1
|
Howard CJ, Abell NS, Osuna BA, Jones EM, Chan LY, Chan H, Artis DR, Asfaha JB, Bloom JS, Cooper AR, Liao A, Mahdavi E, Mohammed N, Su AL, Uribe GA, Kosuri S, Dickel DE, Lubock NB. High-resolution deep mutational scanning of the melanocortin-4 receptor enables target characterization for drug discovery. eLife 2025; 13:RP104725. [PMID: 40202051 PMCID: PMC11981609 DOI: 10.7554/elife.104725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Deep Mutational Scanning (DMS) is an emerging method to systematically test the functional consequences of thousands of sequence changes to a protein target in a single experiment. Because of its utility in interpreting both human variant effects and protein structure-function relationships, it holds substantial promise to improve drug discovery and clinical development. However, applications in this domain require improved experimental and analytical methods. To address this need, we report novel DMS methods to precisely and quantitatively interrogate disease-relevant mechanisms, protein-ligand interactions, and assess predicted response to drug treatment. Using these methods, we performed a DMS of the melanocortin-4 receptor (MC4R), a G-protein-coupled receptor (GPCR) implicated in obesity and an active target of drug development efforts. We assessed the effects of >6600 single amino acid substitutions on MC4R's function across 18 distinct experimental conditions, resulting in >20 million unique measurements. From this, we identified variants that have unique effects on MC4R-mediated Gαs- and Gαq-signaling pathways, which could be used to design drugs that selectively bias MC4R's activity. We also identified pathogenic variants that are likely amenable to a corrector therapy. Finally, we functionally characterized structural relationships that distinguish the binding of peptide versus small molecule ligands, which could guide compound optimization. Collectively, these results demonstrate that DMS is a powerful method to empower drug discovery and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Joshua S Bloom
- Department of Human Genetics and Department of Computational Medicine, University of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Faas F, Nørskov A, Holst PJ, Andersson AM, Qvortrup K, Mathiasen S, Rosenkilde MM. Re-routing GPR56 signalling using Gα 12/13 G protein chimeras. Basic Clin Pharmacol Toxicol 2023; 133:378-389. [PMID: 37621135 DOI: 10.1111/bcpt.13935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) constitute the second largest subclass of the GPCR superfamily. Although canonical GPCRs are explored pharmacologically as drug targets, no clinically approved drugs target the aGPCR family so far. The aGPCR GPR56/ADGRG1 stands out as an especially promising target, given its direct link to the monogenetic disease bilateral frontoparietal polymicrogyria and implications in cancers. Key to understanding GPCR pharmacology has been mapping out intracellular signalling activity. Detection of GPCR signalling in the Gαs /Gαi /Gαq G protein pathways is feasible with second messenger detection systems. However, in the case of Gα12/13 -coupled receptors, like GPR56, signalling detection is more challenging due to the lack of direct second messenger generation. To overcome this challenge, we engineered a Gαq chimera to translate Gα12/13 signalling. We show the ability of the chimeric GαΔ6q12myr and GαΔ6q13myr to translate basal Gα12/13 signalling of GPR56 to a Gαq readout in transcription factor luciferase reporter systems and show that the established peptide ligands (P7 and P19) function to enhance this signal. We further demonstrate the ability to directly influence the generation of second messengers in inositol-3-phosphate assays. In the future, these chimeric G proteins could facilitate basic functional studies, drug screenings and deorphanization of other aGPCRs.
Collapse
Affiliation(s)
- Felix Faas
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amalie Nørskov
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Peter J Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- InProTher APS, Copenhagen, Denmark
| | | | - Katrine Qvortrup
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Signe Mathiasen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Xie D, Deng T, Zhai Z, Sun T, Xu Y. The cellular model for Alzheimer's disease research: PC12 cells. Front Mol Neurosci 2023; 15:1016559. [PMID: 36683856 PMCID: PMC9846650 DOI: 10.3389/fnmol.2022.1016559] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) is a common age-related neurodegenerative disease characterized by progressive cognitive decline and irreversible memory impairment. Currently, several studies have failed to fully elucidate AD's cellular and molecular mechanisms. For this purpose, research on related cellular models may propose potential predictive models for the drug development of AD. Therefore, many cells characterized by neuronal properties are widely used to mimic the pathological process of AD, such as PC12, SH-SY5Y, and N2a, especially the PC12 pheochromocytoma cell line. Thus, this review covers the most systematic essay that used PC12 cells to study AD. We depict the cellular source, culture condition, differentiation methods, transfection methods, drugs inducing AD, general approaches (evaluation methods and metrics), and in vitro cellular models used in parallel with PC12 cells.
Collapse
Affiliation(s)
- Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Philippe A, Kleinau G, Gruner JJ, Wu S, Postpieszala D, Speck D, Heidecke H, Dowell SJ, Riemekasten G, Hildebrand PW, Kamhieh-Milz J, Catar R, Szczepek M, Dragun D, Scheerer P. Molecular Effects of Auto-Antibodies on Angiotensin II Type 1 Receptor Signaling and Cell Proliferation. Int J Mol Sci 2022; 23:ijms23073984. [PMID: 35409344 PMCID: PMC8999261 DOI: 10.3390/ijms23073984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
The angiotensin II (Ang II) type 1 receptor (AT1R) is involved in the regulation of blood pressure (through vasoconstriction) and water and ion homeostasis (mediated by interaction with the endogenous agonist). AT1R can also be activated by auto-antibodies (AT1R-Abs), which are associated with manifold diseases, such as obliterative vasculopathy, preeclampsia and systemic sclerosis. Knowledge of the molecular mechanisms related to AT1R-Abs binding and associated signaling cascade (dys-)regulation remains fragmentary. The goal of this study was, therefore, to investigate details of the effects of AT1R-Abs on G-protein signaling and subsequent cell proliferation, as well as the putative contribution of the three extracellular receptor loops (ELs) to Abs-AT1R signaling. AT1R-Abs induced nuclear factor of activated T-cells (NFAT) signaling, which reflects Gq/11 and Gi activation. The impact on cell proliferation was tested in different cell systems, as well as activation-triggered receptor internalization. Blockwise alanine substitutions were designed to potentially investigate the role of ELs in AT1R-Abs-mediated effects. First, we demonstrate that Ang II-mediated internalization of AT1R is impeded by binding of AT1R-Abs. Secondly, exclusive AT1R-Abs-induced Gq/11 activation is most significant for NFAT stimulation and mediates cell proliferation. Interestingly, our studies also reveal that ligand-independent, baseline AT1R activation of Gi signaling has, in turn, a negative effect on cell proliferation. Indeed, inhibition of Gi basal activity potentiates proliferation triggered by AT1R-Abs. Finally, although AT1R containing EL1 and EL3 blockwise alanine mutations were not expressed on the human embryonic kidney293T (HEK293T) cell surface, we at least confirmed that parts of EL2 are involved in interactions between AT1R and Abs. This current study thus provides extended insights into the molecular action of AT1R-Abs and associated mechanisms of interrelated pathogenesis.
Collapse
Affiliation(s)
- Aurélie Philippe
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, D-10178 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Campus Virchow Klinikum, D-13353 Berlin, Germany; (J.J.G.); (S.W.); (D.P.); (R.C.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Cardiovascular Research, D-10117 Berlin, Germany
- Correspondence: (A.P.); (P.S.); Tel.: +49-30450559318 (A.P.); +49-30450524178 (P.S.)
| | - Gunnar Kleinau
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, D-10117 Berlin, Germany; (G.K.); (D.S.); (P.W.H.); (M.S.)
| | - Jason Jannis Gruner
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Campus Virchow Klinikum, D-13353 Berlin, Germany; (J.J.G.); (S.W.); (D.P.); (R.C.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Cardiovascular Research, D-10117 Berlin, Germany
- Vivantes Humboldt-Klinikum, Department of Urology, D-13509 Berlin, Germany
| | - Sumin Wu
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Campus Virchow Klinikum, D-13353 Berlin, Germany; (J.J.G.); (S.W.); (D.P.); (R.C.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Cardiovascular Research, D-10117 Berlin, Germany
| | - Daniel Postpieszala
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Campus Virchow Klinikum, D-13353 Berlin, Germany; (J.J.G.); (S.W.); (D.P.); (R.C.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Cardiovascular Research, D-10117 Berlin, Germany
| | - David Speck
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, D-10117 Berlin, Germany; (G.K.); (D.S.); (P.W.H.); (M.S.)
| | | | | | - Gabriela Riemekasten
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), D-23845 Borstel, Germany;
- University of Lübeck, University Clinic Schleswig-Holstein, Department of Rheumatology and Clinical Immunology, Campus Lübeck, D-23538 Lübeck, Germany
| | - Peter W. Hildebrand
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, D-10117 Berlin, Germany; (G.K.); (D.S.); (P.W.H.); (M.S.)
- Leipzig University, Medical Faculty Leipzig, Institute for Medical Physics and Biophysics, D-04107 Leipzig, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, D-10178 Berlin, Germany
| | - Julian Kamhieh-Milz
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Transfusion Medicine, D-10117 Berlin, Germany;
| | - Rusan Catar
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Campus Virchow Klinikum, D-13353 Berlin, Germany; (J.J.G.); (S.W.); (D.P.); (R.C.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Cardiovascular Research, D-10117 Berlin, Germany
| | - Michal Szczepek
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, D-10117 Berlin, Germany; (G.K.); (D.S.); (P.W.H.); (M.S.)
| | - Duska Dragun
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, D-10178 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Campus Virchow Klinikum, D-13353 Berlin, Germany; (J.J.G.); (S.W.); (D.P.); (R.C.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Cardiovascular Research, D-10117 Berlin, Germany
| | - Patrick Scheerer
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, D-10117 Berlin, Germany; (G.K.); (D.S.); (P.W.H.); (M.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, D-13353 Berlin, Germany
- Correspondence: (A.P.); (P.S.); Tel.: +49-30450559318 (A.P.); +49-30450524178 (P.S.)
| |
Collapse
|
5
|
Thiel G, Schmidt T, Rössler OG. Ca 2+ Microdomains, Calcineurin and the Regulation of Gene Transcription. Cells 2021; 10:cells10040875. [PMID: 33921430 PMCID: PMC8068893 DOI: 10.3390/cells10040875] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/18/2022] Open
Abstract
Ca2+ ions function as second messengers regulating many intracellular events, including neurotransmitter release, exocytosis, muscle contraction, metabolism and gene transcription. Cells of a multicellular organism express a variety of cell-surface receptors and channels that trigger an increase of the intracellular Ca2+ concentration upon stimulation. The elevated Ca2+ concentration is not uniformly distributed within the cytoplasm but is organized in subcellular microdomains with high and low concentrations of Ca2+ at different locations in the cell. Ca2+ ions are stored and released by intracellular organelles that change the concentration and distribution of Ca2+ ions. A major function of the rise in intracellular Ca2+ is the change of the genetic expression pattern of the cell via the activation of Ca2+-responsive transcription factors. It has been proposed that Ca2+-responsive transcription factors are differently affected by a rise in cytoplasmic versus nuclear Ca2+. Moreover, it has been suggested that the mode of entry determines whether an influx of Ca2+ leads to the stimulation of gene transcription. A rise in cytoplasmic Ca2+ induces an intracellular signaling cascade, involving the activation of the Ca2+/calmodulin-dependent protein phosphatase calcineurin and various protein kinases (protein kinase C, extracellular signal-regulated protein kinase, Ca2+/calmodulin-dependent protein kinases). In this review article, we discuss the concept of gene regulation via elevated Ca2+ concentration in the cytoplasm and the nucleus, the role of Ca2+ entry and the role of enzymes as signal transducers. We give particular emphasis to the regulation of gene transcription by calcineurin, linking protein dephosphorylation with Ca2+ signaling and gene expression.
Collapse
|
6
|
Calcineurin controls gene transcription following stimulation of a Gαq-coupled designer receptor. Exp Cell Res 2019; 383:111553. [DOI: 10.1016/j.yexcr.2019.111553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 01/07/2023]
|
7
|
Wolfe M, Wisniewska H, Tariga H, Ibanez G, Collins JC, Wisniewski K, Qi S, Srinivasan K, Hargrove D, Lindstrom BF. Selective and non-selective OT receptor agonists induce different locomotor behaviors in male rats via central OT receptors and peripheral V1a receptors. Neuropeptides 2018; 70:64-75. [PMID: 29807652 DOI: 10.1016/j.npep.2018.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 10/16/2022]
Abstract
Oxytocin (OT) continues to inspire much research due to its diverse physiological effects. While the best-understood actions of OT are uterine contraction and milk ejection, OT is also implicated in maternal and bonding behaviors, and potentially in CNS disorders such as autism, schizophrenia, and pain. The dissection of the mechanism of action of OT is complicated by the fact that this peptide activates not only its cognate receptor but also vasopressin type 1a (V1a) receptors. In this study, we evaluated OT and a selective OT receptor (OTR) agonist, FE 204409, in an automated assay that measures rat locomotor activity. The results showed: 1) Subcutaneous (sc) administration of OT decreased locomotor behavior (distance traveled, stereotypy, and rearing). This effect was reversed by a V1a receptor (V1aR) antagonist ([Pmp1,Tyr(ME)2]AVP, sc), suggesting that OT acts through peripheral V1aR to inhibit locomotor activity. 2) A selective OTR agonist (FE 204409, sc) increased stereotypy. This effect was reversed by an OTR antagonist dosed icv, suggesting a central OTR site of action. Our findings identify distinct behavioral effects for OT and the selective agonist FE 204409, adding to the growing body of evidence that the V1aR mediates many effects attributed to OT and that peptides administered systemically at supra-physiological doses may activate receptors in the brain. Our studies further emphasize the importance of utilizing selective agonists and antagonists to assess therapeutic indications.
Collapse
Affiliation(s)
- Monica Wolfe
- Ferring Research Institute, Inc, San Diego, CA, United States
| | | | - Hiroe Tariga
- Ferring Research Institute, Inc, San Diego, CA, United States
| | - Gerardo Ibanez
- Ferring Research Institute, Inc, San Diego, CA, United States
| | - James C Collins
- Ferring Research Institute, Inc, San Diego, CA, United States
| | | | - Steve Qi
- Ferring Research Institute, Inc, San Diego, CA, United States
| | | | - Diane Hargrove
- Ferring Research Institute, Inc, San Diego, CA, United States
| | | |
Collapse
|
8
|
Jutz S, Leitner J, Schmetterer K, Doel-Perez I, Majdic O, Grabmeier-Pfistershammer K, Paster W, Huppa JB, Steinberger P. Assessment of costimulation and coinhibition in a triple parameter T cell reporter line: Simultaneous measurement of NF-κB, NFAT and AP-1. J Immunol Methods 2016; 430:10-20. [PMID: 26780292 DOI: 10.1016/j.jim.2016.01.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 12/21/2015] [Accepted: 01/13/2016] [Indexed: 12/29/2022]
Abstract
Engagement of the T cell receptor complex reprograms T cells for proliferation, cytokine production and differentiation towards effector cells. This process depends on activating costimulatory signals and is counteracted by coinhibitory molecules. Three transcription factors, namely NF-κB, NFAT and AP-1, have a major role in inducing the transcriptional program that is required for T cell activation and differentiation. Here we describe the generation of a triple parameter reporter based on the human Jurkat T cell line, where response elements for NF-κB, NFAT and AP-1 drive the expression of the fluorescent proteins CFP, eGFP and mCherry, respectively. The emission spectra of these proteins allow simultaneous assessment of NF-κB, NFAT and AP-1 activity in response to stimulation. Ligation of the TCR complex induced moderate reporter activity, which was strongly enhanced upon coengagement of the costimulatory receptors CD2 or CD28. Moreover, we have generated and tested triple parameter reporter cells that harbor costimulatory and inhibitory receptors not endogenously expressed in the Jurkat cells. In these experiments we could show that engagement of the costimulatory molecule 4-1BB enhances NF-κB and AP-1 activity, whereas coinhibition via PD-1 or BTLA strongly reduced the activation of NF-κB and NFAT. Engagement of BTLA significantly inhibited AP-1, whereas PD-1 had little effect on the activation of this transcription factor. Our triple parameter reporter T cell line is an excellent tool to assess the effect of costimulatory and coinhibitory receptors on NF-κB, NFAT and AP-1 activity and has a wide range of applications beyond the evaluation of costimulatory pathways.
Collapse
Affiliation(s)
- Sabrina Jutz
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Klaus Schmetterer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Iago Doel-Perez
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Otto Majdic
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Wolfgang Paster
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johannes B Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Ślusarz MJ. Vasopressin V1a and V1b receptor modulators: a patent review (2012 – 2014). Expert Opin Ther Pat 2015; 25:711-22. [DOI: 10.1517/13543776.2015.1026257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Wiśniewski K, Alagarsamy S, Galyean R, Tariga H, Thompson D, Ly B, Wiśniewska H, Qi S, Croston G, Laporte R, Rivière PJM, Schteingart CD. New, Potent, and Selective Peptidic Oxytocin Receptor Agonists. J Med Chem 2014; 57:5306-17. [DOI: 10.1021/jm500365s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Kazimierz Wiśniewski
- Ferring Research Institute Inc., 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - Sudarkodi Alagarsamy
- Ferring Research Institute Inc., 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - Robert Galyean
- Ferring Research Institute Inc., 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - Hiroe Tariga
- Ferring Research Institute Inc., 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - Dorain Thompson
- Ferring Research Institute Inc., 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - Brian Ly
- Ferring Research Institute Inc., 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - Halina Wiśniewska
- Ferring Research Institute Inc., 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - Steve Qi
- Ferring Research Institute Inc., 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - Glenn Croston
- Ferring Research Institute Inc., 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - Regent Laporte
- Ferring Research Institute Inc., 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - Pierre J.-M. Rivière
- Ferring Research Institute Inc., 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - Claudio D. Schteingart
- Ferring Research Institute Inc., 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| |
Collapse
|
11
|
Dermitzaki E, Tsatsanis C, Gravanis A, Margioris AN. The calcineurin-nuclear factor of activated T cells signaling pathway mediates the effect of corticotropin releasing factor and urocortins on catecholamine synthesis. J Cell Physiol 2012; 227:1861-72. [DOI: 10.1002/jcp.22914] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Swine atrophic rhinitis caused by pasteurella multocida toxin and bordetella dermonecrotic toxin. Curr Top Microbiol Immunol 2012; 361:113-29. [PMID: 22411430 DOI: 10.1007/82_2012_206] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Atrophic rhinitis is a widespread and economically important swine disease caused by Pasteurella multocida and Bordetella bronchiseptica. The disease is characterized by atrophy of the nasal turbinate bones, which results in a shortened and deformed snout in severe cases. P. multocida toxin and B. bronchiseptica dermonecrotic toxin have been considered to independently or cooperatively disturb the osteogenesis of the turbinate bone by inhibiting osteoblastic differentiation and/or stimulating bone resorption by osteoclasts. Recently, the intracellular targets and molecular actions of both toxins have been clarified, enabling speculation on the intracellular signals leading to the inhibition of osteogenesis.
Collapse
|
13
|
Rees S, Morrow D, Kenakin T. GPCR Drug Discovery Through the Exploitation of Allosteric Drug Binding Sites. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820214640] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Wisniewski K, Galyean R, Tariga H, Alagarsamy S, Croston G, Heitzmann J, Kohan A, Wisniewska H, Laporte R, Rivière PJM, Schteingart CD. New, potent, selective, and short-acting peptidic V1a receptor agonists. J Med Chem 2011; 54:4388-98. [PMID: 21688787 DOI: 10.1021/jm200278m] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
[Arg(8)]vasopressin (AVP) produces vasoconstriction via V(1a) receptor (V(1a)R)-mediated vascular smooth muscle cell contraction and is being used to increase blood pressure in septic shock, a form of vasodilatory hypotension. However, AVP also induces V(2) receptor (V(2)R)-mediated antidiuresis, vasodilation, and coagulation factor release, all deleterious in septic shock. The V(1a)R agonist terlipressin (H-Gly(3)[Lys(8)]VP) also lacks selectivity vs the V(2)R and has sizably longer duration of action than AVP, preventing rapid titration of its vasopressor effect in the clinic. We designed and synthesized new short acting V(1a)R selective analogues of general structure [Xaa(2),Ile(3),Yaa(4),Zaa(8)]VP. The most potent and selective compounds in in vitro functional assays (e.g., [Phe(2),Ile(3),Asn(Me(2))(4),Orn(8)]VP (31), [Phe(2),Ile(3),Asn((CH(2))(3)OH)(4),Orn(8)]VP (34), [Phe(2),Ile(3),Hgn(4),Orn(iPr)(8)]VP (45), [Phe(2),Ile(3),Asn(Et)(4),Dab(8)]VP (49), [Thi(2),Ile(3),Orn(iPr)(8)]VP (59), [Cha(2),Ile(3),Asn(4),Orn(iPr)(8)]VP (68)) were tested by intravenous bolus in rats for duration of vasopressive action. Analogues 31, 34, 45, and 49 were as short-acting as AVP. Compound 45, FE 202158, is currently undergoing clinical trials in septic shock.
Collapse
|
15
|
|
16
|
Rinne A, Banach K, Blatter LA. Regulation of nuclear factor of activated T cells (NFAT) in vascular endothelial cells. J Mol Cell Cardiol 2009; 47:400-10. [PMID: 19540841 PMCID: PMC2779755 DOI: 10.1016/j.yjmcc.2009.06.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/08/2009] [Accepted: 06/12/2009] [Indexed: 11/19/2022]
Abstract
Proteins of the NFAT family (nuclear factor of activated T cells) are Ca(2+)-sensitive transcription factors, which are involved in hypertrophic cardiovascular remodeling. Activation and nuclear translocation is mediated by dephosphorylation by the Ca(2+)-sensitive phosphatase calcineurin (CaN). We identified Ca(2+) signals that induced nuclear translocation of NFAT in cultured calf pulmonary artery endothelial (CPAE) cells using confocal fluorescence microscopy to measure simultaneously [Ca(2+)](i) and subcellular localization of NFAT-GFP (isoforms NFATc1 and NFATc3). The vasoactive agonists ATP (5 microM) or bradykinin (20 microM) in the presence of 2 mM extracellular Ca(2+) induced Ca(2+) release from the endoplasmic reticulum (ER) and activated capacitative Ca(2+) entry (CCE), which caused robust translocation of NFAT to the nucleus. This effect was sensitive to the CaN-inhibitor cyclosporin A (1 microM). Influx of extracellular Ca(2+) via CCE, but not ER Ca(2+) release was identified as the activating Ca(2+) source. NFAT was also activated by Ca(2+) influx induced by cell swelling, reverse mode Na/Ca exchange or ionomycin treatment. NFAT regulation was isoform-specific. Whereas activation of NFATc1-GFP by ATP resulted in persistent nuclear localization, NFATc3-GFP was only transiently imported into the nucleus, followed by rapid export back to the cytoplasm. Inhibition of nuclear kinases, which mediate export of NFAT via phosphorylation, or direct block of nuclear export (Leptomycin B) resulted in stable nuclear localization of NFATc3. These data demonstrate that extracellular Ca(2+) entry mediates NFAT activation. Furthermore, the regulation of nuclear localization of NFAT is isoform-specific and dependent on nuclear export processes.
Collapse
Affiliation(s)
- Andreas Rinne
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kathrin Banach
- Section of Cardiology, Dept. of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lothar A. Blatter
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
17
|
Schlöndorff J, Del Camino D, Carrasquillo R, Lacey V, Pollak MR. TRPC6 mutations associated with focal segmental glomerulosclerosis cause constitutive activation of NFAT-dependent transcription. Am J Physiol Cell Physiol 2009; 296:C558-69. [PMID: 19129465 PMCID: PMC2660257 DOI: 10.1152/ajpcell.00077.2008] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 01/07/2009] [Indexed: 01/07/2023]
Abstract
Mutations in the canonical transient receptor potential channel TRPC6 lead to an autosomal dominant form of human kidney disease characterized histologically by focal and segmental glomerulosclerosis. Several of these mutations enhance the amplitude and duration of the channel current. However, the effect of these mutations on the downstream target of TRPC6, the nuclear factor of activated T cell (NFAT) transcription factors, has not been previously examined. Here we demonstrate that all three TRPC6 mutations previously shown to enhance channel activity lead to enhanced basal NFAT-mediated transcription in several cell lines, including cultured podocytes. These effects are dependent on channel activity and are dominant when mutants are coexpressed with wild-type TRPC6. While TRPC6 mutants do not demonstrate an increase in basal channel currents, a subset of cells expressing the R895C and E897K mutants have elevated basal calcium levels as measured by Fura-2 imaging. Activation of NFAT by TRPC6 mutants is blocked by inhibitors of calcineurin, calmodulin-dependent kinase II, and phosphatidylinositol 3-kinase. PP2 partially inhibits NFAT activation by mutant TRPC6 independently of Src, Yes, or Fyn. Differences in channel glycosylation and surface expression do not explain the ability of mutants to enhance NFAT activation. Taken together, these results identify the activation of the calcineurin-NFAT pathway as a potential mediator of focal segmental glomerulosclerosis.
Collapse
Affiliation(s)
- Johannes Schlöndorff
- Renal Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
18
|
Fonseca BPF, Olsen PC, Coelho LP, Ferreira TPT, Souza HS, Martins MA, Viola JPB. NFAT1 transcription factor regulates pulmonary allergic inflammation and airway responsiveness. Am J Respir Cell Mol Biol 2009; 40:66-75. [PMID: 18664642 DOI: 10.1165/rcmb.2007-0102oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Allergic asthma is a chronic inflammatory disease of the lung whose incidence and morbidity continues to rise in developed nations. Despite being a hallmark of asthma, the molecular mechanisms that determine airway hyperresponsiveness (AHR) are not completely established. Transcription factors of the NFAT family are involved in the regulation of several asthma-related genes. It has been shown that the absence of NFAT1 leads to an increased pleural eosinophilic allergic response accompanied by an increased production of Th2 cytokines, suggesting a role for NFAT1 in the regulation of allergic diseases. Herein, we analyze NFAT1-/- mice to address the role of NFAT1 in a model of allergic airway inflammation and its influence in AHR. NFAT1-/- mice submitted to airway inflammation display a significant exacerbation of several features of the allergic disease, including lung inflammation, eosinophilia, and serum IgE levels, which were concomitant with elevated Th2 cytokine production. However, in spite of the increased allergic phenotype, NFAT1-/- mice failed to express AHR after methacholine aerosol. Refractoriness of NFAT1-/- mice to methacholine was confirmed in naïve mice, suggesting that this refractoriness occurs in an intrinsic way, independent of the lung inflammation. In addition, NFAT1-/- mice exhibit increased AHR in response to serotonin inhalation, suggesting a specific role for NFAT1 in the methacholine pathway of bronchoconstriction. Taken together, these data add support to the interpretation that NFAT1 acts as a counterregulatory mechanism to suppress allergic inflammation. Moreover, our findings suggest a novel role for NFAT1 protein in airway responsiveness mediated by the cholinergic pathway.
Collapse
Affiliation(s)
- Bruna P F Fonseca
- Division of Cellular Biology, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
19
|
Doller A, Akool ES, Müller R, Gutwein P, Kurowski C, Pfeilschifter J, Eberhardt W. Molecular mechanisms of cyclosporin A inhibition of the cytokine-induced matrix metalloproteinase-9 in glomerular mesangial cells. J Am Soc Nephrol 2007; 18:581-92. [PMID: 17202418 DOI: 10.1681/asn.2006060568] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The effects of the immunosuppressants cyclosporin A (CsA) and tacrolimus (FK506) on the IL-1beta-induced matrix metalloproteinase-9 (MMP-9) were investigated. Impairment of the protease-antiprotease balance contributes to renal fibrosis, which is observed collectively under long-term treatment with either immunosuppressant. It is demonstrated that CsA, in contrast to FK506, reduced the IL-1beta-induced MMP-9 content in conditioned media of mesangial cells, which coincides with a reduction in the cytokine-induced MMP-9 mRNA level. Similar to FK506, the VIVIT peptide, a specific inhibitor of the nuclear factor of activated T cells, did not affect the cytokine-induced MMP-9 level. Moreover, CsA caused a dose-dependent inhibition on the IL-1beta-induced luciferase activity of a 1.3-kb MMP-9 promoter fragment. Concomitant, electrophoretic mobility shift assay revealed that CsA selectively inhibits the cytokine-induced DNA binding of activator protein-1 and NF-kappaB. The effects on NF-kappaB binding were accompanied by a marked reduction in the nuclear content of the p65 subunit of NF-kappaB. Accordingly, CsA specifically impaired the IL-1beta-triggered degradation of inhibitory NF-kappaB. The suppressive effects by CsA on MMP-9 expression were accompanied by a reduction in the cytokine-induced phosphorylation of p42/p44 and c-Jun N-terminal Kinase (JNK). It is interesting that only the JNK inhibitor SP600125 impaired the cytokine-triggered MMP-9 level, suggesting that CsA, via inhibition of the JNK pathway, negatively interferes with the NF-kappaB-dependent transcriptional control of MMP-9. Interference with MMP-9 transcription may account for the accumulation of extracellular matrix underlying the high fibrotic potential of CsA during anti-inflammatory therapies with calcineurin inhibitors.
Collapse
Affiliation(s)
- Anke Doller
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Corral RS, Iñiguez MA, Duque J, López-Pérez R, Fresno M. Bombesin induces cyclooxygenase-2 expression through the activation of the nuclear factor of activated T cells and enhances cell migration in Caco-2 colon carcinoma cells. Oncogene 2006; 26:958-69. [PMID: 16909108 DOI: 10.1038/sj.onc.1209856] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cyclooxygenase-2 (Cox-2), the gastrin-release peptide (GRP) and its cognate receptor (GRP-R) are overexpressed in a significant percentage of colorectal carcinomas and are associated with cell growth, invasiveness and tumor progression. However, a molecular link between all of them in adenocarcinomas has not been established. Here, we show that bombesin (BBS), a GRP homolog, stimulates the expression of Cox-2 mRNA and protein in human colon adenocarcinoma Caco-2 cells, resulting in enhanced release of prostaglandin E(2). These effects were markedly inhibited by the specific BBS antagonist RC-3940-II. BBS promotes the activation of the nuclear factor of activated T cells (NFAT) through a Ca(2+)/calcineurin (Cn)-linked pathway. Upon BBS stimulation, the NFATc1 isoform translocates into the nucleus with a concomitant increase in NFATc1 binding to two specific recognition sites in the promoter region of the Cox-2 gene. Furthermore, inhibition of Cn activity by the immunosuppressive drug cyclosporin A impaired NFAT activation and diminished Cox-2 expression in BBS-stimulated cells. Interestingly, BBS pretreatment strongly enhances the invasive capacity of carcinoma cells, effect which was inhibited by a Cox-2-specific inhibitor. These findings provide the first evidence for the involvement of the Ca(2+)/Cn/NFAT pathway in BBS-mediated induction of genes involved in colon carcinoma invasiveness such as Cox-2.
Collapse
Affiliation(s)
- R S Corral
- Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid-CSIC, Madrid, Spain
| | | | | | | | | |
Collapse
|
22
|
Ryzhov S, Goldstein AE, Biaggioni I, Feoktistov I. Cross-talk between G(s)- and G(q)-coupled pathways in regulation of interleukin-4 by A(2B) adenosine receptors in human mast cells. Mol Pharmacol 2006; 70:727-35. [PMID: 16707627 DOI: 10.1124/mol.106.022780] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human mast cells express functional A(2A) and A(2B) adenosine receptors. However, only stimulation of A(2B), not A(2A), leads to secretion of interleukin (IL)-4, an important step in adenosine receptor-mediated induction of IgE synthesis by B-cells. In this study, we investigate intracellular pathways that link stimulation of A(2B) receptors to IL-4 up-regulation in HMC-1 mast cells. Both A(2A) and A(2B) receptors couple to G(s) proteins and stimulate adenylate cyclase, but only A(2B) stimulates phospholipase Cbeta through coupling to G(q) proteins leading to activation of protein kinase C and calcium mobilization. Inhibition of phospholipase Cbeta completely blocked A(2B) receptor-dependent IL-4 secretion. The protein kinase C inhibitor 2-{8-[(dimethylamino)-methyl]-6,7,8,9-tetrahydropyrido[1,2-a]indol-3-yl}-3-(1-methyl-1H-indol-3-yl)maleimide (Ro-32-0432) had no effect on A(2B) receptor-mediated IL-4 secretion but inhibited phorbol 12-myristate 13-acetate-stimulated IL-4 secretion. In contrast, chelation of intracellular Ca(2+) inhibited both A(2B) receptor- and ionomycin-dependent IL-4 secretion. This Ca(2+)-sensitive pathway probably includes calcineurin and nuclear factor of activated T cells, because A(2B) receptor-dependent IL-4 secretion was blocked with cyclosporin A or 11R-VIVIT peptide. G(s)-linked pathways also play a role in the A(2B) receptor-dependent stimulation of IL-4 secretion; inhibition of adenylate cyclase or protein kinase A attenuated A(2B) receptor-dependent IL-4 secretion. Although stimulation of adenylate cyclase with forskolin did not increase IL-4 secretion on its own, it potentiated the effect of Pasteurella multocida toxin by 2-fold and ionomycin by 3-fold. Both forskolin and stimulation of A(2B) receptors up-regulated NFATc1 protein levels. We conclude that A(2B) receptors up-regulate IL-4 through G(q) signaling that is potentiated via cross-talk with G(s)-coupled pathways.
Collapse
Affiliation(s)
- Sergey Ryzhov
- Divisions of Cardiovascular Medicine, Vanderbilt University, Nashville, TN 37232-6300, USA
| | | | | | | |
Collapse
|
23
|
Bueno C, Lemke CD, Criado G, Baroja ML, Ferguson SSG, Rahman AKMNU, Tsoukas CD, McCormick JK, Madrenas J. Bacterial Superantigens Bypass Lck-Dependent T Cell Receptor Signaling by Activating a Gα11-Dependent, PLC-β-Mediated Pathway. Immunity 2006; 25:67-78. [PMID: 16860758 DOI: 10.1016/j.immuni.2006.04.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/07/2006] [Accepted: 04/12/2006] [Indexed: 11/18/2022]
Abstract
The paradigm to explain antigen-dependent T cell receptor (TCR) signaling is based on the activation of the CD4 or CD8 coreceptor-associated kinase Lck. It is widely assumed that this paradigm is also applicable to signaling by bacterial superantigens. However, these bacterial toxins can activate human T cells lacking Lck, suggesting the existence of an additional pathway of TCR signaling. Here we showed that this alternative pathway operates in the absence of Lck-dependent tyrosine-phosphorylation events and was initiated by the TCR-dependent activation of raft-enriched heterotrimeric Galpha11 proteins. This event, in turn, activated a phospholipase C-beta and protein kinase C-mediated cascade that turned on the mitogen-activated protein kinases ERK-1 and ERK-2, triggered Ca(2+) influx, and translocated the transcription factors NF-AT and NF-kappaB to the nucleus, ultimately inducing the production of interleukin-2 in Lck-deficient T cells. The triggering of this alternative pathway by superantigens suggests that these toxins use a G protein-coupled receptor as a coreceptor on T cells.
Collapse
Affiliation(s)
- Clara Bueno
- The FOCIS Centre for Clinical Immunology and Immunotherapeutics, London, Ontario N6A 5K8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Functional polarization of leukocytes is a requisite to accomplish immune function. Immune synapse formation or chemotaxis requires asymmetric redistribution of membrane receptors, signaling molecules and the actin cytoskeleton. There is increasing evidence that compartmentalization of the plasma membrane into distinct lipid microdomains is pivotal in establishing and maintaining leukocyte polarity. Specific rafts assemble into large-scale domains to create plasma membrane asymmetries at specific cell locations, thus coordinating temporally and spatially cell signaling in these processes. In this review we discuss the roles of lipid rafts as organizers of T lymphocyte polarity during cell activation and migration.
Collapse
Affiliation(s)
- Santos Mañes
- Department of Immunology and Oncology, National Center of Biotechnology/Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | | |
Collapse
|
25
|
Takayasu S, Sakurai T, Iwasaki S, Teranishi H, Yamanaka A, Williams SC, Iguchi H, Kawasawa YI, Ikeda Y, Sakakibara I, Ohno K, Ioka RX, Murakami S, Dohmae N, Xie J, Suda T, Motoike T, Ohuchi T, Yanagisawa M, Sakai J. A neuropeptide ligand of the G protein-coupled receptor GPR103 regulates feeding, behavioral arousal, and blood pressure in mice. Proc Natl Acad Sci U S A 2006; 103:7438-43. [PMID: 16648250 PMCID: PMC1464357 DOI: 10.1073/pnas.0602371103] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we report the isolation and characterization of an endogenous peptide ligand of GPR103 from rat brains. The purified peptide was found to be the 43-residue RF-amide peptide QRFP. We also describe two mouse homologues of human GPR103, termed mouse GPR103A and GPR103B. QRFP binds and activates the human GPR103, as well as mouse GPR103A and GPR103B, with nanomolar affinities in transfected cells. Systematic in situ hybridization analysis in mouse brains showed that QRFP is expressed exclusively in the periventricular and lateral hypothalamus, whereas the two receptor mRNAs are distinctly localized in various brain areas without an overlap to each other. When administered centrally in mice, QRFP induced feeding behavior, accompanied by increased general locomotor activity and metabolic rate. QRFP-induced food intake was abolished by preadministration of BIBP3226, a specific antagonist for the Y1 neuropeptide Y receptor. Hypothalamic prepro-QRFP mRNA expression was up-regulated upon fasting and in genetically obese ob/ob and db/db mice. Central QRFP administration also evoked highly sustained elevation of blood pressure and heart rate. Our findings suggest that QRFP and GPR103A/B may regulate diverse neuroendocrine and behavioral functions and implicate this neuropeptide system in metabolic syndrome.
Collapse
Affiliation(s)
- Shinobu Takayasu
- *Yanagisawa Orphan Receptor Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Tokyo 135-0064, Japan
- Department of Endocrinology, Metabolism, and Infectious Diseases, Hirosaki University School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Takeshi Sakurai
- *Yanagisawa Orphan Receptor Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Tokyo 135-0064, Japan
- Department of Pharmacology, Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Satoshi Iwasaki
- *Yanagisawa Orphan Receptor Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Tokyo 135-0064, Japan
| | - Hitoshi Teranishi
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Akihiro Yamanaka
- *Yanagisawa Orphan Receptor Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Tokyo 135-0064, Japan
- Department of Pharmacology, Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - S. Clay Williams
- **Howard Hughes Medical Institute and Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050
| | - Haruhisa Iguchi
- *Yanagisawa Orphan Receptor Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Tokyo 135-0064, Japan
| | - Yuka Imamura Kawasawa
- *Yanagisawa Orphan Receptor Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Tokyo 135-0064, Japan
| | - Yukio Ikeda
- *Yanagisawa Orphan Receptor Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Tokyo 135-0064, Japan
| | - Iori Sakakibara
- *Yanagisawa Orphan Receptor Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Tokyo 135-0064, Japan
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Kousaku Ohno
- Department of Pharmacology, Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Ryoichi X. Ioka
- *Yanagisawa Orphan Receptor Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Tokyo 135-0064, Japan
| | - Saori Murakami
- *Yanagisawa Orphan Receptor Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Tokyo 135-0064, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization, Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; and
| | - Jian Xie
- **Howard Hughes Medical Institute and Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050
| | - Toshihiro Suda
- Department of Endocrinology, Metabolism, and Infectious Diseases, Hirosaki University School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Toshiyuki Motoike
- *Yanagisawa Orphan Receptor Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Tokyo 135-0064, Japan
- **Howard Hughes Medical Institute and Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050
| | - Takashi Ohuchi
- *Yanagisawa Orphan Receptor Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Tokyo 135-0064, Japan
| | - Masashi Yanagisawa
- *Yanagisawa Orphan Receptor Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Tokyo 135-0064, Japan
- **Howard Hughes Medical Institute and Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050
| | - Juro Sakai
- *Yanagisawa Orphan Receptor Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Tokyo 135-0064, Japan
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
26
|
Canellada A, Cano E, Sánchez-Ruiloba L, Zafra F, Redondo JM. Calcium-dependent expression of TNF-α in neural cells is mediated by the calcineurin/NFAT pathway. Mol Cell Neurosci 2006; 31:692-701. [PMID: 16458016 DOI: 10.1016/j.mcn.2005.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 12/16/2005] [Accepted: 12/20/2005] [Indexed: 11/27/2022] Open
Abstract
We report induction of TNF-alpha via the calcium/calcineurin/NFAT pathway in PC12 neural cells. In PC12, expression of TNF-alpha mRNA, protein and TNF-alpha gene promoter activity was induced by co-stimulation with phorbol ester and either calcium ionophore A23187 or the L-type Voltage Gated Calcium Channel agonist Bay K 8644. Pre-treatment with calcineurin inhibitors CsA or FK506 inhibited the dominant calcium-dependent component of this induction, limiting it to the level achieved with phorbol ester alone. Promoter activation by Bay was abolished by nifedipine, a specific inhibitor of L-type Voltage Gated Calcium Channels. Exogenous NFAT protein transactivated the TNF-alpha promoter, and the peptide VIVIT-a specific inhibitor of calcineurin/NFAT binding-blocked calcium-inducible transactivation of the TNF-alpha promoter. Given proposed functions of TNF-alpha in spatial learning, memory and the pathogenesis of neurodegenerative diseases, the data presented suggest an important role for calcineurin/NFAT signaling in these key neurological processes.
Collapse
Affiliation(s)
- Andrea Canellada
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CBM-CSIC), Universidad Autónoma de Madrid (UAM), Facultad de Ciencias, Madrid 28049, Spain
| | | | | | | | | |
Collapse
|
27
|
Glazova M, Aho TLT, Palmetshofer A, Murashov A, Scheinin M, Koskinen PJ. Pim-1 kinase enhances NFATc activity and neuroendocrine functions in PC12 cells. ACTA ACUST UNITED AC 2005; 138:116-23. [PMID: 15935514 DOI: 10.1016/j.molbrainres.2005.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 02/27/2005] [Accepted: 04/13/2005] [Indexed: 12/23/2022]
Abstract
The activity of NFATc family transcription factors is tightly regulated in T cells via signaling pathways initiated by stimulation of the T cell receptor or its downstream effectors such as the Pim-1 serine/threonine kinase. Here, we demonstrate that NFATc-dependent transcription is inducible also in NGF-differentiated rat PC12 pheochromocytoma cells treated with phorbol esthers, calcium ionophores and/or forskolin and that the Pim-1 kinase can further potentiate the effects of these agents. PC12 cells share many characteristics with sympathetic neurons and can be induced to produce and release catecholamines, such as dopamine and noradrenaline, and inflammatory cytokines, such as interleukin 6. Interestingly, Pim-1 can synergize with forskolin-induced signaling pathways to stimulate also neuroendocrine functions of PC12 cells.
Collapse
Affiliation(s)
- Margarita Glazova
- Turku Centre for Biotechnology, University of Turku/Abo Akademi University, Tykistökatu 6 B, FI-20520 Turku, Finland
| | | | | | | | | | | |
Collapse
|
28
|
Molon B, Gri G, Bettella M, Gómez-Moutón C, Lanzavecchia A, Martínez-A C, Mañes S, Viola A. T cell costimulation by chemokine receptors. Nat Immunol 2005; 6:465-71. [PMID: 15821738 DOI: 10.1038/ni1191] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 03/10/2005] [Indexed: 12/15/2022]
Abstract
Signals mediated by chemokine receptors may compete with T cell receptor stop signals and determine the duration of T cell-antigen-presenting cell interactions. Here we show that during T cell stimulation by antigen-presenting cells, T cell chemokine receptors coupled to G(q) and/or G(11) protein were recruited to the immunological synapse by a G(i)-independent mechanism. When chemokine receptors were sequestered at the immunological synapse, T cells became insensitive to chemotactic gradients, formed more stable conjugates and finally responded with enhanced proliferation and cytokine production. We suggest that chemokine receptor trapping at the immunological synapse enhances T cell activation by improving T cell-antigen-presenting cell attraction and impeding the 'distraction' of successfully engaged T cells by other chemokine sources.
Collapse
Affiliation(s)
- Barbara Molon
- Venetian Institute of Molecular Medicine and Department of Biomedical Science, University of Padua, 35100 Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kotarsky K, Nilsson NE, Olde B, Owman C. Progress in Methodology Improved Reporter Gene Assays Used to Identify Ligands Acting on Orphan Seven-Transmembrane Receptors. ACTA ACUST UNITED AC 2003; 93:249-58. [PMID: 14675457 DOI: 10.1111/j.1600-0773.2003.pto930601.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Seven-transmembrane G-protein-coupled receptors play a central role in physiology by facilitating cell communication through recognition of a wide range of ligands. Even more important, they represent important drug targets. Unfortunately, for many of these receptors the endogenous ligands, and hence their functions, remain to be identified. These receptors are referred to as "orphan" receptors. A pre-requisite for the identification of ligands activating orphan receptors is powerful assay systems. Until now, reporter gene assays have not been in common use in this process. Here, we summarize our development of improved reporter gene assays. We optimized reporter gene assays in respect of (i) the promoter region of the construct, (ii) the reporter enzyme used, (iii) and the assay procedure. Furthermore, an unique fluorescence-based clone selection step was introduced, allowing rapid selection of the most sensitive reporter cell clones when establishing stable reporter cell lines. Mathematical formulae are provided to enable a simple and reliable comparison between different cell lines, when tested with a compound of interest. The resulting reporter cell lines responded in a very sensitive way to the stimulation of various test receptors. The reporter system was termed HighTRACE (high-throughput reporter assay with clone election). Its high assay quality makes it suitable as a primary screening tool. Ligands for two recently unknown 7TM receptors were identified using the HighTRACE system i.e., two cell surface free fatty acid receptors, GPR40 (FFA1R) and GPR43 (FFA2R). The identification was accomplished using a reverse pharmacology approach.
Collapse
Affiliation(s)
- Knut Kotarsky
- Division of Molecular Neurobiology, Department of Physiological Sciences, Wallenberg Neuroscience Center, S-221 84 Lund, Sweden
| | | | | | | |
Collapse
|
30
|
Zeng FY, McLean AJ, Milligan G, Lerner M, Chalmers DT, Behan DP. Ligand specific up-regulation of a Renilla reniformis luciferase-tagged, structurally unstable muscarinic M3 chimeric G protein-coupled receptor. Mol Pharmacol 2003; 64:1474-84. [PMID: 14645678 DOI: 10.1124/mol.64.6.1474] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rat muscarinic acetylcholine receptor subtype 3 was modified by swapping the third intracellular loop with the corresponding region of a constitutively active mutant human beta2-adrenergic receptor and attaching Renilla reniformis luciferase to its C terminus. The chimeric fusion receptor displayed constitutive Gq- and Gs-coupled activity as demonstrated in nuclear factor of activated T cell and cAMP response element reporter gene assays. The chimeric receptor displayed a pharmacological binding profile comparable with that of the wild-type receptor for agonists, antagonists, and inverse agonists but showed a large decrease in expression in both human embryonic kidney 293 and COS-7 cells. Long-term treatment of cells expressing the chimeric receptor with agonists, antagonists, and inverse agonists resulted in a concentration-dependent up-regulation in the steady-state levels that was not observed for the wild-type receptor. The EC50 of neutral antagonists and inverse agonists was significantly correlated to their binding affinities at the wild-type receptor, whereas agonists demonstrated greater EC50 values for the chimeric receptor. To validate the approach as a means of discovering novel receptor modulators, a cell-based, high-throughput screening assay was developed and used to screen a small molecule compound collection against the chimeric fusion receptor. Several novel hits were identified and confirmed by ligand binding assay and functional assays using the wild-type rat muscarinic acetylcholine receptor subtype 3.
Collapse
Affiliation(s)
- Fu-Yue Zeng
- Arena Pharmaceuticals Inc. 6166 Nancy Ridge Drive, San Diego, CA 92121, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Cacace A, Banks M, Spicer T, Civoli F, Watson J. An ultra-HTS process for the identification of small molecule modulators of orphan G-protein-coupled receptors. Drug Discov Today 2003; 8:785-92. [PMID: 12946641 DOI: 10.1016/s1359-6446(03)02809-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
G-protein-coupled receptors (GPCRs) are the most successful target proteins for drug discovery research to date. More than 150 orphan GPCRs of potential therapeutic interest have been identified for which no activating ligands or biological functions are known. One of the greatest challenges in the pharmaceutical industry is to link these orphan GPCRs with human diseases. Highly automated parallel approaches that integrate ultra-high throughput and focused screening can be used to identify small molecule modulators of orphan GPCRs. These small molecules can then be employed as pharmacological tools to explore the function of orphan receptors in models of human disease. In this review, we describe methods that utilize powerful ultra-high-throughput screening technologies to identify surrogate ligands of orphan GPCRs.
Collapse
Affiliation(s)
- Angela Cacace
- Department of Lead Discovery, Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, CT 06492, USA.
| | | | | | | | | |
Collapse
|
32
|
Hock MB, Brown MA. Nuclear factor of activated T cells 2 transactivation in mast cells: a novel isoform-specific transactivation domain confers unique FcepsilonRI responsiveness. J Biol Chem 2003; 278:26695-703. [PMID: 12738787 DOI: 10.1074/jbc.m301007200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Murine nuclear factor of activated T cells (NFAT)2.alpha/beta differ by 42 and 28 unique amino-terminal amino acids and are differentially expressed. Both isoforms share conserved domains that regulate DNA-binding and subcellular localization. A genetic "one-hybrid" assay was used to define two distinct transactivation (TA) domains: in addition to a conserved TAD present in both isoforms, a second, novel TAD exists within the beta-specific amino terminus. Pharmacologic inhibitors Gö6976 and rottlerin demonstrate that both conventional and novel protein kinase C (PKC) family members regulate endogenous mast cell NFAT activity, and NFAT2 TA. Overexpression of dominant active PKC (which has been implicated in immune receptor signaling) induces NFAT2.alpha/beta TA. Mutations within the smallest PKC-responsive transactivation domain demonstrate that the PKC effect is at least partially indirect. Significantly, the beta-specific domain confers greater ability to TA in response to treatment with phorbol 12-myristate 13-acetate/ionomycin or lipopolysaccharide, and unique sensitivity to FcepsilonRI signaling. Accordingly, overexpression of NFAT2.beta results in significantly greater NFAT- and interleukin-4 reporter activity than NFAT2.alpha. These results suggest that whereas NFAT2 isoforms may share redundant DNA-binding preferences, there are specialized functional consequences of their isoform-specific domains.
Collapse
Affiliation(s)
- M Benjamin Hock
- Department of Pathology and Graduate Program in Genetics and Molecular Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
33
|
Ivey K, Tyson B, Ukidwe P, McFadden DG, Levi G, Olson EN, Srivastava D, Wilkie TM. Galphaq and Galpha11 proteins mediate endothelin-1 signaling in neural crest-derived pharyngeal arch mesenchyme. Dev Biol 2003; 255:230-7. [PMID: 12648486 DOI: 10.1016/s0012-1606(02)00097-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Endothelin-A (ET(A)) is a G-protein-coupled receptor expressed in the neural crest-derived mesenchyme of the pharyngeal arches during craniofacial development. Targeted deletion of the ET(A) receptor or its ligand endothelin-1 (ET-1) causes cleft palate and hypoplasia of the mandible, otic cup, and tympanic ring. Previously we showed that Galpha(q)/Galpha(11)-null mice die around E11.0, whereas Galpha(q)((-/-))Galpha(11)((+/-)) mice survive to birth with hypomorphic phenotypes similar to, but less severe than, ET(A) or ET-1-null mice. To determine whether ET-1 signaling is transduced by Galpha(q)/Galpha(11) proteins, we examined the expression patterns of several ET-1 dependent and independent transcription factors in Galpha(q)/Galpha(11)-deficient embryos. Expression of genes encoding the ET-1-dependent transcription factors Dlx3, Dlx6, dHAND, and eHAND was specifically downregulated in the pharyngeal arches of Galpha(q)/Galpha(11)-deficient mice. In contrast, pharyngeal arch expression of the homeobox gene Msx1, which is not regulated by ET-1 signaling, was maintained in these embryos. We conclude that the Galpha(q) and Galpha(11) proteins serve as the intracellular mediators of ET-1 signaling in the pharyngeal arch mesenchyme.
Collapse
Affiliation(s)
- Kathryn Ivey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, , Dallas, TX 75390-9104, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Borchers MT, Justice PJ, Ansay T, Mancino V, McGarry MP, Crosby J, Simon MI, Lee NA, Lee JJ. Gq signaling is required for allergen-induced pulmonary eosinophilia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3543-9. [PMID: 11907117 DOI: 10.4049/jimmunol.168.7.3543] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The complexity and magnitude of interactions leading to the selective infiltration of eosinophils in response to inhaled allergens are formidable obstacles to a larger understanding of the pulmonary pathology associated with allergic asthma. This study uses knockout mice to demonstrate a novel function for the heterotrimeric G protein, G(q), in the regulation of pulmonary eosinophil recruitment. In the absence of G(q) signaling, eosinophils failed to accumulate in the lungs following allergen challenge. These studies demonstrate that the inhibition of eosinophil accumulation in the airways is attributed to the failure of hemopoietically derived cells to elaborate GM-CSF in the airways. The data suggest that activation of a G(q)-coupled receptor(s) on resident leukocytes in the lung elicits expression of GM-CSF, which, in turn, is required for allergen-induced pulmonary eosinophilia, identifying a novel pathway of eosinophil-associated effector functions leading to pulmonary pathology in diseases such as asthma.
Collapse
|
35
|
Scott ES, Malcomber S, O'Hare P. Nuclear translocation and activation of the transcription factor NFAT is blocked by herpes simplex virus infection. J Virol 2001; 75:9955-65. [PMID: 11559828 PMCID: PMC114567 DOI: 10.1128/jvi.75.20.9955-9965.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription factors of the NFAT (nuclear factor of activated T cells) family are expressed in most immune system cells and in a range of other cell types. Signaling through NFAT is implicated in the regulation of transcription for the immune response and other processes, including differentiation and apoptosis. NFAT normally resides in the cytoplasm, and a key aspect of the NFAT activation pathway is the regulation of its nuclear import by the Ca(2+)/calmodulin-dependent phosphatase calcineurin. In a cell line stably expressing green fluorescent protein (GFP)-NFAT, this import can be triggered by elevation of intracellular calcium and visualized in live cells. Here we show that the inducible nuclear import of GFP-NFAT is efficiently blocked at early stages of herpes simplex virus (HSV) infection. This is a specific effect, since we observed abundant nuclear accumulation of a test viral protein and no impediment to general nuclear localization signal-dependent nuclear import and retention in infected cells. We show that virus binding at the cell surface is not itself sufficient to inhibit the signaling that induces NFAT nuclear translocation. Since the block occurs following infection in the presence of phosphonoacetic acid but not cycloheximide, we infer that the entry of the virion and early gene transcription are required but the effect is independent of DNA replication or late virus gene expression. A consequence of the block to GFP-NFAT import is a reduction in NFAT-dependent transcriptional activation from the interleukin-2 promoter in infected cells. This HSV-mediated repression of the NFAT pathway may constitute an immune evasion strategy or subversion of other NFAT-dependent cellular processes to promote viral replication.
Collapse
Affiliation(s)
- E S Scott
- Marie Curie Research Institute, Oxted, Surrey RH8 0TL, United Kingdom
| | | | | |
Collapse
|
36
|
Jutel M, Watanabe T, Klunker S, Akdis M, Thomet OA, Malolepszy J, Zak-Nejmark T, Koga R, Kobayashi T, Blaser K, Akdis CA. Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature 2001; 413:420-5. [PMID: 11574888 DOI: 10.1038/35096564] [Citation(s) in RCA: 403] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many pathological processes, including those causing allergies and autoimmune diseases, are associated with the presence of specialized subsets of T helper cells (TH1 and TH2) at the site of inflammation. The diversity of TH1 and TH2 function is not predetermined but depends on signals that drive the cells towards either subset. Histamine, released from effector cells (mast cells and basophils) during inflammatory reactions can influence immune response. Here we report that histamine enhances TH1-type responses by triggering the histamine receptor type 1 (H1R), whereas both TH1- and TH2-type responses are negatively regulated by H2R through the activation of different biochemical intracellular signals. In mice, deletion of H1R results in suppression of interferon (IFN)-gamma and dominant secretion of TH2 cytokines (interleukin (IL)-4 and IL-13). Mutant mice lacking H2R showed upregulation of both TH1 and TH2 cytokines. Relevant to T-cell cytokine profiles, mice lacking H1R displayed increased specific antibody response with increased immunoglobulin-epsilon (IgE) and IgG1, IgG2b and IgG3 compared with mice lacking H2R. These findings account for an important regulatory mechanism in the control of inflammatory functions through effector-cell-derived histamine.
Collapse
Affiliation(s)
- M Jutel
- Swiss Institute of Allergy and Asthma Research (SIAF), Obere Strasse 22, CH-7270 Davos, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rees S, Martin DP, Scott SV, Brown SH, Fraser N, O'Shaughnessy C, Beresford IJ. Development of a homogeneous MAP kinase reporter gene screen for the identification of agonists and antagonists at the CXCR1 chemokine receptor. JOURNAL OF BIOMOLECULAR SCREENING 2001; 6:19-27. [PMID: 11679162 DOI: 10.1177/108705710100600104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Agonist activity at G protein-coupled receptors (GPCRs) that regulate heterotrimeric G proteins of the Galpha(i/o) or Galpha(q) families has been shown to result in activation of the mitogen-activated protein (MAP) kinase cascade. To facilitate compound screening for these classes of GPCR, we have developed a reporter gene that detects the activation of the ternary complex transcription factor Sap1a following MAP kinase activation. In contrast to other reporter gene assays for Galpha(i/o)-coupled GPCRs, the MAP kinase reporter generates an increase in signal in the presence of agonist. The reporter gene has been transfected into Chinese hamster ovary cells to generate a "host" reporter gene-containing cell line. The Galpha(i)-coupled human CXCR1 chemokine receptor was subsequently transfected into this cell line in order to develop a 384-well format screen for both agonists and antagonists of this receptor. Agonists activated the reporter gene with the expected rank order of potency and with similar concentration dependence as seen with the regulation of other signal transduction cascades in mammalian cells: interleukin-8 (IL-8) (pEC(50) = 7.0 +/- 0.1) > GCP-2 (pEC(50) = 6.3 +/- 0.1) > NAP-2 (pEC(50) < 6). CXCR1-mediated activation of MAP kinase was inhibited by pertussis toxin and the MEK inhibitor PD98059, demonstrating that receptor activation of MAP kinase is due to pertussis toxin-sensitive Galpha(i/o)-family G proteins to cause the activation of MEK kinase. Using the 384-well format, assay performance was unaffected by solvent concentrations of 0.5% ethanol, 0.15% glycerol, or 1% DMSO. Signal crosstalk between adjacent wells was less than 1%. The assay exhibited a Z factor of 0.53 and a coefficient of variation of response to repeated application of IL-8 (100 nM) of 15.9%.
Collapse
Affiliation(s)
- S Rees
- Molecular Discovery Research Unit, Glaxo Wellcome Medicines Research Centre, Hertfordshire, UK.
| | | | | | | | | | | | | |
Collapse
|
38
|
Ali H, Ahamed J, Hernandez-Munain C, Baron JL, Krangel MS, Patel DD. Chemokine production by G protein-coupled receptor activation in a human mast cell line: roles of extracellular signal-regulated kinase and NFAT. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:7215-23. [PMID: 11120854 DOI: 10.4049/jimmunol.165.12.7215] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chemoattractants are thought to be the first mediators generated at sites of bacterial infection. We hypothesized that signaling through G protein-coupled chemoattractant receptors may stimulate cytokine production. To test this hypothesis, a human mast cell line (HMC-1) that normally expresses receptors for complement components C3a and C5a at low levels was stably transfected to express physiologic levels of fMLP receptors. We found that fMLP, but not C3a or C5a, induced macrophage inflammatory protein (MIP)-1ss (CCL4) and monocyte chemoattractant protein-1 (CCL2) mRNA and protein. Although fMLP stimulated both sustained Ca(2+) mobilization and phosphorylation of extracellular signal-regulated kinase (ERK), these responses to C3a or C5a were transient. However, transient expression of C3a receptors in HMC-1 cells rendered the cells responsive to C3a for sustained Ca(2+) mobilization and MIP-1ss production. The fMLP-induced chemokine production was blocked by pertussis toxin, PD98059, and cyclosporin A, which respectively inhibit G(i)alpha activation, mitgen-activated protein kinase kinase-mediated ERK phosphorylation, and calcineurin-mediated activation of NFAT. Furthermore, fMLP, but not C5a, stimulated NFAT activation in HMC-1 cells. These data indicate that chemoattractant receptors induce chemokine production in HMC-1 cells with a selectivity that depends on the level of receptor expression, the length of their signaling time, and the synergistic interaction of multiple signaling pathways, including extracellular signal-regulated kinase phosphorylation, sustained Ca(2+) mobilization and NFAT activation.
Collapse
MESH Headings
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Calcium/physiology
- Calcium Signaling/genetics
- Calcium Signaling/immunology
- Chemokine CCL4
- Chemokines/biosynthesis
- Chemokines/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Extracellular Space/metabolism
- Extracellular Space/physiology
- GTP-Binding Proteins/metabolism
- GTP-Binding Proteins/physiology
- Hemagglutinins/biosynthesis
- Hemagglutinins/genetics
- Humans
- Macrophage Inflammatory Proteins/biosynthesis
- Mast Cells/enzymology
- Mast Cells/immunology
- Mast Cells/metabolism
- Membrane Proteins
- Mitogen-Activated Protein Kinases/metabolism
- Mitogen-Activated Protein Kinases/physiology
- N-Formylmethionine Leucyl-Phenylalanine/metabolism
- N-Formylmethionine Leucyl-Phenylalanine/pharmacology
- NFATC Transcription Factors
- Nuclear Proteins
- Phosphorylation
- Protein Kinase C/physiology
- RNA, Messenger/biosynthesis
- Receptor, Anaphylatoxin C5a
- Receptors, Complement/biosynthesis
- Receptors, Complement/genetics
- Receptors, Formyl Peptide
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
- Receptors, Peptide/biosynthesis
- Receptors, Peptide/genetics
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- H Ali
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Xing H, Tran HC, Knapp TE, Negulescu PA, Pollok BA. A fluorescent reporter assay for the detection of ligands acting through Gi protein-coupled receptors. J Recept Signal Transduct Res 2000; 20:189-210. [PMID: 11192018 DOI: 10.3109/10799890009150644] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Accompanying the advances in basic biology of G protein-coupled receptors (GPCRs) is the practical need among biopharmaceutical companies for sensitive assays to assess GPCR function, particularly formats that are compatible with high-throughput drug screening. Here we describe a novel cell-based assay format for the high-throughput detection of ligands for Gi protein-coupled receptors. Two Gi-GPCRs, mu-opioid receptor (mu-OPR) and 5-hydroxytryptamine receptor la (5HT1aR) are employed as model receptor targets. The key feature of this assay system is the isolation of stable, clonal Chinese hamster ovary (CHO) cell lines that carry three separate expression plasmids: (1) a chimeric Gq/i5 protein (which re-directs a negative Gi-type signal to a positive Gq-type response), (2) a given Gi-GPCR, and (3) a beta-lactamase (beta1a) reporter gene responsive to Gi-GPCR signaling. Cell-based assays built using this format show appropriate rank order of potency among a reference set of receptor agonist and antagonist compounds. Such assays are also robust, reliable, and can be used for industrial-scale applications such as high-throughput screening for drug leads.
Collapse
Affiliation(s)
- H Xing
- Aurora Biosciences Corporation, San Diego, CA 92121, USA
| | | | | | | | | |
Collapse
|
40
|
Abbott KL, Loss JR, Robida AM, Murphy TJ. Evidence that Galpha(q)-coupled receptor-induced interleukin-6 mRNA in vascular smooth muscle cells involves the nuclear factor of activated T cells. Mol Pharmacol 2000; 58:946-53. [PMID: 11040041 DOI: 10.1124/mol.58.5.946] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The immunosuppressant cyclosporin A inhibits transcription mediated by the nuclear factor of activated T-cells (NFAT), a key regulator of cytokine gene expression in lymphocytes that integrates phospholipase C signaling. NFAT is also expressed in vascular smooth muscle cells, but the genes it regulates there are unknown. Here we show that Galpha(q)-coupled P2Y nucleotide receptor signaling in rat vascular smooth muscle cells increases NFAT-mediated luciferase reporter expression. It also induces interleukin (IL)-6 gene expression but not other cytokine mRNAs including IL-1, IL-2, IL-3, IL-4, IL-10, gamma-interferon, tumor necrosis factor-alpha, or tumor necrosis factor-beta. IL-6 mRNA induction by UTP is more rapid and transient then that caused by IL-1beta stimulation and is partially blocked by cyclosporin A or by expression of a trans-dominant NFAT inhibitor. Expression of recombinant NFATc1 markedly augments IL-6 mRNA induction by these and other agonists, which is partially attributable to NFAT-regulated paracrine mediators. However, trans-dominant NFkappaB inhibitors strongly interfere with IL-6 mRNA induction both by IL-1beta and by UTP, which synergistically evoke IL-6 mRNA expression. These findings suggest that NFAT is among the cofactors involved in NFkappaB-dependent IL-6 gene induction by Ca(2+)-mobilizing receptors in vascular smooth muscle cells.
Collapse
Affiliation(s)
- K L Abbott
- Department of Pharmacology and Graduate Program in Molecular and Systems Pharmacology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
41
|
Robida AM, Xu K, Ellington ML, Murphy TJ. Cyclosporin A selectively inhibits mitogen-induced cyclooxygenase-2 gene transcription in vascular smooth muscle cells. Mol Pharmacol 2000; 58:701-8. [PMID: 10999939 DOI: 10.1124/mol.58.4.701] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The prostaglandin synthase cyclooxygenase-2 (COX-2) is produced by an immediate early response gene induced in most cells by a variety of stimuli. Several studies have shown that the immunosuppressant cyclosporin (CsA) interferes with prostanoid metabolism, but the mechanisms are unclear. Here we examine the effect of CsA on COX-2 mRNA induction in cultured rat vascular smooth muscle cells (VSMC) that natively express the nuclear factor of activated T-cells, a known mediator of CsA-sensitive transcription. CsA significantly suppresses strong COX-2 mRNA induction caused by the Ca(2+)-mobilizing mitogens UTP, angiotensin II, and platelet-derived growth factor-BB, and the synergistic induction caused by costimulation with ionomycin and a phorbol ester. Forskolin and interleukin-1beta are substantially weaker COX-2 mRNA inducers, and CsA does not inhibit their effect. CsA strongly inhibits UTP-, angiotensin II-, and platelet-derived growth factor-BB-stimulated COX-2 gene transcription as measured by nuclear run-on or promoter-reporter studies, but has no effect on mRNA induction caused by post-transcriptional stabilization of a distal COX-2 mRNA 3'-untranslated region regulatory element. These data show that CsA selectively inhibits mitogen-induced COX-2 gene expression by a transcriptional mechanism that may involve the nuclear factor of activated T-cells.
Collapse
Affiliation(s)
- A M Robida
- Department of Pharmacology, Emory University School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
42
|
|
43
|
Maggirwar SB, Ramirez S, Tong N, Gelbard HA, Dewhurst S. Functional interplay between nuclear factor-kappaB and c-Jun integrated by coactivator p300 determines the survival of nerve growth factor-dependent PC12 cells. J Neurochem 2000; 74:527-39. [PMID: 10646503 DOI: 10.1046/j.1471-4159.2000.740527.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nerve growth factor (NGF) activates the transcription factors nuclear factor kappaB (NF-kappaB) and activator protein-1 (AP-1) in sympathetic neurons. Whereas NGF-inducible NF-kappaB is required for the survival of neurons, c-Jun has the ability to promote neuronal death. In this report, we have examined the effect of NGF withdrawal on c-Jun and NF-kappaB transcription factors in PC12 cells differentiated to a neuronal phenotype. We show that the withdrawal of NGF from these cultures results in de novo synthesis of c-Jun, increase in AP-1 activity, and down-regulation of NF-kappaB activity. To investigate how the signal transduction pathways activating c-Jun and NF-kappaB are differentially regulated by NGF, we performed transcriptional analyses. Expression of ReIA (NF-kappaB) suppressed the c-Jun-dependent transcription of c-jun, and this effect was reversed by overexpression of the coactivator p300. RelA's effects on c-Jun transcription were mediated by competitive binding of the carboxy-terminal region of RelA to the CH1 domain of p300, which also binds to c-Jun; deletion of this region abrogated the ability of RelA to inhibit c-Jun activity. Furthermore, the inhibition of endogenous NF-kappaB in NGF-maintained neuronal PC12 cells led to the induction of c-Jun synthesis and a marked increase in cell death. Together, these studies demonstrate a functional interaction between NF-kappaB and c-Jun and suggest a novel mechanism of NF-kappaB-mediated neuroprotection.
Collapse
Affiliation(s)
- S B Maggirwar
- Department of Microbiology and Immunology, University of Rochester Medical Center, New York 14642, USA.
| | | | | | | | | |
Collapse
|
44
|
Thaloor D, Miller KJ, Gephart J, Mitchell PO, Pavlath GK. Systemic administration of the NF-kappaB inhibitor curcumin stimulates muscle regeneration after traumatic injury. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C320-9. [PMID: 10444409 DOI: 10.1152/ajpcell.1999.277.2.c320] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle is often the site of tissue injury due to trauma, disease, developmental defects or surgery. Yet, to date, no effective treatment is available to stimulate the repair of skeletal muscle. We show that the kinetics and extent of muscle regeneration in vivo after trauma are greatly enhanced following systemic administration of curcumin, a pharmacological inhibitor of the transcription factor NF-kappaB. Biochemical and histological analyses indicate an effect of curcumin after only 4 days of daily intraperitoneal injection compared with controls that require >2 wk to restore normal tissue architecture. Curcumin can act directly on cultured muscle precursor cells to stimulate both cell proliferation and differentiation under appropriate conditions. Other pharmacological and genetic inhibitors of NF-kappaB also stimulate muscle differentiation in vitro. Inhibition of NF-kappaB-mediated transcription was confirmed using reporter gene assays. We conclude that NF-kappaB exerts a role in regulating myogenesis and that modulation of NF-kappaB activity within muscle tissue is beneficial for muscle repair. The striking effects of curcumin on myogenesis suggest therapeutic applications for treating muscle injuries.
Collapse
Affiliation(s)
- D Thaloor
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
45
|
Serra EC, Lardans V, Dissous C. Identification of NF-AT-like transcription factor in Schistosoma mansoni: its possible involvement in the antiparasitic action of cyclosporin A. Mol Biochem Parasitol 1999; 101:33-41. [PMID: 10413041 DOI: 10.1016/s0166-6851(99)00046-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyclosporin A (CsA) has been found to exert potent anti-parasite activity against a wide range of protozoan and helminth parasites. In schistosomes, evidence has been accumulated to propose that the drug damages parasites by mechanisms independent of its immunosuppressive properties. Moreover, the absence of correlation between anti-schistosomal properties and inhibition of peptidyl-prolyl cis-trans isomerase activity of cyclophilins (CsA receptors) for various drug analogs, argued against a direct implication of cyclophilins in the lethal effect of CsA. We describe, in S. mansoni, the existence of NF-AT-like transcription factors, a protein family already characterized by its sensitivity to CsA. The observation that CsA treatment of S. mansoni larvae inhibited the expression of the Sm28GST protein and the characterization of a functional NF-AT-like site in the gene encoding this protein, provide new insights in the understanding of the antischistosomal effect of CsA. Our results also support the hypothesis that the regulatory function of NF-AT-like proteins might be responsible for parasite development and survival in the host and open new perspectives in studies of helminth biology.
Collapse
Affiliation(s)
- E C Serra
- Unite 167 INSERM, Institut Pasteur, Lille, France
| | | | | |
Collapse
|
46
|
Coward P, Chan SD, Wada HG, Humphries GM, Conklin BR. Chimeric G proteins allow a high-throughput signaling assay of Gi-coupled receptors. Anal Biochem 1999; 270:242-8. [PMID: 10334841 DOI: 10.1006/abio.1999.4061] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
G-protein-coupled receptors are a major target for potential therapeutics; yet, a large number of these receptors couple to the Gi pathway, generating signals that are difficult to detect. We have combined chimeric G proteins, automated sample handling, and simultaneous 96-well fluorometric imaging to develop a high-throughput assay system for Gi signaling. The chimeric G proteins alter receptor coupling so that signaling can occur through Gq and result in mobilization of intracellular calcium stores. An automated signaling assay device, the fluorometric imaging plate reader (FLIPR), can simultaneously measure this response in real time in 96-well microplates, allowing two people to process more than 10,000 points per day. We used the chimeric G protein/FLIPR system to characterize signaling by the Gi-coupled human opioid receptors. We show that the mu, delta, and kappa opioid receptors and the related nociceptin receptor, ORL1, each couple to Galphaqi5, Galphaqo5, and Galpha16 (Galphaqi5 and Galphaqo5 refer to Galphaq proteins containing the five carboxyl-terminal amino acids from Galphai and Galphao, respectively) and that different receptor/G protein combinations show different levels of maximal activation. We tested 31 opioid ligands for agonist activity at the opioid receptors (124 ligand-receptor combinations); all 31 activated at least one receptor type, and several activated multiple receptors with differing potencies. This high-throughput assay could be useful for dissecting the complex ligand-receptor relationships that are common in nature.
Collapse
Affiliation(s)
- P Coward
- Gladstone Institute of Neurological Disease, University of California, San Francisco, California 94141-9100, USA
| | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- P H Sugden
- National Heart and Lung Institute (NHLI) Division, Imperial College School of Medicine, London, United Kingdom.
| |
Collapse
|
48
|
Abstract
Approaches that allow ligand occupancy of a wide range of G protein-coupled receptors to be converted into robust assays amenable to relatively high-throughput analysis are ideal for screening for novel ligands at this class of receptor. Many attempts have been made to design universal ligand-screening systems such that any GPCR can be screened using a common assay end-point. Manipulation of the G protein within the assay system offers the possibility of achieving this. To better understand the domains involved in the interactions between G protein-coupled receptors, G proteins and effector polypeptides and the fine details of these contacts, a wide range of chimaeric G protein alpha subunits have been produced. Graeme Milligan and Stephen Rees discuss the information generated by such studies and the ways in which such chimaeric G proteins can be integrated into assay systems for drug discovery.
Collapse
|
49
|
Abstract
Histamine is considered one of the important mediators of immediate hypersensitivity and inflammation, and acts via G protein-coupled receptors. Here, we report that histamine may affect antigen receptor-mediated immune responses of T and B cells via a signal(s) from histamine H1 receptors (H1Rs). Histamine exhibited enhancing effects on the in vitro proliferative responses of anti-CD3epsilon- or anti-IgM-stimulated spleen T and B cells, respectively, at the culture condition that the fetal calf serum was dialyzed before culture and c-kit-positive cells were depleted from the spleen cells. In studies of histamine H1R knockout mice, H1R-deficient T cells had low proliferative responses to anti-CD3epsilon cross-linking or antigen stimulation in vitro. B cells from H1R-deficient mice were also affected, demonstrating low proliferative responses to B cell receptor cross-linking. Antibody production against trinitrophenyl-Ficoll was reduced in H1R-deficient mice. Other aspects of T and B cell function were normal in the H1R knockout mice. H1R-deficient T and B cells showed normal responses upon stimulation with interleukin (IL)-2, IL-4, CD40 ligand, CD40 ligand plus IL-4, and lipopolysaccharide. Collectively, these results imply that the signal generated by histamine through H1R augments antigen receptor-mediated immune responses, suggesting cross-talk between G protein-coupled receptors and antigen receptor-mediated signaling.
Collapse
MESH Headings
- Animals
- Antibodies, Anti-Idiotypic/immunology
- Antibodies, Anti-Idiotypic/pharmacology
- Ascitic Fluid/immunology
- B-Lymphocyte Subsets/immunology
- Bone Marrow/immunology
- CD3 Complex/immunology
- CD40 Ligand
- Cells, Cultured
- Ficoll/analogs & derivatives
- Ficoll/immunology
- GTP-Binding Proteins/physiology
- Guanosine Triphosphate/metabolism
- Histamine/pharmacology
- Immunoglobulin M/immunology
- Interleukin-2/pharmacology
- Interleukin-4/pharmacology
- Lipopolysaccharides/pharmacology
- Lymphocyte Activation
- Membrane Glycoproteins/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muromonab-CD3/immunology
- Muromonab-CD3/pharmacology
- Ovalbumin/immunology
- Phosphorylation
- Protein Processing, Post-Translational
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Histamine H1/deficiency
- Receptors, Histamine H1/genetics
- Receptors, Histamine H1/physiology
- Signal Transduction/physiology
- Specific Pathogen-Free Organisms
- Spleen/immunology
- T-Lymphocyte Subsets/immunology
- Thymus Gland/immunology
- Trinitrobenzenes/immunology
- ZAP-70 Protein-Tyrosine Kinase
Collapse
Affiliation(s)
- Y Banu
- Department of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | | |
Collapse
|
50
|
Abstract
The nuclear factor of activated T cells (NFAT) plays an important role in T-cell biology. Activation of T cells results in the rapid calcineurin-dependent translocation of NFAT transcription factors from the cytoplasm to the nucleus. This translocation process coupled to the subsequent active maintenance of NFAT in the nucleus compartment is critical for the induction of expression of several genes encoding cytokines and membrane proteins that modulate immune responses. The molecular cloning of the NFAT family of transcription factors has facilitated rapid progress in the understanding of the signalling mechanisms that control the activity of NFAT.
Collapse
Affiliation(s)
- E S Masuda
- Department of Cell Signalling, DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, CA 94304, USA.
| | | | | | | | | |
Collapse
|