1
|
Dai S, Long Y, Xiao J, Wang Y, Wang X, Shao P, Huang M, Xu Y, Liu F, Tang Y, Xu X, Wu X, Zheng Y, Mo J, Yang J, Huang J, Wu R. A comprehensive metabolomic and lipidomic study of olanzapine in the treatment of first-episode schizophrenia. Asian J Psychiatr 2025; 105:104387. [PMID: 40015078 DOI: 10.1016/j.ajp.2025.104387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/21/2025] [Accepted: 02/02/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Despite advances in research, critical gaps remain in understanding the molecular mechanisms of antipsychotic medications such as olanzapine. This study investigated the molecular pathways by which olanzapine exerts its therapeutic effects and causes metabolic side effects by analyzing changes in the serum metabolic and lipid profiles of patients with first-episode schizophrenia. METHODS Clinical symptoms were assessed using the Positive and Negative Symptom Scale (PANSS) in 43 patients with first-episode schizophrenia. Body mass index (BMI) and fasting glucose (GLU) and tetraplex lipids levels were measured before and after treatment. Changes in patient serum metabolic and lipid profiles before and after treatment were examined. Correlation analysis was used to identify differential metabolites and lipid molecules that were significantly associated with changes in clinical symptoms and metabolic side-effect indicators. RESULTS After 8 weeks of olanzapine treatment, there was a significant decrease in all PANSS scores and a significant increase in BMI and GLU, total cholesterol, and low-density lipoprotein cholesterol levels in patients with first-episode schizophrenia. Metabolomic and lipidomic analyses identified 70 metabolites and 67 lipids in the serum that changed significantly after treatment. Correlation analysis revealed that the clinical symptom changes in the patients before and after treatment were significantly associated with 11 metabolites (most related to inflammation and oxidative stress), while the metabolic side-effect indicators were significantly associated with 14 lipid molecules. CONCLUSIONS Olanzapine may improve psychotic symptoms by modulating inflammation and oxidative stress-related metabolites; however, olanzapine may also cause metabolic disturbances by affecting lipid metabolic pathways.
Collapse
Affiliation(s)
- Si Dai
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yujun Long
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jingmei Xiao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ying Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiaoyi Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ping Shao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Yifeng Xu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Fang Liu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Yanqing Tang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Xijia Xu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, Jiangsu 210000, China
| | - Xiaoli Wu
- Department of Psychiatry, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510000, China
| | - Yingjun Zheng
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Jianzhong Mo
- Department of Psychiatry, Changsha County Third Hospital, Changsha, Hunan 410100, China
| | - Jin Yang
- Department of Psychiatry,The Second People's Hospital of Dali Bai Autonomous Prefecture, Dali, Yunnan 671000, China
| | - Jing Huang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Department of Psychiatry, The Third Peoples Hospital of Tongren, Tongren, Guizhou 554300, China.
| | - Rerong Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
2
|
Gharagozlou S, Wright NM, Murguia-Favela L, Eshleman J, Midgley J, Saygili S, Mathew G, Lesmana H, Makkoukdji N, Gans M, Saba JD. Sphingosine phosphate lyase insufficiency syndrome as a primary immunodeficiency state. Adv Biol Regul 2024; 94:101058. [PMID: 39454238 DOI: 10.1016/j.jbior.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Sphingosine phosphate lyase insufficiency syndrome (SPLIS) is a genetic disease associated with renal, endocrine, neurological, skin and immune defects. SPLIS is caused by inactivating mutations in SGPL1, which encodes sphingosine phosphate lyase (SPL). SPL catalyzes the irreversible degradation of the bioactive sphingolipid sphingosine-1-phosphate (S1P), a key regulator of lymphocyte egress. The SPL reaction represents the only exit point of sphingolipid metabolism, and SPL insufficiency causes widespread sphingolipid derangements that could additionally contribute to immunodeficiency. Herein, we review SPLIS, the sphingolipid metabolic pathway, and various roles sphingolipids play in immunity. We then explore SPLIS-related immunodeficiency by analyzing data available in the published literature supplemented by medical record reviews in ten SPLIS children. We found 93% of evaluable SPLIS patients had documented evidence of immunodeficiency. Many of the remainder of cases were unevaluable due to lack of available immunological data. Most commonly, SPLIS patients exhibited lymphopenia and T cell-specific lymphopenia, consistent with the established role of the S1P/S1P1/SPL axis in lymphocyte egress. However, low B and NK cell counts, hypogammaglobulinemia, and opportunistic infections with bacterial, viral and fungal pathogens were observed. Diminished responses to childhood vaccinations were less frequently observed. Screening blood tests quantifying recent thymic emigrants identified some lymphopenic SPLIS patients in the newborn period. Lymphopenia has been reported to improve after cofactor supplementation in some SPLIS patients, indicating upregulation of SPL activity. A variety of treatments including immunoglobulin replacement, prophylactic antimicrobials and special preparation of blood products prior to transfusion have been employed in SPLIS. The diverse immune consequences in SPLIS patients suggest that aberrant S1P signaling may not fully explain the extent of immunodeficiency. Further study will be required to fully elucidate the complex mechanisms underlying SPLIS immunodeficiency and determine the most effective prophylaxis against infection.
Collapse
Affiliation(s)
- Saber Gharagozlou
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| | - NicolaA M Wright
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Luis Murguia-Favela
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Juliette Eshleman
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Julian Midgley
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Seha Saygili
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey.
| | - Georgie Mathew
- Division of Pediatric Nephrology, Christian Medical College, Vellore, India.
| | - Harry Lesmana
- Department of Medical Genetics and Genomics, Department of Pediatric Hematology/Oncology and BMT, Cleveland Clinic, Cleveland, OH, USA.
| | - Nadia Makkoukdji
- Department of Pediatrics, Division of Allergy & Immunology University of Miami Miller School of Medicine/Jackson Memorial Hospital, Miami, FL, USA.
| | - Melissa Gans
- Department of Pediatrics, Division of Allergy & Immunology University of Miami Miller School of Medicine/Jackson Memorial Hospital, Miami, FL, USA.
| | - Julie D Saba
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Guo Z, Zhang Z, Huang W, Xia H, Huang S, Lan X, Ning Y, Zhou Y, Shang D. Interpretation of the pathogenesis and therapeutic mechanisms of first-episode major depressive disorder based on multiple amino acid metabolic pathways: a metabolomics study. Metab Brain Dis 2024; 40:37. [PMID: 39576355 DOI: 10.1007/s11011-024-01427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024]
Abstract
OBJECTIVES Given the unclear etiology and treatment mechanisms of depression, we aim to explore the metabolic differences between patients with major depressive disorder (MDD) and the healthy population, as well as before and after treatment with escitalopram (ESC). METHODS Recruit first-episode drug-naïve MDD (DN-MDD) patients and healthy controls (HCs). Clinical data and serum samples from all subjects were collected at baseline and patients' samples were collected again after ESC monotherapy for four weeks. Perform non-targeted metabolomic analysis and apply MetaboAnalyst 5.0 to identify differential metabolites and execute KEGG pathway enrichment. RESULTS Through metabolomic analysis of serum samples, 904 differential metabolites were identified in the DN-MDD group compared to the HCs, and 455 metabolites in treated patients compared to DN-MDD patients. In the pathway analysis, DN-MDD state regulated functions of histidine, beta-alanine, aspartate, and tryptophan metabolism, while ESC treatment produced an influence on the biological process of aspartate and sphingolipid. CONCLUSION We respectively depicted metabolism-related biomolecular changes in the serum of patients suffering from MDD and undergoing ESC treatment. Multiple amino acid metabolism pathways were adjusted in MDD patients, and levels of aspartate, arginine and sphingolipids were regulated after ESC monotherapy. These biomolecular changes may bring new insights into the biology and treatment of MDD from the perspective of the serum metabolites.
Collapse
Affiliation(s)
- Zhihao Guo
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, 510370, China
- Guangzhou Medical University, 1 Xinzao Road, Guangzhou, China
| | - Zi Zhang
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, 510370, China
- Guangzhou Medical University, 1 Xinzao Road, Guangzhou, China
| | - Wanting Huang
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, 510370, China
- Guangzhou Medical University, 1 Xinzao Road, Guangzhou, China
| | - Hui Xia
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, 510370, China
- Guangzhou Medical University, 1 Xinzao Road, Guangzhou, China
| | - Shanqing Huang
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, 510370, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Xiaofeng Lan
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, 510370, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Yuping Ning
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, 510370, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| | - Yanling Zhou
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, 510370, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| | - Dewei Shang
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, 510370, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Buitkamp S, Schwalm S, Jakobi K, Ferreiros N, Wünsche C, Zeuzem S, Gulbins E, Sarrazin C, Pfeilschifter J, Grammatikos G. Acid Sphingomyelinase Activation and ROS Generation Potentiate Antiproliferative Effects of Mitomycin in HCC. Int J Mol Sci 2024; 25:12175. [PMID: 39596241 PMCID: PMC11594907 DOI: 10.3390/ijms252212175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Sphingolipids play a major role in the regulation of hepatocellular apoptosis and proliferation. We have previously identified sphingolipid metabolites as biomarkers of chronic liver disease and hepatocellular carcinoma. Human hepatocellular carcinoma cell lines were transfected with a plasmid vector encoding for acid sphingomyelinase. Overexpressing cells were subsequently treated with mitomycin and cell proliferation, acid sphingomyelinase activity, sphingolipid concentrations, and generation of reactive oxygen species were assessed. The stimulation of acid sphingomyelinase-overexpressing cell lines with mitomycin showed a significant activation of the enzyme (p < 0.001) followed by an accumulation of various ceramide species (p < 0.001) and reactive oxygen radicals (p < 0.001) as compared to control transfected cells. Consequently, a significant reduction in cell proliferation was observed in acid sphingomyelinase-overexpressing cells (p < 0.05) which could be diminished by the simultaneous application of antioxidant agents. Moreover, the application of mitomycin induced significant alterations in mRNA expression levels of ceramidases and sphingosine kinases (p < 0.05). Our data suggest that the overexpression of the acid sphingomyelinase in human hepatoma cell lines enhances the in vitro antiproliferative potential of mitomycin via accumulation of ceramide and reactive oxygen species. The selective activation of acid sphingomyelinase might offer a novel therapeutic approach in the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sirkka Buitkamp
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University Hospital, 60590 Frankfurt am Main, Germany; (S.B.); (S.S.); (K.J.); (C.W.); (J.P.)
- Klinik für Innere Medizin I, Helios Dr. Horst Schmidt Kliniken Wiesbaden, 65199 Wiesbaden, Germany
| | - Stephanie Schwalm
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University Hospital, 60590 Frankfurt am Main, Germany; (S.B.); (S.S.); (K.J.); (C.W.); (J.P.)
| | - Katja Jakobi
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University Hospital, 60590 Frankfurt am Main, Germany; (S.B.); (S.S.); (K.J.); (C.W.); (J.P.)
- Medizinische Klinik 2/Rheumatologie, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - Nerea Ferreiros
- Pharmazentrum Frankfurt, Institut für klinische Pharmakologie, Goethe University Hospital, 60590 Frankfurt am Main, Germany;
- Multidos, 65520 Bad Camberg, Germany
| | - Christin Wünsche
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University Hospital, 60590 Frankfurt am Main, Germany; (S.B.); (S.S.); (K.J.); (C.W.); (J.P.)
- GBG Forschungs GmbH, 63263 Neu-Isenburg, Germany
| | - Stefan Zeuzem
- Medizinische Klinik 1/Gastroenterologie und Hepatologie, Goethe University Hospital, 60590 Frankfurt am Main, Germany;
| | - Erich Gulbins
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany;
| | - Christoph Sarrazin
- Medizinische Klinik II, St. Josefs-Hospital Wiesbaden, 65189 Wiesbaden, Germany;
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University Hospital, 60590 Frankfurt am Main, Germany; (S.B.); (S.S.); (K.J.); (C.W.); (J.P.)
| | - Georgios Grammatikos
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University Hospital, 60590 Frankfurt am Main, Germany; (S.B.); (S.S.); (K.J.); (C.W.); (J.P.)
- Medizinische Klinik 1/Gastroenterologie und Hepatologie, Goethe University Hospital, 60590 Frankfurt am Main, Germany;
- St’ Lukes Hospital, 55236 Thessaloniki, Greece
| |
Collapse
|
5
|
Duan DM, Wang YC, Hu X, Wang YB, Wang YQ, Hu Y, Zhou XJ, Dong XZ. Effects of regulating gut microbiota by electroacupuncture in the chronic unpredictable mild stress rat model. Neuroscience 2024; 557:24-36. [PMID: 39128700 DOI: 10.1016/j.neuroscience.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE This study aims to investigate the effect of electroacupuncture (EA) treatment on depression, and the potential molecular mechanism of EA in depression-like behaviors rats. METHODS A total of 40 male Sprague Dawley rats were divided into three groups: normal control, chronic unpredictable mild stress (CUMS), and EA (CUMS + EA). The rats in CUMS and EA groups underwent chronic stress for 10 weeks, and EA group rats received EA treatment for 4 weeks starting from week 7. Body weight and behavioral tests, including the sucrose preference test (SPT), the forced swimming test (FST), and the open field test (OFT) were monitored. Gut microbiota composition was assessed via 16S rDNA sequencing, and lipid metabolism was analyzed by using UPLC-Q-TOF/MS technology. RESULTS In comparison to CUMS group, EA could improve the behavior including bodyweight, immovability time, sucrose preference index, crossing piece index and rearing times index. After 4 weeks of EA treatment, 5-HT in hippocampus, serum and colon of depressive rats were simultaneously increased, indicating a potential alleviation of depression-like behaviors. In future studies revealed that EA could regulate the distribution and functions of gut microbiota, and improve the intestinal barrier function of CUMS rats. The regulation of intestinal microbial homeostasis by EA may further affect lipid metabolism in CUMS rats, and thus play an antidepressant role. CONCLUSION This study suggested that EA has potential antidepressant effects by regulating gut microbiota composition and abundance, subsequently affecting lipid metabolism.
Collapse
Affiliation(s)
- Dong-Mei Duan
- No.1 Health Care Department, Second Medical Center of Chinese, PLA General Hospital, 100853, China
| | - Yi-Chen Wang
- Chinese PLA Medical School, 100853, China; Chinese PLA General Hospital, 100853, China
| | - Xin Hu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100853, China; School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yuan-Bo Wang
- Chinese PLA Medical School, 100853, China; Chinese PLA General Hospital, 100853, China
| | - Yu-Qing Wang
- Chinese PLA Medical School, 100853, China; Chinese PLA General Hospital, 100853, China
| | - Yuan Hu
- Chinese PLA General Hospital, 100853, China
| | | | - Xian-Zhe Dong
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100853, China.
| |
Collapse
|
6
|
Weber-Stout M, Nicholson RJ, Dumaguit CDC, Holland WL, Summers SA. Ceramide microdomains: the major influencers of the sphingolipid media platform. Biochem Soc Trans 2024; 52:1765-1776. [PMID: 39082976 PMCID: PMC11845337 DOI: 10.1042/bst20231395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Like 'influencers' who achieve fame and power through social media, ceramides are low abundance members of communication platforms that have a mighty impact on their surroundings. Ceramide microdomains form within sphingolipid-laden lipid rafts that confer detergent resistance to cell membranes and serve as important signaling hubs. In cells exposed to excessive amounts of saturated fatty acids (e.g. in obesity), the abundance of ceramide-rich microdomains within these rafts increases, leading to concomitant alterations in cellular metabolism and survival that contribute to cardiometabolic disease. In this mini-review, we discuss the evidence supporting the formation of these ceramide microdomains and describe the spectrum of harmful ceramide-driven metabolic actions under the context of an evolutionary theory. Moreover, we discuss the proximal 'followers' of these ceramide media stars that account for the diverse intracellular actions that allow them to influence obesity-linked disease.
Collapse
Affiliation(s)
- Mariah Weber-Stout
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, U.S.A
| | - Rebekah J Nicholson
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, U.S.A
| | - Carlos Dave C Dumaguit
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, U.S.A
| | - William L Holland
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, U.S.A
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, U.S.A
| |
Collapse
|
7
|
Dorweiler TF, Singh A, Ganju A, Lydic TA, Glazer LC, Kolesnick RN, Busik JV. Diabetic retinopathy is a ceramidopathy reversible by anti-ceramide immunotherapy. Cell Metab 2024; 36:1521-1533.e5. [PMID: 38718792 PMCID: PMC11222062 DOI: 10.1016/j.cmet.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/08/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Diabetic retinopathy is a microvascular disease that causes blindness. Using acid sphingomyelinase knockout mice, we reported that ceramide generation is critical for diabetic retinopathy development. Here, in patients with proliferative diabetic retinopathy, we identify vitreous ceramide imbalance with pathologic long-chain C16-ceramides increasing and protective very long-chain C26-ceramides decreasing. C16-ceramides generate pro-inflammatory/pro-apoptotic ceramide-rich platforms on endothelial surfaces. To geo-localize ceramide-rich platforms, we invented a three-dimensional confocal assay and showed that retinopathy-producing cytokines TNFα and IL-1β induce ceramide-rich platform formation on retinal endothelial cells within seconds, with volumes increasing 2-logs, yielding apoptotic death. Anti-ceramide antibodies abolish these events. Furthermore, intravitreal and systemic anti-ceramide antibodies protect from diabetic retinopathy in standardized rodent ischemia reperfusion and streptozotocin models. These data support (1) retinal endothelial ceramide as a diabetic retinopathy treatment target, (2) early-stage therapy of non-proliferative diabetic retinopathy to prevent progression, and (3) systemic diabetic retinopathy treatment; and they characterize diabetic retinopathy as a "ceramidopathy" reversible by anti-ceramide immunotherapy.
Collapse
Affiliation(s)
- Tim F Dorweiler
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02113, USA
| | - Arjun Singh
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, New York, NY 10065, USA
| | - Aditya Ganju
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, New York, NY 10065, USA
| | - Todd A Lydic
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Louis C Glazer
- Vitreo-Retinal Associates, Grand Rapids, MI 49546, USA; Ophthalmology, Michigan State University, East Lansing, MI 48824, USA
| | - Richard N Kolesnick
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, New York, NY 10065, USA.
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
8
|
Patel SH, Wilson GC, Wu Y, Keitsch S, Wilker B, Mattarei A, Ahmad SA, Szabo I, Gulbins E. Sphingosine is involved in PAPTP-induced death of pancreas cancer cells by interfering with mitochondrial functions. J Mol Med (Berl) 2024; 102:947-959. [PMID: 38780771 PMCID: PMC11213728 DOI: 10.1007/s00109-024-02456-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Pancreas ductal adenocarcinoma belongs to the most common cancers, but also to the tumors with the poorest prognosis. Here, we pharmacologically targeted a mitochondrial potassium channel, namely mitochondrial Kv1.3, and investigated the role of sphingolipids and mutated Kirsten Rat Sarcoma Virus (KRAS) in Kv1.3-mediated cell death. We demonstrate that inhibition of Kv1.3 using the Kv1.3-inhibitor PAPTP results in an increase of sphingosine and superoxide in membranes and/or membranes associated with mitochondria, which is enhanced by KRAS mutation. The effect of PAPTP on sphingosine and mitochondrial superoxide formation as well as cell death is prevented by sh-RNA-mediated downregulation of Kv1.3. Induction of sphingosine in human pancreas cancer cells by PAPTP is mediated by activation of sphingosine-1-phosphate phosphatase and prevented by an inhibitor of sphingosine-1-phosphate phosphatase. A rapid depolarization of isolated mitochondria is triggered by binding of sphingosine to cardiolipin, which is neutralized by addition of exogenous cardiolipin. The significance of these findings is indicated by treatment of mutated KRAS-harboring metastasized pancreas cancer with PAPTP in combination with ABC294640, a blocker of sphingosine kinases. This treatment results in increased formation of sphingosine and death of pancreas cancer cells in vitro and, most importantly, prolongs in vivo survival of mice challenged with metastatic pancreas cancer. KEY MESSAGES: Pancreatic ductal adenocarcinoma (PDAC) is a common tumor with poor prognosis. The mitochondrial Kv1.3 ion channel blocker induced mitochondrial sphingosine. Sphingosine binds to cardiolipin thereby mediating mitochondrial depolarization. Sphingosine is formed by a PAPTP-mediated activation of S1P-Phosphatase. Inhibition of sphingosine-consumption amplifies PAPTP effects on PDAC in vivo.
Collapse
Affiliation(s)
- Sameer H Patel
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gregory C Wilson
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yuqing Wu
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Simone Keitsch
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Barbara Wilker
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Syed A Ahmad
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ildiko Szabo
- Department of Biology, CNR Institute of Neurosciences, University of Padua, Padua, Italy
| | - Erich Gulbins
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
9
|
Quadri Z, Elsherbini A, Crivelli SM, El‐Amouri SS, Tripathi P, Zhu Z, Ren X, Zhang L, Spassieva SD, Nikolova‐Karakashian M, Bieberich E. Ceramide-mediated orchestration of oxidative stress response through filopodia-derived small extracellular vesicles. J Extracell Vesicles 2024; 13:e12477. [PMID: 38988257 PMCID: PMC11237349 DOI: 10.1002/jev2.12477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 05/14/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024] Open
Abstract
Extracellular vesicles (EVs) are shed from the plasma membrane, but the regulation and function of these EVs remain unclear. We found that oxidative stress induced by H2O2 in Hela cells stimulated filopodia formation and the secretion of EVs. EVs were small (150 nm) and labeled for CD44, indicating that they were derived from filopodia. Filopodia-derived small EVs (sEVs) were enriched with the sphingolipid ceramide, consistent with increased ceramide in the plasma membrane of filopodia. Ceramide was colocalized with neutral sphingomyelinase 2 (nSMase2) and acid sphingomyelinase (ASM), two sphingomyelinases generating ceramide at the plasma membrane. Inhibition of nSMase2 and ASM prevented oxidative stress-induced sEV shedding but only nSMase2 inhibition prevented filopodia formation. nSMase2 was S-palmitoylated and interacted with ASM in filopodia to generate ceramide for sEV shedding. sEVs contained nSMase2 and ASM and decreased the level of these two enzymes in oxidatively stressed Hela cells. A novel metabolic labeling technique for EVs showed that oxidative stress induced secretion of fluorescent sEVs labeled with NBD-ceramide. NBD-ceramide-labeled sEVs transported ceramide to mitochondria, ultimately inducing cell death in a proportion of neuronal (N2a) cells. In conclusion, using Hela cells we provide evidence that oxidative stress induces interaction of nSMase2 and ASM at filopodia, which leads to shedding of ceramide-rich sEVs that target mitochondria and propagate cell death.
Collapse
Affiliation(s)
- Zainuddin Quadri
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Ahmed Elsherbini
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Simone M. Crivelli
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Salim S. El‐Amouri
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Priyanka Tripathi
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Zhihui Zhu
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Xiaojia Ren
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Liping Zhang
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Stefka D. Spassieva
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | | | - Erhard Bieberich
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
- Veterans Affairs Medical CenterLexingtonKentuckyUSA
| |
Collapse
|
10
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
11
|
Lee J, Mani A, Shin MJ, Krauss RM. Leveraging altered lipid metabolism in treating B cell malignancies. Prog Lipid Res 2024; 95:101288. [PMID: 38964473 PMCID: PMC11347096 DOI: 10.1016/j.plipres.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
B cell malignancies, comprising over 80 heterogeneous blood cancers, pose significant prognostic challenges due to intricate oncogenic signaling. Emerging evidence emphasizes the pivotal role of disrupted lipid metabolism in the development of these malignancies. Variations in lipid species, such as phospholipids, cholesterol, sphingolipids, and fatty acids, are widespread across B cell malignancies, contributing to uncontrolled cell proliferation and survival. Phospholipids play a crucial role in initial signaling cascades leading to B cell activation and malignant transformation through constitutive B cell receptor (BCR) signaling. Dysregulated cholesterol and sphingolipid homeostasis support lipid raft integrity, crucial for propagating oncogenic signals. Sphingolipids impact malignant B cell stemness, proliferation, and survival, while glycosphingolipids in lipid rafts modulate BCR activation. Additionally, cancer cells enhance fatty acid-related processes to meet heightened metabolic demands. In obese individuals, the obesity-derived lipids and adipokines surrounding adipocytes rewire lipid metabolism in malignant B cells, evading cytotoxic therapies. Genetic drivers such as MYC translocations also intrinsically alter lipid metabolism in malignant B cells. In summary, intrinsic and extrinsic factors converge to reprogram lipid metabolism, fostering aggressive phenotypes in B cell malignancies. Therefore, targeting altered lipid metabolism has translational potential for improving risk stratification and clinical management of diverse B cell malignancy subtypes.
Collapse
Affiliation(s)
- Jaewoong Lee
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea; Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea; Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA.
| | - Arya Mani
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University, New Haven, CT 06511, USA; Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Min-Jeong Shin
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea; Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Ronald M Krauss
- Department of Pediatrics and Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
12
|
Wu Y, Riehle A, Pollmeier B, Kadow S, Schumacher F, Drab M, Kleuser B, Gulbins E, Grassmé H. Caveolin-1 affects early mycobacterial infection and apoptosis in macrophages and mice. Tuberculosis (Edinb) 2024; 147:102493. [PMID: 38547568 DOI: 10.1016/j.tube.2024.102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 06/14/2024]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, remains one of the deadliest infections in humans. Because Mycobacterium bovis Bacillus Calmette-Guérin (BCG) share genetic similarities with Mycobacterium tuberculosis, it is often used as a model to elucidate the molecular mechanisms of more severe tuberculosis infection. Caveolin-1 has been implied in many physiological processes and diseases, but it's role in mycobacterial infections has barely been studied. We isolated macrophages from Wildtype or Caveolin-1 deficient mice and analyzed hallmarks of infection, such as internalization, induction of autophagy and apoptosis. For in vivo assays we intravenously injected mice with BCG and investigated tissues for bacterial load with colony-forming unit assays, bioactive lipids with mass spectrometry and changes of protein expressions by Western blotting. Our results revealed that Caveolin-1 was important for early killing of BCG infection in vivo and in vitro, controlled acid sphingomyelinase (Asm)-dependent ceramide formation, apoptosis and inflammatory cytokines upon infection with BCG. In accordance, Caveolin-1 deficient mice and macrophages showed higher bacterial burdens in the livers. The findings indicate that Caveolin-1 plays a role in infection of mice and murine macrophages with BCG, by controlling cellular apoptosis and inflammatory host response. These clues might be useful in the fight against tuberculosis.
Collapse
Affiliation(s)
- Yuqing Wu
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Andrea Riehle
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Barbara Pollmeier
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Stephanie Kadow
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | | | - Marek Drab
- Unit of Nanostructural Biointeractions, Department of Immunology of Infectious Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla Street, 53-114, Wroclaw, Poland
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Heike Grassmé
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
13
|
Wajapeyee N, Beamon TC, Gupta R. Roles and therapeutic targeting of ceramide metabolism in cancer. Mol Metab 2024; 83:101936. [PMID: 38599378 PMCID: PMC11031839 DOI: 10.1016/j.molmet.2024.101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Ceramides are sphingolipids that act as signaling molecules involved in regulating cellular processes including apoptosis, proliferation, and metabolism. Deregulation of ceramide metabolism contributes to cancer development and progression. Therefore, regulation of ceramide levels in cancer cells is being explored as a new approach for cancer therapy. SCOPE OF THE REVIEW This review discusses the multiple roles of ceramides in cancer cells and strategies to modulate ceramide levels for cancer therapy. Ceramides attenuate cell survival signaling and metabolic pathways, while activating apoptotic mechanisms, making them tumor-suppressive. Approaches to increase ceramide levels in cancer cells include using synthetic analogs, inhibiting ceramide degradation, and activating ceramide synthesis. We also highlight combination therapies such as use of ceramide modulators with chemotherapies, immunotherapies, apoptosis inducers, and anti-angiogenics, which offer synergistic antitumor effects. Additionally, we also describe ongoing clinical trials evaluating ceramide nanoliposomes and analogs. Finally, we discuss the challenges of these therapeutic approaches including the complexity of ceramide metabolism, targeted delivery, cancer heterogeneity, resistance mechanisms, and long-term safety. MAJOR CONCLUSIONS Ceramide-based therapy is a potentially promising approach for cancer therapy. However, overcoming hurdles in pharmacokinetics, specificity, and resistance is needed to optimize its efficacy and safety. This requires comprehensive preclinical/clinical studies into ceramide signaling, formulations, and combination therapies. Ceramide modulation offers opportunities for developing novel cancer treatments, but a deeper understanding of ceramide biology is vital to advance its clinical applications.
Collapse
Affiliation(s)
- Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| | - Teresa Chiyanne Beamon
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| |
Collapse
|
14
|
Seal A, Hughes M, Wei F, Pugazhendhi AS, Ngo C, Ruiz J, Schwartzman JD, Coathup MJ. Sphingolipid-Induced Bone Regulation and Its Emerging Role in Dysfunction Due to Disease and Infection. Int J Mol Sci 2024; 25:3024. [PMID: 38474268 PMCID: PMC10932382 DOI: 10.3390/ijms25053024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The human skeleton is a metabolically active system that is constantly regenerating via the tightly regulated and highly coordinated processes of bone resorption and formation. Emerging evidence reveals fascinating new insights into the role of sphingolipids, including sphingomyelin, sphingosine, ceramide, and sphingosine-1-phosphate, in bone homeostasis. Sphingolipids are a major class of highly bioactive lipids able to activate distinct protein targets including, lipases, phosphatases, and kinases, thereby conferring distinct cellular functions beyond energy metabolism. Lipids are known to contribute to the progression of chronic inflammation, and notably, an increase in bone marrow adiposity parallel to elevated bone loss is observed in most pathological bone conditions, including aging, rheumatoid arthritis, osteoarthritis, and osteomyelitis. Of the numerous classes of lipids that form, sphingolipids are considered among the most deleterious. This review highlights the important primary role of sphingolipids in bone homeostasis and how dysregulation of these bioactive metabolites appears central to many chronic bone-related diseases. Further, their contribution to the invasion, virulence, and colonization of both viral and bacterial host cell infections is also discussed. Many unmet clinical needs remain, and data to date suggest the future use of sphingolipid-targeted therapy to regulate bone dysfunction due to a variety of diseases or infection are highly promising. However, deciphering the biochemical and molecular mechanisms of this diverse and extremely complex sphingolipidome, both in terms of bone health and disease, is considered the next frontier in the field.
Collapse
Affiliation(s)
- Anouska Seal
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
| | - Megan Hughes
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK;
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Abinaya S. Pugazhendhi
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Christopher Ngo
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | | | - Melanie J. Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| |
Collapse
|
15
|
Alkafaas SS, Abdallah AM, Hassan MH, Hussien AM, Elkafas SS, Loutfy SA, Mikhail A, Murad OG, Elsalahaty MI, Hessien M, Elshazli RM, Alsaeed FA, Ahmed AE, Kamal HK, Hafez W, El-Saadony MT, El-Tarabily KA, Ghosh S. Molecular docking as a tool for the discovery of novel insight about the role of acid sphingomyelinase inhibitors in SARS- CoV-2 infectivity. BMC Public Health 2024; 24:395. [PMID: 38321448 PMCID: PMC10848368 DOI: 10.1186/s12889-024-17747-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Recently, COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, caused > 6 million deaths. Symptoms included respiratory strain and complications, leading to severe pneumonia. SARS-CoV-2 attaches to the ACE-2 receptor of the host cell membrane to enter. Targeting the SARS-CoV-2 entry may effectively inhibit infection. Acid sphingomyelinase (ASMase) is a lysosomal protein that catalyzes the conversion of sphingolipid (sphingomyelin) to ceramide. Ceramide molecules aggregate/assemble on the plasma membrane to form "platforms" that facilitate the viral intake into the cell. Impairing the ASMase activity will eventually disrupt viral entry into the cell. In this review, we identified the metabolism of sphingolipids, sphingolipids' role in cell signal transduction cascades, and viral infection mechanisms. Also, we outlined ASMase structure and underlying mechanisms inhibiting viral entry 40 with the aid of inhibitors of acid sphingomyelinase (FIASMAs). In silico molecular docking analyses of FIASMAs with inhibitors revealed that dilazep (S = - 12.58 kcal/mol), emetine (S = - 11.65 kcal/mol), pimozide (S = - 11.29 kcal/mol), carvedilol (S = - 11.28 kcal/mol), mebeverine (S = - 11.14 kcal/mol), cepharanthine (S = - 11.06 kcal/mol), hydroxyzin (S = - 10.96 kcal/mol), astemizole (S = - 10.81 kcal/mol), sertindole (S = - 10.55 kcal/mol), and bepridil (S = - 10.47 kcal/mol) have higher inhibition activity than the candidate drug amiodarone (S = - 10.43 kcal/mol), making them better options for inhibition.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Abanoub Mosaad Abdallah
- Narcotic Research Department, National Center for Social and Criminological Research (NCSCR), Giza, 11561, Egypt
| | - Mai H Hassan
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Aya Misbah Hussien
- Biotechnology department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Abanoub Mikhail
- Department of Physics, Faculty of Science, Minia University, Minia, Egypt
- Faculty of Physics, ITMO University, Saint Petersburg, Russia
| | - Omnia G Murad
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed I Elsalahaty
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University - Egypt, New Damietta, 34517, Egypt
| | - Fatimah A Alsaeed
- Department of Biology, College of Science, King Khalid University, Muhayl, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Hani K Kamal
- Anatomy and Histology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Wael Hafez
- NMC Royal Hospital, 16Th Street, 35233, Khalifa City, Abu Dhabi, United Arab Emirates
- Medical Research Division, Department of Internal Medicine, The National Research Centre, 12622, 33 El Buhouth St, Ad Doqi, Dokki, Cairo Governorate, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
- Natural & Medical Science Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
16
|
D’Avila H, Lima CNR, Rampinelli PG, Mateus LCO, de Sousa Silva RV, Correa JR, de Almeida PE. Lipid Metabolism Modulation during SARS-CoV-2 Infection: A Spotlight on Extracellular Vesicles and Therapeutic Prospects. Int J Mol Sci 2024; 25:640. [PMID: 38203811 PMCID: PMC10778989 DOI: 10.3390/ijms25010640] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs) have a significant impact on the pathophysiological processes associated with various diseases such as tumors, inflammation, and infection. They exhibit molecular, biochemical, and entry control characteristics similar to viral infections. Viruses, on the other hand, depend on host metabolic machineries to fulfill their biosynthetic requirements. Due to potential advantages such as biocompatibility, biodegradation, and efficient immune activation, EVs have emerged as potential therapeutic targets against the SARS-CoV-2 infection. Studies on COVID-19 patients have shown that they frequently have dysregulated lipid profiles, which are associated with an increased risk of severe repercussions. Lipid droplets (LDs) serve as organelles with significant roles in lipid metabolism and energy homeostasis as well as having a wide range of functions in infections. The down-modulation of lipids, such as sphingolipid ceramide and eicosanoids, or of the transcriptional factors involved in lipogenesis seem to inhibit the viral multiplication, suggesting their involvement in the virus replication and pathogenesis as well as highlighting their potential as targets for drug development. Hence, this review focuses on the role of modulation of lipid metabolism and EVs in the mechanism of immune system evasion during SARS-CoV-2 infection and explores the therapeutic potential of EVs as well as application for delivering therapeutic substances to mitigate viral infections.
Collapse
Affiliation(s)
- Heloisa D’Avila
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | | | - Pollianne Garbero Rampinelli
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | - Laiza Camila Oliveira Mateus
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | - Renata Vieira de Sousa Silva
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | - José Raimundo Correa
- Laboratory of Microscopy and Microanalysis, University of Brasília, Brasília 70910-900, Brazil;
| | - Patrícia Elaine de Almeida
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| |
Collapse
|
17
|
Molinar-Inglis O, DiCarlo AL, Lapinskas PJ, Rios CI, Satyamitra MM, Silverman TA, Winters TA, Cassatt DR. Radiation-induced multi-organ injury. Int J Radiat Biol 2024; 100:486-504. [PMID: 38166195 PMCID: PMC11874064 DOI: 10.1080/09553002.2023.2295298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/19/2023] [Accepted: 11/15/2023] [Indexed: 01/04/2024]
Abstract
PURPOSE Natural history studies have been informative in dissecting radiation injury, isolating its effects, and compartmentalizing injury based on the extent of exposure and the elapsed time post-irradiation. Although radiation injury models are useful for investigating the mechanism of action in isolated subsyndromes and development of medical countermeasures (MCMs), it is clear that ionizing radiation exposure leads to multi-organ injury (MOI). METHODS The Radiation and Nuclear Countermeasures Program within the National Institute of Allergy and Infectious Diseases partnered with the Biomedical Advanced Research and Development Authority to convene a virtual two-day meeting titled 'Radiation-Induced Multi-Organ Injury' on June 7-8, 2022. Invited subject matter experts presented their research findings in MOI, including study of mechanisms and possible MCMs to address complex radiation-induced injuries. RESULTS This workshop report summarizes key information from each presentation and discussion by the speakers and audience participants. CONCLUSIONS Understanding the mechanisms that lead to radiation-induced MOI is critical to advancing candidate MCMs that could mitigate the injury and reduce associated morbidity and mortality. The observation that some of these mechanisms associated with MOI include systemic injuries, such as inflammation and vascular damage, suggests that MCMs that address systemic pathways could be effective against multiple organ systems.
Collapse
Affiliation(s)
- Olivia Molinar-Inglis
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Paula J. Lapinskas
- Biomedical Advanced Research and Development Authority (BARDA), Administration for Strategic Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC, USA
| | - Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Toby A. Silverman
- Biomedical Advanced Research and Development Authority (BARDA), Administration for Strategic Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC, USA
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| |
Collapse
|
18
|
Rother N, Yanginlar C, Prévot G, Jonkman I, Jacobs M, van Leent MMT, van Heck J, Matzaraki V, Azzun A, Morla-Folch J, Ranzenigo A, Wang W, van der Meel R, Fayad ZA, Riksen NP, Hilbrands LB, Lindeboom RGH, Martens JHA, Vermeulen M, Joosten LAB, Netea MG, Mulder WJM, van der Vlag J, Teunissen AJP, Duivenvoorden R. Acid ceramidase regulates innate immune memory. Cell Rep 2023; 42:113458. [PMID: 37995184 PMCID: PMC11907240 DOI: 10.1016/j.celrep.2023.113458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/04/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Innate immune memory, also called "trained immunity," is a functional state of myeloid cells enabling enhanced immune responses. This phenomenon is important for host defense, but also plays a role in various immune-mediated conditions. We show that exogenously administered sphingolipids and inhibition of sphingolipid metabolizing enzymes modulate trained immunity. In particular, we reveal that acid ceramidase, an enzyme that converts ceramide to sphingosine, is a potent regulator of trained immunity. We show that acid ceramidase regulates the transcription of histone-modifying enzymes, resulting in profound changes in histone 3 lysine 27 acetylation and histone 3 lysine 4 trimethylation. We confirm our findings by identifying single-nucleotide polymorphisms in the region of ASAH1, the gene encoding acid ceramidase, that are associated with the trained immunity cytokine response. Our findings reveal an immunomodulatory effect of sphingolipids and identify acid ceramidase as a relevant therapeutic target to modulate trained immunity responses in innate immune-driven disorders.
Collapse
Affiliation(s)
- Nils Rother
- Department of Nephrology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cansu Yanginlar
- Department of Nephrology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Geoffrey Prévot
- Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Inge Jonkman
- Department of Nephrology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Maaike Jacobs
- Department of Nephrology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mandy M T van Leent
- Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medical Biochemistry, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Julia van Heck
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anthony Azzun
- Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judit Morla-Folch
- Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Ranzenigo
- Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William Wang
- Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Zahi A Fayad
- Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Luuk B Hilbrands
- Department of Nephrology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rik G H Lindeboom
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, University of Medicine and Pharmacy, Iuliu Haţieganu, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Willem J M Mulder
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Abraham J P Teunissen
- Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raphaël Duivenvoorden
- Department of Nephrology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands; Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
19
|
Yanagisawa H, Kita Y, Oda T, Kikkawa M. Cryo-EM elucidates the uroplakin complex structure within liquid-crystalline lipids in the porcine urothelial membrane. Commun Biol 2023; 6:1018. [PMID: 37805589 PMCID: PMC10560298 DOI: 10.1038/s42003-023-05393-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023] Open
Abstract
The urothelium, a distinct epithelial tissue lining the urinary tract, serves as an essential component in preserving urinary tract integrity and thwarting infections. The asymmetric unit membrane (AUM), primarily composed of the uroplakin complex, constitutes a critical permeability barrier in fulfilling this role. However, the molecular architectures of both the AUM and the uroplakin complex have remained enigmatic due to the paucity of high-resolution structural data. In this study, we utilized cryo-electron microscopy to elucidate the three-dimensional structure of the uroplakin complex within the porcine AUM. While the global resolution achieved was 3.5 Å, we acknowledge that due to orientation bias, the resolution in the vertical direction was determined to be 6.3 Å. Our findings unveiled that the uroplakin complexes are situated within hexagonally arranged crystalline lipid membrane domains, rich in hexosylceramides. Moreover, our research rectifies a misconception in a previous model by confirming the existence of a domain initially believed to be absent, and pinpointing the accurate location of a crucial Escherichia coli binding site implicated in urinary tract infections. These discoveries offer valuable insights into the molecular underpinnings governing the permeability barrier function of the urothelium and the orchestrated lipid phase formation within the plasma membrane.
Collapse
Affiliation(s)
- Haruaki Yanagisawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshihiro Kita
- Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Toshiyuki Oda
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
20
|
Pilátová MB, Solárová Z, Mezencev R, Solár P. Ceramides and their roles in programmed cell death. Adv Med Sci 2023; 68:417-425. [PMID: 37866204 DOI: 10.1016/j.advms.2023.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/14/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
Programmed cell death plays a crucial role in maintaining the homeostasis and integrity of multicellular organisms, and its dysregulation contributes to the pathogenesis of many diseases. Programmed cell death is regulated by a range of macromolecules and low-molecular messengers, including ceramides. Endogenous ceramides have different functions, that are influenced by their localization and the presence of their target molecules. This article provides an overview of the current understanding of ceramides and their impact on various types of programmed cell death, including apoptosis, anoikis, macroautophagy and mitophagy, and necroptosis. Moreover, it highlights the emergence of dihydroceramides as a new class of bioactive sphingolipids and their downstream targets as well as their future roles in cancer cell growth, drug resistance and tumor metastasis.
Collapse
Affiliation(s)
- Martina Bago Pilátová
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovak Republic
| | - Zuzana Solárová
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovak Republic
| | - Roman Mezencev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter Solár
- Department of Medical Biology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovak Republic.
| |
Collapse
|
21
|
Yanagisawa H, Kita Y, Oda T, Kikkawa M. Unveiling Liquid-Crystalline Lipids in the Urothelial Membrane through Cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542358. [PMID: 37398191 PMCID: PMC10312457 DOI: 10.1101/2023.05.29.542358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The urothelium, a distinct epithelial tissue lining the urinary tract, serves as an essential component in preserving urinary tract integrity and thwarting infections. The asymmetric unit membrane (AUM), primarily composed of the uroplakin complex, constitutes a critical permeability barrier in fulfilling this role. However, the molecular architectures of both the AUM and the uroplakin complex have remained enigmatic due to the paucity of high-resolution structural data. In this study, we utilized cryo-electron microscopy to elucidate the three-dimensional structure of the uroplakin complex within the porcine AUM. While the global resolution achieved was 3.5 Å, we acknowledge that due to orientation bias, the resolution in the vertical direction was determined to be 6.3 Å. Our findings unveiled that the uroplakin complexes are situated within hexagonally arranged crystalline lipid membrane domains, rich in hexosylceramides. Moreover, our research rectifies a misconception in a previous model by confirming the existence of a domain initially believed to be absent, and pinpointing the accurate location of a crucial Escherichia coli binding site implicated in urinary tract infections. These discoveries offer valuable insights into the molecular underpinnings governing the permeability barrier function of the urothelium and the orchestrated lipid phase formation within the plasma membrane.
Collapse
Affiliation(s)
- Haruaki Yanagisawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshihiro Kita
- Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiyuki Oda
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
22
|
Shi M, Tang C, Wu JX, Ji BW, Gong BM, Wu XH, Wang X. Mass Spectrometry Detects Sphingolipid Metabolites for Discovery of New Strategy for Cancer Therapy from the Aspect of Programmed Cell Death. Metabolites 2023; 13:867. [PMID: 37512574 PMCID: PMC10384871 DOI: 10.3390/metabo13070867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Sphingolipids, a type of bioactive lipid, play crucial roles within cells, serving as integral components of membranes and exhibiting strong signaling properties that have potential therapeutic implications in anti-cancer treatments. However, due to the diverse group of lipids and intricate mechanisms, sphingolipids still face challenges in enhancing the efficacy of different therapy approaches. In recent decades, mass spectrometry has made significant advancements in uncovering sphingolipid biomarkers and elucidating their impact on cancer development, progression, and resistance. Primary sphingolipids, such as ceramide and sphingosine-1-phosphate, exhibit contrasting roles in regulating cancer cell death and survival. The evasion of cell death is a characteristic hallmark of cancer cells, leading to treatment failure and a poor prognosis. The escape initiates with long-established apoptosis and extends to other programmed cell death (PCD) forms when patients experience chemotherapy, radiotherapy, and/or immunotherapy. Gradually, supportive evidence has uncovered the fundamental molecular mechanisms underlying various forms of PCD leading to the development of innovative molecular, genetic, and pharmacological tools that specifically target sphingolipid signaling nodes. In this study, we provide a comprehensive overview of the sphingolipid biomarkers revealed through mass spectrometry in recent decades, as well as an in-depth analysis of the six main forms of PCD (apoptosis, autophagy, pyroptosis, necroptosis, ferroptosis, and cuproptosis) in aspects of tumorigenesis, metastasis, and tumor response to treatments. We review the corresponding small-molecule compounds associated with these processes and their potential implications in cancer therapy.
Collapse
Affiliation(s)
- Ming Shi
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Collaborative Innovation Center of Genetics and Development, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai 200438, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Chao Tang
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jia-Xing Wu
- SINO-SWISS Institute of Advanced Technology, School of Microelectronics, Shanghai University, Shanghai 200444, China
| | - Bao-Wei Ji
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai 200032, China
| | - Bao-Ming Gong
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Collaborative Innovation Center of Genetics and Development, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiao-Hui Wu
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Collaborative Innovation Center of Genetics and Development, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xue Wang
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Collaborative Innovation Center of Genetics and Development, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
23
|
Oda T, Yanagisawa H, Kikkawa M, Kita Y. Unveiling Liquid-Crystalline Lipids in the Urothelial Membrane through Cryo-EM. RESEARCH SQUARE 2023:rs.3.rs-3080731. [PMID: 37503277 PMCID: PMC10371089 DOI: 10.21203/rs.3.rs-3080731/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The urothelium, a distinct epithelial tissue lining the urinary tract, serves as an essential component in preserving urinary tract integrity and thwarting infections. The asymmetric unit membrane (AUM), primarily composed of the uroplakin complex, constitutes a critical permeability barrier in fulfilling this role. However, the molecular architectures of both the AUM and the uroplakin complex have remained enigmatic due to the paucity of high-resolution structural data. In this investigation, we employed cryo-electron microscopy to elucidate the three-dimensional structure of the uroplakin complex embedded within the porcine AUM at a resolution of 3.5 Å. Our findings unveiled that the uroplakin complexes are situated within hexagonally arranged crystalline lipid membrane domains, rich in hexosylceramides. Moreover, our research rectifies a misconception in a previous model by confirming the existence of a domain initially believed to be absent, and pinpointing the accurate location of a crucial Escherichia coli binding site implicated in urinary tract infections. These discoveries offer valuable insights into the molecular underpinnings governing the permeability barrier function of the urothelium and the orchestrated lipid phase formation within the plasma membrane.
Collapse
|
24
|
Pokrovsky VS, Ivanova-Radkevich VI, Kuznetsova OM. Sphingolipid Metabolism in Tumor Cells. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:847-866. [PMID: 37751859 DOI: 10.1134/s0006297923070015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 09/28/2023]
Abstract
Sphingolipids are a diverse family of complex lipids typically composed of a sphingoid base bound to a fatty acid via amide bond. The metabolism of sphingolipids has long remained out of focus of biochemical studies. Recently, it has been attracting an increasing interest of researchers because of different and often multidirectional effects demonstrated by sphingolipids with a similar chemical structure. Sphingosine, ceramides (N-acylsphingosines), and their phosphorylated derivatives (sphingosine-1-phosphate and ceramide-1-phosphates) act as signaling molecules. Ceramides induce apoptosis and regulate stability of cell membranes and cell response to stress. Ceramides and sphingoid bases slow down anabolic and accelerate catabolic reactions, thus suppressing cell proliferation. On the contrary, their phosphorylated derivatives (ceramide-1-phosphate and sphingosine-1-phosphate) stimulate cell proliferation. Involvement of sphingolipids in the regulation of apoptosis and cell proliferation makes them critically important in tumor progression. Sphingolipid metabolism enzymes and sphingolipid receptors can be potential targets for antitumor therapy. This review describes the main pathways of sphingolipid metabolism in human cells, with special emphasis on the properties of this metabolism in tumor cells.
Collapse
Affiliation(s)
- Vadim S Pokrovsky
- People's Friendship University of Russia (RUDN University), Moscow, 117198, Russia.
| | | | - Olga M Kuznetsova
- People's Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| |
Collapse
|
25
|
Chen P, Wu M, He Y, Jiang B, He ML. Metabolic alterations upon SARS-CoV-2 infection and potential therapeutic targets against coronavirus infection. Signal Transduct Target Ther 2023; 8:237. [PMID: 37286535 DOI: 10.1038/s41392-023-01510-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/18/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by coronavirus SARS-CoV-2 infection has become a global pandemic due to the high viral transmissibility and pathogenesis, bringing enormous burden to our society. Most patients infected by SARS-CoV-2 are asymptomatic or have mild symptoms. Although only a small proportion of patients progressed to severe COVID-19 with symptoms including acute respiratory distress syndrome (ARDS), disseminated coagulopathy, and cardiovascular disorders, severe COVID-19 is accompanied by high mortality rates with near 7 million deaths. Nowadays, effective therapeutic patterns for severe COVID-19 are still lacking. It has been extensively reported that host metabolism plays essential roles in various physiological processes during virus infection. Many viruses manipulate host metabolism to avoid immunity, facilitate their own replication, or to initiate pathological response. Targeting the interaction between SARS-CoV-2 and host metabolism holds promise for developing therapeutic strategies. In this review, we summarize and discuss recent studies dedicated to uncovering the role of host metabolism during the life cycle of SARS-CoV-2 in aspects of entry, replication, assembly, and pathogenesis with an emphasis on glucose metabolism and lipid metabolism. Microbiota and long COVID-19 are also discussed. Ultimately, we recapitulate metabolism-modulating drugs repurposed for COVID-19 including statins, ASM inhibitors, NSAIDs, Montelukast, omega-3 fatty acids, 2-DG, and metformin.
Collapse
Affiliation(s)
- Peiran Chen
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China
| | - Mandi Wu
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Binghua Jiang
- Cell Signaling and Proteomic Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China.
| |
Collapse
|
26
|
Tse CM, Zhang Z, Lin R, Sarker R, Donowitz M, Singh V. The Air-Liquid Interface Reorganizes Membrane Lipids and Enhances the Recruitment of Slc26a3 to Lipid-Rich Domains in Human Colonoid Monolayers. Int J Mol Sci 2023; 24:8273. [PMID: 37175979 PMCID: PMC10179158 DOI: 10.3390/ijms24098273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Cholesterol-rich membrane domains, also called lipid rafts (LRs), are specialized membrane domains that provide a platform for intracellular signal transduction. Membrane proteins often cluster in LRs that further aggregate into larger platform-like structures that are enriched in ceramides and are called ceramide-rich platforms (CRPs). The role of CRPs in the regulation of intestinal epithelial functions remains unknown. Down-regulated in adenoma (DRA) is an intestinal Cl-/HCO3- antiporter that is enriched in LRs. However, little is known regarding the mechanisms involved in the regulation of DRA activity. The air-liquid interface (ALI) was created by removing apical media for a specified number of days; from 12-14 days post-confluency, Caco-2/BBe cells or a colonoid monolayer were grown as submerged cultures. Confocal imaging was used to examine the dimensions of membrane microdomains that contained DRA. DRA expression and activity were enhanced in Caco-2/BBe cells and human colonoids using an ALI culture method. ALI causes an increase in acid sphingomyelinase (ASMase) activity, an enzyme responsible for enhancing ceramide content in the plasma membrane. ALI cultures expressed a larger number of DRA-containing platforms with dimensions >2 µm compared to cells grown as submerged cultures. ASMase inhibitor, desipramine, disrupted CRPs and reduced the ALI-induced increase in DRA expression in the apical membrane. Exposing normal human colonoid monolayers to ALI increased the ASMase activity and enhanced the differentiation of colonoids along with basal and forskolin-stimulated DRA activities. ALI increases DRA activity and expression by increasing ASMase activity and platform formation in Caco-2/BBe cells and by enhancing the differentiation of colonoids.
Collapse
Affiliation(s)
- C. Ming Tse
- Division of Gastroenterology & Hepatology, Department of Medicine, School of Medicine, The Johns Hopkins University, 720 Rutland Avenue, 933 Ross Research Building, Baltimore, MD 21205, USA
| | - Zixin Zhang
- Division of Gastroenterology & Hepatology, Department of Medicine, School of Medicine, The Johns Hopkins University, 720 Rutland Avenue, 933 Ross Research Building, Baltimore, MD 21205, USA
| | - Ruxian Lin
- Division of Gastroenterology & Hepatology, Department of Medicine, School of Medicine, The Johns Hopkins University, 720 Rutland Avenue, 933 Ross Research Building, Baltimore, MD 21205, USA
| | - Rafiquel Sarker
- Division of Gastroenterology & Hepatology, Department of Medicine, School of Medicine, The Johns Hopkins University, 720 Rutland Avenue, 933 Ross Research Building, Baltimore, MD 21205, USA
| | - Mark Donowitz
- Division of Gastroenterology & Hepatology, Department of Medicine, School of Medicine, The Johns Hopkins University, 720 Rutland Avenue, 933 Ross Research Building, Baltimore, MD 21205, USA
- Department of Cellular and Molecular Physiology, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Varsha Singh
- Division of Gastroenterology & Hepatology, Department of Medicine, School of Medicine, The Johns Hopkins University, 720 Rutland Avenue, 933 Ross Research Building, Baltimore, MD 21205, USA
| |
Collapse
|
27
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
28
|
Patel SH, Bachmann M, Kadow S, Wilson GC, Abdel-Salam MML, Xu K, Keitsch S, Soddemann M, Wilker B, Becker KA, Carpinteiro A, Ahmad SA, Szabo I, Gulbins E. Simultaneous targeting of mitochondrial Kv1.3 and lysosomal acid sphingomyelinase amplifies killing of pancreatic ductal adenocarcinoma cells in vitro and in vivo. J Mol Med (Berl) 2023; 101:295-310. [PMID: 36790532 PMCID: PMC10036429 DOI: 10.1007/s00109-023-02290-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 02/16/2023]
Abstract
Pancreas ductal adenocarcinoma (PDAC) remains a malignant tumor with very poor prognosis and low 5-year overall survival. Here, we aimed to simultaneously target mitochondria and lysosomes as a new treatment paradigm of malignant pancreas cancer in vitro and in vivo. We demonstrate that the clinically used sphingosine analog FTY-720 together with PAPTP, an inhibitor of mitochondrial Kv1.3, induce death of pancreas cancer cells in vitro and in vivo. The combination of both drugs results in a marked inhibition of the acid sphingomyelinase and accumulation of cellular sphingomyelin in vitro and in vivo in orthotopic and flank pancreas cancers. Mechanistically, PAPTP and FTY-720 cause a disruption of both mitochondria and lysosomes, an alteration of mitochondrial bioenergetics and accumulation of cytoplasmic Ca2+, events that collectively mediate cell death. Our findings point to an unexpected cross-talk between lysosomes and mitochondria mediated by sphingolipid metabolism. We show that the combination of PAPTP and FTY-720 induces massive death of pancreas cancer cells, thereby leading to a substantially delayed and reduced PDAC growth in vivo. KEY MESSAGES: FTY-720 inhibits acid sphingomyelinase in pancreas cancer cells (PDAC). FTY-720 induces sphingomyelin accumulation and lysosomal dysfunction. The mitochondrial Kv1.3 inhibitor PAPTP disrupts mitochondrial functions. PAPTP and FTY-720 synergistically kill PDAC in vitro. The combination of FTY-720 and PAPTP greatly delays PDAC growth in vivo.
Collapse
Affiliation(s)
- Sameer H Patel
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Magdalena Bachmann
- Department of Biologyand , CNR Institute of Neurosciences, University of Padua, Padua, Italy
| | - Stephanie Kadow
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Gregory C Wilson
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mostafa M L Abdel-Salam
- Department of Biologyand , CNR Institute of Neurosciences, University of Padua, Padua, Italy
| | - Kui Xu
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Simone Keitsch
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Matthias Soddemann
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Barbara Wilker
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Katrin Anne Becker
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Alexander Carpinteiro
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Syed A Ahmad
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ildiko Szabo
- Department of Biologyand , CNR Institute of Neurosciences, University of Padua, Padua, Italy.
| | - Erich Gulbins
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
29
|
Alexandropoulou I, Grammatikopoulou MG, Gkouskou KK, Pritsa AA, Vassilakou T, Rigopoulou E, Lindqvist HM, Bogdanos DP. Ceramides in Autoimmune Rheumatic Diseases: Existing Evidence and Therapeutic Considerations for Diet as an Anticeramide Treatment. Nutrients 2023; 15:nu15010229. [PMID: 36615886 PMCID: PMC9824311 DOI: 10.3390/nu15010229] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Autoimmune rheumatic diseases (AIRDs) constitute a set of connective tissue disorders and dysfunctions with akin clinical manifestations and autoantibody responses. AIRD treatment is based on a comprehensive approach, with the primary aim being achieving and attaining disease remission, through the control of inflammation. AIRD therapies have a low target specificity, and this usually propels metabolic disturbances, dyslipidemias and increased cardiovascular risk. Ceramides are implicated in inflammation through several different pathways, many of which sometimes intersect. They serve as signaling molecules for apoptosis, altering immune response and driving endothelial dysfunction and as regulators in the production of other molecules, including sphingosine 1-phosphate (S1P) and ceramide 1-phosphate (C1P). With lipid metabolism being severely altered in AIRD pathology, several studies show that the concentration and variety of ceramides in human tissues is altered in patients with rheumatic diseases compared to controls. As a result, many in vitro and some in vivo (animal) studies research the potential use of ceramides as therapeutic targets in rheumatoid arthritis (RA), ankylosing spondylitis, systemic lupus erythematosus, fibromyalgia syndrome, primary Sjögren's syndrome, systemic sclerosis, myositis, systemic vasculitis and psoriatic arthritis. Furthermore, the majority of ceramide synthesis is diet-centric and, as a result, dietary interventions may alter ceramide concentrations in the blood and affect health. Subsequently, more recently several clinical trials evaluated the possibility of distinct dietary patterns and nutrients to act as anti-ceramide regimes in humans. With nutrition being an important component of AIRD-related complications, the present review details the evidence regarding ceramide levels in patients with AIRDs, the results of anti-ceramide treatments and discusses the possibility of using medical nutritional therapy as a complementary anti-ceramide treatment in rheumatic disease.
Collapse
Affiliation(s)
- Ioanna Alexandropoulou
- Department of Nutritional Sciences & Dietetics, Faculty of Health Sciences, International Hellenic University, Alexander Campus, GR-57400 Thessaloniki, Greece
| | - Maria G. Grammatikopoulou
- Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
| | - Kalliopi K. Gkouskou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, GR-11527 Athens, Greece
| | - Agathi A. Pritsa
- Department of Nutritional Sciences & Dietetics, Faculty of Health Sciences, International Hellenic University, Alexander Campus, GR-57400 Thessaloniki, Greece
| | - Tonia Vassilakou
- Department of Public Health Policy, School of Public Health, University of West Attica, GR-11521 Athens, Greece
| | - Eirini Rigopoulou
- Department of Medicine and Research Laboratory of Internal Medicine, University Hospital of Larissa, Biopolis, GR-41222 Larissa, Greece
| | - Helen M. Lindqvist
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, P.O. Box 115, 40530 Gothenburg, Sweden
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
- Correspondence:
| |
Collapse
|
30
|
Gulbins A, Görtz GE, Gulbins E, Eckstein A. Sphingolipids in thyroid eye disease. Front Endocrinol (Lausanne) 2023; 14:1170884. [PMID: 37082124 PMCID: PMC10112667 DOI: 10.3389/fendo.2023.1170884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/22/2023] [Indexed: 04/22/2023] Open
Abstract
Graves' disease (GD) is caused by an autoimmune formation of autoantibodies and autoreactive T-cells against the thyroid stimulating hormone receptor (TSHR). The autoimmune reaction does not only lead to overstimulation of the thyroid gland, but very often also to an immune reaction against antigens within the orbital tissue leading to thyroid eye disease, which is characterized by activation of orbital fibroblasts, orbital generation of adipocytes and myofibroblasts and increased hyaluronan production in the orbit. Thyroid eye disease is the most common extra-thyroidal manifestation of the autoimmune Graves' disease. Several studies indicate an important role of sphingolipids, in particular the acid sphingomyelinase/ceramide system and sphingosine 1-phosphate in thyroid eye disease. Here, we discuss how the biophysical properties of sphingolipids contribute to cell signaling, in particular in the context of thyroid eye disease. We further review the role of the acid sphingomyelinase/ceramide system in autoimmune diseases and its function in T lymphocytes to provide some novel hypotheses for the pathogenesis of thyroid eye disease and potentially allowing the development of novel treatments.
Collapse
Affiliation(s)
- Anne Gulbins
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gina-Eva Görtz
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Anja Eckstein, ; Erich Gulbins,
| | - Anja Eckstein
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Anja Eckstein, ; Erich Gulbins,
| |
Collapse
|
31
|
Horbay R, Hamraghani A, Ermini L, Holcik S, Beug ST, Yeganeh B. Role of Ceramides and Lysosomes in Extracellular Vesicle Biogenesis, Cargo Sorting and Release. Int J Mol Sci 2022; 23:ijms232315317. [PMID: 36499644 PMCID: PMC9735581 DOI: 10.3390/ijms232315317] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cells have the ability to communicate with their immediate and distant neighbors through the release of extracellular vesicles (EVs). EVs facilitate intercellular signaling through the packaging of specific cargo in all type of cells, and perturbations of EV biogenesis, sorting, release and uptake is the basis of a number of disorders. In this review, we summarize recent advances of the complex roles of the sphingolipid ceramide and lysosomes in the journey of EV biogenesis to uptake.
Collapse
Affiliation(s)
- Rostyslav Horbay
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Ali Hamraghani
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Leonardo Ermini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sophie Holcik
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Shawn T. Beug
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Correspondence: (S.T.B.); or (B.Y.); Tel.: +1-613-738-4176 (B.Y.); Fax: +1-613-738-4847 (S.T.B. & B.Y.)
| | - Behzad Yeganeh
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: (S.T.B.); or (B.Y.); Tel.: +1-613-738-4176 (B.Y.); Fax: +1-613-738-4847 (S.T.B. & B.Y.)
| |
Collapse
|
32
|
Stress induces major depressive disorder by a neutral sphingomyelinase 2-mediated accumulation of ceramide-enriched exosomes in the blood plasma. J Mol Med (Berl) 2022; 100:1493-1508. [PMID: 36045177 PMCID: PMC9470690 DOI: 10.1007/s00109-022-02250-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 10/28/2022]
Abstract
Major depressive disorder (MDD) is a very common, severe disease with a lifetime prevalence of ~ 10%. The pathogenesis of MDD is unknown and, unfortunately, therapy is often insufficient. We have previously reported that ceramide levels are increased in the blood plasma of patients with MDD and in mice with experimental MDD. Here, we demonstrate that ceramide-enriched exosomes in the blood plasma are increased in mice with stress-induced MDD. Genetic studies reveal that neutral sphingomyelinase 2 is required for the formation of ceramide-enriched exosomes in the blood plasma. Accordingly, induced deficiency of neutral sphingomyelinase 2 prevented mice from the development of stress-induced MDD. Intravenous injection of microparticles from mice with MDD or injection of ceramide-loaded exosomes induced MDD-like behavior in untreated mice, which was abrogated by ex vivo pre-incubation of purified exosomes with anti-ceramide antibodies or ceramidase. Mechanistically, injection of exosomes from mice with MDD or injection of ex vivo ceramide-loaded microparticles inhibited phospholipase D (PLD) in endothelial cells in vitro and in the hippocampus in vivo and thereby decreased phosphatidic acid in the hippocampus, which has been previously shown to mediate MDD by plasma ceramide. In summary, our data indicate that ceramide-enriched exosomes are released by neutral sphingomyelinase 2 into the blood plasma upon stress and mediate stress-induced MDD. KEY MESSAGES: Stress induces ceramide-enriched exosomes in the blood plasma. Ceramide-enriched exosomes mediate major depressive disorder (MDD). Deficiency of neutral sphingomyelinase 2 protects from stress-induced MDD. Neutralization or digestion of ceramide in exosomes prevents stress-induced MDD. Ceramide-enriched exosomes inhibit endothelial phospholipase D in the hippocampus.
Collapse
|
33
|
Huang Z, Chu M, Chen X, Wang Z, Jiang L, Ma Y, Wang Y. Th2A cells: The pathogenic players in allergic diseases. Front Immunol 2022; 13:916778. [PMID: 36003397 PMCID: PMC9393262 DOI: 10.3389/fimmu.2022.916778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Proallergic type 2 helper T (Th2A) cells are a subset of memory Th2 cells confined to atopic individuals, and they include all the allergen-specific Th2 cells. Recently, many studies have shown that Th2A cells characterized by CD3+ CD4+ HPGDS+ CRTH2+ CD161high ST2high CD49dhigh CD27low play a crucial role in allergic diseases, such as atopic dermatitis (AD), food allergy (FA), allergic rhinitis (AR), asthma, and eosinophilic esophagitis (EoE). In this review, we summarize the discovery, biomarkers, and biological properties of Th2A cells to gain new insights into the pathogenesis of allergic diseases.
Collapse
Affiliation(s)
- Ziyu Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Department of Clinical Medicine, Mudanjiang Medical University, Mudanjiang, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Xi Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Ziyuan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Lin Jiang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Yinchao Ma
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Yuedan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| |
Collapse
|
34
|
Inimitable Impacts of Ceramides on Lipid Rafts Formed in Artificial and Natural Cell Membranes. MEMBRANES 2022; 12:membranes12080727. [PMID: 35893445 PMCID: PMC9330320 DOI: 10.3390/membranes12080727] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/02/2023]
Abstract
Ceramide is the simplest precursor of sphingolipids and is involved in a variety of biological functions ranging from apoptosis to the immune responses. Although ceramide is a minor constituent of plasma membranes, it drastically increases upon cellular stimulation. However, the mechanistic link between ceramide generation and signal transduction remains unknown. To address this issue, the effect of ceramide on phospholipid membranes has been examined in numerous studies. One of the most remarkable findings of these studies is that ceramide induces the coalescence of membrane domains termed lipid rafts. Thus, it has been hypothesised that ceramide exerts its biological activity through the structural alteration of lipid rafts. In the present article, we first discuss the characteristic hydrogen bond functionality of ceramides. Then, we showed the impact of ceramide on the structures of artificial and cell membranes, including the coalescence of the pre-existing lipid raft into a large patch called a signal platform. Moreover, we proposed a possible structure of the signal platform, in which sphingomyelin/cholesterol-rich and sphingomyelin/ceramide-rich domains coexist. This structure is considered to be beneficial because membrane proteins and their inhibitors are separately compartmentalised in those domains. Considering the fact that ceramide/cholesterol content regulates the miscibility of those two domains in model membranes, the association and dissociation of membrane proteins and their inhibitors might be controlled by the contents of ceramide and cholesterol in the signal platform.
Collapse
|
35
|
Zhuo C, Zhao F, Tian H, Chen J, Li Q, Yang L, Ping J, Li R, Wang L, Xu Y, Cai Z, Song X. Acid sphingomyelinase/ceramide system in schizophrenia: implications for therapeutic intervention as a potential novel target. Transl Psychiatry 2022; 12:260. [PMID: 35739089 PMCID: PMC9226132 DOI: 10.1038/s41398-022-01999-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Schizophrenia is a severe mental illness, as the efficacies of current antipsychotic medications are far from satisfactory. An improved understanding of the signaling molecules involved in schizophrenia may provide novel therapeutic targets. Acid sphingomyelinase (ASM) catalyzes cellular membrane sphingomyelin into ceramide, which is further metabolized into sphingosine-1-phophate (S1P). ASM, ceramide, and S1P at the cell surface exert critical roles in the regulation of biophysical processes that include proliferation, apoptosis, and inflammation, and are thereby considered important signaling molecules. Although research on the ASM/ceramide system is still in its infancy, structural and metabolic abnormalities have been demonstrated in schizophrenia. ASM/ceramide system dysfunction is linked to the two important models of schizophrenia, the dopamine (DA) hypothesis through affecting presynaptic DA signaling, and the vulnerability-stress-inflammation model that includes the contribution of stress on the basis of genetic predisposition. In this review, we highlight the current knowledge of ASM/ceramide system dysfunction in schizophrenia gained from human and animal studies, and formulate future directions from the biological landscape for the development of new treatments. Collectively, these discoveries suggest that aberrations in the ASM/ceramide system, especially in ASM activity and levels of ceramide and S1P, may alter cerebral microdomain structure and neuronal metabolism, leading to neurotransmitter (e.g., DA) dysfunction and neuroinflammation. As such, the ASM/ceramide system may offer therapeutic targets for novel medical interventions. Normalization of the aberrant ASM/ceramide system or ceramide reduction by using approved functional inhibitors of ASM, such as fluvoxamine and rosuvastatin, may improve clinical outcomes of patients with schizophrenia. These transformative findings of the ASM/ceramide system in schizophrenia, although intriguing and exciting, may pose scientific questions and challenges that will require further studies for their resolution.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Real Time Tracing Brain Circuit, Tianjin Medical Affiliated Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Hospital, 300140, Tianjin, China. .,The key Laboratory of Psychiatric-Neuroimaging-Genetics and Comorbidity (PNGC_Lab) of Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, 300222, Tianjin, China. .,Brain Micro-imaging Center of Psychiatric Animal Model, Wenzhou Seventh Peoples Hospital, 325000, Wenzhou, China. .,Department of Psychiatry, The Fourth Center Hospital of Tianjin Medical University, 300222, Tianjin, China. .,Key Laboratory of the Macro-Brain Neuroimaging Center of Animal Model, Wenzhou Seventh Peoples Hospital, 325000, Wenzhou, China. .,Department of Psychiatry, The First Hospital of Shanxi Medical University, 03000, Taiyuan, China. .,Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Feifei Zhao
- Key Laboratory of the Macro-Brain Neuroimaging Center of Animal Model, Wenzhou Seventh Peoples Hospital, 325000 Wenzhou, China
| | - Hongjun Tian
- grid.265021.20000 0000 9792 1228Department of Psychiatry, The Fourth Center Hospital of Tianjin Medical University, 300222 Tianjin, China
| | - Jiayue Chen
- grid.265021.20000 0000 9792 1228Department of Psychiatry, The Fourth Center Hospital of Tianjin Medical University, 300222 Tianjin, China
| | - Qianchen Li
- grid.265021.20000 0000 9792 1228Department of Psychiatry, The Fourth Center Hospital of Tianjin Medical University, 300222 Tianjin, China
| | - Lei Yang
- grid.265021.20000 0000 9792 1228Department of Psychiatry, The Fourth Center Hospital of Tianjin Medical University, 300222 Tianjin, China
| | - Jing Ping
- Key Laboratory of the Macro-Brain Neuroimaging Center of Animal Model, Wenzhou Seventh Peoples Hospital, 325000 Wenzhou, China
| | - Ranli Li
- Key Laboratory of the Macro-Brain Neuroimaging Center of Animal Model, Wenzhou Seventh Peoples Hospital, 325000 Wenzhou, China
| | - Lina Wang
- Key Laboratory of the Macro-Brain Neuroimaging Center of Animal Model, Wenzhou Seventh Peoples Hospital, 325000 Wenzhou, China
| | - Yong Xu
- grid.452461.00000 0004 1762 8478Department of Psychiatry, The First Hospital of Shanxi Medical University, 03000 Taiyuan, China
| | - Ziyao Cai
- Key Laboratory of the Macro-Brain Neuroimaging Center of Animal Model, Wenzhou Seventh Peoples Hospital, 325000 Wenzhou, China
| | - Xueqin Song
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| |
Collapse
|
36
|
Sharma D, Czarnota GJ. Involvement of Ceramide Signalling in Radiation-Induced Tumour Vascular Effects and Vascular-Targeted Therapy. Int J Mol Sci 2022; 23:ijms23126671. [PMID: 35743121 PMCID: PMC9223569 DOI: 10.3390/ijms23126671] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Sphingolipids are well-recognized critical components in several biological processes. Ceramides constitute a class of sphingolipid metabolites that are involved in important signal transduction pathways that play key roles in determining the fate of cells to survive or die. Ceramide accumulated in cells causes apoptosis; however, ceramide metabolized to sphingosine promotes cell survival and angiogenesis. Studies suggest that vascular-targeted therapies increase endothelial cell ceramide resulting in apoptosis that leads to tumour cure. Specifically, ultrasound-stimulated microbubbles (USMB) used as vascular disrupting agents can perturb endothelial cells, eliciting acid sphingomyelinase (ASMase) activation accompanied by ceramide release. This phenomenon results in endothelial cell death and vascular collapse and is synergistic with other antitumour treatments such as radiation. In contrast, blocking the generation of ceramide using multiple approaches, including the conversion of ceramide to sphingosine-1-phosphate (S1P), abrogates this process. The ceramide-based cell survival "rheostat" between these opposing signalling metabolites is essential in the mechanotransductive vascular targeting following USMB treatment. In this review, we aim to summarize the past and latest findings on ceramide-based vascular-targeted strategies, including novel mechanotransductive methodologies.
Collapse
Affiliation(s)
- Deepa Sharma
- Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada;
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, ON M4N 3M5, Canada
- Correspondence: ; Tel.: +1-416-480-6100 (ext. 89533)
| | - Gregory J. Czarnota
- Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada;
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, ON M4N 3M5, Canada
| |
Collapse
|
37
|
Varre JV, Holland WL, Summers SA. You aren't IMMUNE to the ceramides that accumulate in cardiometabolic disease. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159125. [PMID: 35218934 PMCID: PMC9050903 DOI: 10.1016/j.bbalip.2022.159125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
Obesity leads to persistent increases in immune responses that contribute to cardiometabolic pathologies such as diabetes and cardiovascular disease. Pro-inflammatory macrophages infiltrate the expanding fat mass, which leads to increased production of cytokines such as tumor necrosis factor-alpha. Moreover, saturated fatty acids enhance signaling through the toll-like receptors involved in innate immunity. Herein we discuss the evidence that ceramides-which are intermediates in the biosynthetic pathway that produces sphingolipids-are essential intermediates that link these inflammatory signals to impaired tissue function. We discuss the mechanisms linking these immune insults to ceramide production and review the numerous ceramide actions that alter cellular metabolism, induce oxidative stress, and stimulate apoptosis. Lastly, we evaluate the correlation of ceramides in humans with inflammation-linked cardiometabolic disease and discuss preclinical studies which suggest that ceramide-lowering interventions may be an effective strategy to treat or prevent such maladies.
Collapse
Affiliation(s)
- Joseph V Varre
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 94108, United States of America
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 94108, United States of America
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 94108, United States of America.
| |
Collapse
|
38
|
Acid Sphingomyelinase Is a Modulator of Contextual Fear. Int J Mol Sci 2022; 23:ijms23063398. [PMID: 35328819 PMCID: PMC8954852 DOI: 10.3390/ijms23063398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/23/2022] Open
Abstract
Acid sphingomyelinase (ASM) regulates a variety of physiological processes and plays an important role in emotional behavior. The role of ASM in fear-related behavior has not been investigated so far. Using transgenic mice overexpressing ASM (ASMtg) and ASM deficient mice, we studied whether ASM regulates fear learning and expression of cued and contextual fear in a classical fear conditioning paradigm, a model used to investigate specific attributes of post-traumatic stress disorder (PTSD). We show that ASM does not affect fear learning as both ASMtg and ASM deficient mice display unaltered fear conditioning when compared to wild-type littermates. However, ASM regulates the expression of contextual fear in a sex-specific manner. While ASM overexpression enhances the expression of contextual fear in both male and female mice, ASM deficiency reduces the expression of contextual fear specifically in male mice. The expression of cued fear, however, is not regulated by ASM as ASMtg and ASM deficient mice display similar tone-elicited freezing levels. This study shows that ASM modulates the expression of contextual fear but not of cued fear in a sex-specific manner and adds a novel piece of information regarding the involvement of ASM in hippocampal-dependent aversive memory.
Collapse
|
39
|
Pokorna S, Ventura AE, Santos TCB, Hof M, Prieto M, Futerman AH, Silva LC. Laurdan in live cell imaging: Effect of acquisition settings, cell culture conditions and data analysis on generalized polarization measurements. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 228:112404. [PMID: 35196617 DOI: 10.1016/j.jphotobiol.2022.112404] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/05/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Cell function is highly dependent on membrane structure, organization, and fluidity. Therefore, methods to probe the biophysical properties of biological membranes are required. Determination of generalized polarization (GP) values using Laurdan in fluorescence microscopy studies is one of the most widely-used methods to investigate changes in membrane fluidity in vitro and in vivo. In the last couple of decades, there has been a major increase in the number of studies using Laurdan GP, where several different methodological approaches are used. Such differences interfere with data interpretation inasmuch as it is difficult to validate if Laurdan GP variations actually reflect changes in membrane organization or arise from biased experimental approaches. To address this, we evaluated the influence of different methodological details of experimental data acquisition and analysis on Laurdan GP. Our results showed that absolute GP values are highly dependent on several of the parameters analyzed, showing that incorrect data can result from technical and methodological inconsistencies. Considering these differences, we further analyzed the impact of cell variability on GP determination, focusing on basic cell culture conditions, such as cell confluency, number of passages and media composition. Our results show that GP values can report alterations in the biophysical properties of cell membranes caused by cellular adaptation to the culture conditions. In summary, this study provides thorough analysis of the factors that can lead to Laurdan GP variability and suggests approaches to improve data quality, which would generate more precise interpretation and comparison within individual studies and among the literature on Laurdan GP.
Collapse
Affiliation(s)
- Sarka Pokorna
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel; J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic.
| | - Ana E Ventura
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel; iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal
| | - Tânia C B Santos
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Manuel Prieto
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liana C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
40
|
Bernhard W, Raith M, Shunova A, Lorenz S, Böckmann K, Minarski M, Poets CF, Franz AR. Choline Kinetics in Neonatal Liver, Brain and Lung-Lessons from a Rodent Model for Neonatal Care. Nutrients 2022; 14:nu14030720. [PMID: 35277079 PMCID: PMC8837973 DOI: 10.3390/nu14030720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
Choline requirements are high in the rapidly growing fetus and preterm infant, mainly serving phosphatidylcholine (PC) synthesis for parenchymal growth and one-carbon metabolism via betaine. However, choline metabolism in critical organs during rapid growth is poorly understood. Therefore, we investigated the kinetics of D9-choline and its metabolites in the liver, plasma, brain and lung in 14 d old rats. Animals were intraperitoneally injected with 50 mg/kg D9-choline chloride and sacrificed after 1.5 h, 6 h and 24 h. Liver, plasma, lungs, cerebrum and cerebellum were analyzed for D9-choline metabolites, using tandem mass spectrometry. In target organs, D9-PC and D9-betaine comprised 15.1 ± 1.3% and 9.9 ± 1.2% of applied D9-choline at 1.5 h. D9-PC peaked at 1.5 h in all organs, and decreased from 1.5-6 h in the liver and lung, but not in the brain. Whereas D9-labeled PC precursors were virtually absent beyond 6 h, D9-PC increased in the brain and lung from 6 h to 24 h (9- and 2.5-fold, respectively) at the expense of the liver, suggesting PC uptake from the liver via plasma rather than local synthesis. Kinetics of D9-PC sub-groups suggested preferential hepatic secretion of linoleoyl-PC and acyl remodeling in target organs. D9-betaine showed rapid turnover and served low-level endogenous (D3-)choline synthesis. In conclusion, in neonatal rats, exogenous choline is rapidly metabolized to PC by all organs. The liver supplies the brain and lung directly with PC, followed by organotypic acyl remodeling. A major fraction of choline is converted to betaine, feeding the one-carbon pool and this must be taken into account when calculating choline requirements.
Collapse
Affiliation(s)
- Wolfgang Bernhard
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
- Correspondence:
| | - Marco Raith
- Max-Planck-Institut für Psychiatrie, 80804 Munich, Bavaria, Germany;
| | - Anna Shunova
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
| | - Stephan Lorenz
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
| | - Katrin Böckmann
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
| | - Michaela Minarski
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
| | - Christian F. Poets
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
| | - Axel R. Franz
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
- Center for Pediatric Clinical Studies, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany
| |
Collapse
|
41
|
Masutin V, Kersch C, Schmitz-Spanke S. A systematic review: metabolomics-based identification of altered metabolites and pathways in the skin caused by internal and external factors. Exp Dermatol 2022; 31:700-714. [PMID: 35030266 DOI: 10.1111/exd.14529] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/28/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022]
Abstract
The skin's ability to function optimally is affected by many diverse factors. Metabolomics has a great potential to improve our understanding of the underlying metabolic changes and the affected pathways. Therefore, the objective of this study was to review the current state of the literature and to perform further metabolic pathway analysis on the obtained data. The aim was to gain an overview of the metabolic changes under altered conditions and to identify common and different patterns as a function of the investigated factors. A cross-study comparison of the extracted studies from different databases identified 364 metabolites, whose concentrations were considerably altered by the following factor groups: irradiation, xenobiotics, aging, and skin diseases (mainly psoriasis). Using metabolic databases and pathway analysis tools the individual metabolites were assigned to the corresponding metabolic pathways and the most strongly affected signaling pathways were identified. All factors induced oxidative stress. Thus, antioxidant defense systems, especially coenzyme Q10 (aging) and the glutathione system (irradiation, aging, xenobiotics) were impacted. Lipid metabolism was also impacted by all factors studied. The carnitine shuttle as part of β-oxidation was activated by all factor groups except aging. Glycolysis, Krebs (TCA) cycle and purine metabolism were mainly affected by irradiation and xenobiotics. The pentose phosphate pathway was activated and Krebs cycle was downregulated in response to oxidative stress. In summary, it can be ascertained that mainly energy metabolism, lipid metabolism, antioxidative defense and DNA repair systems were impacted by the factors studied.
Collapse
Affiliation(s)
- Viktor Masutin
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU)
| | - Christian Kersch
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU)
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU)
| |
Collapse
|
42
|
The acid sphingomyelinase/ceramide system in COVID-19. Mol Psychiatry 2022; 27:307-314. [PMID: 34608263 PMCID: PMC8488928 DOI: 10.1038/s41380-021-01309-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/10/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023]
Abstract
Acid sphingomyelinase (ASM) cleaves sphingomyelin into the highly lipophilic ceramide, which forms large gel-like rafts/platforms in the plasma membrane. We showed that SARS-CoV-2 uses these platforms for cell entry. Lowering the amount of ceramide or ceramide blockade due to inhibitors of ASM, genetic downregulation of ASM, anti-ceramide antibodies or degradation by neutral ceramidase protected against infection with SARS-CoV-2. The addition of ceramide restored infection with SARS-CoV-2. Many clinically approved medications functionally inhibit ASM and are called FIASMAs (functional inhibitors of acid sphingomyelinase). The FIASMA fluvoxamine showed beneficial effects on COVID-19 in a randomized prospective study and a prospective open-label real-world study. Retrospective and observational studies showed favorable effects of FIASMA antidepressants including fluoxetine, and the FIASMA hydroxyzine on the course of COVID-19. The ASM/ceramide system provides a framework for a better understanding of the infection of cells by SARS-CoV-2 and the clinical, antiviral, and anti-inflammatory effects of functional inhibitors of ASM. This framework also supports the development of new drugs or the repurposing of "old" drugs against COVID-19.
Collapse
|
43
|
Yasuda H, Torikai K, Kinoshita M, Sazzad MAA, Tsujimura K, Slotte JP, Matsumori N. Preparation of Nitrogen Analogues of Ceramide and Studies of Their Aggregation in Sphingomyelin Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12438-12446. [PMID: 34636580 DOI: 10.1021/acs.langmuir.1c02101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ceramides can regulate biological processes probably through the formation of laterally segregated and highly packed ceramide-rich domains in lipid bilayers. In the course of preparation of its analogues, we found that a hydrogen-bond-competent functional group in the C1 position is necessary to form ceramide-rich domains in lipid bilayers [Matsufuji; Langmuir 2018]. Hence, in the present study, we newly synthesized three ceramide analogues: CerN3, CerNH2, and CerNHAc, in which the 1-OH group of ceramide is substituted with a nitrogen functionality. CerNH2 and CerNHAc are capable of forming hydrogen bonds in their headgroups, whereas CerN3 is not. Fluorescent microscopy observation and differential scanning calorimetry analysis disclosed that these ceramide analogues formed ceramide-rich phases in sphingomyelin bilayers, although their thermal stability was slightly inferior to that of normal ceramides. Moreover, wide-angle X-ray diffraction analysis showed that the chain packing structure of ceramide-rich phases of CerNHAc and CerN3 was similar to that of normal ceramide, while the CerNH2-rich phase showed a slightly looser chain packing due to the formation of CerNH3+. Although the domain formation of CerN3 was unexpected because of the lack of hydrogen-bond capability in the headgroup, it may become a promising tool for investigating the mechanistic link between the ceramide-rich phase and the ceramide-related biological functions owing to its Raman activity and applicability to click chemistry.
Collapse
Affiliation(s)
- Hiroki Yasuda
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kohei Torikai
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Faculty of Chemistry, National University of Uzbekistan named after Mirzo Ulugbek, 4 University Str., Tashkent 100174, Uzbekistan
| | - Masanao Kinoshita
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Md Abdullah Al Sazzad
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, FI 20520 Turku, Finland
| | - Koya Tsujimura
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, FI 20520 Turku, Finland
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
44
|
Lee H, Choi SQ. Sphingomyelinase-Mediated Multitimescale Clustering of Ganglioside GM1 in Heterogeneous Lipid Membranes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101766. [PMID: 34473415 PMCID: PMC8529493 DOI: 10.1002/advs.202101766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/19/2021] [Indexed: 05/05/2023]
Abstract
Several signaling processes in the plasma membrane are intensified by ceramides that are formed by sphingomyelinase-mediated hydrolysis of sphingomyelin. These ceramides trigger clustering of signaling-related biomolecules, but how they concentrate such biomolecules remains unclear. Here, the spatiotemporal localization of ganglioside GM1, a glycolipid receptor involved in signaling, during sphingomyelinase-mediated hydrolysis is described. Real-time visualization of the dynamic remodeling of the heterogeneous lipid membrane that occurs due to sphingomyelinase action is used to examine GM1 clustering, and unexpectedly, it is found that it is more complex than previously thought. Specifically, lipid membranes generate two distinct types of condensed GM1: 1) rapidly formed but short-lived GM1 clusters that are formed in ceramide-rich domains nucleated from the liquid-disordered phase; and 2) late-onset yet long-lasting, high-density GM1 clusters that are formed in the liquid-ordered phase. These findings suggest that multiple pathways exist in a plasma membrane to synergistically facilitate the rapid amplification and persistence of signals.
Collapse
Affiliation(s)
- Hyun‐Ro Lee
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Siyoung Q. Choi
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- KAIST Institute for the NanoCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| |
Collapse
|
45
|
Wang M, Yang L, Chen Z, Dai L, Xi C, Wu X, Wu G, Wang Y, Hu J. Geniposide ameliorates chronic unpredictable mild stress induced depression-like behavior through inhibition of ceramide-PP2A signaling via the PI3K/Akt/GSK3β axis. Psychopharmacology (Berl) 2021; 238:2789-2800. [PMID: 34142167 DOI: 10.1007/s00213-021-05895-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Depression is a severe mental disorder. Unfortunately, more than half of patients with major depression disorder cannot achieve remission after initial treatment with an antidepressant. Geniposide, a bioactive iridoid glycoside isolated from Gardenia jasminoides Ellis, can ameliorate depressive-like behaviors in mice. However, the underlying mechanism is still not very clear. METHODS The pharmacological methods including ELISA, immunofluorescence, and Western blot were used to investigate the role of geniposide on chronic unpredictable mild stress (CUMS)-induced depression mice. RESULTS In this study, we found that geniposide could inhibit CUMS-induced depressive-like behaviors in mice. Geniposide is able to reduce the levels of ceramide and lower the activity of acid sphingomyelinase (ASM) in hippocampus; besides, ASM inhibitor (amitriptyline) can decrease the concentration of ceramide and ameliorate depressive-like behaviors of mice. Moreover, geniposide can also alleviate CUMS-induced hippocampal neuronal apoptosis and increase the phosphorylated form of PI3K, Akt, and GSK3β. Additionally, PI3K inhibitor (LY294002) can also abolish the neuroprotective effect of geniposide on hippocampal neurons in vitro. CONCLUSIONS These results indicate that geniposide exert a potential antidepressant-like effect on CUMS mice, and its effect might be associated with activated PI3K/Akt/GSK3β signaling, reduced the level of ceramide and hippocampal neuron apoptosis.
Collapse
Affiliation(s)
- Meihua Wang
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital Affiliated To Fudan University, 958 Jinguang Road, Minhang District, Shanghai, 200040, China.,Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Lei Yang
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital Affiliated To Fudan University, 958 Jinguang Road, Minhang District, Shanghai, 200040, China
| | - Zhilin Chen
- Department of Neurology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200081, China
| | - Linlu Dai
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Caihua Xi
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital Affiliated To Fudan University, 958 Jinguang Road, Minhang District, Shanghai, 200040, China
| | - Xing Wu
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital Affiliated To Fudan University, 958 Jinguang Road, Minhang District, Shanghai, 200040, China
| | - Gang Wu
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital Affiliated To Fudan University, 958 Jinguang Road, Minhang District, Shanghai, 200040, China
| | - Yang Wang
- Department of Emergency, Xinhua Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Jin Hu
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital Affiliated To Fudan University, 958 Jinguang Road, Minhang District, Shanghai, 200040, China.
| |
Collapse
|
46
|
Carstens H, Kalka K, Verhaegh R, Schumacher F, Soddemann M, Wilker B, Keitsch S, Sehl C, Kleuser B, Wahlers T, Reiner G, Koch A, Rauen U, Gulbins E, Kamler M. Inhaled sphingosine has no adverse side effects in isolated ventilated and perfused pig lungs. Sci Rep 2021; 11:18607. [PMID: 34545108 PMCID: PMC8452622 DOI: 10.1038/s41598-021-97708-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/24/2021] [Indexed: 11/09/2022] Open
Abstract
Ex-vivo lung perfusion (EVLP) systems like XVIVO are more and more common in the setting of lung transplantation, since marginal donor-lungs can easily be subjected to a performance test or be treated with corticosteroids or antibiotics in high dose regimes. Donor lungs are frequently positive in bronchoalveolar lavage (BAL) bacterial cultures (46-89%) which leads to a donor-to-recipient transmission and after a higher risk of lung infection with reduced posttransplant outcome. We have previously shown that sphingosine very efficiently kills a variety of pathogens, including Pseudomonas aeruginosa, Staphylococcus aureus and epidermidis, Escherichia coli or Haemophilus influenzae. Thus, sphingosine could be a new treatment option with broadspectrum antiinfective potential, which may improve outcome after lung transplantation when administered prior to lung re-implantation. Here, we tested whether sphingosine has any adverse effects in the respiratory tract when applied into isolated ventilated and perfused lungs. A 4-h EVLP run using minipig lungs was performed. Functional parameters as well as perfusate measurements where obtained. Biopsies were obtained 30 min and 150 min after inhalation of sphingosine. Tissue samples were fixed in paraformaldehyde, embedded in paraffin and sectioned. Hemalaun, TUNEL as well as stainings with Cy3-coupled anti-sphingosine or anti-ceramide antibodies were implemented. We demonstrate that tube-inhalation of sphingosine into ex-vivo perfused and ventilated minipig lungs results in increased levels of sphingosine in the luminal membrane of bronchi and the trachea without morphological side effects up to very high doses of sphingosine. Sphingosine also did not affect functional lung performance. In summary, the inhalation of sphingosine results in an increase of sphingosine concentrations in the luminal plasma membrane of tracheal and bronchial epithelial cells. The inhalation has no local side effects in ex-vivo perfused and ventilated minipig lungs.
Collapse
Affiliation(s)
- Henning Carstens
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany. .,Cardiac Surgery for Congenital Heart Disease, University Medical Center Hamburg- Eppendorf, Martinistrasse 52, 20251, Hamburg, Germany.
| | - Katharina Kalka
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Rabea Verhaegh
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Fabian Schumacher
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.,Department of Toxicology, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.,Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Matthias Soddemann
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Barbara Wilker
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Simone Keitsch
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Carolin Sehl
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Burkhard Kleuser
- Department of Toxicology, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.,Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Kerpener Strasse 61, 50924, Cologne, Germany
| | - Gerald Reiner
- Department of Veterinary Clinical Sciences, Swine Clinic, Justus-Liebig-University, Giessen, Germany
| | - Achim Koch
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Ursula Rauen
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.,Department of Surgery, University of Cincinnati, Medical School, 231 Albert Sabin Way, ML0558, Cincinnati, OH, 45267, USA
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| |
Collapse
|
47
|
Kornhuber J, Gulbins E. New Molecular Targets for Antidepressant Drugs. Pharmaceuticals (Basel) 2021; 14:894. [PMID: 34577594 PMCID: PMC8472072 DOI: 10.3390/ph14090894] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/27/2022] Open
Abstract
Major depressive disorder (MDD) is a common and severe mental disorder that is usually recurrent and has a high risk of suicide. This disorder manifests not only with psychological symptoms but also multiple changes throughout the body, including increased risks of obesity, diabetes, and cardiovascular disease. Peripheral markers of oxidative stress and inflammation are elevated. MDD is therefore best described as a multisystem whole-body disease. Pharmacological treatment with antidepressants usually requires several weeks before the desired effects manifest. Previous theories of depression, such as the monoamine or neurogenesis hypotheses, do not explain these characteristics well. In recent years, new mechanisms of action have been discovered for long-standing antidepressants that also shed new light on depression, including the sphingolipid system and the receptor for brain-derived neurotrophic factor (BDNF).
Collapse
Affiliation(s)
- Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, 45117 Essen, Germany;
- Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
48
|
Taniguchi M, Okazaki T. Role of ceramide/sphingomyelin (SM) balance regulated through "SM cycle" in cancer. Cell Signal 2021; 87:110119. [PMID: 34418535 DOI: 10.1016/j.cellsig.2021.110119] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
Sphingomyelin synthase (SMS), which comprises of two isozymes, SMS1 and SMS2, is the only enzyme that generates sphingomyelin (SM) by transferring phosphocholine of phosphatidylcholine to ceramide in mammals. Conversely, ceramide is generated from SM hydrolysis via sphingomyelinases (SMases), ceramide de novo synthesis, and the salvage pathway. The biosynthetic pathway for SM and ceramide content by SMS and SMase, respectively, is called "SM cycle." SM forms a SM-rich microdomain on the cell membrane to regulate signal transduction, such as proliferation/survival, migration, and inflammation. On the other hand, ceramide acts as a lipid mediator by forming a ceramide-rich platform on the membrane, and ceramide exhibits physiological actions such as cell death, cell cycle arrest, and autophagy induction. Therefore, the regulation of ceramide/SM balance by SMS and SMase is responsible for diverse cell functions not only in physiological cells but also in cancer cells. This review outlines the implications of ceramide/SM balance through "SM cycle" in cancer progression and prevention. In addition, the possible involvement of "SM cycle" is introduced in anti-cancer tumor immunity, which has become a hot topic to innovate a more effective and safer way to conquer cancer in recent years.
Collapse
Affiliation(s)
- Makoto Taniguchi
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Japan
| | - Toshiro Okazaki
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa 921-8836, Japan; Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan.
| |
Collapse
|
49
|
Krones D, Rühling M, Becker KA, Kunz TC, Sehl C, Paprotka K, Gulbins E, Fraunholz M. Staphylococcus aureus α-Toxin Induces Acid Sphingomyelinase Release From a Human Endothelial Cell Line. Front Microbiol 2021; 12:694489. [PMID: 34394034 PMCID: PMC8358437 DOI: 10.3389/fmicb.2021.694489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/05/2021] [Indexed: 11/14/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is well known to express a plethora of toxins of which the pore-forming hemolysin A (α-toxin) is the best-studied cytolysin. Pore-forming toxins (PFT) permeabilize host membranes during infection thereby causing concentration-dependent effects in host cell membranes ranging from disordered ion fluxes to cytolysis. Host cells possess defense mechanisms against PFT attack, resulting in endocytosis of the breached membrane area and delivery of repair vesicles to the insulted plasma membrane as well as a concurrent release of membrane repair enzymes. Since PFTs from several pathogens have been shown to recruit membrane repair components, we here investigated whether staphylococcal α-toxin is able to induce these mechanisms in endothelial cells. We show that S. aureus α-toxin induced increase in cytosolic Ca2+ in endothelial cells, which was accompanied by p38 MAPK phosphorylation. Toxin challenge led to increased endocytosis of an extracellular fluid phase marker as well as increased externalization of LAMP1-positive membranes suggesting that peripheral lysosomes are recruited to the insulted plasma membrane. We further observed that thereby the lysosomal protein acid sphingomyelinase (ASM) was released into the cell culture medium. Thus, our results show that staphylococcal α-toxin triggers mechanisms in endothelial cells, which have been implicated in membrane repair after damage of other cell types by different toxins.
Collapse
Affiliation(s)
- David Krones
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Marcel Rühling
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Katrin Anne Becker
- Institute of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Tobias C Kunz
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Carolin Sehl
- Institute of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Kerstin Paprotka
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany.,Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Martin Fraunholz
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
50
|
Yu X, James S, Felce JH, Kellermayer B, Johnston DA, Chan HTC, Penfold CA, Kim J, Inzhelevskaya T, Mockridge CI, Watanabe Y, Crispin M, French RR, Duriez PJ, Douglas LR, Glennie MJ, Cragg MS. TNF receptor agonists induce distinct receptor clusters to mediate differential agonistic activity. Commun Biol 2021; 4:772. [PMID: 34162985 PMCID: PMC8222242 DOI: 10.1038/s42003-021-02309-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/04/2021] [Indexed: 02/05/2023] Open
Abstract
Monoclonal antibodies (mAb) and natural ligands targeting costimulatory tumor necrosis factor receptors (TNFR) exhibit a wide range of agonistic activities and antitumor responses. The mechanisms underlying these differential agonistic activities remain poorly understood. Here, we employ a panel of experimental and clinically-relevant molecules targeting human CD40, 4-1BB and OX40 to examine this issue. Confocal and STORM microscopy reveal that strongly agonistic reagents induce clusters characterized by small area and high receptor density. Using antibody pairs differing only in isotype we show that hIgG2 confers significantly more receptor clustering than hIgG1 across all three receptors, explaining its greater agonistic activity, with receptor clustering shielding the receptor-agonist complex from further molecular access. Nevertheless, discrete receptor clustering patterns are observed with different hIgG2 mAb, with a unique rod-shaped assembly observed with the most agonistic mAb. These findings dispel the notion that larger receptor clusters elicit greater agonism, and instead point to receptor density and subsequent super-structure as key determinants.
Collapse
Affiliation(s)
- Xiaojie Yu
- Antibody and Vaccine Group, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK.
| | - Sonya James
- Antibody and Vaccine Group, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | | | | | - David A Johnston
- Biomedical Imaging Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - H T Claude Chan
- Antibody and Vaccine Group, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Christine A Penfold
- Antibody and Vaccine Group, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Jinny Kim
- Antibody and Vaccine Group, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Tatyana Inzhelevskaya
- Antibody and Vaccine Group, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - C Ian Mockridge
- Antibody and Vaccine Group, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Ruth R French
- Antibody and Vaccine Group, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Patrick J Duriez
- CRUK Protein Core Facility, University of Southampton Faculty of Medicine, Southampton, UK
| | - Leon R Douglas
- CRUK Protein Core Facility, University of Southampton Faculty of Medicine, Southampton, UK
| | - Martin J Glennie
- Antibody and Vaccine Group, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK.
- Institute for Life Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|