1
|
Carmona-Carmona CA, Zini P, Velasco-Sampedro EA, Cózar-Castellano I, Perdomo G, Caloca MJ. β2-Chimaerin, a GTPase-Activating Protein for Rac1, Is a Novel Regulator of Hepatic Insulin Signaling and Glucose Metabolism. Molecules 2024; 29:5301. [PMID: 39598690 PMCID: PMC11597029 DOI: 10.3390/molecules29225301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Glucose homeostasis is a complex process regulated by multiple organs and hormones, with insulin playing a central role. Recent evidence underscores the role of small GTP-binding proteins, particularly Rac1, in regulating insulin secretion and glucose uptake. However, the role of Rac1-regulatory proteins in these processes remains largely unexplored. In this study, we investigated the role of β2-chimaerin, a Rac1-specific GTPase-activating protein (GAP), in glucose homeostasis using whole-body β2-chimaerin knockout mice. Our data revealed that β2-chimaerin deficiency results in improved glucose tolerance and enhanced insulin sensitivity in mice. These metabolic effects were associated with increased insulin-induced AKT phosphorylation in the liver and activation of downstream pathways that regulate gluconeogenesis and glycogen synthesis. We show that insulin activates Rac1 in the liver. However, β2-chimaerin deletion did not significantly alter Rac1 activation in this organ, suggesting that β2-chimaerin regulates insulin signaling via a Rac1-independent mechanism. These findings expand our understanding of Rac1 regulation in glucose metabolism, and identify β2-chimaerin as a novel modulator of hepatic insulin signaling, with potential implications for the development of insulin resistance and diabetes.
Collapse
Affiliation(s)
- Cristian Andrés Carmona-Carmona
- Instituto de Biomedicina y Genética Molecular (IBGM), CSIC-UVA, 47003 Valladolid, Spain; (C.A.C.-C.); (P.Z.); (E.A.V.-S.); (I.C.-C.); (G.P.)
| | - Pablo Zini
- Instituto de Biomedicina y Genética Molecular (IBGM), CSIC-UVA, 47003 Valladolid, Spain; (C.A.C.-C.); (P.Z.); (E.A.V.-S.); (I.C.-C.); (G.P.)
| | - Eladio A. Velasco-Sampedro
- Instituto de Biomedicina y Genética Molecular (IBGM), CSIC-UVA, 47003 Valladolid, Spain; (C.A.C.-C.); (P.Z.); (E.A.V.-S.); (I.C.-C.); (G.P.)
| | - Irene Cózar-Castellano
- Instituto de Biomedicina y Genética Molecular (IBGM), CSIC-UVA, 47003 Valladolid, Spain; (C.A.C.-C.); (P.Z.); (E.A.V.-S.); (I.C.-C.); (G.P.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Germán Perdomo
- Instituto de Biomedicina y Genética Molecular (IBGM), CSIC-UVA, 47003 Valladolid, Spain; (C.A.C.-C.); (P.Z.); (E.A.V.-S.); (I.C.-C.); (G.P.)
| | - María J. Caloca
- Instituto de Biomedicina y Genética Molecular (IBGM), CSIC-UVA, 47003 Valladolid, Spain; (C.A.C.-C.); (P.Z.); (E.A.V.-S.); (I.C.-C.); (G.P.)
| |
Collapse
|
2
|
Luciano AK, Korobkina E, Lyons SP, Haley JA, Fluharty S, Jung SM, Kettenbach AN, Guertin DA. Proximity labeling of endogenous RICTOR identifies mTOR Complex 2 regulation by ADP ribosylation factor ARF1. J Biol Chem 2022; 298:102379. [PMID: 35973513 PMCID: PMC9513271 DOI: 10.1016/j.jbc.2022.102379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 01/08/2023] Open
Abstract
Mechanistic target of rapamycin (mTOR) complex 2 (mTORC2) regulates metabolism, cell proliferation, and cell survival. mTORC2 activity is stimulated by growth factors, and it phosphorylates the hydrophobic motif site of the AGC kinases AKT, SGK, and PKC. However, the proteins that interact with mTORC2 to control its activity and localization remain poorly defined. To identify mTORC2-interacting proteins in living cells, we tagged endogenous RICTOR, an essential mTORC2 subunit, with the modified BirA biotin ligase BioID2 and performed live-cell proximity labeling. We identified 215 RICTOR-proximal proteins, including proteins with known mTORC2 pathway interactions, and 135 proteins (63%) not previously linked to mTORC2 signaling, including nuclear and cytoplasmic proteins. Our imaging and cell fractionation experiments suggest nearly 30% of RICTOR is in the nucleus, hinting at potential nuclear functions. We also identified 29 interactors containing RICTOR-dependent, insulin-stimulated phosphorylation sites, thus providing insight into mTORC2-dependent insulin signaling dynamics. Finally, we identify the endogenous ADP ribosylation factor 1 (ARF1) GTPase as an mTORC2-interacting protein. Through gain-of-function and loss-of-function studies, we provide functional evidence that ARF1 may negatively regulate mTORC2. In summary, we present a new method of studying endogenous mTORC2, a resource of RICTOR/mTORC2 protein interactions in living cells, and a potential mechanism of mTORC2 regulation by the ARF1 GTPase.
Collapse
Affiliation(s)
- Amelia K Luciano
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Ekaterina Korobkina
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Scott P Lyons
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - John A Haley
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Shelagh Fluharty
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605.
| |
Collapse
|
3
|
Khater M, Bryant CN, Wu G. Gβγ translocation to the Golgi apparatus activates ARF1 to spatiotemporally regulate G protein-coupled receptor signaling to MAPK. J Biol Chem 2021; 296:100805. [PMID: 34022220 PMCID: PMC8215300 DOI: 10.1016/j.jbc.2021.100805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023] Open
Abstract
After activation of G protein-coupled receptors, G protein βγ dimers may translocate from the plasma membrane to the Golgi apparatus (GA). We recently report that this translocation activates extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) via PI3Kγ; however, how Gβγ-PI3Kγ activates the ERK1/2 pathway is unclear. Here, we demonstrate that chemokine receptor CXCR4 activates ADP-ribosylation factor 1 (ARF1), a small GTPase important for vesicle-mediated membrane trafficking. This activation is blocked by CRISPR-Cas9-mediated knockout of the GA-translocating Gγ9 subunit. Inducible targeting of different Gβγ dimers to the GA can directly activate ARF1. CXCR4 activation and constitutive Gβγ recruitment to the GA also enhance ARF1 translocation to the GA. We further demonstrate that pharmacological inhibition and CRISPR-Cas9-mediated knockout of PI3Kγ markedly inhibit CXCR4-mediated and Gβγ translocation-mediated ARF1 activation. We also show that depletion of ARF1 by siRNA and CRISPR-Cas9 and inhibition of GA-localized ARF1 activation abolish ERK1/2 activation by CXCR4 and Gβγ translocation to the GA and suppress prostate cancer PC3 cell migration and invasion. Collectively, our data reveal a novel function for Gβγ translocation to the GA to activate ARF1 and identify GA-localized ARF1 as an effector acting downstream of Gβγ-PI3Kγ to spatiotemporally regulate G protein-coupled receptor signaling to mitogen-activated protein kinases.
Collapse
Affiliation(s)
- Mostafa Khater
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Christian N Bryant
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.
| |
Collapse
|
4
|
Machin PA, Tsonou E, Hornigold DC, Welch HCE. Rho Family GTPases and Rho GEFs in Glucose Homeostasis. Cells 2021; 10:cells10040915. [PMID: 33923452 PMCID: PMC8074089 DOI: 10.3390/cells10040915] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Dysregulation of glucose homeostasis leading to metabolic syndrome and type 2 diabetes is the cause of an increasing world health crisis. New intriguing roles have emerged for Rho family GTPases and their Rho guanine nucleotide exchange factor (GEF) activators in the regulation of glucose homeostasis. This review summates the current knowledge, focusing in particular on the roles of Rho GEFs in the processes of glucose-stimulated insulin secretion by pancreatic β cells and insulin-stimulated glucose uptake into skeletal muscle and adipose tissues. We discuss the ten Rho GEFs that are known so far to regulate glucose homeostasis, nine of which are in mammals, and one is in yeast. Among the mammalian Rho GEFs, P-Rex1, Vav2, Vav3, Tiam1, Kalirin and Plekhg4 were shown to mediate the insulin-stimulated translocation of the glucose transporter GLUT4 to the plasma membrane and/or insulin-stimulated glucose uptake in skeletal muscle or adipose tissue. The Rho GEFs P-Rex1, Vav2, Tiam1 and β-PIX were found to control the glucose-stimulated release of insulin by pancreatic β cells. In vivo studies demonstrated the involvement of the Rho GEFs P-Rex2, Vav2, Vav3 and PDZ-RhoGEF in glucose tolerance and/or insulin sensitivity, with deletion of these GEFs either contributing to the development of metabolic syndrome or protecting from it. This research is in its infancy. Considering that over 80 Rho GEFs exist, it is likely that future research will identify more roles for Rho GEFs in glucose homeostasis.
Collapse
Affiliation(s)
- Polly A. Machin
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; (P.A.M.); (E.T.)
| | - Elpida Tsonou
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; (P.A.M.); (E.T.)
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge CB22 3AT, UK;
| | - David C. Hornigold
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge CB22 3AT, UK;
| | - Heidi C. E. Welch
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; (P.A.M.); (E.T.)
- Correspondence: ; Tel.: +44-(0)1223-496-596
| |
Collapse
|
5
|
Landry T, Shookster D, Huang H. Tissue-Specific Approaches Reveal Diverse Metabolic Functions of Rho-Kinase 1. Front Endocrinol (Lausanne) 2020; 11:622581. [PMID: 33633690 PMCID: PMC7901932 DOI: 10.3389/fendo.2020.622581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/22/2020] [Indexed: 01/20/2023] Open
Abstract
Rho-kinase 1 (ROCK1) has been implicated in diverse metabolic functions throughout the body, with promising evidence identifying ROCK1 as a therapeutic target in diabetes and obesity. Considering these metabolic roles, several pharmacological inhibitors have been developed to elucidate the mechanisms underlying ROCK1 function. Y27632 and fasudil are two common ROCK1 inhibitors; however, they have varying non-specific selectivity to inhibit other AGC kinase subfamily members and whole-body pharmacological approaches lack tissue-specific insight. As a result, interpretation of studies with these inhibitors is difficult, and alternative approaches are needed to elucidate ROCK1's tissue specific metabolic functions. Fortunately, recent technological advances utilizing molecular carriers or genetic manipulation have facilitated discovery of ROCK1's tissue-specific mechanisms of action. In this article, we review the tissue-specific roles of ROCK1 in the regulation of energy balance and substrate utilization. We highlight prominent metabolic roles in liver, adipose, and skeletal muscle, in which ROCK1 regulates energy expenditure, glucose uptake, and lipid metabolism via inhibition of AMPK2α and paradoxical modulation of insulin signaling. Compared to ROCK1's roles in peripheral tissues, we also describe contradictory functions of ROCK1 in the hypothalamus to increase energy expenditure and decrease food intake via leptin signaling. Furthermore, dysregulated ROCK1 activity in either of these tissues results in metabolic disease phenotypes. Overall, tissue-specific approaches have made great strides in deciphering the many critical metabolic functions of ROCK1 and, ultimately, may facilitate the development of novel treatments for metabolic disorders.
Collapse
Affiliation(s)
- Taylor Landry
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
- Department of Kinesiology, East Carolina University, Greenville, NC, United States
- Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, United States
| | - Daniel Shookster
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
- Department of Kinesiology, East Carolina University, Greenville, NC, United States
- Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, United States
| | - Hu Huang
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
- Department of Kinesiology, East Carolina University, Greenville, NC, United States
- Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, United States
- Department of Physiology, East Carolina University, Greenville, NC, United States
- *Correspondence: Hu Huang,
| |
Collapse
|
6
|
Duong KHM, Chun KH. Regulation of glucose transport by RhoA in 3T3-L1 adipocytes and L6 myoblasts. Biochem Biophys Res Commun 2019; 519:880-886. [PMID: 31561853 DOI: 10.1016/j.bbrc.2019.09.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022]
Abstract
RhoA is a key player in actin cytoskeleton reorganization and exerts most of its effect through the RhoA-ROCKs signaling pathway. Although recent studies have stressed the roles of ROCKs as regulators of glucose metabolism, little is known of the roles played by RhoA, the upstream regulators of ROCKs and other isotypes of Rho small-GTPases. This study was undertaken to determine whether Rho isotypes modulate glucose transport and insulin signaling in insulin-sensitive cell models, that is, 3T3-L1 adipocytes and L6 myoblasts. Glucose uptake assays showed that RhoA knockdown using siRNA reduced insulin-stimulated glucose transport in both cell types, whereas knockdown of RhoB or RhoC did not. Furthermore, RhoA overexpression increased insulin-stimulated glucose transport. Interestingly, the insulin-stimulated PI3K-Akt signaling pathway was unaffected under RhoA-depleted or -overexpressed conditions, which suggested RhoA might regulate glucose transport via an Akt-independent pathway. Interestingly, an immunoblot assay of signaling molecules related to actin-myosin cytoskeletal remodeling showed that unlike RhoA or RhoC, RhoA regulated ERM phosphorylation. Our results suggest that RhoA, but not RhoB or RhoC, mediates glucose transport by regulating the vesicle trafficking machinery in an Akt-independent manner.
Collapse
Affiliation(s)
- Khue Ha Minh Duong
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.
| |
Collapse
|
7
|
Møller LLV, Klip A, Sylow L. Rho GTPases-Emerging Regulators of Glucose Homeostasis and Metabolic Health. Cells 2019; 8:E434. [PMID: 31075957 PMCID: PMC6562660 DOI: 10.3390/cells8050434] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022] Open
Abstract
Rho guanosine triphosphatases (GTPases) are key regulators in a number of cellular functions, including actin cytoskeleton remodeling and vesicle traffic. Traditionally, Rho GTPases are studied because of their function in cell migration and cancer, while their roles in metabolism are less documented. However, emerging evidence implicates Rho GTPases as regulators of processes of crucial importance for maintaining metabolic homeostasis. Thus, the time is now ripe for reviewing Rho GTPases in the context of metabolic health. Rho GTPase-mediated key processes include the release of insulin from pancreatic β cells, glucose uptake into skeletal muscle and adipose tissue, and muscle mass regulation. Through the current review, we cast light on the important roles of Rho GTPases in skeletal muscle, adipose tissue, and the pancreas and discuss the proposed mechanisms by which Rho GTPases act to regulate glucose metabolism in health and disease. We also describe challenges and goals for future research.
Collapse
Affiliation(s)
- Lisbeth Liliendal Valbjørn Møller
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2100 Copenhagen Oe, Denmark.
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.
| | - Lykke Sylow
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2100 Copenhagen Oe, Denmark.
| |
Collapse
|
8
|
Chakraborti S, Sarkar J, Bhuyan R, Chakraborti T. Role of catechins on ET-1-induced stimulation of PLD and NADPH oxidase activities in pulmonary smooth muscle cells: determination of the probable mechanism by molecular docking studies. Biochem Cell Biol 2018; 96:417-432. [PMID: 29206487 DOI: 10.1139/bcb-2017-0179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The treatment of human pulmonary artery smooth muscle cells with ET-1 stimulates the activity of PLD and NADPH oxidase, but this stimulation is inhibited by pretreatment with bosentan (ET-1 receptor antagonist), FIPI (PLD inhibitor), apocynin (NADPH oxidase inhibitor), and EGCG and ECG (catechins having a galloyl group), but not EGC and EC (catechins devoid of a galloyl group). Herein, using molecular docking analyses based on our biochemical studies, we determined the probable mechanism by which the catechins containing a galloyl group inhibit the stimulation of PLD activity induced by ET-1. The ET-1-induced stimulation of PLD activity was inhibited by SecinH3 (inhibitor of cytohesin). Arf6 and cytohesin-1 are associated in the cell membrane, which is not inhibited by the catechins during ET-1 treatment of the cells. However, EGCG and ECG inhibited the binding of GTPγS with Arf6, even in the presence of cytohesin-1. The molecular docking analyses revealed that the catechins containing a galloyl group (EGCG and ECG) with cytohesin-1–Arf6GDP, but not the catechins without a galloyl group (EGC and EC), prevent GDP–GTP exchange in Arf6, which seems to be an important mechanism for inhibiting the activation of PLD induced by ET-1, and subsequently increases the activity of NADPH oxidase.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Jaganmay Sarkar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Rajabrata Bhuyan
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| |
Collapse
|
9
|
Chakraborti S, Sarkar J, Chowdhury A, Chakraborti T. Role of ADP ribosylation factor6- Cytohesin1-PhospholipaseD signaling axis in U46619 induced activation of NADPH oxidase in pulmonary artery smooth muscle cell membrane. Arch Biochem Biophys 2017; 633:1-14. [PMID: 28822840 DOI: 10.1016/j.abb.2017.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/12/2017] [Accepted: 08/15/2017] [Indexed: 01/07/2023]
Abstract
Treatment of human pulmonary artery smooth muscle cells (HPASMCs) with the thromboxane A2 receptor antagonist, SQ29548 inhibited U46619 stimulation of phospholipase D (PLD) and NADPH oxidase activities in the cell membrane. Pretreatment with apocynin inhibited U46619 induced increase in NADPH oxidase activity. The cell membrane contains predominantly PLD2 along with PLD1 isoforms of PLD. Pretreatment with pharmacological and genetic inhibitors of PLD2, but not PLD1, attenuated U46619 stimulation of NADPH oxidase activity. U46619 stimulation of PLD and NADPH oxidase activities were insensitive to BFA and Clostridium botulinum C3 toxin; however, pretreatment with secinH3 inhibited U46619 induced increase in PLD and NADPH oxidase activities suggesting a major role of cytohesin in U46619-induced increase in PLD and NADPH oxidase activities. Arf-1, Arf-6, cytohesin-1 and cytohesin-2 were observed in the cytosolic fraction, but only Arf-6 and cytohesin-1 were translocated to the cell membrane upon treatment with U46619. Coimmunoprecipitation study showed association of Arf-6 with cytohesin-1 in the cell membrane fraction. In vitro binding of GTPγS with Arf-6 required the presence of cytohesin-1 and that occurs in BFA insensitive manner. Overall, BFA insensitive Arf6-cytohesin1 signaling axis plays a pivotal role in U46619-mediated activation of PLD leading to stimulation of NADPH oxidase activity in HPASMCs.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| | - Jaganmay Sarkar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| | - Animesh Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
10
|
Babenko NA, Kharchenko VS. Modulation of Insulin Sensitivity of Hepatocytes by the Pharmacological Downregulation of Phospholipase D. Int J Endocrinol 2015; 2015:794838. [PMID: 26089893 PMCID: PMC4458285 DOI: 10.1155/2015/794838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/30/2015] [Accepted: 05/11/2015] [Indexed: 12/13/2022] Open
Abstract
Background. The role of phospholipase D (PLD) as a positive modulator of glucose uptake activation by insulin in muscle and adipose cells has been demonstrated. The role of PLD in the regulation of glucose metabolism by insulin in the primary hepatocytes has been determined in this study. Methods. For this purpose, we studied effects of inhibitors of PLD on glucose uptake and glycogen synthesis stimulation by insulin. To determine the PLD activity, the method based on determination of products of transphosphatidylation reaction, phosphatidylethanol or phosphatidylbutanol, was used. Results. Inhibition of PLD by a general antagonist (1-butanol) or specific inhibitor, halopemide, or N-hexanoylsphingosine, or by cellular ceramides accumulated in doxorubicin-treated hepatocytes decreased insulin-stimulated glucose metabolism. Doxorubicin-induced hepatocytes resistance to insulin action could be abolished by inhibition of ceramide production. Halopemide could nullify this effect. Addition of propranolol, as well as inhibitors of phosphatidylinositol 3-kinase (PI3-kinase) (wortmannin, LY294002) or suppressors of Akt phosphorylation/activity, luteolin-7-O-glucoside or apigenin-7-O-glucoside, to the culture media could block cell response to insulin action. Conclusion. PLD plays an important role in the insulin signaling in the hepatocytes. PLD is activated downstream of PI3-kinase and Akt and is highly sensitive to ceramide content in the liver cells.
Collapse
Affiliation(s)
- Nataliya A. Babenko
- Department of Physiology of Ontogenesis, Biology Research Institute, Karazin Kharkov National University, Svobody Square 4, Kharkov 61022, Ukraine
- *Nataliya A. Babenko:
| | - Vitalina S. Kharchenko
- Department of Physiology of Ontogenesis, Biology Research Institute, Karazin Kharkov National University, Svobody Square 4, Kharkov 61022, Ukraine
| |
Collapse
|
11
|
Jacobs BL, Goodman CA, Hornberger TA. The mechanical activation of mTOR signaling: an emerging role for late endosome/lysosomal targeting. J Muscle Res Cell Motil 2014; 35:11-21. [PMID: 24162376 PMCID: PMC3981920 DOI: 10.1007/s10974-013-9367-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/18/2013] [Indexed: 01/03/2023]
Abstract
It is well recognized that mechanical signals play a critical role in the regulation of skeletal muscle mass, and the maintenance of muscle mass is essential for mobility, disease prevention and quality of life. Furthermore, over the last 15 years it has become established that signaling through a protein kinase called the mammalian (or mechanistic) target of rapamycin (mTOR) is essential for mechanically-induced changes in protein synthesis and muscle mass, however, the mechanism(s) via which mechanical stimuli regulate mTOR signaling have not been defined. Nonetheless, advancements are being made, and an emerging body of evidence suggests that the late endosome/lysosomal (LEL) system might play a key role in this process. Therefore, the purpose of this review is to summarize this body of evidence. Specifically, we will first explain why the Ras homologue enriched in brain (Rheb) and phosphatidic acid (PA) are considered to be direct activators of mTOR signaling. We will then describe the process of endocytosis and its involvement in the formation of LEL structures, as well as the evidence which indicates that mTOR and its direct activators (Rheb and PA) are all enriched at the LEL. Finally, we will summarize the evidence that has implicated the LEL in the regulation of mTOR by various growth regulatory inputs such as amino acids, growth factors and mechanical stimuli.
Collapse
Affiliation(s)
- Brittany L Jacobs
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA
| | | | | |
Collapse
|
12
|
Chun KH, Araki K, Jee Y, Lee DH, Oh BC, Huang H, Park KS, Lee SW, Zabolotny JM, Kim YB. Regulation of glucose transport by ROCK1 differs from that of ROCK2 and is controlled by actin polymerization. Endocrinology 2012; 153:1649-62. [PMID: 22355071 PMCID: PMC3320261 DOI: 10.1210/en.2011-1036] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A role of Rho-associated coiled-coil-containing protein kinase (ROCK)1 in regulating whole-body glucose homeostasis has been reported. However, cell-autonomous effects of ROCK1 on insulin-dependent glucose transport in adipocytes and muscle cells have not been elucidated. To determine the specific role of ROCK1 in glucose transport directly, ROCK1 expression in 3T3-L1 adipocytes and L6 myoblasts was biologically modulated. Here, we show that small interfering RNA-mediated ROCK1 depletion decreased insulin-induced glucose transport in adipocytes and myoblasts, whereas adenovirus-mediated ROCK1 expression increased this in a dose-dependent manner, indicating that ROCK1 is permissive for glucose transport. Inhibition of ROCK1 also impaired glucose transporter 4 translocation in 3T3-L1 adipocytes. Importantly, the ED₅₀ of insulin for adipocyte glucose transport was reduced when ROCK1 was expressed, leading to hypersensitivity to insulin. These effects are dependent on actin cytoskeleton remodeling, because inhibitors of actin polymerization significantly decreased ROCK1's effect to promote insulin-stimulated glucose transport. Unlike ROCK2, ROCK1 binding to insulin receptor substrate (IRS)-1 was not detected by immunoprecipitation, although cell fractionation demonstrated both ROCK isoforms localize with IRS-1 in low-density microsomes. Moreover, insulin's ability to increase IRS-1 tyrosine 612 and serine 632/635 phosphorylation was attenuated by ROCK1 suppression. Replacing IRS-1 serine 632/635 with alanine reduced insulin-stimulated phosphatidylinositol 3-kinase activation and glucose transport in 3T3-L1 adipocytes, indicating that phosphorylation of these serine residues of IRS-1, which are substrates of the ROCK2 isoform in vitro, are crucial for maximal stimulation of glucose transport by insulin. Our studies identify ROCK1 as an important positive regulator of insulin action on glucose transport in adipocytes and muscle cells.
Collapse
Affiliation(s)
- Kwang-Hoon Chun
- Beth Israel Deaconess Medical Center, 330 Brookline Avenue, CLS-736, Boston, Massachusetts 02216, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Babenko NA, Kharchenko VS. Ceramides inhibit phospholipase D-dependent insulin signaling in liver cells of old rats. BIOCHEMISTRY (MOSCOW) 2012; 77:180-6. [DOI: 10.1134/s0006297912020095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Chun KH, Choi KD, Lee DH, Jung Y, Henry RR, Ciaraldi TP, Kim YB. In vivo activation of ROCK1 by insulin is impaired in skeletal muscle of humans with type 2 diabetes. Am J Physiol Endocrinol Metab 2011; 300:E536-42. [PMID: 21189360 PMCID: PMC3064006 DOI: 10.1152/ajpendo.00538.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To determine whether serine/threonine ROCK1 is activated by insulin in vivo in humans and whether impaired activation of ROCK1 could play a role in the pathogenesis of insulin resistance, we measured the activity of ROCK1 and the protein content of the Rho family in vastus lateralis muscle of lean, obese nondiabetic, and obese type 2 diabetic subjects. Biopsies were taken after an overnight fast and after a 3-h hyperinsulinemic euglycemic clamp. Insulin-stimulated GDR was reduced 38% in obese nondiabetic subjects compared with lean, 62% in obese diabetic subjects compared with lean, and 39% in obese diabetic compared with obese nondiabetic subjects (all comparisons P < 0.001). Insulin-stimulated IRS-1 tyrosine phosphorylation is impaired 41-48% in diabetic subjects compared with lean or obese subjects. Basal activity of ROCK1 was similar in all groups. Insulin increased ROCK1 activity 2.1-fold in lean and 1.7-fold in obese nondiabetic subjects in muscle. However, ROCK1 activity did not increase in response to insulin in muscle of obese type 2 diabetic subjects without change in ROCK1 protein levels. Importantly, insulin-stimulated ROCK1 activity was positively correlated with insulin-mediated GDR in lean subjects (P < 0.01) but not in obese or type 2 diabetic subjects. Moreover, RhoE GTPase that inhibits the catalytic activity of ROCK1 by binding to the kinase domain of the enzyme is notably increased in obese type 2 diabetic subjects, accounting for defective ROCK1 activity. Thus, these data suggest that ROCK1 may play an important role in the pathogenesis of resistance to insulin action on glucose disposal in muscle of obese type 2 diabetic subjects.
Collapse
Affiliation(s)
- Kwang-Hoon Chun
- Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02216, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Gomez-Cambronero J. New concepts in phospholipase D signaling in inflammation and cancer. ScientificWorldJournal 2010; 10:1356-69. [PMID: 20623096 PMCID: PMC3070604 DOI: 10.1100/tsw.2010.116] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 05/16/2010] [Accepted: 05/18/2010] [Indexed: 01/01/2023] Open
Abstract
Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine to generate the lipid second messenger phosphatidic acid (PA) and choline. PLD regulation in cells falls into two major signaling categories. One is via growth factors/mitogens, such as EGF, PDGF, insulin, and serum, and implicates tyrosine kinases; the other is via the small GTPase proteins Arf and Rho. We summarize here our lab's and other groups' contributions to those pathways and introduce several novel concepts. For the mitogen-induced signaling, new data indicate that an increase in cell transformation in PLD2-overexpressing cells is due to an increase of de novo DNA synthesis induced by PLD2, with the specific tyrosine residues involved in those functions being Y179 and Y511. Recent research has also implicated Grb2 in tyrosine phosphorylation of PLD2 that also involves Sos and the ERK pathway. The targets of phosphorylation within the PLD2 molecule that are key to its regulation have recently been precisely mapped. They are Y296, Y415, and Y511 and the responsible kinases are, respectively, EGFR, JAK3, and Src. Y296 is an inhibitory site and its phosphorylation explains the low PLD2 activity that exists in low-invasive MCF-7 breast cancer cells. Advances along the small GTPase front have implicated cell migration, as PLD1 and PLD2 cause an increase in chemotaxis of leukocytes and inflammation. PA is necessary for full chemotaxis. PA enriches the localization of the atypical guanine exchange factor (GEF), DOCK2, at the leading edge of polarized neutrophils. Further, extracellular PA serves as a neutrophil chemoattractant; PA enters the cell and activates the mTOR/S6K pathway (specifically, S6K). A clear connection between PLD with the mTOR/S6K pathway has been established, in that PA binds to mTOR and also binds to S6K independently of mTOR. Lastly, there is evidence in the upstream direction of cell signaling that mTOR and S6K keep PLD2 gene expression function down-regulated in basal conditions. In summary, the involvement of PLD2 in cell signaling continues to expand geometrically. It involves gene transcription, mitogenic and cell migration effects as seen in normal growth, tumor development, and inflammation.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School Medicine, Dayton, OH, USA.
| |
Collapse
|
16
|
|
17
|
Foster DA. Phosphatidic acid signaling to mTOR: signals for the survival of human cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1791:949-55. [PMID: 19264150 PMCID: PMC2759177 DOI: 10.1016/j.bbalip.2009.02.009] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 12/31/2022]
Abstract
During the past decade elevated phospholipase D (PLD) activity has been reported in virtually all cancers where it has been examined. PLD catalyzes the hydrolysis of phosphatidylcholine to generate the lipid second messenger phosphatidic acid (PA). While many targets of PA signaling have been identified, the most critical target of PA in cancer cells is likely to be mTOR - the mammalian target of rapamycin. mTOR has been widely implicated in signals that suppress apoptotic programs in cancer cells - frequently referred to as survival signals. mTOR exists as two multi-component complexes known as mTORC1 and mTORC2. Recent data has revealed that PA is required for the stability of both mTORC1 and mTORC2 complexes - and therefore also required for the kinase activity of both mTORC1 and mTORC2. PA interacts with mTOR in a manner that is competitive with rapamycin, and as a consequence, elevated PLD activity confers rapamycin resistance - a point that has been largely overlooked in clinical trials involving rapamycin-based strategies. The earliest genetic changes occurring in an emerging tumor are generally ones that suppress default apoptotic programs that likely represent the first line of defense of cancer. Targeting survival signals in human cancers represents a rational anti-cancer therapeutic strategy. Therefore, understanding the signals that regulate PA levels and how PA impacts upon mTOR could be important for developing strategies to de-repress the survival signals that suppress apoptosis. This review summarizes the role of PA in regulating the mTOR-mediated signals that promote cancer cell survival.
Collapse
Affiliation(s)
- David A Foster
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA.
| |
Collapse
|
18
|
Henkels KM, Short S, Peng HJ, Di Fulvio M, Gomez-Cambronero J. PLD2 has both enzymatic and cell proliferation-inducing capabilities, that are differentially regulated by phosphorylation and dephosphorylation. Biochem Biophys Res Commun 2009; 389:224-8. [PMID: 19715678 DOI: 10.1016/j.bbrc.2009.08.109] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Accepted: 08/20/2009] [Indexed: 11/19/2022]
Abstract
Phospholipase D2 (PLD2) overexpression in mammalian cells results in cell transformation. We have hypothesized that this is due to an increase of de novo DNA synthesis. We show here that overexpression of PLD2-WT leads to an increased DNA synthesis, as measured by the expression levels of the proliferation markers PCNA, p27(KIP1) and phospho-histone-3. The enhancing effect was even higher with phosphorylation-deficient PLD2-Y179F and PLD2-Y511F mutants. The mechanism for this did not involve the enzymatic activity of the lipase, but, rather, the presence of the protein tyrosine phosphatase CD45, as silencing with siRNA for CD45 abrogated the effect. The two Y-->F mutants had in common a YxN consensus site that, in the phosphorylated counterparts, could be recognized by SH2-bearing proteins, such as Grb2. Even though Y179F and Y511F cannot bind Grb2, they could still find other protein partners, one of which, we have reasoned, could be CD45 itself. Affinity purified PLD2 is indeed activated by Grb2 and deactivated by CD45 in vitro. We concluded that phosphorylated PLD2, aided by Grb2, mediates lipase activity, whereas dephosphorylated PLD2 mediates an induction of cell proliferation, and the specific residues involved in this newly discovered regulation of PLD2 are Y(179) and Y(511).
Collapse
Affiliation(s)
- Karen M Henkels
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, OH 45435, USA
| | | | | | | | | |
Collapse
|
19
|
Kakinuma N, Roy BC, Zhu Y, Wang Y, Kiyama R. Kank regulates RhoA-dependent formation of actin stress fibers and cell migration via 14-3-3 in PI3K-Akt signaling. ACTA ACUST UNITED AC 2008; 181:537-49. [PMID: 18458160 PMCID: PMC2364698 DOI: 10.1083/jcb.200707022] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Phosphoinositide-3 kinase (PI3K)/Akt signaling is activated by growth factors such as insulin and epidermal growth factor (EGF) and regulates several functions such as cell cycling, apoptosis, cell growth, and cell migration. Here, we find that Kank is an Akt substrate located downstream of PI3K and a 14-3-3–binding protein. The interaction between Kank and 14-3-3 is regulated by insulin and EGF and is mediated through phosphorylation of Kank by Akt. In NIH3T3 cells expressing Kank, the amount of actin stress fibers is reduced, and the coexpression of 14-3-3 disrupted this effect. Kank also inhibits insulin-induced cell migration via 14-3-3 binding. Furthermore, Kank inhibits insulin and active Akt-dependent activation of RhoA through binding to 14-3-3. Based on these findings, we hypothesize that Kank negatively regulates the formation of actin stress fibers and cell migration through the inhibition of RhoA activity, which is controlled by binding of Kank to 14-3-3 in PI3K–Akt signaling.
Collapse
Affiliation(s)
- Naoto Kakinuma
- Signaling Molecules Research Laboratory, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | |
Collapse
|
20
|
Ishikura S, Koshkina A, Klip A. Small G proteins in insulin action: Rab and Rho families at the crossroads of signal transduction and GLUT4 vesicle traffic. Acta Physiol (Oxf) 2008; 192:61-74. [PMID: 18171430 DOI: 10.1111/j.1748-1716.2007.01778.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Insulin stimulates glucose uptake into muscle and adipose tissues through glucose transporter 4 (GLUT4). GLUT4 cycles between the intracellular compartments and the plasma membrane. GLUT4 traffic-regulating insulin signals are largely within the insulin receptor-insulin receptor substrate-phosphatidylinositol 3-kinase (IR-IRS-PI3K) axis. In muscle cells, insulin signal bifurcates downstream of the PI3K into one arm leading to the activation of the Ser/Thr kinases Akt and atypical protein kinase C, and another leading to the activation of Rho family protein Rac1 leading to actin remodelling. Activated Akt inactivates AS160, a GTPase-activating protein for Rab family small G proteins. Here we review the roles of Rab and Rho proteins, particularly Rab substrates of AS160 and Rac1, in insulin-stimulated GLUT4 traffic. We discuss: (1) how distinct steps in GLUT4 traffic may be regulated by discrete Rab proteins, and (2) the importance of Rac1 activation in insulin-induced actin remodelling in muscle cells, a key element for the net gain in surface GLUT4.
Collapse
Affiliation(s)
- S Ishikura
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | | |
Collapse
|
21
|
Lee JH, Ragolia L. AKT phosphorylation is essential for insulin-induced relaxation of rat vascular smooth muscle cells. Am J Physiol Cell Physiol 2006; 291:C1355-65. [PMID: 16855220 PMCID: PMC1636679 DOI: 10.1152/ajpcell.00125.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Insulin resistance, a major factor in the development of type 2 diabetes, is known to be associated with defects in blood vessel relaxation. The role of Akt on insulin-induced relaxation of vascular smooth muscle cell (VSMC) was investigated using siRNA targeting Akt (siAKTc) and adenovirus constructing myristilated Akt to either suppress endogenous Akt or overexpress constitutively active Akt, respectively. siAKTc decreased both basal and insulin-induced phosphorylations of Akt and glycogen synthase kinase 3beta, abolishing insulin-induced nitric oxide synthase (iNOS) expression. cGMP-dependent kinase 1alpha (cGK1alpha) and myosin-bound phosphatase (MBP) activities, both downstream of iNOS, were also decreased. siAKTc treatment resulted in increased insulin and ANG II-stimulated phosphorylation of contractile apparatus, such as MBP substrate (MYPT1) and myosin light chain (MLC20), accompanied by increased Rho-associated kinase alpha (ROKalpha) activity, demonstrating the requirement of Akt for insulin-induced vasorelaxation. Corroborating these results, constitutively active Akt upregulated the signaling molecules involved in insulin-induced relaxation such as iNOS, cGK1alpha, and MBP activity, even in the absence of insulin stimulation. On the contrary, the contractile response involving the phosphorylation of MYPT1 and MLC20, and increased ROKalpha activity stimulated by ANG II were all abolished by overexpressing active Akt. In conclusion, we demonstrated here that insulin-induced VSMC relaxation is dependent on Akt activation via iNOS, cGK1alpha, and MBP activation, as well as the decreased phosphorylations of MYPT1 and MLC20 and decreased ROKalpha activity.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Animals
- Carrier Proteins/metabolism
- Cells, Cultured
- Glycogen Synthase Kinase 3/genetics
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3 beta
- Humans
- Insulin/metabolism
- Intracellular Signaling Peptides and Proteins/metabolism
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Myosin Light Chains/metabolism
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/metabolism
- Phosphoprotein Phosphatases/metabolism
- Phosphorylation
- Protein Phosphatase 1
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Rats, Inbred WKY
- Vasodilation/physiology
- rho-Associated Kinases
Collapse
Affiliation(s)
- Jin Hee Lee
- Vascular Biology Institute, Winthrop-University Hospital, Mineola NY 11501
| | - Louis Ragolia
- Vascular Biology Institute, Winthrop-University Hospital, Mineola NY 11501
- School of Medicine, State University of New York at Stony Brook, Stony Brook, New York 11794
| |
Collapse
|
22
|
Abstract
Several members of the extensive family of small GTP-binding proteins are regulated by insulin, and have been implicated in insulin action on glucose uptake. These proteins are themselves negatively regulated by a series of specific GAPs (GTPase-activating proteins). Interestingly, there is increasing evidence to suggest that PKB (protein kinase B)-dependent phosphorylation of some GAPs may relieve this negative regulation and so lead to the activation of the target small GTP-binding protein. We review recent evidence that this may be the case, and place specific emphasis on the role of these pathways in insulin-stimulated glucose uptake.
Collapse
|
23
|
Hers I, Wherlock M, Homma Y, Yagisawa H, Tavaré JM. Identification of p122RhoGAP (deleted in liver cancer-1) Serine 322 as a substrate for protein kinase B and ribosomal S6 kinase in insulin-stimulated cells. J Biol Chem 2006; 281:4762-70. [PMID: 16338927 DOI: 10.1074/jbc.m511008200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase B (PKB or Akt) plays an essential role in the actions of insulin, cytokines, and growth factors, although the substrates for PKB that are relevant to many of its actions require identification. In this study, we have reported the identification of p122RhoGAP, a GTPase-activating protein selective for RhoA and rodent homologue of the tumor suppressor deleted in liver cancer (DLC1) as a novel insulin-stimulated phosphoprotein in primary rat adipocytes. We have demonstrated that Ser-322 is phosphorylated upon insulin stimulation of intact cells and that this site is directly phosphorylated in vitro by PKB and ribosomal S6 kinase, members of the AGC (protein kinases A, G, and C) family of insulin-stimulated protein kinases. Furthermore, expression of constitutively active mutants of PKB or mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) stimulates Ser-322 phosphorylation in intact cells, demonstrating that activation of the PKB or MEK pathway is sufficient for Ser-322 phosphorylation in vivo. Indeed, in primary adipocytes, insulin-stimulated Ser-322 phosphorylation was almost exclusively regulated by the phosphatidylinositol 3-kinase/PKB pathway, whereas in immortalized cells, insulin-stimulated phosphorylation was predominantly regulated by the MEK/extracellular signal-regulated kinase/ribosomal S6 kinase pathway, with the phosphatidylinositol 3-kinase/PKB pathway playing a minor role. These results demonstrate that p122RhoGAP Ser-322 acts as an integrator of signal transduction in a manner dependent on the cellular context.
Collapse
Affiliation(s)
- Ingeborg Hers
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom.
| | | | | | | | | |
Collapse
|
24
|
Kanda T, Wakino S, Homma K, Yoshioka K, Tatematsu S, Hasegawa K, Takamatsu I, Sugano N, Hayashi K, Saruta T. Rho-kinase as a molecular target for insulin resistance and hypertension. FASEB J 2005; 20:169-71. [PMID: 16267124 DOI: 10.1096/fj.05-4197fje] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rho-kinase plays an important role in hypertension and is reported to interfere with insulin signaling through serine phosphorylation of insulin receptor substrate-1 (IRS-1) in cultured vascular smooth muscle cells. We therefore examined the role of Rho-kinase in the development of insulin resistance in Zucker obese rats. In skeletal muscles and aortic tissues of Zucker obese rats, activation of RhoA/Rho-kinase was observed. Long-term Rho-kinase inhibition by 4 wk treatment with fasudil (a Rho-kinase inhibitor) not only reduced blood pressure but corrected glucose and lipid metabolism, with improvement in serine phosphorylation of IRS-1 and insulin signaling in skeletal muscles. Direct visualization of skeletal muscle arterioles with an intravital CCD videomicroscope demonstrated that both acetylcholine- and sodium nitroprusside-induced vasodilations were blunted, which were restored by the fasudil treatment. Furthermore, both fasudil and Y-27632 prevented the serine phosphorylation of IRS-1 induced by insulin and/or tumor necrosis factor-alpha in skeletal muscle cells. Collectively, Rho-kinase is responsible for the impairment of insulin signaling and may constitute a critical mediator linking between metabolic and hemodynamic abnormalities in insulin resistance.
Collapse
Affiliation(s)
- Takeshi Kanda
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Furukawa N, Ongusaha P, Jahng WJ, Araki K, Choi CS, Kim HJ, Lee YH, Kaibuchi K, Kahn BB, Masuzaki H, Kim JK, Lee SW, Kim YB. Role of Rho-kinase in regulation of insulin action and glucose homeostasis. Cell Metab 2005; 2:119-29. [PMID: 16098829 DOI: 10.1016/j.cmet.2005.06.011] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 05/17/2005] [Accepted: 06/30/2005] [Indexed: 11/17/2022]
Abstract
Accumulating evidence indicates an important role for serine phosphorylation of IRS-1 in the regulation of insulin action. Recent studies suggest that Rho-kinase (ROK) is a mediator of insulin signaling, via interaction with IRS-1. Here we show that insulin stimulation of glucose transport is impaired when ROK is chemically or biologically inhibited in cultured adipocytes and myotubes and in isolated soleus muscle ex vivo. Inactivation of ROK also reduces insulin-stimulated IRS-1 tyrosine phosphorylation and PI3K activity. Moreover, inhibition of ROK activity in mice causes insulin resistance by reducing insulin-stimulated glucose uptake in skeletal muscle in vivo. Mass spectrometry analysis identifies IRS-1 Ser632/635 as substrates of ROK in vitro, and mutation of these sites inhibits insulin signaling. These results strongly suggest that ROK regulates insulin-stimulated glucose transport in vitro and in vivo. Thus, ROK is an important regulator of insulin signaling and glucose metabolism.
Collapse
Affiliation(s)
- Noboru Furukawa
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rauch C, Loughna P. C2C12 Skeletal Muscle Cells Exposure to Phosphatidylcholine Triggers IGF-1 Like-Responses. Cell Physiol Biochem 2005; 15:211-24. [PMID: 15956784 DOI: 10.1159/000086408] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2004] [Indexed: 12/21/2022] Open
Abstract
Glucose uptake by cells in response to stimulation with either IGF-1 or insulin is associated with the translocation of GLUT (glucose transporter) proteins from intracellular cytoplasmic compartments to the plasma membrane. In response to such stimulation, GLUT4 and GLUT1 translocation to the plasma membrane is triggered through an increase in their exocytosis involving phospholipase D (PLD) activation, disrupting the recycling of intracellular GLUT-containing vesicles between the plasma membrane and internal compartments. In skeletal muscle, insulin resistance is observed in association with an increase of dipalmitoyl-phosphatidylcholine, which is also known to interact with PLD. Based on evidence that the recycling process is important for GLUT translocation, we decided to address whether dipalmitoyl-phosphatidylcholine, a non-translocatable phospholipid known to alter the recycling of intracellular vesicles and to interact with PLD, can be involved in glucose metabolism. We show that an acute change in phospholipid composition, by addition of dipalmitoyl-phophatidylcholine, leads to GLUT1 translocation to the plasma membrane in conjunction to an increase of Akt and GSK3beta phosphorylation, which are sensitive to PI3K and PLD inhibitors. Moreover, we also show that long-term change in phospholipid composition disrupts both the IGF-1 signalling pathway and GLUT1 partitioning within the cells.
Collapse
Affiliation(s)
- Cyril Rauch
- Royal Veterinary College, Muscle Unit and Molecular Biology/VBS, Royal College Street, NW1 OTU London
| | | |
Collapse
|
27
|
Abstract
Thyrotropin-releasing hormone (TRH), originally identified as a hypothalamic hormone, is expressed in the pancreas. The peptide has been shown to control glycemia, although the role of TRH in the pancreas has not yet been clarified. In quiescent INS-1 cells (rat immortalized beta-cell line), 200 nM of TRH for 24 hours significantly increased insulin levels in the culture medium and in cell extracts. In studies with gene array technology where about 60% to 75% of the 1081 genes were detected, TRH significantly stimulated multiple groups of gene expressions, including G-protein-coupled receptor and related signaling, such as insulin secretion, endoplasmic reticulum traffic mechanisms, cell-cycle regulators, protein turnover factors, DNA recombination, and growth factors. Noticeably, TRH suppressed the genes of proapoptotic Bcl-2-associated protein X, Bcl-xL/ Bcl-2-associated death promoter, and Fas. The multiple gene expressions in response to TRH in pancreatic cells suggest that the changed microenvironment brought about by TRH may influence beta-cellfunction.
Collapse
Affiliation(s)
- LuGuang Luo
- The Center for Stem Cell Biology, Department of Research, Roger Williams Hospital, 825 Chalkstone Avenue, Providence, RI 02908, USA.
| | | |
Collapse
|
28
|
Hui L, Abbas T, Pielak RM, Joseph T, Bargonetti J, Foster DA. Phospholipase D elevates the level of MDM2 and suppresses DNA damage-induced increases in p53. Mol Cell Biol 2004; 24:5677-86. [PMID: 15199126 PMCID: PMC480910 DOI: 10.1128/mcb.24.13.5677-5686.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipase D (PLD) has been reported to generate survival signals that prevent apoptosis induced by serum withdrawal. We have now found that elevated expression of PLD also suppresses DNA damage-induced apoptosis. Since DNA damage-induced apoptosis is often mediated by p53, we examined the effect of elevated PLD expression on the regulation of p53 stabilization. We report here that PLD suppresses DNA damage-induced increases in p53 stabilization in cells where PLD has been shown to provide a survival signal. Elevated expression of PLD also led to increased expression of the p53 E3 ubiquitin ligase MDM2 and increased turnover of p53. PLD1-stimulated increases in MDM2 expression and suppression of p53 activation were blocked by inhibition of mTOR and the mitogen-activated protein kinase pathway. Although PLD did not activate the phosphatidylinositol 3-kinase (PI3K)/Akt survival pathway activate the basal levels of PI3K activity were partially required for PLD1-induced increases in MDM2. These data provide evidence that survival signals generated by PLD involve suppression of the p53 response pathway.
Collapse
Affiliation(s)
- Li Hui
- Department of Biological Sciences, Hunter College of the City University of New York, 695 Park Ave., New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
29
|
Mori M, Tsushima H. Vanadate activates Rho A translocation in association with contracting effects in ileal longitudinal smooth muscle of guinea pig. J Pharmacol Sci 2004; 95:443-51. [PMID: 15286430 DOI: 10.1254/jphs.fp0030576] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
We characterized the effects of vanadate, an inhibitor of tyrosine phosphatase, on the tension, the level of myosin light chain (MLC) phosphorylation, and Rho A activation in intact ileal longitudinal smooth muscle of the guinea pig to study the role of tyrosine phosphorylation in contraction signaling. Vanadate exerted a sustained contraction with a slow onset of tension development, in a concentration-dependent manner. The contractile effects of vanadate were accompanied by increases in the level of MLC phosphorylation. The tyrosine kinase inhibitor genistein; the MLC kinase inhibitor 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride (ML-9); and the Rho kinase inhibitor (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide dihydrochloride, monohydrate (Y-27632) inhibited the vanadate-induced contraction and MLC phosphorylation. Vanadate caused Rho A translocation from the cytosol to the membrane fraction, which was inhibited by genistein, but not by ML-9 and Y-27632. These data indicate that vanadate induces Rho A activation probably via protein tyrosine phosphorylation and the subsequent contraction through increases in the level of MLC phosphorylation.
Collapse
Affiliation(s)
- Mayumi Mori
- Department of Cellular and Molecular Pharmacology, Nagoya City University, Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
| | | |
Collapse
|
30
|
Abstract
Insulin-stimulated Glut-4 translocation is regulated through a complex pathway. Increasing attention is being paid to the role undertaken in this process by Phospholipase D, a signal transduction-activated enzyme that generates the lipid second-messenger phosphatidic acid. Phospholipase D facilitates Glut-4 translocation at potentially multiple steps in its outward movement. Current investigation is centered on Phospholipase D promotion of Glut-4-containing membrane vesicle trafficking and vesicle fusion into the plasma membrane, in part through activation of atypical protein kinase C isoforms.
Collapse
Affiliation(s)
- Ping Huang
- Department of Pharmacology and the Center for Developmental Genetics, University Medical Center at Stony Brook, Stony Brook, NY 11794-5140, USA
| | | |
Collapse
|
31
|
Li HS, Shome K, Rojas R, Rizzo MA, Vasudevan C, Fluharty E, Santy LC, Casanova JE, Romero G. The guanine nucleotide exchange factor ARNO mediates the activation of ARF and phospholipase D by insulin. BMC Cell Biol 2003; 4:13. [PMID: 12969509 PMCID: PMC212319 DOI: 10.1186/1471-2121-4-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Accepted: 09/11/2003] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Phospholipase D (PLD) is involved in many signaling pathways. In most systems, the activity of PLD is primarily regulated by the members of the ADP-Ribosylation Factor (ARF) family of GTPases, but the mechanism of activation of PLD and ARF by extracellular signals has not been fully established. Here we tested the hypothesis that ARF-guanine nucleotide exchange factors (ARF-GEFs) of the cytohesin/ARNO family mediate the activation of ARF and PLD by insulin. RESULTS Wild type ARNO transiently transfected in HIRcB cells was translocated to the plasma membrane in an insulin-dependent manner and promoted the translocation of ARF to the membranes. ARNO mutants: DeltaCC-ARNO and CC-ARNO were partially translocated to the membranes while DeltaPH-ARNO and PH-ARNO could not be translocated to the membranes. Sec7 domain mutants of ARNO did not facilitate the ARF translocation. Overexpression of wild type ARNO significantly increased insulin-stimulated PLD activity, and mutations in the Sec7 and PH domains, or deletion of the PH or CC domains inhibited the effects of insulin. CONCLUSIONS Small ARF-GEFs of the cytohesin/ARNO family mediate the activation of ARF and PLD by the insulin receptor.
Collapse
Affiliation(s)
- Hai-Sheng Li
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| | - Kuntala Shome
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| | - Raúl Rojas
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
- Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| | - Megan A Rizzo
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| | - Chandrasekaran Vasudevan
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| | - Eric Fluharty
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| | - Lorraine C Santy
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908 USA
| | - James E Casanova
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908 USA
| | - Guillermo Romero
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| |
Collapse
|
32
|
Park JK, Lee SO, Kim YG, Kim SH, Koh GY, Cho KW. Role of rho-kinase activity in angiotensin II-induced contraction of rabbit clitoral cavernosum smooth muscle. Int J Impot Res 2002; 14:472-7. [PMID: 12494280 DOI: 10.1038/sj.ijir.3900911] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2002] [Revised: 03/26/2002] [Accepted: 05/31/2002] [Indexed: 11/09/2022]
Abstract
Isometric tension measurement using a selective Rho-kinase inhibitor (+)- (R)-trans4-(1-aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide (Y-27632) and a selective myosin light chain kinase (MLCK) inhibitor 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride (ML7) were used in rabbit clitoral cavernosum smooth muscle (CSM). N(G)-nitro-L-arginine methyl ester (L-NAME) was used to evaluate the relationship between NO release and Rho-kinase. Y-27632 significantly attenuated contractions induced by ANG II, dose-dependently. However, ML7 did not affect the contractile response to ANG II except in the high concentrations of ML7. Y-27632 inhibited contraction with phenylephrine (PhE), but ML7 did not inhibit contraction with PhE. Nitric oxide synthase inhibitor (NAME) did not affect the Y-27632-induced relaxation in the pre-contracted strip with PhE. The present study demonstrates that G-protein-coupled increase in myofilament Ca(2+) sensitivity mediated through the RhoA/Rho-kinase signal pathway is involved in the control by ANG II of the clitoral CSM tone. RhoA/Rho-kinase pathway acts in the ANG II-induced contraction independently of the NO pathway.
Collapse
Affiliation(s)
- J K Park
- Department of Urology, Chonbuk National University Medical School, Chonju, South Korea.
| | | | | | | | | | | |
Collapse
|
33
|
van Golen KL, Bao LW, Pan Q, Miller FR, Wu ZF, Merajver SD. Mitogen activated protein kinase pathway is involved in RhoC GTPase induced motility, invasion and angiogenesis in inflammatory breast cancer. Clin Exp Metastasis 2002; 19:301-11. [PMID: 12090470 DOI: 10.1023/a:1015518114931] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammatory breast cancer (IBC) is the most lethal form of locally advanced breast cancer known. IBC carries a guarded prognosis primarily due to rapid onset of disease, typically within six months, and the propensity of tumor emboli to invade the dermal lymphatics and spread systemically. Although the clinical manifestations of IBC have been well documented, until recently little was known about the genetic mechanisms underlying the disease. In a comprehensive study aimed at identifying the molecular mechanisms responsible for the unique IBC phenotype, our laboratory identified overexpression of RhoC GTPase in over 90% of IBC tumors in contrast to 36% of stage-matched non-IBC tumors. We also demonstrated that overexpression of RhoC GTPase in human mammary epithelial (HME) cells nearly recapitulated the IBC phenotype with regards to invasion, motility and angiogenesis. In the current study we sought to delineate which signaling pathways were responsible for each aspect of the IBC phenotype. Using well-established inhibitors to the mitogen activated protein kinase (MAPK) and phosphatidylinositol-3 kinase (PI3K) pathways. We found that activation of the MAPK pathway was responsible for motility, invasion and production of angiogenic factors. In contrast, growth under anchorage independent conditions was dependent on the PI3K pathway.
Collapse
Affiliation(s)
- Kenneth L van Golen
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor 48109-0948, USA
| | | | | | | | | | | |
Collapse
|
34
|
Lee TYJ, Gotlieb AI. Rho and basic fibroblast growth factor involvement in centrosome redistribution and actin microfilament remodeling during early endothelial wound repair. J Vasc Surg 2002; 35:1242-52. [PMID: 12042737 DOI: 10.1067/mva.2002.123094] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE We have shown that centrosome redistribution to the front of the cell and actin microfilament remodeling occurs during the initiation of early porcine aortic endothelial wound repair even before cell migration. Because Ras homologous protein (Rho) induces actin microfilament polymerization, interacts with microtubules, and is believed to be activated by growth factors, we set forth to study the regulatory roles of basic fibroblast growth factor (bFGF) and Rho signaling on centrosome redistribution and actin microfilament remodeling in endothelial cells at an in vitro wound edge. STUDY DESIGN With double immunofluorescent confocal microscopy, we studied the distribution of various cytoskeletal proteins in wounded porcine aortic endothelial cells in response to bFGF and exoenzyme C3 treatments. RESULTS We showed that the addition of 10 ng/mL bFGF for 3 hours after wounding resulted in a significant increase (P <.05) in cells at the wound edge with central microfilaments oriented perpendicular to the wound. Rho inhibition with 2 microg/mL C3 resulted in the reduction of phosphotyrosine, paxillin, and central microfilament staining. Centrosome redistribution and endothelial cell elongation also were significantly inhibited (P <.05) with C3, resulting in decreased wound closure. However, inhibition was reduced with coincubation of bFGF with C3, which also returned the rate of endothelial wound closure toward control values. This Rho-independent bFGF-induced centrosome redistribution was associated with the cells showing a significant increase (P <.05) in acetylated microtubules that extended from the centrosome to the posterior cell border. CONCLUSION We conclude that Rho regulates centrosome redistribution and central microfilament remodeling during early endothelial wound repair, and bFGF promotes actin remodeling through a downstream Rho-dependent pathway and promotes centrosome redistribution, at least in part, with a Rho-independent pathway.
Collapse
Affiliation(s)
- Tsu-Yee Joseph Lee
- Vascular Research Laboratory, The Toronto General Hospital and Research Institute, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | | |
Collapse
|
35
|
Bourgoin SG, Houle MG, Singh IN, Harbour D, Gagnon S, Morris AJ, Brindley DN. ARNO but not cytohesin‐1 translocation is phosphatidylinositol 3‐kinase‐dependent in HL‐60 cells. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.4.718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Sylvain G. Bourgoin
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Pavillon CHUL et Département d’Anatomie‐Physiologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Martin G. Houle
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Pavillon CHUL et Département d’Anatomie‐Physiologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Indrapal N. Singh
- Signal Transduction Laboratories, Department of Biochemistry and Lipid and Lipoprotein Research Group, University of Alberta, Edmonton, Canada
| | - Danielle Harbour
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Pavillon CHUL et Département d’Anatomie‐Physiologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Steve Gagnon
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Pavillon CHUL et Département d’Anatomie‐Physiologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Andrew J. Morris
- Department of Pharmacological Sciences and the Institute for Cell and Developmental Biology, Stony Brook Health Science Center, Stony Brook, New York; and
| | - David N. Brindley
- Signal Transduction Laboratories, Department of Biochemistry and Lipid and Lipoprotein Research Group, University of Alberta, Edmonton, Canada
| |
Collapse
|
36
|
Rizzo M, Romero G. Pharmacological importance of phospholipase D and phosphatidic acid in the regulation of the mitogen-activated protein kinase cascade. Pharmacol Ther 2002; 94:35-50. [PMID: 12191592 DOI: 10.1016/s0163-7258(02)00170-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The stimulation of cells with many extracellular agonists leads to the activation of phospholipase (PL)D. PLD metabolizes phosphatidylcholine to generate phosphatidic acid (PA). Neither the mechanism through which cell surface receptors regulate PLD activation nor the functional consequences of PLD activity in mitogenic signaling are completely understood. PLD is activated by protein kinase C, phospholipids, and small GTPases of the ADP-ribosylation factor and Rho families, but the mechanisms linking cell surface receptors to the activation of PLD still require detailed analysis. Furthermore, the latest data on the functional consequences of the generation of cellular PA suggest an important role for this lipid in the regulation of membrane traffic and on the activation of the mitogen-activated protein kinase cascade. This review addresses these issues, examining some novel models for the physiological role of PLD and PA and discussing their potential usefulness as specific targets for the development of new therapies.
Collapse
Affiliation(s)
- Mark Rizzo
- Department of Pharmacology, W 1345 BSTWR, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
37
|
Mamoon AM, Baker RC, Farley JM. Activation of phospholipase D in porcine tracheal smooth muscle: role of phosphatidylinositol 3-kinase and RhoA activation. Eur J Pharmacol 2001; 433:7-16. [PMID: 11755129 DOI: 10.1016/s0014-2999(01)01439-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Muscarinic receptor agonists transiently activate phospholipase D in tracheal smooth muscle. Muscarinic activation of phospholipase D in this tissue is dependent on activation of protein kinase C and an unidentified pathway that is not protein kinase C dependent. Cholinergic agents have also been shown to activate phospholipase D by pathways linked to the small G protein, RhoA. This study explores the relationship between muscarinic activation of phophatidylinositol 3-kinase and activation of RhoA, and examines whether phospholipase D activation is dependent on either pathway in tracheal smooth muscle. Wortmannin or 2-(4-morphonyl)-8-phenyl-4H-1-benzopyran-4-one (LY-294002), putative specific inhibitors of phophatidylinositol 3-kinase, significantly inhibit acetylcholine-induced formation of phosphatidylethanol and also block acetylcholine-induced translocation of RhoA to the membrane. In previous experiments calphostin C, a protein kinase C inhibitor, partially inhibited both acetylcholine-induced and phorbol-12-myristate-13-acetate (PMA)-induced phosphatidylethanol formation. In the present study calphostin C did not block acetylcholine-induced RhoA translocation to the membrane. However, the Rho kinase inhibitor, N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide (Y-27632), significantly inhibited acetylcholine-induced phosphatidylethanol formation, but had no effect on activation of phospholipase D by PMA. Acetylcholine treatment also stimulated the phosphorylation of the 110-kDa subunit of phosphatidylinositol 3-kinase. Phosphorylation of phosphatidylinositol 3-kinase 110-kDa subunit could be blocked by wortmannin in a concentration-dependent manner, and acetylcholine-induced phosphatidylinositol 3-kinase activity was significantly inhibited by wortmannin. LY-294002 also inhibited acetylcholine-induced phosphorylation of 110-kDa subunit and activation of phosphatidylinositol 3-kinase. These results suggest that acetylcholine stimulation translocates RhoA to the membrane by a phosphatidylinositol 3-kinase-dependent mechanism and acetylcholine-induced phospholipase D stimulation is at least partly mediated via phosphatidylinositol 3-kinase, however, protein kinase C appears to activate phospholipase D independent of phosphatidylinositol 3-kinase or RhoA activation in porcine tracheal smooth muscle.
Collapse
Affiliation(s)
- A M Mamoon
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA
| | | | | |
Collapse
|
38
|
Ishizawa M, Ishizuka T, Kajita K, Miura A, Kanoh Y, Kimura M, Yasuda K. Dehydroepiandrosterone (DHEA) stimulates glucose uptake in rat adipocytes: activation of phospholipase D. Comp Biochem Physiol B Biochem Mol Biol 2001; 130:359-64. [PMID: 11567898 DOI: 10.1016/s1096-4959(01)00444-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We examined the effect of dehydroepiandrosterone (DHEA) on glucose uptake and phospholipase D (PLD) activation in rat adipocytes. DHEA (1 microM) provoked a twofold increase in [3H]2-deoxyglucose (DG) uptake for 30 min. Incorporation of [3H]glycerol into diacylglycerol was increased 150% above basal level for 20 min after stimulation with 1 microM DHEA. DHEA increased PLD activity, measured by the incorporation into [3H]phosphatidylethanol in [3H]palmitate labelled rat adipocytes, or by [3H]choline release in [methyl-(3)H]choline labeled rat adipocytes. Our results suggest that DHEA stimulates glucose uptake with activation of PLD in rat adipocytes.
Collapse
Affiliation(s)
- M Ishizawa
- The Third Department of Internal Medicine, Department of General Medicine, Gifu University School of Medicine, Tsukasamachi 40, 500-8705, Gifu, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Bandyopadhyay G, Sajan MP, Kanoh Y, Standaert ML, Quon MJ, Reed BC, Dikic I, Farese RV. Glucose activates protein kinase C-zeta /lambda through proline-rich tyrosine kinase-2, extracellular signal-regulated kinase, and phospholipase D: a novel mechanism for activating glucose transporter translocation. J Biol Chem 2001; 276:35537-45. [PMID: 11463795 DOI: 10.1074/jbc.m106042200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin controls glucose uptake by translocating GLUT4 and other glucose transporters to the plasma membrane in muscle and adipose tissues by a mechanism that appears to require protein kinase C (PKC)-zeta/lambda operating downstream of phosphatidylinositol 3-kinase. In diabetes mellitus, insulin-stimulated glucose uptake is diminished, but with hyperglycemia, uptake is maintained but by uncertain mechanisms. Presently, we found that glucose acutely activated PKC-zeta/lambda in rat adipocytes and rat skeletal muscle preparations by a mechanism that was independent of phosphatidylinositol 3-kinase but, interestingly, dependent on the apparently sequential activation of the dantrolene-sensitive, nonreceptor proline-rich tyrosine kinase-2; components of the extracellular signal-regulated kinase (ERK) pathway, including, GRB2, SOS, RAS, RAF, MEK1 and ERK1/2; and, most interestingly, phospholipase D, thus yielding increases in phosphatidic acid, a known activator of PKC-zeta/lambda. This activation of PKC-zeta/lambda, moreover, appeared to be required for glucose-induced increases in GLUT4 translocation and glucose transport in adipocytes and muscle cells. Our findings suggest the operation of a novel pathway for activating PKC-zeta/lambda and glucose transport.
Collapse
Affiliation(s)
- G Bandyopadhyay
- J. A. Haley Veterans' Hospital Research Service and Department of Internal Medicine, University of South Florida College of Medicine, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kristiansen S, Nielsen JN, Bourgoin S, Klip A, Franco M, Richter EA. GLUT-4 translocation in skeletal muscle studied with a cell-free assay: involvement of phospholipase D. Am J Physiol Endocrinol Metab 2001; 281:E608-18. [PMID: 11500317 DOI: 10.1152/ajpendo.2001.281.3.e608] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
GLUT-4-containing membranes immunoprecipitated from insulin-stimulated rat skeletal muscle produce the phospholipase D (PLD) product phosphatidic acid. In vitro stimulation of PLD in crude membrane with ammonium sulfate (5 mM) resulted in transfer of GLUT-4 (3.0-fold vs. control) as well as transferrin receptor proteins from large to small membrane structures. The in vitro GLUT-4 transfer could be blocked by neomycin (a PLD inhibitor), and neomycin also reduced insulin-stimulated glucose transport in intact incubated soleus muscles. Furthermore, protein kinase B(beta) (PKB(beta)) was found to associate with the GLUT-4 protein and was transferred to small vesicles in response to ammonium sulfate in vitro. Finally, addition of cytosolic proteins, prepared from basal skeletal muscle, and GTP nucleotides to an enriched GLUT-4 membrane fraction resulted in in vitro transfer of GLUT-4 to small membranes (6.8-fold vs. unstimulated control). The cytosol and nucleotide-induced GLUT-4 transfer could be blocked by neomycin and N-ethylmaleimide. In conclusion, we have developed a cell-free assay that demonstrates in vitro GLUT-4 transfer. This transfer may suggest release of GLUT-4-containing vesicles from donor GLUT-4 membranes involving PLD activity and binding of PKB(beta) to GLUT-4.
Collapse
Affiliation(s)
- S Kristiansen
- Copenhagen Muscle Research Center, Department of Human Physiology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
41
|
Lawrence JT, Birnbaum MJ. ADP-ribosylation factor 6 delineates separate pathways used by endothelin 1 and insulin for stimulating glucose uptake in 3T3-L1 adipocytes. Mol Cell Biol 2001; 21:5276-85. [PMID: 11438681 PMCID: PMC87251 DOI: 10.1128/mcb.21.15.5276-5285.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In 3T3-L1 adipocytes, both insulin and endothelin 1 stimulate glucose transport via translocation of the GLUT4 glucose carrier from an intracellular compartment to the cell surface. Yet it remains uncertain as to whether both hormones utilize identical pathways and to what extent each depends on the heterotrimeric G protein Galphaq as an intermediary signaling molecule. In this study, we used a novel inducible system to rapidly and synchronously activate expression of a dominant inhibitory form of ADP-ribosylation factor 6, ARF6(T27N), in 3T3-L1 adipocytes and assessed its effects on insulin- and endothelin-stimulated hexose uptake. Expression of ARF6(T27N) in 3T3-L1 adipocytes was without effect on the ability of insulin to stimulate either 2-deoxyglucose uptake or the translocation of GLUT4 or GLUT1 to the plasma membrane. However, the same ARF6 inhibitory mutant blocked the stimulation of hexose uptake and GLUT4 translocation in response to either endothelin 1 or an activated form of Galphaq, Galphaq(Q209L). These results suggest that endothelin stimulates glucose transport through a pathway that is distinct from that utilized by insulin but is likely to depend on both a heterotrimeric G protein from the Gq family and the small G protein ARF6. These data are consistent with the interpretation that endothelin and insulin stimulate functionally different pools of glucose transporters to be redistributed to the plasma membrane.
Collapse
Affiliation(s)
- J T Lawrence
- Department of Medicine, Howard Hughes Medical Institute, The Cox Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
42
|
Farese RV. Insulin-sensitive phospholipid signaling systems and glucose transport. Update II. Exp Biol Med (Maywood) 2001; 226:283-95. [PMID: 11368419 DOI: 10.1177/153537020122600404] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Insulin provokes rapid changes in phospholipid metabolism and thereby generates biologically active lipids that serve as intracellular signaling factors that regulate glucose transport and glycogen synthesis. These changes include: (i) activation of phosphatidylinositol 3-kinase (PI3K) and production of PIP3; (ii) PIP3-dependent activation of atypical protein kinase Cs (PKCs); (iii) PIP3-dependent activation of PKB; (iv) PI3K-dependent activation of phospholipase D and hydrolysis of phosphatidylcholine with subsequent increases in phosphatidic acid (PA) and diacylglycerol (DAG); (v) PI3K-independent activation of glycerol-3-phosphate acylytansferase and increases in de novo synthesis of PA and DAG; and (vi) activation of DAG-sensitive PKCs. Recent findings suggest that atypical PKCs and PKB serve as important positive regulators of insulin-stimulated glucose metabolism, whereas mechanisms that result in the activation of DAG-sensitive PKCs serve mainly as negative regulators of insulin signaling through PI3K. Atypical PKCs and PKB are rapidly activated by insulin in adipocytes, liver, skeletal muscles, and other cell types by a mechanism requiring PI3K and its downstream effector, 3-phosphoinositide-dependent protein kinase-1 (PDK-1), which, in conjunction with PIP3, phosphorylates critical threonine residues in the activation loops of atypical PKCs and PKB. PIP3 also promotes increases in autophosphorylation and allosteric activation of atypical PKCs. Atypical PKCs and perhaps PKB appear to be required for insulin-induced translocation of the GLUT 4 glucose transporter to the plasma membrane and subsequent glucose transport. PKB also appears to be the major regulator of glycogen synthase. Together, atypical PKCs and PKB serve as a potent, integrated PI3K/PDK-1-directed signaling system that is used by insulin to regulate glucose metabolism.
Collapse
Affiliation(s)
- R V Farese
- JA Haley Veterans' Hospital Research Service and Department of Internal Medicine, University of South Florida College of Medicine, Tampa 33612, USA.
| |
Collapse
|
43
|
Hutchinson J, Jin J, Cardiff RD, Woodgett JR, Muller WJ. Activation of Akt (protein kinase B) in mammary epithelium provides a critical cell survival signal required for tumor progression. Mol Cell Biol 2001; 21:2203-12. [PMID: 11238953 PMCID: PMC86854 DOI: 10.1128/mcb.21.6.2203-2212.2001] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of Akt by the phosphatidylinositol 3'-OH kinase (PI3K) results in the inhibition of proapoptotic signals and the promotion of survival signals (L. P. Kane et al., Curr. Biol. 9:601-604, 1999; G. J. Kops et al., Nature 398:630-634, 1999). Evidence supporting the importance of the PI3K/Akt signaling pathway in tumorigenesis stems from experiments with transgenic mice bearing polyomavirus middle T antigen under the control of the mouse mammary tumor virus long terminal repeat promoter. Mammary epithelium-specific expression of polyomavirus middle T antigen results in the rapid development of multifocal metastatic mammary tumors, whereas transgenic mice expressing a mutant middle T antigen decoupled from the phosphatidylinositol 3'-OH kinase (MTY315/322F) develop extensive mammary gland hyperplasias that are highly apoptotic. To directly assess the role of Akt in mammary epithelial development and tumorigenesis, we generated transgenic mice expressing constitutively active Akt (HAPKB308D473D or Akt-DD). Although expression of Akt-DD interferes with normal mammary gland involution, tumors were not observed in these strains. However, coexpression of Akt-DD with MTY315/322F resulted in a dramatic acceleration of mammary tumorigenesis correlated with reduced apoptotic cell death. Furthermore, coexpression of Akt-DD with MTY315/322F resulted in phosphorylation of the FKHR forkhead transcription factor and translational upregulation of cyclin D1 levels. Importantly, we did not observe an associated restoration of wild-type metastasis levels in the bitransgenic strain. Taken together these observations indicate that activation of Akt can contribute to tumor progression by providing an important cell survival signal but does not promote metastatic progression.
Collapse
Affiliation(s)
- J Hutchinson
- MOBIX, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
44
|
Pyne S, Pyne N. Sphingosine 1-phosphate signalling via the endothelial differentiation gene family of G-protein-coupled receptors. Pharmacol Ther 2000; 88:115-31. [PMID: 11150592 DOI: 10.1016/s0163-7258(00)00084-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sphingosine 1-phosphate (S1P) is stored in and released from platelets in response to cell activation. However, recent studies show that it is also released from a number of cell types, where it can function as a paracrine/autocrine signal to regulate cell proliferation, differentiation, survival, and motility. This review discusses the role of S1P in cellular regulation, both at the molecular level and in terms of health and disease. The main biochemical routes for S1P synthesis (sphingosine kinase) and degradation (S1P lyase and S1P phosphatase) are described. The major focus is on the ability of S1P to bind to a novel family of G-protein-coupled receptors (endothelial differentiation gene [EDG]-1, -3, -5, -6, and -8) to elicit signal transduction (via G(q)-, G(i)-, G(12)-, G(13)-, and Rho-dependent routes). Effector pathways regulated by S1P are divergent, such as extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, phospholipases C and D, adenylyl cyclase, and focal adhesion kinase, and occur in multiple cell types, such as immune cells, neurones, smooth muscle, etc. This provides a molecular basis for the ability of S1P to act as a pleiotropic bioactive lipid with an important role in cellular regulation. We also give an account of the expanding role for S1P in health and disease; in particular, with regard to its role in atherosclerosis, angiogenesis, cancer, and inflammation. Finally, we describe future directions for S1P research and novel approaches whereby S1P signalling can be manipulated for therapeutic intervention in disease.
Collapse
Affiliation(s)
- S Pyne
- Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor Street, G4 ONR Scotland, Glasgow, UK.
| | | |
Collapse
|
45
|
Divecha N, Roefs M, Halstead JR, D'Andrea S, Fernandez-Borga M, Oomen L, Saqib KM, Wakelam MJ, D'Santos C. Interaction of the type Ialpha PIPkinase with phospholipase D: a role for the local generation of phosphatidylinositol 4, 5-bisphosphate in the regulation of PLD2 activity. EMBO J 2000; 19:5440-9. [PMID: 11032811 PMCID: PMC314009 DOI: 10.1093/emboj/19.20.5440] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2000] [Revised: 08/22/2000] [Accepted: 08/22/2000] [Indexed: 11/14/2022] Open
Abstract
Phosphoinositides are localized in various intracellular compartments and can regulate a number of intracellular functions, such as cytoskeletal dynamics and membrane trafficking. Phospholipase Ds (PLDs) are regulated enzymes that hydrolyse phosphatidylcholine (PtdCho) to generate the putative second messenger phosphatidic acid (PtdOH). In vitro, PLDs have an absolute requirement for higher phosphorylated inositides, such as phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)]. Whether this lipid is able to regulate the activity of PLD in vivo is contentious. To examine this hypothesis we studied the relationship between PLD and an enzyme critical for the intracellular synthesis of PtdIns(4,5)P(2): phosphatidylinositol 4-phosphate 5-kinase alpha (Type Ialpha PIPkinase). We find that both PLD1 and PLD2 interact with the Type Ialpha PIPkinase and that PLD2 activity in vivo can be regulated solely by the expression of this lipid kinase. Moreover, PLD2 is able to recruit the Type Ialpha PIPkinase to its intracellular location. We show that the physiological requirement of PLD enzymes for PtdIns(4,5)P(2) is critical and that PLD2 activity can be regulated solely by the levels of this key intracellular lipid.
Collapse
Affiliation(s)
- N Divecha
- Department of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Rho family GTPases control a large variety of biological processes. Cycling of Rho proteins between the GDP-bound and the GTP-bound state is controlled by several classes of regulatory proteins. In this review, we discuss the signal-transduction mechanisms that control these regulators. We will emphasize the subcellular localization of Rho GTPases and their regulatory proteins and the role of GTP hydrolysis in signal transmission.
Collapse
Affiliation(s)
- M Symons
- Picower Institute for Molecular Research, 350 Community Drive, Manhasset, NY 11030, USA.
| | | |
Collapse
|
47
|
Mori M, Tsushima H. Activation of Rho signaling contributes to lysophosphatidic acid-induced contraction of intact ileal smooth muscle of guinea-pig. Can J Physiol Pharmacol 2000. [DOI: 10.1139/y00-050] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To elucidate the possible role of Rho A/Rho-kinase on lysophosphatidic acid (LPA)-induced contraction in intact guinea-pig ileal smooth muscle, we examined effects of pretreatment with a specific inhibitor of Rho-kinase (Y-27632) on the LPA-induced contraction and MLC20 phosphorylation. In addition, we investigated whether LPA actually elicits an activation of Rho A by studying subcellular distribution of Rho A in unstimulated and stimulated smooth muscles by LPA. LPA induced a less intense, but sustained, contraction compared with ACh, and was accompanied by significant increases in MLC20 phosphorylation. The effects of LPA on tension and MLC20 phosphorylation were inhibited by Y-27632. The ACh-induced contraction, but not increases in MLC20 phosphorylation, was partially inhibited by Y-27632. High K+-induced contraction was unaffected by the inhibitor. LPA stimulated translocation of Rho A from the cytosol to the membrane fraction of the muscle. Translocation of Rho A was also induced by ACh and high K+. These results suggest that LPA-induced contraction of intact ileal smooth muscle is dominated through activation of Rho A and Rho-kinase and subsequent increases in MLC20 phosphorylation.Key words: lysophosphatidic acid, Rho, Rho-kinase, ileal smooth muscle.
Collapse
|
48
|
Abstract
Sphingosine 1-phosphate is formed in cells in response to diverse stimuli, including growth factors, cytokines, G-protein-coupled receptor agonists, antigen, etc. Its production is catalysed by sphingosine kinase, while degradation is either via cleavage to produce palmitaldehyde and phosphoethanolamine or by dephosphorylation. In this review we discuss the most recent advances in our understanding of the role of the enzymes involved in metabolism of this lysolipid. Sphingosine 1-phosphate can also bind to members of the endothelial differentiation gene (EDG) G-protein-coupled receptor family [namely EDG1, EDG3, EDG5 (also known as H218 or AGR16), EDG6 and EDG8] to elicit biological responses. These receptors are coupled differentially via G(i), G(q), G(12/13) and Rho to multiple effector systems, including adenylate cyclase, phospholipases C and D, extracellular-signal-regulated kinase, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase and non-receptor tyrosine kinases. These signalling pathways are linked to transcription factor activation, cytoskeletal proteins, adhesion molecule expression, caspase activities, etc. Therefore sphingosine 1-phosphate can affect diverse biological responses, including mitogenesis, differentiation, migration and apoptosis, via receptor-dependent mechanisms. Additionally, sphingosine 1-phosphate has been proposed to play an intracellular role, for example in Ca(2+) mobilization, activation of non-receptor tyrosine kinases, inhibition of caspases, etc. We review the evidence for both intracellular and extracellular actions, and extensively discuss future approaches that will ultimately resolve the question of dual action. Certainly, sphingosine 1-phosphate will prove to be unique if it elicits both extra- and intra-cellular actions. Finally, we review the evidence that implicates sphingosine 1-phosphate in pathophysiological disease states, such as cancer, angiogenesis and inflammation. Thus there is a need for the development of new therapeutic compounds, such as receptor antagonists. However, identification of the most suitable targets for drug intervention requires a full understanding of the signalling and action profile of this lysosphingolipid. This article describes where the research field is in relation to achieving this aim.
Collapse
Affiliation(s)
- S Pyne
- Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 ONR, Scotland, UK.
| | | |
Collapse
|
49
|
Martin ME, Hidalgo J, Rosa JL, Crottet P, Velasco A. Effect of protein kinase A activity on the association of ADP-ribosylation factor 1 to golgi membranes. J Biol Chem 2000; 275:19050-9. [PMID: 10858454 DOI: 10.1074/jbc.275.25.19050] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small GTP-binding protein ADP-ribosylation factor 1 (ARF1) is an essential component of the molecular machinery that catalyzes the formation of membrane-bound transport intermediates. By using an in vitro assay that reproduces recruitment of cytosolic proteins onto purified, high salt-washed Golgi membranes, we have analyzed the role of cAMP-dependent protein kinase A (PKA) on ARF1 incorporation. Addition to this assay of either pure catalytic subunits of PKA (C-PKA) or cAMP increased ARF1 binding. By contrast, ARF1 association was inhibited following C-PKA inactivation with either PKA inhibitory peptide or RIIalpha as well as after cytosol depletion of C-PKA. C-PKA also stimulated recruitment and activation of a recombinant form of human ARF1 in the absence of additional cytosolic components. The binding step could be dissociated from the activation reaction and found to be independent of guanine nucleotides and saturable. This step was stimulated by C-PKA in an ATP-dependent manner. Dephosphorylated Golgi membranes exhibited a decreased ability to recruit ARF1, and this effect was reverted by addition of C-PKA. Following an increase in the intracellular level of cAMP, ARF proteins redistributed from cytosol to the perinuclear Golgi region of intact cells. Collectively, the results show that PKA exerts a key regulatory role in the recruitment of ARF1 onto Golgi membranes. In contrast, PKA modulators did not affect recruitment of beta-COP onto Golgi membranes containing prebound ARF1.
Collapse
Affiliation(s)
- M E Martin
- Department of Cell Biology, University of Seville, 41012 Seville, Spain
| | | | | | | | | |
Collapse
|
50
|
Bychenok S, Foster DA. A low molecular weight factor from dividing cells activates phospholipase D in caveolin-enriched membrane microdomains. Arch Biochem Biophys 2000; 377:139-45. [PMID: 10775453 DOI: 10.1006/abbi.2000.1766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholipase D (PLD) activity is elevated in Ras-transformed NIH 3T3 cells. This difference in PLD activity between Ras-transformed and nontransformed parental cells disappeared in isolated membranes from these cells. In reconstitution experiments, heat-denatured cytosolic fractions from Ras-transformed, but not parental, NIH 3T3 cells elevated PLD activity in isolated membranes. This heat-resistant PLD-stimulating activity from the Ras-transformed cells was sensitive to proteases and passed through a 1-kDa MW cutoff membrane, suggesting that the factor is a peptide of less than 10 amino acids. The ability of this PLD-stimulating factor, designated PLD-SF, to elevate PLD activity in isolated membranes was restricted to the caveolin-enriched light membranes, where many signaling molecules are localized. PLD-SF was also elevated in v-Src- and v-Raf-transformed cells and in serum-stimulated NIH 3T3 cells. PLD-SF was detected in a variety of rat tissues but was highest in testes, where a large percentage of cells are dividing. A similar low molecular weight PLD-stimulating activity was found in actively dividing, but not stationary yeast, cells. The data here provide evidence for a highly conserved PLD-stimulating peptide that is elevated in response to mitogenic stimuli.
Collapse
Affiliation(s)
- S Bychenok
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10021, USA
| | | |
Collapse
|