1
|
Mukhopadhyay B, Marietta C, Shen PH, Oiseni A, Mirshahi F, Mazzu M, Hodgkinson C, Winkler E, Yuan Q, Miranda D, Kunos G, Sanyal AJ, Goldman D. A patient-based iPSC-derived hepatocyte model of alcohol-associated cirrhosis reveals bioenergetic insights into disease pathogenesis. Nat Commun 2024; 15:2869. [PMID: 38693144 PMCID: PMC11063145 DOI: 10.1038/s41467-024-47085-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 03/15/2024] [Indexed: 05/03/2024] Open
Abstract
Only ~20% of heavy drinkers develop alcohol cirrhosis (AC). While differences in metabolism, inflammation, signaling, microbiome signatures and genetic variations have been tied to the pathogenesis of AC, the key underlying mechanisms for this interindividual variability, remain to be fully elucidated. Induced pluripotent stem cell-derived hepatocytes (iHLCs) from patients with AC and healthy controls differ transcriptomically, bioenergetically and histologically. They include a greater number of lipid droplets (LDs) and LD-associated mitochondria compared to control cells. These pre-pathologic indicators are effectively reversed by Aramchol, an inhibitor of stearoyl-CoA desaturase. Bioenergetically, AC iHLCs have lower spare capacity, slower ATP production and their mitochondrial fuel flexibility towards fatty acids and glutamate is weakened. MARC1 and PNPLA3, genes implicated by GWAS in alcohol cirrhosis, show to correlate with lipid droplet-associated and mitochondria-mediated oxidative damage in AC iHLCs. Knockdown of PNPLA3 expression exacerbates mitochondrial deficits and leads to lipid droplets alterations. These findings suggest that differences in mitochondrial bioenergetics and lipid droplet formation are intrinsic to AC hepatocytes and can play a role in its pathogenesis.
Collapse
Affiliation(s)
- Bani Mukhopadhyay
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Cheryl Marietta
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Pei-Hong Shen
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Abdul Oiseni
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Faridoddin Mirshahi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Maria Mazzu
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Colin Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Eli Winkler
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Qiaoping Yuan
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Daniel Miranda
- Aivia Machine Learning Team, Leica Microsystems, Inc, Deerfield, IL, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA.
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Kim J, Han D, Lee MS, Lee J, Kim IH, Kim Y. Green Tea and Java Pepper Mixture Prevents Obesity by Increasing Energy Expenditure and Modulating Hepatic AMPK/MicroRNA-34a/370 Pathway in High-Fat Diet-Fed Rats. Antioxidants (Basel) 2023; 12:antiox12051053. [PMID: 37237919 DOI: 10.3390/antiox12051053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
This study was performed to evaluate the anti-obesity effects of green tea and java pepper mixture (GJ) on energy expenditure and understand the regulatory mechanisms of AMP-activated protein kinase (AMPK), microRNA (miR)-34a, and miR-370 pathways in the liver. Sprague-Dawley rats were divided into four groups depending on the following diets given for 14 weeks: normal chow diet (NR), 45% high-fat diet (HF), HF + 0.1% GJ (GJL), and HF + 0.2% GJ (GJH). The results revealed that GJ supplementation reduced body weight and hepatic fat accumulation, improved serum lipids, and increased energy expenditure. In the GJ-supplemented groups, the mRNA levels of genes related to fatty acid syntheses, such as a cluster of differentiation 36 (CD36), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and stearoyl-CoA desaturase 1 (SCD1) were downregulated, and mRNA levels of peroxisome proliferator-activated receptor alpha (PPARα), carnitine/palmitoyl-transferase 1 (CPT1), and uncoupling protein 2 (UCP2), which participate in fatty acid oxidation, were upregulated in the liver. GJ increased the AMPK activity and decreased the miR-34a and miR-370 expression. Therefore, GJ prevented obesity by increasing energy expenditure and regulating hepatic fatty acid synthesis and oxidation, suggesting that GJ is partially regulated through AMPK, miR-34a, and miR-370 pathways in the liver.
Collapse
Affiliation(s)
- Jibin Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dahye Han
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jumi Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in System Health Science and Engineering, Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - In-Hwan Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in System Health Science and Engineering, Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
3
|
Mukhopadhyay B, Holovac K, Schuebel K, Mukhopadhyay P, Cinar R, Iyer S, Marietta C, Goldman D, Kunos G. The endocannabinoid system promotes hepatocyte progenitor cell proliferation and maturation by modulating cellular energetics. Cell Death Discov 2023; 9:104. [PMID: 36966147 PMCID: PMC10039889 DOI: 10.1038/s41420-023-01400-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/27/2023] Open
Abstract
The proliferation and differentiation of hepatic progenitor cells (HPCs) drive the homeostatic renewal of the liver under diverse conditions. Liver regeneration is associated with an increase in Axin2+Cnr1+ HPCs, along with a marked increase in the levels of the endocannabinoid anandamide (AEA). But the molecular mechanism linking AEA signaling to HPC proliferation and/or differentiation has not been explored. Here, we show that in vitro exposure of HPCs to AEA triggers both cell cycling and differentiation along with increased expression of Cnr1, Krt19, and Axin2. Mechanistically, we found that AEA promotes the nuclear localization of the transcription factor β-catenin, with subsequent induction of its downstream targets. Systemic analyses of cells after CRISPR-mediated knockout of the β-catenin-regulated transcriptome revealed that AEA modulates β-catenin-dependent cell cycling and differentiation, as well as interleukin pathways. Further, we found that AEA promotes OXPHOS in HPCs when amino acids and glucose are readily available as substrates, but AEA inhibits it when the cells rely primarily on fatty acid oxidation. Thus, the endocannabinoid system promotes hepatocyte renewal and maturation by stimulating the proliferation of Axin2+Cnr1+ HPCs via the β-catenin pathways while modulating the metabolic activity of their precursor cells.
Collapse
Affiliation(s)
- Bani Mukhopadhyay
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Kellie Holovac
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Kornel Schuebel
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Partha Mukhopadhyay
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Sindhu Iyer
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Cheryl Marietta
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Peng H, Zhong L, Cheng L, Chen L, Tong R, Shi J, Bai L. Ganoderma lucidum: Current advancements of characteristic components and experimental progress in anti-liver fibrosis. Front Pharmacol 2023; 13:1094405. [PMID: 36703748 PMCID: PMC9872944 DOI: 10.3389/fphar.2022.1094405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Ganoderma lucidum (G. lucidum, Lingzhi) is a well-known herbal medicine with a variety of pharmacological effects. Studies have found that G. lucidum has pharmacological effects such as antioxidant, antitumor, anti-aging, anti-liver fibrosis, and immunomodulation. The main active components of G. lucidum include triterpenoids, polysaccharides, sterols, peptides and other bioactive components. Among them, the triterpenoids and polysaccharide components of G. lucidum have a wide range of anti-liver fibrotic effects. Currently, there have been more reviews and studies on the antioxidant, antitumor, and anti-aging properties of G. lucidum. Based on the current trend of increasing number of liver fibrosis patients in the world, we summarized the role of G.lucidum extract in anti-liver fibrosis and the effect of G. lucidum extract on liver fibrosis induced by different pathogenesis, which were discussed and analyzed. Research and development ideas and references are provided for the subsequent application of G. lucidum extracts in anti-liver fibrosis treatment.
Collapse
Affiliation(s)
- Haoyuan Peng
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Zhong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Cheng
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Lu Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongsheng Tong
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Jianyou Shi, ; Lan Bai,
| | - Lan Bai
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Jianyou Shi, ; Lan Bai,
| |
Collapse
|
5
|
Tomas-Roig J, Ramasamy S, Zbarsky D, Havemann-Reinecke U, Hoyer-Fender S. Psychosocial stress and cannabinoid drugs affect acetylation of α-tubulin (K40) and gene expression in the prefrontal cortex of adult mice. PLoS One 2022; 17:e0274352. [PMID: 36129937 PMCID: PMC9491557 DOI: 10.1371/journal.pone.0274352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Abstract
The dynamics of neuronal microtubules are essential for brain plasticity. Vesicular transport and synaptic transmission, additionally, requires acetylation of α-tubulin, and aberrant tubulin acetylation and neurobiological deficits are associated. Prolonged exposure to a stressor or consumption of drugs of abuse, like marihuana, lead to neurological changes and psychotic disorders. Here, we studied the effect of psychosocial stress and the administration of cannabinoid receptor type 1 drugs on α-tubulin acetylation in different brain regions of mice. We found significantly decreased tubulin acetylation in the prefrontal cortex in stressed mice. The impact of cannabinoid drugs on stress-induced microtubule disturbance was investigated by administration of the cannabinoid receptor agonist WIN55,212–2 and/or antagonist rimonabant. In both, control and stressed mice, the administration of WIN55,212–2 slightly increased the tubulin acetylation in the prefrontal cortex whereas administration of rimonabant acted antagonistically indicating a cannabinoid receptor type 1 mediated effect. The analysis of gene expression in the prefrontal cortex showed a consistent expression of ApoE attributable to either psychosocial stress or administration of the cannabinoid agonist. Additionally, ApoE expression inversely correlated with acetylated tubulin levels when comparing controls and stressed mice treated with WIN55,212–2 whereas rimonabant treatment showed the opposite.
Collapse
Affiliation(s)
- Jordi Tomas-Roig
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology–Developmental Biology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
- * E-mail: (JTR); (SHF)
| | - Shyam Ramasamy
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology–Developmental Biology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Diana Zbarsky
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology–Developmental Biology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Ursula Havemann-Reinecke
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany
| | - Sigrid Hoyer-Fender
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology–Developmental Biology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
- * E-mail: (JTR); (SHF)
| |
Collapse
|
6
|
Przybycień P, Gąsior-Perczak D, Placha W. Cannabinoids and PPAR Ligands: The Future in Treatment of Polycystic Ovary Syndrome Women with Obesity and Reduced Fertility. Cells 2022; 11:cells11162569. [PMID: 36010645 PMCID: PMC9406585 DOI: 10.3390/cells11162569] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Cannabinoids (CBs) are used to treat chronic pain, chemotherapy-induced nausea and vomiting, and multiple sclerosis spasticity. Recently, the medicinal use of CBs has attracted increasing interest as a new therapeutic in many diseases. Data indicate a correlation between CBs and PPARs via diverse mechanisms. Both the endocannabinoid system (ECS) and peroxisome proliferator-activated receptors (PPARs) may play a significant role in PCOS and PCOS related disorders, especially in disturbances of glucose-lipid metabolism as well as in obesity and fertility. Taking into consideration the ubiquity of PCOS in the human population, it seems indispensable to search for new potential therapeutic targets for this condition. The aim of this review is to examine the relationship between metabolic disturbances and obesity in PCOS pathology. We discuss current and future therapeutic interventions for PCOS and related disorders, with emphasis on the metabolic pathways related to PCOS pathophysiology. The link between the ECS and PPARs is a promising new target for PCOS, and we examine this relationship in depth.
Collapse
Affiliation(s)
- Piotr Przybycień
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 31-034 Krakow, Poland
- Endocrinology Clinic, Holycross Cancer Centre, 25-734 Kielce, Poland
| | - Danuta Gąsior-Perczak
- Endocrinology Clinic, Holycross Cancer Centre, 25-734 Kielce, Poland
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
| | - Wojciech Placha
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 31-034 Krakow, Poland
- Correspondence: ; Tel.: +48-12-422-74-00
| |
Collapse
|
7
|
Wu HT, Lin CH, Pai HL, Chen YC, Cheng KP, Kuo HY, Li CH, Ou HY. Sucralose, a Non-nutritive Artificial Sweetener Exacerbates High Fat Diet-Induced Hepatic Steatosis Through Taste Receptor Type 1 Member 3. Front Nutr 2022; 9:823723. [PMID: 35685876 PMCID: PMC9171434 DOI: 10.3389/fnut.2022.823723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease globally, and it is strongly associated with obesity. To combat obesity, artificial sweeteners are often used to replace natural sugars, and sucralose is one of the most extensively used sweeteners. It was known that sucralose exerted effects on lipid metabolism dysregulation, and hepatic inflammation; however, the effects of sucralose on hepatic steatosis were still obscure. In this study, we found that supplements of sucralose enhanced high-fat-diet (HFD)-induced hepatic steatosis. In addition, treatment of sucralose increased reactive oxygen species (ROS) generation and induced endoplasmic reticulum (ER) stress in HepG2 cells. Pretreatment of ROS or ER stress inhibitors reversed the effects of sucralose on lipogenesis. Furthermore, pretreatment of taste receptor type 1 membrane 3 (T1R3) inhibitor or T1R3 knockdown reversed sucralose-induced lipogenesis in HepG2 cells. Taken together, sucralose might activate T1R3 to generate ROS and promote ER stress and lipogenesis, and further accelerate to the development of hepatic steatosis.
Collapse
Affiliation(s)
- Hung-Tsung Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Ching-Han Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan City, Taiwan
| | - Hsiu-Ling Pai
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei City, Taiwan
| | - Yi-Cheng Chen
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Kai-Pi Cheng
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan City, Taiwan
| | - Hsin-Yu Kuo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan City, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Chung-Hao Li
- Department of Family Medicine, Tainan Municipal An-Nan Hospital, China Medical University, Tainan City, Taiwan
| | - Horng-Yih Ou
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan City, Taiwan
- *Correspondence: Horng-Yih Ou,
| |
Collapse
|
8
|
Königshofer P, Brusilovskaya K, Petrenko O, Hofer BS, Schwabl P, Trauner M, Reiberger T. Nuclear Receptors in Liver Fibrosis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166235. [PMID: 34339839 DOI: 10.1016/j.bbadis.2021.166235] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/18/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022]
Abstract
Nuclear receptors are ligand-activated transcription factors that regulate gene expression of a variety of key molecular signals involved in liver fibrosis. The primary cellular driver of liver fibrogenesis are activated hepatic stellate cells. Different NRs regulate the hepatic expression of pro-inflammatory and pro-fibrogenic cytokines that promote the transformation of hepatic stellate cells into fibrogenic myofibroblasts. Importantly, nuclear receptors regulate gene expression circuits that promote hepatic fibrogenesis and/or allow liver fibrosis regression. In this review, we highlight the direct and indirect influence of nuclear receptors on liver fibrosis, with a focus on hepatic stellate cells, and discuss potential therapeutic effects of nuclear receptor modulation in regard to anti-fibrotic and anti-inflammatory effects. Further research on nuclear receptors-related signaling may lead to the clinical development of effective anti-fibrotic therapies for patients with liver disease.
Collapse
Affiliation(s)
- Philipp Königshofer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Experimental Hepatic Hemodynamic Lab (HEPEX), Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Ksenia Brusilovskaya
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Experimental Hepatic Hemodynamic Lab (HEPEX), Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Oleksandr Petrenko
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Experimental Hepatic Hemodynamic Lab (HEPEX), Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Benedikt Silvester Hofer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Experimental Hepatic Hemodynamic Lab (HEPEX), Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Experimental Hepatic Hemodynamic Lab (HEPEX), Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Experimental Hepatic Hemodynamic Lab (HEPEX), Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
9
|
Multi-species transcriptome meta-analysis of the response to retinoic acid in vertebrates and comparative analysis of the effects of retinol and retinoic acid on gene expression in LMH cells. BMC Genomics 2021; 22:146. [PMID: 33653267 PMCID: PMC7923837 DOI: 10.1186/s12864-021-07451-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/18/2021] [Indexed: 12/21/2022] Open
Abstract
Background Retinol (RO) and its active metabolite retinoic acid (RA) are major regulators of gene expression in vertebrates and influence various processes like organ development, cell differentiation, and immune response. To characterize a general transcriptomic response to RA-exposure in vertebrates, independent of species- and tissue-specific effects, four publicly available RNA-Seq datasets from Homo sapiens, Mus musculus, and Xenopus laevis were analyzed. To increase species and cell-type diversity we generated RNA-seq data with chicken hepatocellular carcinoma (LMH) cells. Additionally, we compared the response of LMH cells to RA and RO at different time points. Results By conducting a transcriptome meta-analysis, we identified three retinoic acid response core clusters (RARCCs) consisting of 27 interacting proteins, seven of which have not been associated with retinoids yet. Comparison of the transcriptional response of LMH cells to RO and RA exposure at different time points led to the identification of non-coding RNAs (ncRNAs) that are only differentially expressed (DE) during the early response. Conclusions We propose that these RARCCs stand on top of a common regulatory RA hierarchy among vertebrates. Based on the protein sets included in these clusters we were able to identify an RA-response cluster, a control center type cluster, and a cluster that directs cell proliferation. Concerning the comparison of the cellular response to RA and RO we conclude that ncRNAs play an underestimated role in retinoid-mediated gene regulation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07451-2.
Collapse
|
10
|
Jorgačević B, Vučević D, Samardžić J, Mladenović D, Vesković M, Vukićević D, Ješić R, Radosavljević T. The Effect of CB1 Antagonism on Hepatic Oxidative/Nitrosative Stress and Inflammation in Nonalcoholic Fatty Liver Disease. Curr Med Chem 2021; 28:169-180. [PMID: 32124686 DOI: 10.2174/0929867327666200303122734] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/17/2019] [Accepted: 01/25/2020] [Indexed: 02/08/2023]
Abstract
Dysfunction of the endocannabinoid system (ES) has been identified in nonalcoholic fatty liver disease (NAFLD) and associated metabolic disorders. Cannabinoid receptor type 1 (CB1) expression is largely dependent on nutritional status. Thus, individuals suffering from NAFLD and metabolic syndrome (MS) have a significant increase in ES activity. Furthermore, oxidative/ nitrosative stress and inflammatory process modulation in the liver are highly influenced by the ES. Numerous experimental studies indicate that oxidative and nitrosative stress in the liver is associated with steatosis and portal inflammation during NAFLD. On the other hand, inflammation itself may also contribute to reactive oxygen species (ROS) production due to Kupffer cell activation and increased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. The pathways by which endocannabinoids and their lipid-related mediators modulate oxidative stress and lipid peroxidation represent a significant area of research that could yield novel pharmaceutical strategies for the treatment of NAFLD. Cumulative evidence suggested that the ES, particularly CB1 receptors, may also play a role in inflammation and disease progression toward steatohepatitis. Pharmacological inactivation of CB1 receptors in NAFLD exerts multiple beneficial effects, particularly due to the attenuation of hepatic oxidative/nitrosative stress parameters and significant reduction of proinflammatory cytokine production. However, further investigations regarding precise mechanisms by which CB1 blockade influences the reduction of hepatic oxidative/nitrosative stress and inflammation are required before moving toward the clinical phase of the investigation.
Collapse
Affiliation(s)
- Bojan Jorgačević
- Institute of Pathophysiology ''Ljubodrag Buba Mihailović'', Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Danijela Vučević
- Institute of Pathophysiology ''Ljubodrag Buba Mihailović'', Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Janko Samardžić
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dušan Mladenović
- Institute of Pathophysiology ''Ljubodrag Buba Mihailović'', Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milena Vesković
- Institute of Pathophysiology ''Ljubodrag Buba Mihailović'', Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dušan Vukićević
- Institute of Pathophysiology ''Ljubodrag Buba Mihailović'', Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Rada Ješić
- Institute of Digestive Diseases, Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Tatjana Radosavljević
- Institute of Pathophysiology ''Ljubodrag Buba Mihailović'', Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
11
|
On the Role of Central Type-1 Cannabinoid Receptor Gene Regulation in Food Intake and Eating Behaviors. Int J Mol Sci 2021; 22:ijms22010398. [PMID: 33401515 PMCID: PMC7796374 DOI: 10.3390/ijms22010398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Different neuromodulatory systems are involved in long-term energy balance and body weight and, among these, evidence shows that the endocannabinoid system, in particular the activation of type-1 cannabinoid receptor, plays a key role. We here review current literature focusing on the role of the gene encoding type-1 cannabinoid receptors in the CNS and on the modulation of its expression by food intake and specific eating behaviors. We point out the importance to further investigate how environmental cues might have a role in the development of obesity as well as eating disorders through the transcriptional regulation of this gene in order to prevent or to treat these pathologies.
Collapse
|
12
|
Rodríguez-Rodríguez I, Kalafut J, Czerwonka A, Rivero-Müller A. A novel bioassay for quantification of surface Cannabinoid receptor 1 expression. Sci Rep 2020; 10:18191. [PMID: 33097803 PMCID: PMC7584592 DOI: 10.1038/s41598-020-75331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/14/2020] [Indexed: 12/04/2022] Open
Abstract
The cannabinoid receptor type 1 (CB1) plays critical roles in multiple physiological processes such as pain perception, brain development and body temperature regulation. Mutations on this gene (CNR1), results in altered functionality and/or biosynthesis such as reduced membrane expression, changes in mRNA stability or changes in downstream signaling that act as triggers for diseases such as obesity, Parkinson’s, Huntington’s, among others; thus, it is considered as a potential pharmacological target. To date, multiple quantification methods have been employed to determine how these mutations affect receptor expression and localization; however, they present serious disadvantages that may arise quantifying errors. Here, we describe a sensitive bioassay to quantify receptor surface expression; in this bioassay the Gaussia Luciferase (GLuc) was fused to the extracellular portion of the CB1. The GLuc activity was assessed by coelenterazine addition to the medium followed by immediate readout. Based on GLuc activity assay, we show that the GLuc signals corelate with CB1 localization, besides, we showed the assay’s functionality and reliability by comparing its results with those generated by previously reported mutations on the CNR1 gene and by using flow cytometry to determine the cell surface receptor expression. Detection of membrane-bound CB1, and potentially other GPCRs, is able to quickly screen for receptor levels and help to understand the effect of clinically relevant mutations or polymorphisms.
Collapse
Affiliation(s)
| | - Joanna Kalafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.,Department of Virology and Immunology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
13
|
Haspula D, Clark MA. Cannabinoid Receptors: An Update on Cell Signaling, Pathophysiological Roles and Therapeutic Opportunities in Neurological, Cardiovascular, and Inflammatory Diseases. Int J Mol Sci 2020; 21:E7693. [PMID: 33080916 PMCID: PMC7590033 DOI: 10.3390/ijms21207693] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The identification of the human cannabinoid receptors and their roles in health and disease, has been one of the most significant biochemical and pharmacological advancements to have occurred in the past few decades. In spite of the major strides made in furthering endocannabinoid research, therapeutic exploitation of the endocannabinoid system has often been a challenging task. An impaired endocannabinoid tone often manifests as changes in expression and/or functions of type 1 and/or type 2 cannabinoid receptors. It becomes important to understand how alterations in cannabinoid receptor cellular signaling can lead to disruptions in major physiological and biological functions, as they are often associated with the pathogenesis of several neurological, cardiovascular, metabolic, and inflammatory diseases. This review focusses mostly on the pathophysiological roles of type 1 and type 2 cannabinoid receptors, and it attempts to integrate both cellular and physiological functions of the cannabinoid receptors. Apart from an updated review of pre-clinical and clinical studies, the adequacy/inadequacy of cannabinoid-based therapeutics in various pathological conditions is also highlighted. Finally, alternative strategies to modulate endocannabinoid tone, and future directions are also emphasized.
Collapse
Affiliation(s)
- Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Michelle A. Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
14
|
Lyons EL, Leone-Kabler S, Kovach AL, Thomas BF, Howlett AC. Cannabinoid receptor subtype influence on neuritogenesis in human SH-SY5Y cells. Mol Cell Neurosci 2020; 109:103566. [PMID: 33049367 DOI: 10.1016/j.mcn.2020.103566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022] Open
Abstract
Human SH-SY5Y neuroblastoma cells stably expressing exogenous CB1 (CB1XS) or CB2 (CB2XS) receptors were developed to investigate endocannabinoid signaling in the extension of neuronal projections. Expression of cannabinoid receptors did not alter proliferation rate, viability, or apoptosis relative to parental SH-SY5Y. Transcripts for endogenous cannabinoid system enzymes (diacylglycerol lipase, monoacylglycerol lipase, α/β-hydrolase domain containing proteins 6 and 12, N-acyl phosphatidylethanolamine-phospholipase D, and fatty acid amide hydrolase) were not altered by CB1 or CB2 expression. Endocannabinoid ligands 2-arachidonoylglycerol (2-AG) and anandamide were quantitated in SH-SY5Y cells, and diacylglycerol lipase inhibitor tetrahydrolipstatin decreased 2-AG abundance by 90% but did not alter anandamide abundance. M3 muscarinic agonist oxotremorine M, and inhibitors of monoacylglycerol lipase and α/β hydrolase domain containing proteins 6 &12 increased 2-AG abundance. CB1 receptor expression increased lengths of short (<30 μm) and long (>30 μm) projections, and this effect was significantly reduced by tetrahydrolipstatin, indicative of stimulation by endogenously produced 2-AG. Pertussis toxin, Gβγ inhibitor gallein, and β-arrestin inhibitor barbadin did not significantly alter long projection length in CB1XS, but significantly reduced short projections, with gallein having the greatest inhibition. The rho kinase inhibitor Y27632 increased CB1 receptor-mediated long projection extension, indicative of actin cytoskeleton involvement. CB1 receptor expression increased GAP43 and ST8SIA2 mRNA and decreased ITGA1 mRNA, whereas CB2 receptor expression increased NCAM and SYT mRNA. We propose that basal endogenous production of 2-AG provides autocrine stimulation of CB1 receptor signaling through Gi/o, Gβγ, and β-arrestin mechanisms to promote neuritogenesis, and rho kinase influences process extension.
Collapse
Affiliation(s)
- Erica L Lyons
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, One Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | - Sandra Leone-Kabler
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, One Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | - Alexander L Kovach
- Discovery Sciences, RTI International, PO Box 12194, Research Triangle Park, NC 27709, USA.
| | - Brian F Thomas
- Discovery Sciences, RTI International, PO Box 12194, Research Triangle Park, NC 27709, USA.
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, One Medical Center Blvd., Winston-Salem, NC 27157, USA.
| |
Collapse
|
15
|
The Endocannabinoid System and Synthetic Cannabinoids in Preclinical Models of Seizure and Epilepsy. J Clin Neurophysiol 2020; 37:15-27. [PMID: 31895186 DOI: 10.1097/wnp.0000000000000633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cannabinoids are compounds that are structurally and/or functionally related to the primary psychoactive constituent of Cannabis sativa, [INCREMENT]-tetrahydrocannabinol (THC). Cannabinoids can be divided into three broad categories: endogenous cannabinoids, plant-derived cannabinoids, and synthetic cannabinoids (SCs). Recently, there has been an unprecedented surge of interest into the pharmacological and medicinal properties of cannabinoids for the treatment of epilepsies. This surge has been stimulated by an ongoing shift in societal opinions about cannabinoid-based medicines and evidence that cannabidiol, a nonintoxicating plant cannabinoid, has demonstrable anticonvulsant activity in children with treatment-refractory epilepsy. The major receptors of the endogenous cannabinoid system (ECS)-the type 1 and 2 cannabinoid receptors (CB1R, CB2R)-have critical roles in the modulation of neurotransmitter release and inflammation, respectively; so, it is not surprising therefore that the ECS is being considered as a target for the treatment of epilepsy. SCs were developed as potential new drug candidates and tool compounds for studying the ECS. Beyond the plant cannabinoids, an extensive research effort is underway to determine whether SCs that directly target CB1R, CB2R, or the enzymes that breakdown endogenous cannabinoids have anticonvulsant effects in preclinical rodent models of epilepsy and seizure. This research demonstrates that many SCs do reduce seizure severity in rodent models and may have both positive and negative pharmacodynamic and pharmacokinetic interactions with clinically used antiepilepsy drugs. Here, we provide a comprehensive review of the preclinical evidence for and against SC modulation of seizure and discuss the important questions that need to be addressed in future studies.
Collapse
|
16
|
Lipid desaturation-associated endoplasmic reticulum stress regulates MYCN gene expression in hepatocellular carcinoma cells. Cell Death Dis 2020; 11:66. [PMID: 31988297 PMCID: PMC6985230 DOI: 10.1038/s41419-020-2257-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide due to its high rate of recurrence, in part because of cancer stem cell (CSC)-dependent “field cancerization”. Recently, we identified that the oncogene v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN) marked CSC-like subpopulations in heterogeneous HCC and served as a therapeutic target and prognostic marker for HCC. In this study, we explored the molecular basis of upregulated MYCN gene expression in HCC cells. Liquid chromatograph time-of-flight mass spectrometry-based metabolome analysis demonstrated that the content of unsaturated fatty acids was increased in MYCN high expression (MYCNhigh) CSC-like HCC cells. Inhibition of lipid desaturation using either the chemical inhibitor or siRNA/shRNA against stearoyl-CoA desaturase-1 (SCD1) suppressed cell proliferation as well as MYCN gene expression in MYCNhigh HCC cells, grown as both monolayer and spheres. Further mechanistic study using RNA-seq based transcriptome analysis revealed that endoplasmic reticulum (ER) stress related signaling networks such as endocannabinoid cancer inhibition pathway were under the control of SCD1 in MYCNhigh HCC cells. Furthermore, the expression of ER stress-inducible transcription suppressor cyclic AMP-dependent transcription factor (ATF3) was downregulated in MYCNhigh CSC-like HCC cells and CSC-rich spheroids, which was upregulated by inhibition of lipid desaturation or treatment with acyclic retinoid (ACR). Lipid profiling using NMR spectroscopy revealed that the ACR dramatically reduced the content of unsaturated fatty acids in HCC cells. The chemical inducer of ER stress inhibited MYCN gene expression, while the chemical inhibitor of ER stress or knockdown of ATF3 gene expression partially rescued the suppression of MYCN gene expression by ACR in MYCNhigh HCC cells. These data suggested that lipid desaturation-mediated ER stress signaling regulates MYCN gene expression in HCC cells and serves as a promising therapeutic target for the treatment and prevention of HCC.
Collapse
|
17
|
Reece AS, Hulse GK. Cannabis Consumption Patterns Explain the East-West Gradient in Canadian Neural Tube Defect Incidence: An Ecological Study. Glob Pediatr Health 2019; 6:2333794X19894798. [PMID: 31853464 PMCID: PMC6906350 DOI: 10.1177/2333794x19894798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/23/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
While a known link between prenatal cannabis exposure and anencephaly exists, the relationship of prenatal cannabis exposure with neural tube defects (NTDs) generally has not been defined. Published data from Canada Health and Statistics Canada were used to assess this relationship. Both cannabis use and NTDs were shown to follow an east-west and north-south gradient. Last year cannabis consumption was significantly associated (P < .0001; cannabis use-time interaction P < .0001). These results were confirmed when estimates of termination for anomaly were used. Canada Health population data allowed the calculation of an NTD odds ratio) of 1.27 (95% confidence interval = 1.19-1.37; P < 10-11) for high-risk provinces versus the remainder with an attributable fraction in exposed populations of 16.52% (95% confidence interval = 12.22-20.62). Data show a robust positive statistical association between cannabis consumption as both a qualitative and quantitative variable and NTDs on a background of declining NTD incidence. In the context of multiple mechanistic pathways these strong statistical findings implicate causal mechanisms.
Collapse
Affiliation(s)
- Albert Stuart Reece
- University of Western Australia,
Crawley, Western Australia, Australia
- Edith Cowan University, Joondalup,
Western Australia, Australia
| | - Gary Kenneth Hulse
- University of Western Australia,
Crawley, Western Australia, Australia
- Edith Cowan University, Joondalup,
Western Australia, Australia
| |
Collapse
|
18
|
Choi WM, Kim HH, Kim MH, Cinar R, Yi HS, Eun HS, Kim SH, Choi YJ, Lee YS, Kim SY, Seo W, Lee JH, Shim YR, Kim YE, Yang K, Ryu T, Hwang JH, Lee CH, Choi HS, Gao B, Kim W, Kim SK, Kunos G, Jeong WI. Glutamate Signaling in Hepatic Stellate Cells Drives Alcoholic Steatosis. Cell Metab 2019; 30:877-889.e7. [PMID: 31474565 PMCID: PMC6834910 DOI: 10.1016/j.cmet.2019.08.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/15/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022]
Abstract
Activation of hepatocyte cannabinoid receptor-1 (CB1R) by hepatic stellate cell (HSC)-derived 2-arachidonoylglycerol (2-AG) drives de novo lipogenesis in alcoholic liver disease (ALD). How alcohol stimulates 2-AG production in HSCs is unknown. Here, we report that chronic alcohol consumption induced hepatic cysteine deficiency and subsequent glutathione depletion by impaired transsulfuration pathway. A compensatory increase in hepatic cystine-glutamate anti-porter xCT boosted extracellular glutamate levels coupled to cystine uptake both in mice and in patients with ALD. Alcohol also induced the selective expression of metabotropic glutamate receptor-5 (mGluR5) in HSCs where mGluR5 activation stimulated 2-AG production. Consistently, genetic or pharmacologic inhibition of mGluR5 or xCT attenuated alcoholic steatosis in mice via the suppression of 2-AG production and subsequent CB1R-mediated de novo lipogenesis. We conclude that a bidirectional signaling operates at a metabolic synapse between hepatocytes and HSCs through xCT-mediated glutamate-mGluR5 signaling to produce 2-AG, which induces CB1R-mediated alcoholic steatosis.
Collapse
Affiliation(s)
- Won-Mook Choi
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea; Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hee-Hoon Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Myung-Ho Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hyon-Seung Yi
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea; Department of Internal Medicine, Chungnam National University, School of Medicine, Daejeon 35015, Republic of Korea
| | - Hyuk Soo Eun
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea; Department of Internal Medicine, Chungnam National University, School of Medicine, Daejeon 35015, Republic of Korea
| | - Seok-Hwan Kim
- Department of Surgery, Chungnam National University, College of Medicine, Daejeon 35015, Republic of Korea
| | - Young Jae Choi
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young-Sun Lee
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea; Department of Internal Medicine, Korea University College of Medicine, Seoul 08308, Republic of Korea
| | - So Yeon Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Wonhyo Seo
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea; Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun-Hee Lee
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Young-Ri Shim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Ye Eun Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Keungmo Yang
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Tom Ryu
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Jung Hwan Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hueng-Sik Choi
- School of the Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government, Seoul National University Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
19
|
Hay EA, Cowie P, McEwan AR, Ross R, Pertwee RG, MacKenzie A. Disease-associated polymorphisms within the conserved ECR1 enhancer differentially regulate the tissue-specific activity of the cannabinoid-1 receptor gene promoter; implications for cannabinoid pharmacogenetics. Hum Mutat 2019; 41:291-298. [PMID: 31608546 PMCID: PMC6973010 DOI: 10.1002/humu.23931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022]
Abstract
Cannabinoid receptor‐1 (CB1) represents a potential drug target against conditions that include obesity and substance abuse. However, drug trials targeting CB1 (encoded by the CNR1 gene) have been compromised by differences in patient response. Toward addressing the hypothesis that genetic changes within the regulatory regions controlling CNR1 expression contribute to these differences, we characterized the effects of disease‐associated allelic variation within a conserved regulatory sequence (ECR1) in CNR1 intron 2 that had previously been shown to modulate cannabinoid response, alcohol intake, and anxiety‐like behavior. We used primary cell analysis of reporters carrying different allelic variants of the human ECR1 and found that human‐specific C‐allele variants of ECR1 (ECR1(C)) drove higher levels of CNR1prom activity in primary hippocampal cells than did the ancestral T‐allele and demonstrated a differential response to CB1 agonism. We further demonstrate a role for the AP‐1 transcription factor in driving higher ECR1(C) activity and evidence that the ancestral t‐allele variant of ECR1 interacted with higher affinity with the insulator binding factor CTCF. The cell‐specific approaches used in our study represent an important step in gaining a mechanistic understanding of the roles of noncoding polymorphic variation in disease and in the increasingly important field of cannabinoid pharmacogenetics.
Collapse
Affiliation(s)
- Elizabeth A Hay
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, UK
| | - Philip Cowie
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, UK
| | - Andrew R McEwan
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, UK
| | - Ruth Ross
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Roger G Pertwee
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, UK
| | - Alasdair MacKenzie
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
20
|
Tomas-Roig J, Havemann-Reinecke U. Gene expression signature in brain regions exposed to long-term psychosocial stress following acute challenge with cannabinoid drugs. Psychoneuroendocrinology 2019; 102:1-8. [PMID: 30476795 DOI: 10.1016/j.psyneuen.2018.11.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
Repeated exposure to life stressors can overwhelm the body's capacity to restore homeostasis and result in severe negative consequences. Cannabinoid CB1 receptors are highly expressed in the Central Nervous System (CNS) and regulate both glucocorticoid signalling and neurotransmitter release. In rodents, WIN55212.2 is a full agonist at the cannabinoid receptor type-1, while Rimonabant is a potent and selective cannabinoid inverse agonist at this receptor. This study aims to investigate the effect of long-term psychosocial stress following acute challenge with cannabinoid drugs on gene expression in distinct brain regions; this is done by employing digital multiplexed gene expression analysis. We found that repeated stress increased cortical mRNA levels of dopamine receptor D2, while the expression of neuregulin-1 decreased in both the prefrontal cortex and cerebellum. Further, we found that the acute injection of the agonist WIN55212.2 reduced striatal levels of dopamine receptor D2, while the use of inverse agonist Rimonabant acted in the opposite direction. The analysis of the interaction between the drugs and repeated stress revealed that defeat mice treated with WIN55212.2 showed lower expression of a set of myelin-related genes, as did the expression of SRY-box 10 and dopamine receptors-D1 and -D2 in the prefrontal cortex when compared to vehicle. In addition, in the hippocampus of stressed mice treated with WIN55212.2, we found an elevated expression of oligodendrocyte transcription factor-1, -2 and zinc finger protein 488 when compared to vehicle. In comparison to vehicle, an increase in 2',3'-Cyclic nucleotide 3'-phosphodiesterase and oligodendrocyte transcription factor-1 occurred in the cerebellum of stressed animals treated with the agonist. Moreover, treatment with Rimonabant under the influence of stress induced an overexpression of a set of myelin-related genes in the prefrontal cortex when compared to WIN-treated animals. In conclusion, repeated stress interfered with the dopaminergic system in the prefrontal cortex. We demonstrated that the expression of dopamine receptor D2 in the striatum was mediated by the CB1 receptor. Stressed mice exposed to either WIN55212.2 or Rimonabant displayed pronounced deficits in CNS myelination. In addition, the pharmacological blockage of CB1 receptor in stressed mice deregulated the expression of dopamine receptors and might lead to dysfunctions in dopamine metabolism.
Collapse
Affiliation(s)
- J Tomas-Roig
- Dept. of Psychiatry and Psychotherapy, University of Göttingen, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany; Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEMTG), Dr. Josep Trueta University Hospital and Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Spain.
| | - U Havemann-Reinecke
- Dept. of Psychiatry and Psychotherapy, University of Göttingen, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
21
|
Barghi M, Ashrafi M, Aminlari M, Namazi F, Nazifi S. The protective effect of Zataria multiflora Boiss essential oil on CCl 4 induced liver fibrosis in rats. Drug Chem Toxicol 2019; 44:229-237. [PMID: 30746963 DOI: 10.1080/01480545.2019.1571502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Activation of hepatic stellate cells by free radicals is an initial step in the development of liver fibrosis. Zataria multiflora Boiss (ZM) essential oil as a natural product has antioxidant activity and maybe a suitable candidate for treatment or prevention of the disease. Thus, this study aims to evaluate the protective effect of ZM oil in CCl4 induced liver fibrosis. Male rats were divided into 5 groups, group C: control rats; CO: vehicle control group; CE: rats that received essential oil (500 µl/kg); F: fibrosis group, rat were intraperitoneally injected with CCl4 (1 mL/kg); FE: fibrosis rats that received both CCl4 and ZM essential oil as mentioned above. At the end of the 11th week, serum samples and liver tissues were collected for the evaluation of fibrosis markers, liver enzymes, oxidative stress parameters and histopathological studies. The results showed a significant increase in the activity of serum AST, ALT, total bilirubin, TGF-β1, hyaluronan, and hydroxyproline levels in serum and liver tissues in F group. Also, an abnormality in lipid profile and the existence of oxidative stress was found in serum and liver tissues in F group compared to the control groups. Our study showed that ZM essential oil could ameliorate mentioned parameters. Histopathological examinations confirmed the results of biochemical evaluations.
Collapse
Affiliation(s)
- Maryam Barghi
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mahboobeh Ashrafi
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mahmoud Aminlari
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Fateme Namazi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saeed Nazifi
- Department of Clinical Studies, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
22
|
Blaner WS. Hepatic Stellate Cells and Retinoids: Toward A Much More Defined Relationship. Hepatology 2019; 69:484-486. [PMID: 30284734 PMCID: PMC6351218 DOI: 10.1002/hep.30293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/20/2018] [Indexed: 12/17/2022]
Affiliation(s)
- William S Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
23
|
Jorgačević B, Vučević D, Vesković M, Mladenović D, Vukićević D, Vukićević RJ, Todorović V, Radosavljević T. The effect of cannabinoid receptor 1 blockade on adipokine and proinflammatory cytokine concentration in adipose and hepatic tissue in mice with nonalcoholic fatty liver disease. Can J Physiol Pharmacol 2019; 97:120-129. [PMID: 30673308 DOI: 10.1139/cjpp-2018-0607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In high-fat diet (HFD) induced nonalcoholic fatty liver disease (NAFLD), there is an increase in the endocannabinoid system activity, which significantly contributes to steatosis development. The aim of our study was to investigate the effects of cannabinoid receptor type 1 blockade on adipokine and proinflammatory cytokine content in adipose and hepatic tissue in mice with NAFLD. Male mice C57BL/6 were divided into a control group fed with a control diet for 20 weeks (C, n = 6) a group fed with a HFD for 20 weeks (HF, n = 6), a group fed with a control diet and treated with rimonabant after 18 weeks (R, n = 9), and a group fed with HFD and treated with rimonabant after 18 weeks (HFR, n = 10). Rimonabant significantly decreased leptin, resistin, apelin, visfatin, interleukin 6 (IL-6), and interferon-γ (IFN-γ) concentration in subcutaneous and visceral adipose tissue in the HFR group compared to the HF group (p < 0.01). Rimonabant reduced hepatic IL-6 and IFN-γ concentration as well as plasma glucose and insulin concentration and the homeostatic model assessment index in the HFR group compared to the HF group (p < 0.01). It can be concluded that the potential usefulness of CB1 blockade in the treatment of HFD-induced NAFLD is due to modulation of the adipokine profile and proinflammatory cytokines in both adipose tissues and liver as well as glucose metabolism.
Collapse
Affiliation(s)
- Bojan Jorgačević
- a Institute of Pathophysiology "Ljubodrag Buba Mihailović", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Danijela Vučević
- a Institute of Pathophysiology "Ljubodrag Buba Mihailović", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milena Vesković
- a Institute of Pathophysiology "Ljubodrag Buba Mihailović", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dušan Mladenović
- a Institute of Pathophysiology "Ljubodrag Buba Mihailović", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dušan Vukićević
- a Institute of Pathophysiology "Ljubodrag Buba Mihailović", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Rada Ješić Vukićević
- b Institute of Digestive Diseases, Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Vera Todorović
- c Faculty of Dentistry, Pančevo, University Business Academy, Novi Sad, 13000 Pančevo, Serbia
| | - Tatjana Radosavljević
- a Institute of Pathophysiology "Ljubodrag Buba Mihailović", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
24
|
Huang H, McIntosh AL, Martin GG, Dangott LJ, Kier AB, Schroeder F. Structural and Functional Interaction of Δ 9-Tetrahydrocannabinol with Liver Fatty Acid Binding Protein (FABP1). Biochemistry 2018; 57:6027-6042. [PMID: 30232874 DOI: 10.1021/acs.biochem.8b00744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although serum Δ9-tetrahydrocannabinol (Δ9-THC) undergoes rapid hepatic clearance and metabolism, almost nothing is known regarding the mechanism(s) whereby this highly lipophilic phytocannabinoid is transported for metabolism/excretion. A novel NBD-arachidonoylethanolamide (NBD-AEA) fluorescence displacement assay showed that liver fatty acid binding protein (FABP1), the major hepatic endocannabinoid (EC) binding protein, binds the first major metabolite of Δ9-THC (Δ9-THC-OH) as well as Δ9-THC itself. Circular dichroism (CD) confirmed that not only Δ9-THC and Δ9-THC-OH but also downstream metabolites Δ9-THC-COOH and Δ9-THC-CO-glucuronide directly interact with FABP1. Δ9-THC and metabolite interaction differentially altered the FABP1 secondary structure, increasing total α-helix (all), decreasing total β-sheet (Δ9-THC-COOH, Δ9-THC-CO-glucuronide), increasing turns (Δ9-THC-OH, Δ9-THC-COOH, Δ9-THC-CO-glucuronide), and decreasing unordered structure (Δ9-THC, Δ9-THC-OH). Cultured primary hepatocytes from wild-type (WT) mice took up and converted Δ9-THC to the above metabolites. Fabp1 gene ablation (LKO) dramatically increased hepatocyte accumulation of Δ9-THC and even more so its primary metabolites Δ9-THC-OH and Δ9-THC-COOH. Concomitantly, rtPCR and Western blotting indicated that LKO significantly increased Δ9-THC's ability to regulate downstream nuclear receptor transcription of genes important in both EC ( Napepld > Daglb > Dagla, Naaa, Cnr1) and lipid ( Cpt1A > Fasn, FATP4) metabolism. Taken together, the data indicated that FABP1 may play important roles in Δ9-THC uptake and elimination as well as Δ9-THC induction of genes regulating hepatic EC levels and downstream targets in lipid metabolism.
Collapse
Affiliation(s)
- Huan Huang
- Department of Physiology and Pharmacology , Texas A&M University , College Station , Texas 77843-4466 , United States
| | - Avery L McIntosh
- Department of Physiology and Pharmacology , Texas A&M University , College Station , Texas 77843-4466 , United States
| | - Gregory G Martin
- Department of Physiology and Pharmacology , Texas A&M University , College Station , Texas 77843-4466 , United States
| | - Lawrence J Dangott
- Protein Chemistry Laboratory , Texas A&M University , College Station , Texas 77843-2128 , United States
| | - Ann B Kier
- Department of Pathobiology , Texas A&M University , College Station , Texas 77843-4467 , United States
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology , Texas A&M University , College Station , Texas 77843-4466 , United States
| |
Collapse
|
25
|
Heinitz S, Basolo A, Piomelli D, Krakoff J, Piaggi P. Endocannabinoid Anandamide Mediates the Effect of Skeletal Muscle Sphingomyelins on Human Energy Expenditure. J Clin Endocrinol Metab 2018; 103:3757-3766. [PMID: 30113648 PMCID: PMC6179180 DOI: 10.1210/jc.2018-00780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/27/2018] [Indexed: 11/19/2022]
Abstract
CONTEXT Skeletal muscle endocannabinoids and sphingolipids (particularly sphingomyelins) are inversely associated with sleeping energy expenditure (SLEEP) in humans. The endocannabinoid system may increase sphingolipid synthesis via cannabinoid receptor-1. OBJECTIVE To investigate in human skeletal muscle whether endocannabinoids are responsible for the effect of sphingomyelins on SLEEP. DESIGN Muscle endocannabinoid [anandamide (AEA), 2-arachidonoylglycerol (2-AG)], endocannabinoid congeners [oleoylethanolamide (OEA), palmitoylethanolamide (PEA)], and sphingomyelin content were measured with liquid chromatography/mass spectrometry. SLEEP was assessed in a whole-room indirect calorimeter. Mediation analyses tested whether the inverse associations between sphingomyelins and SLEEP depended on endocannabinoids and endocannabinoid-related OEA and PEA. SETTING Inpatient study. PARTICIPANTS Fifty-three Native Americans who are overweight. MAIN OUTCOME MEASURE SLEEP. RESULTS AEA (r = 0.45, P = 0.001), 2-AG (r = 0.47, P = 0.0004), OEA (r = 0.27, P = 0.05), and PEA (r = 0.53, P < 0.0001) concentrations were associated with the total sphingomyelin content. AEA, OEA, and PEA correlated with specific sphingomyelins (SM18:1/23:0, SM18:1/23:1, and SM18:1/26:1) previously reported to be determinants of SLEEP in Native Americans (all r > 0.31, all P < 0.03). Up to half of the negative effect of these specific sphingomyelins on SLEEP was accounted for by AEA (all P < 0.04), rendering the direct effect by sphingomyelins per se on SLEEP negligible (P > 0.05). CONCLUSIONS In skeletal muscle, AEA is responsible for the sphingomyelin effect on SLEEP, indicating that endocannabinoids and sphingomyelins may jointly reduce human whole-body energy metabolism.
Collapse
Affiliation(s)
- Sascha Heinitz
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona
- Department of Medicine, Division of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
| | - Alessio Basolo
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona
| | - Daniele Piomelli
- Department of Pharmacology, University of California Irvine, Irvine, California
| | - Jonathan Krakoff
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona
| | - Paolo Piaggi
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona
- Correspondence and Reprint Requests: Paolo Piaggi, PhD, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 North 16th Street, Phoenix, Arizona 85016. E-mail: or
| |
Collapse
|
26
|
Abstract
Liver fibrosis is a wound-healing response generated against an insult to the liver that causes liver injury. It has the potential to progress into cirrhosis, and if not prevented, it may lead to liver cancer and liver failure. The activation of hepatic stellate cells (HSCs) is the central event underlying liver fibrosis. In addition to HSCs, numerous studies have supported the potential contribution of bone marrow-derived cells and myofibroblasts to liver fibrosis. The liver is a heterogeneous organ; thus, molecular and cellular events that underlie liver fibrogenesis are complex. This review aims to focus on major events that occur during liver fibrogenesis. In addition, important antifibrotic therapeutic approaches and experimental liver fibrosis models will be discussed.
Collapse
Affiliation(s)
- M Merve Aydın
- Mikrogen Genetic Diagnostic Laboratory, Ankara, Turkey
| | - Kamil Can Akçalı
- Department of Biophysics, Ankara University, School of Medicine, Ankara, Turkey
| |
Collapse
|
27
|
Szutorisz H, Hurd YL. High times for cannabis: Epigenetic imprint and its legacy on brain and behavior. Neurosci Biobehav Rev 2018; 85:93-101. [PMID: 28506926 PMCID: PMC5682234 DOI: 10.1016/j.neubiorev.2017.05.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/22/2022]
Abstract
Extensive debates continue regarding marijuana (Cannabis spp), the most commonly used illicit substance in many countries worldwide. There has been an exponential increase of cannabis studies over the past two decades but the drug's long-term effects still lack in-depth scientific data. The epigenome is a critical molecular machinery with the capacity to maintain persistent alterations of gene expression and behaviors induced by cannabinoids that have been observed across the individual's lifespan and even into the subsequent generation. Though mechanistic investigations regarding the consequences of developmental cannabis exposure remain sparse, human and animal studies have begun to reveal specific epigenetic disruptions in the brain and the periphery. In this article, we focus attention on long-term disturbances in epigenetic regulation in relation to prenatal, adolescent and parental germline cannabinoid exposure. Expanding knowledge about the protracted molecular memory could help to identify novel targets to develop preventive strategies and treatments for behaviors relevant to neuropsychiatric risks associated with developmental cannabis exposure.
Collapse
Affiliation(s)
- Henrietta Szutorisz
- Friedman Brain Institute, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yasmin L Hurd
- Friedman Brain Institute, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Addiction Institute at Mount Sinai, New York, NY, USA.
| |
Collapse
|
28
|
Peripheral modulation of the endocannabinoid system in metabolic disease. Drug Discov Today 2018; 23:592-604. [PMID: 29331500 DOI: 10.1016/j.drudis.2018.01.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/17/2017] [Accepted: 01/05/2018] [Indexed: 12/14/2022]
Abstract
Dysfunction of the endocannabinoid system (ECS) has been identified in metabolic disease. Cannabinoid receptor 1 (CB1) is abundantly expressed in the brain but also expressed in the periphery. Cannabinoid receptor 2 (CB2) is more abundant in the periphery, including the immune cells. In obesity, global antagonism of overexpressed CB1 reduces bodyweight but leads to centrally mediated adverse psychological outcomes. Emerging research in isolated cultured cells or tissues has demonstrated that targeting the endocannabinoid system in the periphery alleviates the pathologies associated with metabolic disease. Further, peripheral specific cannabinoid ligands can reverse aspects of the metabolic phenotype. This Keynote review will focus on current research on the functionality of peripheral modulation of the ECS for the treatment of obesity.
Collapse
|
29
|
Pesce M, D'Alessandro A, Borrelli O, Gigli S, Seguella L, Cuomo R, Esposito G, Sarnelli G. Endocannabinoid-related compounds in gastrointestinal diseases. J Cell Mol Med 2017; 22:706-715. [PMID: 28990365 PMCID: PMC5783846 DOI: 10.1111/jcmm.13359] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/23/2017] [Indexed: 12/14/2022] Open
Abstract
The endocannabinoid system (ECS) is an endogenous signalling pathway involved in the control of several gastrointestinal (GI) functions at both peripheral and central levels. In recent years, it has become apparent that the ECS is pivotal in the regulation of GI motility, secretion and sensitivity, but endocannabinoids (ECs) are also involved in the regulation of intestinal inflammation and mucosal barrier permeability, suggesting their role in the pathophysiology of both functional and organic GI disorders. Genetic studies in patients with irritable bowel syndrome (IBS) or inflammatory bowel disease have indeed shown significant associations with polymorphisms or mutation in genes encoding for cannabinoid receptor or enzyme responsible for their catabolism, respectively. Furthermore, ongoing clinical trials are testing EC agonists/antagonists in the achievement of symptomatic relief from a number of GI symptoms. Despite this evidence, there is a lack of supportive RCTs and relevant data in human beings, and hence, the possible therapeutic application of these compounds is raising ethical, political and economic concerns. More recently, the identification of several EC-like compounds able to modulate ECS function without the typical central side effects of cannabino-mimetics has paved the way for emerging peripherally acting drugs. This review summarizes the possible mechanisms linking the ECS to GI disorders and describes the most recent advances in the manipulation of the ECS in the treatment of GI diseases.
Collapse
Affiliation(s)
- Marcella Pesce
- Department of Clinical Medicine and Surgery, 'Federico II' University of Naples, Naples, Italy.,Division of Neurogastroenterology & Motility, Great Ormond Street Hospital and University of College (UCL), London, UK
| | - Alessandra D'Alessandro
- Department of Clinical Medicine and Surgery, 'Federico II' University of Naples, Naples, Italy
| | - Osvaldo Borrelli
- Division of Neurogastroenterology & Motility, Great Ormond Street Hospital and University of College (UCL), London, UK
| | - Stefano Gigli
- Department of Physiology and Pharmacology 'Vittorio Erspamer', La Sapienza University of Rome, Rome, Italy
| | - Luisa Seguella
- Department of Physiology and Pharmacology 'Vittorio Erspamer', La Sapienza University of Rome, Rome, Italy
| | - Rosario Cuomo
- Department of Clinical Medicine and Surgery, 'Federico II' University of Naples, Naples, Italy
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology 'Vittorio Erspamer', La Sapienza University of Rome, Rome, Italy
| | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, 'Federico II' University of Naples, Naples, Italy
| |
Collapse
|
30
|
D'Addario C, Micale V, Di Bartolomeo M, Stark T, Pucci M, Sulcova A, Palazzo M, Babinska Z, Cremaschi L, Drago F, Carlo Altamura A, Maccarrone M, Dell'Osso B. A preliminary study of endocannabinoid system regulation in psychosis: Distinct alterations of CNR1 promoter DNA methylation in patients with schizophrenia. Schizophr Res 2017; 188:132-140. [PMID: 28108228 DOI: 10.1016/j.schres.2017.01.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/21/2022]
Abstract
Compelling evidence supports the involvement of the endocannabinoid system (ECS) in psychosis vulnerability. We here evaluated the transcriptional regulation of ECS components in human peripheral blood mononuclear cells (PBMCs) obtained from subjects suffering from bipolar disorder, major depressive disorder and schizophrenia, focusing in particular on the effects of DNA methylation. We observed selective alterations of DNA methylation at the promoter of CNR1, the gene coding for the type-1 cannabinoid receptor, in schizophrenic patients (N=25) with no changes in any other disorder. We confirmed the regulation of CNR1 in a well-validated animal model of schizophrenia, induced by prenatal methylazoxymethanol (MAM) acetate exposure (N=7 per group) where we found, in the prefrontal cortex, a significant increase in CNR1 expression and a consistent reduction in DNA methylation at specific CpG sites of gene promoter. Overall, our findings suggest a selective dysregulation of ECS in psychosis, and highlight the evaluation of CNR1 DNA methylation levels in PBMCs as a potential biomarker for schizophrenia.
Collapse
Affiliation(s)
- Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Vincenzo Micale
- CEITEC/Masaryk University, Brno, Czech Republic; Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Tibor Stark
- Masaryk University, Faculty of Medicine, Department of Pharmacology, Brno, Czech Republic
| | - Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | | | - Mariacarlotta Palazzo
- Centro Sant'Ambrogio, Ordine Ospedaliero San Giovanni di Dio-Fatebenefratelli, Cernusco sul Naviglio, Italy
| | - Zuzana Babinska
- Masaryk University, Faculty of Medicine, Department of Pharmacology, Brno, Czech Republic
| | - Laura Cremaschi
- Department of Neuroscience, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - A Carlo Altamura
- Department of Neuroscience, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy; European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Bernardo Dell'Osso
- Department of Neuroscience, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy; Department of Psychiatry and Behavioral Sciences, Bipolar Disorders Clinic, Stanford University, CA, USA.
| |
Collapse
|
31
|
Schreiner F, Ackermann M, Michalik M, Hucklenbruch-Rother E, Bilkei-Gorzo A, Racz I, Bindila L, Lutz B, Dötsch J, Zimmer A, Woelfle J. Developmental programming of somatic growth, behavior and endocannabinoid metabolism by variation of early postnatal nutrition in a cross-fostering mouse model. PLoS One 2017; 12:e0182754. [PMID: 28859076 PMCID: PMC5578498 DOI: 10.1371/journal.pone.0182754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/24/2017] [Indexed: 12/16/2022] Open
Abstract
Background Nutrient deprivation during early development has been associated with the predisposition to metabolic disorders in adulthood. Considering its interaction with metabolism, appetite and behavior, the endocannabinoid (eCB) system represents a promising target of developmental programming. Methods By cross-fostering and variation of litter size, early postnatal nutrition of CB6F1-hybrid mice was controlled during the lactation period (3, 6, or 10 pups/mother). After weaning and redistribution at P21, all pups received standard chow ad libitum. Gene expression analyses (liver, visceral fat, hypothalamus) were performed at P50, eCB concentrations were determined in liver and visceral fat. Locomotor activity and social behavior were analyzed by means of computer-assisted videotracking. Results Body growth was permanently altered, with differences for length, weight, body mass index and fat mass persisting beyond P100 (all 3>6>10,p<0.01). This was paralleled by differences in hepatic IGF-I expression (p<0.01). Distinct gene expression patterns for key enzymes of the eCB system were observed in fat (eCB-synthesis: 3>6>10 (DAGLα p<0.05; NAPE-PLD p = 0.05)) and liver (eCB-degradation: 3>6>10 (FAAH p<0.05; MGL p<0.01)). Concentrations of endocannabinoids AEA and 2-AG in liver and visceral fat were largely comparable, except for a borderline significance for higher AEA (liver, p = 0.049) in formerly overfed mice and, vice versa, tendencies (p<0.1) towards lower AEA (fat) and 2-AG (liver) in formerly underfed animals. In the arcuate nucleus, formerly underfed mice tended to express more eCB-receptor transcripts (CB1R p<0.05; CB2R p = 0.08) than their overfed fellows. Open-field social behavior testing revealed significant group differences, with formerly underfed mice turning out to be the most sociable animals (p<0.01). Locomotor activity did not differ. Conclusion Our data indicate a developmental plasticity of somatic growth, behavior and parameters of the eCB system, with long-lasting impact of early postnatal nutrition. Developmental programming of the eCB system in metabolically active tissues, as shown here for liver and fat, may play a role in the formation of the adult cardiometabolic risk profile following perinatal malnutrition in humans.
Collapse
Affiliation(s)
- Felix Schreiner
- Pediatric Endocrinology Division, Children’s Hospital, University of Bonn, Bonn, Germany
- * E-mail:
| | - Merle Ackermann
- Pediatric Endocrinology Division, Children’s Hospital, University of Bonn, Bonn, Germany
| | - Michael Michalik
- Pediatric Endocrinology Division, Children’s Hospital, University of Bonn, Bonn, Germany
| | - Eva Hucklenbruch-Rother
- Department of Pediatric and Adolescent Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| | | | - Ildiko Racz
- Department of Molecular Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Laura Bindila
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Beat Lutz
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jörg Dötsch
- Department of Pediatric and Adolescent Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andreas Zimmer
- Department of Molecular Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Joachim Woelfle
- Pediatric Endocrinology Division, Children’s Hospital, University of Bonn, Bonn, Germany
| |
Collapse
|
32
|
Shen K, Feng X, Pan H, Zhang F, Xie H, Zheng S. Baicalin Ameliorates Experimental Liver Cholestasis in Mice by Modulation of Oxidative Stress, Inflammation, and NRF2 Transcription Factor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6169128. [PMID: 28757911 PMCID: PMC5516718 DOI: 10.1155/2017/6169128] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/18/2017] [Accepted: 05/28/2017] [Indexed: 12/21/2022]
Abstract
Experimental cholestatic liver fibrosis was performed by bile duct ligation (BDL) in mice, and significant liver injury was observed in 15 days. Administration of baicalin in mice significantly ameliorates liver fibrosis. Experimental cholestatic liver fibrosis was associated with induced gene expression of fibrotic markers such as collagen I, fibronectin, alpha smooth muscle actin (SMA), and connective tissue growth factor (CTGF); increased inflammatory cytokines (TNFα, MIP1α, IL1β, and MIP2); increased oxidative stress and reactive oxygen species- (ROS-) inducing enzymes (NOX2 and iNOS); dysfunctional mitochondrial electron chain complexes; and apoptotic/necrotic cell death markers (DNA fragmentation, caspase 3 activity, and PARP activity). Baicalin administration on alternate day reduced fibrosis along with profibrotic gene expression, proinflammatory cytokines, oxidative stress, and cell death whereas improving the function of mitochondrial electron transport chain. We observed baicalin enhanced NRF2 activation by nuclear translocation and induced its target genes HO-1 and GCLM, thus enhancing antioxidant defense. Interplay of oxidative stress/inflammation and NRF2 were key players for baicalin-mediated protection. Stellate cell activation is crucial for initiation of fibrosis. Baicalin alleviated stellate cell activation and modulated TIMP1, SMA, collagen 1, and fibronectin in vitro. This study indicates that baicalin might be beneficial for reducing inflammation and fibrosis in liver injury models.
Collapse
Affiliation(s)
- Kezhen Shen
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xiaowen Feng
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Hao Pan
- Department of Urology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Feng Zhang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Haiyang Xie
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Shusen Zheng
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
33
|
Abstract
The CB1 and CB2 cannabinoid receptors (CB1R, CB2R) are members of the G protein-coupled receptor (GPCR) family that were identified over 20 years ago. CB1Rs and CB2Rs mediate the effects of Δ9-tetrahydrocannabinol (Δ9-THC), the principal psychoactive constituent of marijuana, and subsequently identified endogenous cannabinoids (endocannabinoids) anandamide and 2-arachidonoyl glycerol. CB1Rs and CB2Rs have both similarities and differences in their pharmacology. Both receptors recognize multiple classes of agonist and antagonist compounds and produce an array of distinct downstream effects. Natural polymorphisms and alternative splice variants may also contribute to their pharmacological diversity. As our knowledge of the distinct differences grows, we may be able to target select receptor conformations and their corresponding pharmacological responses. This chapter will discuss their pharmacological characterization, distribution, phylogeny, and signaling pathways. In addition, the effects of extended agonist exposure and how that affects signaling and expression patterns of the receptors are considered.
Collapse
MESH Headings
- Alternative Splicing/genetics
- Animals
- Humans
- Phylogeny
- Polymorphism, Genetic
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Allyn C Howlett
- Center for Research on Substance Use and Addiction, Wake Forest University Health Sciences, Winston-Salem, NC, United States
| | - Mary E Abood
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| |
Collapse
|
34
|
Simon V, Cota D. MECHANISMS IN ENDOCRINOLOGY: Endocannabinoids and metabolism: past, present and future. Eur J Endocrinol 2017; 176:R309-R324. [PMID: 28246151 DOI: 10.1530/eje-16-1044] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/10/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022]
Abstract
The endocannabinoid system (ECS), including cannabinoid type 1 and type 2 receptors (CB1R and CB2R), endogenous ligands called endocannabinoids and their related enzymatic machinery, is known to have a role in the regulation of energy balance. Past information generated on the ECS, mainly focused on the involvement of this system in the central nervous system regulation of food intake, while at the same time clinical studies pointed out the therapeutic efficacy of brain penetrant CB1R antagonists like rimonabant for obesity and metabolic disorders. Rimonabant was removed from the market in 2009 and its obituary written due to its psychiatric side effects. However, in the meanwhile a number of investigations had started to highlight the roles of the peripheral ECS in the regulation of metabolism, bringing up new hope that the ECS might still represent target for treatment. Accordingly, peripherally restricted CB1R antagonists or inverse agonists have shown to effectively reduce body weight, adiposity, insulin resistance and dyslipidemia in obese animal models. Very recent investigations have further expanded the possible toolbox for the modulation of the ECS, by demonstrating the existence of endogenous allosteric inhibitors of CB1R, the characterization of the structure of the human CB1R, and the likely involvement of CB2R in metabolic disorders. Here we give an overview of these findings, discussing what the future may hold in the context of strategies targeting the ECS in metabolic disease.
Collapse
MESH Headings
- Allosteric Regulation/drug effects
- Animals
- Anti-Obesity Agents/adverse effects
- Anti-Obesity Agents/pharmacology
- Anti-Obesity Agents/therapeutic use
- Cannabinoid Receptor Antagonists/adverse effects
- Cannabinoid Receptor Antagonists/pharmacology
- Cannabinoid Receptor Antagonists/therapeutic use
- Drug Inverse Agonism
- Endocannabinoids/metabolism
- Energy Intake/drug effects
- Energy Metabolism/drug effects
- Humans
- Models, Biological
- Obesity/drug therapy
- Obesity/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Vincent Simon
- INSERM and University of BordeauxNeurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
| | - Daniela Cota
- INSERM and University of BordeauxNeurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
| |
Collapse
|
35
|
Cinar R, Gochuico BR, Iyer MR, Jourdan T, Yokoyama T, Park JK, Coffey NJ, Pri-Chen H, Szanda G, Liu Z, Mackie K, Gahl WA, Kunos G. Cannabinoid CB1 receptor overactivity contributes to the pathogenesis of idiopathic pulmonary fibrosis. JCI Insight 2017; 2:92281. [PMID: 28422760 DOI: 10.1172/jci.insight.92281] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease without effective treatment, highlighting the need for identifying new targets and treatment modalities. The pathogenesis of IPF is complex, and engaging multiple targets simultaneously might improve therapeutic efficacy. To assess the role of the endocannabinoid/cannabinoid receptor 1 (endocannabinoid/CB1R) system in IPF and its interaction with inducible nitric oxide synthase (iNOS) as dual therapeutic targets, we analyzed lung fibrosis and the status of the endocannabinoid/CB1R system and iNOS in mice with bleomycin-induced pulmonary fibrosis (PF) and in lung tissue and bronchoalveolar lavage fluid (BALF) from patients with IPF, as well as controls. In addition, we investigated the antifibrotic efficacy in the mouse PF model of an orally bioavailable and peripherally restricted CB1R/iNOS hybrid inhibitor. We report that increased activity of the endocannabinoid/CB1R system parallels disease progression in the lungs of patients with idiopathic PF and in mice with bleomycin-induced PF and is associated with increased tissue levels of interferon regulatory factor-5. Furthermore, we demonstrate that simultaneous engagement of the secondary target iNOS by the hybrid CB1R/iNOS inhibitor has greater antifibrotic efficacy than inhibition of CB1R alone. This hybrid antagonist also arrests the progression of established fibrosis in mice, thus making it a viable candidate for future translational studies in IPF.
Collapse
Affiliation(s)
- Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Malliga R Iyer
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Tony Jourdan
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Tadafumi Yokoyama
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Joshua K Park
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Nathan J Coffey
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Hadass Pri-Chen
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Gergő Szanda
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Ziyi Liu
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| |
Collapse
|
36
|
Chanda D, Oligschlaeger Y, Geraets I, Liu Y, Zhu X, Li J, Nabben M, Coumans W, Luiken JJFP, Glatz JFC, Neumann D. 2-Arachidonoylglycerol ameliorates inflammatory stress-induced insulin resistance in cardiomyocytes. J Biol Chem 2017; 292:7105-7114. [PMID: 28320859 DOI: 10.1074/jbc.m116.767384] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/09/2017] [Indexed: 01/08/2023] Open
Abstract
Several studies have linked impaired glucose uptake and insulin resistance (IR) to functional impairment of the heart. Recently, endocannabinoids have been implicated in cardiovascular disease. However, the mechanisms involving endocannabinoid signaling, glucose uptake, and IR in cardiomyocytes are understudied. Here we report that the endocannabinoid 2-arachidonoylglycerol (2-AG), via stimulation of cannabinoid type 1 (CB1) receptor and Ca2+/calmodulin-dependent protein kinase β, activates AMP-activated kinase (AMPK), leading to increased glucose uptake. Interestingly, we have observed that the mRNA expression of CB1 and CB2 receptors was decreased in diabetic mice, indicating reduced endocannabinoid signaling in the diabetic heart. We further establish that TNFα induces IR in cardiomyocytes. Treatment with 2-AG suppresses TNFα-induced proinflammatory markers and improves IR and glucose uptake. Conversely, pharmacological inhibition or knockdown of AMPK attenuates the anti-inflammatory effect and reversal of IR elicited by 2-AG. Additionally, in human embryonic stem cell-derived cardiomyocytes challenged with TNFα or FFA, we demonstrate that 2-AG improves insulin sensitivity and glucose uptake. In conclusion, 2-AG abates inflammatory responses, increases glucose uptake, and overcomes IR in an AMPK-dependent manner in cardiomyocytes.
Collapse
Affiliation(s)
- Dipanjan Chanda
- From the Department of Molecular Genetics, CARIM School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Yvonne Oligschlaeger
- From the Department of Molecular Genetics, CARIM School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Ilvy Geraets
- From the Department of Molecular Genetics, CARIM School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Yilin Liu
- From the Department of Molecular Genetics, CARIM School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Xiaoqing Zhu
- From the Department of Molecular Genetics, CARIM School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Jieyi Li
- From the Department of Molecular Genetics, CARIM School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Miranda Nabben
- From the Department of Molecular Genetics, CARIM School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Will Coumans
- From the Department of Molecular Genetics, CARIM School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Joost J F P Luiken
- From the Department of Molecular Genetics, CARIM School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Jan F C Glatz
- From the Department of Molecular Genetics, CARIM School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Dietbert Neumann
- From the Department of Molecular Genetics, CARIM School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
37
|
Carpi S, Fogli S, Polini B, Montagnani V, Podestà A, Breschi MC, Romanini A, Stecca B, Nieri P. Tumor-promoting effects of cannabinoid receptor type 1 in human melanoma cells. Toxicol In Vitro 2017; 40:272-279. [PMID: 28131817 DOI: 10.1016/j.tiv.2017.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/10/2017] [Accepted: 01/24/2017] [Indexed: 12/28/2022]
Abstract
The role of endocannabinoid system in melanoma development and progression is actually not fully understood. This study was aimed at clarifying whether cannabinoid-type 1 (CB1) receptor may function as tumor-promoting or -suppressing signal in human cutaneous melanoma. CB1 receptor expression was measured in human melanoma cell lines by real-time PCR. A genetic deletion of CB1 receptors in selected melanoma cells was carried out by using three different short hairpin RNAs (shRNAs). Performance of target gene silencing was verified by real-time PCR and Western blot. The effects of CB1 receptor silencing on cell growth, clonogenicity, migration capability, cell cycle progression, and activation of mitogenic signals was tested. Lentiviral shRNAs vectors targeting different regions of the human CB1 gene led to a significant reduction in CB1 receptor mRNA and a near complete loss of CB1 receptor protein, compared to control vector (LV-c). The number of viable cells, the colony-forming ability and cell migration were significantly reduced in cells transduced with CB1 lentiviral shRNAs compared to LV-c. Cell cycle analyses showed arrest at G1/S phase. p-Akt and p-ERK expression were decreased in transduced versus control cells. Findings of this study suggest that CB1 receptor might function as tumor-promoting signal in human cutaneous melanoma.
Collapse
Affiliation(s)
- Sara Carpi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Stefano Fogli
- Department of Pharmacy, University of Pisa, Pisa, Italy.
| | | | - Valentina Montagnani
- Laboratory of Tumor Cell Biology, Core Research Laboratory, Istituto Toscano Tumori (CRL-ITT), Florence, Italy
| | | | | | | | - Barbara Stecca
- Laboratory of Tumor Cell Biology, Core Research Laboratory, Istituto Toscano Tumori (CRL-ITT), Florence, Italy
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Pisa, Italy
| |
Collapse
|
38
|
Martin GG, Chung S, Landrock D, Landrock KK, Dangott LJ, Peng X, Kaczocha M, Murphy EJ, Kier AB, Schroeder F. Female Mice are Resistant to Fabp1 Gene Ablation-Induced Alterations in Brain Endocannabinoid Levels. Lipids 2016; 51:1007-20. [PMID: 27450559 PMCID: PMC5418128 DOI: 10.1007/s11745-016-4175-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
Abstract
Although liver fatty acid binding protein (FABP1, L-FABP) is not detectable in the brain, Fabp1 gene ablation (LKO) markedly increases endocannabinoids (EC) in brains of male mice. Since the brain EC system of females differs significantly from that of males, it was important to determine if LKO differently impacted the brain EC system. LKO did not alter brain levels of arachidonic acid (ARA)-containing EC, i.e. arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), but decreased non-ARA-containing N-acylethanolamides (OEA, PEA) and 2-oleoylglycerol (2-OG) that potentiate the actions of AEA and 2-AG. These changes in brain potentiating EC levels were not associated with: (1) a net decrease in levels of brain membrane proteins associated with fatty acid uptake and EC synthesis; (2) a net increase in brain protein levels of cytosolic EC chaperones and enzymes in EC degradation; or (3) increased brain protein levels of EC receptors (CB1, TRVP1). Instead, the reduced or opposite responsiveness of female brain EC levels to loss of FABP1 (LKO) correlated with intrinsically lower FABP1 level in livers of WT females than males. These data show that female mouse brain endocannabinoid levels were unchanged (AEA, 2-AG) or decreased (OEA, PEA, 2-OG) by complete loss of FABP1 (LKO).
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| | - Sarah Chung
- Department of Pathobiology, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Kerstin K Landrock
- Department of Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| | - Lawrence J Dangott
- Protein Chemistry Laboratory, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Xiaoxue Peng
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Eric J Murphy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202-9037, USA
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA.
| |
Collapse
|
39
|
Martin GG, Chung S, Landrock D, Landrock KK, Huang H, Dangott LJ, Peng X, Kaczocha M, Seeger DR, Murphy EJ, Golovko MY, Kier AB, Schroeder F. FABP-1 gene ablation impacts brain endocannabinoid system in male mice. J Neurochem 2016; 138:407-22. [PMID: 27167970 PMCID: PMC4961623 DOI: 10.1111/jnc.13664] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/14/2016] [Accepted: 04/26/2016] [Indexed: 12/15/2022]
Abstract
Liver fatty acid-binding protein (FABP1, L-FABP) has high affinity for and enhances uptake of arachidonic acid (ARA, C20:4, n-6) which, when esterified to phospholipids, is the requisite precursor for synthesis of endocannabinoids (EC) such as arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG). The brain derives most of its ARA from plasma, taking up ARA and transporting it intracellularly via cytosolic fatty acid-binding proteins (FABPs 3,5, and 7) localized within the brain. In contrast, the much more prevalent cytosolic FABP1 is not detectable in the brain but is instead highly expressed in the liver. Therefore, the possibility that FABP1 outside the central nervous system may regulate brain AEA and 2-AG was examined in wild-type (WT) and FABP1 null (LKO) male mice. LKO increased brain levels of AA-containing EC (AEA, 2-AG), correlating with increased free and total ARA in brain and serum. LKO also increased brain levels of non-ARA that contain potentiating endocannabinoids (EC*) such as oleoyl ethanolamide (OEA), PEA, 2-OG, and 2-PG. Concomitantly, LKO decreased serum total ARA-containing EC, but not non-ARA endocannabinoids. LKO did not elicit these changes in the brain EC and EC* as a result of compensatory up-regulation of brain protein levels of enzymes in EC synthesis (NAPEPLD, DAGLα) or cytosolic EC chaperone proteins (FABPs 3, 5, 7, SCP-2, HSP70), or cannabinoid receptors (CB1, TRVP1). These data show for the first time that the non-CNS fatty acid-binding protein FABP1 markedly affected brain levels of both ARA-containing endocannabinoids (AEA, 2-AG) as well as their non-ARA potentiating endocannabinoids. Fatty acid-binding protein-1 (FABP-1) is not detectable in brain but instead is highly expressed in liver. The possibility that FABP1 outside the central nervous system may regulate brain endocannabinoids arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG) was examined in wild-type (WT) and FABP-1 null (LKO) male mice. LKO increased brain levels of arachidonic acid-containing endocannabinoids (AEA, 2-AG), correlating with increased free and total arachidonic acid in brain and serum. Read the Editorial Highlight for this article on page 371.
Collapse
Affiliation(s)
- Gregory G. Martin
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466
| | - Sarah Chung
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Kerstin K. Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466
| | - Lawrence J. Dangott
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128
| | - Xiaoxue Peng
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794
| | - Drew R. Seeger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037 USA
| | - Eric J. Murphy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037 USA
| | - Mikhail Y. Golovko
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037 USA
| | - Ann B. Kier
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466
| |
Collapse
|
40
|
Niewiadomska-Cimicka A, Krzyżosiak A, Ye T, Podleśny-Drabiniok A, Dembélé D, Dollé P, Krężel W. Genome-wide Analysis of RARβ Transcriptional Targets in Mouse Striatum Links Retinoic Acid Signaling with Huntington's Disease and Other Neurodegenerative Disorders. Mol Neurobiol 2016; 54:3859-3878. [PMID: 27405468 DOI: 10.1007/s12035-016-0010-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 06/08/2016] [Indexed: 11/28/2022]
Abstract
Retinoic acid (RA) signaling through retinoic acid receptors (RARs), known for its multiple developmental functions, emerged more recently as an important regulator of adult brain physiology. How RAR-mediated regulation is achieved is poorly known, partly due to the paucity of information on critical target genes in the brain. Also, it is not clear how reduced RA signaling may contribute to pathophysiology of diverse neuropsychiatric disorders. We report the first genome-wide analysis of RAR transcriptional targets in the brain. Using chromatin immunoprecipitation followed by high-throughput sequencing and transcriptomic analysis of RARβ-null mutant mice, we identified genomic targets of RARβ in the striatum. Characterization of RARβ transcriptional targets in the mouse striatum points to mechanisms through which RAR may control brain functions and display neuroprotective activity. Namely, our data indicate with statistical significance (FDR 0.1) a strong contribution of RARβ in controlling neurotransmission, energy metabolism, and transcription, with a particular involvement of G-protein coupled receptor (p = 5.0e-5), cAMP (p = 4.5e-4), and calcium signaling (p = 3.4e-3). Many identified RARβ target genes related to these pathways have been implicated in Alzheimer's, Parkinson's, and Huntington's disease (HD), raising the possibility that compromised RA signaling in the striatum may be a mechanistic link explaining the similar affective and cognitive symptoms in these diseases. The RARβ transcriptional targets were particularly enriched for transcripts affected in HD. Using the R6/2 transgenic mouse model of HD, we show that partial sequestration of RARβ in huntingtin protein aggregates may account for reduced RA signaling reported in HD.
Collapse
Affiliation(s)
- Anna Niewiadomska-Cimicka
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404, Illkirch Cedex, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Agnieszka Krzyżosiak
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404, Illkirch Cedex, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,MRC Laboratory of Molecular Biology, Francis Crick Avenue, CB2 0QH, Cambridge, UK
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404, Illkirch Cedex, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Anna Podleśny-Drabiniok
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404, Illkirch Cedex, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Doulaye Dembélé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404, Illkirch Cedex, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Pascal Dollé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404, Illkirch Cedex, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404, Illkirch Cedex, France. .,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France. .,Université de Strasbourg, Illkirch, France. .,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
41
|
Lerner V, McCaffery PJA, Ritsner MS. Targeting Retinoid Receptors to Treat Schizophrenia: Rationale and Progress to Date. CNS Drugs 2016; 30:269-80. [PMID: 26968404 DOI: 10.1007/s40263-016-0316-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review provides the rationale and reports on the progress to date regarding the targeting of retinoid receptors for the treatment of schizophrenia and schizoaffective disorder and the role of retinoic acid in functions of the normal brain, and in psychotic states. After a brief introduction, we describe the normal function of retinoic acid in the brain. We then examine the evidence regarding retinoid dysregulation in schizophrenia. Finally, findings from two add-on clinical trials with a retinoid (bexarotene) are discussed. The authors of this review suggest that targeting retinoid receptors may be a novel approach to treat schizophrenia and schizoaffective disorder. Further studies are warranted.
Collapse
Affiliation(s)
- Vladimir Lerner
- Faculty of Health Sciences, Be'er Sheva Mental Health Center, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Peter J A McCaffery
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Michael S Ritsner
- Department of Psychiatry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel. .,Sha'ar Menashe Mental Health Center, Mobile Post Hefer, 37806, Hadera, Israel.
| |
Collapse
|
42
|
Abstract
The past decade has witnessed a number of societal and political changes that have raised critical questions about the long-term impact of marijuana (Cannabis sativa) that are especially important given the prevalence of its abuse and that potential long-term effects still largely lack scientific data. Disturbances of the epigenome have generally been hypothesized as the molecular machinery underlying the persistent, often tissue-specific transcriptional and behavioral effects of cannabinoids that have been observed within one's lifetime and even into the subsequent generation. Here, we provide an overview of the current published scientific literature that has examined epigenetic effects of cannabinoids. Though mechanistic insights about the epigenome remain sparse, accumulating data in humans and animal models have begun to reveal aberrant epigenetic modifications in brain and the periphery linked to cannabis exposure. Expansion of such knowledge and causal molecular relationships could help provide novel targets for future therapeutic interventions.
Collapse
|
43
|
Fraher D, Ellis MK, Morrison S, McGee SL, Ward AC, Walder K, Gibert Y. Lipid Abundance in Zebrafish Embryos Is Regulated by Complementary Actions of the Endocannabinoid System and Retinoic Acid Pathway. Endocrinology 2015; 156:3596-609. [PMID: 26181105 DOI: 10.1210/en.2015-1315] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The endocannabinoid system (ECS) and retinoic acid (RA) signaling have been associated with influencing lipid metabolism. We hypothesized that modulation of these pathways could modify lipid abundance in developing vertebrates and that these pathways could have a combinatorial effect on lipid levels. Zebrafish embryos were exposed to chemical treatments altering the activity of the ECS and RA pathway. Embryos were stained with the neutral lipid dye Oil-Red-O (ORO) and underwent whole-mount in situ hybridization (WISH). Mouse 3T3-L1 fibroblasts were differentiated under exposure to RA-modulating chemicals and subsequently stained with ORO and analyzed for gene expression by qRT-PCR. ECS activation and RA exposure increased lipid abundance and the expression of lipoprotein lipase. In addition, RA treatment increased expression of CCAAT/enhancer-binding protein alpha. Both ECS receptors and RA receptor subtypes were separately involved in modulating lipid abundance. Finally, increased ECS or RA activity ameliorated the reduced lipid abundance caused by peroxisome proliferator-activated receptor gamma (PPARγ) inhibition. Therefore, the ECS and RA pathway influence lipid abundance in zebrafish embryos and have an additive effect when treated simultaneously. Furthermore, we demonstrated that these pathways act downstream or independently of PPARγ to influence lipid levels. Our study shows for the first time that the RA and ECS pathways have additive function in lipid abundance during vertebrate development.
Collapse
MESH Headings
- 3T3-L1 Cells
- Adipogenesis/drug effects
- Animals
- Azo Compounds/chemistry
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Endocannabinoids/metabolism
- Endocannabinoids/pharmacology
- Gene Expression Regulation, Developmental
- In Situ Hybridization
- Lipid Metabolism/genetics
- Lipids/analysis
- Mice
- PPAR gamma/genetics
- PPAR gamma/metabolism
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Staining and Labeling/methods
- Tretinoin/metabolism
- Tretinoin/pharmacology
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Daniel Fraher
- Metabolic Research Unit, Deakin University School of Medicine, Geelong 3217, Australia
| | - Megan K Ellis
- Metabolic Research Unit, Deakin University School of Medicine, Geelong 3217, Australia
| | - Shona Morrison
- Metabolic Research Unit, Deakin University School of Medicine, Geelong 3217, Australia
| | - Sean L McGee
- Metabolic Research Unit, Deakin University School of Medicine, Geelong 3217, Australia
| | - Alister C Ward
- Metabolic Research Unit, Deakin University School of Medicine, Geelong 3217, Australia
| | - Ken Walder
- Metabolic Research Unit, Deakin University School of Medicine, Geelong 3217, Australia
| | - Yann Gibert
- Metabolic Research Unit, Deakin University School of Medicine, Geelong 3217, Australia
| |
Collapse
|
44
|
Mukhopadhyay B, Schuebel K, Mukhopadhyay P, Cinar R, Godlewski G, Xiong K, Mackie K, Lizak M, Yuan Q, Goldman D, Kunos G. Cannabinoid receptor 1 promotes hepatocellular carcinoma initiation and progression through multiple mechanisms. Hepatology 2015; 61:1615-26. [PMID: 25580584 PMCID: PMC4406817 DOI: 10.1002/hep.27686] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/25/2014] [Indexed: 01/09/2023]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) has high mortality and no adequate treatment. Endocannabinoids interact with hepatic cannabinoid 1 receptors (CB1Rs) to promote hepatocyte proliferation in liver regeneration by inducing cell cycle proteins involved in mitotic progression, including Forkhead Box M1. Because this protein is highly expressed in HCC and contributes to its genesis and progression, we analyzed the involvement of the endocannabinoid/CB1R system in murine and human HCC. Postnatal diethylnitrosamine treatment induced HCC within 8 months in wild-type mice but fewer and smaller tumors in CB1R(-/-) mice or in wild-type mice treated with the peripheral CB1R antagonist JD5037, as monitored in vivo by serial magnetic resonance imaging. Genome-wide transcriptome analysis revealed CB1R-dependent, tumor-induced up-regulation of the hepatic expression of CB1R, its endogenous ligand anandamide, and a number of tumor-promoting genes, including the GRB2 interactome as well as Forkhead Box M1 and its downstream target, the tryptophan-catalyzing enzyme indoleamine 2,3-dioxygenase. Increased indoleamine 2,3-dioxygenase activity and consequent induction of immunosuppressive T-regulatory cells in tumor tissue promote immune tolerance. CONCLUSION The endocannabinoid/CB1R system is up-regulated in chemically induced HCC, resulting in the induction of various tumor-promoting genes, including indoleamine 2,3-dioxygenase; and attenuation of these changes by blockade or genetic ablation of CB1R suppresses the growth of HCC and highlights the therapeutic potential of peripheral CB1R blockade.
Collapse
Affiliation(s)
- Bani Mukhopadhyay
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Kornel Schuebel
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Partha Mukhopadhyay
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Keming Xiong
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Ken Mackie
- Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana 47405, USA
| | - Martin Lizak
- In Vivo NMR Center, National Institute on Neurological Diseases and Stroke, NIH, Bethesda, MD 20892, USA
| | - Qiaoping Yuan
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
45
|
Cooper ME, Regnell SE. The hepatic cannabinoid 1 receptor as a modulator of hepatic energy state and food intake. Br J Clin Pharmacol 2015; 77:21-30. [PMID: 23452341 DOI: 10.1111/bcp.12102] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 02/12/2013] [Indexed: 12/11/2022] Open
Abstract
The cannabinoid 1 receptor (CB1R) has a well-established role in appetite regulation. Central CB1R antagonists, notably rimonabant, induced weight loss and improved the metabolic profile in obese individuals, but were discontinued due to psychiatric side-effects. The CB1R is also expressed peripherally, where its effects include promotion of liver fat accumulation, which consumes ATP. Type 2 diabetes in obese subjects is linked to excess liver fat, whilst there is a negative correlation between hepatic ATP content and insulin resistance. A decreased hepatic ATP/AMP ratio increases food intake by signals via the vagus nerve to the brain. The hepatic cannabinoid system is highly upregulated in obesity, and the effects of hepatic CB1R activation include increased activity of lipogenic and gluconeogenic transcription factors. Thus, blockade of hepatic CB1Rs could contribute significantly to the weight-reducing and insulin-sensitizing effects of CB1R antagonists. Additionally, upregulation of the hepatic CB1R may contribute to chronic liver inflammation, fibrosis and cirrhosis from causes including obesity, alcoholism and viral hepatitis. Peripheral CB1R antagonists induce weight loss and metabolic improvements in obese rodents; however, as there is evidence that hepatic CB1Rs are predominately intracellular, due to high intrinsic clearance, many drugs may not effectively block these receptors and therefore have limited efficacy. Hepatoselective CB1R antagonists may be effective at reducing hepatic steatosis, insulin resistance and bodyweight in obese, diabetic patients, with far fewer side-effects than first-generation CB1R antagonists. Additionally, such compounds may be effective in treating inflammatory liver disease, such as non-alcoholic steatohepatitis, reducing the likelihood of disease progression to cirrhosis or cancer.
Collapse
|
46
|
Caltana LR, Heimrich B, Brusco A. Further Evidence for the Neuroplastic Role of Cannabinoids: A Study in Organotypic Hippocampal Slice Cultures. J Mol Neurosci 2015; 56:773-781. [PMID: 25645684 DOI: 10.1007/s12031-015-0499-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/15/2015] [Indexed: 12/20/2022]
Abstract
Endocannabinoid receptors CB1R and CB2R are present in the CNS and modulate synaptic activity. By using an in vitro model, two concentrations of CB1R agonist ACEA at 0.5 and 5 μM doses and CB1R antagonist AM251 at 1 and 10 μM doses were administered in organotypic slice cultures of mouse hippocampus, and their effects on neurons and glial cells were analyzed at different time points. Exposure to low concentrations of ACEA (0.5 μM) did not seem to affect tissue organization, neuronal morphology, or glial response. In contrast, at a higher concentration of ACEA, many neurons in the dentate gyrus exhibited strong caspase-3 immunoreactivity. After treatment with AM251, we observed an increase in caspase-3 immunoreactivity and a downregulation of CB1R expression. Results show that long-term hippocampal slice cultures respond to both CB1R activation and inactivation by changing neuronal protein expression patterns. In the present study, we demonstrate that CB1R agonist ACEA promotes alterations in the neuronal cytoskeleton as well as changes in CB1R expression in organotypic hippocampal slice cultures, and that CB1R antagonist AM251 promotes neuronal death and astroglial reaction.
Collapse
Affiliation(s)
- Laura Romina Caltana
- Institute of Anatomy and Cell Biology, Center for Neuroscience, University of Freiburg, Freiburg, Germany. .,Cell Biology and Neuroscience Institute, School of Medicine, University of Buenos Aires, Paraguay 2155, 3rd floor, Buenos Aires, 1114, Argentina.
| | - Bernd Heimrich
- Institute of Anatomy and Cell Biology, Center for Neuroscience, University of Freiburg, Freiburg, Germany
| | - Alicia Brusco
- Cell Biology and Neuroscience Institute, School of Medicine, University of Buenos Aires, Paraguay 2155, 3rd floor, Buenos Aires, 1114, Argentina
| |
Collapse
|
47
|
Jourdan T, Szanda G, Rosenberg AZ, Tam J, Earley BJ, Godlewski G, Cinar R, Liu Z, Liu J, Ju C, Pacher P, Kunos G. Overactive cannabinoid 1 receptor in podocytes drives type 2 diabetic nephropathy. Proc Natl Acad Sci U S A 2014; 111:E5420-E5428. [PMID: 25422468 PMCID: PMC4273328 DOI: 10.1073/pnas.1419901111] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Diabetic nephropathy is a major cause of end-stage kidney disease, and overactivity of the endocannabinoid/cannabinoid 1 receptor (CB1R) system contributes to diabetes and its complications. Zucker diabetic fatty (ZDF) rats develop type 2 diabetic nephropathy with albuminuria, reduced glomerular filtration, activation of the renin-angiotensin system (RAS), oxidative/nitrative stress, podocyte loss, and increased CB1R expression in glomeruli. Peripheral CB1R blockade initiated in the prediabetic stage prevented these changes or reversed them when animals with fully developed diabetic nephropathy were treated. Treatment of diabetic ZDF rats with losartan, an angiotensin II receptor-1 (Agtr1) antagonist, attenuated the development of nephropathy and down-regulated renal cortical CB1R expression, without affecting the marked hyperglycemia. In cultured human podocytes, CB1R and desmin gene expression were increased and podocin and nephrin content were decreased by either the CB1R agonist arachydonoyl-2'-chloroethylamide, angiotensin II, or high glucose, and the effects of all three were antagonized by CB1R blockade or siRNA-mediated knockdown of CNR1 (the cannabinoid type 1 receptor gene). We conclude that increased CB1R signaling in podocytes contributes to the development of diabetic nephropathy and represents a common pathway through which both hyperglycemia and increased RAS activity exert their deleterious effects, highlighting the therapeutic potential of peripheral CB1R blockade.
Collapse
MESH Headings
- Analysis of Variance
- Angiotensin II/pharmacology
- Animals
- Arachidonic Acids/pharmacology
- Desmin/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/metabolism
- Gene Expression Regulation/drug effects
- Losartan/pharmacology
- Models, Biological
- Podocytes/metabolism
- Pyrazoles/chemical synthesis
- Pyrazoles/pharmacology
- RNA Interference
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- Rats
- Rats, Zucker
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Sulfonamides/chemical synthesis
- Sulfonamides/pharmacology
Collapse
Affiliation(s)
- Tony Jourdan
- Laboratory of Physiologic Studies, Section on Neuroendocrinology, and
| | - Gergő Szanda
- Laboratory of Physiologic Studies, Section on Neuroendocrinology, and
| | - Avi Z Rosenberg
- Kidney Diseases Section, National Institute on Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; The Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Joseph Tam
- Laboratory of Physiologic Studies, Section on Neuroendocrinology, and
| | | | | | - Resat Cinar
- Laboratory of Physiologic Studies, Section on Neuroendocrinology, and
| | - Ziyi Liu
- Laboratory of Physiologic Studies, Section on Neuroendocrinology, and
| | - Jie Liu
- Laboratory of Physiologic Studies, Section on Neuroendocrinology, and
| | - Cynthia Ju
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Pál Pacher
- Section on Oxidative Stress and Tissue Injury, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism
| | - George Kunos
- Laboratory of Physiologic Studies, Section on Neuroendocrinology, and
| |
Collapse
|
48
|
Deficiency of formyl peptide receptor 1 and 2 is associated with increased inflammation and enhanced liver injury after LPS-stimulation. PLoS One 2014; 9:e100522. [PMID: 24956481 PMCID: PMC4067326 DOI: 10.1371/journal.pone.0100522] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 05/28/2014] [Indexed: 12/30/2022] Open
Abstract
Introduction Formyl peptide-receptor 1 and 2 (FPR1 and FPR2) in mice were identified as receptors with contrary affinity for the PAMP fMLF. Formyl-methionyl-leucyl-phenylalanine is either part of the bacterial membrane and is secreted by the mitochondria of eukaryotic ceslls during apoptosis. Furthermore FPR1 and 2 are described as highly relevant factors for the chemotaxis of immune cells. Their role during the acute liver injury has not been investigated yet. Materials and Methods Constitutive knockout mice for FPR1 (mFPR1-/-), FPR2 (mFPR2-/-) and wild type (WT) mice were challenged with LPS i.p. for 3 h and 6 h. Liver and serum were sampled for further analysis. Results Liver transaminases were elevated in all mice 3 h and 6 h post LPS stimulation. Gene expression analysis displayed a reduced expression of the pro-inflammatory cytokines IL-6 and CXCL1 after 3 h in the mFPR1-/- compared to wild type and mFPR2-/- mice. After 6 h, IL-6, TNF-α and CXCL1 were significantly higher in mice lacking mFPR1 or 2. Consistent to these findings the numbers of CD11b+ and Ly6G+ immune cells were altered in the livers. The analysis of TLR2 and TLR4 revealed time and genotype specific changes in theirs gene expression. Additionally, the liver in mFPR1- and mFPR2-deficient mice seem to be more susceptible to apoptosis by showing a significant higher number of TUNEL+-cells in the liver than WT-mice and displayed less Ki67-positive nuclei in the liver. Conclusion The results suggest a prominent role of FPRs in the regulation of the hepatic inflammatory response after LPS induced liver injury. Deletion of mFPR1 or mFPR2 leads to deregulation of the inflammatory response compared to WT mice, associated with more severe liver injury represented by higher levels of transaminases, apoptotic cells and a reduced regenerative capacity.
Collapse
|
49
|
Jing XY, Yang XF, Qing K, Ou-yang Y. Roles of the lipid metabolism in hepatic stellate cells activation △. ACTA ACUST UNITED AC 2014; 28:233-6. [PMID: 24382226 DOI: 10.1016/s1001-9294(14)60008-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The lipids present in hepatic stellate cells (HSCs) lipid droplets include retinyl ester, triglyceride, cholesteryl ester, cholesterol, phospholipids and free fatty acids. Activation of HSCs is crucial to the development of fibrosis in liver disease. During activation, HSCs transform into myofibroblasts with concomitant loss of their lipid droplets and production of excessive extracellular matrix. Release of lipid droplets containing retinyl esters and triglyceride is a defining feature of activated HSCs. Accumulating evidence supports the proposal that recovering the accumulation of lipids would inhibit the activation of HSCs. In healthy liver, quiescent HSCs store 80% of total liver retinols and release them depending on the extracellular retinol status. However, in injured liver activated HSCs lose their retinols and produce a considerable amount of extracellular matrix, subsequently leading to liver fibrosis. Further findings prove that lipid metabolism of HSCs is closely associated with its activation, yet relationship between activated HSCs and the lipid metabolism has remained mysterious.
Collapse
Affiliation(s)
- Xin-yan Jing
- Department of Gastroenterology, Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421000, China
| | - Xue-feng Yang
- Department of Gastroenterology, Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421000, China
| | - Kai Qing
- Department of Hematology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Yan Ou-yang
- Department of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| |
Collapse
|
50
|
Xin H, Wang K, Hu G, Xie F, Ouyang K, Tang X, Wang M, Wen D, Zhu Y, Qin X. Establishment and characterization of 7 novel hepatocellular carcinoma cell lines from patient-derived tumor xenografts. PLoS One 2014; 9:e85308. [PMID: 24416385 PMCID: PMC3887059 DOI: 10.1371/journal.pone.0085308] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/25/2013] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cancer with poor prognosis worldwide and the molecular mechanism is not well understood. This study aimed to establish a collection of human HCC cell lines from patient-derived xenograft (PDX) models. From the 20 surgical HCC sample collections, 7 tumors were successfully developed in immunodeficient mice and further established 7 novel HCC cell lines (LIXC002, LIXC003, LIXC004, LIXC006, LIXC011, LIXC012 and CPL0903) by primary culture. The characterization of cell lines was defined by morphology, growth kinetics, cell cycle, chromosome analysis, short tandem repeat (STR) analysis, molecular profile, and tumorigenicity. Additionally, response to clinical chemotherapeutics was validated both in vitro and in vivo. STR analysis indicated that all cell lines were unique cells different from known cell lines and free of contamination by bacteria or mycoplasma. The other findings were quite heterogeneous between individual lines. Chromosome aberration could be found in all cell lines. Alpha-fetoprotein was overexpressed only in 3 out of 7 cell lines. 4 cell lines expressed high level of vimentin. Ki67 was strongly stained in all cell lines. mRNA level of retinoic acid induced protein 3 (RAI3) was decreased in all cell lines. The 7 novel cell lines showed variable sensitivity to 8 tested compounds. LIXC011 and CPL0903 possessed multiple drug resistance property. Sorafenib inhibited xenograft tumor growth of LIXC006, but not of LIXC012. Our results indicated that the 7 novel cell lines with low passage maintaining their clinical and pathological characters could be good tools for further exploring the molecular mechanism of HCC and anti-cancer drug screening.
Collapse
Affiliation(s)
- Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Ke Wang
- Shanghai ChemPartner Co., LTD, Shanghai, China
| | - Gang Hu
- Shanghai ChemPartner Co., LTD, Shanghai, China
| | - Fubo Xie
- Shanghai ChemPartner Co., LTD, Shanghai, China
| | | | - Xuzhen Tang
- Shanghai ChemPartner Co., LTD, Shanghai, China
| | - Minjun Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Danyi Wen
- Shanghai ChemPartner Co., LTD, Shanghai, China
| | - Yizhun Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoran Qin
- Shanghai ChemPartner Co., LTD, Shanghai, China
| |
Collapse
|