1
|
Cantonero C, Sánchez-Collado J, Lopez JJ, Salido GM, Rosado JA, Redondo PC. Arachidonic Acid Attenuates Cell Proliferation, Migration and Viability by a Mechanism Independent on Calcium Entry. Int J Mol Sci 2020; 21:3315. [PMID: 32392840 PMCID: PMC7247542 DOI: 10.3390/ijms21093315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Arachidonic acid (AA) is a phospholipase A2 metabolite that has been reported to mediate a plethora of cellular mechanisms involved in healthy and pathological states such as platelet aggregation, lymphocyte activation, and tissue inflammation. AA has been described to activate Ca2+ entry through the arachidonate-regulated Ca2+-selective channels (ARC channels). Here, the analysis of the changes in the intracellular Ca2+ homeostasis revealed that, despite MDA-MB-231 cells expressing the ARC channel components Orai1, Orai3, and STIM1, AA does not evoke Ca2+ entry in these cells. We observed that AA evokes Ca2+ entry in MDA-MB-231 cells transiently expressing ARC channels. Nevertheless, MDA-MB-231 cell treatment with AA reduces cell proliferation and migration while inducing cell death through apoptosis. The latter mostly likely occurs via mitochondria membrane depolarization and the activation of caspases-3, -8, and -9. Altogether, our results indicate that AA exerts anti-tumoral effects on MDA-MB-231 cells, without having any effect on non-tumoral breast epithelial cells, by a mechanism that is independent on the activation of Ca2+ influx via ARC channels.
Collapse
|
2
|
Trappanese DM, Sivilich S, Ets HK, Kako F, Autieri MV, Moreland RS. Regulation of mitogen-activated protein kinase by protein kinase C and mitogen-activated protein kinase phosphatase-1 in vascular smooth muscle. Am J Physiol Cell Physiol 2016; 310:C921-30. [PMID: 27053523 DOI: 10.1152/ajpcell.00311.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/04/2016] [Indexed: 01/08/2023]
Abstract
Vascular smooth muscle contraction is primarily regulated by phosphorylation of myosin light chain. There are also modulatory pathways that control the final level of force development. We tested the hypothesis that protein kinase C (PKC) and mitogen-activated protein (MAP) kinase modulate vascular smooth muscle activity via effects on MAP kinase phosphatase-1 (MKP-1). Swine carotid arteries were mounted for isometric force recording and subjected to histamine stimulation in the presence and absence of inhibitors of PKC [bisindolylmaleimide-1 (Bis)], MAP kinase kinase (MEK) (U0126), and MKP-1 (sanguinarine) and flash frozen for measurement of MAP kinase, PKC-potentiated myosin phosphatase inhibitor 17 (CPI-17), and caldesmon phosphorylation levels. CPI-17 was phosphorylated in response to histamine and was inhibited in the presence of Bis. Caldesmon phosphorylation levels increased in response to histamine stimulation and were decreased in response to MEK inhibition but were not affected by the addition of Bis. Inhibition of PKC significantly increased p42 MAP kinase, but not p44 MAP kinase. Inhibition of MEK with U0126 inhibited both p42 and p44 MAP kinase activity. Inhibition of MKP-1 with sanguinarine blocked the Bis-dependent increase of MAP kinase activity. Sanguinarine alone increased MAP kinase activity due to its effects on MKP-1. Sanguinarine increased MKP-1 phosphorylation, which was inhibited by inhibition of MAP kinase. This suggests that MAP kinase has a negative feedback role in inhibiting MKP-1 activity. Therefore, PKC catalyzes MKP-1 phosphorylation, which is reversed by MAP kinase. Thus the fine tuning of vascular contraction is due to the concerted effort of PKC, MAP kinase, and MKP-1.
Collapse
Affiliation(s)
- Danielle M Trappanese
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania; Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania; and
| | - Sarah Sivilich
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Hillevi K Ets
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Farah Kako
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania; and
| | - Michael V Autieri
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania; and
| | - Robert S Moreland
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Ok SH, Kwon SC, Yeol Han J, Yu J, Shin IW, Lee HK, Chung YK, Choi MJ, Sohn JT. Mepivacaine-induced contraction involves increased calcium sensitization mediated via Rho kinase and protein kinase C in endothelium-denuded rat aorta. Eur J Pharmacol 2014; 723:185-93. [DOI: 10.1016/j.ejphar.2013.11.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/27/2013] [Accepted: 11/23/2013] [Indexed: 12/27/2022]
|
4
|
Miousse IR, Sharma N, Blackburn M, Vantrease J, Gomez-Acevedo H, Hennings L, Shankar K, Cleves MA, Badger TM, Ronis MJJ. Feeding soy protein isolate and treatment with estradiol have different effects on mammary gland morphology and gene expression in weanling male and female rats. Physiol Genomics 2013; 45:1072-83. [DOI: 10.1152/physiolgenomics.00096.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Isoflavones are phytochemical components of soy diets that bind weakly to estrogen receptors (ERs). To study potential estrogen-like actions of soy in the mammary gland during early development, we fed weanling male and female Sprague-Dawley rats a semipurified diet with casein as the sole protein source from postnatal day 21 to 33, the same diet substituting soy protein isolate (SPI) for casein, or the casein diet supplemented with estradiol (E2) at 10 μg/kg/day. In contrast to E2, the SPI diet induced no significant change in mammary morphology. In males, there were 34 genes for which expression was changed ≥2-fold in the SPI group vs. 509 changed significantly by E2, and 8 vs. 174 genes in females. Nearly half of SPI-responsive genes in males were also E2 responsive, including adipogenic genes. Serum insulin was found to be decreased by the SPI diet in males. SPI and E2 both downregulated the expression of ERα ( Esr1) in males and females, and ERβ ( Esr2) only in males. Chromatin immunoprecipitation revealed an increased binding of ERα to the promoter of the progesterone receptor ( Pgr) and Esr1 in both SPI- and E2-treated males compared with the casein group but differential recruitment of ERβ. ER promoter binding did not correlate with differences in Pgr mRNA expression. This suggests that SPI fails to recruit appropriate co-activators at E2-inducible genes. Our results indicate that SPI behaves like a selective estrogen receptor modulator rather than a weak estrogen in the developing mammary gland.
Collapse
Affiliation(s)
- Isabelle R. Miousse
- Arkansas Children's Nutrition Center, Little Rock Arkansas
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Neha Sharma
- Arkansas Children's Nutrition Center, Little Rock Arkansas
| | - Michael Blackburn
- Arkansas Children's Nutrition Center, Little Rock Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Horacio Gomez-Acevedo
- Arkansas Children's Nutrition Center, Little Rock Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Leah Hennings
- Arkansas Children's Nutrition Center, Little Rock Arkansas
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and
| | - Kartik Shankar
- Arkansas Children's Nutrition Center, Little Rock Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mario A. Cleves
- Arkansas Children's Nutrition Center, Little Rock Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Thomas M. Badger
- Arkansas Children's Nutrition Center, Little Rock Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Martin J. J. Ronis
- Arkansas Children's Nutrition Center, Little Rock Arkansas
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
5
|
Lee HM, Ok SH, Sung HJ, Eun SY, Kim HJ, Lee SH, Kang S, Shin IW, Lee HK, Chung YK, Choi MJ, Bae SI, Sohn JT. Mepivacaine-induced contraction involves phosphorylation of extracellular signal-regulated kinase through activation of the lipoxygenase pathway in isolated rat aortic smooth muscle. Can J Physiol Pharmacol 2013; 91:285-94. [DOI: 10.1139/cjpp-2012-0197] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mepivacaine is an aminoamide local anesthetic with an intermediate duration that intrinsically produces vasoconstriction both in vivo and in vitro. This study investigated the arachidonic acid metabolic pathways involved in mepivacaine-induced contraction, and elucidated the associated cellular mechanism with a particular focus on extracellular signal-regulated kinase (ERK) in endothelium-denuded rat aorta. Isolated rat thoracic aortic rings were suspended for isometric tension recording. Cumulative mepivacaine concentration–response curves were generated in the presence or absence of the following inhibitors: quinacrine dihydrochloride, nordihydroguaiaretic acid, phenidone, AA-861, indomethacin, NS-398, SC-560, fluconazole, PD 98059, and verapamil. Mepivacaine-induced ERK phosphorylation, 5-lipoxygenase (5-LOX) expression, and cyclooxygenase (COX)-2 expression in rat aortic smooth muscle cells were detected by Western blot analysis in the presence or absence of inhibitors. Mepivacaine produced tonic contraction in isolated endothelium-denuded rat aorta. Quinacrine dihydrochloride, nordihydroguaiaretic acid, phenidone, AA-861, NS-398, PD 98059, and verapamil attenuated mepivacaine-induced contraction in a concentration-dependent manner. However, fluconazole had no effect on mepivacaine-induced contraction. PD 98059, quinacrine dihydrochloride, nordihydroguaiaretic acid, AA-861, phenidone, and indomethacin attenuated mepivacaine-induced ERK phosphorylation. Mepivacaine upregulated 5-LOX and COX-2 expression. These results suggest that mepivacaine-induced contraction involves ERK activation, which is primarily mediated by the 5-LOX pathway and in part by the COX-2 pathway.
Collapse
Affiliation(s)
- Hyo Min Lee
- Department of Anesthesiology and Pain Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Seong-Ho Ok
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju 660-772, Republic of Korea
| | - Hui-Jin Sung
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju 660-772, Republic of Korea
| | - So Young Eun
- Department of Pharmacology, Gyeongsang National University School of Medicine, Jinju 660-772, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, Gyeongsang National University School of Medicine, Jinju 660-772, Republic of Korea
| | - Soo Hee Lee
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju 660-772, Republic of Korea
| | - Sebin Kang
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju 660-772, Republic of Korea
| | - Il-Woo Shin
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju 660-772, Republic of Korea
| | - Heon Keun Lee
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju 660-772, Republic of Korea
| | - Young-Kyun Chung
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju 660-772, Republic of Korea
| | - Mun-Jeoung Choi
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University Hospital, Jinju, Korea
| | - Sung Il Bae
- Department of Anesthesiology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Ju-Tae Sohn
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju 660-772, Republic of Korea
| |
Collapse
|
6
|
Effect of HSP65 on the expression of adhesion molecules in mice heart endothelial cells. Inflammation 2012; 35:1049-57. [PMID: 22160869 DOI: 10.1007/s10753-011-9410-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
This study aims to research the effect of HSP65 on the expression of adhesion molecules in activated mice heart endothelial cells (MHECs), which were from myocardial tissue of newborn animals. We used different concentrations of LPS as potent inducers to stimulate MHECs, adhesion molecule expression in vitro, including intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), E-, and P-selectins, then compared the mRNA and protein levels of adhesion molecules expression with or without HSP65 treatment at different levels. The optimal concentration of LPS to induce MHECs adhesion molecule expression is 100 ng/ml; HSP65 treatment significantly reduced the mRNA and protein levels of MHECs' ICAM-1, VCAM-1, E-, and P-selectins expression (p < 0.05), and the optimal concentration of HSP65 in inhibiting MHECs activation is 0.8 ng. HSP65 has the inhibitory effect on adhesion molecules expression in activated MHECs.
Collapse
|
7
|
Wancket LM, Frazier WJ, Liu Y. Mitogen-activated protein kinase phosphatase (MKP)-1 in immunology, physiology, and disease. Life Sci 2012; 90:237-48. [PMID: 22197448 PMCID: PMC3465723 DOI: 10.1016/j.lfs.2011.11.017] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 11/18/2011] [Accepted: 11/30/2011] [Indexed: 11/16/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are key regulators of cellular physiology and immune responses, and abnormalities in MAPKs are implicated in many diseases. MAPKs are activated by MAPK kinases through phosphorylation of the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr domain, where Xaa represents amino acid residues characteristic of distinct MAPK subfamilies. Since MAPKs play a crucial role in a variety of cellular processes, a delicate regulatory network has evolved to control their activities. Over the past two decades, a group of dual specificity MAPK phosphatases (MKPs) has been identified that deactivates MAPKs. Since MAPKs can enhance MKP activities, MKPs are considered as an important feedback control mechanism that limits the MAPK cascades. This review outlines the role of MKP-1, a prototypical MKP family member, in physiology and disease. We will first discuss the basic biochemistry and regulation of MKP-1. Next, we will present the current consensus on the immunological and physiological functions of MKP-1 in infectious, inflammatory, metabolic, and nervous system diseases as revealed by studies using animal models. We will also discuss the emerging evidence implicating MKP-1 in human disorders. Finally, we will conclude with a discussion of the potential for pharmacomodulation of MKP-1 expression.
Collapse
Affiliation(s)
- Lyn M. Wancket
- Department of Veterinary Bioscience, The Ohio State University College of Veterinary Medicine, Columbus, OH 43221
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205
| | - W. Joshua Frazier
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205
| | - Yusen Liu
- Department of Veterinary Bioscience, The Ohio State University College of Veterinary Medicine, Columbus, OH 43221
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205
| |
Collapse
|
8
|
Blaukovitch CI, Pugh R, Gilotti AC, Kanyi D, Lowe-Krentz LJ. Heparin treatment of vascular smooth muscle cells results in the synthesis of the dual-specificity phosphatase MKP-1. J Cell Biochem 2010; 110:382-91. [PMID: 20235148 DOI: 10.1002/jcb.22543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The ability of heparin to block proliferation of vascular smooth muscle cells has been well documented. It is clear that heparin treatment can decrease the level of ERK activity in vascular smooth muscle cells that are sensitive to heparin. In this study, the mechanism by which heparin induces decreases in ERK activity was investigated by evaluating the dual specificity phosphatase, MKP-1, in heparin treated cells. Heparin induced MKP-1 synthesis in a time and concentration dependent manner. The time-course of MKP-1 expression correlated with the decrease in ERK activity. Over the same time frame, heparin treatment did not result in decreases in MEK-1 activity which could have, along with constitutive phosphatase activity, accounted for the decrease in ERK activity. Antibodies against a heparin receptor also induced the synthesis of MKP-1 along with decreasing ERK activity. Blocking either phosphatase activity or synthesis also blocked heparin-induced decreases in ERK activity. Consistent with a role for MKP-1, a nuclear phosphatase, heparin treated cells exhibited decreases in nuclear ERK activity more rapidly than cells not treated with heparin. The data support MKP-1 as a heparin-induced phosphatase that dephosphorylates ERK, decreasing ERK activity, in vascular smooth muscle cells.
Collapse
MESH Headings
- Animals
- Antibodies/immunology
- Blotting, Western
- Cells, Cultured
- Dual Specificity Phosphatase 1/biosynthesis
- Dual Specificity Phosphatase 1/metabolism
- Enzyme Activation
- Heparin/pharmacology
- Microscopy, Fluorescence
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Receptors, Cell Surface/immunology
- Swine
Collapse
|
9
|
Lekawanvijit S, Chattipakorn N. Iron overload thalassemic cardiomyopathy: iron status assessment and mechanisms of mechanical and electrical disturbance due to iron toxicity. Can J Cardiol 2009; 25:213-8. [PMID: 19340344 DOI: 10.1016/s0828-282x(09)70064-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Patients with thalassemia major have inevitably suffered from complications of the disease, due to iron overload. Among such complications, cardiomyopathy is the leading cause of morbidity and mortality (63.6% to 71%). The major causes of death in this group of patients are congestive heart failure and fatal cardiac tachyarrhythmias leading to sudden cardiac death. The free radical-mediated pathway is the principal mechanism of iron toxicity. The consequent series of events caused by iron overload lead to catastrophic cardiac effects. The authors review the electrophysiological and molecular mechanisms, pathophysiology and correlated clinical insight of heart failure and arrhythmias in iron overload thalassemic cardiomyopathy.
Collapse
|
10
|
Fan WJ, Genade S, Genis A, Huisamen B, Lochner A. Dexamethasone-induced cardioprotection: a role for the phosphatase MKP-1? Life Sci 2009; 84:838-46. [PMID: 19361533 DOI: 10.1016/j.lfs.2009.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 03/24/2009] [Accepted: 03/27/2009] [Indexed: 10/20/2022]
Abstract
AIMS Previous studies suggested that p38 MAPK activation during sustained myocardial ischaemia and reperfusion was harmful. We hypothesize that attenuation of p38MAPK activity via dephosphorylation by the dual-specificity phosphatase MKP-1 should be protective against ischaemia/reperfusion injury. Since the glucocorticoid, dexamethasone, induces the expression of MKP-1, the aim of this study was to determine whether upregulation of this phosphatase by dexamethasone protects the heart against ischaemia/reperfusion injury. MAIN METHODS Male Wistar rats were treated with dexamethasone (3 mg/kg/day ip) for 10 days, before removal of the hearts for Western blot (ip Dex-P) or perfusion in the working mode (ip Dex+P). Hearts were subjected to 20 min global or 35 min regional ischaemia (36.5 degrees C) and 30 or 120 min reperfusion. In a separate series, dexamethasone (1 microM) was added to the perfusate for 10 min (Pre+Dex) before or after (Rep+Dex) ischaemia. KEY FINDINGS Dexamethasone, administered intraperitoneally or added directly to the perfusate, significantly improved post-ischaemic functional recovery and reduced infarct size compared to untreated controls (p<0.05). These were associated with enhanced up-regulation of MKP-1 protein expression (arbitrary units (mean+/-SD): Untreated: 1; ip Dex-P: 2.59+/-0.22; ip Dex+P: 1.51+/-0.22; Pre+Dex: 4.11+/-0.73, Rep+15'Dex: 1.51+/-0.14; untreated vs. all groups, p<0.05) and attenuation of p38 MAPK activation (p<0.05) in all dexamethasone-treated groups, except for Rep+10'Dex. ERK and PKB/Akt activation were unchanged. SIGNIFICANCE Dexamethasone-induced cardioprotection was associated with upregulation of the phosphatase MKP-1 and inactivation of pro-apoptotic p38 MAPK.
Collapse
Affiliation(s)
- W-J Fan
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Health Sciences, University of Stellenbosch, South Africa
| | | | | | | | | |
Collapse
|
11
|
Boutros T, Chevet E, Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev 2008; 60:261-310. [PMID: 18922965 DOI: 10.1124/pr.107.00106] [Citation(s) in RCA: 438] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mitogen-activated protein kinase dual-specificity phosphatase-1 (also called MKP-1, DUSP1, ERP, CL100, HVH1, PTPN10, and 3CH134) is a member of the threonine-tyrosine dual-specificity phosphatases, one of more than 100 protein tyrosine phosphatases. It was first identified approximately 20 years ago, and since that time extensive investigations into both mkp-1 mRNA and protein regulation and function in different cells, tissues, and organs have been conducted. However, no general review on the topic of MKP-1 exists. As the subject matter pertaining to MKP-1 encompasses many branches of the biomedical field, we focus on the role of this protein in cancer development and progression, highlighting the potential role of the mitogen-activated protein kinase (MAPK) family. Section II of this article elucidates the MAPK family cross-talk. Section III reviews the structure of the mkp-1 encoding gene, and the known mechanisms regulating the expression and activity of the protein. Section IV is an overview of the MAPK-specific dual-specificity phosphatases and their role in cancer. In sections V and VI, mkp-1 mRNA and protein are examined in relation to cancer biology, therapeutics, and clinical studies, including a discussion of the potential role of the MAPK family. We conclude by proposing an integrated scheme for MKP-1 and MAPK in cancer.
Collapse
Affiliation(s)
- Tarek Boutros
- Department of Surgery, Royal Victoria Hospital, McGill University, 687 Pine Ave. W., Montreal, QC H3A1A1, Canada.
| | | | | |
Collapse
|
12
|
Senogles SE. D2 dopamine receptor-mediated antiproliferation in a small cell lung cancer cell line, NCI-H69. Anticancer Drugs 2007; 18:801-7. [PMID: 17581302 DOI: 10.1097/cad.0b013e3280b10d36] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The D2 dopamine receptor agonist bromocriptine has been used clinically for reducing tumor mass of pituitary adenomas arising from lactotroph origins. As well, bromocriptine has been shown to have an antiproliferative effect on primary lactotrophs and lactotroph-derived cell lines. The presence of D2 dopamine-like receptors on NCI-H69 cells was previously established by the use of [(125)I]iodosulpride binding and has been confirmed in this study by use of reverse transcription PCR with receptor-specific primers. The reverse transcription PCR analysis of NCI-H69 cells demonstrates that both the D2s and D2l are expressed in NCI-H69 cells, with D2s having the higher relative expression. The activation of the D2R results in an inhibition of growth of NCI-H69 cells as assessed by the incorporation of [(3)H]thymidine; a process not sensitive to pertussis toxin. In NCI-H69 cells, the D2 dopamine-like receptor is coupled to the inhibition of forskolin-stimulated cAMP accumulation and to the stimulation of phospholipase D. The receptor-mediated inhibition of cAMP accumulation is ablated by overnight treatment with pertussis toxin but the stimulation of phospholipase D mediated by dopaminergic agonists is not. These data suggest that the phospholipase D pathway is responsible for the antiproliferative effects of D2 dopamine-like receptors agonists in small cell lung cancer cells. In support of this hypothesis, the inhibition of [(3)H]thymidine incorporation mediated by dopaminergic agonists was shown to be sensitive to the presence of ethanol. Taken together, these data suggest that the D2 dopamine-like receptor activates phospholipase D, which ultimately leads to an inhibition of growth of this small cell lung cancer cell line.
Collapse
Affiliation(s)
- Susan E Senogles
- Department of Molecular Sciences, The University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163, USA.
| |
Collapse
|
13
|
Tephly LA, Carter AB. Differential expression and oxidation of MKP-1 modulates TNF-alpha gene expression. Am J Respir Cell Mol Biol 2007; 37:366-74. [PMID: 17507666 DOI: 10.1165/rcmb.2006-0268oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Monocytic cells are integral in the pathogenesis of inflammatory disorders. We have shown previously that asbestos-induced p38 mitogen-activated protein (MAP) kinase activation and TNF-alpha expression are mediated by H(2)O(2) in blood monocytes. Due to the high expression and activity of catalase and glutathione peroxidase, normal alveolar macrophages do not respond in a manner similar to that of blood monocytes. Since kinase activity is tightly regulated by phosphatases, we hypothesized that the dual specificity phosphatase MAP kinase phosphatase (MKP)-1 regulates p38 activity and TNF-alpha production in alveolar macrophages due to insufficient H(2)O(2) generation in response to asbestos. We found that MKP-1 was highly expressed in alveolar macrophages, while blood monocytes had minimal expression. Inhibition of expression and activity of MKP-1 or overexpression of a catalytic mutant MKP-1 recovered p38 activity in alveolar macrophages. We questioned whether MKP-1 oxidation played a role dictating the contrasting responses of these cells to asbestos exposure, and found that overexpressed wild-type MKP-1 in monocytes was oxidized, while the mutant MKP-1 remained in the reduced form. Monocytes overexpressing either catalase or wild-type MKP-1 had decreased p38 activation and TNF-alpha production, respectively. In addition, TNF-alpha gene expression was regained in alveolar macrophages overexpressing the catalytic mutant MKP-1. These data suggest that MKP-1, through increased expression and lack of oxidation, modulates the inflammatory response in alveolar macrophages exposed to asbestos.
Collapse
Affiliation(s)
- Linda A Tephly
- Department of Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
| | | |
Collapse
|
14
|
Block K, Ricono JM, Lee DY, Bhandari B, Choudhury GG, Abboud HE, Gorin Y. Arachidonic acid-dependent activation of a p22(phox)-based NAD(P)H oxidase mediates angiotensin II-induced mesangial cell protein synthesis and fibronectin expression via Akt/PKB. Antioxid Redox Signal 2006; 8:1497-508. [PMID: 16987006 DOI: 10.1089/ars.2006.8.1497] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Angiotensin II (Ang II) induces protein synthesis and hypertrophy through arachidonic acid (AA)- and redoxdependent activation of the serine-threonine kinase Akt/PKB in mesangial cells (MCs). The role of NAD(P)H oxidase component p22( phox ) was explored in this signaling pathway and in Ang II-induced expression of the extracellular matrix protein fibronectin. Ang II causes activation of Akt/PKB and induces fibronectin protein expression, effects abrogated by phospholipase A(2) inhibition and mimicked by AA. Ang II and AAalso elicited an increase in fibronectin expression that was reduced with a dominant negative mutant of Akt/PKB. Exposure of the cells to hydrogen peroxide stimulates Akt/PKB activity and fibronectin synthesis. The antioxidant N-acetylcysteine abolished Ang II- and AA-induced Akt/PKB activation and fibronectin expression. Western blot analysis revealed high levels of p22( phox ) in MCs. Antisense (AS) but not sense oligonucleotides for p22( phox ) prevented ROS generation in response to Ang II and AA. AS p22( phox ) inhibited Ang II- or AA-induced Akt/PKB as well as protein synthesis and fibronectin expression. These data provide the first evidence, in MCs, of activation by AAof a p22( phox )-based NAD(P)H oxidase and subsequent generation of ROS. Moreover, this pathway mediates the effect of Ang II on Akt/PKB-induced protein synthesis and fibronectin expression.
Collapse
Affiliation(s)
- Karen Block
- Department of Medicine, Audie L. Murphy Memorial Hospital Division, The University of Texas Health Science Center, San Antonio, 78229-3900, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Ares MPS, Stollenwerk MM. Inflammatory effects of very low-density lipoprotein and fatty acids. Future Cardiol 2006; 2:315-23. [PMID: 19804089 DOI: 10.2217/14796678.2.3.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
High plasma triacylglycerol (triglyceride, TG) levels is a risk factor for atherosclerosis. Very large lipoproteins, such as chylomicrons, alone are not considered atherogenic, but TG-rich remnant lipoproteins can penetrate into the vascular wall. Importantly, accumulating evidence suggests that all TG-rich lipoproteins stimulate cytokine expression in circulating monocytes. Very low-density lipoprotein (VLDL) stimulates monocyte adhesion to endothelial cells and expression of inflammatory genes in macrophages. Furthermore, fatty acids released from large lipoproteins can stimulate both vascular cells and circulating monocytes. It is likely that fatty acids released from TG-rich lipoproteins contribute to atherogenesis, but the role of fatty acids in ischemic heart disease is not as direct as that of cholesterol. Fatty acids influence plasma lipoprotein levels and either stimulate or suppress numerous cellular functions relevant to atherogenesis. While certain n-3 fatty acids are good for health, most other medium- to long-chain fatty acids appear to promote inflammation in cell culture studies and need to be studied further. Nevertheless, the existing evidence supports the general conclusion that TG-rich lipoproteins and fatty acids greatly accelerate the progression of atherosclerosis. This may be because of their inflammatory effects.
Collapse
Affiliation(s)
- Mikko P S Ares
- Department of Clinical Sciences, Malmö University Hospital, Lund University, Sweden.
| | | |
Collapse
|
16
|
Wildroudt ML, Freeman EJ. Regulation of Akt by arachidonic acid and phosphoinositide 3-kinase in angiotensin II-stimulated vascular smooth muscle cells. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:11-6. [PMID: 16461001 DOI: 10.1016/j.bbalip.2005.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 10/25/2022]
Abstract
Angiotensin (Ang) II stimulates cytosolic phospholipase A2(cPLA(2))-dependent release of arachidonic acid (ArAc) in vascular smooth muscle cells (VSMC). ArAc release and production of reactive oxygen species (ROS) lead to the activation of downstream kinases resulting in VSMC growth. To determine the role of Akt in this pathway, we used VSMC to link Ang II-induced ArAc release and ROS production to the activation of Akt and VSMC growth. We observed that Ang II, ArAc, or H(2)O(2) increased Akt activation. The Akt inhibitor SH6 blocked Ang II-, ArAc-, or H(2)O(2)-induced Akt activation, as did inhibition of phosphoinositide 3-kinase (PI(3)K). Inhibition of cPLA(2) blocked Ang II effects, while the ROS scavenger NaC decreased Ang II- and ArAc-induced Akt activation. Inhibition of Akt blocked the (3)H-thymidine incorporation induced by all three agonists. Thus, Ang II-induced ArAc release and ROS production leads to the PI(3)K-dependant activation of Akt and VSMC growth.
Collapse
Affiliation(s)
- Maria L Wildroudt
- Kent State University, School of Biomedical Sciences, Cunningham Hall A229, Kent, OH 44242, USA
| | | |
Collapse
|
17
|
Gorostizaga A, Brion L, Maloberti P, Cornejo Maciel F, Podestá EJ, Paz C. Heat shock triggers MAPK activation and MKP-1 induction in Leydig testicular cells. Biochem Biophys Res Commun 2005; 327:23-8. [PMID: 15629424 DOI: 10.1016/j.bbrc.2004.11.129] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Indexed: 11/22/2022]
Abstract
Testicular function is highly dependent on temperature control. In Leydig testicular cells, the signaling pathway activated by heat stress is poorly defined. Here we describe the molecular events triggered by heat shock (HS, 10 min, 45 degrees C) in MA-10 cells. HS produced a rapid and transient activation of ERK1/2 and JNK kinases, and also increased MAP kinase phosphatase-1 (MKP-1) protein and mRNA levels. The effect of HS on MKP-1 messenger reached significance at 15 min, peaked (3.5-fold) at 60 min, and was partially dependent on ERK1/2 activity. The temporal profiles of MKP-1 protein levels and MAPKs phospho-dephosphorylation suggest that MKP-1 induction could contribute to ERK1/2 and JNK inactivation after HS. In summary, this study indicates that the response to heat stress in Leydig cells includes the activation of MAPKs related to cell survival (ERK1/2) and death (JNK), and the induction of a MAPK activity inhibitory loop.
Collapse
Affiliation(s)
- Alejandra Gorostizaga
- Department of Biochemistry, School of Medicine, University of Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
18
|
Clark JF, Kranc KR. The role of the mitochondrion in smooth muscle cell fate choices of proliferation versus apoptosis during vascular and cardiovascular diseases. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.3.4.513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Vicent S, Garayoa M, López-Picazo JM, Lozano MD, Toledo G, Thunnissen FBJM, Manzano RG, Montuenga LM. Mitogen-activated protein kinase phosphatase-1 is overexpressed in non-small cell lung cancer and is an independent predictor of outcome in patients. Clin Cancer Res 2004; 10:3639-49. [PMID: 15173070 DOI: 10.1158/1078-0432.ccr-03-0771] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE An increase in the activity of the mitogen-activated protein kinases (MAPKs) has been correlated with a more malignant phenotype in several tumor models in vitro and in vivo. A key regulatory mechanism of the MAPKs [extracellular signal-regulated kinase (ERK); c-jun NH(2)-terminal kinase (JNK); and p38] is the dual specificity phosphatase CL100, also called MAPK phosphatase-1 (MKP-1). This study was designed to examine the involvement of CL100/MKP-1 and stress-related MAPKs in lung cancer. EXPERIMENTAL DESIGN We assessed the expression of CL100/MKP-1 and the activation of the MAPKs in a panel of 18 human cell lines [1 primary normal bronchial epithelium, 8 non-small cell lung cancer (NSCLC), 7 small cell lung cancer (SCLC), and 2 carcinoids] and in 108 NSCLC surgical specimens. RESULTS In the cell lines, CL100/MKP-1 expression was substantially higher in NSCLC than in SCLC. P-ERK, P-JNK, and P-p38 were activated in SCLC and NSCLC, but the degree of their activation was variable. Immunohistochemistry in NSCLC resection specimens showed high levels of CL100/MKP-1 and activation of the three MAPK compared with normal lung. In univariate analysis, no relationship was found among CL100/MKP-1 expression and P-ERK, P-JNK, or P-p38. Interestingly, high CL100/MKP-1 expression levels independently predicted improved survival in multivariate analysis. JNK activation associated with T(1-2) and early stage, whereas ERK activation correlated with late stages and higher T and N. Neither JNK nor ERK activation were independent prognostic factors when studied for patient survival. CONCLUSIONS Our data indicate the relevance of MAPKs and CL100/MKP-1 in lung cancer and point at CL100/MKP-1 as a potential positive prognostic factor in NSCLC. Finally, our study supports the search of new molecular targets for lung cancer therapy within the MAPK signaling pathway.
Collapse
Affiliation(s)
- Silvestre Vicent
- Division of Oncology, Center for Applied Medical Research, Clínica Universitaria/Facultad de Medicina, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Gorin Y, Ricono JM, Wagner B, Kim NH, Bhandari B, Choudhury GG, Abboud HE. Angiotensin II-induced ERK1/ERK2 activation and protein synthesis are redox-dependent in glomerular mesangial cells. Biochem J 2004; 381:231-9. [PMID: 15027896 PMCID: PMC1133781 DOI: 10.1042/bj20031614] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 03/02/2004] [Accepted: 03/18/2004] [Indexed: 01/03/2023]
Abstract
Angiotensin II (Ang II) stimulates hypertrophy of glomerular mesangial cells. The signalling mechanism by which Ang II exerts this effect is not precisely known. Downstream potential targets of Ang II are the extracellular-signal-regulated kinases 1 and 2 (ERK1/ERK2). We demonstrate that Ang II activates ERK1/ERK2 via the AT1 receptor. Arachidonic acid (AA) mimics the action of Ang II on ERK1/ERK2 and phospholipase A2 inhibitors blocked Ang II-induced ERK1/ERK2 activation. The antioxidant N-acetylcysteine as well as the NAD(P)H oxidase inhibitors diphenylene iodonium and phenylarsine oxide abolished both Ang II- and AA-induced ERK1/ERK2 activation. Moreover, dominant-negative Rac1 (N17Rac1) blocks activation of ERK1/ERK2 in response to Ang II and AA, whereas constitutively active Rac1 resulted in an increase in ERK1/ERK2 activity. Antisense oligonucleotides for Nox4 NAD(P)H oxidase significantly reduce activation of ERK1/ERK2 by Ang II and AA. We also show that protein synthesis in response to Ang II and AA is inhibited by N17Rac1 or MEK (mitogen-activated protein kinase/ERK kinase) inhibitor. These results demonstrate that Ang II stimulates ERK1/ERK2 by AA and Nox4-derived reactive oxygen species, suggesting that these molecules act as downstream signal transducers of Ang II in the signalling pathway linking the Ang II receptor AT1 to ERK1/ERK2 activation. This pathway involving AA, Rac1, Nox4, reactive oxygen species and ERK1/ERK2 may play an important role in Ang II-induced mesangial cell hypertrophy.
Collapse
Affiliation(s)
- Yves Gorin
- Department of Medicine, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Palm-Leis A, Singh US, Herbelin BS, Olsovsky GD, Baker KM, Pan J. Mitogen-activated protein kinases and mitogen-activated protein kinase phosphatases mediate the inhibitory effects of all-trans retinoic acid on the hypertrophic growth of cardiomyocytes. J Biol Chem 2004; 279:54905-17. [PMID: 15494319 DOI: 10.1074/jbc.m407383200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All-trans retinoic acid (RA) has been implicated in mediation of cardiac growth inhibition in neonatal cardiomyocytes. However, the associated signaling mechanisms remain unclear. Utilizing neonatal cardiomyocytes, we demonstrated that RA suppressed the hypertrophic features induced by cyclic stretch or angiotensin II (Ang II). Cyclic stretch- or Ang II-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAP kinase) was dose- and time-dependently inhibited by RA. Significant inhibition was observed by 5 microm RA, from 8 to 24 h of pretreatment. This inhibitory effect was not mediated at the level of mitogen-activated protein kinase kinases (MKKs), because RA had no effect on stretch- or Ang II-induced phosphorylation of MEK1/2, MKK4, and MKK3/6. However, the phosphatase inhibitor vanadate reversed the inhibitory effect of RA on MAP kinases and protein synthesis. RA up-regulated the expression level of MAP kinase phosphatase-1 (MKP-1) and MKP-2, and the time course was correlated with the inhibitory effect of RA on activation of MAP kinases. Overexpression of wild-type MKP-1 inhibited the phosphorylation of JNK and p38 in cardiomyocytes. These data indicated that MKPs were involved in the inhibitory effect of RA on MAP kinases. Using specific RAR and RXR antagonists, we demonstrated that both RARs and RXRs were involved in regulating stretch- or Ang II-induced activation of MAP kinases. Our findings provide the first evidence that the anti-hypertrophic effect of RA is mediated by up-regulation of MKPs and inhibition of MAP kinase signaling pathways.
Collapse
Affiliation(s)
- Ants Palm-Leis
- Division of Molecular Cardiology, Department of Internal Medicine, Scott and White and The Texas A&M University System Health Science Center, College of Medicine, Temple, Texas 76504, USA
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The present review focuses on the concept that cellular and humoral immunity to the phylogenetically highly conserved antigen heat shock protein 60 (HSP60) is the initiating mechanism in the earliest stages of atherosclerosis. Subjecting arterial endothelial cells to classical atherosclerosis risk factors leads to the expression of HSP60 that then may serve as a target for pre-existent cross-reactive antimicrobial HSP60 immunity or bona fide autoimmune reactions induced by biochemically altered autologous HSP60. Endothelial cells can also bind microbial or autologous HSP60 via Toll-like receptors, providing another possibility for targetting adaptive or innate immunological effector mechanisms.
Collapse
Affiliation(s)
- Georg Wick
- Institute for Pathophysiology, University of Innsbruck, Medical School, Fritz-Pregl-Str. 3/IV, A-6020 Innsbruck, Austria.
| | | | | |
Collapse
|
23
|
Xu Q, Konta T, Nakayama K, Furusu A, Moreno-Manzano V, Lucio-Cazana J, Ishikawa Y, Fine LG, Yao J, Kitamura M. Cellular defense against H2O2-induced apoptosis via MAP kinase-MKP-1 pathway. Free Radic Biol Med 2004; 36:985-93. [PMID: 15059639 DOI: 10.1016/j.freeradbiomed.2004.01.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Revised: 12/01/2003] [Accepted: 01/15/2004] [Indexed: 11/21/2022]
Abstract
Mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) is an oxidative stress-inducible gene. In this study, we investigated signaling pathways involved in oxidative stress-induced MKP-1 expression and its role in apoptosis of rat mesangial cells. Northern and Western blot analyses showed that H(2)O(2) induced expression of MKP-1 mRNA and protein in a dose-dependent manner, without affecting the stability of the transcript. H(2)O(2) induced phosphorylation of extracellular signal-regulated kinase, p38 MAP kinase, and c-Jun N-terminal kinase and consequently activated activator protein 1 (AP-1). Selective inhibitors of individual MAP kinases or a dominant-negative mutant of c-jun significantly suppressed the expression of MKP-1 by H(2)O(2). Inhibition of MKP-1 by a protein tyrosine phosphatase inhibitor (vanadate) enhanced H(2)O(2)-triggered apoptosis. Consistently, transfection with a wild-type MKP-1, but not its catalytically inactive mutant MKP-1CS, attenuated H(2)O(2)-induced apoptosis. These data elucidate, for the first time, that induction of MKP-1 by H(2)O(2) is mediated by the MAP kinase-AP-1 pathway and that the induced MKP-1 is involved in cellular defense against oxidative stress-induced apoptosis of mesangial cells.
Collapse
Affiliation(s)
- Qihe Xu
- Department of Medicine, Royal Free and University College Medical School, University College London, London, England, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Levchenko A. Dynamical and integrative cell signaling: challenges for the new biology. Biotechnol Bioeng 2003; 84:773-82. [PMID: 14708118 DOI: 10.1002/bit.10854] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Years of careful experimental analysis have revealed that signaling molecules are organized into complex networks of biochemical reactions exquisitely regulated in time and space to provide a cell with high-fidelity information about an extremely noisy and volatile environment. A new view of signaling networks as systems consisting of multiple complex elements interacting in a multifarious fashion is emerging, a view that conflicts with the single-gene or protein-centric approach common in biological research. The postgenomic era has brought about a different, network-centric methodology of analysis, suddenly forcing researchers toward the opposite extreme of complexity, where the networks being explored are, to a certain extent, intractable and uninterpretable. Both the cartoons of simple pathways and the very large "hair-ball" diagrams of large intracellular networks are also representations of static worlds, superficially devoid of dynamics and chemistry. These representations are often viewed as being analogous to stably linked computer and neural networks rather than dynamically changing networks of chemical interactions, where the notions of concentration, compartmentalization, and diffusion may be the primary determinants of connectivity. Arguably, the systems biology approach, relying on computational modeling coupled with various experimental techniques and methodologies, will be an essential component of analysis of the behavior of signal transduction pathways. Combining the dynamical view of rapidly evolving responses and the structural view arising from high-throughput analyses of the interacting species will be the best approach toward efforts toward greater understanding of intracellular signaling processes.
Collapse
Affiliation(s)
- Andre Levchenko
- The Whitaker Institute for Biomedical Engineering, The Johns Hopkins University, 208C Clark Hall, 3400 North Charles Street, Baltimore, Maryland 21218, USA.
| |
Collapse
|
25
|
Li C, Wernig F, Leitges M, Hu Y, Xu Q. Mechanical stress-activated PKCdelta regulates smooth muscle cell migration. FASEB J 2003; 17:2106-8. [PMID: 12958154 DOI: 10.1096/fj.03-0150fje] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vascular smooth muscle cells (SMCs) are exposed to altered mechanical stress that may contribute to SMC migration in the development of atherosclerosis. Signal transduction pathways in SMCs activated by mechanical stress that instigate cell migration are undefined. Herein, we provide evidence that mechanical stress enhances SMC migration, which is mediated, at least in part, by protein kinase C (PKC)delta. When rat SMCs cultivated on a flexible membrane were subjected to cyclic strain stress (60 cycles/min, 5, 15, or 20% elongation), PKCdelta was translocated to the Triton-insoluble fraction, whereas PKCalpha was translocated to the membrane, which was confirmed by PKC kinase assays. Immunofluorescence and actin staining revealed a cytoskeleton translocation of PKCdelta in SMCs stimulated by cyclic strain. PKCdelta-deficient SMCs cultivated from PKCdelta-/- mice showed an abnormal cytoskeleton structure, which was related to a diminished phosphorylation of paxillin, focal adhesion kinase, and vinculin in response to mechanical stress. Mechanical stress enhanced SMC migration, which was diminished in PKCdelta-/- SMCs. Taken together, our data demonstrated that mechanical stress activates PKCdelta translocation to the cytoskeleton, which is related to decreased SMC migration and indicates that PKCdelta is a key signal transducer between mechanical stress and cell migration.
Collapse
MESH Headings
- Animals
- Cell Movement
- Cells, Cultured
- Cytoskeleton/ultrastructure
- Enzyme Activation
- Mice
- Mice, Knockout
- Models, Biological
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/physiology
- Muscle, Smooth, Vascular/ultrastructure
- Protein Kinase C/genetics
- Protein Kinase C/metabolism
- Protein Kinase C-alpha
- Protein Kinase C-delta
- Protein Transport
- Rats
- Stress, Mechanical
Collapse
Affiliation(s)
- Chaohong Li
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
26
|
Vanden Heuvel JP, Kreder D, Belda B, Hannon DB, Nugent CA, Burns KA, Taylor MJ. Comprehensive analysis of gene expression in rat and human hepatoma cells exposed to the peroxisome proliferator WY14,643. Toxicol Appl Pharmacol 2003; 188:185-98. [PMID: 12729718 DOI: 10.1016/s0041-008x(03)00015-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Peroxisome proliferators (PPs) are an important class of chemicals that act as hepatic tumor promoters in laboratory rodents. The key target for PPs is the nuclear receptor peroxisome proliferator-activated receptor-alpha (PPARalpha) and these chemicals cause cancer by altering the expression of a subset of genes involved in cell growth regulation. The purpose of the present study was to utilize high-density gene expression arrays to examine the genes regulated by the potent PP Wy14,643 (50 microM, 6 h) in both rat (FaO) and human (HepG2) hepatoma cells. Treatment of FaO cells, but not HepG2, revealed the expected fatty acid catabolism genes. However, a larger than expected number of protein kinases, phosphatases, and signaling molecules were also affected exclusively in the FaO cells, including MAPK-phosphatase 1 (MKP-1), Janus-activated kinases 1 and 2 (JAK1 and 2), and glycogen synthetase kinase alpha and beta (GSKalpha and beta). The mRNA accumulation of these genes as well as the protein level for GSK3alpha, JAK1, and JAK2 and MKP-1 activity was corroborated. Due to the importance of MKP-1 in cell signaling, this induction was examined further and was found to be controlled, at least in part, at the level of the gene's promoter. Interestingly, overexpression of MKP-1 in turn affected the constitutive activity of PPARalpha. Taken together, the gene expression arrays revealed an important subset of PP-regulated genes to be kinases and phosphatases. These enzymes not only would affect growth factor signaling and cell cycle control but also could represent feedback control mechanisms and modulate the activity of PPARalpha.
Collapse
Affiliation(s)
- John P Vanden Heuvel
- Department of Veterinary Science and Center for Molecular Toxicology and Carcinogenesis, Penn State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Wernig F, Mayr M, Xu Q. Mechanical stretch-induced apoptosis in smooth muscle cells is mediated by beta1-integrin signaling pathways. Hypertension 2003; 41:903-11. [PMID: 12642506 DOI: 10.1161/01.hyp.0000062882.42265.88] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recently we demonstrated that mechanical stress induces apoptosis of vascular smooth muscle cells in vitro and in vein grafts (Mayr et al. FASEB J. 2000;15:261-270). The current study was designed to investigate molecular mechanisms of mechanical stretch-induced apoptosis. Smooth muscle cells cultivated on silicone elastomer plates precoated with collagen I, elastin, laminin, or Pronectin were subjected to cyclic mechanical stretch. Interestingly, in response to mechanical stress, the number of apoptotic cells increased significantly in cells growing on collagen I-coated plates but not on other matrixes. We therefore thought that receptors mediating binding to collagen I, such as integrin beta1 containing receptors, might be involved in signaling pathways leading to stretch-induced apoptosis. On collagen plates, mechanical stress rapidly activated p38 MAPK that phosphorylated p53 in smooth muscle cells. Lack of functional Rac completely abrogated p38 MAPK-p53 activation as well as apoptosis. Furthermore, mechanical stress resulted in increases of both integrin beta1 protein expression and activity as identified by Western blotting and Shc immunoprecipitation assays. Treatment with a beta1-integrin-blocking antibody or integrin signaling inhibitor cytochalasin B but not growth factor receptor inhibitor suramin abrogated both stretch-induced phosphorylation of p38 MAPK and p53 expression. Akin to the inhibition of p38 MAPK-p53 signaling, pretreatment with a beta1-integrin-blocking antibody or cytochalasin B but not suramin inhibited stretch-induced apoptosis on collagen plates. These results suggest that mechanical stress-induced apoptosis in vascular smooth muscle cells is mediated by beta1-integrin-rac-p38-p53 signaling pathways.
Collapse
Affiliation(s)
- Florian Wernig
- Department of Cardiological Sciences, St George's Hospital Medical School, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | | | | |
Collapse
|
28
|
Abstract
Heat shock proteins (HSPs) are present in most cells, serving as molecular chaperones, and they play a role in cell protection from damage in response to stress stimuli. However, accumulating data indicate the involvement of HSPs in the pathogenesis of diseases. The aim of this article is to update the progress concerning the role of HSPs in atherosclerosis. It has been demonstrated that HSPs are highly expressed in the atherosclerotic lesions of humans, rabbits, and apolipoprotein E-deficient mice. Risk factors for atherosclerosis, eg, infections, oxidized low density lipoprotein, oxidative stress, hypertension, and biomechanical stress, evoke HSP overexpression in endothelial cells, macrophages, and smooth muscle cells via activation of heat shock transcription factor 1. Interestingly, HSPs, normally localized within the cell, have been found as a soluble form in the blood, which is positively correlated with atherosclerosis in humans. Recently, several groups have reported that soluble HSPs specifically bind to the Toll-like receptor 4/CD14 complex, initiating an innate immune response, including the production of proinflammatory cytokines by macrophages and adhesion molecules in endothelial cells via nuclear factor-kappaB activation. Furthermore, the titers of autoantibodies against HSPs are significantly elevated in patients with atherosclerosis, and T lymphocytes specifically responding to HSPs have been found in atherosclerotic plaques. These proinflammatory responses and autoimmune reactions to HSPs in the vessel wall can contribute to the initiation and perpetuation of atherosclerosis. Thus, HSPs have a general role in the response of the arterial wall to stress and may serve as a mediator/inducer of atherosclerosis in particular circumstances.
Collapse
Affiliation(s)
- Qingbo Xu
- Department of Cardiological Sciences, St George's Hospital Medical School, London, UK. mail
| |
Collapse
|
29
|
Abstract
It is well established that fatty acid metabolites of cyclooxygenase, lipoxygenase (LOX), and cytochrome P450 are implicated in essential aspects of cellular signaling including the induction of programmed cell death. Here we review the roles of enzymatic and non-enzymatic products of polyunsaturated fatty acids in controlling cell growth and apoptosis. Also, the spontaneous oxidation of polyunsaturated fatty acids yields reactive aldehydes and other products of lipid peroxidation that are potentially toxic to cells and may also signal apoptosis. Significant conflicting data in terms of the role of LOX enzymes are highlighted, prompting a re-evaluation of the relationship between LOX and prostate cancer cell survival. We include new data showing that LNCaP, PC3, and Du145 cells express much lower levels of 5-LOX mRNA and protein compared with normal prostate epithelial cells (NHP2) and primary prostate carcinoma cells (TP1). Although the 5-LOX activating protein inhibitor MK886 killed these cells, another 5-LOX inhibitor AA861 hardly showed any effect. These observations suggest that 5-LOX is unlikely to be a prostate cancer cell survival factor, implying that the mechanisms by which LOX inhibitors induce apoptosis are more complex than expected. This review also suggests several mechanisms involving peroxisome proliferator activated receptor activation, BCL proteins, thiol regulation, and mitochondrial and kinase signaling by which cell death may be produced in response to changes in non-esterified and non-protein bound fatty acid levels. Overall, this review provides a context within which the effects of fatty acids and fatty acid oxidation products on signal transduction pathways, particularly those involved in apoptosis, can be considered in terms of their overall importance relative to the much better studied protein or peptide signaling factors.
Collapse
Affiliation(s)
- Dean G Tang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas, Austin 78712, USA
| | | | | | | |
Collapse
|
30
|
Bar-Shira A, Rashi-Elkeles S, Zlochover L, Moyal L, Smorodinsky NI, Seger R, Shiloh Y. ATM-dependent activation of the gene encoding MAP kinase phosphatase 5 by radiomimetic DNA damage. Oncogene 2002; 21:849-55. [PMID: 11850813 DOI: 10.1038/sj.onc.1205127] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2001] [Revised: 10/29/2001] [Accepted: 10/31/2001] [Indexed: 12/17/2022]
Abstract
Cellular responses to DNA damage are mediated by an extensive network of signaling pathways. The ATM protein kinase is a master regulator of the response to double-strand breaks (DSBs), the most cytotoxic DNA lesion caused by ionizing radiation. ATM is the protein missing or inactive in patients with the pleiotropic genetic disorder ataxia-telangiectasia (A-T). A major response to DNA damage is altered expression of numerous genes. While studying gene expression in control and A-T cells following treatment with the radiomimetic chemical neocarzinostatin (NCS), we identified an expressed sequence tag that represented a gene that was induced by DSBs in an ATM-dependent manner. The corresponding cDNA encoded a dual specificity phosphatase of the MAP kinase phosphatase family, MKP-5. MKP-5 dephosphorylates and inactivates the stress-activated MAP kinases JNK and p38. The phosphorylation-dephosphorylation cycle of JNK and p38 by NCS was attenuated in A-T cells. Thus, ATM modulates this cycle in response to DSBs. These results further highlight ATM as a link between the DNA damage response and major signaling pathways involved in proliferative and apoptotic processes.
Collapse
Affiliation(s)
- Anat Bar-Shira
- The David and Inez Myers Laboratory for Genetic Research, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
31
|
Maccarrone M, Battista N, Bari M, Finazzi-Agrò A. Lipoxygenase activity in altered gravity. ADVANCES IN SPACE BIOLOGY AND MEDICINE 2002; 8:1-17. [PMID: 12951691 DOI: 10.1016/s1569-2574(02)08013-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Lipoxygenases are a family of enzymes which dioxygenate unsaturated fatty acids, thus initiating lipoperoxidation of membranes or the synthesis of signalling molecules, or inducing structural and metabolic changes in the cell. This activity is the basis for the critical role of lipoxygenases in a number of pathophysiological conditions, both in animals and plants. We review the effects of microgravity on the catalytic efficiency of purified soybean (Glycine max) lipoxygenase-1, as well as the modulation of the activity and expression of 5-lipoxygenase in human erythroleukemia K562 cells subjected to altered gravity. We also outline the molecular properties of the lipoxygenase family and discuss its possible involvement in space-related processes, such as apoptosis (programmed cell death) and immuno-depression. Finally, we discuss the modulation of cyclooxygenase activity and expression in K562 cells exposed to altered gravity, because cyclooxygenase catalyzes the oxidation of arachidonate through a pathway different from that catalyzed by lipoxygenase activity.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Experimental Medicine and Biochemical Sciences and Biomedical Space Center, University of Rome Tor Vergata, Rome, Italy
| | | | | | | |
Collapse
|
32
|
Gorin Y, Kim NH, Feliers D, Bhandari B, Choudhury GG, Abboud HE. Angiotensin II activates Akt/protein kinase B by an arachidonic acid/redox-dependent pathway and independent of phosphoinositide 3-kinase. FASEB J 2001; 15:1909-20. [PMID: 11532971 DOI: 10.1096/fj..01-0165com] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Angiotensin II (Ang II) exerts contractile and trophic effects in glomerular mesangial cells (MCs). One potential downstream target of Ang II is the protein kinase Akt/protein kinase B (PKB). We investigated the effect of Ang II on Akt/PKB activity in MCs. Ang II causes rapid activation of Akt/PKB (5-10 min) but delayed activation of phosphoinositide 3-kinase (PI3-K) (30 min). Activation of Akt/PKB by Ang II was not abrogated by the PI3-K inhibitors or by the introduction of a dominant negative PI3-K, indicating that in MCs, PI3-K is not an upstream mediator of Akt/PKB activation by Ang II. Incubation of MCs with phospholipase A2 inhibitors also blocked Akt/PKB activation by Ang II. AA mimicked the effect of Ang II. Inhibitors of cyclooxygenase-, lipoxyogenase-, and cytochrome P450-dependent metabolism did not influence AA-induced Akt/PKB activation. However, the antioxidants N-acetylcysteine and diphenylene iodonium inhibited both AA- and Ang II-induced Akt/PKB activation. Dominant negative mutant of Akt/PKB or antioxidants, but not the dominant negative form of PI3-K, inhibited Ang II-induced protein synthesis and cell hypertrophy. These data provide the first evidence that Ang II induces protein synthesis and hypertrophy in MCs through AA/redox-dependent pathway and Akt/PKB activation independent of PI3-K.
Collapse
Affiliation(s)
- Y Gorin
- Department of Medicine, Division of Nephrology, The University of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
33
|
Maccarrone M, Melino G, Finazzi-Agrò A. Lipoxygenases and their involvement in programmed cell death. Cell Death Differ 2001; 8:776-84. [PMID: 11526430 DOI: 10.1038/sj.cdd.4400908] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2001] [Revised: 05/09/2001] [Accepted: 05/10/2001] [Indexed: 01/31/2023] Open
Abstract
Lipoxygenases are a family of enzymes which dioxygenate unsaturated fatty acids, thus initiating lipoperoxidation of membranes and the synthesis of signaling molecules. Consequently, they induce structural and metabolic changes in the cell in a number of pathophysiological conditions. Recently, a pro-apoptotic effect of lipoxygenase, and of the hydroperoxides produced thereof, has been reported in different cells and tissues, leading to cell death. Anti-apoptotic effects of lipoxygenases have also been reported; however, this has often been based on the use of enzyme inhibitors. Here we review the characteristics of the lipoxygenase family and its involvement in the initiation of oxidative stress-induced apoptosis. Finally, we discuss the role of lipoxygenase activation in apoptosis of animal and plant cells, suggesting a common signal transduction pathway in cell death conserved through evolution of both kingdoms.
Collapse
Affiliation(s)
- M Maccarrone
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Via di Tor Vergata 135, I-00133 Rome, Italy.
| | | | | |
Collapse
|
34
|
Hii CS, Moghadammi N, Dunbar A, Ferrante A. Activation of the Phosphatidylinositol 3-Kinase-Akt/Protein Kinase B Signaling Pathway in Arachidonic Acid-stimulated Human Myeloid and Endothelial Cells. J Biol Chem 2001; 276:27246-55. [PMID: 11359783 DOI: 10.1074/jbc.m103250200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although arachidonic acid has been demonstrated to stimulate a wide variety of cellular functions, the responsible mechanisms remain poorly defined. We now report that arachidonic acid stimulated the activity of class Ia phosphatidylinositol 3-kinase (PI3K) in human umbilical vein endothelial cells, HL60 cells, and human neutrophils. Pretreatment of endothelial cells with AG-1478, an inhibitor of the ErbB receptor family, resulted in the suppression of PI3K activation by arachidonic acid. The fatty acid enhanced the tyrosine phosphorylation of ErbB4 but not of ErbB2 or ErbB3. The ability of arachidonic acid to stimulate PI3K activity in neutrophils was suppressed by indomethacin and nordihydroguaiaretic acid, inhibitors of the cyclooxygenases and lipoxygenases, respectively, but not by 17-octadecynoic acid, an inhibitor of omega-hydroxylation of arachidonic acid by cytochrome P450 monooxygenases. Consistent with this, the activity of PI3K in neutrophils was stimulated by 5-hydroxyeicosatetraenoic acid. Arachidonic acid also transiently stimulated the phosphorylation of Akt on Thr-308 and Ser-473. Although PI3K was not required for the activation of the mitogen-activated protein kinases, ERK1, ERK2, and p38, in arachidonic acid-stimulated neutrophils, the fatty acid acted via PI3K to stimulate the respiratory burst. These results not only define a novel mechanism through which some of the actions of arachidonic acid are mediated but also demonstrate that, in addition to ErbB1 (epidermal growth factor receptor), ErbB4 can also be transactivated by a non-epidermal growth factor-like ligand.
Collapse
Affiliation(s)
- C S Hii
- Department of Immunopathology, Women's and Children's Hospital, North Adelaide 5006, South Australia.
| | | | | | | |
Collapse
|
35
|
Chan ED, Riches DW, White CW. Redox paradox: effect of N-acetylcysteine and serum on oxidation reduction-sensitive mitogen-activated protein kinase signaling pathways. Am J Respir Cell Mol Biol 2001; 24:627-32. [PMID: 11350834 DOI: 10.1165/ajrcmb.24.5.4280] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The thiol reducing agent N-acetylcysteine (NAC) is commonly used as an "antioxidant" in studies examining gene expression, signaling pathways, and outcome in acute and chronic models of lung injury. It is less widely appreciated that NAC can also undergo auto-oxidation and behave as an oxidant. We showed previously that NAC can have opposite effects on the activation of nuclear factor-kappaB depending on whether or not serum is present, and that the effects of NAC in the absence of serum are mimicked by various oxidants. Here we show that in a serum-depleted environment (0.1% fetal bovine serum), NAC substantially inhibited lipopolysaccharide (LPS) activation of the mitogen-activated protein kinases (MAPKs), namely extracellular signal-regulated kinase (ERK), p38mapk, and c-Jun NH2-terminal kinase (JNK). By contrast, in the presence of 10% serum, NAC had no effect on LPS activation of p42 and p44 ERK and in fact enhanced LPS induction of p38mapk and JNK phosphorylation. Because serum can significantly alter the redox state, these findings highlight the importance of the local redox milieu in signal transduction.
Collapse
Affiliation(s)
- E D Chan
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Health Sciences Center, Denver, Colorado, USA.
| | | | | |
Collapse
|
36
|
Reddy S, Hama S, Grijalva V, Hassan K, Mottahedeh R, Hough G, Wadleigh DJ, Navab M, Fogelman AM. Mitogen-activated protein kinase phosphatase 1 activity is necessary for oxidized phospholipids to induce monocyte chemotactic activity in human aortic endothelial cells. J Biol Chem 2001; 276:17030-5. [PMID: 11278958 DOI: 10.1074/jbc.m011663200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Entrapment and oxidation of low density lipoproteins (LDL) in the sub-endothelial space is a key process in the initiation of atherosclerotic lesion development. Functional changes induced by oxidized lipids in endothelial cells are early events in the pathogenesis of atherosclerosis. Oxidized-l-alpha-1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (ox-PAPC), a major component of minimally modified/oxidized-LDL (MM-LDL) mimics the biological activities assigned to MM-LDL both in vitro in a co-culture model as well as in vivo in mice. We hypothesized that ox-PAPC initiates gene expression changes in endothelial cells that result in enhanced endothelial/monocyte interactions. To analyze the gene expression changes that oxidized lipids induce in endothelial cells, we used a suppression subtractive hybridization procedure to compare mRNA from PAPC-treated human aortic endothelial cells (HAEC) with that of ox-PAPC-treated cells. We report here the identification of a gene, mitogen-activated protein kinase phosphatase 1 (MKP-1), that is rapidly and transiently induced in ox-PAPC-treated HAEC. Inhibition of MKP-1 using either the phosphatase inhibitor sodium orthovanadate or antisense oligonucleotides prevents the accumulation of monocyte chemotactic activity in ox-PAPC-treated HAEC supernatants. Furthermore, we show that decreased monocyte chemotactic activity in HAEC treated with sodium orthovanadate or MKP-1 antisense oligonucleotides is due to decreased MCP-1 protein. Our results implicate a direct role for MKP-1 in ox-PAPC-induced signaling pathways that result in the production of MCP-1 protein by ox-PAPC-treated HAEC.
Collapse
Affiliation(s)
- S Reddy
- Atherosclerosis Research Unit, Department of Medicine, University of California, Los Angeles, California 90095-1679, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mattera R, Stone GP, Bahhur N, Kuryshev YA. Increased Release of Arachidonic Acid and Eicosanoids in Iron-Overloaded Cardiomyocytes. Circulation 2001; 103:2395-401. [PMID: 11352890 DOI: 10.1161/01.cir.103.19.2395] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
—Patients with transfusional iron overload may develop a life-limiting cardiomyopathy. The sensitivity of lipid-metabolizing enzymes to peroxidative injury, as well as the reported effects of arachidonic acid (AA) and metabolites on cardiac rhythm, led us to hypothesize that iron-overloaded cardiomyocytes display alterations in the release of AA and prostaglandins.
Methods and Results
—Neonatal rat ventricular myocytes (NRVMs) cultured for 72 hours in the presence of 80 μg/mL ferric ammonium citrate displayed an increased rate of AA release, both under resting conditions and after stimulation with agonists such as [Sar
1
]Ang II. Although iron treatment did not affect overall incorporation of [
3
H]AA into NRVM phospholipids, it caused a 2-fold increase in the distribution of precursor in phosphatidylcholine species, with a proportional decrease in phosphatidylinositol, phosphatidylserine, and phosphatidylethanolamine. Increased release of AA in iron-overloaded NRVMs was reduced by the diacylglycerol lipase inhibitor
RHC80267
but was largely insensitive to inhibitors of phospholipases A
2
and C. Iron-overloaded cardiomyocytes also displayed increased production of eicosanoids and induction of cyclooxygenase-2 after stimulation with interleukin-1α.
Conclusions
—Iron overload enhances AA release and incorporation of AA into phosphatidylcholine, as well as cyclooxygenase-2 induction and eicosanoid production, in NRVMs. The effects of AA and metabolites on cardiomyocyte rhythmicity suggest a causal connection between these signals and electromechanical alterations in iron-overload–induced cardiomyopathy.
Collapse
Affiliation(s)
- R Mattera
- Rammelkamp Center for Education and Research, MetroHealth Medical Center, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | | | | | | |
Collapse
|
38
|
Garrido R, Mattson MP, Hennig B, Toborek M. Nicotine protects against arachidonic-acid-induced caspase activation, cytochrome c release and apoptosis of cultured spinal cord neurons. J Neurochem 2001; 76:1395-403. [PMID: 11238724 DOI: 10.1046/j.1471-4159.2001.00135.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrolysis of membrane phospholipids of spinal cord neurons is one of the first events initiated in spinal cord trauma. In this process, free fatty acids, and in particular arachidonic acid, are released. Exposure of spinal cord neurons to free arachidonic acid can compromise cell survival and initiate apoptotic cell death. In order to determine potential mechanisms of apoptosis induced by arachidonic acid, activation of caspases -3, -8, and -9, as well as the release of cytochrome c into the cytoplasm were measured in cultured spinal cord neurons exposed to 10 microM of this fatty acid. In addition, because nicotine can exert a variety of neuroprotective effects, we hypothesized that it can prevent arachidonic acid induced apoptosis of spinal cord neurons. To study this hypothesis, spinal cord neurons were pretreated with nicotine (10 microM for 2 h) before arachidonic acid exposure and caspase activation as well as markers of apoptotic cell death were studied. Treatment of spinal cord neurons with arachidonic acid for up to 24 h significantly increased cytoplasmic levels of cytochrome c, induced caspase activation and induced DNA laddering, a hallmark of apoptotic cell death. Nicotine pretreatment markedly attenuated all these effects. In addition, antagonist studies suggest that the alpha7 nicotinic receptor is primarily responsible for these anti-apoptotic effects of nicotine. These results indicate that nicotine can exert potent neuroprotective effects by inhibiting arachidonic acid induced apoptotic cascades of spinal cord neurons.
Collapse
Affiliation(s)
- R Garrido
- Department of Surgery, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | | | | | | |
Collapse
|
39
|
Byon JC, Dadke SS, Rulli S, Kusari AB, Kusari J. Insulin regulates MAP kinase phosphatase-1 induction in Hirc B cells via activation of both extracellular signal-regulated kinase (ERK) and c-Jun-N-terminal kinase (JNK). Mol Cell Biochem 2001; 218:131-8. [PMID: 11330828 DOI: 10.1023/a:1007204508882] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previously, we have reported that insulin induces the expression of the dual-specificity tyrosine phosphatase Mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) and that this may represent a negative feedback mechanism to regulate insulin-stimulated MAP kinase activity. In this work, the mechanism of regulation of MKP-1 expression by insulin was examined, particularly the role of the MAP kinase superfamily. Inhibition of the ERK pathway attenuated insulin-stimulated MKP-1 mRNA expression. Expression of dominant negative molecules of the JNK pathway also abolished insulin-stimulated MKP-1 expression. However, inhibition of p38MAPK activity by SB202190 had no effect on insulin-stimulated MKP-1 induction. Simultaneous inhibition of the ERK and JNK pathways abolished the ability of insulin to stimulate MKP-1 expression, however, this combined inhibition was neither additive nor synergistic, suggesting these pathways converge to act on a common final effector. In conclusion, induction of MKP-1 mRNA expression in Hirc B cells by insulin requires activation of both the ERK and JNK pathways, but not p38MAPK.
Collapse
Affiliation(s)
- J C Byon
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | | | | |
Collapse
|
40
|
Berti-Mattera LN, Wilkins PL, Harwalkar S, Madhun Z, Almhanna K, Mattera R. Endothelins regulate arachidonic acid release and mitogen-activated protein kinase activity in Schwann cells. J Neurochem 2000; 75:2316-26. [PMID: 11080183 DOI: 10.1046/j.1471-4159.2000.0752316.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Immortalized rat Schwann cells (iSC) express endothelin (ET) receptors coupled to inhibition of adenylyl cyclase and stimulation of phospholipase C (PLC). These effects precede phenotypic changes and increased DNA synthesis. We have investigated the role of ETs in the regulation of arachidonic acid (AA) release and mitogen-activated protein kinases (MAPKs). Both ET-1 and ET-3 increased AA release in iSC. This effect was sensitive to the phospholipase A(2) (PLA(2)) inhibitors E:-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H:-pyran-2-one and arachidonyl-trifluoromethyl ketone but was insensitive to inhibitors of PLC or phospholipase D-dependent diacylglycerol generation. ET-1-dependent AA release was also unaffected by removal of extracellular Ca(2+) and blocking the concomitant elevation in [Ca(2+)](i), consistent with participation of a Ca(2+)-independent PLA(2). Treatment of iSC with ETs also resulted in activation of extracellular signal-regulated kinase, c-Jun-NH(2)-terminal kinase (JNK), and p38 MAPK. A cause-effect relationship between agonist-dependent AA release and stimulation of MAPKs, but not the opposite, was suggested by activation of JNK by exogenous AA and by the observation that inhibition of MAPK kinase or p38 MAPK was inconsequential to ET-1-induced AA release. Similar effects of ETs on AA release and MAPK activity were observed in cultures expanded from primary SC and in iSC. Regulation of these effectors may mediate the control of proliferation and differentiation of SC by ETs during peripheral nerve development and regeneration.
Collapse
Affiliation(s)
- L N Berti-Mattera
- Division of Hypertension, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4982, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Burgun C, Esteve L, Humblot N, Aunis D, Zwiller J. Cyclic AMP-elevating agents induce the expression of MAP kinase phosphatase-1 in PC12 cells. FEBS Lett 2000; 484:189-93. [PMID: 11078876 DOI: 10.1016/s0014-5793(00)02153-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Stimulation of pheochromocytoma PC12 cells by cAMP-elevating agents caused the induction of the immediate early gene 3CH134, which encodes MAP kinase phosphatase-1 (MKP-1). Forskolin was as potent as serum in stimulating MKP-1 gene expression, whereas dibutyryl-cAMP and neuropeptide PACAP were less effective. Induction of the MKP-1 gene was accompanied by neo-synthesis of MKP-1 protein. MAP kinase activation was not involved in the cAMP-induced MKP-1 gene expression. The MAP kinase inactivation, that would result from MKP-1 induction in response to increased intracellular cAMP level, contributes to explain how hormones or neurotransmitters signaling through cAMP influence cell growth and differentiation.
Collapse
Affiliation(s)
- C Burgun
- INSERM U338, Centre de Neurochimie, 5 rue Blaise Pascal, 67084, Strasbourg, France.
| | | | | | | | | |
Collapse
|
42
|
Takehara N, Kawabe J, Aizawa Y, Hasebe N, Kikuchi K. High glucose attenuates insulin-induced mitogen-activated protein kinase phosphatase-1 (MKP-1) expression in vascular smooth muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1497:244-52. [PMID: 10903429 DOI: 10.1016/s0167-4889(00)00050-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mechanisms for the effect of hyperglycemia on insulin-induced mitogenesis were investigated using rat vascular smooth muscle cells (VSMC). VSMC were preincubated in serum-free medium with low (5 mM) glucose (LG condition) or high (25 mM) glucose (HG condition), and examined for DNA synthesis using bromodeoxyuridine (BrdUrd) incorporation. Mitogen-activated protein kinase (MAPK) activity and MAPK phosphatase (MKP-1) protein expression were detected by Western blot analysis. Phosphatidylinositol 3-kinase (PI-3K) activity was detected by thin layer chromatography. Insulin induced a dose-dependent increase in BrdUrd incorporation (123.3+/-2.6% over basal level with 1 microM insulin) in the LG group and this effect was significantly enhanced (161.6+/-10.4% over basal level) in the HG group. In the LG group, MAPK activity was transient with a peak activation (137.4+/-11.2% over basal level) after 10 min exposure to 100 nM insulin. In the HG group, the MAPK activity was significantly potentiated (two-fold compared to the LG group) and was sustained even after 60 min. Insulin also induced PI-3K activity and MKP-1 expression, both of which were blocked by the PI-3K inhibitor wortmannin. In the HG group, insulin-induced PI-3K and MKP-1 expression was almost abolished. In conclusion, high glucose enhances insulin-induced mitogenesis associated with the potentiation of insulin-stimulated MAPK activity in VSMC. These effects of glucose might in part be due to the attenuation of MKP-1 expression through the blockage of the insulin-PI-3K signal pathway.
Collapse
Affiliation(s)
- N Takehara
- The First Department of Medicine, Asahikawa Medical College, 4-5-3 Nishikagura, 078-8510, Asahikawa, Japan
| | | | | | | | | |
Collapse
|
43
|
Abstract
Mechanical force is an important modulator of cellular morphology and function in a variety of tissues, and is particularly important in cardiovascular systems. Vascular smooth muscle cell (VSMC) hypertrophy and proliferation contribute to the development of atherosclerosis, hypertension, and restenosis, where mechanical forces are largely disturbed. How VSMCs sense and transduce the extracellular mechanical signals into the cell nucleus resulting in quantitative and qualitative changes in gene expression is an interesting and important research field. Recently, it has been demonstrated that mechanical stress rapidly induced phosphorylation of platelet-derived growth factor (PDGF) receptor, activation of integrin receptor, stretch-activated cation channels, and G proteins, which might serve as mechanosensors. Once mechanical force is sensed, protein kinase C and mitogen-activated protein kinases (MAPKs) were activated, leading to increased c-fos and c-jun gene expression and enhanced transcription factor AP-1 DNA-binding activity. Interestingly, physical forces also rapidly resulted in expression of MAPK phosphatase-1 (MKP-1), which inactivates MAPKs. Thus, mechanical stresses can directly stretch the cell membrane and alter receptor or G protein conformation, thereby initiating signalling pathways, usually used by growth factors. These findings have significantly enhanced our knowledge of the pathogenesis of arteriosclerosis and provided promising information for therapeutic interventions for vascular diseases.
Collapse
Affiliation(s)
- C Li
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, A-6020, Innsbruck, Austria
| | | |
Collapse
|
44
|
Xu Q, Schett G, Li C, Hu Y, Wick G. Mechanical stress-induced heat shock protein 70 expression in vascular smooth muscle cells is regulated by Rac and Ras small G proteins but not mitogen-activated protein kinases. Circ Res 2000; 86:1122-8. [PMID: 10850962 DOI: 10.1161/01.res.86.11.1122] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
-Previous studies have documented that acute elevation in blood pressure results in heat shock protein (hsp) 70-mRNA expression followed by hsp70-protein production in rat aortas. In this article, we provide evidence that mechanical forces evoke rapid activation of heat shock transcription factor (HSF) and hsp70 accumulation. In our study, Western blot analysis demonstrated that hsp70-protein induction peaked between 6 and 12 hours after treatment with cyclic stain stress (60 cycles/minute, up to 30% elongation). Elevated protein levels were preceded by hsp70-mRNA transcription, which was associated with HSF1 phosphorylation and activation stimulated by mechanical forces, suggesting that the response was regulated at the transcriptional level. Conditioned medium from cyclic strain-stressed vascular smooth muscle cells (VSMCs) did not result in HSF-DNA-binding activation. Furthermore, mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinases, c-Jun NH(2)-terminal protein kinases or stress-activated protein kinases, and p38 MAPKs, were also highly activated in response to cyclic strain stress. Inhibition of extracellular signal-regulated kinase and p38-MAPK activation by their specific inhibitors (PD 98059 and SB 202190) did not influence HSF1 activation. Interestingly, VSMC lines stably expressing dominant-negative rac (rac N17) abolished hsp-protein production and HSF1 activation induced by cyclic strain stress, whereas a significant reduction of hsp70 expression was seen in ras N17-transfected VSMC lines. Thus, our findings demonstrate that cyclic strain stress-induced hsp70 expression is mediated by HSF1 activation and regulated by rac and ras GTP-binding proteins. Induction of hsp70 could be important in maintaining VSMC homeostasis during vascular remodeling in response to hemodynamic stimulation.
Collapse
MESH Headings
- Animals
- Cell Survival/drug effects
- Cells, Cultured
- DNA-Binding Proteins/physiology
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- Heat Shock Transcription Factors
- Hydrogen Peroxide/pharmacology
- Mitogen-Activated Protein Kinases/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Nitroprusside/pharmacology
- Oxidants/pharmacology
- Rats
- Stress, Mechanical
- Transcription Factors
- Transcription, Genetic
- rac GTP-Binding Proteins/physiology
- ras Proteins/physiology
Collapse
Affiliation(s)
- Q Xu
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
45
|
Metzler B, Hu Y, Dietrich H, Xu Q. Increased expression and activation of stress-activated protein kinases/c-Jun NH(2)-terminal protein kinases in atherosclerotic lesions coincide with p53. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 156:1875-86. [PMID: 10854211 PMCID: PMC1850074 DOI: 10.1016/s0002-9440(10)65061-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hyperlipidemia alters gene expression of arterial endothelial and smooth muscle cells (SMCs) and induces atherosclerotic lesions, in which cell proliferation and apoptosis co-exist. The signal transduction pathways that mediate these responses in the vessel wall in vivo have yet to be identified. Stress-activated protein kinases (SAPKs) or c-Jun NH(2)-terminal protein kinases (JNKs) are thought to be crucial in transmitting transmembrane signals required for cell differentiation and apoptosis in vitro. In the present study, we investigated the localization and activity of SAPK/JNK in atherosclerotic lesions of cholesterol-fed rabbits. Immunofluorescence analysis revealed abundant and heterogeneous distribution of pan-SAPK/JNK and phosphorylated SAPK/JNK, which were mainly localized in cell nuclei of the lesional cap and basal regions. Double staining of the lesions demonstrated that a portion of alpha-actin(+) SMCs and RAM11(+) macrophages contained abundant phosphorylated SAPK/JNK proteins. SAPK/JNK protein levels in protein extracts from atherosclerotic lesions were two- to threefold higher than the vessels of chow-fed rabbits. SAPK/JNK activities were elevated three- to fivefold higher than the normal vessels. Interestingly, increased SAPK/JNK in lesions was co-localized or coincided with high levels of transcription factor p53 as identified by double labeling and immunoprecipitation. Abundant pro-apoptotic protein BAX and BCL-X(S) were also observed. Furthermore, low-density lipoprotein (LDL) and oxidized LDL stimulated SAPK/JNK activation in cultured SMCs in a time- and dose-dependent manner. LDL also induced SAPK/JNK activation in vascular SMCs derived from LDL-receptor-deficient Watanabe rabbits, indicating a LDL-receptor-independent process. Thus, SAPK/JNK persistently hyperexpressed and activated in lesions may play a key role in mediating cell differentiation and apoptosis during the development of atherosclerosis via activation of transcription factor p53.
Collapse
Affiliation(s)
- B Metzler
- Department of Internal Medicine, and the Institute for General and Experimental Pathology, University of Innsbruck Medical School, Austrian Academy of Sciences, Innsbruck
| | | | | | | |
Collapse
|
46
|
Jednákovits A, Ferdinándy P, Jaszlits L, Bányász T, Magyar J, Szigligeti P, Körtvély A, Szentmiklósi JA, Nánási PP. In vivo and in vitro acute cardiovascular effects of bimoclomol. ACTA ACUST UNITED AC 2000; 34:363-9. [PMID: 11368893 DOI: 10.1016/s0306-3623(01)00074-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Effects of bimoclomol, the novel heat shock protein (HSP) coinducer, was studied in various mammalian cardiac and rabbit aortic preparations. Bimoclomol decreased the ST-segment elevation induced by coronary occlusion in anesthetized dogs (56% and 80% reduction with 1 and 5 mg/kg, respectively). In isolated working rat hearts, bimoclomol increased coronary flow (CF), decreased the reduction of cardiac output (CO) and left ventricular developed pressure (LVDP) developing after coronary occlusion, and prevented ventricular fibrillation (VF) during reperfusion. In rabbit aortic preparations, precontracted with phenylephrine, bimoclomol induced relaxation (EC(50)=214 microM). Bimoclomol produced partial relaxation against 20 mM KCl, however, bimoclomol failed to relax preparations precontracted with serotonin, PGF(2) or angiotensin II. All these effects were evident within a few minutes after application of bimoclomol. A rapid bimoclomol-induced compartmental translocation of the already preformed HSPs may explain the protective action of the compound.
Collapse
Affiliation(s)
- A Jednákovits
- Biorex Research and Development Co., PO Box 348, H-8201, Veszprém-Szabadságpuszta, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Goupille O, Barnier JV, Guibert B, Paly J, Djiane J. Effect of PRL on MAPK activation: negative regulatory role of the C-terminal part of the PRL receptor. Mol Cell Endocrinol 2000; 159:133-46. [PMID: 10687859 DOI: 10.1016/s0303-7207(99)00197-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Prolactin induces cell proliferation and cell differentiation through well-known MAPK Erk, and JAK2/STAT5 pathways depending on the cell line. The aim of the present study was to delineate the functional domains of the PRL receptor involved in PRL induced MAPK regulation. Using various PRL-R mutants of the cytoplasmic domain we found, that the membrane proximal domain is necessary for PRL induced MAPK activation and that the C-terminal part of the receptor exerts a negative regulatory role. A pharmacological approach, using different types of inhibitors, provided evidence that PRL induced MAPK activation requires both a MEK dependent pathway and a PI3K dependent pathway. The negative regulation induced by the carboxy-terminal part of the receptor involves a combination of tyrosine phosphatases and serine/threonine phosphatases as concluded from the actions of the phosphatase inhibitors: pervanadate, PAO and okadaic acid. The mechanism by which these phosphatases are recruited or are induced by the last 141 cytoplasmic residues of the receptor remains to be determined. Finally the negative regulatory role of the carboxy-terminal part of the receptor, first demonstrated in the present study, is discussed in terms of the regulation of different effects of PRL on growth and differentiation.
Collapse
Affiliation(s)
- O Goupille
- Unité d'Endocrinologie Moléculaire, I.N.R.A., Jouy en Josas, France
| | | | | | | | | |
Collapse
|
48
|
Li C, Hu Y, Mayr M, Xu Q. Cyclic strain stress-induced mitogen-activated protein kinase (MAPK) phosphatase 1 expression in vascular smooth muscle cells is regulated by Ras/Rac-MAPK pathways. J Biol Chem 1999; 274:25273-80. [PMID: 10464250 DOI: 10.1074/jbc.274.36.25273] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we demonstrated that mechanical stress results in rapid phosphorylation or activation of platelet-derived growth factor receptors in vascular smooth muscle cells (VSMCs) followed by activation of mitogen-activated protein kinases (MAPKs) and AP-1 transcription factors (Hu, Y., Bock, G., Wick, G., and Xu, Q. (1998) FASEB J. 12, 1135-1142). Herein, we provide evidence that VSMC responses to mechanical stress also include induction of MAPK phosphatase-1 (MKP-1), which may serve as a negative regulator of MAPK signaling pathways. When rat VSMCs cultivated on a flexible membrane were subjected to cyclic strain stress (60 cycles/min, 5-30% elongation), induction of MKP-1 proteins and mRNA was observed in time- and strength-dependent manners. Concomitantly, mechanical forces evoked rapid and transient activation of all three members of MAPKs, i.e. extracellular signal-regulated kinases (ERKs), c-Jun NH(2)-terminal protein kinases (JNKs), or stress-activated protein kinases (SAPKs), and p38 MAPKs. Suramin, a growth factor receptor antagonist, completely abolished ERK activation, significantly blocked MKP-1 expression, but not JNK/SAPK and p38 MAPK activation, in response to mechanical stress. Interestingly, VSMC lines stably expressing dominant negative Ras (Ras N17) or Rac (Rac N17) exhibited a marked decrease in MKP-1 expression; the inhibition of ERK kinases (MEK1/2) by PD 98059 or of p38 MAPKs by SB 202190 resulted in a down-regulation of MKP-1 induction. Furthermore, overexpressing MKP-1 in VSMCs led to the dephosphorylation and inactivation of ERKs, JNKs/SAPKs, and p38 MAPKs and inhibition of DNA synthesis. Taken together, our findings demonstrate that mechanical stress induces MKP-1 expression regulated by two signal pathways, including growth factor receptor-Ras-ERK and Rac-JNK/SAPK or p38 MAPK, and that MKP-1 inhibits VSMC proliferation via MAPK inactivation. These results suggest that MKP-1 plays a crucial role in mechanical stress-stimulated signaling leading to VSMC growth and differentiation.
Collapse
Affiliation(s)
- C Li
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
49
|
Metzler B, Li C, Hu Y, Sturm G, Ghaffari-Tabrizi N, Xu Q. LDL stimulates mitogen-activated protein kinase phosphatase-1 expression, independent of LDL receptors, in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1999; 19:1862-71. [PMID: 10446064 DOI: 10.1161/01.atv.19.8.1862] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Low density lipoprotein (LDL) is a well-established risk factor for atherosclerosis, stimulating vascular smooth muscle cell (SMC) differentiation and proliferation, but the signal transduction pathways between LDL stimulation and cell proliferation are poorly understood. Because mitogen-activated protein kinases (MAPKs) play a crucial role in mediating cell growth, we studied the effect of LDL on the induction of MAPK phosphatase-1 (MKP-1) in human SMCs and found that LDL stimulated induction of MKP-1 mRNA and proteins in a time- and dose-dependent manner. Heparin, inhibiting LDL-receptor binding, did not influence LDL-stimulated MKP-1 mRNA expression, and human LDL also induced MKP-1 expression in rat SMCs and fibroblasts derived from LDL receptor-deficient mice, indicating an LDL receptor-independent process. Pretreatment of SMCs with pertussis toxin markedly inhibited LDL-induced MKP-1 expression. Depletion of protein kinase C (PKC) by phorbol 12-myristate 13 acetate or inhibition of PKC by calphostin C blocked MKP-1 induction, but the phospholipase C inhibitor U73122 had no effect. Pretreatment of SMCs with genistein or herbimycin A abrogated LDL-stimulated MKP-1 induction. The MAPK kinase inhibitor PD98059 abolished LDL-stimulated activation of extracellular signal-regulated protein kinases (ERKs) but not MKP-1 induction. Furthermore, constitutive expression of MKP-1 in vivo reduced LDL-induced expression of Elk-1-dependent reporter genes, and SMC lines overexpressing recombinant MKP-1 exhibited decreased ERK activities and retarded proliferation in response to LDL. Our findings demonstrate that LDL induces MKP-1 expression in SMCs via activation of PKC and tyrosine kinases, independent of LDL receptors and ERK-MAPKs, and that MKP-1 plays an important role in the regulation of LDL-initiated signal transductions leading to SMC proliferation.
Collapse
Affiliation(s)
- B Metzler
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Division of Cardiology, University Hospital of Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|