1
|
Gerovska D, Araúzo-Bravo MJ. Skeletal Muscles of Sedentary and Physically Active Aged People Have Distinctive Genic Extrachromosomal Circular DNA Profiles. Int J Mol Sci 2023; 24:ijms24032736. [PMID: 36769072 PMCID: PMC9917053 DOI: 10.3390/ijms24032736] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
To bring new extrachromosomal circular DNA (eccDNA) enrichment technologies closer to the clinic, specifically for screening, early diagnosis, and monitoring of diseases or lifestyle conditions, it is paramount to identify the differential pattern of the genic eccDNA signal between two states. Current studies using short-read sequenced purified eccDNA data are based on absolute numbers of unique eccDNAs per sample or per gene, length distributions, or standard methods for RNA-seq differential analysis. Previous analyses of RNA-seq data found significant transcriptomics difference between sedentary and active life style skeletal muscle (SkM) in young people but very few in old. The first attempt using circulomics data from SkM and blood of aged lifelong sedentary and physically active males found no difference at eccDNA level. To improve the capability of finding differences between circulomics data groups, we designed a computational method to identify Differentially Produced per Gene Circles (DPpGCs) from short-read sequenced purified eccDNA data based on the circular junction, split-read signal, of the eccDNA, and implemented it into a software tool DifCir in Matlab. We employed DifCir to find to the distinctive features of the influence of the physical activity or inactivity in the aged SkM that would have remained undetected by transcriptomics methods. We mapped the data from tissue from SkM and blood from two groups of aged lifelong sedentary and physically active males using Circle_finder and subsequent merging and filtering, to find the number and length distribution of the unique eccDNA. Next, we used DifCir to find up-DPpGCs in the SkM of the sedentary and active groups. We assessed the functional enrichment of the DPpGCs using Disease Gene Network and Gene Set Enrichment Analysis. To find genes that produce eccDNA in a group without comparison with another group, we introduced a method to find Common PpGCs (CPpGCs) and used it to find CPpGCs in the SkM of the sedentary and active group. Finally, we found the eccDNA that carries whole genes. We discovered that the eccDNA in the SkM of the sedentary group is not statistically different from that of physically active aged men in terms of number and length distribution of eccDNA. In contrast, with DifCir we found distinctive gene-associated eccDNA fingerprints. We identified statistically significant up-DPpGCs in the two groups, with the top up-DPpGCs shed by the genes AGBL4, RNF213, DNAH7, MED13, and WWTR1 in the sedentary group, and ZBTB7C, TBCD, ITPR2, and DDX11-AS1 in the active group. The up-DPpGCs in both groups carry mostly gene fragments rather than whole genes. Though the subtle transcriptomics difference, we found RYR1 to be both transcriptionally up-regulated and up-DPpGCs gene in sedentary SkM. DifCir emphasizes the high sensitivity of the circulome compared to the transcriptome to detect the molecular fingerprints of exercise in aged SkM. It allows efficient identification of gene hotspots that excise more eccDNA in a health state or disease compared to a control condition.
Collapse
Affiliation(s)
- Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain
- Correspondence: (D.G.); (M.J.A.-B.)
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain
- Basque Foundation for Science, IKERBASQUE, Calle María Díaz Harokoa 3, 48013 Bilbao, Spain
- CIBER of Frailty and Healthy Aging (CIBERfes), 28029 Madrid, Spain
- Max Planck Institute for Molecular Biomedicine, Computational Biology and Bioinformatics, Röntgenstr. 20, 48149 Münster, Germany
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
- Correspondence: (D.G.); (M.J.A.-B.)
| |
Collapse
|
2
|
Su W, van Wijk SW, Brundel BJJM. Desmin variants: Trigger for cardiac arrhythmias? Front Cell Dev Biol 2022; 10:986718. [PMID: 36158202 PMCID: PMC9500482 DOI: 10.3389/fcell.2022.986718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Desmin (DES) is a classical type III intermediate filament protein encoded by the DES gene. Desmin is abundantly expressed in cardiac, skeletal, and smooth muscle cells. In these cells, desmin interconnects several protein-protein complexes that cover cell-cell contact, intracellular organelles such as mitochondria and the nucleus, and the cytoskeletal network. The extra- and intracellular localization of the desmin network reveals its crucial role in maintaining the structural and mechanical integrity of cells. In the heart, desmin is present in specific structures of the cardiac conduction system including the sinoatrial node, atrioventricular node, and His-Purkinje system. Genetic variations and loss of desmin drive a variety of conditions, so-called desminopathies, which include desmin-related cardiomyopathy, conduction system-related atrial and ventricular arrhythmias, and sudden cardiac death. The severe cardiac disease outcomes emphasize the clinical need to understand the molecular and cellular role of desmin driving desminopathies. As the role of desmin in cardiomyopathies has been discussed thoroughly, the current review is focused on the role of desmin impairment as a trigger for cardiac arrhythmias. Here, the molecular and cellular mechanisms of desmin to underlie a healthy cardiac conduction system and how impaired desmin triggers cardiac arrhythmias, including atrial fibrillation, are discussed. Furthermore, an overview of available (genetic) desmin model systems for experimental cardiac arrhythmia studies is provided. Finally, potential implications for future clinical treatments of cardiac arrhythmias directed at desmin are highlighted.
Collapse
Affiliation(s)
- Wei Su
- Physiology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Stan W. van Wijk
- Physiology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bianca J. J. M. Brundel
- Physiology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Bianca J. J. M. Brundel,
| |
Collapse
|
3
|
Wang D, Deng L, Xu X, Ji Y, Jiao Z. Elevated SYNC Expression Is Associated with Gastric Tumorigenesis and Infiltration of M2-Polarized Macrophages in the Gastric Tumor Immune Microenvironment. Genet Test Mol Biomarkers 2021; 25:236-246. [PMID: 33734892 DOI: 10.1089/gtmb.2020.0131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aims: To assess the expression and epigenetic regulation of Syncoilin, intermediate filament protein (SYNC) in gastric cancer tissues, and to determine its associations with clinicopathological features; immune infiltration of macrophages in tumors; and patient survival. Materials and Methods: Clinicopathological features, expression profiles, and methylation data of the SYNC gene were obtained from multi-institutional real-world public datasets. A total of 1601 samples from patients with gastric cancer were examined. The associations between clinicopathological features and SYNC expression levels were assessed by the chi-square test; survival was assessed using the Kaplan-Meier analysis. The infiltration levels of M1, 2-polarized tumor-associated macrophages (TAMs) in a gastric tumor immune microenvironment were quantified using deconvolution, and the correlation between SYNC expression level and M1, 2-polarized macrophages' infiltration was examined using the Pearson correlation test. SYNC gene methylation data were analyzed to investigate epigenetic control of its expression. Results: SYNC expression was elevated in gastric cancer tissues (p < 0.01), and was associated with a poorer overall survival (p < 0.01) and poorer postprogression survival (p = 0.01). Higher SYNC levels were significantly associated with more aggressive clinicopathological features in gastric cancer patients (p < 0.05). SYNC was also associated with the infiltration of M2-polarized TAMs in the gastric tumor immune microenvironment (p < 0.001). Hypomethylation was shown to be associated with SYNC's upregulation (p < 0.05). Conclusion: SYNC is highly expressed in gastric cancer tissues and has the potential to be a therapeutic target and to serve as a prognostic marker.
Collapse
Affiliation(s)
- Dazhi Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pharmacy, Center for Precision Cancer Medicine, Clinical Oncology Pharmacist Training Bases (National Health Commission), Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lihua Deng
- Department of Oncology, Center for Precision Cancer Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiaona Xu
- Department of Central Laboratories, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yinghui Ji
- Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zheng Jiao
- Department of Pharmacy, Center for Precision Cancer Medicine, Clinical Oncology Pharmacist Training Bases (National Health Commission), Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Langer HT, Mossakowski AA, Willis BJ, Grimsrud KN, Wood JA, Lloyd KCK, Zbinden-Foncea H, Baar K. Generation of desminopathy in rats using CRISPR-Cas9. J Cachexia Sarcopenia Muscle 2020; 11:1364-1376. [PMID: 32893996 PMCID: PMC7567154 DOI: 10.1002/jcsm.12619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/04/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Desminopathy is a clinically heterogeneous muscle disease caused by over 60 different mutations in desmin. The most common mutation with a clinical phenotype in humans is an exchange of arginine to proline at position 350 of desmin leading to p.R350P. We created the first CRISPR-Cas9 engineered rat model for a muscle disease by mirroring the R350P mutation in humans. METHODS Using CRISPR-Cas9 technology, Des c.1045-1046 (AGG > CCG) was introduced into exon 6 of the rat genome causing p.R349P. The genotype of each animal was confirmed via quantitative PCR. Six male rats with a mutation in desmin (n = 6) between the age of 120-150 days and an equal number of wild type littermates (n = 6) were used for experiments. Maximal plantar flexion force was measured in vivo and combined with the collection of muscle weights, immunoblotting, and histological analysis. In addition to the baseline phenotyping, we performed a synergist ablation study in the same animals. RESULTS We found a difference in the number of central nuclei between desmin mutants (1 ± 0.4%) and wild type littermates (0.2 ± 0.1%; P < 0.05). While muscle weights did not differ, we found the levels of many structural proteins to be altered in mutant animals. Dystrophin and syntrophin were increased 54% and 45% in desmin mutants, respectively (P < 0.05). Dysferlin and Annexin A2, proteins associated with membrane repair, were increased two-fold and 32%, respectively, in mutants (P < 0.05). Synergist ablation caused similar increases in muscle weight between mutant and wild type animals, but changes in fibre diameter revealed that fibre hypertrophy in desmin mutants was hampered compared with wild type animals (P < 0.05). CONCLUSIONS We created a novel animal model for desminopathy that will be a useful tool in furthering our understanding of the disease. While mutant animals at an age corresponding to a preclinical age in humans show no macroscopic differences, microscopic and molecular changes are already present. Future studies should aim to further decipher those biological changes that precede the clinical progression of disease and test therapeutic approaches to delay disease progression.
Collapse
Affiliation(s)
- Henning T Langer
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - Agata A Mossakowski
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.,Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Universität zu Berlin, and Berlin Institute of Health, Humboldt, CA, USA
| | | | - Kristin N Grimsrud
- Mouse Biology Program, University of California, Davis, CA, USA.,Dept. of Pathology, School of Medicine, University of California, Davis, CA, USA
| | - Joshua A Wood
- Mouse Biology Program, University of California, Davis, CA, USA
| | - Kevin C K Lloyd
- Mouse Biology Program, University of California, Davis, CA, USA.,Dept. of Surgery, School of Medicine, University of California, Davis, CA, USA
| | | | - Keith Baar
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.,Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
| |
Collapse
|
5
|
Rodríguez MA, Liu JX, Parkkonen K, Li Z, Pedrosa Domellöf F. The Cytoskeleton in the Extraocular Muscles of Desmin Knockout Mice. Invest Ophthalmol Vis Sci 2019; 59:4847-4855. [PMID: 30347079 DOI: 10.1167/iovs.18-24508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the effect of absence of desmin on the extraocular muscles (EOMs) with focus on the structure and composition of the cytoskeleton. Methods The distribution of synemin, syncoilin, plectin, nestin, and dystrophin was evaluated on cross and longitudinal sections of EOMs and limb muscles from 1-year-old desmin knockout mice (desmin-/-) by immunofluorescence. General morphology was evaluated with hematoxylin and eosin while mitochondrial content and distribution were evaluated by succinate dehydrogenase (SDH) and modified Gomori trichrome stainings. Results The muscle fibers of the EOMs in desmin-/- mice were remarkably well preserved in contrast to those in the severely affected soleus and the slightly affected gastrocnemius muscles. There were no signs of muscular pathology in the EOMs and all cytoskeletal proteins studied showed a correct location at sarcolemma and Z-discs. However, an increase of SDH staining and mitochondrial aggregates under the sarcolemma was detected. Conclusions The structure of the EOMs was well preserved in the absence of desmin. We suggest that desmin is not necessary for correct synemin, syncoilin, plectin, and dystrophin location on the cytoskeleton of EOMs. However, it is needed to maintain an appropriate mitochondrial distribution in both EOMs and limb muscles.
Collapse
Affiliation(s)
| | - Jing-Xia Liu
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | - Kimmo Parkkonen
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
6
|
Bhat SS, Ali R, Khanday FA. Syntrophins entangled in cytoskeletal meshwork: Helping to hold it all together. Cell Prolif 2019; 52:e12562. [PMID: 30515904 PMCID: PMC6496184 DOI: 10.1111/cpr.12562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/23/2018] [Accepted: 11/08/2018] [Indexed: 01/10/2023] Open
Abstract
Syntrophins are a family of 59 kDa peripheral membrane-associated adapter proteins, containing multiple protein-protein and protein-lipid interaction domains. The syntrophin family consists of five isoforms that exhibit specific tissue distribution, distinct sub-cellular localization and unique expression patterns implying their diverse functional roles. These syntrophin isoforms form multiple functional protein complexes and ensure proper localization of signalling proteins and their binding partners to specific membrane domains and provide appropriate spatiotemporal regulation of signalling pathways. Syntrophins consist of two PH domains, a PDZ domain and a conserved SU domain. The PH1 domain is split by the PDZ domain. The PH2 and the SU domain are involved in the interaction between syntrophin and the dystrophin-glycoprotein complex (DGC). Syntrophins recruit various signalling proteins to DGC and link extracellular matrix to internal signalling apparatus via DGC. The different domains of the syntrophin isoforms are responsible for modulation of cytoskeleton. Syntrophins associate with cytoskeletal proteins and lead to various cellular responses by modulating the cytoskeleton. Syntrophins are involved in many physiological processes which involve cytoskeletal reorganization like insulin secretion, blood pressure regulation, myogenesis, cell migration, formation and retraction of focal adhesions. Syntrophins have been implicated in various pathologies like Alzheimer's disease, muscular dystrophy, cancer. Their role in cytoskeletal organization and modulation makes them perfect candidates for further studies in various cancers and other ailments that involve cytoskeletal modulation. The role of syntrophins in cytoskeletal organization and modulation has not yet been comprehensively reviewed till now. This review focuses on syntrophins and highlights their role in cytoskeletal organization, modulation and dynamics via its involvement in different cell signalling networks.
Collapse
Affiliation(s)
- Sahar S. Bhat
- Division of BiotechnologySher‐e‐Kashmir University of Agricultural Sciences and Technology of KashmirSrinagarIndia
| | - Roshia Ali
- Department of BiotechnologyUniversity of KashmirSrinagarIndia
- Department of BiochemistryUniversity of KashmirSrinagarIndia
| | | |
Collapse
|
7
|
Papah MB, Brannick EM, Schmidt CJ, Abasht B. Gene expression profiling of the early pathogenesis of wooden breast disease in commercial broiler chickens using RNA-sequencing. PLoS One 2018; 13:e0207346. [PMID: 30517117 PMCID: PMC6281187 DOI: 10.1371/journal.pone.0207346] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/30/2018] [Indexed: 01/22/2023] Open
Abstract
Wooden Breast Disease (WBD), a myopathy in commercial broiler chickens characterized by abnormally firm consistency of the pectoral muscle, impacts the poultry industry negatively due to severe reduction in meat quality traits. To unravel the molecular profile associated with the onset and early development of WBD in broiler chickens, we compared time-series gene expression profiles of Pectoralis (P.) major muscles between unaffected and affected birds from a high-breast-muscle-yield, purebred broiler line. P. major biopsy samples were collected from the cranial and caudal aspects of the muscle belly in birds that were raised up to 7 weeks of age (i.e. market age). Three subsets of biopsy samples comprising 6 unaffected (U) and 10 affected (A) from week 2 (cranial) and 4 (caudal), and 4U and 11A from week 3 (cranial) were processed for RNA-sequencing analysis. Sequence reads generated were processed using a suite of bioinformatics programs producing differentially expressed (DE) genes for each dataset at fold-change (A/U or U/A) >1.3 and False Discovery Ratio (FDR) <0.05 (week 2: 41 genes; week 3: 618 genes and week 4: 39 genes). Functional analysis of DE genes using literature mining, BioDBnet and IPA revealed several biological processes and pathways associated with onset and progress of WBD. Top among them were dysregulation of energy metabolism, response to inflammation, vascular disease and remodeling of extracellular matrix. This study reveals that presence of molecular perturbations involving the vasculature, extracellular matrix and metabolism are pertinent to the onset and early pathogenesis of WBD in commercial meat-type chickens.
Collapse
Affiliation(s)
- Michael B. Papah
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Erin M. Brannick
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Carl J. Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Behnam Abasht
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
8
|
Tsikitis M, Galata Z, Mavroidis M, Psarras S, Capetanaki Y. Intermediate filaments in cardiomyopathy. Biophys Rev 2018; 10:1007-1031. [PMID: 30027462 DOI: 10.1007/s12551-018-0443-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022] Open
Abstract
Intermediate filament (IF) proteins are critical regulators in health and disease. The discovery of hundreds of mutations in IF genes and posttranslational modifications has been linked to a plethora of human diseases, including, among others, cardiomyopathies, muscular dystrophies, progeria, blistering diseases of the epidermis, and neurodegenerative diseases. The major IF proteins that have been linked to cardiomyopathies and heart failure are the muscle-specific cytoskeletal IF protein desmin and the nuclear IF protein lamin, as a subgroup of the known desminopathies and laminopathies, respectively. The studies so far, both with healthy and diseased heart, have demonstrated the importance of these IF protein networks in intracellular and intercellular integration of structure and function, mechanotransduction and gene activation, cardiomyocyte differentiation and survival, mitochondrial homeostasis, and regulation of metabolism. The high coordination of all these processes is obviously of great importance for the maintenance of proper, life-lasting, and continuous contraction of this highly organized cardiac striated muscle and consequently a healthy heart. In this review, we will cover most known information on the role of IFs in the above processes and how their deficiency or disruption leads to cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Mary Tsikitis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece
| | - Zoi Galata
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece
| | - Stelios Psarras
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece.
| |
Collapse
|
9
|
Hol EM, Capetanaki Y. Type III Intermediate Filaments Desmin, Glial Fibrillary Acidic Protein (GFAP), Vimentin, and Peripherin. Cold Spring Harb Perspect Biol 2017; 9:9/12/a021642. [PMID: 29196434 DOI: 10.1101/cshperspect.a021642] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SummaryType III intermediate filament (IF) proteins assemble into cytoplasmic homopolymeric and heteropolymeric filaments with other type III and some type IV IFs. These highly dynamic structures form an integral component of the cytoskeleton of muscle, brain, and mesenchymal cells. Here, we review the current ideas on the role of type III IFs in health and disease. It turns out that they not only offer resilience to mechanical strains, but, most importantly, they facilitate very efficiently the integration of cell structure and function, thus providing the necessary scaffolds for optimal cellular responses upon biochemical stresses and protecting against cell death, disease, and aging.
Collapse
Affiliation(s)
- Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands.,Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| |
Collapse
|
10
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
11
|
Allen DG, Whitehead NP, Froehner SC. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy. Physiol Rev 2016; 96:253-305. [PMID: 26676145 DOI: 10.1152/physrev.00007.2015] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numerous signaling proteins. Absence or reduced expression of dystrophin or many of the DPC components cause the muscular dystrophies, a group of inherited diseases in which repeated bouts of muscle damage lead to atrophy and fibrosis, and eventually muscle degeneration. The normal function of dystrophin is poorly defined. In its absence a complex series of changes occur with multiple muscle proteins showing reduced or increased expression or being modified in various ways. In this review, we will consider the various proteins whose expression and function is changed in muscular dystrophies, focusing on Ca(2+)-permeable channels, nitric oxide synthase, NADPH oxidase, and caveolins. Excessive Ca(2+) entry, increased membrane permeability, disordered caveolar function, and increased levels of reactive oxygen species are early changes in the disease, and the hypotheses for these phenomena will be critically considered. The aim of the review is to define the early damage pathways in muscular dystrophy which might be appropriate targets for therapy designed to minimize the muscle degeneration and slow the progression of the disease.
Collapse
Affiliation(s)
- David G Allen
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Nicholas P Whitehead
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Stanley C Froehner
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
12
|
New insights into the protein aggregation pathology in myotilinopathy by combined proteomic and immunolocalization analyses. Acta Neuropathol Commun 2016; 4:8. [PMID: 26842778 PMCID: PMC4739336 DOI: 10.1186/s40478-016-0280-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 01/23/2016] [Indexed: 01/09/2023] Open
Abstract
Introduction Myofibrillar myopathies are characterized by progressive muscle weakness and impressive abnormal protein aggregation in muscle fibers. In about 10 % of patients, the disease is caused by mutations in the MYOT gene encoding myotilin. The aim of our study was to decipher the composition of protein deposits in myotilinopathy to get new information about aggregate pathology. Results Skeletal muscle samples from 15 myotilinopathy patients were included in the study. Aggregate and control samples were collected from muscle sections by laser microdissection and subsequently analyzed by a highly sensitive proteomic approach that enables a relative protein quantification. In total 1002 different proteins were detected. Seventy-six proteins showed a significant over-representation in aggregate samples including 66 newly identified aggregate proteins. Z-disc-associated proteins were the most abundant aggregate components, followed by sarcolemmal and extracellular matrix proteins, proteins involved in protein quality control and degradation, and proteins with a function in actin dynamics or cytoskeletal transport. Forty over-represented proteins were evaluated by immunolocalization studies. These analyses validated our mass spectrometric data and revealed different regions of protein accumulation in abnormal muscle fibers. Comparison of data from our proteomic analysis in myotilinopathy with findings in other myofibrillar myopathy subtypes indicates a characteristic basic pattern of aggregate composition and resulted in identification of a highly sensitive and specific diagnostic marker for myotilinopathy. Conclusions Our findings i) indicate that main protein components of aggregates belong to a network of interacting proteins, ii) provide new insights into the complex regulation of protein degradation in myotilinopathy that may be relevant for new treatment strategies, iii) imply a combination of a toxic gain-of-function leading to myotilin-positive protein aggregates and a loss-of-function caused by a shift in subcellular distribution with a deficiency of myotilin at Z-discs that impairs the integrity of myofibrils, and iv) demonstrate that proteomic analysis can be helpful in differential diagnosis of protein aggregate myopathies. Electronic supplementary material The online version of this article (doi:10.1186/s40478-016-0280-0) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Perng MD, Huang YS, Quinlan RA. Purification of Protein Chaperones and Their Functional Assays with Intermediate Filaments. Methods Enzymol 2016; 569:155-75. [DOI: 10.1016/bs.mie.2015.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Hnia K, Ramspacher C, Vermot J, Laporte J. Desmin in muscle and associated diseases: beyond the structural function. Cell Tissue Res 2014; 360:591-608. [PMID: 25358400 DOI: 10.1007/s00441-014-2016-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/22/2014] [Indexed: 11/25/2022]
Abstract
Desmin is a muscle-specific type III intermediate filament essential for proper muscular structure and function. In human, mutations affecting desmin expression or promoting its aggregation lead to skeletal (desmin-related myopathies), or cardiac (desmin-related cardiomyopathy) phenotypes, or both. Patient muscles display intracellular accumulations of misfolded proteins and desmin-positive insoluble granulofilamentous aggregates, leading to a large spectrum of molecular alterations. Increasing evidence shows that desmin function is not limited to the structural and mechanical integrity of cells. This novel perception is strongly supported by the finding that diseases featuring desmin aggregates cannot be easily associated with mechanical defects, but rather involve desmin filaments in a broader spectrum of functions, such as in organelle positioning and integrity and in signaling. Here, we review desmin functions and related diseases affecting striated muscles. We detail emergent cellular functions of desmin based on reported phenotypes in patients and animal models. We discuss known desmin protein partners and propose an overview of the way that this molecular network could serve as a signal transduction platform necessary for proper muscle function.
Collapse
Affiliation(s)
- Karim Hnia
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France,
| | | | | | | |
Collapse
|
15
|
Abstract
The function of muscle is to contract, which means to exert force on a substrate. The adaptations required for skeletal muscle differentiation, from a prototypic cell, involve specialization of housekeeping cytoskeletal contracting and supporting systems into crystalline arrays of proteins. Here I discuss the changes that all three cytoskeletal systems (microfilaments, intermediate filaments, and microtubules) undergo through myogenesis. I also discuss their interaction, through the membrane, to extracellular matrix and to other cells, where force will be exerted during contraction. The three cytoskeletal systems are necessary for the muscle cell and must exert complementary roles in the cell. Muscle is a responsive system, where structure and function are integrated: the structural adaptations it undergoes depend on force production. In this way, the muscle cytoskeleton is a portrait of its physiology. I review the cytoskeletal proteins and structures involved in muscle function and focus particularly on their role in myogenesis, the process by which this incredible muscle machine is made. Although the focus is on skeletal muscle, some of the discussion is applicable to cardiac and smooth muscle.
Collapse
|
16
|
Van Rossen E, Liu Z, Blijweert D, Eysackers N, Mannaerts I, Schroyen B, El Taghdouini A, Edwards B, Davies KE, Sokal E, Najimi M, Reynaert H, van Grunsven LA. Syncoilin is an intermediate filament protein in activated hepatic stellate cells. Histochem Cell Biol 2013; 141:85-99. [PMID: 24043511 DOI: 10.1007/s00418-013-1142-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2013] [Indexed: 02/06/2023]
Abstract
Hepatic stellate cells (HSCs) play an important role in several (patho)physiologic conditions in the liver. In response to chronic injury, HSCs are activated and change from quiescent to myofibroblast-like cells with contractile properties. This shift in phenotype is accompanied by a change in expression of intermediate filament (IF) proteins. HSCs express a broad, but variable spectrum of IF proteins. In muscle, syncoilin was identified as an alpha-dystrobrevin binding protein with sequence homology to IF proteins. We investigated the expression of syncoilin in mouse and human HSCs. Syncoilin expression in isolated and cultured HSCs was studied by qPCR, Western blotting, and fluorescence immunocytochemistry. Syncoilin expression was also evaluated in other primary liver cell types and in in vivo-activated HSCs as well as total liver samples from fibrotic mice and cirrhotic patients. Syncoilin mRNA was present in human and mouse HSCs and was highly expressed in in vitro- and in vivo-activated HSCs. Syncoilin protein was strongly upregulated during in vitro activation of HSCs and undetectable in hepatocytes and liver sinusoidal endothelial cells. Syncoilin mRNA levels were elevated in both CCl4- and common bile duct ligation-treated mice. Syncoilin immunocytochemistry revealed filamentous staining in activated mouse HSCs that partially colocalized with α-smooth muscle actin, β-actin, desmin, and α-tubulin. We show that in the liver, syncoilin is predominantly expressed by activated HSCs and displays very low-expression levels in other liver cell types, making it a good marker of activated HSCs. During in vitro activation of mouse HSCs, syncoilin is able to form filamentous structures or at least to closely interact with existing cellular filaments.
Collapse
Affiliation(s)
- E Van Rossen
- Liver Cell Biology Lab, Department of Cell Biology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rahimov F, Kunkel LM. The cell biology of disease: cellular and molecular mechanisms underlying muscular dystrophy. ACTA ACUST UNITED AC 2013; 201:499-510. [PMID: 23671309 PMCID: PMC3653356 DOI: 10.1083/jcb.201212142] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The muscular dystrophies are a group of heterogeneous genetic diseases characterized by progressive degeneration and weakness of skeletal muscle. Since the discovery of the first muscular dystrophy gene encoding dystrophin, a large number of genes have been identified that are involved in various muscle-wasting and neuromuscular disorders. Human genetic studies complemented by animal model systems have substantially contributed to our understanding of the molecular pathomechanisms underlying muscle degeneration. Moreover, these studies have revealed distinct molecular and cellular mechanisms that link genetic mutations to diverse muscle wasting phenotypes.
Collapse
Affiliation(s)
- Fedik Rahimov
- Program in Genomics, Division of Genetics, Boston Children's Hospital, and 2 Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
18
|
Desminopathies: pathology and mechanisms. Acta Neuropathol 2013; 125:47-75. [PMID: 23143191 PMCID: PMC3535371 DOI: 10.1007/s00401-012-1057-6] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 12/22/2022]
Abstract
The intermediate filament protein desmin is an essential component of the extra-sarcomeric cytoskeleton in muscle cells. This three-dimensional filamentous framework exerts central roles in the structural and functional alignment and anchorage of myofibrils, the positioning of cell organelles and signaling events. Mutations of the human desmin gene on chromosome 2q35 cause autosomal dominant, autosomal recessive, and sporadic myopathies and/or cardiomyopathies with marked phenotypic variability. The disease onset ranges from childhood to late adulthood. The clinical course is progressive and no specific treatment is currently available for this severely disabling disease. The muscle pathology is characterized by desmin-positive protein aggregates and degenerative changes of the myofibrillar apparatus. The molecular pathophysiology of desminopathies is a complex, multilevel issue. In addition to direct effects on the formation and maintenance of the extra-sarcomeric intermediate filament network, mutant desmin affects essential protein interactions, cell signaling cascades, mitochondrial functions, and protein quality control mechanisms. This review summarizes the currently available data on the epidemiology, clinical phenotypes, myopathology, and genetics of desminopathies. In addition, this work provides an overview on the expression, filament formation processes, biomechanical properties, post-translational modifications, interaction partners, subcellular localization, and functions of wild-type and mutant desmin as well as desmin-related cell and animal models.
Collapse
|
19
|
Kley RA, Maerkens A, Leber Y, Theis V, Schreiner A, van der Ven PFM, Uszkoreit J, Stephan C, Eulitz S, Euler N, Kirschner J, Müller K, Meyer HE, Tegenthoff M, Fürst DO, Vorgerd M, Müller T, Marcus K. A combined laser microdissection and mass spectrometry approach reveals new disease relevant proteins accumulating in aggregates of filaminopathy patients. Mol Cell Proteomics 2012; 12:215-27. [PMID: 23115302 DOI: 10.1074/mcp.m112.023176] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Filaminopathy is a subtype of myofibrillar myopathy caused by mutations in FLNC, the gene encoding filamin C, and histologically characterized by pathologic accumulation of several proteins within skeletal muscle fibers. With the aim to get new insights in aggregate composition, we collected aggregates and control tissue from skeletal muscle biopsies of six myofibrillar myopathy patients harboring three different FLNC mutations by laser microdissection and analyzed the samples by a label-free mass spectrometry approach. A total of 390 proteins were identified, and 31 of those showed significantly higher spectral indices in aggregates compared with patient controls with a ratio >1.8. These proteins included filamin C, other known myofibrillar myopathy associated proteins, and a striking number of filamin C binding partners. Across the patients the patterns were extremely homogeneous. Xin actin-binding repeat containing protein 2, heat shock protein 27, nebulin-related-anchoring protein, and Rab35 could be verified as new filaminopathy biomarker candidates. In addition, further experiments identified heat shock protein 27 and Xin actin-binding repeat containing protein 2 as novel filamin C interaction partners and we could show that Xin actin-binding repeat containing protein 2 and the known interaction partner Xin actin-binding repeat containing protein 1 simultaneously associate with filamin C. Ten proteins showed significant lower spectral indices in aggregate samples compared with patient controls (ratio <0.56) including M-band proteins myomesin-1 and myomesin-2. Proteomic findings were consistent with previous and novel immunolocalization data. Our findings suggest that aggregates in filaminopathy have a largely organized structure of proteins also interacting under physiological conditions. Different filamin C mutations seem to lead to almost identical aggregate compositions. The finding that filamin C was detected as highly abundant protein in aggregates in filaminopathy indicates that our proteomic approach may be suitable to identify new candidate genes among the many MFM patients with so far unknown mutation.
Collapse
Affiliation(s)
- Rudolf A Kley
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil, Ruhr-University Bochum, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Oh HJ, Abraham LS, van Hengel J, Stove C, Proszynski TJ, Gevaert K, DiMario JX, Sanes JR, van Roy F, Kim H. Interaction of α-catulin with dystrobrevin contributes to integrity of dystrophin complex in muscle. J Biol Chem 2012; 287:21717-28. [PMID: 22577143 DOI: 10.1074/jbc.m112.369496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dystrophin complex is a multimolecular membrane-associated protein complex whose defects underlie many forms of muscular dystrophy. The dystrophin complex is postulated to function as a structural element that stabilizes the cell membrane by linking the contractile apparatus to the extracellular matrix. A better understanding of how this complex is organized and localized will improve our knowledge of the pathogenic mechanisms of diseases that involve the dystrophin complex. In a Caenorhabditis elegans genetic study, we demonstrate that CTN-1/α-catulin, a cytoskeletal protein, physically interacts with DYB-1/α-dystrobrevin (a component of the dystrophin complex) and that this interaction is critical for the localization of the dystrophin complex near dense bodies, structures analogous to mammalian costameres. We further show that in mouse α-catulin is localized at the sarcolemma and neuromuscular junctions and interacts with α-dystrobrevin and that the level of α-catulin is reduced in α-dystrobrevin-deficient mouse muscle. Intriguingly, in the skeletal muscle of mdx mice lacking dystrophin, we discover that the expression of α-catulin is increased, suggesting a compensatory role of α-catulin in dystrophic muscle. Together, our study demonstrates that the interaction between α-catulin and α-dystrobrevin is evolutionarily conserved in C. elegans and mammalian muscles and strongly suggests that this interaction contributes to the integrity of the dystrophin complex.
Collapse
Affiliation(s)
- Hyun J Oh
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chancellor DR, Davies KE, De Moor O, Dorgan CR, Johnson PD, Lambert AG, Lawrence D, Lecci C, Maillol C, Middleton PJ, Nugent G, Poignant SD, Potter AC, Price PD, Pye RJ, Storer R, Tinsley JM, van Well R, Vickers R, Vile J, Wilkes FJ, Wilson FX, Wren SP, Wynne GM. Discovery of 2-arylbenzoxazoles as upregulators of utrophin production for the treatment of Duchenne muscular dystrophy. J Med Chem 2011; 54:3241-50. [PMID: 21456623 DOI: 10.1021/jm200135z] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A series of novel 2-arylbenzoxazoles that upregulate the production of utrophin in murine H2K cells, as assessed using a luciferase reporter linked assay, have been identified. This compound class appears to hold considerable promise as a potential treatment for Duchenne muscular dystrophy. Following the delineation of structure-activity relationships in the series, a number of potent upregulators were identified, and preliminary ADME evaluation is described. These studies have resulted in the identification of 1, a compound that has been progressed to clinical trials.
Collapse
Affiliation(s)
- Daniel R Chancellor
- Summit plc , 91 Milton Park, Abingdon, Oxfordshire, OX14 4RY, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nakamori M, Takahashi MP. The role of α-dystrobrevin in striated muscle. Int J Mol Sci 2011; 12:1660-71. [PMID: 21673914 PMCID: PMC3111625 DOI: 10.3390/ijms12031660] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/29/2011] [Accepted: 02/23/2011] [Indexed: 12/29/2022] Open
Abstract
Muscular dystrophies are a group of diseases that primarily affect striated muscle and are characterized by the progressive loss of muscle strength and integrity. Major forms of muscular dystrophies are caused by the abnormalities of the dystrophin glycoprotein complex (DGC) that plays crucial roles as a structural unit and scaffolds for signaling molecules at the sarcolemma. α-Dystrobrevin is a component of the DGC and directly associates with dystrophin. α-Dystrobrevin also binds to intermediate filaments as well as syntrophin, a modular adaptor protein thought to be involved in signaling. Although no muscular dystrophy has been associated within mutations of the α-dystrobrevin gene, emerging findings suggest potential significance of α-dystrobrevin in striated muscle. This review addresses the functional role of α-dystrobrevin in muscle as well as its possible implication for muscular dystrophy.
Collapse
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, D-4, Yamadaoka, Suita, Osaka 565-0871, Japan; E-Mail:
- Department of Neurology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 645 URMC, Rochester, NY 14642, USA
| | - Masanori P. Takahashi
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, D-4, Yamadaoka, Suita, Osaka 565-0871, Japan; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-6-6879-3571; Fax: +81-6-6879-3579
| |
Collapse
|
23
|
Clarke WT, Edwards B, McCullagh KJA, Kemp MW, Moorwood C, Sherman DL, Burgess M, Davies KE. Syncoilin modulates peripherin filament networks and is necessary for large-calibre motor neurons. J Cell Sci 2010; 123:2543-52. [PMID: 20587592 PMCID: PMC2908046 DOI: 10.1242/jcs.059113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2010] [Indexed: 11/20/2022] Open
Abstract
Syncoilin is an atypical type III intermediate filament (IF) protein, which is expressed in muscle and is associated with the dystrophin-associated protein complex. Here, we show that syncoilin is expressed in both the central and peripheral nervous systems. Isoform Sync1 is dominant in the brain, but isoform Sync2 is dominant in the spinal cord and sciatic nerve. Peripherin is a type III IF protein that has been shown to colocalise and interact with syncoilin. Our analyses suggest that syncoilin might function to modulate formation of peripherin filament networks through binding to peripherin isoforms. Peripherin is associated with the disease amyotrophic lateral sclerosis (ALS), thus establishing a link between syncoilin and ALS. A neuronal analysis of the syncoilin-null mouse (Sync(-/-)) revealed a reduced ability in accelerating treadmill and rotarod tests. This phenotype might be attributable to the impaired function of extensor digitorum longus muscle and type IIb fibres caused by a shift from large- to small-calibre motor axons in the ventral root.
Collapse
Affiliation(s)
- W. Thomas Clarke
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK
| | - Ben Edwards
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK
| | - Karl J. A. McCullagh
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK
| | - Matthew W. Kemp
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK
| | - Catherine Moorwood
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK
| | - Diane L. Sherman
- Centre for Neuroscience Research, The University of Edinburgh, Summerhall, Edinburgh, EH9 1QH, UK
| | - Matthew Burgess
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK
| | - Kay E. Davies
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK
| |
Collapse
|
24
|
Wakayama Y, Matsuzaki Y, Yamashita S, Inoue M, Jimi T, Hara H, Unaki A, Iijima S, Masaki H. Dysbindin, syncoilin, and beta-synemin mRNA levels in dystrophic muscles. Int J Neurosci 2010; 120:144-9. [PMID: 20199207 DOI: 10.3109/00207450903279717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Progressive muscular dystrophies are genetic diseases with various modes of transmission. Duchenne muscular dystrophy (DMD) is caused by the defect of dystrophin, and Fukuyama congenital muscular dystrophy (FCMD) is caused by an abnormal fukutin gene leading to the glycosylation defect of alpha-dystroglycan. Dystrobrevin is one member of the dystrophin glycoprotein complex and its binding partners include dysbindin, syncoilin, and beta-synemin (desmuslin). Dysbindin is reported to be upregulated at the protein level in mdx mouse muscles, and syncoilin protein is also reported to be upregulated in biopsied muscles with neuromuscular disorders. In the present study we measured mRNA levels of dysbindin, syncoilin, and beta-synemin in biopsied muscles with DMD and FCMD. Upregulation of human dysbindin mRNA was observed in DMD muscles in comparison with normal muscles (p < .05). The differences in human syncoilin and beta-synemin mRNA ratios between DMD and normal muscles were not statistically significant, although upregulation tendency of human syncoilin mRNA was noted in DMD muscles (.05 < p < .1). Furthermore, the differences of human dysbindin, syncoilin, and beta-synemin mRNA ratios between FCMD and normal muscles were not statistically significant. These data provide insight into the pathophysiology of these muscular dystrophies.
Collapse
Affiliation(s)
- Yoshihiro Wakayama
- Department of Neurology, Showa University Fujigaoka Hospital, Yokohama, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kemp MW, Edwards B, Burgess M, Clarke WT, Nicholson G, Parry DAD, Davies KE. Syncoilin isoform organization and differential expression in murine striated muscle. J Struct Biol 2009; 165:196-203. [PMID: 19070665 DOI: 10.1016/j.jsb.2008.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/30/2008] [Accepted: 11/06/2008] [Indexed: 12/01/2022]
Abstract
Syncoilin is a 64kDa intermediate filament (IF) protein expressed in myocytes at the sarcolemma, perinucleus, myotendenous and neuromuscular junctions. Here we present a revised domain projection and structural analysis for the original isoform (sync-1) and introduce two novel syncoilin isoforms (sync-2 and sync-3) generated by exon splicing. On the basis of consensus identity we propose that syncoilin be reclassified as a type III IF protein. All three syncoilin isoforms lack a L1 domain, a significant departure from standard IF rod domain projections that is likely to impact significantly on their biological function. Our analyses indicate that syncoilin is unlikely to form classical intermediate filament structures by itself, and that the significant difference in C-terminal structure between the three isoforms indicates that they may play divergent roles in myocytes. We show that despite lacking an apparent structural role in striated muscle, syncoilin isoforms are differentially and strongly upregulated in response to cardiotoxin induced regeneration and denervation induced atrophy in the C57BL/6 mouse, possibly suggesting an atypical role for syncoilin in muscle.
Collapse
Affiliation(s)
- Matthew W Kemp
- MRC Functional Genomics Unit, Department of Anatomy, Physiology and Genetics, University of Oxford, South Parks Road, Oxford OX13QX, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Claeys KG, van der Ven PFM, Behin A, Stojkovic T, Eymard B, Dubourg O, Laforêt P, Faulkner G, Richard P, Vicart P, Romero NB, Stoltenburg G, Udd B, Fardeau M, Voit T, Fürst DO. Differential involvement of sarcomeric proteins in myofibrillar myopathies: a morphological and immunohistochemical study. Acta Neuropathol 2009; 117:293-307. [PMID: 19151983 DOI: 10.1007/s00401-008-0479-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 12/26/2008] [Accepted: 12/29/2008] [Indexed: 12/17/2022]
Abstract
Myofibrillar myopathies (MFMs) are rare inherited or sporadic progressive neuromuscular disorders with considerable clinical and genetic heterogeneity. In the current study, we have analyzed histopathological and immunohistochemical characteristics in genetically identified MFMs. We performed a morphological and morphometrical study in a cohort of 24 genetically identified MFM patients (12 desmin, 6 alphaB-crystallin, 4 ZASP, 2 myotilin), and an extensive immunohistochemical study in 15 of these patients, using both well-known and novel antibodies directed against distinct compartments of the muscle fibers, including Z-disc and M-band proteins. Our morphological data revealed some significant differences between the distinct MFM subgroups: the consistent presence of 'rubbed-out' fibers in desminopathies and alphaB-crystallinopathies, an elevated frequency of vacuoles in ZASPopathies and myotilinopathies, and the presence of a few necrotic fibers in the two myotilinopathy patients. Immunohistochemistry showed that in MFM only a subset of Z-disc proteins, such as filamin C and its ligands myotilin and Xin, exhibited significant alterations in their localization, whereas other Z-disc proteins like alpha-actinin, myopodin and tritopodin, did not. In contrast, M-band proteins revealed no abnormalities in MFM. We conclude that the presence of 'rubbed-out' fibers are a suggestive feature for desminopathy or alphaB-crystallinopathy, and that MFM is not a general disease of the myofibril, but primarily affects a subgroup of stress-responsive Z-disc proteins.
Collapse
Affiliation(s)
- Kristl G Claeys
- Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bunnell TM, Jaeger MA, Fitzsimons DP, Prins KW, Ervasti JM. Destabilization of the dystrophin-glycoprotein complex without functional deficits in alpha-dystrobrevin null muscle. PLoS One 2008; 3:e2604. [PMID: 18596960 PMCID: PMC2432020 DOI: 10.1371/journal.pone.0002604] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 06/03/2008] [Indexed: 11/20/2022] Open
Abstract
α-Dystrobrevin is a component of the dystrophin-glycoprotein complex (DGC) and is thought to have both structural and signaling roles in skeletal muscle. Mice deficient for α-dystrobrevin (adbn−/−) exhibit extensive myofiber degeneration and neuromuscular junction abnormalities. However, the biochemical stability of the DGC and the functional performance of adbn−/− muscle have not been characterized. Here we show that the biochemical association between dystrophin and β-dystroglycan is compromised in adbn−/− skeletal muscle, suggesting that α-dystrobrevin plays a structural role in stabilizing the DGC. However, despite muscle cell death and DGC destabilization, costamere organization and physiological performance is normal in adbn−/− skeletal muscle. Our results demonstrate that myofiber degeneration alone does not cause functional deficits and suggests that more complex pathological factors contribute to the development of muscle weakness in muscular dystrophy.
Collapse
Affiliation(s)
- Tina M. Bunnell
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michele A. Jaeger
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Daniel P. Fitzsimons
- Department of Physiology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kurt W. Prins
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - James M. Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
28
|
Zhang J, Bang ML, Gokhin DS, Lu Y, Cui L, Li X, Gu Y, Dalton ND, Scimia MC, Peterson KL, Lieber RL, Chen J. Syncoilin is required for generating maximum isometric stress in skeletal muscle but dispensable for muscle cytoarchitecture. Am J Physiol Cell Physiol 2008; 294:C1175-82. [PMID: 18367591 PMCID: PMC2749034 DOI: 10.1152/ajpcell.00049.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Syncoilin is a striated muscle-specific intermediate filament-like protein, which is part of the dystrophin-associated protein complex (DPC) at the sarcolemma and provides a link between the extracellular matrix and the cytoskeleton through its interaction with alpha-dystrobrevin and desmin. Its upregulation in various neuromuscular diseases suggests that syncoilin may play a role in human myopathies. To study the functional role of syncoilin in cardiac and skeletal muscle in vivo, we generated syncoilin-deficient (syncoilin-/-) mice. Our detailed analysis of these mice up to 2 yr of age revealed that syncoilin is entirely dispensable for cardiac and skeletal muscle development and maintenance of cellular structure but is required for efficient lateral force transmission during skeletal muscle contraction. Notably, syncoilin-/- skeletal muscle generates less maximal isometric stress than wild-type (WT) muscle but is as equally susceptible to eccentric contraction-induced injury as WT muscle. This suggests that syncoilin may play a supportive role for desmin in the efficient coupling of mechanical stress between the myofibril and fiber exterior. It is possible that the reduction in isometric stress production may predispose the syncoilin skeletal muscle to a dystrophic condition.
Collapse
Affiliation(s)
- Jianlin Zhang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0613, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
McCullagh KJA, Edwards B, Kemp MW, Giles LC, Burgess M, Davies KE. Analysis of skeletal muscle function in the C57BL6/SV129 syncoilin knockout mouse. Mamm Genome 2008; 19:339-51. [PMID: 18594912 PMCID: PMC2515546 DOI: 10.1007/s00335-008-9120-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 05/28/2008] [Indexed: 11/28/2022]
Abstract
Syncoilin is a 64-kDa intermediate filament protein expressed in skeletal muscle and enriched at the perinucleus, sarcolemma, and myotendinous and neuromuscular junctions. Due to its pattern of cellular localization and binding partners, syncoilin is an ideal candidate to be both an important structural component of myocytes and a potential mediator of inherited myopathies. Here we present a report of a knockout mouse model for syncoilin and the results of an investigation into the effect of a syncoilin null state on striated muscle function in 6-8-week-old mice. An analysis of proteins known to associate with syncoilin showed that ablation of syncoilin had no effect on absolute expression or spatial localization of desmin or alpha dystrobrevin. Our syncoilin-null animal exhibited no differences in cardiotoxin-induced muscle regeneration, voluntary wheel running, or enforced treadmill exercise capacity, relative to wild-type controls. Finally, a mechanical investigation of isolated soleus and extensor digitorum longus indicated a potential differential reduction in muscle strength and resilience. We are the first to present data identifying an increased susceptibility to muscle damage in response to an extended forced exercise regime in syncoilin-deficient muscle. This study establishes a second viable syncoilin knockout model and highlights the importance of further investigations to determine the role of syncoilin in skeletal muscle.
Collapse
Affiliation(s)
- Karl J. A. McCullagh
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
- Present Address: Regenerative Medicine Institute (REMEDI), National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | - Ben Edwards
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Matthew W. Kemp
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Laura C. Giles
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Matthew Burgess
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Kay E. Davies
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| |
Collapse
|
30
|
Abstract
The intermediate filament (IF) network is one of the three cytoskeletal systems in smooth muscle. The type III IF proteins vimentin and desmin are major constituents of the network in smooth muscle cells and tissues. Lack of vimentin or desmin impairs contractile ability of various smooth muscle preparations, implying their important role for smooth muscle force development. The IF framework has long been viewed as a fixed cytostructure that solely provides mechanical integrity for the cell. However, recent studies suggest that the IF cytoskeleton is dynamic in mammalian cells in response to various external stimulation. In this review, the structure and biological properties of IF proteins in smooth muscle are summarized. The role of IF proteins in the modulation of smooth muscle force development and redistribution/translocation of signaling partners (such as p130 Crk-associated substrate, CAS) is depicted. This review also summarizes our latest understanding on how the IF network may be regulated in smooth muscle.
Collapse
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
31
|
Abstract
Intermediate filaments (IFs) are found in most eukaryotic cells and are made up of various IF proteins. IFs are highly insoluble in conventional extraction buffers and are therefore commonly purified under denaturing condition. Purified IF proteins can be reassembled into filaments by dialysis. At least 65 IF proteins are found in humans, and the procedures for the purification of each subunit vary somewhat, although many basic steps are similar. To illustrate the isolation of IFs, a detailed protocol is described for purifying neurofilament proteins (NFL, NFM, and NFH subunits) from bovine spinal cord. These three proteins form the predominant IF network in mature neurons. An alternative method for the purification of NFL from a prokaryotic expression system is also included. The isolation of recombinant proteins from bacteria is quite straightforward and may therefore be the method of choice for producing and purifying IFs. Finally, there is a discussion of the purification methods of other IF proteins.
Collapse
|
32
|
Konieczny P, Wiche G. Muscular integrity--a matter of interlinking distinct structures via plectin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 642:165-75. [PMID: 19181100 DOI: 10.1007/978-0-387-84847-1_12] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Myocytes are characterized by the presence of highly specialized cytoskeletal structures that are part of regularly spaced functional units distributed over long distances. In this chapter we discuss previously published evidence as well as novel data showing that the proper positioning and architecture of Z-disks and of sarcolemma-associated costameric structures are largely dependent on the cytolinker protein plectin and its associated intermediate filament (desmin) cytoskeleton. Deficiency in either plectin or desmin lead to muscular dystrophies of similar pathology. However, while in the absence of plectin, desmin networks collapse and form aggregates, when desmin is missing, plectin retains its typical localization. This suggests that plectin recruits and anchors desmin filaments to both Z-disks and costameres and thus is a key element for maintaining and reinforcing myocyte cytoarchitecture. We hypothesize that as an essential link of the Z-disk-costamere axis, plectin is likely to play also a crucial role in myofiber signaling.
Collapse
Affiliation(s)
- Patryk Konieczny
- Department of Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | |
Collapse
|
33
|
Ervasti JM, Sonnemann KJ. Biology of the striated muscle dystrophin-glycoprotein complex. INTERNATIONAL REVIEW OF CYTOLOGY 2008; 265:191-225. [PMID: 18275889 DOI: 10.1016/s0074-7696(07)65005-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Since its first description in 1990, the dystrophin-glycoprotein complex has emerged as a critical nexus for human muscular dystrophies arising from defects in a variety of distinct genes. Studies in mammals widely support a primary role for the dystrophin-glycoprotein complex in mechanical stabilization of the plasma membrane in striated muscle and provide hints for secondary functions in organizing molecules involved in cellular signaling. Studies in model organisms confirm the importance of the dystrophin-glycoprotein complex for muscle cell viability and have provided new leads toward a full understanding of its secondary roles in muscle biology.
Collapse
Affiliation(s)
- James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
34
|
McCullagh KJA, Edwards B, Poon E, Lovering RM, Paulin D, Davies KE. Intermediate filament-like protein syncoilin in normal and myopathic striated muscle. Neuromuscul Disord 2007; 17:970-9. [PMID: 17629480 DOI: 10.1016/j.nmd.2007.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 05/28/2007] [Accepted: 06/06/2007] [Indexed: 11/19/2022]
Abstract
The intermediate filament-like protein syncoilin is a member of the dystrophin protein complex, and links the complex to the cytoskeleton through binding alpha-dystrobrevin and desmin in muscle. Here, we identify further sites of syncoilin location in normal muscle: at the perinuclear space, myotendinous junction, and enrichment in the sarcolemma and sarcoplasm of oxidative muscle fibers in mice. To understand the importance of the dystrophin protein complex-syncoilin-cytoskeletal link and its implication to disease, we analyzed syncoilin in mice null for alpha-dystrobrevin (adbn-/-) and desmin (des-/-). Syncoilin was upregulated in dystrophic muscles of adbn-/- mice, without alteration in its subcellular location. In des-/- mice, syncoilin was severely reduced in skeletal muscle; lost from sarcomeric Z-lines and neuromuscular junctions, and redistributed from the sub-sarcolemmal cytoskeleton to the cytoplasm. The data show that absence of alpha-dystrobrevin or desmin leads to dynamic changes in syncoilin that may compensate for, or participate in, different muscle myopathies.
Collapse
Affiliation(s)
- Karl J A McCullagh
- MRC Functional Genetics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | | | | | | | |
Collapse
|
35
|
Hanft LM, Bogan DJ, Mayer U, Kaufman SJ, Kornegay JN, Ervasti JM. Cytoplasmic gamma-actin expression in diverse animal models of muscular dystrophy. Neuromuscul Disord 2007; 17:569-74. [PMID: 17475492 PMCID: PMC1993539 DOI: 10.1016/j.nmd.2007.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 02/26/2007] [Accepted: 03/05/2007] [Indexed: 11/23/2022]
Abstract
We recently showed that cytoplasmic gamma-actin (gamma(cyto)-actin) is dramatically elevated in striated muscle of dystrophin-deficient mdx mice. Here, we demonstrate that gamma(cyto)-actin is markedly increased in golden retriever muscular dystrophy (GRMD), which better recapitulates the dystrophinopathy phenotype in humans. Gamma(cyto)-Actin was also elevated in muscle from alpha-sarcoglycan null mice, but not in several other dystrophic animal models, including mice deficient in beta-sarcoglycan, alpha-dystrobrevin, laminin-2, or alpha7 integrin. Muscle from mice lacking dystrophin and utrophin also expressed elevated gamma(cyto)-actin, which was not restored to normal by transgenic overexpression of alpha7 integrin. However, gamma(cyto)-actin was further elevated in skeletal muscle from GRMD animals treated with the glucocorticoid prednisone at doses shown to improve the dystrophic phenotype and muscle function. These data suggest that elevated gamma(cyto)-actin is part of a compensatory cytoskeletal remodeling program that may partially stabilize dystrophic muscle in some cases where the dystrophin-glycoprotein complex is compromised.
Collapse
Affiliation(s)
- Laurin M. Hanft
- Department of Physiology, University of Wisconsin, Madison, WI
| | - Daniel J. Bogan
- College of Veterinary Medicine and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO
| | - Ulrike Mayer
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Stephen J. Kaufman
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL
| | - Joe N. Kornegay
- College of Veterinary Medicine and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO
| | | |
Collapse
|
36
|
Rezniczek GA, Konieczny P, Nikolic B, Reipert S, Schneller D, Abrahamsberg C, Davies KE, Winder SJ, Wiche G. Plectin 1f scaffolding at the sarcolemma of dystrophic (mdx) muscle fibers through multiple interactions with beta-dystroglycan. J Cell Biol 2007; 176:965-77. [PMID: 17389230 PMCID: PMC2064082 DOI: 10.1083/jcb.200604179] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 02/16/2007] [Indexed: 11/22/2022] Open
Abstract
In skeletal muscle, the cytolinker plectin is prominently expressed at Z-disks and the sarcolemma. Alternative splicing of plectin transcripts gives rise to more than eight protein isoforms differing only in small N-terminal sequences (5-180 residues), four of which (plectins 1, 1b, 1d, and 1f) are found at substantial levels in muscle tissue. Using plectin isoform-specific antibodies and isoform expression constructs, we show the differential regulation of plectin isoforms during myotube differentiation and their localization to different compartments of muscle fibers, identifying plectins 1 and 1f as sarcolemma-associated isoforms, whereas plectin 1d localizes exclusively to Z-disks. Coimmunoprecipitation and in vitro binding assays using recombinant protein fragments revealed the direct binding of plectin to dystrophin (utrophin) and beta-dystroglycan, the key components of the dystrophin-glycoprotein complex. We propose a model in which plectin acts as a universal mediator of desmin intermediate filament anchorage at the sarcolemma and Z-disks. It also explains the plectin phenotype observed in dystrophic skeletal muscle of mdx mice and Duchenne muscular dystrophy patients.
Collapse
MESH Headings
- Animals
- Cell Compartmentation/physiology
- Cell Differentiation/physiology
- Cells, Cultured
- Cytoskeleton/metabolism
- Cytoskeleton/ultrastructure
- Desmin/metabolism
- Dystroglycans/metabolism
- Humans
- Immunohistochemistry
- Intermediate Filaments/metabolism
- Intermediate Filaments/ultrastructure
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Models, Biological
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/physiopathology
- Plectin/immunology
- Plectin/metabolism
- Protein Isoforms/immunology
- Protein Isoforms/metabolism
- Rats
- Sarcolemma/metabolism
- Sarcolemma/pathology
- Sarcolemma/ultrastructure
- Utrophin/metabolism
Collapse
Affiliation(s)
- Günther A Rezniczek
- Max F. Perutz Laboratories, Department of Molecular Cell Biology, University of Vienna, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Timmusk S, Fossum C, Berg M. Porcine circovirus type 2 replicase binds the capsid protein and an intermediate filament-like protein. J Gen Virol 2006; 87:3215-3223. [PMID: 17030855 DOI: 10.1099/vir.0.81785-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is an important porcine pathogen that establishes persistent subclinical infections but may, on activation, contribute to the development of post-weaning multisystemic wasting syndrome (PMWS). This disease is characterized by weight loss, respiratory or digestive disorders and enlarged lymph nodes with lymphocyte depletion. The molecular mechanisms behind the development of the disease are completely unknown. In order to clarify functions of the different viral proteins and, if possible, to connect these new findings to molecular mechanisms behind the pathogenesis or the viral life cycle, a bacterial two-hybrid screening of a porcine expression library from PK-15A cells was conducted. Using viral proteins corresponding to ORFs 1, 2, 3 and 4 as bait, a number of interactions were identified and two of them were chosen for further characterization. GST pull-down assays confirmed that viral replicase (Rep) interacted with an intermediate filament protein, similar to human syncoilin, and with the transcriptional regulator c-myc. Furthermore, interactions of the viral proteins to each other revealed an interaction between PCV2 Rep and the capsid (Cap) protein and Cap to itself.
Collapse
Affiliation(s)
- Sirje Timmusk
- Department of Molecular Biosciences, Section of Veterinary Immunology and Virology, Swedish University of Agricultural Sciences, Box 588, S-751 23 Uppsala, Sweden
| | - Caroline Fossum
- Department of Molecular Biosciences, Section of Veterinary Immunology and Virology, Swedish University of Agricultural Sciences, Box 588, S-751 23 Uppsala, Sweden
| | - Mikael Berg
- Department of Biomedical Sciences and Veterinary Public Health, Section of Parasitology and Virology, Swedish University of Agricultural Sciences, Box 588, S-751 23 Uppsala, Sweden
- Department of Molecular Biosciences, Section of Veterinary Immunology and Virology, Swedish University of Agricultural Sciences, Box 588, S-751 23 Uppsala, Sweden
| |
Collapse
|
38
|
Mermelstein CS, Martins ER, Portilho DM, Costa ML. Association between the muscle-specific proteins desmin and caveolin-3 in muscle cells. Cell Tissue Res 2006; 327:343-51. [PMID: 17036228 DOI: 10.1007/s00441-006-0296-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 06/28/2006] [Indexed: 11/25/2022]
Abstract
The muscle-specific intermediate filament protein desmin is expressed in mononucleated myoblasts and in differentiated myotubes. Desmin has been shown to associate with the sarcolemma in specific structures, such as neuromuscular junctions and the dystrophin-associated protein complex. Since these are specialized membrane regions, the study of a possible association between desmin and liquid-ordered membrane microdomains is of particular interest. We have carried out an analysis of the association between desmin and the muscle-specific protein caveolin-3, a major component of caveolar microdomains. Our results demonstrate that (1) desmin precisely co-localizes with caveolin-3 in myoblasts and multinucleated myotubes, (2) caveolin-3 is up-regulated during in vitro chick muscle development, (3) desmin is detectable in caveolae-enriched membrane fractions prepared from skeletal muscle, and (4) caveolin-3 co-immunoprecipitates with desmin. We have thus shown, for the first time, an association between the intermediate filament protein desmin and caveolin-3 in myogenic cells.
Collapse
Affiliation(s)
- Claudia S Mermelstein
- Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | | | |
Collapse
|
39
|
Davies KE, Nowak KJ. Molecular mechanisms of muscular dystrophies: old and new players. Nat Rev Mol Cell Biol 2006; 7:762-73. [PMID: 16971897 DOI: 10.1038/nrm2024] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The study of the muscle cell in the muscular dystrophies (MDs) has shown that mutant proteins result in perturbations of many cellular components. MDs have been associated with mutations in structural proteins, signalling molecules and enzymes as well as mutations that result in aberrant processing of mRNA or alterations in post-translational modifications of proteins. These findings have not only revealed important insights for cell biologists, but have also provided unexpected and exciting new approaches for therapy.
Collapse
Affiliation(s)
- Kay E Davies
- Department of Physiology, Anatomy and Genetics, MRC Functional Genetics Unit, South Parks Road, Oxford OX1 3QX, UK.
| | | |
Collapse
|
40
|
Ervasti JM. Dystrophin, its interactions with other proteins, and implications for muscular dystrophy. Biochim Biophys Acta Mol Basis Dis 2006; 1772:108-17. [PMID: 16829057 DOI: 10.1016/j.bbadis.2006.05.010] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 05/31/2006] [Accepted: 05/31/2006] [Indexed: 11/27/2022]
Abstract
Duchenne muscular dystrophy is the most prevalent and severe form of human muscular dystrophy. Investigations into the molecular basis for Duchenne muscular dystrophy were greatly facilitated by seminal studies in the 1980s that identified the defective gene and its major protein product, dystrophin. Biochemical studies revealed its tight association with a multi-subunit complex, the so-named dystrophin-glycoprotein complex. Since its description, the dystrophin-glycoprotein complex has emerged as an important structural unit of muscle and also as a critical nexus for understanding a diverse array of muscular dystrophies arising from defects in several distinct genes. The dystrophin homologue utrophin can compensate at the cell/tissue level for dystrophin deficiency, but functions through distinct molecular mechanisms of protein-protein interaction.
Collapse
Affiliation(s)
- James M Ervasti
- Department of Physiology, 127 Service Memorial Institute, University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
41
|
Brown SC, Torelli S, Ugo I, De Biasia F, Howman EV, Poon E, Britton J, Davies KE, Muntoni F. Syncoilin upregulation in muscle of patients with neuromuscular disease. Muscle Nerve 2006; 32:715-25. [PMID: 16124004 DOI: 10.1002/mus.20431] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Syncoilin may have a role in linking the desmin-associated intermediate filament network of the muscle fiber with the dystrophin-associated protein complex (DAPC). We have evaluated syncoilin in a range of neuromuscular disorders including Duchenne and Becker muscular dystrophy, central core disease, congenital muscular dystrophies, and neurogenic disorders. Our results show that syncoilin immunolabeling is not only altered in muscle fibers with alterations in the DAPC but also in response to a variety of genetic defects, including those associated with proteins of the extracellular matrix and the intracellular Ca2+-release channel (ryanodine receptor). The pattern of syncoilin immunolabeling in these diseases appeared to reflect a rearrangement of the intermediate filament-associated cytoskeleton that characterizes both muscle fiber development and conditions in which the cytoskeletal organization of the muscle fiber is significantly affected. These observations raise the possibility that mutations in the gene encoding for syncoilin may underlie some forms of muscle disease.
Collapse
Affiliation(s)
- Susan C Brown
- Dubowitz Neuromuscular Centre, Department of Paediatrics, Imperial College, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang HT, Li ZH, Yuan JP, Zhao W, Shi XD, Tong SQ, Guo XK. Effect of Helicobacter pylori VacA on gene expression of gastric cancer cells. World J Gastroenterol 2005; 11:109-13. [PMID: 15609407 PMCID: PMC4205367 DOI: 10.3748/wjg.v11.i1.109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 10/12/2003] [Accepted: 02/01/2004] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the effect of Helicobacter pylori VacA on gene expression of gastric cancer cells. METHODS Gene expression profile of a gastric cancer cell line, SGC7901, after challenged by VacA+ and VacA- H pylori broth culture supernatants (BCS), was detected by the cDNA microarray technique. Cytoskeleton changes of SGC7901 and HeLa cells were observed through high-resolution laser scanning confocal microscopy. RESULTS A total of 16,000 cDNA clones were detected. The percentage of genes with heterogeneous expression in SGC7901 cells challenged by VacA+ BCS reached 5%, compared with that challenged by VacA- BCS. There were 865 genes/EST with 2-fold differential expression levels and 198 genes/EST with 3-fold differential expression levels. Most of these genes were involved in vital cell events including signal transduction, regulation of gene expression, cytoskeleton, apoptosis, stress response and inflammation, cell cycle and tumor development. Cells co-cultured with VacA+ BCS showed collapsed and disrupted microtubular cytoarchitecture. CONCLUSION VacA+ BCS can disrupt cytoskeletal architecture, likely through affecting the expression of cytoskeleton-associated genes, directly induce the expression of tumor promoter-related genes and inhibit the expression of tumor suppressor genes, thus favoring the development of tumors. VacA+ BCS can also alter the expression of inflammation and stress response genes. This suggests that VacA may play an important role in the pathogenicity of H pylori.
Collapse
Affiliation(s)
- Hong-Tao Wang
- Department of Microbiology and Parasitology, Shanghai Second Medical University, Shanghai 20025, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Green KJ, Böhringer M, Gocken T, Jones JCR. Intermediate filament associated proteins. ADVANCES IN PROTEIN CHEMISTRY 2005; 70:143-202. [PMID: 15837516 DOI: 10.1016/s0065-3233(05)70006-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intermediate filament associated proteins (IFAPs) coordinate interactions between intermediate filaments (IFs) and other cytoskeletal elements and organelles, including membrane-associated junctions such as desmosomes and hemidesmosomes in epithelial cells, costameres in striated muscle, and intercalated discs in cardiac muscle. IFAPs thus serve as critical connecting links in the IF scaffolding that organizes the cytoplasm and confers mechanical stability to cells and tissues. However, in recent years it has become apparent that IFAPs are not limited to structural crosslinkers and bundlers but also include chaperones, enzymes, adapters, and receptors. IF networks can therefore be considered scaffolding upon which associated proteins are organized and regulated to control metabolic activities and maintain cell homeostasis.
Collapse
Affiliation(s)
- Kathleen J Green
- Departments of Pathology and Dermatology and R.H. Lurie Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
44
|
Lee TS, Eid T, Mane S, Kim JH, Spencer DD, Ottersen OP, de Lanerolle NC. Aquaporin-4 is increased in the sclerotic hippocampus in human temporal lobe epilepsy. Acta Neuropathol 2004; 108:493-502. [PMID: 15517312 DOI: 10.1007/s00401-004-0910-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 05/28/2004] [Accepted: 05/28/2004] [Indexed: 11/26/2022]
Abstract
The hippocampus of patients with mesial temporal lobe epilepsy is often hardened and shrunken, a condition known as sclerosis. Magnetic resonance imaging reveals an increase in the T2-weighted signal, while diffusion weighted imaging shows a higher apparent diffusion coefficient in sclerotic hippocampi, indicating increased water content. As water transport appears to be coupled to K+ clearance and neuronal excitability [4], the molecular basis of the perturbed water homeostasis in the sclerotic hippocampus was explored. The expression of aquaporin-4 (AQP-4), the predominant water channel in the brain, was studied with quantitative real time PCR analysis, light microscopic immunohistochemistry and high-resolution immunogold labeling. A significant increase in AQP-4 was observed in sclerotic, but not in non-sclerotic, hippocampi obtained from patients with medically intractable temporal lobe epilepsy. This increase was positively correlated with an increase in the astrocyte marker glial fibrillary acidic protein. AQP-4 was localized to the plasma membranes of astrocytes including the perivascular end-feet. Gene expression associated with increased AQP-4 was evaluated by high throughput gene expression analysis using Affymetrix GeneChip U133A and related gene networks were investigated with Ingenuity Pathways Analysis. AQP-4 expression was associated with a decrease in expression of the dystrophin gene, a protein implicated in the anchoring of AQP-4 in perivascular endfeet. The decreased expression of dystrophin may indicate a loss of polarity in the distribution of AQP-4 in astrocytes. We conclude that the perturbed expression of AQP-4 and dystrophin may be one factor underlying the loss of ion and water homeostasis in the sclerotic hippocampus and hypothesize that the reported changes may contribute to the epileptogenic properties of the sclerotic tissue.
Collapse
Affiliation(s)
- Tih Shih Lee
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Goebel H, Fardeau M. 121st ENMC International Workshop on Desmin and Protein Aggregate Myopathies. 7–9 November 2003, Naarden, The Netherlands. Neuromuscul Disord 2004; 14:767-73. [PMID: 15482963 DOI: 10.1016/j.nmd.2004.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Indexed: 10/26/2022]
Affiliation(s)
- Hansh Goebel
- Department of Neuropathology, Johannes Gutenberg University Medical Center, Langenbeckstrasse 1, 55101 Mainz, Germany.
| | | |
Collapse
|
46
|
Xue ZG, Cheraud Y, Brocheriou V, Izmiryan A, Titeux M, Paulin D, Li Z. The mouse synemin gene encodes three intermediate filament proteins generated by alternative exon usage and different open reading frames. Exp Cell Res 2004; 298:431-44. [PMID: 15265691 DOI: 10.1016/j.yexcr.2004.04.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 04/09/2004] [Indexed: 11/30/2022]
Abstract
We have previously cloned and characterized the human synemin gene, which encodes two intermediate filament proteins (IFPs). We now show that the mouse synemin gene encodes three different synemin isoforms through an alternative splicing mechanism. Two of them, synemin H and M are similar to human alpha and beta synemin, and the third isoform, L synemin, constitutes a new form of IFP. It has a typical rod domain and a short tail (49 residues) with a novel sequence that is produced by a different open reading frame. The synthesis of H/M synemins starts in the embryo, whereas the synemin L isoform is present in adult muscles. The H/M isoforms are bound to desmin or vimentin in the muscle cells of wild-type mice. Using desmin- and vimentin-deficient mice, we have obtained direct evidence that synemin is associated with muscle intermediate filaments in vivo. The organization of the synemin fibril is disrupted in skeletal and cardiac muscle when desmin is absent and in smooth muscle when vimentin is absent. The fact that the three synemin isoforms differ in the sequences of their tail domains as well as in their developmental patterns suggests that they fulfill different functions.
Collapse
MESH Headings
- Alternative Splicing/genetics
- Amino Acid Sequence/genetics
- Animals
- Animals, Newborn
- Base Sequence/genetics
- DNA, Complementary/analysis
- DNA, Complementary/genetics
- Desmin/metabolism
- Exons/genetics
- Fetus
- Intermediate Filament Proteins/genetics
- Intermediate Filament Proteins/isolation & purification
- Intermediate Filament Proteins/metabolism
- Mice
- Molecular Sequence Data
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle Proteins/genetics
- Muscle Proteins/isolation & purification
- Muscle Proteins/metabolism
- Muscle, Skeletal/embryology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/ultrastructure
- Open Reading Frames/genetics
- Organ Specificity
- Protein Isoforms/genetics
- Protein Isoforms/isolation & purification
- Protein Isoforms/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Vimentin/metabolism
Collapse
Affiliation(s)
- Z G Xue
- Biologie Moléculaire de la Différenciation, Department of Biochemistry, Université Denis Diderot Paris7, 75005 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
47
|
Perng MD, Wen SF, van den IJssel P, Prescott AR, Quinlan RA. Desmin aggregate formation by R120G alphaB-crystallin is caused by altered filament interactions and is dependent upon network status in cells. Mol Biol Cell 2004; 15:2335-46. [PMID: 15004226 PMCID: PMC404027 DOI: 10.1091/mbc.e03-12-0893] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The R120G mutation in alphaB-crystallin causes desmin-related myopathy. There have been a number of mechanisms proposed to explain the disease process, from altered protein processing to loss of chaperone function. Here, we show that the mutation alters the in vitro binding characteristics of alphaB-crystallin for desmin filaments. The apparent dissociation constant of R120G alphaB-crystallin was decreased while the binding capacity was increased significantly and as a result, desmin filaments aggregated. These data suggest that the characteristic desmin aggregates seen as part of the disease histopathology can be caused by a direct, but altered interaction of R120G alphaB-crystallin with desmin filaments. Transfection studies show that desmin networks in different cell backgrounds are not equally affected. Desmin networks are most vulnerable when they are being made de novo and not when they are already established. Our data also clearly demonstrate the beneficial role of wild-type alphaB-crystallin in the formation of desmin filament networks. Collectively, our data suggest that R120G alphaB-crystallin directly promotes desmin filament aggregation, although this gain of a function can be repressed by some cell situations. Such circumstances in muscle could explain the late onset characteristic of the myopathies caused by mutations in alphaB-crystallin.
Collapse
Affiliation(s)
- Ming Der Perng
- School of Biological and Biomedical Sciences, The University of Durham, Durham DH1 3LE, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Richard M Robson
- Muscle Biology Group, Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
49
|
Macioce P, Gambara G, Bernassola M, Gaddini L, Torreri P, Macchia G, Ramoni C, Ceccarini M, Petrucci TC. β-Dystrobrevin interacts directly with kinesin heavy chain in brain. J Cell Sci 2003; 116:4847-56. [PMID: 14600269 DOI: 10.1242/jcs.00805] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
β-Dystrobrevin, a member of the dystrobrevin protein family, is a dystrophin-related and -associated protein restricted to non-muscle tissues and is highly expressed in kidney, liver and brain. Dystrobrevins are now thought to play an important role in intracellular signal transduction, in addition to providing a membrane scaffold in muscle, but the precise role of β-dystrobrevin has not yet been determined. To study β-dystrobrevin's function in brain, we used the yeast two-hybrid approach to look for interacting proteins. Four overlapping clones were identified that encoded Kif5A, a neuronal member of the Kif5 family of proteins that consists of the heavy chains of conventional kinesin. A direct interaction of β-dystrobrevin with Kif5A was confirmed by in vitro and in vivo association assays. Co-immunoprecipitation with a monoclonal kinesin heavy chain antibody precipitated both α- and β-dystrobrevin, indicating that this interaction is not restricted to the β-dystrobrevin isoform. The site for Kif5A binding to β-dystrobrevin was localized in a carboxyl-terminal region that seems to be important in heavy chain-mediated kinesin interactions and is highly homologous in all three Kif5 isoforms, Kif5A, Kif5B and Kif5C. Pull-down and immunofluorescence experiments also showed a direct interaction between β-dystrobrevin and Kif5B. Our findings suggest a novel function for dystrobrevin as a motor protein receptor that might play a major role in the transport of components of the dystrophin-associated protein complex to specific sites in the cell.
Collapse
Affiliation(s)
- P Macioce
- Laboratory of Cell Biology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Clark KA, McElhinny AS, Beckerle MC, Gregorio CC. Striated muscle cytoarchitecture: an intricate web of form and function. Annu Rev Cell Dev Biol 2003; 18:637-706. [PMID: 12142273 DOI: 10.1146/annurev.cellbio.18.012502.105840] [Citation(s) in RCA: 427] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Striated muscle is an intricate, efficient, and precise machine that contains complex interconnected cytoskeletal networks critical for its contractile activity. The individual units of the sarcomere, the basic contractile unit of myofibrils, include the thin, thick, titin, and nebulin filaments. These filament systems have been investigated intensely for some time, but the details of their functions, as well as how they are connected to other cytoskeletal elements, are just beginning to be elucidated. These investigations have advanced significantly in recent years through the identification of novel sarcomeric and sarcomeric-associated proteins and their subsequent functional analyses in model systems. Mutations in these cytoskeletal components account for a large percentage of human myopathies, and thus insight into the normal functions of these proteins has provided a much needed mechanistic understanding of these disorders. In this review, we highlight the components of striated muscle cytoarchitecture with respect to their interactions, dynamics, links to signaling pathways, and functions. The exciting conclusion is that the striated muscle cytoskeleton, an exquisitely tuned, dynamic molecular machine, is capable of responding to subtle changes in cellular physiology.
Collapse
Affiliation(s)
- Kathleen A Clark
- Department of Cell Biology, University of Arizona, Tucson 85724, USA
| | | | | | | |
Collapse
|