1
|
Kerschbaum HH, Gerner C, Oberascher K, Steiner P, Schürz M, Bresgen N. Lipid-nanoparticle-induced vacuolization in microglia. Commun Biol 2024; 7:1558. [PMID: 39580571 PMCID: PMC11585578 DOI: 10.1038/s42003-024-07271-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
Lipid-containing vacuoles in microglia were discovered more than one hundred years ago in the brain of patients showing neurodegenerative processes. Recently, molecular-biological studies demonstrated specific changes in lipid-metabolism related to neurodegeneration. Despite that already Alzheimer described a distinct glia phenotype having large, lipid-containing vacuoles (Gitterzellen), little is known about how microglia convert lipid metabolites into a vacuolated phenotype. We studied the impact of liver-derived, insoluble, lipid-enriched nanoparticles (Lef-NP) ( ~ 20 nm) and of ceramide-coated Percoll-nanoparticles (Cer-NP) ( ~ 20 nm) on vacuolization in microglia. Lipidomic analysis of Lef-NP revealed numerous distinct lipids, including pro-inflammatory ceramides, which are enriched in the brain of Alzheimer patients. Video microscopy revealed that hepatocyte-derived Lef-NP and Cer-NP enhanced macropinocytosis, followed by macropinosome swelling and formation of the Gitterzellen phenotype. Neither ceramide nor Percoll-nanoparticles induced Gitterzellen-formation. Electron-tomography visualized membrane contact-sites between nanoparticle-loaded endosomes, endoplasmic reticulum cisternae and mitochondria. Suppression of lipid-nanoparticle-induced Gitterzellen-formation by amiloride, which supresses macropinocytosis, and bafilomycin A, an endosomal acidification inhibitor, further confirmed a pinocytotic pathway in Gitterzellen-formation. Bafilomycin A also reversed Gitterzellen to a ramified microglia phenotype. Our experimental findings suggest that lipid-nanoparticles but not emulsified lipids provoke vacuolization in microglia, and provide a simple in-vitro model for a pathogenic process taking years in the human brain.
Collapse
Affiliation(s)
- Hubert H Kerschbaum
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria.
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Karin Oberascher
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Philip Steiner
- Institute of Pharmacology, Faculty of Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Melanie Schürz
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Nikolaus Bresgen
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
2
|
Sotorilli GE, Gravina HD, de Carvalho AC, Shimizu JF, Fontoura MA, Melo-Hanchuk TD, Cordeiro AT, Marques RE. Phenotypical Screening of an MMV Open Box Library and Identification of Compounds with Antiviral Activity against St. Louis Encephalitis Virus. Viruses 2023; 15:2416. [PMID: 38140657 PMCID: PMC10747599 DOI: 10.3390/v15122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/02/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
St. Louis encephalitis virus (SLEV) is a neglected mosquito-borne Flavivirus that may cause severe neurological disease in humans and other animals. There are no specific treatments against SLEV infection or disease approved for human use, and drug repurposing may represent an opportunity to accelerate the development of treatments against SLEV. Here we present a scalable, medium-throughput phenotypic cell culture-based screening assay on Vero CCL81 cells to identify bioactive compounds that could be repurposed against SLEV infection. We screened eighty compounds from the Medicines for Malaria Venture (MMV) COVID Box library to identify nine (11%) compounds that protected cell cultures from SLEV-induced cytopathic effects, with low- to mid-micromolar potencies. We validated six hit compounds using viral plaque-forming assays to find that the compounds ABT-239, Amiodarone, Fluphenazine, Posaconazole, Triparanol, and Vidofludimus presented varied levels of antiviral activity and selectivity depending on the mammalian cell type used for testing. Importantly, we identified and validated the antiviral activity of the anti-flavivirus nucleoside analog 7DMA against SLEV. Triparanol and Fluphenazine reduced infectious viral loads in both Vero CCL81 and HBEC-5i cell cultures and, similar to the other validated compounds, are likely to exert antiviral activity through a molecular target in the host.
Collapse
Affiliation(s)
- Giuliana Eboli Sotorilli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (G.E.S.); (H.D.G.); (A.C.d.C.); (J.F.S.); (M.A.F.); (T.D.M.-H.); (A.T.C.)
- Department of Genetics, Microbiology and Immunology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-100, Brazil
| | - Humberto Doriguetto Gravina
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (G.E.S.); (H.D.G.); (A.C.d.C.); (J.F.S.); (M.A.F.); (T.D.M.-H.); (A.T.C.)
| | - Ana Carolina de Carvalho
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (G.E.S.); (H.D.G.); (A.C.d.C.); (J.F.S.); (M.A.F.); (T.D.M.-H.); (A.T.C.)
- Department of Genetics, Microbiology and Immunology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-100, Brazil
| | - Jacqueline Farinha Shimizu
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (G.E.S.); (H.D.G.); (A.C.d.C.); (J.F.S.); (M.A.F.); (T.D.M.-H.); (A.T.C.)
| | - Marina Alves Fontoura
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (G.E.S.); (H.D.G.); (A.C.d.C.); (J.F.S.); (M.A.F.); (T.D.M.-H.); (A.T.C.)
- Department of Cellular and Structural Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-100, Brazil
| | - Talita Diniz Melo-Hanchuk
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (G.E.S.); (H.D.G.); (A.C.d.C.); (J.F.S.); (M.A.F.); (T.D.M.-H.); (A.T.C.)
| | - Artur Torres Cordeiro
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (G.E.S.); (H.D.G.); (A.C.d.C.); (J.F.S.); (M.A.F.); (T.D.M.-H.); (A.T.C.)
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (G.E.S.); (H.D.G.); (A.C.d.C.); (J.F.S.); (M.A.F.); (T.D.M.-H.); (A.T.C.)
| |
Collapse
|
3
|
Blaess M, Kaiser L, Sommerfeld O, Csuk R, Deigner HP. Drug triggered pruritus, rash, papules, and blisters - is AGEP a clash of an altered sphingolipid-metabolism and lysosomotropism of drugs accumulating in the skin? Lipids Health Dis 2021; 20:156. [PMID: 34743684 PMCID: PMC8573906 DOI: 10.1186/s12944-021-01552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022] Open
Abstract
Rash, photosensitivity, erythema multiforme, and the acute generalized exanthematous pustulosis (AGEP) are relatively uncommon adverse reactions of drugs. To date, the etiology is not well understood and individual susceptibility still remains unknown. Amiodarone, chlorpromazine, amitriptyline, and trimipramine are classified lysosomotropic as well as photosensitizing, however, they fail to trigger rash and pruritic papules in all individuals. Lysosomotropism is a common charcteristic of various drugs, but independent of individuals. There is evidence that the individual ability to respond to external oxidative stress is crosslinked with the elongation of long-chain fatty acids to very long-chain fatty acids by ELOVLs. ELOVL6 and ELOVL7 are sensitive to ROS induced depletion of cellular NADPH and insufficient regeneration via the pentose phosphate pathway and mitochondrial fatty acid oxidation. Deficiency of NADPH in presence of lysosomotropic drugs promotes the synthesis of C16-ceramide in lysosomes and may contribute to emerging pruritic papules of AGEP. However, independently from a lysosomomotropic drug, severe depletion of ATP and NAD(P)H, e.g., by UV radiation or a potent photosensitizer can trigger likewise the collapse of the lysosomal transmembrane proton gradient resulting in lysosomal C16-ceramide synthesis and pruritic papules. This kind of papules are equally present in polymorphous light eruption (PMLE/PLE) and acne aestivalis (Mallorca acne). The suggested model of a compartmentalized ceramide metabolism provides a more sophisticated explanation of cutaneous drug adverse effects and the individual sensitivity to UV radiation. Parameters such as pKa and ClogP of the triggering drug, cutaneous fatty acid profile, and ceramide profile enables new concepts in risk assessment and scoring of AGEP as well as prophylaxis outcome.
Collapse
Affiliation(s)
- Markus Blaess
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054, Villingen-Schwenningen, Germany
| | - Lars Kaiser
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054, Villingen-Schwenningen, Germany
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, D-79104, Freiburg, Germany
| | - Oliver Sommerfeld
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, D-07747, Jena, Germany
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 2, D-06120, Halle (Saale), Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054, Villingen-Schwenningen, Germany.
- EXIM Department, Fraunhofer Institute IZI, Schillingallee 68, D-18057, Leipzig, Rostock, Germany.
- Faculty of Science, Associated member of Tuebingen University, Auf der Morgenstelle 8, D- 72076, Tübingen, Germany.
| |
Collapse
|
4
|
Binotti B, Jahn R, Pérez-Lara Á. An overview of the synaptic vesicle lipid composition. Arch Biochem Biophys 2021; 709:108966. [PMID: 34139199 DOI: 10.1016/j.abb.2021.108966] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 11/29/2022]
Abstract
Chemical neurotransmission is the major mechanism of neuronal communication. Neurotransmitters are released from secretory organelles, the synaptic vesicles (SVs) via exocytosis into the synaptic cleft. Fusion of SVs with the presynaptic plasma membrane is balanced by endocytosis, thus maintaining the presynaptic membrane at steady-state levels. The protein machineries responsible for exo- and endocytosis have been extensively investigated. In contrast, less is known about the role of lipids in synaptic transmission and how the lipid composition of SVs is affected by dynamic exo-endocytotic cycling. Here we summarize the current knowledge about the composition, organization, and function of SV membrane lipids. We also cover lipid biogenesis and maintenance during the synaptic vesicle cycle.
Collapse
Affiliation(s)
- Beyenech Binotti
- Department of Biochemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany.
| | - Ángel Pérez-Lara
- Department of Physical Chemistry, University of Granada, Campus Universitario de Cartuja, 18071, Granada, Spain.
| |
Collapse
|
5
|
Ceramide and Related Molecules in Viral Infections. Int J Mol Sci 2021; 22:ijms22115676. [PMID: 34073578 PMCID: PMC8197834 DOI: 10.3390/ijms22115676] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 02/08/2023] Open
Abstract
Ceramide is a lipid messenger at the heart of sphingolipid metabolism. In concert with its metabolizing enzymes, particularly sphingomyelinases, it has key roles in regulating the physical properties of biological membranes, including the formation of membrane microdomains. Thus, ceramide and its related molecules have been attributed significant roles in nearly all steps of the viral life cycle: they may serve directly as receptors or co-receptors for viral entry, form microdomains that cluster entry receptors and/or enable them to adopt the required conformation or regulate their cell surface expression. Sphingolipids can regulate all forms of viral uptake, often through sphingomyelinase activation, and mediate endosomal escape and intracellular trafficking. Ceramide can be key for the formation of viral replication sites. Sphingomyelinases often mediate the release of new virions from infected cells. Moreover, sphingolipids can contribute to viral-induced apoptosis and morbidity in viral diseases, as well as virus immune evasion. Alpha-galactosylceramide, in particular, also plays a significant role in immune modulation in response to viral infections. This review will discuss the roles of ceramide and its related molecules in the different steps of the viral life cycle. We will also discuss how novel strategies could exploit these for therapeutic benefit.
Collapse
|
6
|
Shi XX, Zhu MF, Wang N, Huang YJ, Zhang MJ, Zhang C, Ali SA, Zhou WW, Zhang C, Mao C, Zhu ZR. Neutral Ceramidase Is Required for the Reproduction of Brown Planthopper, Nilaparvata lugens (Stål). Front Physiol 2021; 12:629532. [PMID: 33716775 PMCID: PMC7943485 DOI: 10.3389/fphys.2021.629532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/04/2021] [Indexed: 12/01/2022] Open
Abstract
Ceramides are bioactive sphingolipids that have been implicated in insect development; however, their role in insect reproduction remains poorly understood. Here, we report the pivotal role of neutral ceramidase (NCER) in the female reproduction of the brown planthopper (BPH), Nilaparvata lugens (Stål), a significant pest in rice cultivation in Asia. LC-MS/MS demonstrated that, among different developmental stages of BPH, the levels of ceramides were highest in 1st instar nymphs and lowest in adults. The transcription of NCER was negatively correlated with the levels of ceramides at different developmental stages of BPH, in that the transcript levels of NCER were the highest, whereas ceramides levels were the lowest in BPH adults. Knocking down NCER through RNA interference (RNAi) increased the levels of ceramides in BPH females and ovaries, which resulted in a delay in oocyte maturation, a reduction in oviposition and egg hatching rate, as well as the production of vulnerable offspring. Transmission electron microscopy (TEM) analysis and TdT-mediated dUTP Nick-End Labeling (TUNEL) assays showed mitochondrial deficiency and apoptosis in NCER-deficient oocytes. Taken together, these results suggest that NCER plays a crucial role in female reproduction in BPH, likely by regulating the levels of ceramides.
Collapse
Affiliation(s)
- Xiao-Xiao Shi
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Mu-Fei Zhu
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Ni Wang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yuan-Jie Huang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.,People's Government of Fenshui Town, Tonglu County, Hangzhou, China
| | - Min-Jing Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Chao Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Soomro A Ali
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Wen-Wu Zhou
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Chuanxi Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Cungui Mao
- Department of Medicine and Stony Brook Cancer Center, The State University of New York at Stony Brook, Stony Brook, NY, United States
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.,Hainan Research Institute, Zhejiang University, Sanya, China
| |
Collapse
|
7
|
Takehara M, Bandou H, Kobayashi K, Nagahama M. Clostridium perfringens α-toxin specifically induces endothelial cell death by promoting ceramide-mediated apoptosis. Anaerobe 2020; 65:102262. [PMID: 32828915 DOI: 10.1016/j.anaerobe.2020.102262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/14/2020] [Accepted: 08/17/2020] [Indexed: 01/14/2023]
Abstract
Clostridium perfringens type A-induced gas gangrene is characterized by severe myonecrosis, and α-toxin has been revealed to be a major virulence factor involved in the pathogenesis. However, the detailed mechanism is unclear. Here, we show that CD31+ endothelial cell counts decrease in muscles infected with C. perfringens in an α-toxin-dependent manner. In vitro experiments revealed that α-toxin preferentially and rapidly induces the death of human umbilical vein endothelial cells (HUVECs) compared with C2C12 murine muscle cells. The toxin induces apoptosis of HUVECs by increasing ceramide. Furthermore, the specificity might be dependent on differences in the sensitivity to ceramide between these cell lines. Together, our results suggest that α-toxin-induced endothelial cell death promotes severe myonecrosis and is involved in the pathogenesis of C. perfringens.
Collapse
Affiliation(s)
- Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan.
| | - Hiroto Bandou
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Keiko Kobayashi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan.
| |
Collapse
|
8
|
Canals D, Salamone S, Santacreu BJ, Nemeth E, Aguilar D, Hernandez-Corbacho MJ, Adada M, Staquicini DI, Arap W, Pasqualini R, Haley J, Obeid LM, Hannun YA. Ceramide launches an acute anti-adhesion pro-migration cell signaling program in response to chemotherapy. FASEB J 2020; 34:7610-7630. [PMID: 32307766 PMCID: PMC8265206 DOI: 10.1096/fj.202000205r] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Chemotherapy has been reported to upregulate sphingomylinases and increase cellular ceramide, often linked to the induction to cell death. In this work, we show that sublethal doses of doxorubicin and vorinostat still increased cellular ceramide, which was located predominantly at the plasma membrane. To interrogate possible functions of this specific pool of ceramide, we used recombinant enzymes to mimic physiological levels of ceramide at the plasma membrane upon chemotherapy treatment. Using mass spectrometry and network analysis, followed by experimental confirmation, the results revealed that this pool of ceramide acutely regulates cell adhesion and cell migration pathways with weak connections to commonly established ceramide functions (eg, cell death). Neutral sphingomyelinase 2 (nSMase2) was identified as responsible for the generation of plasma membrane ceramide upon chemotherapy treatment, and both ceramide at the plasma membrane and nSMase2 were necessary and sufficient to mediate these "side" effects of chemotherapy on cell adhesion and migration. This is the first time a specific pool of ceramide is interrogated for acute signaling functions, and the results define plasma membrane ceramide as an acute signaling effector necessary and sufficient for regulation of cell adhesion and cell migration under chemotherapeutical stress.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Silvia Salamone
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Bruno Jaime Santacreu
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
| | - Erika Nemeth
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Daniel Aguilar
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Catalunya, Spain
| | | | - Mohamad Adada
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Daniela I. Staquicini
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - John Haley
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Northport VA Hospital
- Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Department of Biochemistry, Stony Brook University
- Stony Brook Cancer Center, Stony Brook, NY, United States
| |
Collapse
|
9
|
Ceramide Domains in Health and Disease: A Biophysical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1159:79-108. [DOI: 10.1007/978-3-030-21162-2_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Takehara M, Seike S, Sonobe Y, Bandou H, Yokoyama S, Takagishi T, Miyamoto K, Kobayashi K, Nagahama M. Clostridium perfringens α-toxin impairs granulocyte colony-stimulating factor receptor-mediated granulocyte production while triggering septic shock. Commun Biol 2019; 2:45. [PMID: 30729183 PMCID: PMC6355902 DOI: 10.1038/s42003-019-0280-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 12/28/2018] [Indexed: 12/12/2022] Open
Abstract
During bacterial infection, granulocyte colony-stimulating factor (G-CSF) is produced and accelerates neutrophil production from their progenitors. This process, termed granulopoiesis, strengthens host defense, but Clostridium perfringens α-toxin impairs granulopoiesis via an unknown mechanism. Here, we tested whether G-CSF accounts for the α-toxin-mediated impairment of granulopoiesis. We find that α-toxin dramatically accelerates G-CSF production from endothelial cells in response to Toll-like receptor 2 (TLR2) agonists through activation of the c-Jun N-terminal kinase (JNK) signaling pathway. Meanwhile, α-toxin inhibits G-CSF-mediated cell proliferation of Ly-6G+ neutrophils by inducing degradation of G-CSF receptor (G-CSFR). During sepsis, administration of α-toxin promotes lethality and tissue injury accompanied by accelerated production of inflammatory cytokines in a TLR4-dependent manner. Together, our results illustrate that α-toxin disturbs G-CSF-mediated granulopoiesis by reducing the expression of G-CSFR on neutrophils while augmenting septic shock due to excess inflammatory cytokine release, which provides a new mechanism to explain how pathogenic bacteria modulate the host immune system.
Collapse
Affiliation(s)
- Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Soshi Seike
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Yuuta Sonobe
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Hiroto Bandou
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Saki Yokoyama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Teruhisa Takagishi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Kazuaki Miyamoto
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Keiko Kobayashi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| |
Collapse
|
11
|
Yue HY, Bieberich E, Xu J. Promotion of endocytosis efficiency through an ATP-independent mechanism at rat calyx of Held terminals. J Physiol 2017; 595:5265-5284. [PMID: 28555839 DOI: 10.1113/jp274275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/15/2017] [Indexed: 01/14/2023] Open
Abstract
KEY POINTS At rat calyx of Held terminals, ATP was required not only for slow endocytosis, but also for rapid phase of compensatory endocytosis. An ATP-independent form of endocytosis was recruited to accelerate membrane retrieval at increased activity and temperature. ATP-independent endocytosis primarily involved retrieval of pre-existing membrane, which depended on Ca2+ and the activity of neutral sphingomyelinase but not clathrin-coated pit maturation. ATP-independent endocytosis represents a non-canonical mechanism that can efficiently retrieve membrane at physiological conditions without competing for the limited ATP at elevated neuronal activity. ABSTRACT Neurotransmission relies on membrane endocytosis to maintain vesicle supply and membrane stability. Endocytosis has been generally recognized as a major ATP-dependent function, which efficiently retrieves more membrane at elevated neuronal activity when ATP consumption within nerve terminals increases drastically. This paradox raises the interesting question of whether increased activity recruits ATP-independent mechanism(s) to accelerate endocytosis at the same time as preserving ATP availability for other tasks. To address this issue, we studied ATP requirement in three typical forms of endocytosis at rat calyx of Held terminals by whole-cell membrane capacitance measurements. At room temperature, blocking ATP hydrolysis effectively abolished slow endocytosis and rapid endocytosis but only partially inhibited excess endocytosis following intense stimulation. The ATP-independent endocytosis occurred at calyces from postnatal days 8-15, suggesting its existence before and after hearing onset. This endocytosis was not affected by a reduction of exocytosis using the light chain of botulinum toxin C, nor by block of clathrin-coat maturation. It was abolished by EGTA, which preferentially blocked endocytosis of retrievable membrane pre-existing at the surface, and was impaired by oxidation of cholesterol and inhibition of neutral sphingomyelinase. ATP-independent endocytosis became more significant at 34-35°C, and recovered membrane by an amount that, on average, was close to exocytosis. The results of the present study suggest that activity and temperature recruit ATP-independent endocytosis of pre-existing membrane (in addition to ATP-dependent endocytosis) to efficiently retrieve membrane at nerve terminals. This less understood endocytosis represents a non-canonical mechanism regulated by lipids such as cholesterol and sphingomyelinase.
Collapse
Affiliation(s)
- Hai-Yuan Yue
- Departments of Neuroscience and Regenerative Medicine, Augusta University, USA
| | - Erhard Bieberich
- Departments of Neuroscience and Regenerative Medicine, Augusta University, USA
| | - Jianhua Xu
- Departments of Neuroscience and Regenerative Medicine, Augusta University, USA.,Department of Neurology, Medical College of Georgia, Augusta University, USA
| |
Collapse
|
12
|
Water at Biological Phase Boundaries: Its Role in Interfacial Activation of Enzymes and Metabolic Pathways. Subcell Biochem 2015; 71:233-61. [PMID: 26438268 DOI: 10.1007/978-3-319-19060-0_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many life-sustaining activities in living cells occur at the membrane-water interface. The pertinent questions that we need to ask are, what are the evolutionary reasons in biology for choosing the membrane-water interface as the site for performing and/or controlling crucial biological reactions, and what is the key physical principle that is very singular to the membrane-water interface that biology exploits for regulating metabolic processes in cells? In this chapter, a hypothesis is developed, which espouses that cells control activities of membrane-bound enzymes through manipulation of the thermodynamic activity of water in the lipid-water interfacial region. The hypothesis is based on the fact that the surface pressure of a lipid monolayer is a direct measure of the thermodynamic activity of water at the lipid-water interface. Accordingly, the surface pressure-dependent activation or inactivation of interfacial enzymes is directly related to changes in the thermodynamic activity of interfacial water. Extension of this argument suggests that cells may manipulate conformations (and activities) of membrane-bound enzymes by manipulating the (re)activity of interfacial water at various locations in the membrane by localized compression or expansion of the interface. In this respect, cells may use the membrane-bound hormone receptors, lipid phase transition, and local variations in membrane lipid composition as effectors of local compression and/or expansion of membrane, and thereby local water activity. Several experimental data in the literature will be reexamined in the light of this hypothesis.
Collapse
|
13
|
Carmona EM, Kottom TJ, Hebrink DM, Moua T, Singh RD, Pagano RE, Limper AH. Glycosphingolipids mediate pneumocystis cell wall β-glucan activation of the IL-23/IL-17 axis in human dendritic cells. Am J Respir Cell Mol Biol 2012; 47:50-9. [PMID: 22343219 PMCID: PMC3402796 DOI: 10.1165/rcmb.2011-0159oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 02/02/2012] [Indexed: 01/04/2023] Open
Abstract
Pneumocystis species are opportunistic fungal organisms that cause severe pneumonia in immune-compromised hosts, with resultant high morbidity and mortality. Recent work indicates that IL-17 responses are important components of host defense against fungal pathogens. In the present study, we demonstrate that cell-surface β-glucan components of Pneumocystis (PCBG) stimulate human dendritic cells (DCs) to secrete IL-23 and IL-6. These cytokines are well established to stimulate a T helper-17 (Th17) phenotype. Accordingly, we further observe that PCBG-stimulated human DCs interact with lymphocytes to drive the secretion of IL-17 and IL-22, both Th17-produced cytokines. The activation of DCs was shown to involve the dectin-1 receptor with a downstream activation of the Syk kinase and subsequent translocation of both the canonical and noncanonical components of the NF-κB transcription factor family. Finally, we demonstrate that glycosphingolipid-rich microdomains of the plasma membrane participate in the activation of DCs by PCBG through the accumulation of lactosylceramide at the cell surface during stimulation with PCBG. These data strongly support the idea that the β-glucan surface components of Pneumocystis drive the activation of the IL-23/IL-17 axis during this infection, through a glycosphingolipid-initiated mechanism.
Collapse
Affiliation(s)
- Eva M. Carmona
- Thoracic Diseases Research Unit and Division of Pulmonary Critical Care and Internal Medicine, Department of Medicine, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Theodore J. Kottom
- Thoracic Diseases Research Unit and Division of Pulmonary Critical Care and Internal Medicine, Department of Medicine, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Deanne M. Hebrink
- Thoracic Diseases Research Unit and Division of Pulmonary Critical Care and Internal Medicine, Department of Medicine, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Teng Moua
- Thoracic Diseases Research Unit and Division of Pulmonary Critical Care and Internal Medicine, Department of Medicine, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Raman-Deep Singh
- Thoracic Diseases Research Unit and Division of Pulmonary Critical Care and Internal Medicine, Department of Medicine, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Richard E. Pagano
- Thoracic Diseases Research Unit and Division of Pulmonary Critical Care and Internal Medicine, Department of Medicine, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Andrew H. Limper
- Thoracic Diseases Research Unit and Division of Pulmonary Critical Care and Internal Medicine, Department of Medicine, Mayo Clinic and Foundation, Rochester, Minnesota
| |
Collapse
|
14
|
Damodaran S. Zinc-induced precipitation of milk fat globule membranes: a simple method for the preparation of fat-free whey protein isolate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:11052-11057. [PMID: 20873818 DOI: 10.1021/jf101664j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A simple method to isolate milk fat globule membrane (MFGM) from cheese whey has been developed. The method was based on the premise that divalent cations should be able to form insoluble complexes with MFGM under certain solution conditions; this ability, however, is dependent on their coordination chemistry. Incubation of cheese whey with 0-50 mm CaCl2 or MgCl2 at 30 °C did not cause precipitation of MFGM, whereas incubation with Zn(Ac)2 under similar conditions induced selective precipitation of MFGM in a concentration-dependent manner at pH 5.2, with complete precipitation occurring above 20 mm Zn(Ac)2. The whey proteins remained soluble in the supernatant under these conditions. The ability or inability of a cation to induce precipitation of MFGM is related to the ionic radius as well as its coordination geometry. Calcium and magnesium ions have a strong tendency to form hexa-coordinated (n = 6) complexes in a regular octahedral geometry, whereas zinc prefers to form a tetra-coordinated complex in a tetrahedral geometry with MFGM phosphate groups. It is proposed that the tetrahedral geometry of zinc coordination in the zinc-MFGM complex permits hydrophobic interaction between MFGM particles, resulting in precipitation at 30 °C. Further processing of the supernatant using membrane ultrafiltration/diafiltration resulted in a fat-free whey protein isolate.
Collapse
Affiliation(s)
- Srinivasan Damodaran
- Department of Food Science, University of Wisconsin-Madison, 1605 Linden Drive, Madison, Wisconsin 53706
| |
Collapse
|
15
|
Azim H, Azim HA, Escudier B. Targeting mTOR in cancer: renal cell is just a beginning. Target Oncol 2010; 5:269-80. [PMID: 20563661 DOI: 10.1007/s11523-010-0141-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 06/10/2010] [Indexed: 12/31/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a key regulator of cell growth and proliferation. The mTOR pathway integrates signals from nutrients, energy status and extracellular growth factors to regulate many processes, including cell cycle progression, angiogenesis, ribosome biogenesis, and metabolism. Growth factors such as insulin-like growth factor, epidermal growth factor and vascular endothelial growth factor bind to and activate their corresponding tyrosine kinase receptors (TKR) located on the cell surface, to induce signal transduction to the nucleus. TKR induces intracellular signaling cascades via the phosphorylation of the phosphatidylinositol 3-kinase, which in turn phosphorylates Akt. Of particular interest among the Akt targets is the downstream effect on mTOR, which is responsible for protein synthesis of molecules necessary for nutrient uptake, angiogenesis, ribosome biogenesis, cell growth, and proliferation. Growing evidence suggests that mTOR deregulation is associated with many types of human cancer. The importance of mTOR signaling in tumor biology is now widely accepted. Consequently, a number of agents that selectively target mTOR are being developed for cancer treatment and currently temsirolimus and everolimus are approved for the treatment of advanced renal cell cancer. However, the therapeutic benefit of mTOR inhibitors in the clinic may vary depending on the activation state of the different components of the mTOR pathway in a given case. Therefore it seems clear that predicting sensitivity to rapamycins in different cancers will likely require assessing multiple molecular markers related to mTOR signaling pathway, such as phosphatase and tensin homolog (PTEN), phospho-Akt, cytoplasmic p27, and phospho-S6 kinase.
Collapse
Affiliation(s)
- Hamdy Azim
- Department of Clinical Oncology, Cairo University Hospital, Cairo, Egypt
| | | | | |
Collapse
|
16
|
Stefanić S, Spycher C, Morf L, Fabriàs G, Casas J, Schraner E, Wild P, Hehl AB, Sonda S. Glucosylceramide synthesis inhibition affects cell cycle progression, membrane trafficking, and stage differentiation in Giardia lamblia. J Lipid Res 2010; 51:2527-45. [PMID: 20335568 DOI: 10.1194/jlr.m003392] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Synthesis of glucosylceramide via glucosylceramide synthase (GCS) is a crucial event in higher eukaryotes, both for the production of complex glycosphingolipids and for regulating cellular levels of ceramide, a potent antiproliferative second messenger. In this study, we explored the dependence of the early branching eukaryote Giardia lamblia on GCS activity. Biochemical analyses revealed that the parasite has a GCS located in endoplasmic reticulum (ER) membranes that is active in proliferating and encysting trophozoites. Pharmacological inhibition of GCS induced aberrant cell division, characterized by arrest of cytokinesis, incomplete cleavage furrow formation, and consequent block of replication. Importantly, we showed that increased ceramide levels were responsible for the cytokinesis arrest. In addition, GCS inhibition resulted in prominent ultrastructural abnormalities, including accumulation of cytosolic vesicles, enlarged lysosomes, and clathrin disorganization. Moreover, anterograde trafficking of the encystations-specific protein CWP1 was severely compromised and resulted in inhibition of stage differentiation. Our results reveal novel aspects of lipid metabolism in G. lamblia and specifically highlight the vital role of GCS in regulating cell cycle progression, membrane trafficking events, and stage differentiation in this parasite. In addition, we identified ceramide as a potent bioactive molecule, underscoring the universal conservation of ceramide signaling in eukaryotes.
Collapse
Affiliation(s)
- Sasa Stefanić
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Acharya JK, Dasgupta U, Rawat SS, Yuan C, Sanxaridis PD, Yonamine I, Karim P, Nagashima K, Brodsky MH, Tsunoda S, Acharya U. Cell-nonautonomous function of ceramidase in photoreceptor homeostasis. Neuron 2008; 57:69-79. [PMID: 18184565 DOI: 10.1016/j.neuron.2007.10.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 09/17/2007] [Accepted: 10/30/2007] [Indexed: 01/10/2023]
Abstract
Neutral ceramidase, a key enzyme of sphingolipid metabolism, hydrolyzes ceramide to sphingosine. These sphingolipids are critical structural components of cell membranes and act as second messengers in diverse signal transduction cascades. Here, we have isolated and characterized functional null mutants of Drosophila ceramidase. We show that secreted ceramidase functions in a cell-nonautonomous manner to maintain photoreceptor homeostasis. In the absence of ceramidase, photoreceptors degenerate in a light-dependent manner, are defective in normal endocytic turnover of rhodopsin, and do not respond to light stimulus. Consistent with a cell-nonautonomous function, overexpression of ceramidase in tissues distant from photoreceptors suppresses photoreceptor degeneration in an arrestin mutant and facilitates membrane turnover in a rhodopsin null mutant. Furthermore, our results show that secreted ceramidase is internalized and localizes to endosomes. Our findings establish a role for a secreted sphingolipid enzyme in the regulation of photoreceptor structure and function.
Collapse
Affiliation(s)
- Jairaj K Acharya
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Gaumann A, Schlitt HJ, Geissler EK. Immunosuppression and tumor development in organ transplant recipients: the emerging dualistic role of rapamycin. Transpl Int 2007; 21:207-17. [PMID: 18069922 DOI: 10.1111/j.1432-2277.2007.00610.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer morbidity and mortality are increasingly apparent risks in transplant recipients, thus reducing life quality and overall survival. These risks have largely been attributed to long-term immunosuppressive drug therapy, which remains necessary to prevent organ allograft rejection. Interestingly, however, recent studies challenge the premise that all immunosuppressive drugs necessarily promote cancer. A particular class of immunosuppressants, referred to as mammalian target of rapamycin (mTOR) inhibitors, has been shown to have potent anti-cancer effects that are presently being tested in clinical studies. The focus of this review is to present current evidence that allows us to understand better the dual immunosuppressive and anti-cancer functions of this class of drugs used to prevent allograft rejection. We will concentrate on the different functions of mTOR that allow it to simultaneously control the immune system and tumor development. We will also discuss results from current clinical studies that either support or refute this potential dualistic role.
Collapse
Affiliation(s)
- Andreas Gaumann
- Institute of Pathology, University Regensburg, Regensburg, Germany
| | | | | |
Collapse
|
19
|
Ramoino P, Usai C, Maccione S, Beltrame F, Diaspro A, Fato M, Guella G, Dini F. Effect of the bioactive metabolite euplotin C on phagocytosis and fluid-phase endocytosis in the single-celled eukaryote Paramecium. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2007; 85:67-75. [PMID: 17875329 DOI: 10.1016/j.aquatox.2007.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 08/02/2007] [Accepted: 08/03/2007] [Indexed: 05/17/2023]
Abstract
The effect of euplotin C -- a lipophilic bioactive metabolite produced by the ciliate Euplotes crassus -- on the kinetics of both phagocytosis of latex particles and fluid-phase uptake of dextran, was studied in the single-cell ciliate Paramecium primaurelia. The inhibition of food vacuole formation was concentration- and time-dependent (p<0.001), even if euplotin C did not completely block the phagocytosis. Following a 15 min treatment with a euplotin C (0.5 microg/ml), the latex particle uptake was inhibited up to 25%. Furthermore, the pretreatment of cells with taxol strongly counteracted euplotin C effect. The amount of extracellularly provided dextran, which is internalized exclusively by fluid-phase uptake, was quantified in cells whose phagocytic activity was blocked by trifluoperazine. The amount of the internalized dextran was about 50% of that in controls after 15 min incubation in the presence of euplotin C. Fluorescence confocal images showed that no endosomes were formed on the surface of these cells. The effect of euplotin C on the food vacuole formation and fluid-phase endocytosis is apparently mediated by a modification of microtubule network.
Collapse
Affiliation(s)
- Paola Ramoino
- Dipartimento per lo Studio del Territorio e delle sue Risorse (DIP.TE.RIS.), Università di Genova, Corso Europa 26, I-16132, Genova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Since the introduction of cyclosporin A (CsA) in the early 1980s, the use of immunosuppressants has markedly increased. Already established drugs have proved effective in the treatment of a wide range of diseases outside transplantation medicine and new immunosuppressants have been developed for more specific indications such as psoriasis and atopic dermatitis. Patients in transplantation medicine as well as in dermatology have benefited significantly from systemic and topical application of both new and established drugs. But are these drugs without risks? Cancer-protecting effects have been reported for some of the available immunosuppressants. Conversely, other publications and the issue of a black box warning by the US Food and Drug Administration have increased concerns about cancer-promoting effects. Knowledge of the specific effects as well as adverse effects is paramount to ensure an application that is safe and beneficial for the patient. Here we review the mechanisms of action and therapeutic potential, and critically review recent literature with respect to possible carcinogenic side effects of systemic and topical CsA, tacrolimus, pimecrolimus and rapamycin.
Collapse
Affiliation(s)
- Maren Weischer
- Department of Dermatology and Venerology, Eberhard Karls University, Liebermeisterstrasse 25, D-72076 Tuebingen, Germany
| | | | | |
Collapse
|
21
|
Finnegan CM, Rawat SS, Cho EH, Guiffre DL, Lockett S, Merrill AH, Blumenthal R. Sphingomyelinase restricts the lateral diffusion of CD4 and inhibits human immunodeficiency virus fusion. J Virol 2007; 81:5294-304. [PMID: 17344303 PMCID: PMC1900240 DOI: 10.1128/jvi.02553-06] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previously, we reported that treatment of cells with sphingomyelinase inhibits human immunodeficiency virus type 1 (HIV-1) entry. Here, we determined by measuring fluorescence recovery after photobleaching that the lateral diffusion of CD4 decreased 4-fold following sphingomyelinase treatment, while the effective diffusion rate of CCR5 remained unchanged. Notably, sphingomyelinase treatment of cells did not influence gp120 binding, HIV-1 attachment, or fluid-phase and receptor-mediated endocytosis. Furthermore, sphingomyelinase treatment did not affect the membrane disposition of the HIV receptor proteins CD4, CXCR4, and CCR5, as determined by Triton X-100 extraction. Restriction of CD4 diffusion by antibody cross-linking also inhibited HIV infection. We therefore interpret the decrease in CD4 lateral mobility following sphingomyelinase treatment in terms of clustering of CD4 molecules. Examination of fusion intermediates indicated that sphingomyelinase treatment inhibited HIV at a step in the fusion process after CD4 engagement. Maximal inhibition of fusion was observed following short coculture times and with target cells that express low levels of CD4. As HIV entry into cells requires the sequential engagement of viral envelope protein with CD4 and coreceptor, we propose that sphingomyelinase inhibits HIV infection by inducing CD4 clustering that prevents coreceptor engagement and HIV fusion.
Collapse
Affiliation(s)
- Catherine M Finnegan
- Center for Cancer Research Nanobiology Program, National Cancer Institute, National Institutes of Health, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
López-Montero I, Vélez M, Devaux PF. Surface tension induced by sphingomyelin to ceramide conversion in lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:553-61. [PMID: 17292325 DOI: 10.1016/j.bbamem.2007.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 12/13/2006] [Accepted: 01/02/2007] [Indexed: 11/18/2022]
Abstract
We have investigated the effect of sphingomyelin (SM) to ceramide enzymatic conversion on lipid bilayers using Giant Unilamellar Vesicles (GUVs). Sphingomyelinase was added externally to GUVs containing various proportions of SM. In situ asymmetrical SM conversion to ceramide reduced the area of one leaflet. In the absence of equilibration of all the lipids between the two leaflets, a mismatch between the two monolayers was generated. The tension generated by this mismatch was sufficient to trigger the formation of membrane defects and total vesicle collapse at relatively low percentage of SM ( approximately 5% mol). The formation of nanometric size defects was visualised by AFM in supported bilayers. Vesicle rupture was prevented in two circumstances: (a) in GUVs containing a mixture of l(d) and l(o) domains and (b) in GUVs containing 5% lyso-phosphatidylcholine. In both cases, the accumulation of enough ceramide (at initial SM concentration of 10%) allowed the formation of ceramide-rich domains. The coupling between the two asymmetrical monolayers and the condensing effect produced by the newly formed ceramide generated a tension that could underlie the mechanism through which ceramide formation induces membrane modifications observed during the late stages of apoptosis.
Collapse
Affiliation(s)
- Iván López-Montero
- Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie 75005 Paris, France
| | | | | |
Collapse
|
23
|
Ablan S, Rawat SS, Viard M, Wang JM, Puri A, Blumenthal R. The role of cholesterol and sphingolipids in chemokine receptor function and HIV-1 envelope glycoprotein-mediated fusion. Virol J 2006; 3:104. [PMID: 17187670 PMCID: PMC1769366 DOI: 10.1186/1743-422x-3-104] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 12/22/2006] [Indexed: 12/21/2022] Open
Abstract
Background HIV-1 entry into cells is a multifaceted process involving target cell CD4 and the chemokine receptors, CXCR4 or CCR5. The lipid composition of the host cell plays a significant role in the HIV fusion process as it orchestrates the appropriate disposition of CD4 and co-receptors required for HIV-1 envelope glycoprotein (Env)-mediated fusion. The cell membrane is primarily composed of sphingolipids and cholesterol. The effects of lipid modulation on CD4 disposition in the membrane and their role in HIV-1 entry have extensively been studied. To focus on the role of lipid composition on chemokine receptor function, we have by-passed the CD4 requirement for HIV-1 Env-mediated fusion by using a CD4-independent strain of HIV-1 Env. Results Cell fusion mediated by a CD4-independent strain of HIV-1 Env was monitored by observing dye transfer between Env-expressing cells and NIH3T3 cells bearing CXCR4 or CCR5 in the presence or absence of CD4. Chemokine receptor signaling was assessed by monitoring changes in intracellular [Ca2+] mobilization induced by CCR5 or CXCR4 ligand. To modulate target membrane cholesterol or sphingolipids we used Methyl-β-cyclodextrin (MβCD) or 1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol (PPMP), respectively. Treatment of the target cells with these agents did not change the levels of CD4 or CXCR4, but reduced levels of CCR5 on the cell surface. Chemokine receptor signalling was inhibited by cholesterol removal but not by treatment with PPMP. HIV-1 Env mediated fusion was inhibited by >50% by cholesterol removal. Overall, PPMP treatment appeared to slow down the rates of CD4-independent HIV-1 Env-mediated Fusion. However, in the case of CXCR4-dependent fusion, the differences between untreated and PPMP-treated cells did not appear to be significant. Conclusion Although modulation of cholesterol and sphingolipids has similar effects on CD4 -dependent HIV-1 Env-mediated fusion, sphingolipid modulation had little effect on CD4-independent HIV-1 Env-mediated fusion. Chemokine receptor function remained intact following treatment of cells with PPMP. Therefore such treatment may be considered a more suitable agent to inhibit CD4 dependent HIV-1 infection.
Collapse
Affiliation(s)
- Sherimay Ablan
- Center for Cancer Research Nanobiology Program, Center for Cancer Research, National Cancer Insitute, National Institutes of Health, Frederick, Maryland, USA
| | - Satinder S Rawat
- Center for Cancer Research Nanobiology Program, Center for Cancer Research, National Cancer Insitute, National Institutes of Health, Frederick, Maryland, USA
| | - Mathias Viard
- Center for Cancer Research Nanobiology Program, Center for Cancer Research, National Cancer Insitute, National Institutes of Health, Frederick, Maryland, USA
| | - Ji Ming Wang
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Insitute, National Institutes of Health, Frederick, Maryland, USA
| | - Anu Puri
- Center for Cancer Research Nanobiology Program, Center for Cancer Research, National Cancer Insitute, National Institutes of Health, Frederick, Maryland, USA
| | - Robert Blumenthal
- Center for Cancer Research Nanobiology Program, Center for Cancer Research, National Cancer Insitute, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
24
|
Giussani P, Maceyka M, Le Stunff H, Mikami A, Lépine S, Wang E, Kelly S, Merrill AH, Milstien S, Spiegel S. Sphingosine-1-phosphate phosphohydrolase regulates endoplasmic reticulum-to-golgi trafficking of ceramide. Mol Cell Biol 2006; 26:5055-69. [PMID: 16782891 PMCID: PMC1489178 DOI: 10.1128/mcb.02107-05] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Previous studies demonstrated that sphingosine-1-phosphate (S1P) phosphohydrolase 1 (SPP-1), which is located mainly in the endoplasmic reticulum (ER), regulates sphingolipid metabolism and apoptosis (H. Le Stunff et al., J. Cell Biol. 158:1039-1049, 2002). We show here that the treatment of SPP-1-overexpressing cells with S1P, but not with dihydro-S1P, increased all ceramide species, particularly the long-chain ceramides. This was not due to inhibition of ceramide metabolism to sphingomyelin or monohexosylceramides but rather to the inhibition of ER-to-Golgi trafficking, determined with the fluorescent ceramide analog N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-d-erythro-sphingosine (DMB-Cer). Fumonisin B1, an inhibitor of ceramide synthase, prevented S1P-induced elevation of all ceramide species and corrected the defect in ER transport of DMB-Cer, readily allowing its detection in the Golgi. In contrast, ceramide accumulation had no effect on either the trafficking or the metabolism of 6-([N-(7-nitrobenzo-2-oxa-1,3-diazol-4-yl)amino]hexanoyl)-sphingosine, which rapidly labels the Golgi even at 4 degrees C. Protein trafficking from the ER to the Golgi, determined with vesicular stomatitis virus ts045 G protein fused to green fluorescent protein, was also inhibited in SPP-1-overexpressing cells in the presence of S1P but not in the presence of dihydro-S1P. Our results suggest that SPP-1 regulates ceramide levels in the ER and thus influences the anterograde membrane transport of both ceramide and proteins from the ER to the Golgi apparatus.
Collapse
Affiliation(s)
- Paola Giussani
- Department of Biochemistry, Virginia Commonwealth University School of Medicine and Massey Cancer Center, Richmond, Virginia 23298, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30322, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Michael Maceyka
- Department of Biochemistry, Virginia Commonwealth University School of Medicine and Massey Cancer Center, Richmond, Virginia 23298, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30322, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Hervé Le Stunff
- Department of Biochemistry, Virginia Commonwealth University School of Medicine and Massey Cancer Center, Richmond, Virginia 23298, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30322, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Aki Mikami
- Department of Biochemistry, Virginia Commonwealth University School of Medicine and Massey Cancer Center, Richmond, Virginia 23298, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30322, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Sandrine Lépine
- Department of Biochemistry, Virginia Commonwealth University School of Medicine and Massey Cancer Center, Richmond, Virginia 23298, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30322, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Elaine Wang
- Department of Biochemistry, Virginia Commonwealth University School of Medicine and Massey Cancer Center, Richmond, Virginia 23298, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30322, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Samuel Kelly
- Department of Biochemistry, Virginia Commonwealth University School of Medicine and Massey Cancer Center, Richmond, Virginia 23298, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30322, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Alfred H. Merrill
- Department of Biochemistry, Virginia Commonwealth University School of Medicine and Massey Cancer Center, Richmond, Virginia 23298, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30322, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Sheldon Milstien
- Department of Biochemistry, Virginia Commonwealth University School of Medicine and Massey Cancer Center, Richmond, Virginia 23298, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30322, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Sarah Spiegel
- Department of Biochemistry, Virginia Commonwealth University School of Medicine and Massey Cancer Center, Richmond, Virginia 23298, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30322, National Institute of Mental Health, Bethesda, Maryland 20892
- Corresponding author. Mailing address: Department of Biochemistry, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Room 2-011 Sanger Hall, Richmond, VA 23298-0614. Phone: (804) 828-9330. Fax: (804) 828-8999. E-mail:
| |
Collapse
|
25
|
Cheng ZJ, Singh RD, Sharma DK, Holicky EL, Hanada K, Marks DL, Pagano RE. Distinct mechanisms of clathrin-independent endocytosis have unique sphingolipid requirements. Mol Biol Cell 2006; 17:3197-210. [PMID: 16672382 PMCID: PMC1552047 DOI: 10.1091/mbc.e05-12-1101] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sphingolipids (SLs) play important roles in membrane structure and cell function. Here, we examine the SL requirements of various endocytic mechanisms using a mutant cell line and pharmacological inhibitors to disrupt SL biosynthesis. First, we demonstrated that in Chinese hamster ovary cells we could distinguish three distinct mechanisms of clathrin-independent endocytosis (caveolar, RhoA, and Cdc42 dependent) which differed in cargo, sensitivity to pharmacological agents, and dominant negative proteins. General depletion of SLs inhibited endocytosis by each clathrin-independent mechanism, whereas clathrin-dependent uptake was unaffected. Depletion of glycosphingolipids (GSLs; a subgroup of SLs) selectively blocked caveolar endocytosis and decreased caveolin-1 and caveolae at the plasma membrane. Caveolar endocytosis and PM caveolae could be restored in GSL-depleted cells by acute addition of exogenous GSLs. Disruption of RhoA- and Cdc42-regulated endocytosis by SL depletion was shown to be related to decreased targeting of these Rho proteins to the plasma membrane and could be partially restored by exogenous sphingomyelin but not GSLs. Both the in vivo membrane targeting and in vitro binding to artificial lipid vesicles of RhoA and Cdc42 were shown to be dependent upon sphingomyelin. These results provide the first evidence that SLs are differentially required for distinct mechanisms of clathrin-independent endocytosis.
Collapse
Affiliation(s)
- Zhi-Jie Cheng
- *Department of Biochemistry and Molecular Biology, Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, MN 55905; and
| | - Raman Deep Singh
- *Department of Biochemistry and Molecular Biology, Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, MN 55905; and
| | - Deepak K. Sharma
- *Department of Biochemistry and Molecular Biology, Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, MN 55905; and
| | - Eileen L. Holicky
- *Department of Biochemistry and Molecular Biology, Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, MN 55905; and
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - David L. Marks
- *Department of Biochemistry and Molecular Biology, Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, MN 55905; and
| | - Richard E. Pagano
- *Department of Biochemistry and Molecular Biology, Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, MN 55905; and
| |
Collapse
|
26
|
Luan Y, Griffiths HR. Ceramides reduce CD36 cell surface expression and oxidised LDL uptake by monocytes and macrophages. Arch Biochem Biophys 2006; 450:89-99. [PMID: 16620763 DOI: 10.1016/j.abb.2006.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 02/06/2006] [Accepted: 03/01/2006] [Indexed: 11/18/2022]
Abstract
Oxidised LDL accumulates in macrophages following scavenger receptor (SR) uptake. The expression of the SR, CD36, is increased by oxidised LDL. The signalling molecule, ceramide, can modulate intracellular peroxides and increase lipid peroxidation. Ceramide also accumulates in atherosclerotic plaques. Thus, we have examined whether ceramide can modulate CD36 expression and function in human monocyte/macrophages. Addition of synthetic short chain ceramides or the action of sphingomyelinase to generate physiological long chain ceramides in situ caused significant reductions in CD36 expression by monocytes/macrophages which was not due to inhibition of mRNA expression. Inhibition of proteasomal degradation using lactacystin had no effect on CD36 expression, however, flow cytometric analysis of permeabilised cells suggested an intracellular trafficking blockade. Ceramide treated monocytes/macrophages showed dose dependent reduction in oxidised LDL uptake. Taken together, it is suggested that ceramide blocks the transport of CD36 to the membrane of monocytes/macrophages, thereby preventing uptake of oxidised LDL.
Collapse
Affiliation(s)
- Yingjun Luan
- Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | | |
Collapse
|
27
|
Hess ST, Kumar M, Verma A, Farrington J, Kenworthy A, Zimmerberg J. Quantitative electron microscopy and fluorescence spectroscopy of the membrane distribution of influenza hemagglutinin. ACTA ACUST UNITED AC 2005; 169:965-76. [PMID: 15967815 PMCID: PMC2171648 DOI: 10.1083/jcb.200412058] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although lipid-dependent protein clustering in biomembranes mediates numerous functions, there is little consensus among membrane models on cluster organization or size. Here, we use influenza viral envelope protein hemagglutinin (HA(0)) to test the hypothesis that clustering results from proteins partitioning into preexisting, fluid-ordered "raft" domains, wherein they have a random distribution. Japan HA(0) expressed in fibroblasts was visualized by electron microscopy using immunogold labeling and probed by fluorescence resonance energy transfer (FRET). Labeled HA coincided with electron-dense, often noncircular membrane patches. Poisson and K-test (Ripley, B.D. 1977. J. R. Stat. Soc. Ser. B. 39:172-212) analyses reveal clustering on accessible length scales (20-900 nm). Membrane treatments with methyl-beta-cyclodextrin and glycosphingolipid synthesis inhibitors did not abolish clusters but did alter their pattern, especially at the shortest lengths, as was corroborated by changes in FRET efficiency. The magnitude and density dependence of the measured FRET efficiency also indicated a nonrandom distribution on molecular length scales (approximately 6-7 nm). This work rules out the tested hypothesis for HA over the accessible length scales, yet shows clearly how the spatial distribution of HA depends on lipid composition.
Collapse
Affiliation(s)
- Samuel T Hess
- Laboratory for Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
28
|
López-Montero I, Rodriguez N, Cribier S, Pohl A, Vélez M, Devaux PF. Rapid Transbilayer Movement of Ceramides in Phospholipid Vesicles and inHumanErythrocytes. J Biol Chem 2005; 280:25811-9. [PMID: 15883154 DOI: 10.1074/jbc.m412052200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transbilayer diffusion of unlabeled ceramides with different acyl chains (C6-Cer, C10-Cer, and C16-Cer) was investigated in giant unilamellar vesicles (GUVs) and in human erythrocytes. Incorporation of a very small percentage of ceramides (approximately 0.1% of total lipids) to the external leaflet of egg phosphatidylcholine GUVs suffices to trigger a shape change from prolate to pear shape vesicle. By observing the reversibility of this shape change the transmembrane diffusion of lipids was inferred. We found a half-time for unlabeled ceramide flip-flop below 1 min at 37 degrees C. The rapid diffusion of ceramides in a phosphatidylcholine bilayer was confirmed by flip-flop experiments with a spin-labeled ceramide analogue incorporated into large unilamellar vesicles. Shape change experiments were also carried out with human erythrocytes to determine the trans-membrane diffusion of unlabeled ceramides into a biological membrane. Addition of exogenous ceramides to the external leaflet of human erythrocytes did not trigger echinocyte formation immediately as one would anticipate from an asymmetrical accumulation of new amphiphiles in the outer leaflet but only after approximately 15 min of incubation at 20 degrees C in the presence of an excess of ceramide. We interpret these data as being indicative of a rapid ceramide equilibration between both erythrocyte leaflets as indicated also by electron spin resonance spectroscopy with a spin-labeled ceramide. The late appearance of echinocytes could reveal a progressive trapping of a fraction of the ceramide molecules in the outer erythrocytes leaflet. Thus, we cannot exclude the trapping of ceramides into plasma membrane domains.
Collapse
Affiliation(s)
- Iván López-Montero
- Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
29
|
Ringshausen I, Peschel C, Decker T. Mammalian target of rapamycin (mTOR) inhibition in chronic lymphocytic B-cell leukemia: a new therapeutic option. Leuk Lymphoma 2005; 46:11-9. [PMID: 15621776 DOI: 10.1080/10428190400005353] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chronic lymphocytic B-cell leukemia (B-CLL) is an incurable disease characterized by the accumulation of monoclonal mature B cells, although disease progression relies upon cycling B-CLL cells in proliferation centers in central lymph organs. Rapamycin and its analogs are immunosuppressant drugs that exert their activity by specific inhibition of the mammalian target of rapamycin (mTOR). mTOR inhibition induces cell cycle arrest not only in normal lymphocytes but also in malignant cells. Therefore, rapamycins have recently entered the field of cancer treatment. In the present review we discuss how progression through the cell cycle is regulated in B-CLL cells and how rapamycin and its analogs can be used as target therapies against proliferating B-CLL cells. We also focus on additional effects of rapamycin, such as targeting the interaction between malignant B cells and the microenvironment.
Collapse
Affiliation(s)
- I Ringshausen
- 3rd Department of Medicine, Technical University of Munich, Munich, Germany
| | | | | |
Collapse
|
30
|
Rohrbough J, Rushton E, Palanker L, Woodruff E, Matthies HJG, Acharya U, Acharya JK, Broadie K. Ceramidase regulates synaptic vesicle exocytosis and trafficking. J Neurosci 2005; 24:7789-803. [PMID: 15356190 PMCID: PMC2675194 DOI: 10.1523/jneurosci.1146-04.2004] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A screen for Drosophila synaptic dysfunction mutants identified slug-a-bed (slab). The slab gene encodes ceramidase, a central enzyme in sphingolipid metabolism and regulation. Sphingolipids are major constituents of lipid rafts, membrane domains with roles in vesicle trafficking, and signaling pathways. Null slab mutants arrest as fully developed embryos with severely reduced movement. The SLAB protein is widely expressed in different tissues but enriched in neurons at all stages of development. Targeted neuronal expression of slab rescues mutant lethality, demonstrating the essential neuronal function of the protein. C(5)-ceramide applied to living preparations is rapidly accumulated at neuromuscular junction (NMJ) synapses dependent on the SLAB expression level, indicating that synaptic sphingolipid trafficking and distribution is regulated by SLAB function. Evoked synaptic currents at slab mutant NMJs are reduced by 50-70%, whereas postsynaptic glutamate-gated currents are normal, demonstrating a specific presynaptic impairment. Hypertonic saline-evoked synaptic vesicle fusion is similarly impaired by 50-70%, demonstrating a loss of readily releasable vesicles. In addition, FM1-43 dye uptake is reduced in slab mutant presynaptic terminals, indicating a smaller cycling vesicle pool. Ultrastructural analyses of mutants reveal a normal vesicle distribution clustered and docked at active zones, but fewer vesicles in reserve regions, and a twofold to threefold increased incidence of vesicles linked together and tethered at the plasma membrane. These results indicate that SLAB ceramidase function controls presynaptic terminal sphingolipid composition to regulate vesicle fusion and trafficking, and thus the strength and reliability of synaptic transmission.
Collapse
Affiliation(s)
- Jeffrey Rohrbough
- Department of Biological Sciences, Vanderbilt Kennedy Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37235-1634, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Membrane vesicle cycling is orchestrated through the combined actions of proteins and lipids. At neuronal synapses, this orchestration must meet the stringent demands of speed, fidelity and sustainability of the synaptic vesicle cycle that mediates neurotransmission. Historically, the lion's share of the attention has been focused on the proteins that are involved in this cycle; but, in recent years, it has become clear that the previously unheralded plasma membrane and vesicle lipids are also key regulators of this cycle. This article reviews recent insights into the roles of lipid-modifying enzymes and lipids in the acute modulation of neurotransmission.
Collapse
Affiliation(s)
- Jeffrey Rohrbough
- Department of Biological Sciences, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37235-1634, USA
| | | |
Collapse
|
32
|
Worgall TS, Juliano RA, Seo T, Deckelbaum RJ. Ceramide synthesis correlates with the posttranscriptional regulation of the sterol-regulatory element-binding protein. Arterioscler Thromb Vasc Biol 2004; 24:943-8. [PMID: 15132973 DOI: 10.1161/01.atv.0000125703.20434.4d] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Sterol-regulatory element-binding proteins (SREBPs) regulate transcription of genes of lipid metabolism. Ceramide decreases transcriptionally active SREBP levels independently of intracellular cholesterol levels. Mechanisms of the ceramide-mediated decrease of SREBP levels were investigated. METHODS AND RESULTS Experiments were performed in Chinese hamster ovary cells. Inhibition of ceramide synthesis with myriocin, cycloserine, or fumonisin decreases levels of transcriptionally active SREBP and reduces SRE-mediated gene transcription. When ceramide synthesis is increased through exogenous sphingosine or inhibition of sphingosine kinase, SRE-mediated gene transcription is increased. The important role of ceramide synthesis in SRE-mediated gene transcription is confirmed in LY-B cells that do not synthesize ceramide de novo. LY-B cells fail to increase SRE-mediated gene transcription in sterol depletion. CONCLUSIONS Ceramide synthesis correlates with the generation of transcriptionally active SREBP and SRE-mediated gene transcription. Inhibition of ceramide synthesis decreases levels of transcriptionally active SREBP and SRE-mediated gene transcription. It is hypothesized that the process of ongoing ceramide synthesis contributes to the physiological processing of SREBP, perhaps affecting ER-to-Golgi trafficking. Taken together, modification of ceramide synthesis could be a novel target for drug development in the pharmacologic modification of SRE-dependent pathways.
Collapse
Affiliation(s)
- Tilla S Worgall
- Department of Pathology, Columbia University, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
33
|
Witting SR, Maiorano JN, Davidson WS. Ceramide enhances cholesterol efflux to apolipoprotein A-I by increasing the cell surface presence of ATP-binding cassette transporter A1. J Biol Chem 2003; 278:40121-7. [PMID: 12890677 DOI: 10.1074/jbc.m305193200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is widely accepted that functional ATP-binding cassette transporter A1 (ABCA1) is critical for the formation of nascent high density lipoprotein particles. However, the cholesterol pool(s) and the cellular signaling processes utilized by the ABCA1-mediated pathway remain unclear. Sphingomyelin maintains a preferential interaction with cholesterol in membranes, and its catabolites, especially ceramide, are potent signaling molecules that could play a role in ABCA1 regulation or function. To study the potential role of ceramide in this process, we treated a variety of cell lines with 20 microM C2-ceramide and examined apolipoprotein-mediated cholesterol efflux to lipid-free apoA-I. We found that cell lines expressing ABCA1 displayed 2-3-fold increases in cholesterol efflux to apoA-I. Cell lines not expressing ABCA1 were unaffected by ceramide. We further characterized the cholesterol efflux effect in Chinese hamster ovary cells. Ceramide treatment did not cause significant cytotoxicity or apoptosis and did not affect cholesterol efflux to non-apolipoprotein acceptors. Raising endogenous ceramide levels increased cholesterol efflux to apoA-I. Using a cell surface biotinylation method, we found that the total cellular ABCA1 and that at the plasma membrane were increased with ceramide treatment. Also ceramide enhanced the binding of fluorescently labeled apoA-I to Chinese hamster ovary cells. These data suggest that ceramide may increase the plasma membrane content of ABCA1, leading to increased apoA-I binding and cholesterol efflux.
Collapse
Affiliation(s)
- Scott R Witting
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0529, USA
| | | | | |
Collapse
|
34
|
Sriram V, Cho S, Li P, O'Donnell PW, Dunn C, Hayakawa K, Blum JS, Brutkiewicz RR. Inhibition of glycolipid shedding rescues recognition of a CD1+ T cell lymphoma by natural killer T (NKT) cells. Proc Natl Acad Sci U S A 2002; 99:8197-202. [PMID: 12060764 PMCID: PMC123044 DOI: 10.1073/pnas.122636199] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neoplastic transformation of cells is accompanied by an aberration of cell surface glycolipid composition. These tumor-associated, altered glycosphingolipids are often shed into the tumor cell microenvironment and mediate immunosuppressive activity. The nature and form of glycolipids shed by a variety of tumor cell lines and the mechanism(s) of shedding have been well characterized. The murine T cell lymphoma line, L5178Y-R, is known to shed a tumor-associated glycolipid, gangliotriaosylceramide, into the culture medium. We analyzed the effect of glycolipids from L5178Y-R on antigen presentation by murine CD1d1 molecules. CD1d1 molecules present glycolipid antigens to a specialized class of T cells called natural killer T (NKT) cells that mainly express a T cell receptor alpha chain (Valpha14Jalpha281) associated with Vbeta chains of limited diversity. In the current report, we found that L5178Y-R cells express CD1 on their cell surface yet are unable to stimulate CD1d1-specific NKT cells. We hypothesized that the glycolipid(s) shed by L5178Y-R inhibited antigen presentation by CD1d1. Pretreatment of CD1d1(+) cells with conditioned medium from L5178Y-R inhibited CD1-specific stimulation of canonical (Valpha14(+)) but not noncanonical (Valpha5(+)) NKT cells. Exogenous addition of lipids extracted from L5178Y-R cells as well as purified gangliotriaosylceramide mimicked this effect. Inhibition of glycolipid shedding in L5178Y-R cells with d-1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol resulted in the rescue of CD1d1 recognition by canonical (but not noncanonical) NKT cells. These results suggest that one means by which certain tumor cells can evade the host's innate antitumor immune response is by shedding glycolipids that inhibit CD1-mediated antigen presentation to NKT cells.
Collapse
Affiliation(s)
- Venkataraman Sriram
- Department of Microbiology and Immunology, Indiana University School of Medicine, Building R4, Room 302, 1044 West Walnut Street, Indianapolis, IN 46202-5254
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Brann AB, Tcherpakov M, Williams IM, Futerman AH, Fainzilber M. Nerve growth factor-induced p75-mediated death of cultured hippocampal neurons is age-dependent and transduced through ceramide generated by neutral sphingomyelinase. J Biol Chem 2002; 277:9812-8. [PMID: 11777929 DOI: 10.1074/jbc.m109862200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Binding of nerve growth factor (NGF) to the p75 neurotrophin receptor (p75) in cultured hippocampal neurons has been reported to cause seemingly contrasting effects, namely ceramide-dependent axonal outgrowth of freshly plated neurons, versus Jun kinase (Jnk)-dependent cell death in older neurons. We now show that the apoptotic effects of NGF in hippocampal neurons are observed only from the 2nd day of culture onward. This switch in the effect of NGF is correlated with an increase in p75 expression levels and increasing levels of ceramide generation as the cultures mature. NGF application to neuronal cultures from p75(exonIII-/-) mice had no effect on ceramide levels and did not affect neuronal viability. The neutral sphingomyelinase inhibitor, scyphostatin, inhibited NGF-induced ceramide generation and neuronal death, whereas hippocampal neurons cultured from acid sphingomyelinase(-/-) mice were as susceptible to NGF-induced death as wild type neurons. The acid ceramidase inhibitor, (1S,2R)-d-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol, enhanced cell death, supporting a role for ceramide itself and not a downstream lipid metabolite. Finally, scyphostatin inhibited NGF-induced Jnk phosphorylation in hippocampal neurons. These data indicate an initiating role of ceramide generated by neutral sphingomyelinase in the diverse neuronal responses induced by binding of neurotrophins to p75.
Collapse
Affiliation(s)
- Adi B Brann
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | |
Collapse
|
36
|
Abousalham A, Hobman TC, Dewald J, Garbutt M, Brindley DN. Cell-permeable ceramides preferentially inhibit coated vesicle formation and exocytosis in Chinese hamster ovary compared with Madin-Darby canine kidney cells by preventing the membrane association of ADP-ribosylation factor. Biochem J 2002; 361:653-61. [PMID: 11802796 PMCID: PMC1222349 DOI: 10.1042/0264-6021:3610653] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Differential effects of acetyl(C2-) ceramide (N-acetylsphingosine) were studied on coated vesicle formation from Golgi-enriched membranes of Chinese hamster ovary (CHO) and Madin-Darby canine kidney (MDCK) cells. C2-ceramide blocked the translocation of ADP-ribosylation factor-1 (ARF-1) and protein kinase C-alpha (PKC-alpha) to the membranes from CHO cells, but not those of MDCK cells. Consequently, C2-ceramide blocked the stimulation of phospholipase D1 (PLD1) by the cytosol and guanosine 5'-[gamma-thio]triphosphate (GTP[S]) in membranes from CHO cells. Basal specific activity of PLD1 and the concentration of ARF-1 were 3-4 times higher in Golgi-enriched membranes from MDCK cells compared with CHO cells. Moreover, PLD1 activity in MDCK cells was stimulated less by cytosol and GTP[S]. PLD2 was not detectable in the Golgi-enriched membranes. Incubation of intact CHO cells or their Golgi-enriched membranes with C2-ceramide also inhibited COP1 vesicle formation by membranes from CHO, but not MDCK, cells. Specificity was demonstrated, since dihydro-C2-ceramide had no significant effect on ARF-1 translocation, PLD1 activation or vesicle formation in membranes from both cell types. C2-ceramide also decreased the secretion of virus-like particles to a greater extent in CHO compared with MDCK cells, whereas dihydro-C2-ceramide had no significant effect. The results demonstrate a biological effect of C2-ceramide in CHO cells by decreasing ARF-1 and PKC-alpha binding to Golgi-enriched membranes, thereby preventing COP1 vesicle formation.
Collapse
Affiliation(s)
- Abdelkarim Abousalham
- Department of Biochemistry, Signal Transduction Research Group, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | | | | | | | | |
Collapse
|
37
|
Abstract
Research on the cell and molecular biology of proteins involved in membrane traffic often requires determination of the effects of various experimental conditions on the subcellular distributions of those proteins. This is most often accomplished by acquiring fluorescence microscope images and visually comparing these images. While this approach is quite suitable for detecting major changes in distributions, it is not sensitive to small changes and does not permit a quantitative and objective analysis. We therefore describe the application of pattern analysis methods to the comparison of sets of fluorescence microscope images. This approach provides a high throughput and reproducible technique to determine whether image distributions differ within a specified statistical confidence, and is shown to resolve image sets indistinguishable by visual inspection.
Collapse
Affiliation(s)
- Edward J S Roques
- Department of Biological Sciences and Center for Light Microscope Imaging and Biotechnology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh PA 15213, USA
| | | |
Collapse
|
38
|
Wang S, Lloyd RV, Hutzler MJ, Rosenwald IB, Safran MS, Patwardhan NA, Khan A. Expression of eukaryotic translation initiation factors 4E and 2alpha correlates with the progression of thyroid carcinoma. Thyroid 2001; 11:1101-7. [PMID: 12186496 DOI: 10.1089/10507250152740939] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell growth and proliferation depend on protein synthesis that is regulated, in part, by two eukaryotic translation initiation factors, eIF-4E and eIF-2alpha. These factors are transiently increased as normal cells respond to growth factors and are constitutively elevated in transformed cells. In cultured cells, eIF-4E facilitates cell cycle progression by increasing the expression of cell cycle promoting proteins including cyclin D1. Our previous study revealed elevated cyclin D1 expression in histologically more aggressive thyroid carcinomas as compared to conventional papillary carcinoma. We hypothesized that the increased cyclin D1 expression might correlate with increased eIF-4E expression. We, therefore studied the expression of eIF-4E by immunohistochemistry in 25 cases of conventional papillary carcinoma (CPC) and 28 cases of aggressive thyroid carcinomas (ATC), the latter included 11 tall cell/columnar cell variant of papillary carcinoma, 5 insular carcinomas, and 12 anaplastic carcinomas. We also analyzed the expression of eIF-2a in the same samples as this factor is usually regulated similarly to eIF-4E in cell culture models. Of the 25 CPC, 13 were eIF-4E positive (11 weakly and 2 strongly), and 19 were eIF-2a positive (14 weakly and 5 strongly). Conversely, of the 28 ATC, 25 were eIF-4E positive (4 weakly and 21 strongly), and 23 were eIF-2alpha positive (4 weakly and 19 strongly). There was a significantly increased expression of both eIF-4E (p < 0.001) and eIF-2alpha (p < 0.001) in ATC compared to CPC, suggesting that these translation initiation factors may play a role in the progression of thyroid cancer.
Collapse
Affiliation(s)
- S Wang
- Department of Pathology, University of Massachusetts Medical School, Worcester 01655, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
de Chaves EP, Bussiere M, MacInnis B, Vance DE, Campenot RB, Vance JE. Ceramide inhibits axonal growth and nerve growth factor uptake without compromising the viability of sympathetic neurons. J Biol Chem 2001; 276:36207-14. [PMID: 11454862 DOI: 10.1074/jbc.m104282200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ceramide inhibits axonal growth of cultured rat sympathetic neurons when the ceramide content of distal axons, but not cell bodies, is increased (Posse de Chaves, E. I., Bussiere, M. Vance, D. E., Campenot, R. B., and Vance, J.E. (1997) J. Biol. Chem. 272, 3028-3035). We now report that inhibition of growth does not result from cell death since although ceramide is a known apoptotic agent, C(6)-ceramide given to the neurons for 24 h did not cause cell death but instead protected the neurons from death induced by deprivation of nerve growth factor (NGF). We also find that a pool of ceramide generated from sphingomyelin in distal axons, but not cell bodies, inhibits axonal growth. Analysis of endogenous sphingomyelinase activities demonstrated that distal axons are rich in neutral sphingomyelinase activity but contain almost no acidic sphingomyelinase, which is concentrated in cell bodies/proximal axons. Together, these observations are consistent with the idea that generation of ceramide from sphingomyelin by a neutral sphingomyelinase in axons inhibits axonal growth. Furthermore, we demonstrate that treatment of distal axons with ceramide inhibits the uptake of NGF and low density lipoproteins by distal axons by approximately 70 and 40%, respectively, suggesting that the inhibition of axonal growth by ceramide might be due, at least in part, to impaired endocytosis of NGF. However, inhibition of endocytosis of NGF by ceramide could not be ascribed to decreased phosphorylation of TrkA.
Collapse
Affiliation(s)
- E P de Chaves
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Chatterjee S, Smith ER, Hanada K, Stevens VL, Mayor S. GPI anchoring leads to sphingolipid-dependent retention of endocytosed proteins in the recycling endosomal compartment. EMBO J 2001; 20:1583-92. [PMID: 11285223 PMCID: PMC145477 DOI: 10.1093/emboj/20.7.1583] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchoring is important for the function of several proteins in the context of their membrane trafficking pathways. We have shown previously that endocytosed GPI-anchored proteins (GPI-APs) are recycled to the plasma membrane three times more slowly than other membrane components. Recently, we found that GPI-APs are delivered to endocytic organelles, devoid of markers of the clathrin-mediated pathway, prior to their delivery to a common recycling endosomal compartment (REC). Here we show that the rate-limiting step in the recycling of GPI-APs is their slow exit from the REC; replacement of the GPI anchor with a transmembrane protein sequence abolishes retention in this compartment. Depletion of endogenous sphingolipid levels using sphingolipid synthesis inhibitors or in a sphingolipid-synthesis mutant cell line specifically enhances the rate of endocytic recycling of GPI-APs to that of other membrane components. We have shown previously that endocytic retention of GPI-APs is also relieved by cholesterol depletion. These findings strongly suggest that functional retention of GPI-APs in the REC occurs via their association with sphingolipid and cholesterol-enriched sorting platforms or 'rafts'.
Collapse
Affiliation(s)
| | - Elizabeth R. Smith
- National Center for Biological Sciences, UAS-GKVK Campus, Bellary Road, Bangalore 560 065, India,
Department of Radiation Oncology, Emory University, Atlanta, GA, USA and National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan Corresponding author e-mail:
| | - Kentaro Hanada
- National Center for Biological Sciences, UAS-GKVK Campus, Bellary Road, Bangalore 560 065, India,
Department of Radiation Oncology, Emory University, Atlanta, GA, USA and National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan Corresponding author e-mail:
| | - Victoria L. Stevens
- National Center for Biological Sciences, UAS-GKVK Campus, Bellary Road, Bangalore 560 065, India,
Department of Radiation Oncology, Emory University, Atlanta, GA, USA and National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan Corresponding author e-mail:
| | - Satyajit Mayor
- National Center for Biological Sciences, UAS-GKVK Campus, Bellary Road, Bangalore 560 065, India,
Department of Radiation Oncology, Emory University, Atlanta, GA, USA and National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan Corresponding author e-mail:
| |
Collapse
|
41
|
Abstract
Genetic and biochemical studies in yeast and animal cells have led to the identification of many components required for endocytosis. In this review, we summarize our understanding of the endocytic machinery with an emphasis on the proteins regulating the internalization step of endocytosis and endosome fusion. Even though the overall endocytic machinery appears to be conserved between yeast and animals, clear differences exist. We also discuss the roles of phosphoinositides, sterols, and sphingolipid precursors in endocytosis, because in addition to proteins, these lipids have emerged as important determinants in the spatial and most likely temporal specificity of endocytic membrane trafficking events.
Collapse
Affiliation(s)
- K D'Hondt
- Biozentrum-University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland.
| | | | | |
Collapse
|
42
|
Kolesnick RN, Goñi FM, Alonso A. Compartmentalization of ceramide signaling: physical foundations and biological effects. J Cell Physiol 2000; 184:285-300. [PMID: 10911359 DOI: 10.1002/1097-4652(200009)184:3<285::aid-jcp2>3.0.co;2-3] [Citation(s) in RCA: 351] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- R N Kolesnick
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | | |
Collapse
|
43
|
Ridgway ND. Interactions between metabolism and intracellular distribution of cholesterol and sphingomyelin. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1484:129-41. [PMID: 10760463 DOI: 10.1016/s1388-1981(00)00006-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
There is ample evidence from experimental models and human metabolic disorders indicating that cholesterol and sphingomyelin (SM) levels are coordinately regulated. Generally it has been observed that altering the cellular content of sphingomyelin or cholesterol results in corresponding changes in mass and/or synthesis of the other lipid. In the case of cholesterol synthesis and trafficking, SM regulates the capacity of membranes to absorb cholesterol and thereby controls sterol flux between the plasma membrane and regulatory pathways in the endoplasmic reticulum. This relationship exemplifies the importance of cholesterol/sphingolipid-rich domains in cholesterol homeostasis, as well as other aspects of cell signaling and transport. Evidence for regulation of sphingomyelin metabolism by cholesterol is less convincing and dependent on the model system under study. Sphingomyelin biosynthetic rates are not dramatically affected by alterations in cholesterol balance suggesting that sphingomyelin or its metabolites serve other indispensable functions in the cell. A notable exception is the robust and specific regulation of both SM and cholesterol synthesis by 25-hydroxycholesterol. This finding is reviewed in the context of the role of oxysterol binding protein and its putative role in cholesterol and SM trafficking between the plasma membrane and Golgi apparatus.
Collapse
Affiliation(s)
- N D Ridgway
- The Atlantic Research Centre, and the Departments of Pediatrics, and Biochemistry and Molecular Biology, Dalhousie University, 5849 University Avenue, Halifax, NS, Canada.
| |
Collapse
|
44
|
Abstract
Detergent insoluble sphingolipid-cholesterol enriched 'raft'-like membrane microdomains have been implicated in a variety of biological processes including sorting, trafficking, and signaling. Mutant cells and knockout animals of sphingolipid biosynthesis are clearly useful to understand the biological roles of lipid components in raft-like domains. It is suggested that raft-like domains distribute in internal vacuolar membranes as well as plasma membranes. In addition to sphingolipid-cholesterol-rich membrane domains, recent studies suggest the existence of another lipid-membrane domain in the endocytic pathway. This domain is enriched with a unique phospholipid, lysobisphosphatidic acid (LBPA) and localized in the internal membrane of multivesicular endosome. LBPA-rich membrane domains are involved in lipid and protein sorting within the endosomal system. Possible interaction between sphingolipids and LBPA in sphingolipid-storage disease is discussed.
Collapse
Affiliation(s)
- T Kobayashi
- Supra-Biomolecular System Research Group, Frontier Research System, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, Japan.
| | | |
Collapse
|
45
|
Mihai R, Lai T, Schofield G, Farndon JR. C2-Ceramide increases cytoplasmic calcium concentrations in human parathyroid cells. Biochem Biophys Res Commun 2000; 268:636-41. [PMID: 10679256 DOI: 10.1006/bbrc.2000.2159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effects of extracellular calcium ([Ca(2+)](ext)) on parathyroid cells are mainly due to the activation of a plasma membrane calcium receptor (CaR) coupled with release of intracellular calcium. In addition, high [Ca(2+)](ext) activates the sphingomyelin pathway in bovine parathyroid cells, generating ceramides and sphingosine. This study explored the direct effects of synthetic ceramides on [Ca(2+)](i) in human parathyroid cells. Cells from five parathyroid adenomas removed from patients with primary hyperparathyroidism were dispersed and maintained in primary culture. Intracellular calcium concentration ([Ca(2+)](i)) [Ca(2+)](i) was monitored using standard quantitative fluorescence microscopy in Fura-2/AM-loaded cells. Laser scanning microscopy was used to monitor the intracellular distribution of a fluorescent ceramide analogue (BODIPY-C5). After addition of 10 microM C2-ceramide (N-acetyl-d-erythro-sphingosine), [Ca(2+)](i) increased rapidly (30-60 s) to a peak three times above basal levels in 70% of cells (37/55 cells in four experiments). This effect appeared to be due to release of Ca(2+) from intracellular stores rather than Ca(2+) entry from the extracellular medium. C2-responsive cells had a smaller [Ca(2+)](i) response to subsequent stimulation with the CaR agonist-neomycin (1 mM). These responses were specific to C2 since C6-ceramide (N-hexanoyl-d-erythro-sphingosine) did not affect basal [Ca(2+)](i) nor the responses to an increase in [Ca(2+)](ext) and to neomycin. C5-BODIPY generated intense perinuclear fluorescence, suggesting targeting of the ceramides to the Golgi apparatus. These data demonstrate that endogenous generation of ceramides has the potential to modulate changes in [Ca(2+)](i) and secretion in response to [Ca(2+)](ext) in human parathyroid cells.
Collapse
Affiliation(s)
- R Mihai
- Department of Surgery, Bristol Royal Infirmary, Bristol, BS2 8HW, United Kingdom
| | | | | | | |
Collapse
|
46
|
Maxzúd MK, Maccioni HJ. Glucosylceramide synthesized in vitro from endogenous ceramide is uncoupled from synthesis of lactosylceramide in Golgi membranes from chicken embryo neural retina cells. Neurochem Res 2000; 25:145-52. [PMID: 10685614 DOI: 10.1023/a:1007555903335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
It is known that ceramide (Cer), the precursor of sphingoglycolipids and of sphingomyelin, participates in events leading to activation of the apoptotic pathway, and per se or through conversion to glucosylceramide (GlcCer) modulates formation of neuritic processes in developing neurons. To learn about the fate of de novo synthesized Cer and GlcCer we examined, in Golgi membranes from chicken embryo neural retina cells, the metabolic relationships of endogenous Cer, GlcCer and lactosylceramide (LacCer). Incubation of the membranes with UDP-[3H]Glc revealed a pool of endogenous Cer useful for synthesis of GlcCer. Most of the GlcCer synthesized, however, was not used for synthesis of LacCer, indicating that it was functionally uncoupled from LacCer synthase. On the other hand, incubation with UDP-[3H]Gal revealed a pool of endogenous GlcCer that depending of the integrity of the membranes was functionally coupled to LacCer and ganglioside synthesis. These results indicate that most GlcCer formed in vitro from Cer is topologically segregated from the synthesis of LacCer. However, subfractionation in sucrose gradients of Golgi membranes labeled with both precursors failed to separate membranes enriched in [3H]GlcCer from those enriched in [3H]Gal-labeled LacCer. It is concluded that despite both transfer steps co-localize in the Golgi membranes, coupling of GlcCer synthesis to LacCer synthesis requires conditions not present in our in vitro assay. This suggests that a coupling activity exists that could be relevant for regulation of the cytoplasmic levels of Cer and GlcCer.
Collapse
Affiliation(s)
- M K Maxzúd
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC (UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad National de Córdoba, Argentina
| | | |
Collapse
|
47
|
Li R, Blanchette-Mackie EJ, Ladisch S. Induction of endocytic vesicles by exogenous C(6)-ceramide. J Biol Chem 1999; 274:21121-7. [PMID: 10409665 DOI: 10.1074/jbc.274.30.21121] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ceramide is a newly discovered second messenger that has been shown to cause cell growth arrest and apoptosis. Here, we present evidence that exogenously added C(6)-ceramide induces enlargement of late endosomes and lysosomes. 10 microM C(6)-ceramide caused the formation of numerous vesicles of varying sizes (2-10 micrometers) in fibroblasts (3T3-L1 and 3T3-F442A), without toxic effects. Vesicle formation induced by C(6)-ceramide was time- and dose-dependent, rapid, and reversible. Numerous small vesicles appeared within 8 h of treatment with 10 microM C(6)-ceramide. They enlarged with time, with large vesicles found in the perinuclear region and small ones observed at the cell periphery. Within 24 h of treatment, approximately 30% of the cells exhibited these vesicles. Removal of ceramide from the culture medium caused disappearance of the vesicles, which reappeared upon readdition of ceramide. Confocal immunofluorescence microscopic analysis using an anti-lysosome-associated membrane protein antibody identified the enlarged vesicles as late endosomes/lysosomes. The fluorescent C(6)-NBD-ceramide, a vital stain for the Golgi apparatus, did not stain these vesicles. The effect on vesicle formation was influenced by ceramide structure; D-erythro-C(6)-ceramide was the most active ceramide analogue tested. Short chain ceramide metabolites, such as sphingosine, sphingosine 1-phosphate, N-hexanoyl-sphingosylphosphorylcholine, N-acetylpsychosine, and C(2)-ceramide G(M3), (G(M3), N-acetylneuraminosyl-alpha(2, 3)-galactosyl-beta(1,4)-glucosylceramide), were inactive in causing vesicle formation when added exogenously. Together, these studies demonstrate that exogenous C(6)-ceramide induces endocytic vesicle formation and causes enlarged late endosomes and lysosomes in mouse fibroblasts.
Collapse
Affiliation(s)
- R Li
- Glycobiology Program, Center for Cancer and Transplantation Biology, Children's Research Institute, Washington, D.C. 20010, USA.
| | | | | |
Collapse
|
48
|
Diwu Z, Chen CS, Zhang C, Klaubert DH, Haugland RP. A novel acidotropic pH indicator and its potential application in labeling acidic organelles of live cells. CHEMISTRY & BIOLOGY 1999; 6:411-8. [PMID: 10381401 DOI: 10.1016/s1074-5521(99)80059-3] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ratio imaging has received intensive attention in the past few decades. The growing potential of ratio imaging is significantly limited, however, by the lack of appropriate fluorescent probes, for acidic organelles in particular. The classic fluorescent dyes (such as fluoresceins, rhodamines and coumarins) are not suitable for studying acidic organelles (such as lysosomes) because their fluorescence is significantly decreased under neutral or acidic conditions. This has motivated us to develop probes that can be used in ratio imaging that are strongly fluorescent even in acidic media. RESULTS The compound 2-(4-pyridyl)-5-((4-(2-dimethylaminoethyl-aminocarbamoyl) methoxy)phenyl)oxazole (PDMPO) was prepared and characterized as a new acidotropic dual-excitation and dual-emission pH indicator. It emits intense yellow fluorescence at lower pH and gives intense blue fluorescence at higher pH. This unique pH-dependent fluorescence property was readily explored to selectively stain lysosomes and to determine the pH of the organelle in an emission-ratio-imaging mode. PDMPO is selectively localized to lysosomes and exhibits a pH-dependent dual excitation and emission. CONCLUSIONS PDMPO selectively labels acidic organelles (such as lysosomes) of live cells and the two distinct emission peaks can be used to monitor the pH fluctuations of live cells in ratio measurements. Additionally, the very large Stokes shift and excellent photostability of PDMPO make the compound an ideal fluorescent acidotropic probe. The unique fluorescence properties of PDMPO might give researchers a new tool with which to study acidic organelles of live cells.
Collapse
Affiliation(s)
- Z Diwu
- Molecular Probes Incorporated, 4849 Pitchford Avenue, Eugene, Oregon 97402, USA.
| | | | | | | | | |
Collapse
|
49
|
Lagace TA, Byers DM, Cook HW, Ridgway ND. Chinese hamster ovary cells overexpressing the oxysterol binding protein (OSBP) display enhanced synthesis of sphingomyelin in response to 25-hydroxycholesterol. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33345-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
50
|
Abstract
Observation of the flow of material along the endocytic pathway has lead to the description of the basic architecture of the pathway and provided insight into the relationship between compartments. Significant advances have been made in the study of endocytic transport steps at the molecular level, of which studies of cargo selection, vesicle budding and membrane fusion events comprise the major part. Progress in this area has been driven by two approaches, yeast genetics and in vitro or cell-free assays, which reconstitute particular transport steps and allow biochemical manipulation. The complex protein machineries that control vesicle budding and fusion are significantly conserved between the secretory and endocytic pathways such that proteins that regulate particular steps are often part of a larger family of proteins which exercise a conserved function at other locations within the cell. Well characterized examples include vesicle coat proteins, rabs (small GTPases) and soluble N-ethylmaleimide-sensitive fusion protein (NSF) attachment protein (SNAP) receptors (SNAREs). Intracompartmental pH, lipid composition and cytoskeletal organization have also been identified as important determinants of the orderly flow of material within the endocytic pathway.
Collapse
Affiliation(s)
- M J Clague
- Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, U.K.
| |
Collapse
|