1
|
Niu F, Liu W, Ren Y, Tian Y, Shi W, Li M, Li Y, Xiong Y, Qian L. β-cell neogenesis: A rising star to rescue diabetes mellitus. J Adv Res 2024; 62:71-89. [PMID: 37839502 PMCID: PMC11331176 DOI: 10.1016/j.jare.2023.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Diabetes Mellitus (DM), a chronic metabolic disease characterized by elevated blood glucose, is caused by various degrees of insulin resistance and dysfunctional insulin secretion, resulting in hyperglycemia. The loss and failure of functional β-cells are key mechanisms resulting in type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). AIM OF REVIEW Elucidating the underlying mechanisms of β-cell failure, and exploring approaches for β-cell neogenesis to reverse β-cell dysfunction may provide novel strategies for DM therapy. KEY SCIENTIFIC CONCEPTS OF REVIEW Emerging studies reveal that genetic susceptibility, endoplasmic reticulum (ER) stress, oxidative stress, islet inflammation, and protein modification linked to multiple signaling pathways contribute to DM pathogenesis. Over the past few years, replenishing functional β-cell by β-cell neogenesis to restore the number and function of pancreatic β-cells has remarkably exhibited a promising therapeutic approach for DM therapy. In this review, we provide a comprehensive overview of the underlying mechanisms of β-cell failure in DM, highlight the effective approaches for β-cell neogenesis, as well as discuss the current clinical and preclinical agents research advances of β-cell neogenesis. Insights into the challenges of translating β-cell neogenesis into clinical application for DM treatment are also offered.
Collapse
Affiliation(s)
- Fanglin Niu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wenxuan Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Department of Neurology, Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Wenzhen Shi
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Medical Research Center, the affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Man Li
- Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Yujia Li
- Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
He B, Zhou T, Liu J. Lipidomics Study of Type 1 Diabetic Rats Using Online Phase Transition Trapping-Supercritical Fluid Extraction-Chromatography Coupled with Quadrupole Time-of-Flight Tandem Mass Spectrometry. J Proteome Res 2024; 23:2619-2628. [PMID: 38910295 DOI: 10.1021/acs.jproteome.4c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Chromatography-mass spectrometry-based lipidomics represents an essential tool for elucidating lipid dysfunction mechanisms and is extensively employed in investigating disease mechanisms and identifying biomarkers. However, the detection of low-abundance lipids in biological matrices, along with cumbersome operational procedures, complicates comprehensive lipidomic analyses, necessitating the development of highly sensitive, environmentally friendly, and automated methods. In this study, an online phase transition trapping-supercritical fluid extraction-chromatography-mass spectrometry (PTT-SFEC-MS/MS) method was developed and successfully applied to plasma lipidomics analysis in Type 1 diabetes (T1D) rats. The PTT strategy captured entire extracts at the column head by converting CO2 from a supercritical state to a gaseous state, thereby preventing peak spreading, enhancing peak shape for precise quantification, and boosting sensitivity without any sample loss. This method utilized only 5 μL of plasma and accomplished sample extraction, separation, and detection within 27 min. Ultimately, 77 differential lipids were identified, including glycerophospholipids, sphingolipids, and glycerolipids, in T1D rat plasma. The results indicated that the progression of the disease might be linked to alterations in glycerophospholipid and sphingolipid metabolism. Our findings demonstrated a green, highly efficient, and automated method for the lipidomics analysis of biological samples, providing a scientific foundation for understanding the pathogenesis and diagnosis of T1D.
Collapse
Affiliation(s)
- Binhong He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Ting Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Jiaqi Liu
- Guangzhou Analytical Center, Analytical & Measuring Instruments Division, Shimadzu (China) Co., LTD, Guangzhou 510010, P.R. China
| |
Collapse
|
3
|
Xu J, Harris-Kawano A, Enriquez JR, Mirmira RG, Sims EK. Proinflammatory stress activates neutral sphingomyelinase 2 based generation of a ceramide-enriched β cell EV subpopulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589943. [PMID: 38659945 PMCID: PMC11042299 DOI: 10.1101/2024.04.17.589943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
β cell extracellular vesicles (EVs) play a role as paracrine effectors in islet health, yet mechanisms connecting β cell stress to changes in EV cargo and potential impacts on diabetes remain poorly defined. We hypothesized that β cell inflammatory stress engages neutral sphingomyelinase 2 (nSMase2)-dependent EV formation pathways, generating ceramide-enriched EVs that could impact surrounding β cells. Consistent with this, proinflammatory cytokine treatment of INS-1 β cells and human islets concurrently increased β cell nSMase2 and ceramide expression, as well as EV ceramide staining. Direct chemical activation or genetic knockdown of nSMase2, or treatment with a GLP-1 receptor agonist also modulated cellular and EV ceramide. Small RNA sequencing of ceramide-enriched EVs identified a distinct set of miRNAs linked to β cell function and identity. Coculture experiments using CD9-GFP tagged INS-1 cell EVs demonstrated that either cytokine treatment or chemical nSMase2 activation increased EV transfer to recipient cells. Children with recent-onset T1D showed no abnormalities in circulating ceramide-enriched EVs, suggesting a localized, rather than systemic phenomenon. These findings highlight nSMase2 as a regulator of β cell EV cargo and identify ceramide-enriched EV populations as a contributor to EV-related paracrine signaling under conditions of β cell inflammatory stress. Article Highlights a. Why did we undertake this study?: Mechanisms connecting β cell stress to changes in extracellular vesicle (EV) cargo and potential impacts on diabetes are poorly defined.b. What is the specific question we wanted to answer?: Does β cell inflammatory stress engage neutral sphingomyelinase 2 (nSMase2)-dependent EV formation pathways to generate ceramide-enriched EVs.c. What did we find?: Proinflammatory cytokine treatment of β cells increased β cell ceramide expression, along with EV ceramide in part via increases in nSMase2. Ceramide-enriched EVs housed a distinct set of miRNAs linked to insulin signaling. Both cytokine treatment and nSMase2 activation increase EV transfer to other β cells.d. What are the implications of our findings?: Our findings highlight nSMase2 as a regulator of β cell EV cargo and identify ceramide-enriched EV populations as a contributor to EV-related paracrine signaling under conditions of β cell inflammatory stress.
Collapse
|
4
|
Hammad SM, Lopes-Virella MF. Circulating Sphingolipids in Insulin Resistance, Diabetes and Associated Complications. Int J Mol Sci 2023; 24:14015. [PMID: 37762318 PMCID: PMC10531201 DOI: 10.3390/ijms241814015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Sphingolipids play an important role in the development of diabetes, both type 1 and type 2 diabetes, as well as in the development of both micro- and macro-vascular complications. Several reviews have been published concerning the role of sphingolipids in diabetes but most of the emphasis has been on the possible mechanisms by which sphingolipids, mainly ceramides, contribute to the development of diabetes. Research on circulating levels of the different classes of sphingolipids in serum and in lipoproteins and their importance as biomarkers to predict not only the development of diabetes but also of its complications has only recently emerged and it is still in its infancy. This review summarizes the previously published literature concerning sphingolipid-mediated mechanisms involved in the development of diabetes and its complications, focusing on how circulating plasma sphingolipid levels and the relative content carried by the different lipoproteins may impact their role as possible biomarkers both in the development of diabetes and mainly in the development of diabetic complications. Further studies in this field may open new therapeutic avenues to prevent or arrest/reduce both the development of diabetes and progression of its complications.
Collapse
Affiliation(s)
- Samar M. Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Maria F. Lopes-Virella
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29425, USA
| |
Collapse
|
5
|
Sharbatdar Y, Mousavian R, Noorbakhsh Varnosfaderani SM, Aziziyan F, Liaghat M, Baziyar P, Yousefi Rad A, Tavakol C, Moeini AM, Nabi-Afjadi M, Zalpoor H, Kazemi-Lomedasht F. Diabetes as one of the long-term COVID-19 complications: from the potential reason of more diabetic patients' susceptibility to COVID-19 to the possible caution of future global diabetes tsunami. Inflammopharmacology 2023; 31:1029-1052. [PMID: 37079169 PMCID: PMC10116486 DOI: 10.1007/s10787-023-01215-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 03/27/2023] [Indexed: 04/21/2023]
Abstract
According to recent researches, people with diabetes mellitus (type 1 and 2) have a higher incidence of coronavirus disease 2019 (COVID-19), which is caused by a SARS-CoV-2 infection. In this regard, COVID-19 may make diabetic patients more sensitive to hyperglycemia by modifying the immunological and inflammatory responses and increasing reactive oxygen species (ROS) predisposing the patients to severe COVID-19 and potentially lethal results. Actually, in addition to COVID-19, diabetic patients have been demonstrated to have abnormally high levels of inflammatory cytokines, increased virus entrance, and decreased immune response. On the other hand, during the severe stage of COVID-19, the SARS-CoV-2-infected patients have lymphopenia and inflammatory cytokine storms that cause damage to several body organs such as β cells of the pancreas which may make them as future diabetic candidates. In this line, the nuclear factor kappa B (NF-κB) pathway, which is activated by a number of mediators, plays a substantial part in cytokine storms through various pathways. In this pathway, some polymorphisms also make the individuals more competent to diabetes via infection with SARS-CoV-2. On the other hand, during hospitalization of SARS-CoV-2-infected patients, the use of some drugs may unintentionally lead to diabetes in the future via increasing inflammation and stress oxidative. Thus, in this review, we will first explain why diabetic patients are more susceptible to COVID-19. Second, we will warn about a future global diabetes tsunami via the SARS-CoV-2 as one of its long-term complications.
Collapse
Affiliation(s)
- Yasamin Sharbatdar
- Department of Anesthesiology, School of Allied Medical Sciences, Ahvaz Jundishapur, University of Medical Sciences, Ahvaz, Iran
| | - Ronak Mousavian
- Department of Clinical Biochemistry, School of Medicine, Cellular and Molecular Research Center, Medical Basic Science Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, University of Tarbiat Modares, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Liaghat
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Ali Yousefi Rad
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Chanour Tavakol
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mansour Moeini
- Department of Internal Medicine, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, University of Tarbiat Modares, Tehran, Iran.
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
6
|
Targeting Ceramides and Adiponectin Receptors in the Islet of Langerhans for Treating Diabetes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186117. [PMID: 36144859 PMCID: PMC9502927 DOI: 10.3390/molecules27186117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
Ceramides belong to the sphingolipid family and represent the central hub of the sphingolipid network. In obesity, oversupply of saturated fatty acids including palmitate raises ceramide levels which can be detrimental to cells. Elevated ceramides can cause insulin resistance, endoplasmic reticulum stress, and mitochondrial dysfunction. Studies over the last few decades have highlighted the role played by ceramides in pancreatic islet β-cell apoptosis, especially under glucolipotoxic and inflammatory conditions. This review focuses on ceramides and adiponectin receptor signaling, summarizing recent advancements in our understanding of their roles in islet β-cells and the discovery of zinc-dependent lipid hydrolase (ceramidase) activity of adiponectin receptors. The therapeutic potential of targeting these events to prevent islet β-cell loss for treating diabetes is discussed.
Collapse
|
7
|
Guo J, Fu W. Immune regulation of islet homeostasis and adaptation. J Mol Cell Biol 2020; 12:764-774. [PMID: 32236479 PMCID: PMC7816675 DOI: 10.1093/jmcb/mjaa009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
The islet of Langerhans produces endocrine hormones to regulate glucose homeostasis. The normal function of the islet relies on the homeostatic regulations of cellular composition and cell–cell interactions within the islet microenvironment. Immune cells populate the islet during embryonic development and participate in islet organogenesis and function. In obesity, a low-grade inflammation manifests in multiple organs, including pancreatic islets. Obesity-associated islet inflammation is evident in both animal models and humans, characterized by the accumulation of immune cells and elevated production of inflammatory cytokines/chemokines and metabolic mediators. Myeloid lineage cells (monocytes and macrophages) are the dominant types of immune cells in islet inflammation during the development of obesity and type 2 diabetes mellitus (T2DM). In this review, we will discuss the role of the immune system in islet homeostasis and inflammation and summarize recent findings of the cellular and molecular factors that alter islet microenvironment and β cell function in obesity and T2DM.
Collapse
Affiliation(s)
- Jinglong Guo
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Wenxian Fu
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Sphingolipids in Type 1 Diabetes: Focus on Beta-Cells. Cells 2020; 9:cells9081835. [PMID: 32759843 PMCID: PMC7465050 DOI: 10.3390/cells9081835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022] Open
Abstract
Type 1 diabetes (T1DM) is a chronic autoimmune disease, with a strong genetic background, leading to a gradual loss of pancreatic beta-cells, which secrete insulin and control glucose homeostasis. Patients with T1DM require life-long substitution with insulin and are at high risk for development of severe secondary complications. The incidence of T1DM has been continuously growing in the last decades, indicating an important contribution of environmental factors. Accumulating data indicates that sphingolipids may be crucially involved in T1DM development. The serum lipidome of T1DM patients is characterized by significantly altered sphingolipid composition compared to nondiabetic, healthy probands. Recently, several polymorphisms in the genes encoding the enzymatic machinery for sphingolipid production have been identified in T1DM individuals. Evidence gained from studies in rodent islets and beta-cells exposed to cytokines indicates dysregulation of the sphingolipid biosynthetic pathway and impaired function of several sphingolipids. Moreover, a number of glycosphingolipids have been suggested to act as beta-cell autoantigens. Studies in animal models of autoimmune diabetes, such as the Non Obese Diabetic (NOD) mouse and the LEW.1AR1-iddm (IDDM) rat, indicate a crucial role of sphingolipids in immune cell trafficking, islet infiltration and diabetes development. In this review, the up-to-date status on the findings about sphingolipids in T1DM will be provided, the under-investigated research areas will be identified and perspectives for future studies will be given.
Collapse
|
9
|
Ying W, Fu W, Lee YS, Olefsky JM. The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities. Nat Rev Endocrinol 2020; 16:81-90. [PMID: 31836875 PMCID: PMC8315273 DOI: 10.1038/s41574-019-0286-3] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 12/16/2022]
Abstract
Chronic, unresolved tissue inflammation is a well-described feature of obesity, type 2 diabetes mellitus (T2DM) and other insulin-resistant states. In this context, adipose tissue and liver inflammation have been particularly well studied; however, abundant evidence demonstrates that inflammatory processes are also activated in pancreatic islets from obese animals and humans with obesity and/or T2DM. In this Review, we focus on the characteristics of immune cell-mediated inflammation in islets and the consequences of this with respect to β-cell function. In contrast to type 1 diabetes mellitus, the dominant immune cell type causing inflammation in obese and T2DM islets is the macrophage. The increased macrophage accumulation in T2DM islets primarily arises through local proliferation of resident macrophages, which then provide signals (such as platelet-derived growth factor) that drive β-cell hyperplasia (a classic feature of obesity). In addition, islet macrophages also impair the insulin secretory capacity of β-cells. Through these mechanisms, islet-resident macrophages underlie the inflammatory response in obesity and mechanistically participate in the β-cell hyperplasia and dysfunction that characterizes this insulin-resistant state. These findings point to the possibility of therapeutics that target islet inflammation to elicit beneficial effects on β-cell function and glycaemia.
Collapse
Affiliation(s)
- Wei Ying
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Wenxian Fu
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Yun Sok Lee
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jerrold M Olefsky
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Karunakaran U, Elumalai S, Moon JS, Won KC. CD36 dependent redoxosomes promotes ceramide-mediated pancreatic β-cell failure via p66Shc activation. Free Radic Biol Med 2019; 134:505-515. [PMID: 30735834 DOI: 10.1016/j.freeradbiomed.2019.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/14/2022]
Abstract
Altered metabolism is implicated in the pathogenesis of beta-cell failure in type 2 diabetes (T2D). Plasma and tissue levels of ceramide species play positive roles in inflammatory and oxidative stress responses in T2D. However, oxidative targets and mechanisms underlying ceramide signaling are unclear. We investigated the role of CD36-dependent redoxosome (redox-active endosome), a membrane-based signaling agent, in ceramide-induced beta-cell dysfunction and failure. Exposure of beta cells to C2-ceramide (N-acetyl-sphingosine) induced a CD36-dependent non-receptor tyrosine kinase Src-mediated redoxosome (Vav2-Rac1-NOX) formation. Activated Rac1-GTP-NADPH oxidase complex induced c-Jun-N-terminal kinase (JNK) activation and nuclear factor (NF)-kB transcription, which was associated with thioredoxin-interacting protein (TXNIP) upregulation and thioredoxin activity suppression. Upregulated JNK expression induced p66Shc serine36 phosphorylation and peroxiredoxin-3 hyperoxidation, causing beta-cell apoptosis via mitochondrial dysfunction. CD36 inhibition by sulfo-N-succinimidyl oleate (SSO) or CD36 siRNA blocked C2-ceramide-induced redoxosome activation, thereby decreasing JNK-dependent p66Shc serine36 phosphorylation. CD36 inhibition downregulated TXNIP expression and promoted thioredoxin activity via enhanced thioredoxin reductase activity, which prevented peroxiredoxin-3 oxidation. CD36 inhibition potentiated glucose-stimulated insulin secretion and prevented beta-cell apoptosis. Our results reveal a new role of CD36 during early molecular events that lead to Src-mediated redoxosome activation, which contributes to ceramide-induced pancreatic beta-cell dysfunction and failure.
Collapse
Affiliation(s)
- Udayakumar Karunakaran
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Suma Elumalai
- Institute of Medical Science, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Jun Sung Moon
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Kyu Chang Won
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea; Institute of Medical Science, Yeungnam University College of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
11
|
Kowluru A, Kowluru RA. RACking up ceramide-induced islet β-cell dysfunction. Biochem Pharmacol 2018; 154:161-169. [PMID: 29715450 DOI: 10.1016/j.bcp.2018.04.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022]
Abstract
The International Diabetes Federation predicts that by 2045 the number of individuals afflicted with diabetes will increase to 629 million. Furthermore, ∼352 million individuals with impaired glucose tolerance are at increased risk for developing diabetes. Several mechanisms have been proposed for the onset of metabolic dysfunction and demise of the islet β-cell leading to the pathogenesis of diabetes. It is widely accepted that the onset of type 2 diabetes is due to an intricate interplay between genetic expression of the disease and a multitude of factors including increased oxidative and endoplasmic reticulum stress consequential to glucolipotoxicity and inflammation. Compelling experimental evidence from in vitro and in vivo studies implicates intracellular generation of ceramide (CER), a biologically-active sphingolipid, as a trigger in the onset of β-cell demise under above pathological conditions. Recent pharmacological and molecular biological evidence affirms regulatory roles for Ras-related C3 botulinum toxin substrate 1 (Rac1), a small G protein, in the islet β-cell function in health and diabetes. In this Commentary, we overviewed the emerging evidence implicating potential cross-talk between Rac1 and ceramide signaling pathways in the onset of metabolic dysregulation of the islet β-cell culminating in impaired physiological insulin secretion, loss of β-cell mass and the onset of diabetes. Further, we propose a model depicting contributory roles of defective protein lipidation (prenylation) pathway in the induction of metabolic defects in the β-cell under metabolic stress conditions. Potential avenues for the identification of novel therapeutic targets for the prevention/treatment of diabetes and its associated complications are highlighted.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Renu A Kowluru
- Department of Ophthalmology and Anatomy and Cell Biology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
12
|
Hernández-Corbacho MJ, Salama MF, Canals D, Senkal CE, Obeid LM. Sphingolipids in mitochondria. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:56-68. [PMID: 27697478 DOI: 10.1016/j.bbalip.2016.09.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/01/2016] [Accepted: 09/24/2016] [Indexed: 01/16/2023]
Abstract
Sphingolipids are bioactive lipids found in cell membranes that exert a critical role in signal transduction. In recent years, it has become apparent that sphingolipids participate in growth, senescence, differentiation and apoptosis. The anabolism and catabolism of sphingolipids occur in discrete subcellular locations and consist of a strictly regulated and interconnected network, with ceramide as the central hub. Altered sphingolipid metabolism is linked to several human diseases. Hence, an advanced knowledge of how and where sphingolipids are metabolized is of paramount importance in order to understand the role of sphingolipids in cellular functions. In this review, we provide an overview of sphingolipid metabolism. We focus on the distinct pathways of ceramide synthesis, highlighting the mitochondrial ceramide generation, transport of ceramide to mitochondria and its role in the regulation of mitochondrial-mediated apoptosis, mitophagy and implications to disease. We will discuss unanswered questions and exciting future directions. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
Affiliation(s)
- María José Hernández-Corbacho
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA
| | - Mohamed F Salama
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Daniel Canals
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA
| | - Can E Senkal
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA
| | - Lina M Obeid
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA; The Northport VA Medical Center, Northport, NY 11768, USA.
| |
Collapse
|
13
|
Aromatic malononitriles stimulate the resistance of insulin-producing beta-cells to oxidants and inflammatory cytokines. Eur J Pharmacol 2016; 784:69-80. [DOI: 10.1016/j.ejphar.2016.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/29/2016] [Accepted: 05/09/2016] [Indexed: 01/01/2023]
|
14
|
Ghosh B, Green MV, Krogh KA, Thayer SA. Interleukin-1β activates an Src family kinase to stimulate the plasma membrane Ca2+ pump in hippocampal neurons. J Neurophysiol 2016; 115:1875-85. [PMID: 26843596 PMCID: PMC4869483 DOI: 10.1152/jn.00541.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 01/23/2016] [Indexed: 01/09/2023] Open
Abstract
The plasma membrane Ca(2+) ATPase (PMCA) plays a major role in clearing Ca(2+) from the neuronal cytoplasm. The cytoplasmic Ca(2+) clearance rate affects neuronal excitability, synaptic plasticity, and neurotransmission. Here, we examined the modulation of PMCA activity by PTKs in hippocampal neurons. PMCA-mediated Ca(2+) clearance slowed in the presence of pyrazolopyrimidine 2, an inhibitor of Src family kinases (SFKs), and accelerated in the presence of C2-ceramide, an activator of PTKs. Ca(2+) clearance kinetics were attenuated in cells expressing a dominant-negative Src mutant, suggesting that the pump is tonically stimulated by a PTK. Tonic stimulation was reduced in hippocampal neurons expressing short hairpin (sh)RNA directed to mRNA for Yes. shRNA-mediated knockdown of PMCA isoform 1 (PMCA1) removed tonic stimulation of Ca(2+) clearance, indicating that the kinase stimulates PMCA1. IL-1β accelerated Ca(2+) clearance in a manner blocked by an IL-1β receptor antagonist or by an inhibitor of neutral sphingomyelinase, the enzyme that produces ceramide. Thus IL-1β activates an SFK to stimulate the plasma membrane Ca(2+) pump, decreasing the duration of Ca(2+) transients in hippocampal neurons.
Collapse
Affiliation(s)
- Biswarup Ghosh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Matthew V Green
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Kelly A Krogh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Stanley A Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
15
|
Edén D, Siegbahn A, Mokhtari D. Tissue factor/factor VIIa signalling promotes cytokine-induced beta cell death and impairs glucose-stimulated insulin secretion from human pancreatic islets. Diabetologia 2015; 58:2563-72. [PMID: 26271343 PMCID: PMC4589554 DOI: 10.1007/s00125-015-3729-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/20/2015] [Indexed: 01/19/2023]
Abstract
AIMS/HYPOTHESIS Patients diagnosed with type 1 or type 2 diabetes have elevated levels of coagulation factor VIIa (FVIIa) and its receptor tissue factor (TF) in their bloodstream. This may affect the fate of the beta cells. We aimed to study the effects of TF/FVIIa signalling on cytokine-induced beta cell death and islet function in vitro. METHODS Human pancreatic islets and MIN-6 beta cells were used to study TF mRNA and protein expression using real-time PCR, immunoblotting and flow cytometry. The effects of TF/FVIIa on cytokine-induced beta cell death were studied in MIN-6 cells and human pancreatic islets using cell-death ELISA and propidium iodide and cleaved caspase-3 staining. Effects of TF/FVIIa on the phosphorylation of p38, extracellular signal-regulated kinase and c-Jun N-terminal kinase (JNK) were investigated by immunoblotting. Glucose-stimulated insulin secretion (GSIS) from human islets was measured with an insulin ELISA. RESULTS A combination of the cytokines IL-1β, TNF-α and IFN-γ induced TF expression in human pancreatic islets and in beta cells. TF/FVIIa did not affect basal beta cell death but, independently of downstream coagulation activity, augmented beta cell death in response to cytokines. The effect of TF/FVIIa on cytokine-induced beta cell death was found to be dependent on the stress kinase JNK, since FVIIa addition potentiated cytokine-induced JNK activation and JNK inhibition abolished the effect of TF/FVIIa on cytokine-induced beta cell death. Moreover, TF/FVIIa signalling resulted in inhibition of GSIS from human pancreatic islets. CONCLUSIONS/INTERPRETATION These results indicate that TF/FVIIa signalling has a negative effect on beta cell function and promotes beta cell death in response to cytokines.
Collapse
Affiliation(s)
- Desirée Edén
- Department of Medical Sciences, Clinical Chemistry, Science for Life Laboratory, University Hospital, Uppsala University, Entr. 61 3rd floor, S-751 85, Uppsala, Sweden
| | - Agneta Siegbahn
- Department of Medical Sciences, Clinical Chemistry, Science for Life Laboratory, University Hospital, Uppsala University, Entr. 61 3rd floor, S-751 85, Uppsala, Sweden
| | - Dariush Mokhtari
- Department of Medical Sciences, Clinical Chemistry, Science for Life Laboratory, University Hospital, Uppsala University, Entr. 61 3rd floor, S-751 85, Uppsala, Sweden.
| |
Collapse
|
16
|
Fred RG, Kappe C, Ameur A, Cen J, Bergsten P, Ravassard P, Scharfmann R, Welsh N. Role of the AMP kinase in cytokine-induced human EndoC-βH1 cell death. Mol Cell Endocrinol 2015. [PMID: 26213325 DOI: 10.1016/j.mce.2015.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aim of the present investigation was to delineate cytokine-induced signaling and death using the EndoC-βH1 cells as a model for primary human beta-cells. The cytokines IL-1β and IFN-γ induced a rapid and transient activation of NF-κB, STAT-1, ERK, JNK and eIF-2α signaling. The EndoC-βH1 cells died rapidly when exposed to IL-1β + IFN-γ, and this occurred also in the presence of the actinomycin D. Inhibition of NF-κB and STAT-1 did not protect against cell death, nor did the cytokines activate iNOS expression. Instead, cytokines promoted a rapid decrease in EndoC-βH1 cell respiration and ATP levels, and we observed protection by the AMPK activator AICAR against cytokine-induced cell death. It is concluded that EndoC-βH1 cell death can be prevented by AMPK activation, which suggests a role for ATP depletion in cytokine-induced human beta-cell death.
Collapse
Affiliation(s)
- Rikard G Fred
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Box 571, SE-751 23 Uppsala, Sweden
| | - Camilla Kappe
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Box 571, SE-751 23 Uppsala, Sweden
| | - Adam Ameur
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Jing Cen
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Box 571, SE-751 23 Uppsala, Sweden
| | - Peter Bergsten
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Box 571, SE-751 23 Uppsala, Sweden
| | - Phillippe Ravassard
- Biotechnology and Biotherapy Laboratory, Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, CHU Pitié-Salpêtrière, Paris, France
| | - Raphael Scharfmann
- INSERM, U1016, Institut Cochin, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Nils Welsh
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Box 571, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
17
|
Karunakaran U, Moon JS, Lee HW, Won KC. CD36 initiated signaling mediates ceramide-induced TXNIP expression in pancreatic beta-cells. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2414-22. [PMID: 26297980 DOI: 10.1016/j.bbadis.2015.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 01/25/2023]
Abstract
Diverse mechanisms are involved in the pathogenesis of β-cell failure in type 2 diabetes. Of them, the accumulation of ceramide, a bioactive lipid metabolite, is suggested to play a major role in inflammatory and stress responses that induce diabetes. However, the downstream inflammatory target of ceramide has not been defined. Using rat islets and the INS-1 β-cell line, we hypothesized that activation of the redox sensitive protein TXNIP is involved in ceramide-induced β-cell dysfunction. Incubation of INS-1 cells and primary islets with C2-ceramide (N-acetyl-sphingosine) downregulated insulin and PDX-1 expression and increased β-cell apoptosis. Ceramide treatment induced a time dependent increase in TXNIP gene expression accompanied by activation of nuclear factor (NF)-κB and reduced mitochondrial thioredoxin (TRX) activity. Pretreatment with sulfo-N-succinimidyl oleate (SSO), an irreversible inhibitor of the scavenger receptor CD36, blocked ceramide-induced up-regulation of TXNIP expression and activity of NF-κB. Blockade of NF-κB nuclear translocation by the peptide SN50 prevented ceramide-mediated TXNIP induction. Furthermore, SSO also attenuated ceramide-induced early loss of insulin signaling and apoptosis. Collectively, our results unveil a novel role of CD36 in early molecular events leading to NF-κB activation and TXNIP expression. These data suggest that CD36 dependent NF-κB-TXNIP signaling contributes to the ceramide-induced pathogenesis of pancreatic β-cell dysfunction and failure.
Collapse
Affiliation(s)
- Udayakumar Karunakaran
- Institute of Medical Science, Yeungnam University College of Medicine, Daegu, South Korea
| | - Jun Sung Moon
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, South Korea
| | - Hyoung Woo Lee
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, South Korea
| | - Kyu Chang Won
- Institute of Medical Science, Yeungnam University College of Medicine, Daegu, South Korea; Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, South Korea.
| |
Collapse
|
18
|
Abstract
The prevalence of diabetes is increasing rapidly worldwide. A cardinal feature of most forms of diabetes is the lack of insulin-producing capability, due to the loss of insulin-producing β-cells, impaired glucose-sensitive insulin secretion from the β-cell, or a combination thereof, the reasons for which largely remain elusive. Reversible phosphorylation is an important and versatile mechanism for regulating the biological activity of many intracellular proteins, which, in turn, controls a variety of cellular functions. For instance, significant changes in protein kinase activities and in protein phosphorylation patterns occur subsequent to the stimulation of insulin release by glucose. Therefore, the molecular mechanisms regulating the phosphorylation of proteins involved in the insulin secretory process by the β-cell have been extensively investigated. However, far less is known about the role and regulation of protein dephosphorylation by various protein phosphatases. Herein, we review extant data implicating serine/threonine and tyrosine phosphatases in various aspects of healthy and diabetic islet biology, ranging from control of hormonal stimulus-secretion coupling to mitogenesis and apoptosis.
Collapse
Affiliation(s)
- Henrik Ortsäter
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, SwedenBiovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| | - Nina Grankvist
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| | - Richard E Honkanen
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| | - Åke Sjöholm
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, SwedenBiovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, SwedenBiovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| |
Collapse
|
19
|
The H1-receptor antagonist cetirizine protects partially against cytokine- and hydrogen peroxide-induced β-TC6 cell death in vitro. Pancreas 2014; 43:624-9. [PMID: 24717804 DOI: 10.1097/mpa.0000000000000076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE It has been proposed that the histamine 1 (H(1)) receptor not only promotes allergic reactions but also modulates autoimmune diseases, such as type 1 diabetes. In line with this, it has recently been reported that the H(1)-receptor antagonist cetirizine can counteract the activation of signals/factors pertinent to the pathogenesis of type 1 diabetes and cytokine-induced β-cell destruction. Therefore, the overall aim of this study was to determine whether H(1)-receptor antagonists affect cytokine-induced β-cell death and signaling in vitro. METHODS The insulin-producing cell line β-TC6 was exposed to the proinflammatory cytokines interleukin 1β(+) interferon γ, or hydrogen peroxide. The H(1)-receptor antagonists desloratadine and cetirizine were added to the cell cultures and cell viability; macrophage inhibitory factor levels, c-Jun N-terminal kinase phosphorylation, c-Jun expression, and β-catenin levels were analyzed by flow cytometry, real-time polymerase chain reaction, and immunoblotting. RESULTS Cetirizine protected partially against both cytokine- and hydrogen peroxide-induced cell death. This effect was paralleled by an inhibition of cytokine-induced c-Jun N-terminal kinase phosphorylation, c-Jun induction, and a restoration of macrophage inhibitory factor contents. Cetirizine also increased the β-TC6 cell contents of β-catenin at basal conditions. CONCLUSIONS Our results indicate a protective effect of a specific H(1)-receptor antagonist.
Collapse
|
20
|
Lysine deacetylase inhibition prevents diabetes by chromatin-independent immunoregulation and β-cell protection. Proc Natl Acad Sci U S A 2014; 111:1055-9. [PMID: 24395784 DOI: 10.1073/pnas.1320850111] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes is due to destruction of pancreatic β-cells. Lysine deacetylase inhibitors (KDACi) protect β-cells from inflammatory destruction in vitro and are promising immunomodulators. Here we demonstrate that the clinically well-tolerated KDACi vorinostat and givinostat revert diabetes in the nonobese diabetic (NOD) mouse model of type 1 diabetes and counteract inflammatory target cell damage by a mechanism of action consistent with transcription factor--rather than global chromatin--hyperacetylation. Weaning NOD mice received low doses of vorinostat and givinostat in their drinking water until 100-120 d of age. Diabetes incidence was reduced by 38% and 45%, respectively, there was a 15% increase in the percentage of islets without infiltration, and pancreatic insulin content increased by 200%. Vorinostat treatment increased the frequency of functional regulatory T-cell subsets and their transcription factors Gata3 and FoxP3 in parallel to a decrease in inflammatory dendritic cell subsets and their cytokines IL-6, IL-12, and TNF-α. KDACi also inhibited LPS-induced Cox-2 expression in peritoneal macrophages from C57BL/6 and NOD mice. In insulin-producing β-cells, givinostat did not upregulate expression of the anti-inflammatory genes Socs1-3 or sirtuin-1 but reduced levels of IL-1β + IFN-γ-induced proinflammatory Il1a, Il1b, Tnfα, Fas, Cxcl2, and reduced cytokine-induced ERK phosphorylation. Further, NF-κB genomic iNos promoter binding was reduced by 50%, and NF-κB-dependent mRNA expression was blocked. These effects were associated with NF-κB subunit p65 hyperacetylation. Taken together, these data provide a rationale for clinical trials of safety and efficacy of KDACi in patients with autoimmune disease such as type 1 diabetes.
Collapse
|
21
|
Role of ceramide in diabetes mellitus: evidence and mechanisms. Lipids Health Dis 2013; 12:98. [PMID: 23835113 PMCID: PMC3716967 DOI: 10.1186/1476-511x-12-98] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/28/2013] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a metabolic disease with multiple complications that causes serious diseases over the years. The condition leads to severe economic consequences and is reaching pandemic level globally. Much research is being carried out to address this disease and its underlying molecular mechanism. This review focuses on the diverse role and mechanism of ceramide, a prime sphingolipid signaling molecule, in the pathogenesis of type 1 and type 2 diabetes and its complications. Studies using cultured cells, animal models, and human subjects demonstrate that ceramide is a key player in the induction of β-cell apoptosis, insulin resistance, and reduction of insulin gene expression. Ceramide induces β-cell apoptosis by multiple mechanisms namely; activation of extrinsic apoptotic pathway, increasing cytochrome c release, free radical generation, induction of endoplasmic reticulum stress and inhibition of Akt. Ceramide also modulates many of the insulin signaling intermediates such as insulin receptor substrate, Akt, Glut-4, and it causes insulin resistance. Ceramide reduces the synthesis of insulin hormone by attenuation of insulin gene expression. Better understanding of this area will increase our understanding of the contribution of ceramide to the pathogenesis of diabetes, and further help in identifying potential therapeutic targets for the management of diabetes mellitus and its complications.
Collapse
|
22
|
Ngamjariyawat A, Turpaev K, Vasylovska S, Kozlova EN, Welsh N. Co-culture of neural crest stem cells (NCSC) and insulin producing beta-TC6 cells results in cadherin junctions and protection against cytokine-induced beta-cell death. PLoS One 2013; 8:e61828. [PMID: 23613946 PMCID: PMC3629122 DOI: 10.1371/journal.pone.0061828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/13/2013] [Indexed: 01/31/2023] Open
Abstract
Purpose Transplantation of pancreatic islets to Type 1 diabetes patients is hampered by inflammatory reactions at the transplantation site leading to dysfunction and death of insulin producing beta-cells. Recently we have shown that co-transplantation of neural crest stem cells (NCSCs) together with the islet cells improves transplantation outcome. The aim of the present investigation was to describe in vitro interactions between NCSCs and insulin producing beta-TC6 cells that may mediate protection against cytokine-induced beta-cell death. Procedures Beta-TC6 and NCSC cells were cultured either alone or together, and either with or without cell culture inserts. The cultures were then exposed to the pro-inflammatory cytokines IL-1β and IFN-γ for 48 hours followed by analysis of cell death rates (flow cytometry), nitrite production (Griess reagent), protein localization (immunofluorescence) and protein phosphorylation (flow cytometry). Results We observed that beta-TC6 cells co-cultured with NCSCs were protected against cytokine-induced cell death, but not when separated by cell culture inserts. This occurred in parallel with (i) augmented production of nitrite from beta-TC6 cells, indicating that increased cell survival allows a sustained production of nitric oxide; (ii) NCSC-derived laminin production; (iii) decreased phospho-FAK staining in beta-TC6 cell focal adhesions, and (iv) decreased beta-TC6 cell phosphorylation of ERK(T202/Y204), FAK(Y397) and FAK(Y576). Furthermore, co-culture also resulted in cadherin and beta-catenin accumulations at the NCSC/beta-TC6 cell junctions. Finally, the gap junction inhibitor carbenoxolone did not affect cytokine-induced beta-cell death during co-culture with NCSCs. Conclusion In summary, direct contacts, but not soluble factors, promote improved beta-TC6 viability when co-cultured with NCSCs. We hypothesize that cadherin junctions between NCSC and beta-TC6 cells promote powerful signals that maintain beta-cell survival even though ERK and FAK signaling are suppressed. It may be that future strategies to improve islet transplantation outcome may benefit from attempts to increase beta-cell cadherin junctions to neighboring cells.
Collapse
Affiliation(s)
| | - Kyril Turpaev
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden, and Science For Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
- Center for Theoretical Problems of Physicochemical Pharmacology Russian Academy of Sciences, Moscow, Russia
| | | | - Elena N. Kozlova
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
- * E-mail: (NW); (ENK)
| | - Nils Welsh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden, and Science For Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
- * E-mail: (NW); (ENK)
| |
Collapse
|
23
|
Abstract
Recent technical advances have re-invigorated the study of sphingolipid metabolism in general, and helped to highlight the varied and important roles that sphingolipids play in pancreatic β-cells. Sphingolipid metabolites such as ceramide, glycosphingolipids, sphingosine 1-phosphate and gangliosides modulate many β-cell signaling pathways and processes implicated in β-cell diabetic disease such as apoptosis, β-cell cytokine secretion, ER-to-golgi vesicular trafficking, islet autoimmunity and insulin gene expression. They are particularly relevant to lipotoxicity. Moreover, the de novo synthesis of sphingolipids occurs on many subcellular membranes, in parallel to secretory vesicle formation, traffic and granule maturation events. Indeed, the composition of the plasma membrane, determined by the activity of neutral sphingomyelinases, affects β-cell excitability and potentially insulin exocytosis while another glycosphingolipid, sulfatide, determines the stability of insulin crystals in granules. Most importantly, sphingolipid metabolism on internal membranes is also strongly implicated in regulating β-cell apoptosis.
Collapse
Affiliation(s)
- Ebru Boslem
- Diabetes and Obesity Program; Garvan Institute of Medical Research; Darlinghurst, NSW Australia
- St Vincent’s Clinical School; Faculty of Medicine; University of New South Wales; Sydney, NSW Australia
| | - Peter J. Meikle
- Baker IDI Heart and Diabetes Institute; Melbourne, VIC Australia
| | - Trevor J. Biden
- Diabetes and Obesity Program; Garvan Institute of Medical Research; Darlinghurst, NSW Australia
- St Vincent’s Clinical School; Faculty of Medicine; University of New South Wales; Sydney, NSW Australia
- Correspondence to: Trevor J. Biden,
| |
Collapse
|
24
|
Interleukin-1 (IL-1) family of cytokines: role in type 2 diabetes. Clin Chim Acta 2012; 413:1163-70. [PMID: 22521751 DOI: 10.1016/j.cca.2012.03.021] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 03/20/2012] [Accepted: 03/24/2012] [Indexed: 12/17/2022]
Abstract
Cytokines are small cell signaling protein molecules which encompass a large and diverse family. They consist of immunomodulating agents such as interleukins and inteferons. Virtually all nucleated cells, especially endo/epithelial cells and macrophages are potent producers of IL-1, IL-6 and TNF-α. IL-1 family is a group of cytokines which play a central role in the regulation of immune and inflammatory responses. Type 2 diabetes (T2D) has been recognized as an immune mediated disease leading to impaired insulin signaling and selective destruction of insulin producing β-cells in which cytokines play an important role. Disturbance of anti-inflammatory response could be a critical component of the chronic inflammation resulting in T2D. IL-1 family of cytokines has important roles in endocrinology and in the regulation of responses associated with inflammatory stress. The IL-1 family consists of two pro-inflammatory cytokines, IL-1α and IL-1β, and a naturally occurring anti-inflammatory agent, the IL-1 receptor antagonist (IL-1Ra or IL-1RN). This review is an insight into the different types of cytokines belonging to IL-1 family, their modes of action and association with Type 2 diabetes.
Collapse
|
25
|
Coculture of insulin-producing RIN5AH cells with neural crest stem cells protects partially against cytokine-induced cell death. Pancreas 2012; 41:490-2. [PMID: 22415669 DOI: 10.1097/mpa.0b013e31823fcf2a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
26
|
Galic S, Fullerton MD, Schertzer JD, Sikkema S, Marcinko K, Walkley CR, Izon D, Honeyman J, Chen ZP, van Denderen BJ, Kemp BE, Steinberg GR. Hematopoietic AMPK β1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J Clin Invest 2011; 121:4903-15. [PMID: 22080866 DOI: 10.1172/jci58577] [Citation(s) in RCA: 285] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 10/05/2011] [Indexed: 12/17/2022] Open
Abstract
Individuals who are obese are frequently insulin resistant, putting them at increased risk of developing type 2 diabetes and its associated adverse health conditions. The accumulation in adipose tissue of macrophages in an inflammatory state is a hallmark of obesity-induced insulin resistance. Here, we reveal a role for AMPK β1 in protecting macrophages from inflammation under high lipid exposure. Genetic deletion of the AMPK β1 subunit in mice (referred to herein as β1(-/-) mice) reduced macrophage AMPK activity, acetyl-CoA carboxylase phosphorylation, and mitochondrial content, resulting in reduced rates of fatty acid oxidation. β1(-/-) macrophages displayed increased levels of diacylglycerol and markers of inflammation, effects that were reproduced in WT macrophages by inhibiting fatty acid oxidation and, conversely, prevented by pharmacological activation of AMPK β1-containing complexes. The effect of AMPK β1 loss in macrophages was tested in vivo by transplantation of bone marrow from WT or β1(-/-) mice into WT recipients. When challenged with a high-fat diet, mice that received β1(-/-) bone marrow displayed enhanced adipose tissue macrophage inflammation and liver insulin resistance compared with animals that received WT bone marrow. Thus, activation of AMPK β1 and increasing fatty acid oxidation in macrophages may represent a new therapeutic approach for the treatment of insulin resistance.
Collapse
Affiliation(s)
- Sandra Galic
- St. Vincent's Institute of Medical Research, University of Melbourne, Fitzroy, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Interleukin-1β Interleukin-1β (IL-1β) is a key regulator of the body's inflammatory response and is produced after infection, injury, and an antigenic challenge. Cloned in 1984, the single polypeptide IL-1β has been shown to exert numerous biological effects. It plays a role in various diseases, including autoimmune diseases such as rheumatoid arthritis, inflammatory bowel diseases, and Type 1 diabetes, as well as in diseases associated with metabolic syndrome such as atherosclerosis, chronic heart failure, and Type 2 diabetes. The macrophage is the primary source of IL-1β, but epidermal, epithelial, lymphoid, and vascular tissues also synthesize IL-1. Recently, IL-1β production and secretion have also been reported from pancreatic islets. Insulin-producing β-cells β-cells within the pancreatic islets are specifically prone to IL-β-induced destruction and loss of function. Macrophage-derived IL-1β production in insulin-sensitive organs leads to the progression of inflammation inflammation and induction of insulin resistance in obesity. This chapter explains the mechanisms involved in the inflammatory response during diabetes progression with specific attention to the IL-1β signal effects influencing insulin action and insulin secretion insulin secretion . We highlight recent clinical studies, rodent and in vitro experiments with isolated islets using IL-1β as a potential target for the therapy of Type 2 diabetes.
Collapse
|
28
|
Role of p38 MAPK pathway in induction of iNOS expression in neutrophils and peripheral blood mononuclear cells in patients with squamous cell carcinoma of the oral cavity. J Oral Maxillofac Surg 2009; 67:2354-63. [PMID: 19837302 DOI: 10.1016/j.joms.2009.04.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 12/28/2008] [Accepted: 04/19/2009] [Indexed: 11/22/2022]
Abstract
PURPOSE The aim of the present study was to assess the role of the p38 mitogen-activated protein kinase (MAPK) pathway in the induction of inducible nitric oxide synthase (iNOS) expression and the production of NO by neutrophils (polymorphonuclear neutrophils [PMNs]) and peripheral blood mononuclear cells (PBMCs) in patients with squamous cell carcinoma (SCC) of the oral cavity. PATIENTS AND METHODS PMNs and PBMCs were isolated from 24 patients with SCC. The expression of iNOS and phospho-p38 MAPK was estimated by Western blotting. Total NO was measured in the cell supernatants and serum using the Griess method. The generation of superoxide anion radicals by the cells was estimated using the cytochrome-c reduction test. The cyclic guanosine monophosphate level in the cell supernatants and plasma was assessed using an enzyme-linked immunosorbent assay kit, and the concentrations of malonyldialdehyde in serum were assessed using a thiobarbituric acid method. RESULTS The results of the present study of patients with stage II and III disease showed lowered expression of iNOS and phospho-p38 MAPK in PMNs and PBMCs. Moreover, in these patients, a lower production of NO by PMNs and PBMCs was observed. However, the opposite relationship was observed between the expression of phospho-p38 MAPK and iNOS in the leukocytes of patients with stage IV disease. The concentration of total NO in the PMN and PBMC supernatants of patients with advanced disease stages did not differ from that of the control group. In all the patients with SCC, a lowered ability of neutrophils to generate superoxide anion radicals and an increased production of cyclic guanosine monophosphate by PMNs and PBMCs was confirmed. Furthermore, a greater concentration of cyclic guanosine monophosphate was found in the plasma and total NO in the serum of patients with stage IV disease compared with the levels in the control group. A greater concentration of malonyldialdehyde in the serum of all patients compared with that in the control group was also observed. CONCLUSIONS Our results indicate that in the leukocytes of patients with stage II and III SCC, the p38 MAPK pathway performs an essential role in the induction of iNOS expression, and the process of lipid peroxidation is not dependent on NO. In contrast, in patients with advanced-stage SCC, iNOS expression did not seem to be linked with the p38 MAPK pathway, and NO directly influenced the process of lipid peroxidation.
Collapse
|
29
|
Mokhtari D, Kerblom B, Mehmeti I, Wang X, Funa NS, Olerud J, Lenzen S, Welsh N, Welsh M. Increased Hsp70 expression attenuates cytokine-induced cell death in islets of Langerhans from Shb knockout mice. Biochem Biophys Res Commun 2009; 387:553-7. [PMID: 19615333 DOI: 10.1016/j.bbrc.2009.07.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 07/13/2009] [Indexed: 10/20/2022]
Abstract
Type 1 diabetes may depend on cytokine-induced beta-cell death and therefore the current investigation was performed in order to elucidate this response in Shb-deficient islets. A combination of interleukin-1beta and interferon-gamma caused a diminished beta-cell death response in Shb null islets. Furthermore, the induction of an unfolded protein response (UPR) by adding cyclopiazonic acid did not increase cell death in Shb-deficient islets, despite simultaneous expression of UPR markers. The heat-shock protein Hsp70 was more efficiently induced in Shb knockout islets, providing an explanation for the decreased susceptibility of Shb-deficient islets to cytokines. It is concluded that islets deficient in the Shb protein are less susceptible to cytotoxic conditions, and that this partly depends on their increased ability to induce Hsp70 under such circumstances. Interference with Shb signaling may provide means to improve beta-cell viability under conditions of beta-cell stress.
Collapse
Affiliation(s)
- Dariush Mokhtari
- Department of Medical Cell Biology, Uppsala University, Husargatan 3, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mokhtari D, Myers JW, Welsh N. MAPK kinase kinase-1 is essential for cytokine-induced c-Jun NH2-terminal kinase and nuclear factor-kappaB activation in human pancreatic islet cells. Diabetes 2008; 57:1896-904. [PMID: 18420486 PMCID: PMC2453607 DOI: 10.2337/db07-1670] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 04/08/2008] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The transcription factor nuclear factor-kappaB (NF-kappaB) and the mitogen-activated protein kinases (MAPKs) c-Jun NH(2)-terminal kinase (JNK) 1/2 are known to play decisive roles in cytokine-induced damage of rodent beta-cells. The upstream events by which these factors are activated in response to cytokines are, however, uncharacterized. The aim of the present investigation was to elucidate a putative role of the MAPK kinase kinase-1 (MEKK-1) in cytokine-induced signaling. RESEARCH DESIGN AND METHODS To establish a functional role of MEKK-1, the effects of transient MEKK-1 overexpression in betaTC-6 cells, achieved by lipofection and cell sorting, and MEKK-1 downregulation in betaTC-6 cells and human islet cells, achieved by diced-small interfering RNA treatment, were studied. RESULTS We observed that overexpression of wild-type MEKK-1, but not of a kinase dead MEKK-1 mutant, resulted in potentiation of cytokine-induced JNK activation, inhibitor of kappaB (IkappaB) degradation, and cell death. Downregulation of MEKK-1 in human islet cells provoked opposite effects, i.e., attenuation of cytokine-induced JNK and MKK4 activation, IkappaB stability, and a less pronounced NF-kappaB translocation. betaTC-6 cells with a downregulated MEKK-1 expression displayed also a weaker cytokine-induced iNOS expression and lower cell death rates. Also primary mouse islet cells with downregulated MEKK-1 expression were protected against cytokine-induced cell death. CONCLUSIONS MEKK-1 mediates cytokine-induced JNK- and NF-kappaB activation, and this event is necessary for iNOS expression and cell death.
Collapse
Affiliation(s)
- Dariush Mokhtari
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Jason W. Myers
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California
| | - Nils Welsh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
31
|
Donath MY, Størling J, Berchtold LA, Billestrup N, Mandrup-Poulsen T. Cytokines and beta-cell biology: from concept to clinical translation. Endocr Rev 2008; 29:334-50. [PMID: 18048762 DOI: 10.1210/er.2007-0033] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The tale of cytokines and the beta-cell is a long story, starting with in vitro discovery in 1984, evolving via descriptive and phenomenological studies to detailed mapping of the signalling pathways, gene- and protein expression patterns, molecular and biochemical effector mechanisms to in vivo studies in spontaneously diabetic and transgenic animal models. Only very recently have steps been taken to translate the accumulating compelling preclinical data into clinical trials. The aim of this chapter is to present an overview of early and recent key observations from our own groups as well as other laboratories that serve to illuminate the road from concept to clinical translation.
Collapse
Affiliation(s)
- Marc Y Donath
- The Clinic for Endocrinology and Diabetes, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
32
|
Fukuda K, Tesch GH, Yap FY, Forbes JM, Flavell RA, Davis RJ, Nikolic-Paterson DJ. MKK3 signalling plays an essential role in leukocyte-mediated pancreatic injury in the multiple low-dose streptozotocin model. J Transl Med 2008; 88:398-407. [PMID: 18283273 DOI: 10.1038/labinvest.2008.10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In vitro studies have implicated activation of the p38 mitogen-activated protein kinase (MAPK) signalling pathway in cytokine-mediated pancreatic beta-cell injury. Activation of the p38 MAPK occurs through two different upstream kinases, mitogen-activated protein kinase kinase 3 (MKK3) and MKK6. This study examined the role of MKK3 signalling in an in vivo model of cytokine-dependent pancreatic injury induced by multiple low doses of streptozotocin (MLD-STZ). Groups of wild-type (WT) or Mkk3-/- C57BL/6J mice received 5 daily injections of STZ (40 mg/kg) and were killed on day 5, week 2 or week 4. MLD-STZ in WT mice exhibited two distinct phases of pancreatic damage: islet cell apoptosis (immunostaining for cleaved caspase-3) on day 5 in the absence of leukocyte infiltration, and this was followed by islet inflammation (leukocyte infiltration and cytokine production) and further islet cell apoptosis on day 14 resulting in a loss of insulin-producing beta-cells and an 80% incidence of hyperglycaemia. Mkk3-/- mice were not protected from the initial phase of STZ-induced islet cell apoptosis day 5. However, Mkk3-/- mice were completely protected from the induction of hyperglycaemia. This was attributed to inhibition of leukocyte infiltration, production of pro-inflammatory cytokines and islet cell apoptosis at day 14 of MLD-STZ. In vitro studies showed that cultured islets from Mkk3-/- and WT mice are equally susceptible to STZ and cytokine-induced apoptosis. In conclusion, MKK3 signalling plays an essential role in the development of islet inflammation leading to destruction of beta-cells and hyperglycaemia in MLD-STZ-induced pancreatic injury.
Collapse
Affiliation(s)
- Kyoichi Fukuda
- Department of Nephrology, Monash Medical Centre, Clayton, Vic, Australia
| | | | | | | | | | | | | |
Collapse
|
33
|
Veluthakal R, Palanivel R, Zhao Y, McDonald P, Gruber S, Kowluru A. Ceramide induces mitochondrial abnormalities in insulin-secreting INS-1 cells: potential mechanisms underlying ceramide-mediated metabolic dysfunction of the beta cell. Apoptosis 2007; 10:841-50. [PMID: 16133874 DOI: 10.1007/s10495-005-0431-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
C2-ceramide, a cell permeable analogue of ceramide [CER] markedly reduced mitochondrial membrane potential [MMP] in insulin-secreting INS cells, which was followed by a significant accumulation of cytochrome c [Cyt c] into the cytosolic compartment. In a manner akin to CER, exposure of these cells to interleukin-1beta [IL-1beta] also resulted in reduction in MMP and cytosolic accumulation of Cyt c. Further, long-term exposure of these cells to either CER [but not its inactive analogue] or IL-1beta caused a marked reduction in their metabolic viability. However, unlike IL-1beta, which increased nitric oxide [NO] release, CER-treatment of INS cells had no effects of CER on NO release were demonstrable. Together, these findings suggest that CER-induced mitochondrial effects may not be mediated via iNOS gene expression and NO production. CER also activated an okadaic acid -sensitive protein phosphatase [CAPP] in the purified mitochondrial fraction, suggesting that CAPP might represent one of the target proteins for CER in the beta cell mitochondria. Together, our findings suggest direct detrimental effects of CER on mitochondrial function in beta cells leading to their dysfunction and demise via apoptosis. Moreover, our findings provide evidence for a potential difference in the mechanisms underlying CER- and IL-1beta-induced mitochondrial defects and apoptotic demise of the effete beta cell.
Collapse
Affiliation(s)
- R Veluthakal
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
34
|
Kim EK, Kwon KB, Song MY, Seo SW, Park SJ, Ka SO, Na L, Kim KA, Ryu DG, So HS, Park R, Park JW, Park BH. Genistein protects pancreatic beta cells against cytokine-mediated toxicity. Mol Cell Endocrinol 2007; 278:18-28. [PMID: 17881116 DOI: 10.1016/j.mce.2007.08.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 08/03/2007] [Accepted: 08/10/2007] [Indexed: 10/22/2022]
Abstract
In the past few decades, the use of genistein as an anti-inflammatory agent has gained much attention. Our current study focuses on the preventive effects of genistein on cytokine-induced pancreatic beta-cell damage. Treatment of RINm5F (RIN) rat insulinoma cells with interleukin (IL)-1beta and interferon (IFN)-gamma induced cell damage, which was correlated with nitric oxide (NO) production. Genistein completely prevented cytokine-mediated cytotoxicity and NO production, a finding that correlated well with reduced levels of the inducible form of NO synthase (iNOS) mRNA and protein. The molecular mechanism of genistein inhibition of iNOS gene expression appeared to involve the inhibition of NFkappaB activation. The cytokine induced increases in NFkappaB binding activity, nuclear p50 and p65 subunit levels, and IkappaBalpha degradation in cytosol compared to unstimulated cells; genistein abolished all of these parameters. The cytoprotective effects of genistein are also mediated through the suppression of ERK-1/2 and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways. In a second set of experiments, rat islets were used. The findings on beta-cell protective effects of genistein were essentially the same as for the RIN cell data, namely genistein prevented cytokine-induced NO production, iNOS expression, ERK-1/2 activation, JAK/STAT activation, and impairment of glucose-stimulated insulin secretion. Collectively, these results suggest that genistein might be used to preserve functional beta-cell mass.
Collapse
Affiliation(s)
- Eun-Kyung Kim
- Department of Biochemistry, Medical School and Institute for Medical Sciences, Chonbuk National University, Jeonju, Jeonbuk, 561-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Beskina O, Miller A, Mazzocco-Spezzia A, Pulina MV, Golovina VA. Mechanisms of interleukin-1beta-induced Ca2+ signals in mouse cortical astrocytes: roles of store- and receptor-operated Ca2+ entry. Am J Physiol Cell Physiol 2007; 293:C1103-11. [PMID: 17670890 DOI: 10.1152/ajpcell.00249.2007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many neurodegenerative disorders are accompanied by chronic glial activation, which is characterized by the abundant production of proinflammatory cytokines, such as IL-1beta. IL-1beta disrupts Ca(2+) homeostasis and stimulates astrocyte reactivity. The mechanisms by which IL-1beta induces Ca(2+) dysregulation are not completely defined. Here, we examined how acute and chronic (24-48 h) treatment with IL-1beta affect Ca(2+) homeostasis in freshly dissociated and primary cultured mouse cortical astrocytes. Cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) was measured with fura-2 using digital imaging. An acute application of 10 ng/ml IL-1beta induced Ca(2+) mobilization from intracellular stores and activated store-operated Ca(2+) entry (SOCE) and receptor-operated Ca(2+) entry (ROCE) in both freshly dissociated and cultured actrocytes. Treatment of cultured astrocytes with IL-1beta for 24 and 48 h elevated resting [Ca(2+)](cyt), decreased Ca(2+) store content [associated with sarco(endo)plasmic reticulum Ca(2+)-ATPase 2b downregulation], and augmented ROCE. Based on evidence that receptor-operated, but not store-operated Ca(2+) channels are Ba(2+) permeable, Ba(2+) entry was used to distinguish receptor-operated Ca(2+) channels from store-operated Ca(2+) channels. ROCE was activated by the diacylglycerol analog, 1-oleoyl-2-acetyl-sn-glycerol (OAG). In the presence of extracellular Ba(2+), OAG-induced elevations of cytosolic Ba(2+) (fura-2 340-to-380-nm ratio) were significantly larger in astrocytes treated with IL-1beta. These changes in IL-1beta-treated astrocytes correlate with augmented expression of transient receptor potential cation channel (TRPC)6 protein, which likely mediates ROCE. Knockdown of the TRPC6 gene markedly reduced ROCE. The data suggest that IL-1beta-induced dysregulation of Ca(2+) homeostasis is the result of enhanced ROCE and TRPC6 expression. The disruption of Ca(2+) homeostasis appears to be an upstream component in the cascade of IL-1beta-activated pathways leading to neurodegeneration.
Collapse
Affiliation(s)
- Olga Beskina
- Dept. of Physiology, Univ. of Maryland School of Medicine, 685 W. Baltimore St., HSF1, Rm. 565, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
37
|
Hägerkvist R, Sandler S, Mokhtari D, Welsh N. Amelioration of diabetes by imatinib mesylate (Gleevec): role of beta-cell NF-kappaB activation and anti-apoptotic preconditioning. FASEB J 2006; 21:618-28. [PMID: 17135364 DOI: 10.1096/fj.06-6910com] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It was recently reported that tyrosine kinase inhibitor imatinib mesylate (Gleevec) improves Type 2 diabetes, possibly by decreasing insulin resistance. However, as both Type 2 and Type 1 diabetes are characterized by beta-cell dysfunction and death, we investigated whether imatinib counteracts diabetes by maintaining beta-cell function. We observed that imatinib counteracted diabetes in two animal models, the streptozotocin-injected mouse and the nonobese diabetes mouse, and that this was paralleled by a partial preservation of the beta-cell mass. In addition, imatinib decreased the death of human beta-cells in vitro when exposed to NO, cytokines, and streptozotocin. The imatinib effect was mimicked by siRNA-mediated knockdown of c-Abl mRNA. Imatinib enhanced beta-cell survival by promoting a state similar to ischemic preconditioning, as evidenced by NF-kappaB activation, increased NO and reactive oxygen species production, and depolarization of the inner mitochondrial membrane. Imatinib did not suppress islet cell death in the presence of an NF-kappaB inhibitor, suggesting that NF-kappaB activation is a necessary step in the antiapoptotic action of imatinib. We conclude that imatinib mediates beta-cell survival and that this could contribute to the beneficial effects observed in diabetes.
Collapse
Affiliation(s)
- Robert Hägerkvist
- Department of Medical Cell Biology, Uppsala University, Biomedicum, P.O. Box 571, SE-75123 Uppsala, Sweden
| | | | | | | |
Collapse
|
38
|
Jangati GR, Veluthakal R, Kowluru A. siRNA-mediated depletion of endogenous protein phosphatase 2Acα markedly attenuates ceramide-activated protein phosphatase activity in insulin-secreting INS-832/13 cells. Biochem Biophys Res Commun 2006; 348:649-52. [PMID: 16884689 DOI: 10.1016/j.bbrc.2006.07.100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 07/20/2006] [Indexed: 11/16/2022]
Abstract
The sphingolipid ceramide (CER) and its metabolites have been recognized as important mediators of signal transduction processes leading to a variety of cellular responses, including survival and demise via apoptosis. Accumulating evidence implicates key regulatory roles for intracellularly generated CER in metabolic dysfunction of the islet beta cell. We have previously reported localization of an okadaic (OKA)-sensitive CER-activated protein phosphatase (CAPP) in the islet beta cell. We have also reported immunological identification of the structural A subunit, the regulatory B56alpha subunit, and the catalytic C subunit for CAPP holoenzyme complex in insulin-secreting INS-1 cells. Herein, we provide the first evidence to suggest that siRNA-mediated knockdown of the alpha isoform of the catalytic subunit of PP2Ac (PP2Acalpha) markedly reduces the CAPP activity in INS 832/13 cells. Potential significance of the functional activation of CAPP holoenzyme in the context of lipid-and glucose-induced metabolic dysfunction of the islet beta cell is discussed.
Collapse
Affiliation(s)
- Giridhar Rao Jangati
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | | | | |
Collapse
|
39
|
Abadir PM, Periasamy A, Carey RM, Siragy HM. Angiotensin II type 2 receptor-bradykinin B2 receptor functional heterodimerization. Hypertension 2006; 48:316-22. [PMID: 16754789 DOI: 10.1161/01.hyp.0000228997.88162.a8] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Angiotensin II type 2 (AT2R) or bradykinin B2 (B2R) receptor activation enhances NO production. Recently, we demonstrated enhancement of NO production when AT2R and B2R are simultaneously activated in vivo. However, the mechanism involved in this enhancement is unknown. Using confocal fluorescence resonance energy transfer microscopy, we report the distance between the AT2R and B2R in PC12W cell membranes to be 50+/-5 A, providing evidence and quantification of receptor heterodimerization as the mechanism for enhancing NO production. The rate of AT2R-B2R heterodimer formation is largely a function of the degree of AT2R-B2R expression. The physical association between the dimerized receptors initiates changes in intracellular phosphoprotein signaling activities leading to phosphorylation of c-Jun terminal kinase, phosphotyrosine phosphatase, inhibitory protein kappaBalpha, and activating transcription factor 2; dephosphorylation of p38 and p42/44 mitogen-activated protein kinase and signal transducer inhibitor of transcription 3; and enhancing production of NO and cGMP. Controlling the expression of AT2R-B2R, consequently influencing their biologically active dimerization, presents a potential therapeutic target for the treatment of hypertension and other cardiovascular and renal disorders.
Collapse
Affiliation(s)
- Peter M Abadir
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | | | | | | |
Collapse
|
40
|
Makeeva N, Myers J, Welsh N. Role of MKK3 and p38 MAPK in cytokine-induced death of insulin-producing cells. Biochem J 2006; 393:129-39. [PMID: 16097952 PMCID: PMC1383671 DOI: 10.1042/bj20050814] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The aim of the present investigation was to elucidate further the importance of p38 MAPK (mitogen-activated protein kinase) in nitric oxide- and cytokine-induced beta-cell death. For this purpose, isolated human islets were treated with d-siRNA (diced small interfering RNA) and then exposed to the nitric oxide donor DETA/NONOate [2,2'-(hydroxynitrosohydrazono)bis-ethanamine]. We observed that cells treated with p38alpha-specific d-siRNA, but not with d-siRNA targeting GL3 (a firefly luciferase siRNA plasmid) or PKCdelta (protein kinase Cdelta), were protected against nitric oxide-induced death. This was paralleled by an increased level of Bcl-XL (B-cell leukaemia/lymphoma-X long). For an in-depth study of the mechanisms of p38 activation, MKK3 (MAPK kinase 3), MKK6 and their dominant-negative mutants were overexpressed in insulin-producing RIN-5AH cells. In transient transfections, MKK3 overexpression resulted in increased p38 phosphorylation, whereas in stable MKK3-overexpressing RIN-5AH clones, the protein levels of p38 and JNK (c-Jun N-terminal kinase) were decreased, resulting in unaffected phospho-p38 levels. In addition, a long-term MKK3 overexpression did not affect cell death rates in response to the cytokines interleukin-1beta and interferon-gamma, whereas a short-term MKK3 expression resulted in increased cytokine-induced RIN-5AH cell death. The MKK3-potentiating effect on cytokine-induced cell death was abolished by a nitric oxide synthase inhibitor, and MKK3-stimulated p38 phosphorylation was enhanced by inhibitors of phosphatases. Finally, as the dominant-negative mutant of MKK3 did not affect cytokine-induced p38 phosphorylation, and as wild-type MKK3 did not influence p38 autophosphorylation, it may be that p38 is activated by MKK3/6-independent pathways in response to cytokines and nitric oxide. In addition, it is likely that a long-term increase in p38 activity is counteracted by both a decreased expression of the p38, JNK and p42 genes as well as an increased dephosphorylation of p38.
Collapse
Affiliation(s)
- Natalia Makeeva
- *Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Jason W. Myers
- †Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, U.S.A
| | - Nils Welsh
- *Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- To whom correspondence should be addressed, at Department of Cell Biology, Uppsala University, Biomedicum, P.O. Box 571, S-751 23 Uppsala, Sweden (email )
| |
Collapse
|
41
|
Mare L, Iatta R, Montagna MT, Luberto C, Del Poeta M. APP1 transcription is regulated by inositol-phosphorylceramide synthase 1-diacylglycerol pathway and is controlled by ATF2 transcription factor in Cryptococcus neoformans. J Biol Chem 2005; 280:36055-64. [PMID: 16129666 DOI: 10.1074/jbc.m507285200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inositol-phosphorylceramide synthase 1 (Ipc1) is a fungal-specific enzyme that regulates the level of two bioactive molecules, phytoceramide and diacylglycerol (DAG). In previous studies, we demonstrated that Ipc1 regulates the expression of the antiphagocytic protein 1 (App1), a novel fungal factor involved in pathogenicity of Cryptococcus neoformans. Here, we investigated the molecular mechanism by which Ipc1 regulates App1. To this end, the APP1 promoter was fused to the firefly luciferase gene in the C. neofor-mans GAL7:IPC1 strain, in which the Ipc1 expression can be modulated, and found that the luciferase activity was indeed regulated when Ipc1 was modulated. Next, using the luciferase reporter assay in both C. neoformans wild-type and GAL7:IPC1 strains, we investigated the role of DAG and sphingolipids in the activation of the APP1 promoter and found that treatment with 1,2-dioctanoylglycerol does increase APP1 transcription, whereas treatment with phytosphingosine or ceramides does not. Two putative consensus sequences were found in the APP1 promoter for ATF and AP-2 transcription factors. Mutagenesis analysis of these sequences revealed that they play a key role in the regulation of APP1 transcription: ATF is an activator, whereas AP-2 in a negative regulator. Finally, we identified a putative Atf2 transcription factor, which is required for APP1 transcription and under the control of Ipc1-DAG pathway. These studies provide novel regulatory mechanisms of the sphingolipid pathway involved in the regulation of gene transcription of C. neoformans.
Collapse
Affiliation(s)
- Lydia Mare
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
42
|
Størling J, Zaitsev SV, Kapelioukh IL, Karlsen AE, Billestrup N, Berggren PO, Mandrup-Poulsen T. Calcium has a permissive role in interleukin-1beta-induced c-jun N-terminal kinase activation in insulin-secreting cells. Endocrinology 2005; 146:3026-36. [PMID: 15831571 DOI: 10.1210/en.2005-0036] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The c-jun N-terminal kinase (JNK) signaling pathway mediates IL-1beta-induced apoptosis in insulin-secreting cells, a mechanism relevant to the destruction of pancreatic beta-cells in type 1 and 2 diabetes. However, the mechanisms that contribute to IL-1beta activation of JNK in beta-cells are largely unknown. In this study, we investigated whether Ca(2+) plays a role for IL-1beta-induced JNK activation. In insulin-secreting rat INS-1 cells cultured in the presence of 11 mm glucose, combined pharmacological blockade of L- and T-type Ca(2+) channels suppressed IL-1beta-induced in vitro phosphorylation of the JNK substrate c-jun and reduced IL-1beta-stimulated activation of JNK1/2 as assessed by immunoblotting. Inhibition of IL-1beta-induced in vitro kinase activity toward c-jun after collective L- and T-type Ca(2+) channel blockade was confirmed in primary rat and ob/ob mouse islets and in mouse betaTC3 cells. Ca(2+) influx, specifically via L-type but not T-type channels, contributed to IL-1beta activation of JNK. Activation of p38 and ERK in response to IL-1beta was also dependent on L-type Ca(2+) influx. Membrane depolarization by KCl, exposure to high glucose, treatment with Ca(2+) ionophore A23187, or exposure to thapsigargin, an inhibitor of sarco(endo)plasmic reticulum Ca(2+) ATPase, all caused an amplification of IL-1beta-induced JNK activation in INS-1 cells. Finally, a chelator of intracellular free Ca(2+) [bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid-acetoxymethyl], an inhibitor of calmodulin (W7), and inhibitors of Ca(2+)/calmodulin-dependent kinase (KN62 and KN93) partially reduced IL-1beta-stimulated c-jun phosphorylation in INS-1 or betaTC3 cells. Our data suggest that Ca(2+) plays a permissive role in IL-1beta activation of the JNK signaling pathway in insulin-secreting cells.
Collapse
Affiliation(s)
- Joachim Størling
- Laboratory for Beta-Cell Biology, Steno Diabetes Center, Niels Steensensvej 8, NSPP, DK-2820 Gentofte, Denmark.
| | | | | | | | | | | | | |
Collapse
|
43
|
Kowluru A. Novel regulatory roles for protein phosphatase-2A in the islet β cell. Biochem Pharmacol 2005; 69:1681-91. [PMID: 15935144 DOI: 10.1016/j.bcp.2005.03.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 03/16/2005] [Accepted: 03/16/2005] [Indexed: 10/25/2022]
Abstract
Protein phosphorylation constitutes one of the key signaling steps in physiological insulin secretion. The phosphorylation status of a given protein represents the balance of the activities of protein kinases and phosphatases, which induce the addition and removal of phosphate from that protein, respectively. Although several extant studies were focused on the identification and characterization of protein kinases in islets, relatively little information is available on the localization and regulation of protein phosphatases in beta cells. Emerging evidence implicates protein phosphatase 2A (PP2A) in the phenomenon of insulin secretion. The three principal objectives of this commentary are to: (i) review the existing evidence, which suggests regulation, by glucose and other insulin secretagogues, of PP2A in the beta cell; (ii) discuss the experimental evidence, which implicates PP2A-like enzymes in the dephosphorylation and inactivation of key beta cell phosphoprotein substrates (e.g., Akt and Bcl-2), which may be necessary for beta cell proliferation and survival, culminating in the loss of the beta cell mass; and (iii) highlight potential avenues for future research, including the development of specific pharmacological and therapeutic interventional modalities for the inhibition of specific PP2A-like phosphatases for the prevention of loss of beta cell mass leading to the onset of diabetes.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Wayne State University and Beta Cell Biochemistry Research Laboratory, John D. Dingell VA Medical Center, Detroit, MI 48201, USA.
| |
Collapse
|
44
|
Hwang YS, Jeong M, Park JS, Kim MH, Lee DB, Shin BA, Mukaida N, Ellis LM, Kim HR, Ahn BW, Jung YD. Interleukin-1beta stimulates IL-8 expression through MAP kinase and ROS signaling in human gastric carcinoma cells. Oncogene 2004; 23:6603-6611. [PMID: 15208668 DOI: 10.1038/sj.onc.1207867] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2004] [Revised: 04/20/2004] [Accepted: 04/22/2004] [Indexed: 11/08/2022]
Abstract
Recent studies have suggested that the expression of interleukin-8 (IL-8) directly correlates with the vascularity of human gastric carcinomas. In this study, the effect of IL-1beta on IL-8 expression in human gastric cancer TMK-1 cells and the underlying signal transduction pathways were investigated. IL-1beta induced the IL-8 expression in a time- and concentration-dependent manner. IL-1beta induced the activation of extracellular signal-regulated kinases-1/2 and P38 mitogen-activated protein kinase (MAPK), but not the activation of c-jun amino-terminal kinse and Akt. Specific inhibitors of MEK-1 (PD980590) and P38 MAPK (SB203580) were found to suppress the IL-8 expression and the IL-8 promoter activity. Expression of vectors encoding a mutated-type MEK-1 and P38 MAPK resulted in decrease in the IL-8 promoter activity. IL-1beta also induced the production of reactive oxygen species (ROS). N-acetyl cysteine (NAC) prevented the IL-1beta-induced ROS production and IL-8 expression. In addition, exogenous H2O2 could induce the IL-8 expression. Deletional and site-directed mutagenesis studies on the IL-8 promoter revealed that activator protein-1 (AP-1) and nuclear factor (NF)-kappaB sites were required for the IL-1beta-induced IL-8 transcription. Electrophoretic mobility shift assay confirmed that IL-1beta increased the DNA-binding activity of AP-1 and NF-kappaB. Inhibitor (PD980590, SB203580) and ROS scavenger (NAC) studies revealed that the upstream signalings for the transcription factors AP-1 and NF-kappaB were MAPK and ROS, respectively. Conditioned media from the TMK-1 cells pretreated with IL-1beta could remarkably stimulate the in vitro growth of HUVEC and this effect was partially abrogated by IL-8-neutralizing antibodies. The above results suggest that MAPK-AP-1 and ROS-NF-kappaB signaling pathways are involved in the IL-1beta-induced IL-8 expression and that these paracrine signaling pathways induce endothelial cell proliferation.
Collapse
Affiliation(s)
- Young S Hwang
- Department of Biochemistry, Chonnam University Research Institute of Medical Sciences, Chonnam National University Medical School, 5 Hakdong, Kwangju, 501-190, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ayasolla K, Khan M, Singh AK, Singh I. Inflammatory mediator and beta-amyloid (25-35)-induced ceramide generation and iNOS expression are inhibited by vitamin E. Free Radic Biol Med 2004; 37:325-38. [PMID: 15223066 DOI: 10.1016/j.freeradbiomed.2004.04.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Revised: 03/25/2004] [Accepted: 04/02/2004] [Indexed: 10/26/2022]
Abstract
To investigate the putative role of beta-amyloid peptide (A beta) in inducing oxidative stress damage in Alzheimer disease (AD), we studied the effects of proinflammatory cytokines and A beta peptide on the induction of inducible nitric oxide synthase (iNOS). A beta(25-35) upregulated the cytokine (TNF-alpha/IL-1 beta)-induced expression of iNOS and the production of nitric oxide (NO) in astrocytes, which were inhibited by vitamin E. A beta treatment of C6 glial cells (together with LPS and IFN-gamma), in addition to inducing iNOS, enhanced the oxidative stress as measured by increased expression of manganese superoxide dismutase and an increase in 2,7'-dichlorofluorescein diacetate fluorescence. We also observed that LPS, IFN-gamma, and A beta(25-35) treatment led to the activation of the sphingomyelin-ceramide (SM-Cer) cascade with an increase in cellular ceramide. Inhibition of the SM-Cer cascade either by vitamin E treatment or by the neutral sphingomyelinase inhibitor 3-O-methyl sphingomyelin also resulted in alteration of the transcriptional binding activities of C/EBP, NFkappaB, AP-1, and CREB in C6 glial cells. Hence, these findings suggest a role for ceramide in iNOS induction and NO production in Abeta-induced AD pathobiology and provide a possible explanation for the beneficial effects of vitamin E therapy.
Collapse
Affiliation(s)
- Kamesh Ayasolla
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
46
|
Luberto C, Martinez-Mariño B, Taraskiewicz D, Bolaños B, Chitano P, Toffaletti DL, Cox GM, Perfect JR, Hannun YA, Balish E, Del Poeta M. Identification of App1 as a regulator of phagocytosis and virulence of Cryptococcus neoformans. J Clin Invest 2003; 112:1080-94. [PMID: 14523045 PMCID: PMC198528 DOI: 10.1172/jci18309] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cryptococcus neoformans is a fungal pathogen that, after inhalation, can disseminate to the brain. Host alveolar macrophages (AMs) represent the first defense against the fungus. Once phagocytosed by AMs, fungal cells are killed by a concerted mechanism, involving the host-cellular response. If the cellular response is impaired, phagocytosis of the fungus may be detrimental for the host, since C. neoformans can grow within macrophages. Here, we identified a novel cryptococcal gene encoding antiphagocytic protein 1 (App1). App1 is a cryptococcal cytoplasmic protein that is secreted extracellularly and found in the serum of infected patients. App1 does not affect melanin production, capsule formation, or growth of C. neoformans. Treatment with recombinant App1 inhibited phagocytosis of fungal cells through a complement-mediated mechanism, and Deltaapp1 mutant is readily phagocytosed by AMs. Interestingly, the Deltaapp1 mutant strain showed a decreased virulence in mice deficient for complement C5 (A/Jcr), but it was hypervirulent in mice deficient for T and NK cells (Tgepsilon26). This study identifies App1 as a novel regulator of virulence for C. neoformans, and it highlights that internalization of fungal cells by AMs increases the dissemination of C. neoformans when the host cellular response is impaired.
Collapse
Affiliation(s)
- Chiara Luberto
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kelpe CL, Moore PC, Parazzoli SD, Wicksteed B, Rhodes CJ, Poitout V. Palmitate inhibition of insulin gene expression is mediated at the transcriptional level via ceramide synthesis. J Biol Chem 2003; 278:30015-21. [PMID: 12771145 DOI: 10.1074/jbc.m302548200] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chronic exposure to elevated levels of fatty acids impairs pancreatic beta cell function, a phenomenon thought to contribute to the progressive deterioration of insulin secretion in type 2 diabetes. We have previously demonstrated that prolonged exposure of isolated islets to elevated levels of palmitate inhibits preproinsulin mRNA levels in the presence of high glucose concentrations. However, whether this occurs via transcriptional or post-transcriptional mechanisms has not been determined. In addition, the nature of the lipid metabolites involved in palmitate inhibition of insulin gene expression is unknown. In this study, we show that palmitate decreases glucose-stimulated preproinsulin mRNA levels in isolated rat islets, an effect that is not mediated by changes in preproinsulin mRNA stability, but is associated with inhibition of glucose-stimulated insulin promoter activity. Prolonged culture of isolated islets with palmitate is associated with increased levels of intracellular ceramide. Palmitate-induced ceramide generation is prevented by inhibitors of de novo ceramide synthesis. Further, exogenous ceramide inhibits insulin mRNA levels, whereas blockade of de novo ceramide synthesis prevents palmitate inhibition of insulin gene expression. We conclude that prolonged exposure to elevated levels of palmitate affects glucose-stimulated insulin gene expression via transcriptional mechanisms and ceramide synthesis.
Collapse
Affiliation(s)
- Cynthia L Kelpe
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | | | | | | | | | | |
Collapse
|
48
|
Donath MY, Størling J, Maedler K, Mandrup-Poulsen T. Inflammatory mediators and islet beta-cell failure: a link between type 1 and type 2 diabetes. J Mol Med (Berl) 2003; 81:455-70. [PMID: 12879149 DOI: 10.1007/s00109-003-0450-y] [Citation(s) in RCA: 328] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Accepted: 05/15/2003] [Indexed: 12/17/2022]
Abstract
Pancreatic islet beta-cell death occurs in type 1 and 2 diabetes mellitus, leading to absolute or relative insulin deficiency. beta-cell death in type 1 diabetes is due predominantly to autoimmunity. In type 2 diabetes beta-cell death occurs as the combined consequence of increased circulating glucose and saturated fatty acids together with adipocyte secreted factors and chronic activation of the innate immune system. In both diabetes types intra-islet inflammatory mediators seem to trigger a final common pathway leading to beta-cell apoptosis. Therefore anti-inflammatory therapeutic approaches designed to block beta-cell apoptosis could be a significant new development in type 1 and 2 diabetes.
Collapse
Affiliation(s)
- Marc Y Donath
- Division of Endocrinology and Diabetes, University Hospital, 8091 Zurich, Switzerland.
| | | | | | | |
Collapse
|
49
|
Johnson VJ, He Q, Kim SH, Kanti A, Sharma RP. Increased susceptibility of renal epithelial cells to TNFalpha-induced apoptosis following treatment with fumonisin B1. Chem Biol Interact 2003; 145:297-309. [PMID: 12732456 DOI: 10.1016/s0009-2797(03)00026-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous studies have shown that tumor necrosis factor alpha (TNFalpha) is involved in the pathogenic events following exposure to fumonisin B(1) (FB(1)), a potent inhibitor of ceramide synthase and sphingolipid biosynthesis. The intimate role of sphingolipid mediators in TNFalpha signaling and cellular death suggests that FB(1) may alter the sensitivity of cells to TNFalpha-induced apoptosis. We tested the hypothesis that FB(1) treatment will increase the sensitivity of porcine renal epithelial cells to TNFalpha. Porcine renal epithelial cells (LLC-PK(1)) were treated with FB(1) for 48 h prior to treatment with TNFalpha. A dose-dependent increase in TNFalpha-induced apoptosis was observed in cells pretreated with FB(1). Cells treated with FB(1) showed increased DNA fragmentation and terminal uridine nucleotide end labeling in response to TNFalpha treatment. FB(1) increased DNA synthesis and resulted in cell cycle arrest in the G(2)/M phase of the cell cycle. Flow cytometric analysis of the cell cycle indicated that TNFalpha predominantly killed cells in the G(2)/M phase. The activation of JNK, a mitogen-activated protein kinase (MAPK), was increased following 48 h exposure to FB(1). Phosphorylation of p38 and ERK remained unchanged following treatment with FB(1). FB(1) also increased free sphingoid base levels under identical treatment conditions. Results suggest that FB(1) increased free sphingoid base levels and the population of cells in the G(2)/M phase. This population was shown to be most susceptible to TNFalpha-induced apoptosis. Phosphorylation of pro-apoptotic JNK may play an important role in these effects.
Collapse
Affiliation(s)
- Victor J Johnson
- Department of Physiology and Pharmacology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602-7389, USA
| | | | | | | | | |
Collapse
|
50
|
Lee YW, Park HJ, Son KW, Hennig B, Robertson LW, Toborek M. 2,2',4,6,6'-pentachlorobiphenyl (PCB 104) induces apoptosis of human microvascular endothelial cells through the caspase-dependent activation of CREB. Toxicol Appl Pharmacol 2003; 189:1-10. [PMID: 12758055 DOI: 10.1016/s0041-008x(03)00084-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It has been proposed that endothelial integrity can play an active regulatory role in the extravasation of tumor cells during cancer metastasis. Since polychlorinated biphenyls (PCBs) have been shown to cause endothelial cell activation or injury and to lead to various diseases that involve dysfunction of the vascular endothelium, the present study was designed to determine the cellular and molecular signaling mechanisms of PCB-induced apoptosis in human microvascular endothelial cells (HMEC-1). A significant and marked decrease in cell viability was observed in HMEC-1 treated with 2,2',4,6,6'-pentachlorobiphenyl (PCB 104) in a time- and dose-dependent manner. Exposure of HMEC-1 to PCB 104 also dramatically induced internucleosomal DNA fragmentation. However, the caspase inhibitor zVAD-fmk significantly reversed the PCB 104-induced DNA fragmentation in HMEC-1, suggesting that endothelial cell death induced by PCB 104 exposure is, at least in part, due to caspase-dependent apoptotic pathways. To elucidate the molecular signaling mechanisms of PCB 104-induced apoptotic cell death in human microvascular endothelial cells, the present study focused on the effects of acute exposure of PCB 104 on the activation of several transcription factors, such as cAMP responsive element-binding protein (CREB), activator protein-1 (AP-1), nuclear factor-kappaB (NF-kappaB), and signal transducers and activators of transcription (STAT1), which have been known to play a pivotal role in the molecular signaling cascades for the induction of apoptosis. A series of electrophoretic mobility shift assay showed that PCB 104 specifically increased only CREB DNA-binding activity in a dose-dependent manner. AP-1, NF-kappaB, and STAT1, however, were not activated. In addition, zVAD-fmk significantly and dose-dependently blocked the CREB activation enhanced by PCB 104 exposure. These results suggest that PCB-induced death of human microvascular endothelial cells is mediated, at least in part, via the caspase-dependent apoptotic pathways and that the selective activation of CREB is involved in this process.
Collapse
Affiliation(s)
- Yong Woo Lee
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | |
Collapse
|