Yerebasmaz N, Tas A, Beken S, Basbozkurt G, Saldir M, Zenciroglu A, Yaman H. Interleukin-8 and Its Receptors in Human Milk from Mothers of Full-Term and Premature Infants. Breastfeed Med 2016; 11:247-51. [PMID: 27105439 DOI: 10.1089/bfm.2015.0186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In addition to its nutritional benefits, human milk also has bioactive elements. Limited immunological functions of newborns are supported and altered by the immunological elements of mother milk. Chemokines are of importance among these immune factors. Interleukin-8 (IL-8) has been demonstrated in mother's milk, and its receptors, CXC chemokine receptors (CXCR)-1 and CXCR-2, were detected on cells, responsible for immunological reactions and mammary glandular cells. The soluble forms of these receptors are yet to be described in human milk. In this study, it was aimed to assess the IL-8 levels and the concentrations of its receptors in colostrum and mature mother's milk in regard to preterm and term delivery. The results of this study indicated a decline in IL-8 levels with the lactation stage, but no difference was observed between term and preterm mother's milk. Regarding the CXCR-1 and CXCR-2, the concentrations of these receptors were similar in both colostrum and mature milk. Furthermore, there was not any significant difference between term and preterm mother's milk. In conclusion, this is the first study to investigate the concentrations of CXCR-1 and CXCR-2 with the levels of IL-8 in colostrum and mature human milk of term and preterm newborns. The alterations in IL-8 levels were similar in some of the studies reported. CXCR-1 and CXCR-2 levels did not demonstrate any significant difference. Further studies are required to investigate the soluble forms of these receptors and their relation to IL-8 with larger cohort.
Collapse
Affiliation(s)
- Adem Polat
- 1 Division of Neonatology, Department of Pediatrics, Gulhane Military Medical Academy , Ankara, Turkey
| | - Turan Tunc
- 1 Division of Neonatology, Department of Pediatrics, Gulhane Military Medical Academy , Ankara, Turkey
| | - Galip Erdem
- 2 Department of Pediatrics, Gulhane Military Medical Academy , Ankara, Turkey
| | - Neslihan Yerebasmaz
- 3 Department of Obstetrics and Gynecology, Etlik Zübeyde Hanım Maternity and Women's Health Teaching and Research Hospital , Ankara, Turkey
| | - Ahmet Tas
- 4 Department of Clinical Biochemistry, Gulhane Military Medical Academy , Ankara, Turkey
| | - Serdar Beken
- 5 Division of Neonatology, Department of Pediatrics, Dr. Sami Ulus Children's Hospital , Ankara, Turkey
| | - Gokalp Basbozkurt
- 2 Department of Pediatrics, Gulhane Military Medical Academy , Ankara, Turkey
| | - Mehmet Saldir
- 2 Department of Pediatrics, Gulhane Military Medical Academy , Ankara, Turkey
| | - Aysegul Zenciroglu
- 5 Division of Neonatology, Department of Pediatrics, Dr. Sami Ulus Children's Hospital , Ankara, Turkey
| | - Halil Yaman
- 4 Department of Clinical Biochemistry, Gulhane Military Medical Academy , Ankara, Turkey
| |
Collapse
|
3
|
Weitzenfeld P, Kossover O, Körner C, Meshel T, Wiemann S, Seliktar D, Legler DF, Ben-Baruch A. Chemokine axes in breast cancer: factors of the tumor microenvironment reshape the CCR7-driven metastatic spread of luminal-A breast tumors. J Leukoc Biol 2016; 99:1009-25. [PMID: 26936935 DOI: 10.1189/jlb.3ma0815-373r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 02/04/2016] [Indexed: 12/16/2022] Open
Abstract
Chemokine axes have been shown to mediate site-specific metastasis in breast cancer, but their relevance to different subtypes has been hardly addressed. Here, with the focus on the CCR7-CCL21 axis, patient datasets demonstrated that luminal-A tumors express relatively low CCR7 levels compared with more aggressive disease subtypes. Furthermore, lymph node metastasis was not associated with high CCR7 levels in luminal-A patients. The metastatic pattern of luminal-A breast tumors may be influenced by the way luminal-A tumor cells interpret signals provided by factors of the primary tumor microenvironment. Thus, CCR7-expressing human luminal-A cells were stimulated simultaneously by factors representing 3 tumor microenvironment arms typical of luminal-A tumors, hormonal, inflammatory, and growth stimulating: estrogen + TNF-α + epidermal growth factor. Such tumor microenvironment stimulation down-regulated the migration of CCR7-expressing tumor cells toward CCL21 and inhibited the formation of directional protrusions toward CCL21 in a novel 3-dimensional hydrogel system. CCL21-induced migration of CCR7-expressing tumor cells depended on PI3K and MAPK activation; however, when CCR7-expressing cancer cells were prestimulated by tumor microenvironment factors, CCL21 could not effectively activate these signaling pathways. In vivo, pre-exposure of the tumor cells to tumor microenvironment factors has put restraints on CCL21-mediated lymph node-homing cues and shifted the metastatic pattern of CCR7-expressing cells to the aggressive phenotype of dissemination to bones. Several of the aspects were also studied in the CXCR4-CXCL12 system, demonstrating similar patient and in vitro findings. Thus, we provide novel evidence to subtype-specific regulation of the CCR7-CCL21 axis, with more general implications to chemokine-dependent patterns of metastatic spread, revealing differential regulation in the luminal-A subtype.
Collapse
Affiliation(s)
- Polina Weitzenfeld
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Olga Kossover
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Cindy Körner
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany; and
| | - Tsipi Meshel
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany; and
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Daniel F Legler
- Biotechnology Institute Thurgau at the University of Konstanz, Konstanz, Germany
| | - Adit Ben-Baruch
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel;
| |
Collapse
|
4
|
Kamalakar A, Bendre MS, Washam CL, Fowler TW, Carver A, Dilley JD, Bracey JW, Akel NS, Margulies AG, Skinner RA, Swain FL, Hogue WR, Montgomery CO, Lahiji P, Maher JJ, Leitzel KE, Ali SM, Lipton A, Nicholas RW, Gaddy D, Suva LJ. Circulating interleukin-8 levels explain breast cancer osteolysis in mice and humans. Bone 2014; 61:176-85. [PMID: 24486955 PMCID: PMC3967592 DOI: 10.1016/j.bone.2014.01.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 12/31/2022]
Abstract
Skeletal metastases of breast cancer and subsequent osteolysis connote a dramatic change in the prognosis for the patient and significantly increase the morbidity associated with disease. The cytokine interleukin 8 (IL-8/CXCL8) is able to directly stimulate osteoclastogenesis and bone resorption in mouse models of breast cancer bone metastasis. In this study, we determined whether circulating levels of IL-8 were associated with increased bone resorption and breast cancer bone metastasis in patients and investigated IL-8 action in vitro and in vivo in mice. Using breast cancer patient plasma (36 patients), we identified significantly elevated IL-8 levels in bone metastasis patients compared with patients lacking bone metastasis (p<0.05), as well as a correlation between plasma IL-8 and increased bone resorption (p<0.05), as measured by NTx levels. In a total of 22 ER+ and 15 ER- primary invasive ductal carcinomas, all cases examined stained positive for IL-8 expression. In vitro, human MDA-MB-231 and MDA-MET breast cancer cell lines secrete two distinct IL-8 isoforms, both of which were found to stimulate osteoclastogenesis. However, the more osteolytic MDA-MET-derived full length IL-8(1-77) had significantly higher potency than the non-osteolytic MDA-MB-231-derived IL-8(6-77), via the CXCR1 receptor. MDA-MET breast cancer cells were injected into the tibia of nude mice and 7days later treated daily with a neutralizing IL-8 monoclonal antibody. All tumor-injected mice receiving no antibody developed large osteolytic bone tumors, whereas 83% of the IL-8 antibody-treated mice had no evidence of tumor at the end of 28days and had significantly increased survival. The pro-osteoclastogenic activity of IL-8 in vivo was confirmed when transgenic mice expressing human IL-8 were examined and found to have a profound osteopenic phenotype, with elevated bone resorption and inherently low bone mass. Collectively, these data suggest that IL-8 plays an important role in breast cancer osteolysis and that anti-IL-8 therapy may be useful in the treatment of the skeletal related events associated with breast cancer.
Collapse
Affiliation(s)
- Archana Kamalakar
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Manali S Bendre
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Charity L Washam
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tristan W Fowler
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adam Carver
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Joshua D Dilley
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - John W Bracey
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nisreen S Akel
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Robert A Skinner
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Frances L Swain
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - William R Hogue
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Corey O Montgomery
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Parshawn Lahiji
- Division of Gastroenterology, San Francisco General Hospital, University of California San Francisco Liver Center, San Francisco, CA, USA
| | - Jacqueline J Maher
- Division of Gastroenterology, San Francisco General Hospital, University of California San Francisco Liver Center, San Francisco, CA, USA
| | - Kim E Leitzel
- Division of Oncology, Pennsylvania State University, Hershey Cancer Institute, Pennsylvania State Hershey Medical Center, Hershey, PA, USA
| | - Suhail M Ali
- Division of Oncology, Pennsylvania State University, Hershey Cancer Institute, Pennsylvania State Hershey Medical Center, Hershey, PA, USA
| | - Alan Lipton
- Division of Oncology, Pennsylvania State University, Hershey Cancer Institute, Pennsylvania State Hershey Medical Center, Hershey, PA, USA
| | - Richard W Nicholas
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Dana Gaddy
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Larry J Suva
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
5
|
Identification of a binding element for the cytoplasmic regulator FROUNT in the membrane-proximal C-terminal region of chemokine receptors CCR2 and CCR5. Biochem J 2014; 457:313-22. [PMID: 24128342 DOI: 10.1042/bj20130827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemokine receptors mediate the migration of leucocytes during inflammation. The cytoplasmic protein FROUNT binds to chemokine receptors CCR2 [chemokine (C-C motif) receptor 2] and CCR5, and amplifies chemotactic signals in leucocytes. Although the interaction between FROUNT and chemokine receptors is important for accurate chemotaxis, the interaction mechanism has not been elucidated. In the present study we identified a 16-amino-acid sequence responsible for high-affinity binding of FROUNT at the membrane-proximal C-terminal intracellular region of CCR2 (CCR2 Pro-C) by yeast two-hybrid analysis. Synthesized peptides corresponding to the CCR2 Pro-C sequence directly interacted with FROUNT in vitro. CCR2 Pro-C was predicted to form an amphipathic helix structure. Residues on the hydrophobic side are completely conserved among FROUNT-binding receptors, suggesting that the hydrophobic side is the responsible element for FROUNT binding. The L316T mutation to the hydrophobic side of the predicted helix decreased the affinity for FROUNT. Co-immunoprecipitation assays revealed that the CCR2 L316T mutation diminished the interaction between FROUNT and full-length CCR2 in cells. Furthermore, this mutation impaired the ability of the receptor to mediate chemotaxis. These findings provide the first description of the functional binding element in helix 8 of CCR2 for the cytosolic regulator FROUNT that mediates chemotactic signalling.
Collapse
|
6
|
Raghuwanshi SK, Su Y, Singh V, Haynes K, Richmond A, Richardson RM. The chemokine receptors CXCR1 and CXCR2 couple to distinct G protein-coupled receptor kinases to mediate and regulate leukocyte functions. THE JOURNAL OF IMMUNOLOGY 2012; 189:2824-32. [PMID: 22869904 DOI: 10.4049/jimmunol.1201114] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The chemokine receptors, CXCR1 and CXCR2, couple to Gαi to induce leukocyte recruitment and activation at sites of inflammation. Upon activation by CXCL8, these receptors become phosphorylated, desensitized, and internalized. In this study, we investigated the role of different G protein-coupled receptor kinases (GRKs) in CXCR1- and CXCR2-mediated cellular functions. To that end, short hairpin RNA was used to inhibit GRK2, 3, 5, and 6 in RBL-2H3 cells stably expressing CXCR1 or CXCR2, and CXCL8-mediated receptor activation and regulation were assessed. Inhibition of GRK2 and GRK6 increased CXCR1 and CXCR2 resistance to phosphorylation, desensitization, and internalization, respectively, and enhanced CXCL8-induced phosphoinositide hydrolysis and exocytosis in vitro. GRK2 depletion diminished CXCR1-induced ERK1/2 phosphorylation but had no effect on CXCR2-induced ERK1/2 phosphorylation. GRK6 depletion had no significant effect on CXCR1 function. However, peritoneal neutrophils from mice deficient in GRK6 (GRK6(-/-)) displayed an increase in CXCR2-mediated G protein activation but in vitro exhibited a decrease in chemotaxis, receptor desensitization, and internalization relative to wild-type (GRK6(+/+)) cells. In contrast, neutrophil recruitment in vivo in GRK6(-/-) mice was increased in response to delivery of CXCL1 through the air pouch model. In a wound-closure assay, GRK6(-/-) mice showed enhanced myeloperoxidase activity, suggesting enhanced neutrophil recruitment, and faster wound closure compared with GRK6(+/+) animals. Taken together, the results indicate that CXCR1 and CXCR2 couple to distinct GRK isoforms to mediate and regulate inflammatory responses. CXCR1 predominantly couples to GRK2, whereas CXCR2 interacts with GRK6 to negatively regulate receptor sensitization and trafficking, thus affecting cell signaling and angiogenesis.
Collapse
Affiliation(s)
- Sandeep K Raghuwanshi
- Department of Biology, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | | | | | | | | | | |
Collapse
|
7
|
Biological activity of CXCL8 forms generated by alternative cleavage of the signal peptide or by aminopeptidase-mediated truncation. PLoS One 2011; 6:e23913. [PMID: 21904597 PMCID: PMC3164136 DOI: 10.1371/journal.pone.0023913] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 07/27/2011] [Indexed: 11/19/2022] Open
Abstract
Background Posttranslational modification of chemokines is one of the mechanisms that regulate leukocyte migration during inflammation. Multiple natural NH2-terminally truncated forms of the major human neutrophil attractant interleukin-8 or CXCL8 have been identified. Although differential activity was reported for some CXCL8 forms, no biological data are available for others. Methodology/Principal Findings Aminopeptidase-cleaved CXCL8(2-77) and CXCL8(3-77), the product of alternative cleavage of the signal peptide CXCL8(-2-77) and the previously studied forms containing 77 and 72 amino acids, CXCL8(1-77) and CXCL8(6-77), were prepared by solid-phase peptide synthesis, purified and folded into active proteins. No differences in binding and calcium signaling potency were detected between CXCL8(1-77), CXCL8(-2-77), CXCL8(2-77) and CXCL8(3-77) on cells transfected with one of the human CXCL8 receptors, i.e. CXCR1 and CXCR2. However, CXCL8(-2-77) was more potent compared to CXCL8(1-77), CXCL8(2-77) and CXCL8(3-77) in signaling and in vitro chemotaxis of peripheral blood-derived human neutrophils. Moreover, CXCL8(-2-77) was less efficiently processed by plasmin into the more potent CXCL8(6-77). The truncated forms CXCL8(2-77) and CXCL8(3-77) had higher affinity for heparin than CXCL8(1-77), a property important for the presentation of CXCL8 on endothelial layers. Upon intraperitoneal injection in mice, elongated, truncated and intact CXCL8 were equally potent to recruit neutrophils to the peritoneal cavity. Conclusions In terms of their ability to induce neutrophil recruitment in vivo, the multiple CXCL8 forms may be divided in three groups. The first group includes CXCL8 proteins consisting of 75 to 79 amino acids, cleaved by aminopeptidases, with intermediate activity on neutrophils. The second group, generated through proteolytic cleavage (e.g. by Ser proteases), contains 69 to 72 amino acid forms which are highly potent neutrophil attractants in vivo. A third category is generated through the modification of the arginine in the NH2-terminal region into citrulline by peptidylarginine deiminases and has weak potency to induce neutrophil extravasation.
Collapse
|
8
|
Korniejewska A, McKnight AJ, Johnson Z, Watson ML, Ward SG. Expression and agonist responsiveness of CXCR3 variants in human T lymphocytes. Immunology 2011; 132:503-15. [PMID: 21255008 DOI: 10.1111/j.1365-2567.2010.03384.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 are involved in variety of inflammatory disorders including multiple sclerosis, rheumatoid arthritis, psoriasis and sarcoidosis. Two alternatively spliced variants of the human CXCR3-A receptor have been described, termed CXCR3-B and CXCR3-alt. Human CXCR3-B binds CXCL9, CXCL10, CXCL11 as well as an additional ligand CXCL4. In contrast, CXCR3-alt only binds CXCL11. We report that CXCL4 induces intracellular calcium mobilization as well as Akt and p44/p42 extracellular signal-regulated kinase phosphorylation, in activated human T lymphocytes. These responses have similar concentration dependence and time-courses to those induced by established CXCR3 agonists. Moreover, phosphorylation of Akt and p44/p42 is inhibited by pertussis toxin, suggesting coupling to Gα(i) protein. Surprisingly, and in contrast with the other CXCR3 agonists, stimulation of T lymphocytes with CXCL4 failed to elicit migratory responses and did not lead to loss of surface CXCR3 expression. Taken together, our findings show that, although CXCL4 is coupled to downstream biochemical machinery, its role in T cells is probably distinct from that of CXCR3-A agonists.
Collapse
Affiliation(s)
- Anna Korniejewska
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, UK
| | | | | | | | | |
Collapse
|
9
|
Schwarz N, Pruessmeyer J, Hess FM, Dreymueller D, Pantaler E, Koelsch A, Windoffer R, Voss M, Sarabi A, Weber C, Sechi AS, Uhlig S, Ludwig A. Requirements for leukocyte transmigration via the transmembrane chemokine CX3CL1. Cell Mol Life Sci 2010; 67:4233-48. [PMID: 20559678 PMCID: PMC11115548 DOI: 10.1007/s00018-010-0433-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 05/28/2010] [Accepted: 06/04/2010] [Indexed: 01/21/2023]
Abstract
The surface-expressed transmembrane CX3C chemokine ligand 1 (CX3CL1/fractalkine) induces firm adhesion of leukocytes expressing its receptor CX3CR1. After shedding by the disintegrins and metalloproteinases (ADAM) 10 and 17, CX3CL1 also acts as soluble leukocyte chemoattractant. Here, we demonstrate that transmembrane CX3CL1 expressed on both endothelial and epithelial cells induces leukocyte transmigration. To investigate the underlying mechanism, we generated CX3CR1 variants lacking the intracellular aspartate-arginine-tyrosine (DRY) motif or the intracellular C-terminus which led to a defect in intracellular calcium response and impaired ligand uptake, respectively. While both variants effectively mediated firm cell adhesion, they failed to induce transmigration and rather mediated retention of leukocytes on the CX3CL1-expressing cell layer. Targeting of ADAM10 led to increased adhesion but reduced transmigration in response to transmembrane CX3CL1, while transmigration towards soluble CX3CL1 was not affected. Thus, transmembrane CX3CL1 mediates leukocyte transmigration via the DRY motif and C-terminus of CX3CR1 and the activity of ADAM10.
Collapse
Affiliation(s)
- Nicole Schwarz
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Jessica Pruessmeyer
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Franz M. Hess
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Daniela Dreymueller
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Elena Pantaler
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Anne Koelsch
- Institute for Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Reinhard Windoffer
- Institute for Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias Voss
- Institute for Immunology, Christian-Albrechts University, 24118 Kiel, Germany
| | - Alisina Sarabi
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Christian Weber
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Antonio S. Sechi
- Institute for Biomedical Engineering–Cell Biology, RWTH Aachen University, 52074 Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Andreas Ludwig
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
10
|
Mortier A, Loos T, Gouwy M, Ronsse I, Van Damme J, Proost P. Posttranslational modification of the NH2-terminal region of CXCL5 by proteases or peptidylarginine Deiminases (PAD) differently affects its biological activity. J Biol Chem 2010; 285:29750-9. [PMID: 20630876 DOI: 10.1074/jbc.m110.119388] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Posttranslational modifications, e.g. proteolysis, glycosylation, and citrullination regulate chemokine function, affecting leukocyte migration during inflammatory responses. Here, modification of CXCL5/epithelial cell-derived neutrophil-activating protein-78 (ENA-78) by proteases or peptidylarginine deiminases (PAD) was evaluated. Slow CXCL5(1-78) processing by the myeloid cell marker aminopeptidase N/CD13 into CXCL5(2-78) hardly affected its in vitro activity, but slowed down the activation of CXCL5 by the neutrophil protease cathepsin G. PAD, an enzyme with a potentially important function in autoimmune diseases, site-specifically deiminated Arg(9) in CXCL5 to citrulline, generating [Cit(9)]CXCL5(1-78). Compared with CXCL5(1-78), [Cit(9)]CXCL5(1-78) less efficiently induced intracellular calcium signaling, phosphorylation of extracellular signal-regulated kinase, internalization of CXCR2, and in vitro neutrophil chemotaxis. In contrast, conversion of CXCL5 into the previously reported natural isoform CXCL5(8-78) provided at least 3-fold enhanced biological activity in these tests. Citrullination, but not NH(2)-terminal truncation, reduced the capacity of CXCL5 to up-regulate the expression of the integrin α-chain CD11b on neutrophils. Truncation nor citrullination significantly affected the ability of CXCL5 to up-regulate CD11a expression or shedding of CD62L. In line with the in vitro results, CXCL5(8-78) and CXCL5(9-78) induced a more pronounced neutrophil influx in vivo compared with CXCL5(1-78). Administration of 300 pmol of either CXCL5(1-78) or [Cit(9)]CXCL5(1-78) failed to attract neutrophils to the peritoneal cavity. Citrullination of the more potent CXCL5(9-78) lowers its chemotactic potency in vivo and confirms the tempering effect of citrullination in vitro. The highly divergent effects of modifications of CXCL5 on neutrophil influx underline the potential importance of tissue-specific interactions between chemokines and PAD or proteases.
Collapse
Affiliation(s)
- Anneleen Mortier
- Laboratory of Molecular Immunology, Rega Institute, KU Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
11
|
Alzoghaibi MA, Bahammam ASO. Lipid peroxides, superoxide dismutase and circulating IL-8 and GCP-2 in patients with severe obstructive sleep apnea: a pilot study. Sleep Breath 2009; 9:119-26. [PMID: 15988615 DOI: 10.1007/s11325-005-0022-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obstructive sleep apnea (OSA) is associated with cardiovascular morbidity and mortality and many other physiological and immunological disorders. An increase in hypoxia due to OSA may cause generation of reactive oxygen species (ROS). ROS are toxic to biomembranes and may lead to peroxidation of lipids. An increase in systemic biomarkers of inflammation and oxidative stress has been found in patients with OSA. The first aim of this study was to test the hypothesis that OSA is linked to increased oxidative stress (lipid peroxidation) and decreased antioxidant defense [superoxide dismutase (SOD)]. The second aim was to measure the serum levels of neutrophil chemokines [interleukin-8 (IL-8)], and granulocyte chemotactic protein-2 (GCP-2) in OSA patients. Twenty five patients with severe OSA and 17 healthy subjects were recruited. IL-8 and GCP-2 were measured in the serum by a specific enzyme immunoassay kit. Oxidative stress level was quantitated by measurement of thiobarbituric acid reactive substances. SOD enzymatic activity was measured by purely chemical system based on NAD(P)H oxidation. Mean SOD and lipid peroxidation concentrations of patients were not significantly different from those of control subjects (0.29+/-0.015 vs 0.31+/-0.01 U/ml and 4.64+/-0.57 vs 4.62+/-0.54 mmol/ml, respectively). Higher concentrations of IL-8 and GCP-2 were found in OSA patients (198.8+/-4.76 vs 180.83+/-3.38 and 383.34+/-46.19 vs 218+/-13.16 pg/ml, respectively, p<0.005). The present study does not support the hypothesis that OSA is linked to increased oxidative stress and decreased antioxidant defense. On the other hand, it suggests that systemic inflammation characterizes OSA patients.
Collapse
Affiliation(s)
- Mohammed A Alzoghaibi
- College of Medicine, King Saud University, P.O. Box 2925, 11461, Riyadh, Saudi Arabia.
| | | |
Collapse
|
12
|
Proost P, Loos T, Mortier A, Schutyser E, Gouwy M, Noppen S, Dillen C, Ronsse I, Conings R, Struyf S, Opdenakker G, Maudgal PC, Van Damme J. Citrullination of CXCL8 by peptidylarginine deiminase alters receptor usage, prevents proteolysis, and dampens tissue inflammation. J Exp Med 2008; 205:2085-97. [PMID: 18710930 PMCID: PMC2526203 DOI: 10.1084/jem.20080305] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 07/10/2008] [Indexed: 12/20/2022] Open
Abstract
Biological functions of proteins are influenced by posttranslational modifications such as on/off switching by phosphorylation and modulation by glycosylation. Proteolytic processing regulates cytokine and chemokine activities. In this study, we report that natural posttranslational citrullination or deimination alters the biological activities of the neutrophil chemoattractant and angiogenic cytokine CXCL8/interleukin-8 (IL-8). Citrullination of arginine in position 5 was discovered on 14% of natural leukocyte-derived CXCL8(1-77), generating CXCL8(1-77)Cit(5). Peptidylarginine deiminase (PAD) is known to citrullinate structural proteins, and it may initiate autoimmune diseases. PAD efficiently and site-specifically citrullinated CXCL5, CXCL8, CCL17, CCL26, but not IL-1beta. In comparison with CXCL8(1-77), CXCL8(1-77)Cit(5) had reduced affinity for glycosaminoglycans and induced less CXCR2-dependent calcium signaling and extracellular signal-regulated kinase 1/2 phosphorylation. In contrast to CXCL8(1-77), CXCL8(1-77)Cit(5) was resistant to thrombin- or plasmin-dependent potentiation into CXCL8(6-77). Upon intraperitoneal injection, CXCL8(6-77) was a more potent inducer of neutrophil extravasation compared with CXCL8(1-77). Despite its retained chemotactic activity in vitro, CXCL8(1-77)Cit(5) was unable to attract neutrophils to the peritoneum. Finally, in the rabbit cornea angiogenesis assay, the equally potent CXCL8(1-77) and CXCL8(1-77)Cit(5) were less efficient angiogenic molecules than CXCL8(6-77). This study shows that PAD citrullinates the chemokine CXCL8, and thus may dampen neutrophil extravasation during acute or chronic inflammation.
Collapse
Affiliation(s)
- Paul Proost
- Laboratory of Molecular Immunology, Rega Institute, K.U.Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Baugher PJ, Richmond A. The carboxyl-terminal PDZ ligand motif of chemokine receptor CXCR2 modulates post-endocytic sorting and cellular chemotaxis. J Biol Chem 2008; 283:30868-78. [PMID: 18755694 DOI: 10.1074/jbc.m804054200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Adaptor protein interaction with specific peptide motifs found within the intracellular, carboxyl terminus of chemokine receptor CXCR2 has been shown to modulate intracellular trafficking and receptor function. Efficient ligand-induced internalization of this receptor is dependent on the binding of adaptor protein 2 to the specific LLKIL motif found within the carboxyl terminus (1). In this study we show that the carboxyl-terminal type 1 PDZ ligand motif (-STTL) of CXCR2 plays an essential role in both proper intracellular receptor trafficking and efficient cellular chemotaxis. First, we show that CXCR2 is sorted to and degraded in the lysosome upon long-term ligand stimulation. We also show that receptor degradation is not dependent upon receptor ubiquitination, but is instead modulated by the carboxyl-terminal type I PDZ ligand of CXCR2. Deletion of this ligand results in increased degradation, earlier co-localization with the lysosome, and enhanced sorting to the Rab7-positive late endosome. We also show that deletion of this ligand effects neither receptor internalization nor receptor recycling. Furthermore, we demonstrate that deletion of the PDZ ligand motif results in impaired chemotactic response. The data presented here demonstrate that the type I PDZ ligand of CXCR2 acts to both delay lysosomal sorting and facilitate proper chemotactic response.
Collapse
Affiliation(s)
- Paige J Baugher
- Department of Veterans Affairs, Veterans Affairs Medical Center, Nashville, Tennessee 37212-2637, USA
| | | |
Collapse
|
14
|
Attal H, Cohen-Hillel E, Meshel T, Wang JM, Gong W, Ben-Baruch A. Intracellular cross-talk between the GPCR CXCR1 and CXCR2: role of carboxyl terminus phosphorylation sites. Exp Cell Res 2007; 314:352-65. [PMID: 17996233 DOI: 10.1016/j.yexcr.2007.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 09/09/2007] [Accepted: 09/25/2007] [Indexed: 10/22/2022]
Abstract
In the present study, we used the human chemokine receptors CXCR1 and CXCR2 as a model system for the study of intracellular cross-talk between two closely related G protein-coupled receptors (GPCR). In cells expressing either CXCR1 or CXCR2, exposure to the CXCL8 ligand resulted in prominent reduction in cell surface expression of the receptors. We have shown previously that the reduction in cell surface expression of CXCR1 and CXCR2, to be termed herein "down-regulation", is significantly lower in cells expressing both receptors together. Now we show that reduced receptor down-regulation was specific to the CXCR1+CXCR2 pair. Also, CXCR2 carboxyl terminus phosphorylation sites were required for inducing inhibition of CXCR1 down-regulation, and vice versa. Accordingly, phosphorylation of CXCR2 carboxyl terminus domain was intact when expressed together with CXCR1. Moreover, specific carboxyl terminus phosphorylation sites on each of the wild type receptors protected them from more severe inhibition of down-regulation, induced by joint expression with the other receptor. When concomitantly expressed, CXCR1 and CXCR2 were impaired in recycling to the plasma membrane, despite their undergoing intact dephosphorylation. Overall, we show that cross-talk between two GPCR is manifested by impairment of their intracellular trafficking, primarily of ligand-induced down-regulation, via carboxyl terminus phosphorylation sites.
Collapse
Affiliation(s)
- Hila Attal
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
15
|
Nasser MW, Raghuwanshi SK, Malloy KM, Gangavarapu P, Shim JY, Rajarathnam K, Richardson RM. CXCR1 and CXCR2 Activation and Regulation. J Biol Chem 2007; 282:6906-15. [PMID: 17204468 DOI: 10.1074/jbc.m610289200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CXCL8 (interleukin-8) interacts with two receptors, CXCR1 and CXCR2, to activate leukocytes. Upon activation, CXCR2 internalizes very rapidly relative to CXCR1 ( approximately 90% versus approximately 10% after 5 min). The C termini of the receptors have been shown to be necessary for internalization but are not sufficient to explain the distinct kinetics of down-regulation. To determine the structural determinant(s) that modulate receptor internalization, various chimeric and point mutant receptors were generated by progressively exchanging specific domains or amino acids between CXCR1 and CXCR2. The receptors were stably expressed in rat basophilic leukemia 2H3 cells and characterized for receptor binding, intracellular Ca(2+) mobilization, phosphoinositide hydrolysis, phosphorylation, internalization, and MAPK activation. The data herein indicate that the second extracellular loop (2ECL) of the receptors is critical for the distinct rate of internalization. Replacing the 2ECL of CXCR2 with that of CXCR1 (B(2ECL)A) or Asp(199) with its CXCR1 valine counterpart (B(D199V)A) delayed CXCR2 internalization similarly to CXCR1. Replacing Asp(199) with Asn (B(D199N)) restored CXCR2 rapid internalization. Structure modeling of the 2ECL of the receptors also suggested that Asp(199) plays a critical role in stabilizing and modulating CXCR2 rapid internalization relative to CXCR1. B(D199N) internalized rapidly but migrated as a single phosphorylated form like CXCR1 ( approximately 75 kDa), whereas B(2ECL)A and B(D199V)A showed slow and fast migrating forms like CXCR2 ( approximately 45 and approximately 65 kDa, respectively) but internalized like CXCR1. These data further undermine the role of receptor oligomerization in CXCL8 receptor internalization. Like CXCR1, B(D199V)A also induced sustained ERK activation and cross-desensitized Ca(2+) mobilization to CCR5 relative to B(D199N) and CXCR2. Altogether, the data suggest that the 2ECL of the CXCL8 receptors is important in modulating their distinct rate of down-regulation and thereby signal length and post-internalization activities.
Collapse
Affiliation(s)
- Mohd W Nasser
- Julius L. Chambers Biomedical/Biotechnology Research Institute and the Department of Biology, North Carolina Central University, Durham, North Carolina 27707, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Dagan-Berger M, Feniger-Barish R, Avniel S, Wald H, Galun E, Grabovsky V, Alon R, Nagler A, Ben-Baruch A, Peled A. Role of CXCR3 carboxyl terminus and third intracellular loop in receptor-mediated migration, adhesion and internalization in response to CXCL11. Blood 2005; 107:3821-31. [PMID: 16368892 DOI: 10.1182/blood-2004-01-0214] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The chemokine receptor CXCR3 is predominantly expressed on activated T and natural killer (NK) cells. CXCR3 and its ligands, CXCL11, CXCL10, and CXCL9, play a major role in T-helper 1 (Th1)-dependent inflammatory responses. CXCL11 is the most dominant physiological inducer of adhesion, migration, and internalization of CXCR3. To study the role of CXCR3 carboxyl-terminus and the third intracellular (3i) loop in chemokine-mediated migration, adhesion, and CXCR3 internalization, we generated CXCR3 receptors mutated in their distal (Ser-Thr domain) or proximal (trileucine domain) membrane carboxyl terminus, and/or the third intracellular loop. We found that migration of CXCR3-expressing HEK 293 cells toward CXCL11 was pertussis toxin-dependent and required the membrane proximal carboxyl terminus of CXCR3. Internalization induced by CXCL11 and protein kinase C (PKC) activation was also regulated by the membrane proximal carboxyl terminus; however, only CXCL11-induced internalization required the LLL motif of this region. Internalization and Ca(2+) flux induced by CXCL11 were independent of the 3i loop S245, whereas migration at high CXCL11 concentrations, integrin-dependent adhesion, and actin polymerization were S245 dependent. Our findings indicate that CXCL11-dependent CXCR3 internalization and cell migration are regulated by the CXCR3 membrane proximal carboxyl terminus, whereas adhesion is regulated by the 3i loop S245. Thus, distinct conformational changes induced by a given CXCR3 ligand trigger different downstream effectors of adhesion, motility, and CXCR3 desensitization.
Collapse
Affiliation(s)
- Michal Dagan-Berger
- Gene Therapy Institute, Hadassah University Hospital, PO Box 12000, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Neel NF, Schutyser E, Sai J, Fan GH, Richmond A. Chemokine receptor internalization and intracellular trafficking. Cytokine Growth Factor Rev 2005; 16:637-58. [PMID: 15998596 PMCID: PMC2668263 DOI: 10.1016/j.cytogfr.2005.05.008] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 05/03/2005] [Indexed: 01/25/2023]
Abstract
The internalization and intracellular trafficking of chemokine receptors have important implications for the cellular responses elicited by chemokine receptors. The major pathway by which chemokine receptors internalize is the clathrin-mediated pathway, but some receptors may utilize lipid rafts/caveolae-dependent internalization routes. This review discusses the current knowledge and controversies regarding these two different routes of endocytosis. The functional consequences of internalization and the regulation of chemokine receptor recycling will also be addressed. Modifications of chemokine receptors, such as palmitoylation, ubiquitination, glycosylation, and sulfation, may also impact trafficking, chemotaxis and signaling. Finally, this review will cover the internalization and trafficking of viral and decoy chemokine receptors.
Collapse
Affiliation(s)
- Nicole F Neel
- Department of Veterans Affairs Medical Center, Vanderbilt University School of Medicine, 432 PRB, 23rd Avenue South at Pierce, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
18
|
Terashima Y, Onai N, Murai M, Enomoto M, Poonpiriya V, Hamada T, Motomura K, Suwa M, Ezaki T, Haga T, Kanegasaki S, Matsushima K. Pivotal function for cytoplasmic protein FROUNT in CCR2-mediated monocyte chemotaxis. Nat Immunol 2005; 6:827-35. [PMID: 15995708 DOI: 10.1038/ni1222] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 05/25/2005] [Indexed: 12/29/2022]
Abstract
Ligation of the chemokine receptor CCR2 on monocytes and macrophages with its ligand CCL2 results in activation of the cascade consisting of phosphatidylinositol-3-OH kinase (PI(3)K), the small G protein Rac and lamellipodium protrusion. We show here that a unique clathrin heavy-chain repeat homology protein, FROUNT, directly bound activated CCR2 and formed clusters at the cell front during chemotaxis. Overexpression of FROUNT amplified the chemokine-elicited PI(3)K-Rac-lamellipodium protrusion cascade and subsequent chemotaxis. Blocking FROUNT function by using a truncated mutant or antisense strategy substantially diminished signaling via CCR2. In a mouse peritonitis model, suppression of endogenous FROUNT markedly prevented macrophage infiltration. Thus, FROUNT links activated CCR2 to the PI(3)K-Rac-lamellipodium protrusion cascade and could be a therapeutic target in chronic inflammatory immune diseases associated with macrophage infiltration.
Collapse
Affiliation(s)
- Yuya Terashima
- Department of Molecular Preventive Medicine (and Solution Oriented Research for Science and Technology), Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chou WC, Chen HY, Yu SL, Cheng L, Yang PC, Dang CV. Arsenic suppresses gene expression in promyelocytic leukemia cells partly through Sp1 oxidation. Blood 2005; 106:304-10. [PMID: 15761015 PMCID: PMC1895131 DOI: 10.1182/blood-2005-01-0241] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The mechanism by which arsenic dramatically affects gene expression remains poorly understood. Here we report that prolonged exposure of acute promyelocytic leukemia NB4 cells to low levels of arsenic trioxide increased the expression of a set of genes responsible for reactive oxygen species (ROS) production. We hypothesize that arsenic-induced ROS in turn contribute partially to altered gene expression. To identify genes responsive to arsenic-induced ROS, we used microarray gene expression analysis and identified genes that responded to arsenic and hydrogen peroxide but whose response to arsenic was reversed by an ROS scavenger, N-acetyl-L-cysteine. We found that 26% of the genes significantly responsive to arsenic might have been directly altered by ROS. We further explored the mechanisms by which ROS affects gene regulation and found that the Sp1 transcription factor was oxidized by arsenic treatment, with a corresponding decrease in its in situ binding on the promoters of 3 genes, hTERT, C17, and c-Myc, whose expressions were significantly suppressed. We conclude that ROS contributed partly to arsenic-mediated gene regulation and that Sp1 oxidation contributed to gene suppression by arsenic-induced ROS.
Collapse
Affiliation(s)
- Wen-Chien Chou
- Department of Laboratory Medicine, National Taiwan University Hospital,
| | | | | | | | | | | |
Collapse
|
20
|
Youngerman SM, Saxton AM, Oliver SP, Pighetti GM. Association of CXCR2 polymorphisms with subclinical and clinical mastitis in dairy cattle. J Dairy Sci 2004; 87:2442-8. [PMID: 15328266 DOI: 10.3168/jds.s0022-0302(04)73367-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability to identify objectively cows that are more or less susceptible to mastitis has been a long-standing goal. Genetic markers associated with inflammatory responses during mastitis could aid in selection of these cattle. One potential marker is CXCR2, a chemokine receptor required for neutrophil migration to infection sites, which contains single nucleotide polymorphisms (SNP) within the gene. The objective of this experiment was to evaluate the association of CXCR2 SNP genotypes with subclinical and clinical mastitis. Thirty-seven Holstein and 42 Jersey cows that completed at least 2 full lactations were used. Quarter foremilk samples were collected for bacteriological examination quarterly and when cows exhibited clinical mastitis. Subclinical mastitis was defined as the presence of the same pathogen in the same quarter in at least 2 of 3 consecutive samples. A significant association was detected between CXCR2 SNP +777 genotype and percentages of subclinical mastitis cases in Holsteins. Holsteins expressing genotype GG had decreased percentages of subclinical mastitis, but genotype CC cows had increased percentages of subclinical mastitis. Significant differences in clinical mastitis incidence were not detected between genotypes for either breed. This approach of genetically identifying mastitis resistant cows may represent an effective means of marker-assisted selection for mastitis and other inflammatory diseases involving neutrophils.
Collapse
Affiliation(s)
- S M Youngerman
- Department of Animal Science, The University of Tennessee, Knoxville 37996, USA
| | | | | | | |
Collapse
|
21
|
Liu C, Sandford G, Fei G, Nicholas J. Galpha protein selectivity determinant specified by a viral chemokine receptor-conserved region in the C tail of the human herpesvirus 8 g protein-coupled receptor. J Virol 2004; 78:2460-71. [PMID: 14963144 PMCID: PMC369212 DOI: 10.1128/jvi.78.5.2460-2471.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The viral G-protein coupled receptor (vGPCR) specified by human herpesvirus 8 (HHV-8) open reading frame 74 (ORF74) is a ligand-independent chemokine receptor that has structural and functional homologues among other characterized gammaherpesviruses and related receptors in the betaherpesviruses. Sequence comparisons of the gammaherpesvirus vGPCRs revealed a highly conserved region in the C tail, just distal to the seventh transmembrane domain. Mutagenesis of the corresponding codons of HHV-8 ORF74 was carried out to provide C-tail-altered proteins for functional analyses. By measuring receptor-activated vascular endothelial growth factor promoter induction and NF-kappaB, mitogen-activated protein kinase, and Ca(2+) signaling, we found that while some altered receptors showed general signaling deficiencies, others had distinguishable activation profiles, suggestive of selective Galpha protein coupling. This was supported by the finding that vGPCR and representative functionally altered variants, vGPCR.8 (R322W) and vGPCR.15 (M325S), were affected differently by inhibitors of Galpha(i) (pertussis toxin), protein kinase C (GF109203X), and phosphatidylinositol 3-kinase (wortmannin). Consistent with the signaling data, [(35)S]GTPgammaS incorporation assays revealed preferential coupling of vGPCR.15 to Galpha(q) and an inability of vGPCR.8 to couple functionally to Galpha(q). However, both variants, wild-type vGPCR, and a C-tail deletion version of the receptor were equally able to associate physically with Galpha(q). Combined, our data demonstrate that HHV-8 vGPCR contains discrete sites of Galpha interaction and that receptor residues in the proximal region of the cytoplasmic tail are determinants of Galpha protein coupling specificity.
Collapse
Affiliation(s)
- Chaoqi Liu
- Molecular Virology Laboratories, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland 21231, USA
| | | | | | | |
Collapse
|
22
|
Danik M, Puma C, Quirion R, Williams S. Widely expressed transcripts for chemokine receptor CXCR1 in identified glutamatergic, ?-aminobutyric acidergic, and cholinergic neurons and astrocytes of the rat brain: A single-cell reverse transcription-multiplex polymerase chain reaction study. J Neurosci Res 2003; 74:286-95. [PMID: 14515358 DOI: 10.1002/jnr.10744] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Increasing evidence suggests that the chemokine interleukin (IL)-8/CXCL8 plays important roles in CNS development, neuronal survival, modulation of excitability, and neuroimmune response. Recently, we have shown that CXCL8 can acutely modulate ion channel activity in septal neurons expressing receptors CXCR1 and/or CXCR2. This was a surprising finding, insofar as CXCR1 expression had not been described for the mammalian brain. Here we investigated whether CXCR1 transcripts are present in other brain regions, whether they are expressed at the single-cell level in molecularly identified neurons and astrocytes, and how they are regulated during early postnatal development. In addition, possible cellular colocalization of CXCR1 and CXCR2 transcripts was examined. Semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) revealed that CXCR1 mRNAs were expressed in the septum, striatum, hippocampus, cerebellum, and cortex (temporoparietal and entorhinal) at different levels and appeared to be regulated independently from CXCR2 during development. By using RT multiplex PCR on acutely dissociated cells from these brain regions, we show that CXCR1 transcripts were expressed in 83% of 84 sampled neurons displaying cholinergic (choline acetyltransferase mRNAs), gamma-aminobutyric acidergic (glutamic acid decarboxylases 65 and 67 mRNAs), or glutamatergic (vesicular glutamate transporters 1 and 2 mRNAs) phenotypes. CXCR1 and CXCR2 transcripts were colocalized in 45% of neurons sampled and also were present in some glial fibrillary acidic protein mRNA-expressing astrocytes. This is the first study to demonstrate the widespread expression of CXCR1 transcripts in the brain and suggests that CXCR1 may have hitherto unsuspected roles in neuromodulation and inflammation.
Collapse
Affiliation(s)
- M Danik
- Department of Psychiatry, McGill University, Montreal, Québec, Canada
| | | | | | | |
Collapse
|
23
|
Fan GH, Lapierre LA, Goldenring JR, Richmond A. Differential regulation of CXCR2 trafficking by Rab GTPases. Blood 2003; 101:2115-24. [PMID: 12411301 PMCID: PMC5365399 DOI: 10.1182/blood-2002-07-1965] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Intracellular trafficking of chemokine receptors plays an important role in fine-tuning the functional responses of neutrophils and lymphocytes in the inflammatory process and HIV infection. Although many chemokine receptors internalize through clathrin-coated pits, regulation of the receptor trafficking is not fully understood. The present study demonstrated that CXCR2 was colocalized with transferrin and low-density lipoprotein (LDL) after agonist treatment for different periods of time, suggesting 2 intracellular trafficking pathways for this receptor. CXCR2 was colocalized with Rab5 and Rab11a, which are localized in early and recycling endosomes, respectively, in response to agonist stimulation for a short period of time, suggesting a recycling pathway for the receptor trafficking. However, overexpression of a dominant-negative Rab5-S34N mutant significantly attenuated CXCR2 sequestration. The internalized CXCR2 was recycled back to the cell surface after removal of the agonist and recovery of the cells, but receptor recycling was inhibited by overexpression of a dominant-negative Rab11a-S25N mutant. After prolonged (4-hour) agonist treatment, CXCR2 exhibited significantly increased colocalization with Rab7, which is localized in late endosomes. The colocalization of CXCR2 with LDL and LAMP-1 suggests that CXCR2 is targeted to lysosomes for degradation after prolonged ligand treatment. However, the colocalization of CXCR2 with Lamp1 was blocked by the overexpression of a dominant-negative Rab7-T22N mutant. In cells overexpressing Rab7-T22N, CXCR2 was retained in the Rab5- and Rab11a-positive endosomes after prolonged (4-hour) agonist treatment. Our data suggest that the intracellular trafficking of CXCR2 is differentially regulated by Rab proteins.
Collapse
MESH Headings
- Animals
- Antigens, CD/analysis
- Biological Transport
- Cell Line
- Embryo, Mammalian
- Endosomes/chemistry
- Endosomes/metabolism
- Gene Expression
- Green Fluorescent Proteins
- Humans
- Kidney
- Leukemia, Basophilic, Acute
- Lipoproteins, LDL/analysis
- Luminescent Proteins/genetics
- Lysosomal-Associated Membrane Protein 1
- Lysosomal Membrane Proteins
- Lysosomes/metabolism
- Microscopy, Confocal
- Mutation
- Rats
- Receptors, Interleukin-8B/analysis
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/metabolism
- Transfection
- Transferrin/analysis
- Tumor Cells, Cultured
- rab GTP-Binding Proteins/analysis
- rab GTP-Binding Proteins/genetics
- rab GTP-Binding Proteins/physiology
- rab5 GTP-Binding Proteins/analysis
- rab5 GTP-Binding Proteins/genetics
- rab7 GTP-Binding Proteins
Collapse
Affiliation(s)
- Guo-Huang Fan
- Department of Veterans Affairs, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
24
|
Catusse J, Liotard A, Loillier B, Pruneau D, Paquet JL. Characterization of the molecular interactions of interleukin-8 (CXCL8), growth related oncogen alpha (CXCL1) and a non-peptide antagonist (SB 225002) with the human CXCR2. Biochem Pharmacol 2003; 65:813-21. [PMID: 12628493 DOI: 10.1016/s0006-2952(02)01619-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neutrophil recruitment to inflammatory sites is mediated by two related receptors: CXC chemokine receptors 1 (CXCR1) and 2 (CXCR2). Both receptors share two ligands, interleukin-8 (CXCL8) and GCP-2 (CXCL6), whereas several chemokines, including growth related oncogen alpha (CXCL1) and a non-peptide antagonist (SB 225002) are specific for CXCR2. The objective of this study was to map the different amino acids involved in the binding and activation/inhibition of human CXCR2. This was performed by exchanging non-conserved amino acids of CXCR2 with their counterparts in CXCR1. The mutants generated showed that: (a) for CXCL8 binding, the N-terminus of CXCR1 and the second extra-cellular loop of CXCR2 are determinant, the N-terminus of CXCR2 is not sufficient and the transmembrane domain seven is probably involved; (b) for CXCL1, the N-terminus of CXCR2 is necessary but not sufficient for binding. The activation study indicated that amino acids critical for activation are not necessarily involved in binding process. Finally, the mechanism of binding of a non-peptide antagonist on CXCR2 was investigated: it occurred through epitopes (a) which were disseminated within the receptor, (b) which differed according to the use of CXCL8 or CXCL1 as a competitor and (c) which did not necessarily overlap with agonist binding sites. We also showed that inhibition of binding and inhibition of activation involved different amino acids.
Collapse
Affiliation(s)
- Julie Catusse
- Groupe de Pharmacochimie des Récepteurs, Laboratoire Fournier SA, 50 route de Dijon, 21121 Daix, France.
| | | | | | | | | |
Collapse
|
25
|
Matityahu E, Feniger-Barish R, Meshel T, Zaslaver A, Ben-Baruch A. Intracellular trafficking of human CXCR1 and CXCR2: regulation by receptor domains and actin-related kinases. Eur J Immunol 2002; 32:3525-35. [PMID: 12442335 DOI: 10.1002/1521-4141(200212)32:12<3525::aid-immu3525>3.0.co;2-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study we investigated the regulation of CXCR1 and CXCR2 intracellular trafficking. First, we produced a chimeric CXCR2 receptor that contained the internalization motifs of both CXCR2 and CXCR1 (CXCR2: LLKIL sequence; CXCR1: C-terminal phosphorylation sites). Elevated levels of internalization were induced by different ELR-expressing CXC chemokines on the chimeric receptor, as compared to wild-type CXCR2. Analysis of inter-relationships between CXCR1 and CXCR2 during internalization indicated that the exposure of cells that expressed both CXCR1 and CXCR2 to CXCL8 or CXCL6 resulted in decreased levels of CXCR1 internalization as compared to those in cells that expressed only CXCR1. To characterize the role of actin-related components in CXCR1 and CXCR2 trafficking, wortmannin, a potent inhibitor of phosphatidylinositol kinases, was used. The presence of wortmannin during receptor recycling inhibited CXCR1 and CXCR2 re-expression following CXCL8-induced internalization, and resulted in a marked disruption of the proper organization of actin filaments. The kinase-dependent recycling process required CXCR2 C-terminal phosphorylation sites. Our results suggest that actin-related kinases are required for the proper functionality of actin filaments, which are the instrumental factors needed for receptor recycling. In all, CXCR1 and CXCR2 internalization and recycling are tightly regulated by receptor domains and by actin-related kinases.
Collapse
Affiliation(s)
- Efrat Matityahu
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | |
Collapse
|
26
|
Neumark E, Cohn MA, Lukanidin E, Witz IP, Ben-Baruch A. Possible co-regulation of genes associated with enhanced progression of mammary adenocarcinomas. Immunol Lett 2002; 82:111-21. [PMID: 12008042 DOI: 10.1016/s0165-2478(02)00026-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumor progression is a multistep process in which alterations in the expression of numerous gene products may give rise to highly malignant cellular variants. In the present study, we analyzed the differential expression of several genes in cellular variants of mammary adenocarcinomas with high or low malignancy potential, which originated in a common ancestor. To assess the generality of our findings, high and low malignancy variants were derived from two different mammary adenocarcinoma cell lines, namely DA3 and CSML cells. Of major importance is the fact that the differences between high- and low-malignancy variants observed in one system of mammary adenocarcinoma cells (DA3 cells) were identically reproduced in the other system of mammary adenocarcinoma cells (CSML cells). The high malignancy variants of tumors both DA3-high and CSML-high (previously called CSML-100), expressed higher levels of factors that induce monocyte migration than the low malignancy DA3-low and CSML-low (previously called CSML-0) variants. In addition, it was found that DA3-high and CSML-high cell variants expressed higher levels of monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6) and matrix metalloproteinases (MMPs) than the low malignancy variants (DA3-low and CSML-low). These results suggest that MCP-1, IL-6 and MMPs potentially contribute to mammary adenocarcinoma progression and that their expression is regulated by a common pathway. The expression of MCP-1, IL-6 and MMPs in both DA3-high and CSML-high cells was up-regulated by tumor necrosis factor alpha (TNFalpha). The fact that TNFalpha exerted similar effects on the expression of these three factors in both cell systems raises the possibility of a coordinated co-regulation of tumor-promoting factors.
Collapse
Affiliation(s)
- E Neumark
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences and The Ela Kodesz Institute for Research on Cancer Development and Prevention, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | |
Collapse
|
27
|
Venkatesan S, Petrovic A, Locati M, Kim YO, Weissman D, Murphy PM. A membrane-proximal basic domain and cysteine cluster in the C-terminal tail of CCR5 constitute a bipartite motif critical for cell surface expression. J Biol Chem 2001; 276:40133-45. [PMID: 11514564 DOI: 10.1074/jbc.m105722200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined the structural requirements for cell surface expression, signaling, and human immunodeficiency virus co-receptor activity for the chemokine receptor, CCR5. Serial C-terminal truncation of CCR5 resulted in progressive loss of cell surface expression; mutants truncated at the 317th position and shorter were not detected at the cell surface. Alanine substitution of basic residues in the membrane-proximal domain (residues 314-322) in the context of a full-length C-tail resulted in severe reduction in surface expression. C-terminal truncation that excised the three cysteines in this domain reduced surface expression, but further truncation of upstream basic residue(s) abolished surface expression. Substituting the carboxyl-terminal domain of CXCR4 for that of CCR5 failed to rectify the trafficking defect of the tailless CCR5. In contrast, tailless CXCR4 or a CXCR4 chimera that exchanged the native cytoplasmic domain for that of wild type CCR5 was expressed at the cell surface. Deletion mutants that expressed at the cell surface responded to chemokine stimulation and mediated human immunodeficiency virus entry. Substitution of all serine and threonine residues in the C-terminal tail of CCR5 abolished chemokine-mediated receptor phosphorylation but preserved downstream signaling (Ca(2+) flux), while substitutions of tyrosine residues in the C-tail affected neither phenotype. CCR5 mutants that failed to traffic to the plasma membrane did not exhibit obvious changes in metabolic turnover and were retained in the Golgi or pre-Golgi compartments(s). Thus, the basic domain (-KHIAKRF-) and the cysteine cluster (-CKCC-) in the C-terminal tail of CCR5 function cooperatively for optimal surface expression.
Collapse
Affiliation(s)
- S Venkatesan
- Laboratory of Molecular Microbiology and Laboratory of Host Defenses, NIAID, National Institutes of Health, Bldg. 10, Rm. 6A05, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Geminder H, Sagi-Assif O, Goldberg L, Meshel T, Rechavi G, Witz IP, Ben-Baruch A. A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4747-57. [PMID: 11591806 DOI: 10.4049/jimmunol.167.8.4747] [Citation(s) in RCA: 288] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The homing of hemopoietic stem cells to the bone marrow is mediated by specific interactions occurring between CXCR4, which is expressed on hemopoietic stem cells, and its ligand, stromal cell-derived factor-1 (SDF-1), a CXC chemokine secreted by bone marrow stromal cells. In the present study we evaluated the possibility that neuroblastoma cells use a mechanism similar to that used by hemopoietic stem cells to home to the bone marrow and adhere to bone marrow stromal cells. Our study suggests that CXCR4 expression may be a general characteristic of neuroblastoma cells. SH-SY5Y neuroblastoma cells express not only CXCR4, but also its ligand, SDF-1. CXCR4 expression on SH-SY5Y neuroblastoma cells is tightly regulated by tumor cell-derived SDF-1, as demonstrated by the ability of neutralizing Abs against human SDF-1alpha to up-regulate CXCR4 expression on the tumor cells. The reduction in CXCR4 expression following short term exposure to recombinant human SDF-1alpha can be recovered as a result of de novo receptor synthesis. Recombinant human SDF-1alpha induces the migration of CXCR4-expressing SH-SY5Y neuroblastoma cells in CXCR4- and heterotrimeric G protein-dependent manners. Furthermore, SH-SY5Y cells interact at multiple levels with bone marrow components, as evidenced by the fact that bone marrow-derived constituents promote SH-SY5Y cell migration, adhesion to bone marrow stromal cells, and proliferation. These results suggest that SH-SY5Y neuroblastoma cells are equipped with adequate machinery to support their homing to the bone marrow. Therefore, the ability of neuroblastoma tumors to preferentially form metastases in the bone marrow may be influenced by a set of complex CXCR4-SDF-1 interactions.
Collapse
Affiliation(s)
- H Geminder
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences and The Ela Kodesz Institute for Research on Cancer Development and Prevention, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
29
|
Struyf S, Stoops G, Van Coillie E, Gouwy M, Schutyser E, Lenaerts JP, Fiten P, Van Aelst I, Proost P, Opdenakker G, Van Damme J. Gene cloning of a new plasma CC chemokine, activating and attracting myeloid cells in synergy with other chemoattractants. Biochemistry 2001; 40:11715-22. [PMID: 11570872 DOI: 10.1021/bi010224+] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chemokines are important mediators of cell migration during inflammation and normal leukocyte trafficking. Inflammatory chemokines are induced in multiple cell types at sites of infection. Here, we describe a novel bovine CC chemokine, designated regakine-1, that is constitutively present at high concentrations in plasma. Cloning of its gene revealed an expected two intron/three exon organization, with a rather long first intron. In addition to a 21-residue signal peptide, the coding sequence corresponded to a 71-residue secreted protein. However, the natural regakine-1 protein missed the COOH-terminal lysine residue. Regakine-1 has only weak sequence similarity (<50% identical residues) with other animal or human chemokines. Northern blot analysis demonstrated regakine-1 RNA expression in spleen and lung. At physiological concentrations (30-100 ng/mL), natural 7.5 kDa regakine-1 stimulated gelatinase B release from neutrophils and chemoattracted immature myeloid HL-60 cells, as well as mature granulocytes. Regakine-1 was more potent on human myeloid cells than the human plasma CC chemokine hemofiltrate CC chemokine-1 (HCC-1). Moreover, regakine-1 synergized with the bacterial peptide N-formylmethionylleucylphenylalanine (fMLP), yielding a 10-fold increase in neutrophil chemotactic response above their additive effect. Regakine-1 did not compete with interleukin-8 (IL-8) for binding to neutrophils, nor did it affect fMLP-induced calcium signaling, suggesting that regakine-1 recognizes a different receptor. In view of its high constitutive plasma concentration, regakine-1 is believed to recruit myeloid cells into the circulation, whereas its synergy with other neutrophil chemoattractants suggests that it also enhances the inflammatory response to infection.
Collapse
Affiliation(s)
- S Struyf
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kraft K, Olbrich H, Majoul I, Mack M, Proudfoot A, Oppermann M. Characterization of sequence determinants within the carboxyl-terminal domain of chemokine receptor CCR5 that regulate signaling and receptor internalization. J Biol Chem 2001; 276:34408-18. [PMID: 11448957 DOI: 10.1074/jbc.m102782200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CC chemokine receptor CCR5 mediates chemotaxis of leukocytes and serves as a principal co-receptor for macrophage-tropic human immunodeficiency virus type 1. To identify determinants on the CCR5 carboxyl-terminal domain that regulate receptor signaling and internalization, we generated several CCR5 mutants, which were progressively shortened from the COOH terminus or had carboxyl-terminal serine, cysteine, or leucine residues substituted by alanine and expressed them in RBL-2H3 cells. Using fluorescence resonance energy transfer between beta-arrestin and CCR5 tagged with cyan and yellow variants of green fluorescent protein, we show that high affinity association of the two molecules in living cells requires intact carboxyl-terminal serine phosphorylation sites. Phosphorylation-deficient truncation or Ser/Ala replacement mutants of CCR5 mediated a sustained calcium response and enhanced granular enzyme release in RANTES-stimulated cells. Carboxyl-terminal serine residues are critically involved in CCR5 endocytosis and a dileucine motif, similar to that implicated in the regulation of CXCR2 and CXCR4, contributes to the internalization of CCR5 in a phosphorylation-independent manner. Despite their prominent role in receptor desensitization and internalization, beta-arrestins are dispensable for the CCR5-mediated stimulation of mitogen-activated protein kinase pathways in RBL-2H3 cells. We also show that CCR5 is palmitoylated on carboxyl-terminal cysteine residues. Inhibition of CCR5 palmitoylation by alanine mutagenesis of cysteines or treatment with a palmitate analogue inhibitor profoundly reduces phorbol 12-myristate 13-acetate- and RANTES-induced receptor phosphorylation, homologous desensitization, and internalization. Alanine mutagenesis of serine, cysteine, or leucine residues or the limited carboxyl-terminal truncation of CCR5 did not impair chemokine-stimulated migration of RBL-2H3 cells. Together these results indicate that post-translational modifications of carboxyl-terminal serine and cysteine residues have a significant impact on receptor deactivation and internalization.
Collapse
Affiliation(s)
- K Kraft
- Department of Immunology, University of Göttingen, 37075 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Struyf S, Menten P, Lenaerts JP, Put W, D'Haese A, De Clercq E, Schols D, Proost P, Van Damme J. Diverging binding capacities of natural LD78beta isoforms of macrophage inflammatory protein-1alpha to the CC chemokine receptors 1, 3 and 5 affect their anti-HIV-1 activity and chemotactic potencies for neutrophils and eosinophils. Eur J Immunol 2001; 31:2170-8. [PMID: 11449371 DOI: 10.1002/1521-4141(200107)31:7<2170::aid-immu2170>3.0.co;2-d] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recently, the LD78beta isoform of the CC chemokine macrophage inflammatory protein (MIP)-1alpha was shown to efficiently chemoattract lymphocytes and monocytes and to inhibit infection of mononuclear cells by R5 HIV-1 strains. We have now demonstrated that after cleavage of the NH2-terminal Ala-Pro dipeptide by CD26, LD78beta(3 - 70) became the most potent chemokine blocking HIV-1. LD78beta(3 - 70) competed tenfold more efficiently than LD78beta(1 - 70) with [125I] RANTES for binding to the CC chemokine receptors CCR5 and CCR1. Contrary to LD78alpha, LD78beta(1 - 70) at 30 ng/ml efficiently competed with [125I] RANTES for binding to CCR3 and mobilized calcium in CCR3 transfectants, whereas LD78beta(3 - 70) showed a 30-fold decrease in CCR3 affinity compared to LD78beta(1 - 70). This demonstrates the importance of the penultimate proline in LD78beta(1 - 70) for CCR3 recognition. Both LD78beta isoforms efficiently chemoattracted eosinophils from responsive donors. In contrast, only the CCR3 agonist LD78beta(1 - 70) and not LD78beta(3 - 70), induced calcium increases in eosinophils with low levels of CCR1. In responder neutrophils, LD78beta(3 - 70) elicited calcium fluxes at a 30-fold lower dose (10 ng/ml) compared to intact LD78beta and LD78alpha, whereas the three MIP-1alpha isoforms were equipotent neutrophil chemoattractants. Taken together, both LD78beta isoforms are potent HIV-1 inhibitors (CCR5) and activators for neutrophils (CCR1) and eosinophils (CCR1, CCR3), affecting infection and inflammation.
Collapse
Affiliation(s)
- S Struyf
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zaslaver A, Feniger-Barish R, Ben-Baruch A. Actin filaments are involved in the regulation of trafficking of two closely related chemokine receptors, CXCR1 and CXCR2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:1272-84. [PMID: 11145710 DOI: 10.4049/jimmunol.166.2.1272] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ligand-induced internalization and recycling of chemokine receptors play a significant role in their regulation. In this study, we analyzed the involvement of actin filaments and of microtubules in the control of ligand-induced internalization and recycling of CXC chemokine receptor (CXCR)1 and CXCR2, two closely related G protein-coupled receptors that mediate ELR-expressing CXC chemokine-induced cellular responses. Nocodazole, a microtubule-disrupting agent, did not affect the IL-8-induced reduction in cell surface expression of CXCR1 and CXCR2, nor did it affect the recycling of these receptors following ligand removal and cell recovery at 37 degrees C. In contrast, cytochalasin D, an actin filament depolymerizing agent, promoted the IL-8-induced reduction in cell surface expression of both CXCR1 and CXCR2. Cytochalasin D significantly inhibited the recycling of both CXCR1 and CXCR2 following IL-8-induced internalization, the inhibition being more pronounced for CXCR2 than for CXCR1. Potent inhibition of recycling was observed also when internalization of CXCR2 was induced by another ELR-expressing CXC chemokine, granulocyte chemotactic protein-2. By the use of carboxyl terminus-truncated CXCR1 and CXCR2 it was observed that the carboxyl terminus domains of CXCR1 and CXCR2 were partially involved in the regulation of the actin-mediated process of receptor recycling. The cytochalasin D-mediated inhibition of CXCR2 recycling had a functional relevance because it impaired the ability of CXCR2-expressing cells to mediate cellular responses. These results suggest that actin filaments, but not microtubules, are involved in the regulation of the intracellular trafficking of CXCR1 and CXCR2, and that actin filaments may be required to enable cellular resensitization following a desensitized refractory period.
Collapse
MESH Headings
- Actins/antagonists & inhibitors
- Actins/physiology
- Amino Acid Sequence
- Biological Transport/drug effects
- Biological Transport/genetics
- Biological Transport/immunology
- Cell Line
- Cell Membrane/drug effects
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cell Migration Inhibition
- Chemotaxis/drug effects
- Chemotaxis/genetics
- Chemotaxis/immunology
- Cytochalasin D/pharmacology
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Down-Regulation/immunology
- Humans
- Interleukin-8/pharmacology
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Neutrophils/drug effects
- Neutrophils/immunology
- Neutrophils/metabolism
- Nocodazole/pharmacology
- Peptide Fragments/genetics
- Peptide Fragments/physiology
- Protein Structure, Tertiary/genetics
- Protein Structure, Tertiary/physiology
- Receptors, Interleukin-8A/antagonists & inhibitors
- Receptors, Interleukin-8A/blood
- Receptors, Interleukin-8A/genetics
- Receptors, Interleukin-8A/metabolism
- Receptors, Interleukin-8B/antagonists & inhibitors
- Receptors, Interleukin-8B/blood
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/metabolism
- Transfection
Collapse
Affiliation(s)
- A Zaslaver
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | | | | |
Collapse
|
33
|
Metzler DE, Metzler CM, Sauke DJ. Biochemical Defense Mechanisms. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Barlic J, Andrews JD, Kelvin AA, Bosinger SE, DeVries ME, Xu L, Dobransky T, Feldman RD, Ferguson SS, Kelvin DJ. Regulation of tyrosine kinase activation and granule release through beta-arrestin by CXCRI. Nat Immunol 2000; 1:227-33. [PMID: 10973280 DOI: 10.1038/79767] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chemoattractant-stimulated granule release from neutrophils, basophils and eosinophils is critical for the innate immune response against infectious bacteria. Interleukin 8 (IL-8) activation of the chemokine receptor CXCRI was found to stimulate rapid formation of beta-arrestin complexes with Hck or c-Fgr. Formation of beta-arrestin-Hck complexes led to Hck activation and trafficking of the complexes to granule-rich regions. Granulocytes expressing a dominant-negative beta-arrestin-mutant did not release granules or activate tyrosine kinases after IL-8 stimulation. Thus, beta-arrestins regulate chemokine-induced granule exocytosis, indicating a broader role for beta-arrestins in the regulation of cellular functions than was previously suspected.
Collapse
Affiliation(s)
- J Barlic
- Laboratory of Molecular Immunology and Inflammation, John P. Robarts Research Institute, 1400 Western Road, London, Ontario, Canada, N6G 2V4
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
GCP-2–induced internalization of IL-8 receptors: hierarchical relationships between GCP-2 and other ELR+-CXC chemokines and mechanisms regulating CXCR2 internalization and recycling. Blood 2000. [DOI: 10.1182/blood.v95.5.1551.005a36_1551_1559] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chemotactic potencies of ELR+-CXC chemokines during acute inflammation are regulated by their binding affinities and by their ability to activate, desensitize, and internalize their specific receptors, CXCR1 and CXCR2. To gain insight into the fine mechanisms that control acute inflammatory processes, we have focused in this study on the highly potent ELR+-CXC chemokine Granulocyte Chemotactic Protein 2 (GCP-2), and on its ability to control the cell surface expression of CXCR1 and CXCR2. Although GCP-2 has been considered an effective ligand for both CXCR1 and CXCR2, our findings demonstrated that it was a potent inducer of CXCR2 internalization only. A functional hierarchy was shown to exist between GCP-2 and 2 other ELR+-CXC chemokines, IL-8 and NAP-2, in their abilities to induce CXCR1 and CXCR2 internalization, according to the following: IL-8 > GCP-2 > NAP-2. By the use of pertussis toxin (PTx), it was demonstrated that the actual events of Gi-coupling to CXCR2 do not have a major role in the regulation of its internalization. Rather, CXCR2 internalization was shown to be negatively controlled by induction of signaling events, as indicated by the promotion of CXCR2 internalization following exposure to wortmannin, a potent inhibitor of phosphatidylinositol (PI) 3 kinases and PI4 kinases. Furthermore, our results suggest that rab11+-endosomes participate in the trafficking of CXCR2 through the endocytic pathway, to eventually allow its recycling back to the plasma membrane. To conclude, our findings shed light on the interrelationships between GCP-2 and other ELR+-CXC chemokines, and determine the mechanisms involved in the regulation of GCP-2–induced internalization and recycling of CXCR2.
Collapse
|
36
|
Haribabu B, Zhelev DV, Pridgen BC, Richardson RM, Ali H, Snyderman R. Chemoattractant receptors activate distinct pathways for chemotaxis and secretion. Role of G-protein usage. J Biol Chem 1999; 274:37087-92. [PMID: 10601267 DOI: 10.1074/jbc.274.52.37087] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human leukocyte chemoattractant receptors activate chemotactic and cytotoxic pathways to varying degrees and also activate different G-proteins depending on the receptor and the cell-type. To determine the relationship between G-protein usage and the biological and biochemical responses activated, receptors for the chemoattractants formyl peptides (FR), platelet-activating factor (PAFR), and leukotriene B(4) (BLTR) were transfected into RBL-2H3 cells. Pertussis toxin (Ptx) served as a Galpha(i) inhibitor. These receptors were chosen to represent the spectrum of G(i) usage as Ptx had differential effects on their ability to induce calcium mobilization, phosphoinositide hydrolysis, and exocytosis with complete inhibition of all responses by FR, intermediate effects on BLTR, and little effect on PAFR. Ptx did not affect ligand-induced phosphorylation of PAFR and BLTR but inhibited phosphorylation of FR. In contrast, chemotaxis to formylmethionylleucylphenylalanine, leukotriene B(4), and platelet-activating factor was completely blocked by Ptx. Wortmannin, a phosphotidylinositol 3-kinase inhibitor, also completely blocked ligand-induced chemotaxis by all receptors but did not affect calcium mobilization or phosphoinositide hydrolysis; however, it partially blocked the exocytosis response to formylmethionylleucylphenylalanine and the platelet-activating factor. Membrane ruffling and pseudopod extension via the BLTR was also completely inhibited by both Ptx and wortmannin. These data suggest that of the chemoattractant receptors studied, G-protein usage varies with FR being totally dependent on G(i), whereas BLTR and PAFR utilize both G(i) and a Ptx-insensitive G-protein. Both Ptx-sensitive and -insensitive G-protein usage can mediate the activation of phospholipase C, mobilization of intracellular calcium, and exocytosis by chemoattractant receptors. Chemotaxis, however, had an absolute requirement for a G(i)-mediated pathway.
Collapse
Affiliation(s)
- B Haribabu
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Feniger-Barish R, Ran M, Zaslaver A, Ben-Baruch A. Differential modes of regulation of cxc chemokine-induced internalization and recycling of human CXCR1 and CXCR2. Cytokine 1999; 11:996-1009. [PMID: 10623425 DOI: 10.1006/cyto.1999.0510] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies of human neutrophil IL-8 receptors, CXCR1 and CXCR2, have shown that the two receptors are differentially regulated by ELR(+)-CXC chemokines, that they differ functionally and may have diverse roles in mediating the inflammatory process. To elucidate the role of CXCR1 and CXCR2 in inflammation and to delineate the basis for the divergent regulation of these receptors by IL-8 and NAP-2, we characterized the IL-8- and NAP-2-induced mechanisms regulating the expression of each receptor, focusing on receptor internalization and recycling. Using HEK 293 cell transfectants, IL-8 was shown to induce significantly higher levels of CXCR2 internalization than NAP-2. Moreover, although CXCR2 bound IL-8 and NAP-2 with similarly high affinity, IL-8 functionally competed with and displaced NAP-2, and prompted high levels of internalization, similar to those induced by IL-8 alone. In a system providing an identical cellular milieu for reliable comparisons between CXCR1 and CXCR2, we have shown that the mechanisms controlling the internalization of CXCR1 diverge from those regulating CXCR2 internalization. Whereas IL-8-induced internalization of CXCR1 was profoundly dependent on a region of the carboxyl terminus expressing six phosphorylation sites, internalization of CXCR2 was primarily regulated by a membrane proximal domain of the carboxyl terminus that does not express phosphorylation sites. Analysis of receptor re-expression on the plasma membrane indicated that at early time points following removal of free ligand and incubation of the cells at 37 degrees C, receptor recycling accounted for recovery of CXCR1 and CXCR2 expression, whereas at later time points other processes may be involved in receptor re-expression. Phosphorylation-independent mechanisms were shown to direct both receptors to the recycling pathway. The differential control of CXCR1 vs CXCR2 internalization by IL-8 and NAP-2, as well as by phosphorylation-mediated mechanisms, suggests that a chemokine- and receptor-specific mode of regulation of internalization may contribute to the divergent activities of these receptors.
Collapse
Affiliation(s)
- R Feniger-Barish
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | | | | |
Collapse
|
38
|
Neumark E, Anavi R, Witz IP, Ben-Baruch A. MCP-1 expression as a potential contributor to the high malignancy phenotype of murine mammary adenocarcinoma cells. Immunol Lett 1999; 68:141-6. [PMID: 10397169 DOI: 10.1016/s0165-2478(99)00043-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The search for mechanisms that regulate tumor progression has motivated the authors' laboratory to establish a unique murine model system, consisting of two lines of DA3 mammary adenocarcinoma cells that were derived originally from a common ancestor but differed in their malignant potential. Studies indicated that the highly malignant phenotype manifested by one of the cell lines (termed Ly-6hi DA3 cells) was associated with high expression of the Ly-6E.1 antigen. To characterize the mechanisms controlling the high malignancy phenotype expressed by Ly-6hi DA3 cells, the study was focussed on the potential contribution of tumor-derived factors to the high malignancy phenotype expressed by these cells. To this end, the expression of CC chemokines, major chemoattractants of monocytes and T cells, by the highly malignant Ly-6hi DA3 cells as compared to the low malignancy Ly-6lo DA3 cells was evaluated. The results indicate that the highly malignant cells express higher levels of factors that induce monocyte migration than the low malignancy cells. Two CC chemokines were shown to be highly produced by Ly-6hi DA3 cells, MIP-1alpha and MCP-1, of which only the latter was shown to contribute to the high migratory activity expressed by the high malignancy Ly-6hi DA3 cells. Since MCP-1 may attract monocytes to tumor sites, these findings suggest that monocyte-derived mediators, such as growth factors or angiogenic cytokines, have pro-malignancy effects that contribute to the high malignancy phenotype expressed by Ly-6hi DA3 cells.
Collapse
Affiliation(s)
- E Neumark
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | | | | | | |
Collapse
|
39
|
Abstract
Interleukin-8 (IL-8), a member of the CXC chemokine family, is an important activator and chemoattractant for neutrophils and has been implicated in a variety of inflammatory diseases. IL-8 is secreted in a stimulus-specific manner by a wide variety of cell types and is regulated primarily at the level of gene transcription. Functional studies indicate that IL-8 transcriptional responses to proinflammatory mediators are rapid and require only 100 nucleotides of 5'-flanking DNA upstream of the TATA box. Within the IL-8 promoter sequence are DNA binding sites for the inducible transcription factors AP-1, NF-IL-6, and NF-kappaB. Transcription factors in these families bind the IL-8 promoter as dimers, and several distinct subunit combinations have been identified as important for IL-8 transcription. In addition, these factors can act in concert to synergistically activate the IL-8 promoter. AP-1 and NF-IL-6 physically interact with NF-kappaB, and functional cooperativity among the factors appears to be critical for optimal IL-8 promoter activity in different cell types. IL-8 transcription appears to be activated by a promoter recruitment mechanism where inducible transcription factor binding to the IL-8 promoter is required for binding of constitutively active TATA box-binding proteins and formation of a stable preinitiation complex. This review discusses the regulatory role these higher-order synergistic interactions play in IL-8 transcription and in generation of the stimulus-specific and cell type-specific patterns of IL-8 expression.
Collapse
Affiliation(s)
- K A Roebuck
- Department of Immunology/Microbiology, Rush-Presbyterian-St. Luke's Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
40
|
Schols D, Proost P, Struyf S, Wuyts A, De Meester I, Scharpé S, Van Damme J, De Clercq E. CD26-processed RANTES(3-68), but not intact RANTES, has potent anti-HIV-1 activity. Antiviral Res 1998; 39:175-87. [PMID: 9833958 DOI: 10.1016/s0166-3542(98)00039-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The natural CC-chemokine RANTES(3-68), missing two NH2-terminal residues, has been isolated from leukocytes and tumor cells. The highly specific aminopeptidase dipeptidyl peptidase IV (DPP IV), also called CD26, was shown to be responsible for this NH2-terminal truncation of RANTES. Here it is reported that CD26/DPP IV treatment of RANTES enhances its anti-HIV-1 activity. RANTES(3-68) inhibited infection of PBMC by M-tropic HIV-1 strains ten-fold more efficiently than intact RANTES. This difference in antiviral potency between intact and truncated RANTES was even more pronounced (at least 25-fold) in CCR5-transfected cell lines. In HOS.CD4.CCR5 transfected cells, RANTES(1-68) had virtually no anti-HIV-1 activity (IC50 > 130 nM), whereas RANTES(3-68) was a potent inhibitor of HIV-1 replication (1C50: 5.5 nM). The anti-HIV-1 activity of RANTES(1-68) in the different cell types correlated with the expression of CD26. Moreover, the addition of soluble CD26 together with RANTES(1-68) significantly enhanced the antiviral activity of RANTES in HOS.CD4.CCR5 cells (IC50: 13 nM). These observations point to an important role of CD26-mediated processing of RANTES in inhibiting the replication of CCR5-binding HIV strains in HIV-infected persons and in preventing the development of AIDS.
Collapse
Affiliation(s)
- D Schols
- Laboratory of Experimental Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Signoret N, Rosenkilde MM, Klasse PJ, Schwartz TW, Malim MH, Hoxie JA, Marsh M. Differential regulation of CXCR4 and CCR5 endocytosis. J Cell Sci 1998; 111 ( Pt 18):2819-30. [PMID: 9718374 DOI: 10.1242/jcs.111.18.2819] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chemokine receptors CCR5 and CXCR4 are major co-receptors/receptors for the CD4-dependent and CD4-independent entry of human and simian immunodeficiency viruses. The chemokines that bind and activate these receptors can inhibit the entry of viruses that use the respective co-receptor molecules. Chemokine-induced co-receptor internalisation is a significant component of the mechanism through which chemokines inhibit virus entry. CXCR4 internalisation is induced by the CXCR4 ligand stromal cell derived factor-1 (SDF-1), phorbol esters and, in T cells, cellular activation. Here we show that CXCR4 endocytosis can be mediated through either one of two distinct internalisation signals. A COOH-terminal serine rich domain is required for ligand- but not phorbol ester- induced CXCR4 internalisation. However, a Ser/IleLeu motif, similar to that required for the endocytosis of CD4 and the T cell receptor/CD3 complex, is required for phorbol ester-induced, but not ligand-induced, CXCR4 endocytosis. By contrast, CCR5 internalisation is induced by the beta-chemokine RANTES but not by phorbol esters. CCR5 lacks the Ser/IleLeu sequence required for phorbol ester-induced uptake of CXCR4. Together these results indicate that distinct mechanisms can regulate CXCR4 and CCR5 endocytosis and trafficking.
Collapse
Affiliation(s)
- N Signoret
- Medical Research Council Laboratory for Molecular Cell Biology and Department of Biochemistry, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Khandaker MH, Xu L, Rahimpour R, Mitchell G, DeVries ME, Pickering JG, Singhal SK, Feldman RD, Kelvin DJ. CXCR1 and CXCR2 Are Rapidly Down-Modulated by Bacterial Endotoxin Through a Unique Agonist-Independent, Tyrosine Kinase-Dependent Mechanism. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.4.1930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The expression of the seven-transmembrane domain chemokine receptors CXCR1 and CXCR2 modulates neutrophil responsiveness to the chemoattractant IL-8 and a number of closely related CXC chemokines. In the present study, we investigated the mechanism by which bacterial LPS induces the down-modulation of IL-8 responsiveness and CXCR1 and CXCR2 expression on human neutrophils. Treating neutrophils with LPS reduced IL-8R expression to 55 ± 5% of the control within 30 min and to 23 ± 2% within 1 h of stimulation. Furthermore, this down-modulation could not be attributed to increased concentrations of IL-8, TNF-α, or IL-1β, since ELISA studies indicated that LPS-stimulated neutrophils did not release detectable amounts of these proteins before 2 h poststimulation. The tyrosine kinase (TK) inhibitors genistein and herbimycin A attenuated the LPS-mediated down-modulation of CXCR1 and CXCR2, indicating that the activation of a TK is required for LPS to mediate its effect. The effect of LPS on receptor expression paralleled the hyperphosphorylation of the protein TK p72syk. Although IL-8 induced a comparable down-modulation of CXCR1 and CXCR2, TK inhibitors did not attenuate this effect. These studies provide the first evidence of an agonist-independent, TK-dependent pathway of chemokine receptor regulation by endotoxin.
Collapse
Affiliation(s)
- Masud H. Khandaker
- *Departments of Microbiology and Immunology and
- ‡Laboratory of Molecular Immunology and Inflammation, John P. Robarts Research Institute, London, Ontario, Canada
| | - Luoling Xu
- ‡Laboratory of Molecular Immunology and Inflammation, John P. Robarts Research Institute, London, Ontario, Canada
| | - Rahbar Rahimpour
- *Departments of Microbiology and Immunology and
- ‡Laboratory of Molecular Immunology and Inflammation, John P. Robarts Research Institute, London, Ontario, Canada
| | - Gordon Mitchell
- ‡Laboratory of Molecular Immunology and Inflammation, John P. Robarts Research Institute, London, Ontario, Canada
| | - Mark E. DeVries
- *Departments of Microbiology and Immunology and
- ‡Laboratory of Molecular Immunology and Inflammation, John P. Robarts Research Institute, London, Ontario, Canada
| | - J. Geoffrey Pickering
- ‡Laboratory of Molecular Immunology and Inflammation, John P. Robarts Research Institute, London, Ontario, Canada
| | | | - Ross D. Feldman
- †Medicine, University of Western Ontario, London, Ontario, Canada; and
| | - David J. Kelvin
- *Departments of Microbiology and Immunology and
- ‡Laboratory of Molecular Immunology and Inflammation, John P. Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
43
|
Struyf S, De Meester I, Scharpé S, Lenaerts JP, Menten P, Wang JM, Proost P, Van Damme J. Natural truncation of RANTES abolishes signaling through the CC chemokine receptors CCR1 and CCR3, impairs its chemotactic potency and generates a CC chemokine inhibitor. Eur J Immunol 1998; 28:1262-71. [PMID: 9565366 DOI: 10.1002/(sici)1521-4141(199804)28:04<1262::aid-immu1262>3.0.co;2-g] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Selective leukocyte trafficking towards sites of inflammation is mediated by chemokines. RANTES is a CC chemokine that attracts lymphocytes, monocytes, dendritic cells, eosinophils, basophils and NK cells. A natural form of human RANTES lacking two N-terminal residues was isolated from stimulated sarcoma cells, fibroblasts, and leukocytes. RANTES(3-68) showed a more than tenfold reduction in chemotactic potency for monocytes and eosinophils. To elucidate the mechanism involved, receptor recognition studies were performed. In cells transfected with the CC chemokine receptor (CCR) 5, the major co-receptor for macrophage-tropic HIV-1 strains, RANTES(3-68) mobilized calcium and desensitized RANTES(1-68)-induced calcium fluxes equally well as RANTES(1-68). However, RANTES(3-68) was ineffective on CCR1 and CCR3 transfectants. The reduced potency of natural RANTES(3-68) by selective loss of receptor-activating characteristics was confirmed with recombinant RANTES(3-68). In chemotaxis assays using monocytic cells, RANTES(3-68) inhibited RANTES(1-68), macrophage inflammatory protein-1alpha (MIP-1alpha), MIP-1beta or monocyte chemotactic protein-3 (MCP-3), but not MCP-1- or MCP-2-induced chemotaxis. Thus, a minor post-translational modification has a remarkable impact on the biological activities of RANTES and a pathophysiologically induced change in the relative amounts of intact and truncated RANTES might affect the outcome of inflammation or HIV infection.
Collapse
Affiliation(s)
- S Struyf
- Rega Institute for Medical Research, Laboratory of Molecular Immunology, University of Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Schraufstätter IU, Burger M, Hoch RC, Oades ZG, Takamori H. Importance of the carboxy-terminus of the CXCR2 for signal transduction. Biochem Biophys Res Commun 1998; 244:243-8. [PMID: 9514913 DOI: 10.1006/bbrc.1998.8246] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The CXCR2 is phosphorylated at the C-terminal intracytoplasmic portion within 15 sec following the addition of IL-8 or MGSA. Cells transfected with a truncated form of the receptor missing the last 12 amino acids (T3) showed normal binding affinity, but were no longer phosphorylated; individual alanine replacement indicated that Ser346 and 348 were the primary sites of phosphorylation. In studies of the importance of phosphorylation in CXCR2 desensitization, cells expressing wild type CXCR2 lost GTP gamma S binding above basal rate after the first exposure to IL-8, while cells with the T3 mutant retained 60% of their capacity to induce GTP gamma S exchange upon a second exposure to IL-8. In contrast, receptor internalization was not affected by the loss of phosphorylation of the T3 mutant. Further receptor truncation led to decreasing binding affinities for IL-8 and MGSA and a decreased rate of GTP gamma S exchange following addition of excess ligand which suggests involvement of this region in G-protein coupling.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites/genetics
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Interleukin-8/metabolism
- Leukemia, Basophilic, Acute
- Ligands
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Phosphorylation
- Rats
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Receptors, Chemokine/physiology
- Receptors, Interleukin/biosynthesis
- Receptors, Interleukin/genetics
- Receptors, Interleukin/metabolism
- Receptors, Interleukin/physiology
- Receptors, Interleukin-8B
- Sequence Deletion
- Serine/genetics
- Serine/physiology
- Signal Transduction/genetics
- Sulfur Radioisotopes/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- I U Schraufstätter
- Department of Immunology, Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | |
Collapse
|
45
|
Arai H, Tsou CL, Charo IF. Chemotaxis in a lymphocyte cell line transfected with C-C chemokine receptor 2B: evidence that directed migration is mediated by betagamma dimers released by activation of Galphai-coupled receptors. Proc Natl Acad Sci U S A 1997; 94:14495-9. [PMID: 9405641 PMCID: PMC25033 DOI: 10.1073/pnas.94.26.14495] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chemotaxis is mediated by activation of seven-transmembrane domain, G protein-coupled receptors, but the signal transduction pathways leading to chemotaxis are poorly understood. To identify G proteins that signal the directed migration of cells, we stably transfected a lymphocyte cell line (300-19) with G protein-coupled receptors that couple exclusively to Galphaq (the m3 muscarinic receptor), Galphai (the kappa-opioid receptor), and Galphas (the beta-adrenergic receptor), as well as the human thrombin receptor (PAR-1) and the C-C chemokine receptor 2B. Cells expressing receptors that coupled to Galphai, but not to Galphaq or Galphas, migrated in response to a concentration gradient of the appropriate agonist. Overexpression of Galpha transducin, which binds to and inactivates free Gbetagamma dimers, completely blocked chemotaxis although having little or no effect on intracellular calcium mobilization or other measures of cell signaling. The identification of Gbetagamma dimers as a crucial intermediate in the chemotaxis signaling pathway provides further evidence that chemotaxis of mammalian cells has important similarities to polarized responses in yeast. We conclude that chemotaxis is dependent on activation of Galphai and the release of Gbetagamma dimers, and that Galphai-coupled receptors not traditionally associated with chemotaxis can mediate directed migration when they are expressed in hematopoietic cells.
Collapse
Affiliation(s)
- H Arai
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, CA 94141-9100, USA
| | | | | |
Collapse
|
46
|
Neptune ER, Bourne HR. Receptors induce chemotaxis by releasing the betagamma subunit of Gi, not by activating Gq or Gs. Proc Natl Acad Sci U S A 1997; 94:14489-94. [PMID: 9405640 PMCID: PMC25031 DOI: 10.1073/pnas.94.26.14489] [Citation(s) in RCA: 222] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Many chemoattractants cause chemotaxis of leukocytes by stimulating a structurally distinct class of G protein-coupled receptors. To identify receptor functions required for chemotaxis, we studied chemotaxis in HEK293 cells transfected with receptors for nonchemokine ligands or for interleukin 8 (IL-8), a classical chemokine. In gradients of the appropriate agonist, three nonchemokine Gi-coupled receptors (the D2 dopamine receptor and opioid mu and delta receptors) mediated chemotaxis; the beta2-adrenoreceptor and the M3-muscarinic receptor, which couple respectively to Gs and Gq, did not mediate chemotaxis. A mutation deleting 31 C-terminal amino acids from the IL-8 receptor type B quantitatively impaired chemotaxis and agonist-induced receptor internalization, but not inhibition of adenylyl cyclase or stimulation of mitogen-activated protein kinase. To probe the possible relation between receptor internalization and chemotaxis, we used two agonists of the mu-opioid receptor. Morphine and etorphine elicited quantitatively similar chemotaxis, but only etorphine induced receptor internalization. Overexpression of two betagamma sequestering proteins (betaARK-ct and alphat) prevented IL-8 receptor type B-mediated chemotaxis but did not affect inhibition of adenylyl cyclase by IL-8. We conclude that: (i) Nonchemokine Gi-coupled receptors can mediate chemotaxis. (ii) Gi activation is necessary but probably not sufficient for chemotaxis. (iii) Chemotaxis does not require receptor internalization. (iv) Chemotaxis requires the release of free betagamma subunits.
Collapse
Affiliation(s)
- E R Neptune
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
47
|
Yang W, Schraw WP, Mueller SG, Richmond A. Interruption of G protein-coupling in CXCR2 does not alter ligand binding, but eliminates ligand-activation of GTPgamma35S binding, calcium mobilization, and chemotaxis. Biochemistry 1997; 36:15193-200. [PMID: 9398246 DOI: 10.1021/bi971594u] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CXCR2 is a seven-transmembrane receptor that transduces intracellular signals in response to the chemokines IL-8, MGSA/GRO, and other ELR motif-containing CXC chemokines by coupling to heterotrimeric GTP-binding proteins. In this study, we have mutated two putative G protein-coupling regions of CXCR2 and characterized the effects of these mutations on ligand-activated signal transductions: aspartic acid 89 in the second transmembrane domain and the HRAMR sequence (BBXXB motif, found in the third intracellular loop where B indicates a basic amino acid and X represents any amino acid). The Asp89 was replaced by either asparagine (D89N) or glutamic acid (D89E). For the BBXXB motif, the first two basic amino acids were mutated to two neutral isoleucines (HR-II), or alternatively, two isoleucines were inserted between alanine and methionine (II-insert). When expressed in human embryonic kidney 293 cells, the D89E mutant was localized intracellularly with no detectable cell surface expression. In contrast, D89N, HR-II, and II-insert mutants displayed cell surface expression, with Kd values and expression levels similar to that of the wild-type transfectant. The ability of the mutants to transduce signal was assessed by ligand-stimulated GTPgamma35S binding, mobilization of intracellular free Ca2+, and chemotaxis assays. Both D89N and HR-II mutants signaled similarly to a wild-type receptor in all three assays. However, the II-insert mutant exhibited a loss of ligand-stimulated GTPgamma35S binding, calcium mobilization, and chemotaxis. Unexpectedly, this receptor underwent ligand-induced sequestration comparable to wild-type CXCR2. These data indicate that Asp89 and the basic amino acids in the third intracellular domain do not play essential roles in ligand-induced signal transduction through CXCR2. However, proper secondary structure and orientation of the third intracellular loop of CXCR2 are essential for ligand-mediated signal transduction but not for receptor sequestration.
Collapse
Affiliation(s)
- W Yang
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2175, USA
| | | | | | | |
Collapse
|
48
|
Arai H, Monteclaro FS, Tsou CL, Franci C, Charo IF. Dissociation of chemotaxis from agonist-induced receptor internalization in a lymphocyte cell line transfected with CCR2B. Evidence that directed migration does not require rapid modulation of signaling at the receptor level. J Biol Chem 1997; 272:25037-42. [PMID: 9312111 DOI: 10.1074/jbc.272.40.25037] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To investigate the role of the carboxyl-terminal region (52 amino acids) of the monocyte chemoattractant protein 1 receptor (CCR2B) in chemotaxis, we created a series of mutants and expressed them in a murine pre-B lymphocyte cell line. Truncation of the cytoplasmic carboxyl tail to 20 amino acids had little or no effect on chemotaxis or signal transduction, but further truncation resulted in marked functional defects. Upon incubation with monocyte chemoattractant protein 1, CCR2B underwent rapid and extensive internalization, and this was impaired progressively as the carboxyl tail was truncated from 52 to 8 amino acids. Mutation of all of the serine and threonine residues in the carboxyl tail to alanine also resulted in markedly impaired receptor internalization but did not affect signaling or chemotaxis. We conclude that the membrane-proximal portion of the cytoplasmic carboxyl tail of CCR2B is critically involved in chemotaxis and signal transduction, but neither phosphorylation of carboxyl serines or threonines nor internalization of the receptor is required for robust chemotaxis.
Collapse
Affiliation(s)
- H Arai
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94141-9100, USA
| | | | | | | | | |
Collapse
|
49
|
Doranz BJ, Lu ZH, Rucker J, Zhang TY, Sharron M, Cen YH, Wang ZX, Guo HH, Du JG, Accavitti MA, Doms RW, Peiper SC. Two distinct CCR5 domains can mediate coreceptor usage by human immunodeficiency virus type 1. J Virol 1997; 71:6305-14. [PMID: 9261347 PMCID: PMC191903 DOI: 10.1128/jvi.71.9.6305-6314.1997] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The chemokine receptor CCR5 is the major fusion coreceptor for macrophage-tropic strains of human immunodeficiency virus type 1 (HIV-1). To define the structures of CCR5 that can support envelope (Env)-mediated membrane fusion, we analyzed the activity of homologs, chimeras, and mutants of human CCR5 in a sensitive gene reporter cell-cell fusion assay. Simian, but not murine, homologs of CCR5 were fully active as HIV-1 fusion coreceptors. Chimeras between CCR5 and divergent chemokine receptors demonstrated the existence of two distinct regions of CCR5 that could be utilized for Env-mediated fusion, the amino-terminal domain and the extracellular loops. Dual-tropic Env proteins were particularly sensitive to alterations in the CCR5 amino-terminal domain, suggesting that this domain may play a pivotal role in the evolution of coreceptor usage in vivo. We identified individual residues in both functional regions, Asp-11, Lys-197, and Asp-276, that contribute to coreceptor function. Deletion of a highly conserved cytoplasmic motif rendered CCR5 incapable of signaling but did not abrogate its ability to function as a coreceptor, implying the independence of fusion and G-protein-mediated chemokine receptor signaling. Finally, we developed a novel monoclonal antibody to CCR5 to assist in future studies of CCR5 expression.
Collapse
Affiliation(s)
- B J Doranz
- Department of Pathology, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Alkhatib G, Locati M, Kennedy PE, Murphy PM, Berger EA. HIV-1 coreceptor activity of CCR5 and its inhibition by chemokines: independence from G protein signaling and importance of coreceptor downmodulation. Virology 1997; 234:340-8. [PMID: 9268166 DOI: 10.1006/viro.1997.8673] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
HIV-1 infection requires the presence of specific chemokine receptors on CD4+ target cells to enable the fusion reactions involved in virus entry. CCR5 is a major fusion coreceptor for macrophage-tropic HIV-1 isolates. HIV-1 entry and fusion are mediated by the viral envelope glycoprotein (Env) and are inhibited by CCR5 ligands, but the mechanisms are unknown. Here, we test the role of G protein signaling and CCR5 surface downmodulation by two separate approaches: direct inactivation of CCR5 signaling by mutagenesis and inactivation of G(i)-type G proteins with pertussis toxin. A CCR5 mutant lacking the last 45 amino acids of the cytoplasmic C-terminus (CCR5306) was created that was expressed on transfected cells at levels comparable to cells expressing CCR5 and displayed normal chemokine binding affinity. CCR5 ligands induced calcium flux and receptor downmodulation in cells expressing CCR5, but not in cells expressing CCR5306. Nevertheless, CCR5 or CCR5306, when coexpressed with CD4, supported comparable HIV-1 Env-mediated cell fusion. Consistent with this, treatment of CCR5-expressing cells with pertussis toxin completely blocked ligand-induced transient calcium flux, but did not affect Env-mediated cell fusion or HIV-1 infection. Also, pertussis toxin did not block chemokine inhibition of Env-mediated cell fusion or HIV-1 infection. However, chemokines inhibited Env-mediated cell fusion less efficiently for CCR5306 than for CCR5. We conclude that the C-terminal domain of CCR5 is critical for G protein signaling and receptor downmodulation from the surface, but that neither function is required for CCR5 fusion coreceptor activity. The contrasting phenotypes of CCR5 and CCR5306 suggest that coreceptor downmodulation and direct blockage of Env interaction sites both contribute to chemokine inhibition of HIV-1 infection.
Collapse
Affiliation(s)
- G Alkhatib
- The Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|