1
|
Ebrahimi R, Mohammadpour A, Medoro A, Davinelli S, Saso L, Miroliaei M. Exploring the links between polyphenols, Nrf2, and diabetes: A review. Biomed Pharmacother 2025; 186:118020. [PMID: 40168723 DOI: 10.1016/j.biopha.2025.118020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025] Open
Abstract
Diabetes mellitus, a complex metabolic disorder, is marked by chronic hyperglycemia that drives oxidative stress and inflammation, leading to complications such as neuropathy, retinopathy, and cardiovascular disease. The Nrf2 pathway, a key regulator of cellular antioxidant defenses, plays a vital role in mitigating oxidative damage and maintaining glucose homeostasis. Dysfunction of Nrf2 has been implicated in the progression of diabetes and its related complications. Polyphenols, a class of plant-derived bioactive compounds, have shown potential in modulating the Nrf2 pathway. Numerous compounds have been found to activate Nrf2 through mechanisms including Keap1 interaction, transcriptional regulation, and epigenetic modification. Preclinical studies indicate their ability to reduce reactive oxygen species (ROS), improve insulin sensitivity, and attenuate inflammation in diabetic models. Clinical trials with certain polyphenols, such as resveratrol, have demonstrated improvements in glycemic parameters, though results remain inconsistent. While polyphenols show promise as a component of non-pharmacological approaches to diabetes management, challenges such as bioavailability, individual variability in response, and limited clinical evidence highlight the need for further investigation. Continued research could enhance understanding of their mechanisms and improve their practical application in mitigating diabetes-related complications.
Collapse
Affiliation(s)
- Reza Ebrahimi
- Faculty of Biological Science and Technology, Department of Cell and Molecular Biology & Microbiology, University of Isfahan, Isfahan, Iran
| | - Alireza Mohammadpour
- Faculty of Biological Science and Technology, Department of Cell and Molecular Biology & Microbiology, University of Isfahan, Isfahan, Iran
| | - Alessandro Medoro
- Department of Medicine and Health Sciences "V.Tiberio", University of Molise, Campobasso 86110, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V.Tiberio", University of Molise, Campobasso 86110, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome 00161, Italy.
| | - Mehran Miroliaei
- Faculty of Biological Science and Technology, Department of Cell and Molecular Biology & Microbiology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
2
|
Chen C, Wang X, Zhao Y, Duan X, Hu Y, Lv Z, He Q, Yangyang Z, Wu G, Luo H, Zuo Q, Hao X, Zhao Y, Ding X, Zhang F. Exosomes inhibit ferroptosis to alleviate intervertebral disc degeneration via the p62-KEAP1-NRF2 pathway. Free Radic Biol Med 2025; 232:171-184. [PMID: 39986487 DOI: 10.1016/j.freeradbiomed.2025.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Ferroptosis, an iron-dependent form of regulated cell death, has been reported to affect the activity of nucleus pulposus (NP) cells in the intervertebral disc (IVD), thereby contributing to intervertebral disc degeneration (IVDD). Exosomes (EXOs), extracellular nanovesicles that participate in intercellular communication, are potential therapeutic options for IVDD. Interestingly, while EXOs play an important role in inhibiting ferroptosis, whether EXOs from mesenchymal stem cells (MSCs) modulate the progression of IVDD through regulating ferroptosis is unclear. To reveal the role of ferroptosis in IVDD, IVD tissues with varying degrees of degeneration were collected and abnormal expression of ferroptosis markers was detected. Ferroptotic death was observed in TBHP-induced NP cell death in vitro, which can be specifically inhibited by the ferroptosis inhibitors DFO and Fer-1. Interestingly, MSC-derived EXOs alleviated TBHP-induced or RSL3-induced ferroptosis and rescued NP cell degeneration. Mechanistically, either an NRF2 inhibitor or p62 knockdown dampened the inhibitory effects of EXOs on ferroptosis, suggesting that EXOs attenuated oxidative stress-induced ferroptosis in NP cells by regulating the p62/KEAP1/NRF2 axis. Moreover, EXOs effectively alleviated IVDD in an in vivo rat model. The current study revealed that ferroptosis is associated with the development of IVDD. MSC-derived EXOs slowed IVDD progression by inhibiting NP cell ferroptosis through the p62/KEAP1/NRF2 signaling pathway, suggesting that EXOs are a potential therapeutic option for IVDD.
Collapse
Affiliation(s)
- Chao Chen
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China; State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China
| | - Xuenan Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China; State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China
| | - Yueqin Zhao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xianle Duan
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yaoquan Hu
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China
| | - Zhengpin Lv
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China
| | - Qicong He
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China
| | - Zijiu Yangyang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China; State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China
| | - Guishuai Wu
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China
| | - Haoyan Luo
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China
| | - Qianlin Zuo
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China
| | - Xiaojiang Hao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China; Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Yuhan Zhao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China.
| | - Xiao Ding
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China; Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Fan Zhang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China.
| |
Collapse
|
3
|
Zhang S, Huang F, Wang J, You R, Huang Q, Chen Y. SQSTM1/p62 predicts prognosis and upregulates the transcription of CCND1 to promote proliferation in mantle cell lymphoma. PROTOPLASMA 2025; 262:635-647. [PMID: 39786615 DOI: 10.1007/s00709-024-02023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
Mantle cell lymphoma (MCL) is a rare, highly invasive non-Hodgkin's lymphoma. The main pathogenesis of MCL is associated with the formation of the IgH/CCND1 fusion gene and nuclear overexpression of cyclin D1, which accelerates the cell cycle, leading to tumorigenesis. The prognosis with current standard chemotherapy is still unsatisfactory. SQSTM1/p62 is a multifunctional adaptor that plays an important role in various tumors. Here, we found that the expression of p62 in MCL tissues was higher than that in hyperplastic lymphadenitis patients. Patients with low p62 expression in MCL cells had better overall survival and progression-free survival rates than those with high expression (p = 0.024 and p = 0.025, respectively). Multivariate Cox analysis indicated that the calculated death risk (hazard ratio [HR]) in patients with high expression levels of p62 increased to 2.742 (95% confidence interval (CI) of 1.268-5.852, p = 0.01), which was higher than those with low levels. Silencing p62 impaired Jeko-1 and Granta519 cell proliferation while downregulating CCND1 mRNA and protein expression, thereby inducing G0/G1 cell cycle arrest. However, silencing p62 does not affect the fusion of IgH and CCND1. Luciferase reporter gene analysis and chromatin immunoprecipitation analysis demonstrated that p62 may regulate CCND1 gene expression through Nrf2. These results provide evidence that p62 can predict poor prognosis in MCL. The precise targeting of p62 therapy reduces the promoting effect of Nrf2 on CCND1, thereby preventing cell cycle progression and effectively inhibiting tumor proliferation. Therefore, p62 may provide a potential target for MCL.
Collapse
Affiliation(s)
- Shuxia Zhang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Feichao Huang
- Minimally Invasive Surgery, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China
| | - Jin Wang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Ruolan You
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Qiqi Huang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yuanzhong Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
4
|
Tamura T, Nagai S, Masuda K, Imaeda K, Sugihara E, Yamasaki J, Kawaida M, Otsuki Y, Suina K, Nobusue H, Akahane T, Chiyoda T, Kisu I, Kobayashi Y, Banno K, Sakurada K, Okita H, Yamaguchi R, Ahmed AA, Yamagami W, Saya H, Aoki D, Nagano O. mTOR-mediated p62/SQSTM1 stabilization confers a robust survival mechanism for ovarian cancer. Cancer Lett 2025; 616:217565. [PMID: 39971122 DOI: 10.1016/j.canlet.2025.217565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Over 50 % of patients with high-grade serous carcinoma (HGSC) are homologous recombination proficient, making them refractory to platinum-based drugs and poly (ADP-ribose) polymerase (PARP) inhibitors. These patients often develop progressive resistance within 6 months after primary treatment and tend to die early, thus new therapies are urgently needed. In this study, we comprehensively investigated this tumor type by leveraging a combination of machine learning analysis of a large published dataset and newly developed genetically engineered HGSC organoid models from murine fallopian tubes. Aberrant activation of RAS/PI3K signaling was a signature of poor prognosis in BRCA1/2 wild-type ovarian cancer, and mTOR-induced elevated p62 expression was a robust marker of chemotherapy-induced mTOR-p62-NRF2 signal activation. mTOR inhibition with everolimus decreased p62 and enhanced sensitivity to conventional chemotherapy, indicating that p62 serves as an important biomarker for therapeutic intervention. Combination therapy with conventional chemotherapy and mTOR inhibitors is a promising therapeutic strategy for refractory HGSC, with p62 as a biomarker.
Collapse
Affiliation(s)
- Tomohiro Tamura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan; Department of Extended Intelligence for Medicine, The Ishii-Ishibashi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Shimpei Nagai
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Kenta Masuda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan.
| | - Keiyo Imaeda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Eiji Sugihara
- Division of Gene Regulation, Oncology Innovation Center, Fujita Health University, Toyoake, Japan
| | - Juntaro Yamasaki
- Division of Gene Regulation, Oncology Innovation Center, Fujita Health University, Toyoake, Japan
| | - Miho Kawaida
- Division of Diagnostic Pathology, Keio University Hospital, Tokyo, Japan
| | - Yuji Otsuki
- Division of Gene Regulation, Oncology Innovation Center, Fujita Health University, Toyoake, Japan
| | - Kentaro Suina
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA; Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroyuki Nobusue
- Division of Gene Regulation, Oncology Innovation Center, Fujita Health University, Toyoake, Japan
| | - Tomoko Akahane
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuyuki Chiyoda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Iori Kisu
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Yusuke Kobayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Kouji Banno
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuhiro Sakurada
- Department of Extended Intelligence for Medicine, The Ishii-Ishibashi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Hajime Okita
- Division of Diagnostic Pathology, Keio University Hospital, Tokyo, Japan
| | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Japan; Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ahmed Ashour Ahmed
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, OX3 9DU, UK; Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford, OX3 7LE, UK; Oxford NIHR Biomedical Research Centre, Oxford, OX4 2PG, UK
| | - Wataru Yamagami
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Oncology Innovation Center, Fujita Health University, Toyoake, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Osamu Nagano
- Division of Gene Regulation, Oncology Innovation Center, Fujita Health University, Toyoake, Japan
| |
Collapse
|
5
|
Liu X, Zheng Z, Xue C, Wang X, Li J, Liu Z, Xin W, Xu X, Zhou D, Yao L, Lu G. LRRK2 Mediates α-Synuclein-Induced Neuroinflammation and Ferroptosis through the p62-Keap1-Nrf2 Pathway in Parkinson's Disease. Inflammation 2025:10.1007/s10753-025-02291-8. [PMID: 40169487 DOI: 10.1007/s10753-025-02291-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/23/2025] [Accepted: 03/06/2025] [Indexed: 04/03/2025]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder worldwide, characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta and the abnormal aggregation of α-synuclein (α-syn). Despite extensive research, the mechanisms underlying microglial-mediated neuroinflammation and ferroptosis in PD remain inadequately understood. In particular, the role of leucine-rich repeat kinase 2 (LRRK2) in microglial cells and its modulation of the p62-Keap1-Nrf2 signaling pathway warrant further investigation.In this study, we present novel findings demonstrating that LRRK2 regulates microglial neuroinflammation and ferroptosis through the p62-Keap1-Nrf2 signaling axis in the context of PD. Using α-syn-stimulated BV2 microglial cells, we found that LRRK2 inhibition significantly reduced the production of pro-inflammatory cytokines and enhanced the activation of the p62-Keap1-Nrf2 pathway, thereby mitigating ferroptosis and oxidative stress. Furthermore, conditioned medium from LRRK2-inhibited microglia conferred neuroprotective effects on cultured neurons, highlighting the therapeutic potential of targeting LRRK2 in microglia.Importantly, these in vitro findings were corroborated in the MPTP-induced PD mouse model, where LRRK2 inhibition led to diminished microglial activation, decreased apoptosis of midbrain dopaminergic neurons, and upregulation of the p62-Keap1-Nrf2 pathway.Our study fills a critical gap in understanding the microglial mechanisms mediated by LRRK2 and provides novel insights into the pathogenesis of PD. These findings suggest that targeting LRRK2 in microglia may represent a promising therapeutic strategy for PD.
Collapse
Affiliation(s)
- Xinjie Liu
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zijian Zheng
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Cheng Xue
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xiangrong Wang
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jianwei Li
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zheng Liu
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wenqiang Xin
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xinping Xu
- Jiangxi Institute of Respiratory Disease, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Dongwei Zhou
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Longping Yao
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- Department of Neuroanatomy, Group for Regeneration and Reprogramming, Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, Heidelberg, Germany.
| | - Guohui Lu
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
6
|
Wu X, Zhang Z, Li J, Zong J, Yuan L, Shu L, Cheong LY, Huang X, Jiang M, Ping Z, Xu A, Hoo RL. Chchd10: A Novel Metabolic Sensor Modulating Adipose Tissue Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408763. [PMID: 39985288 PMCID: PMC12005791 DOI: 10.1002/advs.202408763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/30/2024] [Indexed: 02/24/2025]
Abstract
Dysregulation of adipose tissue (AT) homeostasis in obesity contributes to metabolic stress and disorders. Here, we identified that Coiled-coil-helix-coiled-coil-helix domain containing 10 (Chchd10) is a novel regulator of AT remodeling upon excess energy intake. Chchd10 is significantly reduced in the white adipose tissue (WAT) of mice in response to high-fat diet (HFD) feeding. AT-Chchd10 deficiency accelerates adipogenesis predominantly in subcutaneous AT of mice to store excess energy in response to short-term HFD feeding while upregulates glutathione S-transferase A4 (GSTA4) to facilitate 4-HNE clearance mainly in visceral AT to prevent protein carbonylation-induced cell dysfunction after long-term HFD feeding. Hence, Chchd10 deficiency attenuates diet-induced obesity and related metabolic disorders in mice. Mechanistically, Chchd10 deficiency enhances adipogenesis and GSTA4 expression by activating TDP43/Raptor/p62/Keap1/NRF2 axis. Notably, the beneficial effect of Chchd10 deficiency is eliminated in hypertrophic adipocytes, where p62 is strikingly reduced. Collectively, Chchd10 is a metabolic sensor maintaining AT homeostasis, and the loss of p62 in adipose tissue under obese conditions impairs Chchd10-mediated AT remodeling.
Collapse
Affiliation(s)
- Xiaoping Wu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Zixuan Zhang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Jingjing Li
- Department of Rehabilitation SciencesFaculty of Health and Social SciencesHong Kong Polytechnic UniversityHong Kong SARChina
| | - Jiuyu Zong
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Lufengzi Yuan
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Lingling Shu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerDepartment of Hematological OncologySun Yat‐sen University Cancer CenterChina
- Department of MedicineThe University of Hong KongHong Kong SARChina
| | - Lai Yee Cheong
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of MedicineThe University of Hong KongHong Kong SARChina
| | - Xiaowen Huang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Mengxue Jiang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Zhihui Ping
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of MedicineThe University of Hong KongHong Kong SARChina
| | - Ruby L.C. Hoo
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| |
Collapse
|
7
|
Cuadrado A, Cazalla E, Bach A, Bathish B, Naidu SD, DeNicola GM, Dinkova-Kostova AT, Fernández-Ginés R, Grochot-Przeczek A, Hayes JD, Kensler TW, León R, Liby KT, López MG, Manda G, Shivakumar AK, Hakomäki H, Moerland JA, Motohashi H, Rojo AI, Sykiotis GP, Taguchi K, Valverde ÁM, Yamamoto M, Levonen AL. Health position paper and redox perspectives - Bench to bedside transition for pharmacological regulation of NRF2 in noncommunicable diseases. Redox Biol 2025; 81:103569. [PMID: 40059038 PMCID: PMC11970334 DOI: 10.1016/j.redox.2025.103569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a redox-activated transcription factor regulating cellular defense against oxidative stress, thereby playing a pivotal role in maintaining cellular homeostasis. Its dysregulation is implicated in the progression of a wide array of human diseases, making NRF2 a compelling target for therapeutic interventions. However, challenges persist in drug discovery and safe targeting of NRF2, as unresolved questions remain especially regarding its context-specific role in diseases and off-target effects. This comprehensive review discusses the dualistic role of NRF2 in disease pathophysiology, covering its protective and/or destructive roles in autoimmune, respiratory, cardiovascular, and metabolic diseases, as well as diseases of the digestive system and cancer. Additionally, we also review the development of drugs that either activate or inhibit NRF2, discuss main barriers in translating NRF2-based therapies from bench to bedside, and consider the ways to monitor NRF2 activation in vivo.
Collapse
Affiliation(s)
- Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Eduardo Cazalla
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Boushra Bathish
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Gina M DeNicola
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Raquel Fernández-Ginés
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Thomas W Kensler
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), 28007, Madrid, Spain
| | - Karen T Liby
- Indiana University School of Medicine, Department of Medicine, W. Walnut Street, Indianapolis, IN, 46202, USA
| | - Manuela G López
- Department of Pharmacology, School of Medicine, Universidad Autónoma Madrid, Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de La Princesa, Madrid, Spain; Instituto Teófilo Hernando, Madrid, Spain
| | - Gina Manda
- Radiobiology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | | | - Henriikka Hakomäki
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jessica A Moerland
- Indiana University School of Medicine, Department of Medicine, W. Walnut Street, Indianapolis, IN, 46202, USA
| | - Hozumi Motohashi
- Department of Medical Biochemistry, Graduate School of Medicine Tohoku University, Sendai, Japan; Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Keiko Taguchi
- Laboratory of Food Chemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan; Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas "Sols-Morreale" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
8
|
El-Mahrouk SR, El-Ghiaty MA, El-Kadi AOS. The role of nuclear factor erythroid 2-related factor 2 (NRF2) in arsenic toxicity. J Environ Sci (China) 2025; 150:632-644. [PMID: 39306435 DOI: 10.1016/j.jes.2024.02.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 09/25/2024]
Abstract
Arsenic, a naturally occurring toxic element, manifests in various chemical forms and is widespread in the environment. Exposure to arsenic is a well-established risk factor for an elevated incidence of various cancers and chronic diseases. The crux of arsenic-mediated toxicity lies in its ability to induce oxidative stress, characterized by an unsettling imbalance between oxidants and antioxidants, accompanied by the rampant generation of reactive oxygen species and free radicals. In response to this oxidative turmoil, cells deploy their defense mechanisms, prominently featuring the redox-sensitive transcription factor known as nuclear factor erythroid 2-related factor 2 (NRF2). NRF2 stands as a primary guardian against the oxidative harm wrought by arsenic. When oxidative stress activates NRF2, it orchestrates a symphony of downstream antioxidant genes, leading to the activation of pivotal antioxidant enzymes like glutathione-S-transferase, heme oxygenase-1, and NAD(P)H: quinone oxidoreductase 1. This comprehensive review embarks on the intricate and diverse ways by which various arsenicals influence the NRF2 antioxidant pathway and its downstream targets, shedding light on their roles in defending against arsenic exposure toxic effects. It offers valuable insights into targeting NRF2 as a strategy for safeguarding against or treating the harmful and carcinogenic consequences of arsenic exposure.
Collapse
Affiliation(s)
- Sara R El-Mahrouk
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; Faculty of Pharmacy, Tanta University, Tanta, Gharbia, Egypt
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.
| |
Collapse
|
9
|
Skawratananond S, Xiong DX, Zhang C, Tonk S, Pinili A, Delacruz B, Pham P, Smith SC, Navab R, Reddy PH. Mitophagy in Alzheimer's disease and other metabolic disorders: A focus on mitochondrial-targeted therapeutics. Ageing Res Rev 2025; 108:102732. [PMID: 40122398 DOI: 10.1016/j.arr.2025.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/19/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Mitochondria, as central regulators of cellular processes such as energy production, apoptosis, and metabolic homeostasis, are essential to cellular function and health. The maintenance of mitochondrial integrity, especially through mitophagy-the selective removal of impaired mitochondria-is crucial for cellular homeostasis. Dysregulation of mitochondrial function, dynamics, and biogenesis is linked to neurodegenerative and metabolic diseases, notably Alzheimer's disease (AD), which is increasingly recognized as a metabolic disorder due to its shared pathophysiologic features: insulin resistance, oxidative stress, and chronic inflammation. In this review, we highlight recent advancements in pharmacological interventions, focusing on agents that modulate mitophagy, mitochondrial uncouplers that reduce oxidative phosphorylation, compounds that directly scavenge reactive oxygen species to alleviate oxidative stress, and molecules that ameliorate amyloid beta plaque accumulation and phosphorylated tau pathology. Additionally, we explore dietary and lifestyle interventions-MIND and ketogenic diets, caloric restriction, physical activity, hormone modulation, and stress management-that complement pharmacological approaches and support mitochondrial health. Our review underscores mitochondria's central role in the pathogenesis and potential treatment of neurodegenerative and metabolic diseases, particularly AD. By advocating for an integrated therapeutic model that combines pharmacological and lifestyle interventions, we propose a comprehensive approach aimed at mitigating mitochondrial dysfunction and improving clinical outcomes in these complex, interrelated diseases.
Collapse
Affiliation(s)
- Shadt Skawratananond
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Daniel X Xiong
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States.
| | - Charlie Zhang
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Sahil Tonk
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Aljon Pinili
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Brad Delacruz
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Patrick Pham
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Shane C Smith
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Rahul Navab
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Internal Medicine, PES Institute of Medical Sciences and Research, Kuppam, India.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, United States; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
10
|
Zhang DD. Thirty years of NRF2: advances and therapeutic challenges. Nat Rev Drug Discov 2025:10.1038/s41573-025-01145-0. [PMID: 40038406 DOI: 10.1038/s41573-025-01145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2025] [Indexed: 03/06/2025]
Abstract
Over the last 30 years, NRF2 has evolved from being recognized as a transcription factor primarily involved in redox balance and detoxification to a well-appreciated master regulator of cellular proteostasis, metabolism and iron homeostasis. NRF2 plays a pivotal role in diverse pathologies, including cancer, and metabolic, inflammatory and neurodegenerative disorders. It exhibits a Janus-faced duality, safeguarding cellular integrity in normal cells against environmental insults to prevent disease onset, whereas in certain cancers, constitutively elevated NRF2 levels provide a tumour survival advantage, promoting progression, therapy resistance and metastasis. Advances in understanding the mechanistic regulation of NRF2 and its roles in human pathology have propelled the investigation of NRF2-targeted therapeutic strategies. This Review dissects the mechanistic intricacies of NRF2 signalling, its cross-talk with biological processes and its far-reaching implications for health and disease, highlighting key discoveries that have shaped innovative therapeutic approaches targeting NRF2.
Collapse
Affiliation(s)
- Donna D Zhang
- Department of Molecular Medicine, Center for Inflammation Science and Systems Medicine, UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA.
- University of Florida Health Cancer Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
11
|
Hayes JD, Dayalan Naidu S, Dinkova-Kostova AT. Regulating Nrf2 activity: ubiquitin ligases and signaling molecules in redox homeostasis. Trends Biochem Sci 2025; 50:179-205. [PMID: 39875264 DOI: 10.1016/j.tibs.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/30/2025]
Abstract
Transcription factor NF-E2 p45-related factor 2 (Nrf2) orchestrates defenses against oxidants and thiol-reactive electrophiles. It is controlled at the protein stability level by several E3 ubiquitin ligases (CRL3Keap1, CRL4DCAF11, SCFβ-TrCP, and Hrd1). CRL3Keap1 is of the greatest importance because it constitutively targets Nrf2 for proteasomal degradation under homeostatic conditions but is prevented from doing so by oxidative stressors. Repression of Nrf2 by CRL3Keap1 is attenuated by SQSTM1/p62, and this is reinforced by phosphorylation of SQSTM1/p62. Repression by SCFβ-TrCP requires phosphorylation of Nrf2 by GSK3, the activity of which is inhibited by PKB/Akt and other kinases. We discuss how Nrf2 activity is controlled by the ubiquitin ligases under different circumstances. We also describe endogenous signaling molecules that inactivate CRL3Keap1 to alleviate stress and restore homeostasis.
Collapse
Affiliation(s)
- John D Hayes
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK.
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK.
| |
Collapse
|
12
|
Davidovich P, Nikolaev D, Khadiullina R, Gurzhiy V, Bulatov E. Cyclic vinyl sulfones activate NRF2 to protect from oxidative stress-induced programmed necrosis. Bioorg Med Chem Lett 2025; 117:130058. [PMID: 39644937 DOI: 10.1016/j.bmcl.2024.130058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/07/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
The NRF2 transcriptional factor is a member of cellular stress response machinery and is activated in response to oxidative stress caused either by cellular homeostasis imbalance or by environmental challenges. NRF2 levels are stringently controlled by rapid and continuous proteasomal degradation. KEAP1 is a specific NRF2 binding protein that acts as a bridge between NRF2 and the E3 ligase Cullin-3. In this study, we examine model cyclic vinyl sulfone derivatives as potential NRF2 activating probes. Previously, we and other authors have found anti-inflammatory properties of these compounds in in vivo models; however, the mechanism of action remained unknown. Here, we show that the naphthohydroquinone derivative LCB1353 efficiently stabilizes NRF2 protein levels and upregulates its target genes. At low 5-10 µM concentrations LCB1353 protects non-small cell lung cancer H1299 cells from ferroptotic death induced by cytotoxic concentrations of RSL3, reducing cell death from 90 % to 5 %. Thus, we suggest that cyclic vinyl sulfones are promising scaffolds for the design of protective molecules for conditions associated with toxic and inflammatory levels of oxidative stress.
Collapse
Affiliation(s)
| | - Dmitriy Nikolaev
- Research Institute of Experimental Medicine, Saint-Petersburg, Russia
| | | | | | - Emil Bulatov
- Kazan Federal University, Kazan, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
13
|
Dabravolski SA, Churov AV, Beloyartsev DF, Kovyanova TI, Lyapina IN, Sukhorukov VN, Orekhov AN. The role of NRF2 function and regulation in atherosclerosis: an update. Mol Cell Biochem 2025:10.1007/s11010-025-05233-y. [PMID: 40025257 DOI: 10.1007/s11010-025-05233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 02/14/2025] [Indexed: 03/04/2025]
Abstract
Atherosclerosis, a chronic inflammatory disease of the arteries, remains a leading cause of cardiovascular morbidity and mortality worldwide. This review examines the molecular mechanisms underlying NRF2 role in atherosclerosis, focusing on the recently defined intricate interplay between autophagy, the nuclear factor erythroid 2-related factor 2 (NRF2) pathway, microRNAs (miRNAs), and genes regulating NRF2 with atheroprotective effects. The NRF2/autophagy axis emerges as a critical regulator of cellular responses to oxidative stress and inflammation in atherosclerosis, with key players including Heat Shock Protein 90 (HSP90), Neuropeptide Y (NPY), and Glutaredoxin 2 (GLRX2). MiRNAs are identified as potent regulators of gene expression in atherosclerosis, impacting NRF2 signalling and disease susceptibility. Additionally, genes such as Prenyl diphosphate synthase subunit 2 (PDSS2), Sulfiredoxin1 (Srxn1), and Isocitrate dehydrogenase 1 (IDH1) are implicated in NRF2-dependent atheroprotective pathways. Future research directions include elucidating the complex interactions between these molecular pathways, evaluating novel therapeutic targets in preclinical and clinical settings, and addressing challenges related to drug delivery and patient heterogeneity. Despite limitations, this review underscores the potential for targeted interventions aimed at modulating NRF2/autophagy signalling and miRNA regulatory networks to mitigate atherosclerosis progression and improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, P.O. Box 78, 2161002, Karmiel, Israel.
| | - Alexey V Churov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow, Russia, 125315
| | - Dmitry F Beloyartsev
- Vascular Surgery Department, A. V. Vishnevsky National Medical Research Center of Surgery, 27 Bolshaya Serpukhovskaya Street, Moscow, Russia, 117997
| | - Tatiana I Kovyanova
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow, Russia, 125315
| | - Irina N Lyapina
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Barbarash Boulevard, Kemerovo, Russia, 650002
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow, Russia, 125315
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow, Russia, 125315
| |
Collapse
|
14
|
Luo J, Lu W, Chen Y, Li G, Feng J, Huang Y, Yu Y, Cai S, Jian J, Yang S. SQSTM1/p62 from Litopenaeus vannamei is involved in the immune response to Vibrio infection. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110161. [PMID: 39890038 DOI: 10.1016/j.fsi.2025.110161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
Sequestosome 1 (SQSTM1 or p62) has multiple functional domains, and it can not only be involved in autophagy process, but also defend against oxidative stress by invoking the Keap1/Nrf2 signaling pathway. However, the role of p62 in the response of Pacific whiteleg shrimp Litopenaeus vannamei to bacterial infection is still unclear. This study successfully identified p62 from L. vannamei (Lv-p62). The length of the open reading frame (ORF) of Lv-p62 is 1908 bp, which encoded 635 amino acids, and had Phox and Bem1p domain (PB1), Zinc-binding and ubiquitin-associated (UBA) domains. The expression level of Lv-p62 in the hepatopancreas of healthy L. vannamei is the highest, and it could be significantly induced under the stimulation of Vibrio harveyi. Besides, knocking down Lv-p62 by using RNA interference technology could reduce the expression levels of Nrf2 (nuclear factor erythroid 2-related factor 2), LC3 (microtubule-associated protein 1 light chain 3) and autophagy-related gene (ATG3, ATG5 and ATG12). Compared with the stimulation with V. harveyi alone, stimulation with V. harveyi after knocking down Lv-p62 could reduce the expression of antioxidant-, autophagy- and apoptosis-related genes in L. vannamei. Moreover, knocking down Lv-p62 could reduce the apoptosis signal of hepatopancreas and the abnormal tissue structure caused by V. harveyi. These results indicated that Lv-p62 is involved in the immune response to Vibrio infection in L. vannamei, which further enriched the regulatory function of p62 and its role in the innate immunity of shrimp.
Collapse
Affiliation(s)
- Junliang Luo
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Wei Lu
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Yanghui Chen
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Guojian Li
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Jinyuan Feng
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Yanru Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Yu Yu
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Shuanghu Cai
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Jichang Jian
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Shiping Yang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China.
| |
Collapse
|
15
|
Chen L, Ning J, Linghu L, Tang J, Liu N, Long Y, Sun J, Lv C, Shi Y, Tao T, Xiao D, Cao Y, Wang X, Liu S, Li G, Zhang B, Tao Y. USP13 facilitates a ferroptosis-to-autophagy switch by activation of the NFE2L2/NRF2-SQSTM1/p62-KEAP1 axis dependent on the KRAS signaling pathway. Autophagy 2025; 21:565-582. [PMID: 39360581 PMCID: PMC11849926 DOI: 10.1080/15548627.2024.2410619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
Macroautophagy/autophagyis a lysosomal-regulated degradation process that participates incellular stress and then promotes cell survival or triggers celldeath. Ferroptosis was initially described as anautophagy-independent, iron-regulated, nonapoptotic cell death.However, recent studies have revealed that autophagy is positivelyassociated with sensitivity to ferroptosis. Nonetheless, themolecular mechanisms by which these two types of regulated cell death(RCD) modulate each other remain largely unclear. Here, we screened85 deubiquitinating enzymes (DUBs) and found that overexpression ofUSP13 (ubiquitin specific peptidase 13) could significantlyupregulate NFE2L2/NRF2 (NFE2 like bZIP transcription factor 2)protein levels. In addition, in 39 cases of KRAS-mutated lungadenocarcinoma (LUAD), we found that approximately 76% of USP13overexpression is positively correlated with NFE2L2 overexpression.USP13 interacts with and catalyzes the deubiquitination of thetranscription factor NFE2L2. Additionally, USP13 depletion promotesan autophagy-to-ferroptosis switch invitro andin xenograft tumor mouse models, through the activation of theNFE2L2-SQSTM1/p62 (sequestosome 1)-KEAP1 axis in KRAS mutant cellsand tumor tissues. Hence, targeting USP13 effectively switchedautophagy-to-ferroptosis, thereby inhibiting KRAS (KRASproto-oncogene, GTPase) mutant LUAD, suggesting the therapeuticpromise of combining autophagy and ferroptosis in the KRAS-mutantLUAD.Abbreviation: ACSL4: acyl-CoA synthetase long-chain family member 4; ACTB: actin beta; AL: autolysosomes; AP: autophagosomes; BCL2L1/BCL-xL: BCL2 like 1; CCK8: Cell Counting Kit-8; CQ: chloroquine; CUL3: cullin 3; DMSO: dimethyl sulfoxide; DOX: doxorubicin; DUB: deubiquitinating enzyme; Ferr-1: ferrostatin-1; GPX4: glutathione peroxidase 4; GSEA: gene set enrichment analysis; 4HNE: 4-hydroxynonenal; IKE: imidazole ketone erastin; KEAP1: kelch like ECH associated protein 1; KRAS: KRAS proto-oncogene, GTPase; LCSC: lung squamous cell carcinoma; IF: immunofluorescence; LUAD: lung adenocarcinoma; Lys05: Lys01 trihydrochloride; MAPK1/ERK2/p42: mitogen-activated protein kinase 1; MAPK3/ERK1/p44; MTOR: mechanistic target of rapamycin kinase; NFE2L2/NRF2: NFE2 like bZIP transcription factor, 2; NQO1: NAD(P)H quinone dehydrogenase 1; PG: phagophore; RCD: regulated cell death; RAPA: rapamycin; ROS: reactive oxygen species; SLC7A11/xCT: solute carrier family 7 member 11; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TUBB/beta-tubulin: tubulin, beta; UPS: ubiquitin-proteasome system; USP13: ubiquitin specific peptidase 13.
Collapse
Affiliation(s)
- Ling Chen
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jieling Ning
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Histology and Embryology, School of Basic Medicine, Central South University, Changsha, China
| | - Li Linghu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jun Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Na Liu
- Department of Neurosurgery, Postdoctoral Research Workstation, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yao Long
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jingyue Sun
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Cairui Lv
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ying Shi
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Tania Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiang Wang
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guangjian Li
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Kunming, China
| | - Bin Zhang
- Department of Histology and Embryology, School of Basic Medicine, Central South University, Changsha, China
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Sharawy MH, Abdel-Rahman AM, Abdel-Rahman N. Aprepitant ameliorates vancomycin-induced kidney injury: Role of GPX4/system Xc - and oxidative damage. Food Chem Toxicol 2025; 197:115264. [PMID: 39832709 DOI: 10.1016/j.fct.2025.115264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Vancomycin, a glycopeptide antibiotic, is used in cases of drug-resistant bacterial infections, but unfortunately is associated with acute kidney injury (AKI). We here explore the protective potential of aprepitant against vancomycin-induced AKI. Vancomycin (500 mg/kg/i.p) was given to rats for seven days and aprepitant (20 mg/kg/p.o) was administered one day before and for seven days concomitant with vancomycin. At the end of the experiment, kidney function, oxidative stress, autophagy and ferroptosis markers were assessed. We show that aprepitant reduced kidney/body weight ratio, serum creatinine and blood urea nitrogen levels. It improved renal structure and enhanced the antioxidant machinery as indicated by elevated catalase activity and GSH levels and reduced renal MDA. Aprepitant managed to inhibit ferroptosis by decreasing system Xc- and GPX4 renal levels. As a result, levels of autophagic markers ATG3, LC3A and LC3B were attenuated. These results were confirmed by electron microscopy examination of cellular structures. In addition, aprepitant increased p62 protein expression. Moreover, aprepitant decreased the apoptotic marker cleaved caspase-3 levels. Our results suggest a new repurposed role for aprepitant in protecting against AKI. This protective effect relies on its antioxidant effect and the influence of inhibiting ferroptosis which resulted in downregulation of autophagy and apoptosis.
Collapse
Affiliation(s)
- Maha H Sharawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt.
| | - Ahmed M Abdel-Rahman
- Department of Nephrology, Urology and Nephrology Center, Mansoura University, 35516, Mansoura, Egypt
| | - Noha Abdel-Rahman
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt
| |
Collapse
|
17
|
Yang X, Cao X, Zhu Q. p62/SQSTM1 in cancer: phenomena, mechanisms, and regulation in DNA damage repair. Cancer Metastasis Rev 2025; 44:33. [PMID: 39954143 PMCID: PMC11829845 DOI: 10.1007/s10555-025-10250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
The multidomain protein cargo adaptor p62, also known as sequestosome 1, serves as a shuttling factor and adaptor for the degradation of substrates via the proteasome and autophagy pathways. Regarding its structure, p62 is composed of several functional domains, including the N-terminal Phox1 and Bem1p domains, a ZZ-type zinc finger domain, a LIM protein-binding domain that contains the tumor necrosis factor receptor-associated factor 6 (TRAF6) binding region, two nuclear localization signals (NLS 1/2), a nuclear export signal (NES), the LC3-interacting region (LIR), a Kelch-like ECH-associated protein 1 (KEAP1)-interacting region, and a ubiquitin-associated (UBA) domain. Recent studies have highlighted the critical role of p62 in the development and progression of various malignancies. Overexpression and/or impaired degradation of p62 are linked to the initiation and progression of numerous cancers. While p62 is primarily localized in the cytosol and often considered a cytoplasmic protein, most of the existing literature focuses on its cytoplasmic functions, leaving its nuclear roles less explored. However, an increasing body of research has uncovered p62's involvement in the cellular response to DNA damage. In this review, we summarize the current understanding of p62's molecular functions in malignancies, with particular emphasis on its role in DNA damage repair, highlighting the latest advances in this field.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xunjie Cao
- Division of Abdominal Tumor Multimodality Treatment, Department of General Surgery, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, China
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Department of General Surgery, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, China.
| |
Collapse
|
18
|
Xing Y, Lv X, Chen X, Du J, Hu D, He R, Liang X, Yang Y. Maackiain induces apoptosis and autophagy via ROS-mediated endoplasmic reticulum stress in endometrial cancer. Int Immunopharmacol 2025; 147:113935. [PMID: 39756166 DOI: 10.1016/j.intimp.2024.113935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025]
Abstract
Endometrial cancer (EC) is a common gynecological cancer, characterized by increasing incidence and mortality rates. Maackiain (MA), a natural flavonoid compound, has multiple biological activities, but little is known about how it affects EC cells. In the present study, CCK-8, EdU, colony formation, and flow cytometry assays were used to evaluate the effects of MA on EC cell proliferation, apoptosis, and reactive oxygen species (ROS) levels. The effect of MA on autophagy in EC cells were examined through the observation of cell morphology and ultrastructure, and cells were transfected with AdPlus-mCherry-GFP-LC3B for further analysis. Transcriptomic and western blot analyses revealed the underlying mechanism. To evaluate the anti-EC effect of MA in vivo, a xenograft model was established. The results demonstrated that MA inhibited KLE and Ishikawa cell growth in a dose-dependent manner. Furthermore, MA significantly suppressed EC xenograft tumor growth in vivo while exhibiting low toxicity. In addition, EC cells treated with MA exhibited pro-apoptotic and pro-autophagic responses, with the latter exhibiting cytoprotective properties. MA also induced the accumulation of ROS, which promoted endoplasmic reticulum (ER) stress. Notably, the use of the N-acetyl-L-cysteine (NAC) ROS scavenger and the 4-phenylbutyric acid (4-PBA) ER stress inhibitor effectively mitigated the autophagy and apoptosis induced by MA. These results collectively implied that MA triggers autophagy and apoptosis in EC cells through ROS-mediated ER stress, highlighting its potential as a therapeutic agent against EC.
Collapse
Affiliation(s)
- Yijuan Xing
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000 Gansu, China
| | - Xiao Lv
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000 Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000 Gansu, China
| | - Xi Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000 Gansu, China
| | - Junhong Du
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000 Gansu, China
| | - Dan Hu
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000 Gansu, China
| | - Ruifen He
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000 Gansu, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000 Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000 Gansu, China.
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000 Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000 Gansu, China.
| |
Collapse
|
19
|
Chandra P, Philips JA. USP8 promotes intracellular infection by enhancing ESCRT-mediated membrane repair, limiting xenophagy, and reducing oxidative stress. Autophagy 2025; 21:298-314. [PMID: 39178916 PMCID: PMC11759523 DOI: 10.1080/15548627.2024.2395134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024] Open
Abstract
The host ESCRT-machinery repairs damaged endolysosomal membranes. If damage persists, selective macroautophagy/autophagy clears the damaged compartment. Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that damages the phagosomal membrane and targets ESCRT-mediated repair as part of its virulence program. The E3 ubiquitin ligases PRKN and SMURF1 promote autophagic capture of damaged, Mtb-containing phagosomes. Because ubiquitination is a reversible process, we anticipated that host deubiquitinases (DUBs) would also be involved. Here, we screened all predicted mouse DUBs for their role in ubiquitin targeting and control of intracellular Mtb. We show that USP8 (ubiquitin specific peptidase 8) colocalizes with intracellular Mtb, recognizes phagosomal membrane damage, and is required for ESCRT-dependent membrane repair. Furthermore, we show that USP8 regulates the NFE2L2/NRF2-dependent antioxidant signature. Taken together, our study demonstrates a central role of USP8 in promoting Mtb intracellular growth by promoting phagosomal membrane repair, limiting ubiquitin-driven selective autophagy, and reducing oxidative stress.Abbreviation: BMDMs: bone marrow-derived macrophages; CFUs: colony-forming units; DUB: deubiquitinase; ESCRT: endosomal sorting complexes required for transport; LLOMe: L-leucyl-L-leucine methyl ester; MFI: mean fluorescence intensity; MOI: multiplicity of infection; Mtb: Mycobacterium tuberculosis; NFE2L2/NRF2: nuclear factor, erythroid derived 2, like 2; PMA: phorbol 12-myristate 13-acetate; ROS: reactive oxygen species; USP8: ubiquitin specific peptidase 8.
Collapse
Affiliation(s)
- Pallavi Chandra
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer A. Philips
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
20
|
Champsi S, Hood DA. Sulforaphane treatment mimics contractile activity-induced mitochondrial adaptations in muscle myotubes. Am J Physiol Cell Physiol 2025; 328:C335-C354. [PMID: 39672545 DOI: 10.1152/ajpcell.00669.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/15/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Mitochondria are metabolic hubs that govern skeletal muscle health. Although exercise has been established as a powerful inducer of quality control processes that ultimately enhance mitochondrial function, there are currently limited pharmaceutical interventions available that emulate exercise-induced mitochondrial adaptations. To investigate a novel candidate for this role, we examined sulforaphane (SFN), a naturally occurring compound found in cruciferous vegetables. SFN has been documented as a potent antioxidant inducer through its activation of the nuclear factor erythroid 2-related factor 2 (Nrf-2) antioxidant response pathway. However, its effects on muscle health have been underexplored. To investigate the interplay between chronic exercise and SFN, C2C12 myotubes were electrically stimulated to model chronic contractile activity (CCA) in the presence or absence of SFN. SFN promoted Nrf-2 nuclear translocation, enhanced mitochondrial respiration, and upregulated key antioxidant proteins including catalase and glutathione reductase. These adaptations were accompanied by reductions in cellular and mitochondrial reactive oxygen species (ROS) emission. Signaling toward biogenesis was enhanced, demonstrated by increases in mitochondrial transcription factor A (TFAM), peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α nuclear translocation, PGC-1α promoter activity, mitochondrial content, and organelle branching, suggestive of a larger, more interconnected mitochondrial pool. These mitochondrial adaptations were accompanied by an increase in lysosomal proteins, suggesting coordinated regulation. There was no difference in mitochondrial and antioxidant-related proteins between CCA and non-CCA SFN-treated cells. Our data suggest that SFN activates signaling cascades that are common to those produced by contractile activity, indicating that SFN-centered therapeutic strategies may improve the mitochondrial phenotype in skeletal muscle.NEW & NOTEWORTHY Nrf-2 is a transcription factor that has been implicated in mitigating oxidative stress and regulating mitochondrial homeostasis. However, limited research has demonstrated how Nrf-2-mediated adaptations compare with those produced by exercise. To investigate this, we treated myotubes with Sulforaphane, a well-established Nrf-2 activator, and combined this with stimulation-induced chronic contractile activity to model exercise training. Our work is the first to establish that sulforaphane mimics training-induced mitochondrial adaptations, including enhancements in respiration, biogenesis, and dynamics.
Collapse
Affiliation(s)
- Sabrina Champsi
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Zheng H, Tang Y, Zang H, Luo J, Zhou H, Zhan Y, Zou Y, Wen Q, Ma J, Fan S. Itraconazole Reversing Acquired Resistance to Osimertinib in NSCLC by Inhibiting the SHH/DUSP13B/p-STAT3 Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409416. [PMID: 39721017 PMCID: PMC11831513 DOI: 10.1002/advs.202409416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/17/2024] [Indexed: 12/28/2024]
Abstract
There is an urgent necessity to devise efficient tactics to tackle the inevitable development of resistance to osimertinib, which is a third-generation epidermal growth factor receptor (EGFR) inhibitor used in treating EGFR-mutant nonsmall cell lung cancer (NSCLC). This study demonstrates that combining itraconazole with osimertinib synergistically reduces the proliferation and migration, enhances the apoptosis of osimertinib-resistant cells, and effectively inhibits the growth of osimertinib-resistant tumors. Mechanistically, itraconazole combined with osimertinib promotes the proteasomal degradation of sonic hedgehog (SHH), resulting in inactivation of the SHH/Dual-specificity phosphatase 13B (DUSP13B)/p-STAT3 and Hedgehog pathways, suppressing Myc proto-oncogene protein (c-Myc). Additionally, DUSP13B interacts with signal transducer and activator of transcription 3 (STAT3) and modulates its phosphorylation. Interestingly, it is observed that SHH overexpression partially rescues the synergistic effects of this combination treatment strategy through the SHH/DUSP13B/p-STAT3 signaling axis. Moreover, it is found that SHH, (GLI1), p-STAT3, and DUSP13B play significant predictive roles in osimertinib resistance. In lung adenocarcinoma, p-STAT3 is positively correlated with SHH but negatively correlated with DUSP13B. Together, these results highlight the crucial role of itraconazole in reversing the acquired resistance to osimertinib and provide a scientific rationale for the therapeutic strategy of combining osimertinib with itraconazole.
Collapse
Affiliation(s)
- Hongmei Zheng
- Department of PathologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and DiagnosisChangshaHunan410011China
| | - Yaoxiang Tang
- Department of PathologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and DiagnosisChangshaHunan410011China
| | - Hongjing Zang
- Department of PathologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and DiagnosisChangshaHunan410011China
| | - Jiadi Luo
- Department of PathologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and DiagnosisChangshaHunan410011China
| | - Hanqiong Zhou
- Department of PathologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and DiagnosisChangshaHunan410011China
| | - Yuting Zhan
- Department of PathologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and DiagnosisChangshaHunan410011China
| | - Ying Zou
- Department of PathologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and DiagnosisChangshaHunan410011China
| | - Qiuyuan Wen
- Department of PathologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and DiagnosisChangshaHunan410011China
| | - Jian Ma
- Cancer Research Institute of Central South UniversityChangshaHunan410078China
| | - Songqing Fan
- Department of PathologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and DiagnosisChangshaHunan410011China
| |
Collapse
|
22
|
Joseph S, Zhang X, Droby GN, Wu D, Bae-Jump V, Lyons S, Mordant A, Mills A, Herring L, Rushing B, Bowser JL, Vaziri C. MAPK14/p38α shapes the molecular landscape of endometrial cancer and promotes tumorigenic characteristics. Cell Rep 2025; 44:115104. [PMID: 39708320 DOI: 10.1016/j.celrep.2024.115104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/25/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
The molecular underpinnings of high-grade endometrial carcinoma (HGEC) metastatic growth and survival are poorly understood. Here, we show that ascites-derived and primary tumor HGEC cell lines in 3D spheroid culture faithfully recapitulate key features of malignant peritoneal effusion and exhibit fundamentally distinct transcriptomic, proteomic, and metabolomic landscapes compared with conventional 2D monolayers. Using a genetic screening platform, we identify MAPK14 (which encodes the protein kinase p38α) as a specific requirement for HGEC in spheroid culture. MAPK14/p38α has broad roles in programming the phosphoproteome, transcriptome, and metabolome of HGEC spheroids, yet has negligible impact on monolayer cultures. MAPK14 promotes tumorigenicity in vivo and is specifically required to sustain a sub-population of spheroid cells that is enriched in cancer stemness markers. Therefore, spheroid growth of HGEC activates unique biological programs, including p38α signaling, that cannot be captured using 2D culture models and are highly relevant to malignant disease pathology.
Collapse
Affiliation(s)
- Sayali Joseph
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xingyuan Zhang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gaith N Droby
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Victoria Bae-Jump
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Scott Lyons
- Department of Pharmacology, UNC Proteomics Core Facility, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Angie Mordant
- Department of Pharmacology, UNC Proteomics Core Facility, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Allie Mills
- Department of Pharmacology, UNC Proteomics Core Facility, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Laura Herring
- Department of Pharmacology, UNC Proteomics Core Facility, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Blake Rushing
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica L Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
23
|
Oskomić M, Tomić A, Barbarić L, Matić A, Kindl DC, Matovina M. KEAP1-NRF2 Interaction in Cancer: Competitive Interactors and Their Role in Carcinogenesis. Cancers (Basel) 2025; 17:447. [PMID: 39941813 PMCID: PMC11816071 DOI: 10.3390/cancers17030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
An American Cancer Society report estimates the emergence of around 2 million new cancer cases in the US in 2024 [...].
Collapse
Affiliation(s)
| | | | | | | | | | - Mihaela Matovina
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.O.); (A.T.); (L.B.); (A.M.); (D.C.K.)
| |
Collapse
|
24
|
Dahl-Wilkie H, Gomez J, Kelley A, Manjit K, Mansoor B, Kanumuri P, Pardo S, Molleur D, Falah R, Konakalla AR, Omiyale M, Weintraub S, Delk NA. Chronic IL-1-Exposed LNCaP Cells Evolve High Basal p62-KEAP1 Complex Accumulation and NRF2/KEAP1-Dependent and -Independent Hypersensitive Nutrient Deprivation Response. Cells 2025; 14:192. [PMID: 39936983 PMCID: PMC11816438 DOI: 10.3390/cells14030192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 02/13/2025] Open
Abstract
Chronic inflammation is a cancer hallmark and chronic exposure to interleukin-1 (IL-1) transforms castration-sensitive prostate cancer (PCa) cells into more fit castration-insensitive PCa cells. p62 is a scaffold protein that protects cells from nutrient deprivation via autophagy and from cytotoxic reactive oxygen via NFκB and NRF2 antioxidant signaling. Herein, we report that the LNCaP PCa cell line acquires high basal accumulation of the p62-KEAP1 complex when chronically exposed to IL-1. p62 promotes non-canonical NRF2 antioxidant signaling by binding and sequestering KEAP1 to the autophagosome for degradation. But despite high basal p62-KEAP1 accumulation, only two of several NRF2-induced genes analyzed, GCLC and HMOX1, showed high basal mRNA levels, suggesting that the high basal p62-KEAP1 accumulation does not result in overall high basal NRF2 activity. Nutrient starvation induces NRF2-dependent GCLC upregulation and HMOX1 repression, and we found that chronic IL-1-exposed LNCaP cells show hypersensitivity to serum starvation-induced GCLC and HMOX1 regulation. Thus, chronic IL-1 exposure affects cell response to nutrient stress. While HMOX1 expression remains NRF2/KEAP1-dependent in chronic IL-1-exposed LNCaP cells, GCLC expression is NRF2/KEAP1-independent. Furthermore, the high basal p62-KEAP1 complex accumulation is not required to regulate GCLC or HMOX1 expression, suggesting cells chronically exposed to IL-1 evolve a novel NRF2-independent role for the p62/KEAP1 axis.
Collapse
Affiliation(s)
- Haley Dahl-Wilkie
- Biological Sciences Department, The University of Texas at Dallas, Richardson, TX 75080, USA; (H.D.-W.); (J.G.); (A.K.); (K.M.); (B.M.); (P.K.); (R.F.); (A.R.K.); (M.O.)
| | - Jessica Gomez
- Biological Sciences Department, The University of Texas at Dallas, Richardson, TX 75080, USA; (H.D.-W.); (J.G.); (A.K.); (K.M.); (B.M.); (P.K.); (R.F.); (A.R.K.); (M.O.)
| | - Anastasia Kelley
- Biological Sciences Department, The University of Texas at Dallas, Richardson, TX 75080, USA; (H.D.-W.); (J.G.); (A.K.); (K.M.); (B.M.); (P.K.); (R.F.); (A.R.K.); (M.O.)
| | - Kirti Manjit
- Biological Sciences Department, The University of Texas at Dallas, Richardson, TX 75080, USA; (H.D.-W.); (J.G.); (A.K.); (K.M.); (B.M.); (P.K.); (R.F.); (A.R.K.); (M.O.)
| | - Basir Mansoor
- Biological Sciences Department, The University of Texas at Dallas, Richardson, TX 75080, USA; (H.D.-W.); (J.G.); (A.K.); (K.M.); (B.M.); (P.K.); (R.F.); (A.R.K.); (M.O.)
| | - Preethi Kanumuri
- Biological Sciences Department, The University of Texas at Dallas, Richardson, TX 75080, USA; (H.D.-W.); (J.G.); (A.K.); (K.M.); (B.M.); (P.K.); (R.F.); (A.R.K.); (M.O.)
| | - Sammy Pardo
- Department of Biochemistry & Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (S.P.); (D.M.); (S.W.)
| | - Dana Molleur
- Department of Biochemistry & Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (S.P.); (D.M.); (S.W.)
| | - Rafah Falah
- Biological Sciences Department, The University of Texas at Dallas, Richardson, TX 75080, USA; (H.D.-W.); (J.G.); (A.K.); (K.M.); (B.M.); (P.K.); (R.F.); (A.R.K.); (M.O.)
| | - Anisha R. Konakalla
- Biological Sciences Department, The University of Texas at Dallas, Richardson, TX 75080, USA; (H.D.-W.); (J.G.); (A.K.); (K.M.); (B.M.); (P.K.); (R.F.); (A.R.K.); (M.O.)
| | - Morolake Omiyale
- Biological Sciences Department, The University of Texas at Dallas, Richardson, TX 75080, USA; (H.D.-W.); (J.G.); (A.K.); (K.M.); (B.M.); (P.K.); (R.F.); (A.R.K.); (M.O.)
| | - Susan Weintraub
- Department of Biochemistry & Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (S.P.); (D.M.); (S.W.)
| | - Nikki A. Delk
- Biological Sciences Department, The University of Texas at Dallas, Richardson, TX 75080, USA; (H.D.-W.); (J.G.); (A.K.); (K.M.); (B.M.); (P.K.); (R.F.); (A.R.K.); (M.O.)
| |
Collapse
|
25
|
Luan L, Cao X, Baskin JM. Inhibition of SQSTM1/p62 oligomerization and Keap1 sequestration by the Cullin-3 adaptor SHKBP1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634088. [PMID: 39896619 PMCID: PMC11785107 DOI: 10.1101/2025.01.21.634088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
SQSTM1/p62 is a master regulator of the autophagic and ubiquitination pathways of protein degradation and the antioxidant response. p62 functions in these pathways via reversible assembly and sequestration of additional factors into cytoplasmic phase-separated structures termed p62 bodies. The physiological roles of p62 in these various pathways depends on numerous mechanisms for regulating p62 body formation and dynamics that are incompletely understood. Here, we identify a new mechanism for regulation of p62 oligomerization and incorporation into p62 bodies by SHKBP1, a Cullin-3 E3 ubiquitin ligase adaptor, that is independent of its potential functions in ubiquitination. We map a SHKBP1-p62 protein-protein interaction outside of p62 bodies that limits p62 assembly into p62 bodies and affects the antioxidant response by preventing sequestration and degradation of Keap1. These studies provide a non-ubiquitination-based mechanism for an E3 ligase adaptor in regulating p62 phase separation and cellular responses to oxidative stress.
Collapse
Affiliation(s)
- Lin Luan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Xiaofu Cao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Jeremy M. Baskin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
26
|
Liu M, Liu S, Lin Z, Chen X, Jiao Q, Du X, Jiang H. Targeting the Interplay Between Autophagy and the Nrf2 Pathway in Parkinson's Disease with Potential Therapeutic Implications. Biomolecules 2025; 15:149. [PMID: 39858542 PMCID: PMC11764135 DOI: 10.3390/biom15010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder marked by the progressive degeneration of midbrain dopaminergic neurons and resultant locomotor dysfunction. Despite over two centuries of recognition as a chronic disease, the exact pathogenesis of PD remains elusive. The onset and progression of PD involve multiple complex pathological processes, with dysfunctional autophagy and elevated oxidative stress serving as critical contributors. Notably, emerging research has underscored the interplay between autophagy and oxidative stress in PD pathogenesis. Given the limited efficacy of therapies targeting either autophagy dysfunction or oxidative stress, it is crucial to elucidate the intricate mechanisms governing their interplay in PD to develop more effective therapeutics. This review overviews the role of autophagy and nuclear factor erythroid 2-related factor 2 (Nrf2), a pivotal transcriptional regulator orchestrating cellular defense mechanisms against oxidative stress, and the complex interplay between these processes. By elucidating the intricate interplay between these key pathological processes in PD, this review will deepen our comprehensive understanding of the multifaceted pathological processes underlying PD and may uncover potential strategies for its prevention and treatment.
Collapse
Affiliation(s)
- Mengru Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Siqi Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Zihan Lin
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Hong Jiang
- Qingdao Key Laboratory of Neurorehabilitation, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| |
Collapse
|
27
|
Buttari B, Tramutola A, Rojo AI, Chondrogianni N, Saha S, Berry A, Giona L, Miranda JP, Profumo E, Davinelli S, Daiber A, Cuadrado A, Di Domenico F. Proteostasis Decline and Redox Imbalance in Age-Related Diseases: The Therapeutic Potential of NRF2. Biomolecules 2025; 15:113. [PMID: 39858508 PMCID: PMC11764413 DOI: 10.3390/biom15010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of cellular homeostasis, overseeing the expression of a wide array of genes involved in cytoprotective processes such as antioxidant and proteostasis control, mitochondrial function, inflammation, and the metabolism of lipids and glucose. The accumulation of misfolded proteins triggers the release, stabilization, and nuclear translocation of NRF2, which in turn enhances the expression of critical components of both the proteasomal and lysosomal degradation pathways. This process facilitates the clearance of toxic protein aggregates, thereby actively maintaining cellular proteostasis. As we age, the efficiency of the NRF2 pathway declines due to several factors including increased activity of its repressors, impaired NRF2-mediated antioxidant and cytoprotective gene expression, and potential epigenetic changes, though the precise mechanisms remain unclear. This leads to diminished antioxidant defenses, increased oxidative damage, and exacerbated metabolic dysregulation and inflammation-key contributors to age-related diseases. Given NRF2's role in mitigating proteotoxic stress, the pharmacological modulation of NRF2 has emerged as a promising therapeutic strategy, even in aged preclinical models. By inducing NRF2, it is possible to mitigate the damaging effects of oxidative stress, metabolic dysfunction, and inflammation, thus reducing protein misfolding. The review highlights NRF2's therapeutic implications for neurodegenerative diseases and cardiovascular conditions, emphasizing its role in improving proteostasis and redox homeostasis Additionally, it summarizes current research into NRF2 as a therapeutic target, offering hope for innovative treatments to counteract the effects of aging and associated diseases.
Collapse
Affiliation(s)
- Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Antonella Tramutola
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University, 00185 Rome, Italy;
| | - Ana I. Rojo
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), National Institute of Health Carlos III (ISCIII), Instituto de Investigación Sanitaria La Paz (IdiPaz), 28049 Madrid, Spain; (A.I.R.); (A.C.)
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece;
| | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 00185, Uttar Pradesh, India;
| | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.B.); (L.G.)
| | - Letizia Giona
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.B.); (L.G.)
- PhD Program in Science of Nutrition, Metabolism, Aging and Gender-Related Diseases, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Elisabetta Profumo
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Andreas Daiber
- Department for Cardiology 1, University Medical Center Mainz, Molecular Cardiology, Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Antonio Cuadrado
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), National Institute of Health Carlos III (ISCIII), Instituto de Investigación Sanitaria La Paz (IdiPaz), 28049 Madrid, Spain; (A.I.R.); (A.C.)
| | - Fabio Di Domenico
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
28
|
Zhang S, Wang N, Gao Z, Gao J, Wang X, Xie H, Wang CY, Zhang S. Reductive stress: The key pathway in metabolic disorders induced by overnutrition. J Adv Res 2025:S2090-1232(25)00031-1. [PMID: 39805424 DOI: 10.1016/j.jare.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/04/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The balance of redox states is crucial for maintaining physiological homeostasis. For decades, the focus has been mainly on the concept of oxidative stress, which is involved in the mechanism of almost all diseases. However, robust evidence has highlighted that reductive stress, the other side of the redox spectrum, plays a pivotal role in the development of various diseases, particularly those related to metabolism and cardiovascular health. AIM OF REVIEW In this review, we present an extensive array of evidence for the occurrence of reductive stress and its significant implications mainly in metabolic and cardiovascular diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW Reductive stress is defined as a shift in the cellular redox balance towards a more reduced state, characterized by an excess of endogenous reductants (such as NADH, NADPH, and GSH) over their oxidized counterparts (NAD+, NADP+, and GSSG). While oxidative stress has been the predominant mechanism studied in obesity, metabolic disorders, and cardiovascular diseases, growing evidence underscores the critical role of reductive stress. This review discusses how reductive stress contributes to metabolic and cardiovascular pathologies, emphasizing its effects on key cellular processes. For example, excessive NADH accumulation can disrupt mitochondrial function by impairing the electron transport chain, leading to decreased ATP production and increased production of reactive oxygen species. In the endoplasmic reticulum (ER), an excess of reductive equivalents hampers protein folding, triggering ER stress and activating the unfolded protein response, which can lead to insulin resistance and compromised cellular homeostasis. Furthermore, we explore how excessive antioxidant supplementation can exacerbate reductive stress by further shifting the redox balance, potentially undermining the beneficial effects of exercise, impairing cardiovascular health, and aggravating metabolic disorders, particularly in obese individuals. This growing body of evidence calls for a reevaluation of the role of reductive stress in disease pathogenesis and therapeutic interventions.
Collapse
Affiliation(s)
- Shiyi Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhichao Gao
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Gao
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohui Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Xie
- Institute of Translational Medicine, Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Cong-Yi Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
29
|
Sarkar S, Pandey A, Kumar Yadav S, Haris Siddiqui M, Pant AB, Yadav S. Differentiated and mature neurons are more responsive to neurotoxicant exposure at both transcriptional and translational levels. Neuroscience 2025; 564:110-125. [PMID: 39571964 DOI: 10.1016/j.neuroscience.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/13/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
SH-SY5Y human neuroblastoma cells have been extensively used as an in vitro model system in a diverse range of studies involving neurodevelopment, neurotoxicity, neurodegeneration, and neuronal ageing. Both naïve and differentiated phenotypes of SH-SY5Y cells are utilized to model human neurons under in vitro conditions. The process of differentiation causes extensive remodeling of neuronal cells at multiple omic levels, including the epigenome and proteome. In the present investigation, the miRNAome and proteome profiles of arsenic-treated naïve and differentiated SH-SY5Y cells were generated using the miRNA OpenArray technology and high-resolution mass spectrometry. Our findings demonstrated that differentiation dramatically affected the response of SH-SY5Y cells to toxicant exposure, as indicated by increased tolerance of differentiated cells against arsenic exposure compared to naïve cells in cell viability assay. Arsenic-exposed naïve and differentiated SH-SY5Y cells possess distinct miRNA and protein profiles with few similarities. Compared to naïve cells, differentiated cells have undergone higher deregulation in the expression of brain-enriched miRNAs and proteins and have shown a more drastic decrease in oxygen consumption rate, which is a measure of mitochondrial respiration after exposure to arsenic. Proteins identified in arsenic-treated differentiated SH-SY5Y cells were more enriched in pathways underlying multifactorial neurotoxic events. Additionally, more functional regulatory modules have been identified between the miRNAs and proteins differentially expressed in arsenic-treated differentiated SH-SY5Y cells relative to naïve cells. Collectively, our studies have shown that differentiated SH-SY5Y cells displayed alterations in the expression of a greater number of miRNAs and proteins following neurotoxicant exposure, indicating their higher responsivity.
Collapse
Affiliation(s)
- Sana Sarkar
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India.
| | - Anuj Pandey
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India.
| | - Sanjeev Kumar Yadav
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India.
| | | | - A B Pant
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India.
| | - Sanjay Yadav
- All India Institute of Medical Sciences (AIIMS), Raebareli, Uttar Pradesh, India.
| |
Collapse
|
30
|
Wang N, Yang H, Chen Y, Wang H, Wang C, Fan J, Chen Y, Li Y, Zhu M. Formononetin promotes porcine oocytes maturation and improves embryonic development by reducing oxidative stress. Front Cell Dev Biol 2025; 12:1520429. [PMID: 39850803 PMCID: PMC11754404 DOI: 10.3389/fcell.2024.1520429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/26/2024] [Indexed: 01/25/2025] Open
Abstract
Increasing evidence has demonstrated that oxidative stress impairs oocyte maturation and embryonic development. Conventionally, antioxidants have been applied in vitro systems to improve oocyte maturation and blastocyst rates. Formononetin (FMN) is a flavonoid that has been shown to have various pharmacological effects, including antioxidants. In this study, we delved into the impact of FMN, acting as an antioxidant, on the in vitro development of oocytes and blastocysts within the culture system. FMN supplementation at 0.5 μM enhanced the rate of first polar body extrusion and blastocyst formation post parthenogenetic activation. It also increased mitochondrial function and ATP levels, reduced intracellular reactive oxygen species, and elevated intracellular GSH levels in both oocytes and embryos. Moreover, FMN significantly decreased autophagy and apoptosis levels in blastocyst cells, potentially via regulation of the Nrf2/Keap1 pathway. This is the first study to report that FMN supplementation benefits the in vitro culture of oocytes and early embryo development, potentially by regulating oxidative stress, mitochondrial function, and autophagy.
Collapse
Affiliation(s)
- Na Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Han Yang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Yelei Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Hekun Wang
- Department of Gynecology, Jiangmen Maternity and Child Healthcare Hospital, Jiangmen, Guangdong, China
| | - Chaorui Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Jianglin Fan
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Yajie Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Yinghua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Maobi Zhu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| |
Collapse
|
31
|
He M, Wu H, Xu T, Zhao Y, Wang Z, Liu Y. Fangchinoline eliminates intracellular Salmonella by enhancing lysosomal function via the AMPK-mTORC1-TFEB axis. J Adv Res 2025:S2090-1232(25)00034-7. [PMID: 39788287 DOI: 10.1016/j.jare.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/19/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025] Open
Abstract
INTRODUCTION Salmonella, a foodborne zoonotic pathogen, is a significant cause of morbidity and mortality in animals and humans globally. With the prevalence of multidrug-resistant strains, Salmonellosis has become a formidable challenge. Host-directed therapy (HDT) has recently emerged as a promising anti-infective approach for treating intracellular bacterial infections. OBJECTIVES Plant-derived natural products, owing to their structural and functional diversity, are increasingly being explored and utilized as encouraging candidates for HDT compounds. This study aims to identify and screen natural compounds with potential as HDT for the treatment of intracellular Salmonella infections. METHODS A cell-based screening approach was deployed to identify natural compounds capable of mitigating the intracellular replication of S. enterica. Safety and efficacy of the candidate compounds were evaluated using multiple animal models. RNA sequencing, ELISA, and immunoblotting analyses were conducted to elucidate the underlying mechanisms of action. RESULTS Our results reveal that fangchinoline (FAN) effectively reduces S. enterica survival both in vitro and in vivo. Meanwhile, FAN also displays anti-infective activity against other intracellular pathogens, including multidrug-resistant isolates. A 14-day safety evaluation in mice showed no significant toxic or adverse effects from FAN administration. RNA sequencing analysis reveals an upregulation of lysosome pathways in S. enterica-infected cells treated with FAN. Mechanistic studies indicate that FAN increases acid lysosomal quantities and fosters autophagic response in Salmonella-infected cells via the AMPK-mTORC1-TFEB axis. In addition, FAN alleviates the inflammatory response in Salmonella-infected cells by inactivating the NF-κB pathway. CONCLUSION Our findings suggest that FAN represents a lead HDT compound for tackling recalcitrant infections caused by intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Mengping He
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Huihui Wu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tianqi Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yurong Zhao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.
| |
Collapse
|
32
|
Moradi N, Champsi S, Hood DA. Sulforaphane, Urolithin A, and ZLN005 induce time-dependent alterations in antioxidant capacity, mitophagy, and mitochondrial biogenesis in muscle cells. SPORTS MEDICINE AND HEALTH SCIENCE 2025; 7:16-27. [PMID: 39649792 PMCID: PMC11624366 DOI: 10.1016/j.smhs.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/14/2024] [Accepted: 03/29/2024] [Indexed: 12/11/2024] Open
Abstract
Efficient signal transduction that mediates mitochondrial turnover is a strong determinant of metabolic health in skeletal muscle. Of these pathways, our focus was aimed towards the enhancement of antioxidant capacity, mitophagy, and mitochondrial biogenesis. While physical activity is an excellent inducer of mitochondrial turnover, its ability to ubiquitously activate and enhance mitochondrial turnover prevents definitive differentiation of the contribution made by each pathway. Therefore, we employed three agents, Sulforaphane (SFN), Urolithin A (UroA), and ZLN005 (ZLN), which are activators of important biological markers involved in antioxidant signaling, mitophagy, and biogenesis, respectively. We investigated the time-dependent changes in proteins related to each mechanism in C2C12 myotubes. SFN treatment resulted in increased nuclear localization of the transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf-2) after 4 hour (h), with subsequent 2-fold increases in the antioxidant enzymes Nicotinamide Quinone Oxidoreductase 1 (NQO1) and Heme-Oxygenase-1 (HO-1) by 24 h and 48 h. Mitochondrial respiration and ATP production were significantly increased by both 24 h and 48 h. UroA showed a 2-fold increase in AMP-activated Protein Kinase (AMPK) after 4 h, which led to a modest 30% increase in whole cell mitophagy markers p62 and LC3, after 48 h. This was accompanied by a reduction in cellular Reactive Oxygen Species (ROS), detected with the CellROX Green reagent. Mitophagy flux measurements showed mitophagy activation as both LC3-II and p62 flux increased with UroA at 24-h and 48-h time points, respectively. Finally, AMPK activation was observed by 4 h, in addition to a 2-fold increase in Mitochondrial Transcription Factor A (TFAM) promoter activity by 24 h of ZLN treatment following transient transfection of a TFAM promoter-luciferase construct. Mitochondrial respiration and ATP production were enhanced by 24 h. Our results suggest that early time points of treatment increase upstream pathway activity, whereas later time points represent the increased phenotypic expression of related downstream markers. Our findings suggest that the spatiotemporal progression of these mechanisms following drug treatment is another important factor to consider when examining subcellular changes towards mitochondrial turnover in muscle.
Collapse
Affiliation(s)
- Neushaw Moradi
- Muscle Health Research Center, School of Kinesiology and Health Science, York University, Toronto, ON, M3J 1P3, Canada
| | - Sabrina Champsi
- Muscle Health Research Center, School of Kinesiology and Health Science, York University, Toronto, ON, M3J 1P3, Canada
| | - David A. Hood
- Muscle Health Research Center, School of Kinesiology and Health Science, York University, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
33
|
Chakkittukandiyil A, Sajini DV, Rymbai E, Sugumar D, Mathew J, Arumugam S, Ramachandran V, Selvaraj D. Synthesis and evaluation of novel ethyl ferulate derivatives as potent Keap1 inhibitors to activate the Nrf2/ARE pathway in Parkinson's disease. Toxicol Appl Pharmacol 2025; 494:117172. [PMID: 39603427 DOI: 10.1016/j.taap.2024.117172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
The Kelch-like ECH-associated protein 1/Nuclear factor erythroid 2 related factor 2/Antioxidant Response Elements (Keap1/Nrf2/ARE) pathway is essential for neuronal resilience against the complex pathogenesis of Parkinson's disease (PD). Activating this pathway by covalently modifying Keap1 cysteine residues is a promising strategy for regulating neuroprotective gene expression. Our study aimed to identify phytochemicals that could irreversibly inhibit Keap1. A preliminary docking analysis revealed that ethyl ferulate could covalently bind with Cys151 of Keap1 by Michael's addition reaction. Further, we designed several ethyl ferulate derivatives with improved lipophilicity and assessed their binding affinity with Keap1. The molecules with good binding scores were synthesized and structures were confirmed through 1H NMR, 13C NMR, FT-IR, and mass spectroscopy. Neuroprotection screening was conducted in all-trans retinoic acid differentiated SH-SY5Y cells using rotenone as a disease-inducing agent. Pre-treatment with compounds C2 and C4 significantly mitigated rotenone toxicity. Additionally, C2 and C4 decreased rotenone-induced ROS production and mitochondrial membrane potential loss. C2 and C4 also induced Nrf2 nuclear translocation in SH-SY5Y cells and increased mRNA expression of heme oxygenase-1, an Nrf2-regulated antioxidant response element. In vivo, pretreatment with C2 (50, 100 mg/kg, p.o.) and C4 (50, 100 mg/kg, p.o.) protected against neurodegenerative phenotypes associated with rotenone (1.5 mg/kg, s.c.) induction in Wistar rats. Results indicate, C2 and C4 dose-dependently improved muscle rigidity, catalepsy, and cognitive deficits in rotenone-induced Wistar rats, and mitigated dopaminergic neurodegeneration in the substantia nigra. These findings highlight the potential of ethyl ferulate derivatives in modulating oxidative stress and neurodegeneration in PD via activation of Nrf2.
Collapse
Affiliation(s)
- Amritha Chakkittukandiyil
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Deepak Vasudevan Sajini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Deepa Sugumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Jinu Mathew
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Suresh Arumugam
- Department of Pharmacology, The Kaavery Pharmacy College, Mecheri, Salem, Tamil Nadu, India
| | - Vadivelan Ramachandran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
| |
Collapse
|
34
|
Jeon P, Ham HJ, Choi H, Park S, Jang JW, Park SW, Cho DH, Lee HJ, Song HK, Komatsu M, Han D, Jang DJ, Lee JA. NS1 binding protein regulates stress granule dynamics and clearance by inhibiting p62 ubiquitination. Nat Commun 2024; 15:10925. [PMID: 39738171 PMCID: PMC11686067 DOI: 10.1038/s41467-024-55446-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/11/2024] [Indexed: 01/01/2025] Open
Abstract
The NS1 binding protein, known for interacting with the influenza A virus protein, is involved in RNA processing, cancer, and nerve cell growth regulation. However, its role in stress response independent of viral infections remains unclear. This study investigates NS1 binding protein's function in regulating stress granules during oxidative stress through interactions with GABARAP subfamily proteins. We find that NS1 binding protein localizes to stress granules, interacting with core components, GABARAP proteins, and p62, a protein involved in autophagy. In cells lacking NS1 binding protein, stress granule dynamics are altered, and p62 ubiquitination is increased, suggesting impaired stress granule degradation. Overexpression of NS1 binding protein reduces p62 ubiquitination. In amyotrophic lateral sclerosis patient-derived neurons, reduced NS1 binding protein and p62 disrupt stress granule morphology. These findings identify NS1 binding protein as a negative regulator of p62 ubiquitination and a facilitator of GABARAP recruitment to stress granules, implicating it in stress granule regulation and amyotrophic lateral sclerosis pathogenesis.
Collapse
Affiliation(s)
- Pureum Jeon
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea
| | - Hyun-Ji Ham
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea
| | - Haneul Choi
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea
| | - Semin Park
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea
| | - Jae-Woo Jang
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea
| | - Sang-Won Park
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju, Korea
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, 41566, Korea
| | - Hyun-Jeong Lee
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Dohyun Han
- Department of Transdiciplinary Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Deok-Jin Jang
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju, Korea.
| | - Jin-A Lee
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea.
| |
Collapse
|
35
|
Schiavoni V, Emanuelli M, Milanese G, Galosi AB, Pompei V, Salvolini E, Campagna R. Nrf2 Signaling in Renal Cell Carcinoma: A Potential Candidate for the Development of Novel Therapeutic Strategies. Int J Mol Sci 2024; 25:13239. [PMID: 39769005 PMCID: PMC11675435 DOI: 10.3390/ijms252413239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer arising from renal tubular epithelial cells and is characterized by a high aggressive behavior and invasiveness that lead to poor prognosis and high mortality rate. Diagnosis of RCC is generally incidental and occurs when the stage is advanced and the disease is already metastatic. The management of RCC is further complicated by an intrinsic resistance of this malignancy to chemotherapy and radiotherapy, which aggravates the prognosis. For these reasons, there is intense research focused on identifying novel biomarkers which may be useful for a better prognostic assessment, as well as molecular markers which could be utilized for targeted therapy. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcriptional factor that has been identified as a key modulator of oxidative stress response, and its overexpression is considered a negative prognostic feature in several types of cancers including RCC, since it is involved in various key cancer-promoting functions such as proliferation, anabolic metabolism and resistance to chemotherapy. Given the key role of Nrf2 in promoting tumor progression, this enzyme could be a promising biomarker for a more accurate prediction of RCC course and it can also represent a valuable therapeutic target. In this review, we provide a comprehensive literature analysis of studies that have explored the role of Nrf2 in RCC, underlining the possible implications for targeted therapy.
Collapse
Affiliation(s)
- Valentina Schiavoni
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (M.E.); (G.M.); (A.B.G.); (V.P.)
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (M.E.); (G.M.); (A.B.G.); (V.P.)
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, 60131 Ancona, Italy
| | - Giulio Milanese
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (M.E.); (G.M.); (A.B.G.); (V.P.)
| | - Andrea Benedetto Galosi
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (M.E.); (G.M.); (A.B.G.); (V.P.)
| | - Veronica Pompei
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (M.E.); (G.M.); (A.B.G.); (V.P.)
| | - Eleonora Salvolini
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (M.E.); (G.M.); (A.B.G.); (V.P.)
| | - Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (M.E.); (G.M.); (A.B.G.); (V.P.)
| |
Collapse
|
36
|
Ferretti S, Zanella I. The Underestimated Role of Iron in Frontotemporal Dementia: A Narrative Review. Int J Mol Sci 2024; 25:12987. [PMID: 39684697 DOI: 10.3390/ijms252312987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The term frontotemporal dementia (FTD) comprises a group of neurodegenerative disorders characterized by the progressive degeneration of the frontal and temporal lobes of the brain with language impairment and changes in cognitive, behavioral and executive functions, and in some cases motor manifestations. A high proportion of FTD cases are due to genetic mutations and inherited in an autosomal-dominant manner with variable penetrance depending on the implicated gene. Iron is a crucial microelement that is involved in several cellular essential functions in the whole body and plays additional specialized roles in the central nervous system (CNS) mainly through its redox-cycling properties. Such a feature may be harmful under aerobic conditions, since it may lead to the generation of highly reactive hydroxyl radicals. Dysfunctions of iron homeostasis in the CNS are indeed involved in several neurodegenerative disorders, although it is still challenging to determine whether the dyshomeostasis of this essential but harmful metal is a direct cause of neurodegeneration, a contributor factor or simply a consequence of other neurodegenerative mechanisms. Unlike many other neurodegenerative disorders, evidence of the dysfunction in brain iron homeostasis in FTD is still scarce; nonetheless, the recent literature intriguingly suggests its possible involvement. The present review aims to summarize what is currently known about the contribution of iron dyshomeostasis in FTD based on clinical, imaging, histological, biochemical and molecular studies, further suggesting new perspectives and offering new insights for future investigations on this underexplored field of research.
Collapse
Affiliation(s)
- Sara Ferretti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Medical Genetics Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
37
|
Zhu YW, Liu ZT, Tang AQ, Liang XY, Wang Y, Liu YF, Jin YQ, Gao W, Yuan H, Wang DY, Ji XY, Wu DD. The Emerging Roles of Hydrogen Sulfide in Ferroptosis. Antioxid Redox Signal 2024; 41:1150-1172. [PMID: 39041626 DOI: 10.1089/ars.2023.0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Significance: Ferroptosis, a form of regulated cell death characterized by a large amount of lipid peroxidation-mediated membrane damage, joins the evolution of multisystem diseases, for instance, neurodegenerative diseases, chronic obstructive pulmonary disease, acute respiratory distress syndrome, osteoporosis, osteoarthritis, and so forth. Since being identified as the third gasotransmitter in living organisms, the intricate role of hydrogen sulfide (H2S) in ferroptosis has emerged at the forefront of research. Recent Advances: Novel targets in the relevant metabolic pathways have been found, including transferrin receptor 1, cystine/glutamate antiporter, and others, coupled with the exploration of new signaling pathways, particularly the p53 signaling pathway, the nitric oxide/nuclear factor erythroid 2-related factor 2 signaling pathway, and so on. Many diseases such as emphysema and airway inflammation, myocardial diseases, endothelial dysfunction in aging arteries, and traumatic brain injury have recently been found to be alleviated directly by H2S inhibition of ferroptosis. Safe, effective, and tolerable novel H2S donors have been developed and have shown promising results in phase I clinical trials. Critical Issues: Complicated cross talk between the ferroptosis signaling pathway and oncogenic factors results in the risk of cancer when inhibiting ferroptosis. Notably, targeted delivery of H2S is still a challenging task. Future Directions: Discovering more reliable and stable novel H2S donors and achieving their targeted delivery will enable further clinical trials for diseases associated with ferroptosis inhibition by H2S, determining their safety, efficacy, and tolerance. Antioxid. Redox Signal. 41, 1150-1172.
Collapse
Affiliation(s)
- Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Zi-Tao Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Ao-Qi Tang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Da-Yong Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
- The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, China
| |
Collapse
|
38
|
Jiang E, Chen X, Bi Y, Pan C, Li X, Lan X. Curcumin Inhibits Oxidative Stress and Apoptosis Induced by H 2O 2 in Bovine Adipose-Derived Stem Cells (bADSCs). Animals (Basel) 2024; 14:3421. [PMID: 39682386 DOI: 10.3390/ani14233421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
In livestock production, oxidative stress (OS) is ubiquitous, reducing animal productivity and product quality. Hence, investigating the mechanisms of oxidative stress in livestock and inhibiting oxidative stress-induced damage is crucial. Curcumin, a plant-derived bioactive compound, exhibits antioxidant and anti-apoptotic properties. Adipose-derived stem cells (ADSCs) from animal adipose tissue are easily accessible and possess multilineage differentiation potential. Therefore, this work utilized bovine ADSCs to establish an oxidative stress model and investigated the effects of curcumin on oxidative stress and apoptosis. Firstly, bovine ADSCs were isolated and cultured from fetal calf subcutaneous adipose tissue. Their surface markers were identified by immunofluorescence, confirming the expression of CD29, CD44, CD73, CD90, CD105 and Vimentin, but not CD34, indicative of mesenchymal stem/progenitor cell characteristics. Secondly, to explore the effects of curcumin on oxidative damage and apoptosis in bovine ADSCs, an oxidative stress model was induced using H2O2. CCK-8 assays showed significantly reduced cell viability and SOD activity, along with increased malondialdehyde (MDA) and reactive oxygen species (ROS) levels, indicating successful modeling. RT-qPCR further confirmed that 500 μM of H2O2 treatment for 24 h promoted apoptosis. Herein, CCK-8 assays indicated a significant reduction in cell viability at >8 μM of curcumin. Thirdly, using 4 μM and 8 μM of curcumin for pre-protection, 8 μM maintained SOD activity, reduced MDA and ROS, inhibited apoptosis-related gene changes (Bcl-2, Bax, Caspase-3), and suppressed apoptosis according to a TUNEL assay. Fourthly, curcumin's autophagy-inducing potential was hypothesized, which was confirmed by increased LC3-II and decreased P62 expression upon co-treatment with 3-MA. 3-MA inhibited curcumin's antioxidant and anti-apoptotic effects, suggesting that curcumin's antioxidant and anti-apoptotic roles may involve autophagy induction. In conclusion, bovine ADSCs are abundant, easily accessible, and multipotent, making them suitable for in vitro expansion. Curcumin alleviated H2O2-induced oxidative stress in bovine ADSCs, with curcumin also inhibiting apoptosis, likely through autophagy induction. This study validates the protective role of curcumin in bovine ADSCs, with potential applications in livestock production.
Collapse
Affiliation(s)
- Enhui Jiang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- College of Animal Science and Technology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuanbo Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yi Bi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology Hermann-Von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Chuanying Pan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiangchen Li
- College of Animal Science and Technology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
39
|
Chikhaoui A, Zayoud K, Kraoua I, Bouchoucha S, Tebourbi A, Turki I, Yacoub-Youssef H. Supplementation with nicotinamide limits accelerated aging in affected individuals with cockayne syndrome and restores antioxidant defenses. Aging (Albany NY) 2024; 16:13271-13287. [PMID: 39611850 PMCID: PMC11719109 DOI: 10.18632/aging.206160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
Cockayne syndrome (CS) is a segmental progeroid syndrome characterized by defects in the DNA excision repair pathway, predisposing to neurodegenerative manifestations. It is a rare genetic disorder and an interesting model for studying premature aging. Oxidative stress and autophagy play an important role in the aging process. The study of these two processes in a model of accelerated aging and the means to counteract them would lead to the identification of relevant biomarkers with therapeutic value for healthy aging. Here we investigated the gene expression profiles of several oxidative stress-related transcripts derived from CS-affected individuals and healthy elderly donors. We also explored the effect of nicotinamide supplementation on several genes related to inflammation and autophagy. Gene expression analysis revealed alterations in two main pathways. This involves the activation of arachidonic acid metabolism and the repression of the NRF2 pathway in affected individuals with CS. The supplementation with nicotinamide adjusted these abnormalities by enhancing autophagy and decreasing inflammation. Furthermore, CSA/CSB-dependent depletion of the mitochondrial DNA polymerase-γ catalytic subunit (POLG1) was restored following nicotinamide supplementation in CS-affected individuals' fibroblasts. This study reveals the link between oxidative stress and accelerated aging in affected individuals with CS and highlights new biomarkers of cellular senescence. However, further analyses are needed to confirm these results, which could not be carried out, mainly due to the unavailability of crucial samples of this rare disease.
Collapse
Affiliation(s)
- Asma Chikhaoui
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| | - Kouloud Zayoud
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| | - Ichraf Kraoua
- Department of Neuropediatrics, National Institute of Neurology Mongi Ben Hamida, Tunis 2092, Tunisia
| | - Sami Bouchoucha
- Orthopedics Department, Béchir Hamza Children’s Hospital, Tunis 2092, Tunisia
| | - Anis Tebourbi
- Orthopedic and Trauma Surgery Department, Mongi Slim Hospital, La Marsa 2046, Tunisia
| | - Ilhem Turki
- Department of Neuropediatrics, National Institute of Neurology Mongi Ben Hamida, Tunis 2092, Tunisia
| | - Houda Yacoub-Youssef
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| |
Collapse
|
40
|
Ingersoll AJ, McCloud DM, Hu JY, Rape M. Dynamic regulation of the oxidative stress response by the E3 ligase TRIP12. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625235. [PMID: 39651249 PMCID: PMC11623662 DOI: 10.1101/2024.11.25.625235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The oxidative stress response is centered on the transcription factor NRF2 and protects cells from reactive oxygen species (ROS). While ROS inhibit the E3 ligase CUL3 KEAP1 to stabilize NRF2 and elicit antioxidant gene expression, cells recovering from stress must rapidly reactivate CUL3 KEAP1 to prevent reductive stress and oxeiptosis-dependent cell death. How cells restore efficient NRF2-degradation upon ROS clearance remains poorly understood. Here, we identify TRIP12, an E3 ligase dysregulated in Clark-Baraitser Syndrome and Parkinson's Disease, as a component of the oxidative stress response. TRIP12 is a ubiquitin chain elongation factor that cooperates with CUL3 KEAP1 to ensure robust NRF2 degradation. In this manner, TRIP12 accelerates stress response silencing as ROS are being cleared, but limits NRF2 activation during stress. The need for dynamic control of NRF2-degradation therefore comes at the cost of diminished stress signaling, suggesting that TRIP12 inhibition could be used to treat degenerative pathologies characterized by ROS accumulation.
Collapse
|
41
|
Ren J, Pei Q, Dong H, Wei X, Li L, Duan H, Zhang G, Zhang A. Tripartite motif 25 inhibits protein aggregate degradation during PRRSV infection by suppressing p62-mediated autophagy. J Virol 2024; 98:e0143724. [PMID: 39480084 PMCID: PMC11575163 DOI: 10.1128/jvi.01437-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/06/2024] [Indexed: 11/02/2024] Open
Abstract
Viral infection causes endoplasmic reticulum stress and protein metabolism disorder, influencing protein aggregates formation or degradation that originate from misfolded proteins. The mechanism by which host proteins are involved in the above process remains largely unknown. The present study found that porcine reproductive and respiratory syndrome virus (PRRSV) infection promoted the degradation of intracellular ubiquitinated protein aggregates via activating autophagy. The host cell E3 ligase tripartite motif-containing (TRIM)25 promoted the recruitment and aggregation of polyubiquitinated proteins and impeded their degradation caused by PRRSV. TRIM25 interacted with ubiquitinated aggregates and was part of the aggregates complex. Next, the present study investigated the mechanisms by which TRIM25 inhibited the degradation of protein aggregates, and it was found that TRIM25 interacted with both Kelch-like ECH-associated protein 1 (KEAP1) and nuclear factor E2-related factor 2 (Nrf2), facilitated the nuclear translocation of Nrf2 by targeting KEAP1 for K48-linked ubiquitination and proteasome degradation, and activated Nrf2-mediated p62 expression. Further studies indicated that TRIM25 interacted with p62 and promoted its K63-linked ubiquitination via its E3 ligase activity and thus caused impairment of its oligomerization, aggregation, and recruitment for the autophagic protein LC3, leading to the suppression of autophagy activation. Besides, TRIM25 also suppressed the p62-mediated recruitment of ubiquitinated aggregates. Activation of autophagy decreased the accumulation of protein aggregates caused by TRIM25 overexpression, and inhibition of autophagy decreased the degradation of protein aggregates caused by TRIM25 knockdown. The current results also showed that TRIM25 inhibited PRRSV replication by inhibiting the KEAP1-Nrf2-p62 axis-mediated autophagy. Taken together, the present findings showed that the PRRSV replication restriction factor TRIM25 inhibited the degradation of ubiquitinated protein aggregates during viral infection by suppressing p62-mediated autophagy.IMPORTANCESequestration of protein aggregates and their subsequent degradation prevents proteostasis imbalance and cytotoxicity. The mechanisms controlling the turnover of protein aggregates during viral infection are mostly unknown. The present study found that porcine reproductive and respiratory syndrome virus (PRRSV) infection promoted the autophagic degradation of ubiquitinated protein aggregates, whereas tripartite motif-containing (TRIM)25 reversed this process. It was also found that TRIM25 promoted the expression of p62 by activating the Kelch-like ECH-associated protein 1 (KEAP1) and nuclear factor E2-related factor 2 (Nrf2) pathway and simultaneously prevented the oligomerization of p62 by promoting its K63-linked ubiquitination, thus suppressing its recruitment of the autophagic adaptor protein LC3 and ubiquitinated aggregates, leading to the inhibition of PRRSV-induced autophagy activation and the autophagic degradation of protein aggregates. The present study identified a new mechanism of protein aggregate turnover during viral infection and provided new insights for understanding the pathogenic mechanism of PRRSV.
Collapse
Affiliation(s)
- Jiahui Ren
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qiming Pei
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Haoxin Dong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xuedan Wei
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Liangliang Li
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Hong Duan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, China
| | - Angke Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
42
|
Shan C, Wang Y, Wang Y. The Crosstalk between Autophagy and Nrf2 Signaling in Cancer: from Biology to Clinical Applications. Int J Biol Sci 2024; 20:6181-6206. [PMID: 39664581 PMCID: PMC11628323 DOI: 10.7150/ijbs.103187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/29/2024] [Indexed: 12/13/2024] Open
Abstract
Autophagy is a catabolic process that has been conserved throughout evolution, serving to degrade and recycle cellular components and damaged organelles. Autophagy is activated under various stress conditions, such as nutrient deprivation, viral infections, and genotoxic stress, and operates in conjunction with other stress response pathways to mitigate oxidative damage and maintain cellular homeostasis. One such pathway is the Nrf2-Keap1-ARE signaling axis, which functions as an intrinsic antioxidant defense mechanism and has been implicated in cancer chemoprevention, tumor progression, and drug resistance. Recent research has identified a link between impaired autophagy, mediated by the autophagy receptor protein p62, and the activation of the Nrf2 pathway. Specifically, p62 facilitates Keap1 degradation through selective autophagy, leading to the translocation of Nrf2 into the nucleus, where it transcriptionally activates downstream antioxidant enzyme expression, thus safeguarding cells from oxidative stress. Furthermore, Nrf2 regulates p62 transcription, so a positive feedback loop involving p62, Keap1, and Nrf2 is established, which amplifies the protective effects on cells. This paper aims to provide a comprehensive review of the roles of Nrf2 and autophagy in cancer progression, the regulatory interactions between the Nrf2 pathway and autophagy, and the potential applications of the Nrf2-autophagy signaling axis in cancer therapy.
Collapse
Affiliation(s)
- Chan Shan
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yuan Wang
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yin Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
43
|
Bravo Iniguez A, Sun Q, Cui Q, Du M, Zhu MJ. Cannabidiol Enhances Mitochondrial Metabolism and Antioxidant Defenses in Human Intestinal Epithelial Caco-2 Cells. Nutrients 2024; 16:3843. [PMID: 39599629 PMCID: PMC11597683 DOI: 10.3390/nu16223843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The reintroduction of hemp production has resulted in increased consumption of cannabidiol (CBD) products, particularly CBD oil, yet their effects on intestinal health are not fully understood. Proper mitochondrial function and antioxidant defenses are vital for maintaining the intestinal epithelial barrier. AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator (PGC)1α are key mediators of mitochondrial metabolism. METHODS & RESULTS Using Caco-2 cells, we found that CBD oil promoted AMPK phosphorylation, upregulated differentiation markers, and enhanced PGC1α/SIRT3 mitochondrial signaling. CBD oil reduced reactive oxygen species production and increased antioxidant enzymes. Moreover, CBD oil also increased levels of citrate, malate, and succinate-key metabolites of the tricarboxylic acid cycle-alongside upregulation of pyruvate dehydrogenase and isocitrate dehydrogenase 1. Similarly, pure CBD induced metabolic and antioxidant signaling. CONCLUSIONS CBD enhances mitochondrial metabolic activity and antioxidant defense in Caco-2 cells, making it a promising candidate for treating intestinal dysfunction.
Collapse
Affiliation(s)
- Alejandro Bravo Iniguez
- School of Food Science, Washington State University, Pullman, WA 99164, USA; (A.B.I.); (Q.S.); (Q.C.)
| | - Qi Sun
- School of Food Science, Washington State University, Pullman, WA 99164, USA; (A.B.I.); (Q.S.); (Q.C.)
| | - Qiaorong Cui
- School of Food Science, Washington State University, Pullman, WA 99164, USA; (A.B.I.); (Q.S.); (Q.C.)
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA;
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA; (A.B.I.); (Q.S.); (Q.C.)
| |
Collapse
|
44
|
Zhang Z, Liu Y, Feng W, Mao P, Yang J, Zhao Z, Zhou S, Zhao AZ, Li F, Mu Y. Omega-3 polyunsaturated fatty acids protect against cisplatin-induced nephrotoxicity by activating the Nrf2 signaling pathway. Int J Biol Macromol 2024; 282:137457. [PMID: 39528186 DOI: 10.1016/j.ijbiomac.2024.137457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/25/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Nephrotoxicity is a prevalent side effect observed in patients undergoing chemotherapy. The pathogenesis of chemotherapy-induced nephrotoxicity involves various factors such as oxidative stress, DNA damage, inflammation, and apoptosis. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), possess anti-inflammatory and antioxidant properties. This study investigated the effects of EPA and DHA, either alone or in combination, on cisplatin-induced nephrotoxicity in mice, as well as their underlying mechanisms of action. The combined administration of EPA and DHA demonstrated superior efficacy in mitigating cisplatin-induced nephrotoxicity compared to administration alone, including the reduction of oxidative damage, inflammation, and apoptosis. Moreover, the combination of EPA and DHA suppressed inflammation and prevented the development of chronic kidney fibrosis during prolonged observations following repeated cisplatin administration. Mechanistically, ω-3 PUFAs enhance the expression of antioxidant genes by activating the p62-Keap1-Nrf2 signaling pathway. Furthermore, Nrf2 activation can inhibit the cisplatin-induced p53 apoptosis signal by upregulating the expression of MDM2 in renal tubular epithelial cells. Consequently, ω-3 PUFAs exert a protective effect against cisplatin-induced renal injury through activating the Nrf2 signaling pathway, suggesting that ω-3 PUFAs intake holds promise as a therapeutic strategy for combating cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Zongmeng Zhang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Yueying Liu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Wenbin Feng
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Ping Mao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Jianqin Yang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Zhenggang Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Sujin Zhou
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Allan Zijian Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Yunping Mu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
45
|
Tang M, Guo JJ, Guo RX, Xu SJ, Lou Q, Hu QX, Li WY, Yu JB, Yao Q, Wang QW. Progress of research and application of non-pharmacologic intervention in Alzheimer's disease. J Alzheimers Dis 2024; 102:275-294. [PMID: 39573867 DOI: 10.1177/13872877241289396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by amyloid-β (Aβ) deposition and neurofibrillary tangles formed by high phosphorylation of tau protein. At present, drug therapy is the main strategy of AD treatment, but its effects are limited to delaying or alleviating AD. Recently, non-pharmacologic intervention has attracted more attention, and more studies have confirmed that non-pharmacologic intervention in AD can improve the patient's cognitive function and quality of life. This paper summarizes the current non-pharmacologic intervention in AD, to provide useful supplementary means for AD intervention.
Collapse
Affiliation(s)
- Min Tang
- Ningbo Rehabilitation Hospital, Ningbo, Zhejiang, China
| | - Jie-Jie Guo
- The First People's Hospital of Wenling, Taizhou, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Rong-Xia Guo
- School of Teacher Education, Ningbo University, Ningbo, Zhejiang, China
| | - Shu-Jun Xu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Qiong Lou
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qiao-Xia Hu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wan-Yi Li
- Ningbo Rehabilitation Hospital, Ningbo, Zhejiang, China
| | - Jing-Bo Yu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qi Yao
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qin-Wen Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
46
|
Choi EJ, Oh HT, Lee SH, Zhang CS, Li M, Kim SY, Park S, Chang TS, Lee BH, Lin SC, Jeon SM. Metabolic stress induces a double-positive feedback loop between AMPK and SQSTM1/p62 conferring dual activation of AMPK and NFE2L2/NRF2 to synergize antioxidant defense. Autophagy 2024; 20:2490-2510. [PMID: 38953310 PMCID: PMC11572134 DOI: 10.1080/15548627.2024.2374692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
Co-occurring mutations in KEAP1 in STK11/LKB1-mutant NSCLC activate NFE2L2/NRF2 to compensate for the loss of STK11-AMPK activity during metabolic adaptation. Characterizing the regulatory crosstalk between the STK11-AMPK and KEAP1-NFE2L2 pathways during metabolic stress is crucial for understanding the implications of co-occurring mutations. Here, we found that metabolic stress increased the expression and phosphorylation of SQSTM1/p62, which is essential for the activation of NFE2L2 and AMPK, synergizing antioxidant defense and tumor growth. The SQSTM1-driven dual activation of NFE2L2 and AMPK was achieved by inducing macroautophagic/autophagic degradation of KEAP1 and facilitating the AXIN-STK11-AMPK complex formation on the lysosomal membrane, respectively. In contrast, the STK11-AMPK activity was also required for metabolic stress-induced expression and phosphorylation of SQSTM1, suggesting a double-positive feedback loop between AMPK and SQSTM1. Mechanistically, SQSTM1 expression was increased by the PPP2/PP2A-dependent dephosphorylation of TFEB and TFE3, which was induced by the lysosomal deacidification caused by low glucose metabolism and AMPK-dependent proton reduction. Furthermore, SQSTM1 phosphorylation was increased by MAP3K7/TAK1, which was activated by ROS and pH-dependent secretion of lysosomal Ca2+. Importantly, phosphorylation of SQSTM1 at S24 and S226 was critical for the activation of AMPK and NFE2L2. Notably, the effects caused by metabolic stress were abrogated by the protons provided by lactic acid. Collectively, our data reveal a novel double-positive feedback loop between AMPK and SQSTM1 leading to the dual activation of AMPK and NFE2L2, potentially explaining why co-occurring mutations in STK11 and KEAP1 happen and providing promising therapeutic strategies for lung cancer.Abbreviations: AMPK: AMP-activated protein kinase; BAF1: bafilomycin A1; ConA: concanamycin A; DOX: doxycycline; IP: immunoprecipitation; KEAP1: kelch like ECH associated protein 1; LN: low nutrient; MAP3K7/TAK1: mitogen-activated protein kinase kinase kinase 7; MCOLN1/TRPML1: mucolipin TRP cation channel 1; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; NAC: N-acetylcysteine; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; NSCLC: non-small cell lung cancer; PRKAA/AMPKα: protein kinase AMP-activated catalytic subunit alpha; PPP2/PP2A: protein phosphatase 2; ROS: reactive oxygen species; PPP3/calcineurin: protein phosphatase 3; RPS6KB1/p70S6K: ribosomal protein S6 kinase B1; SQSTM1/p62: sequestosome 1; STK11/LKB1: serine/threonine kinase 11; TCL: total cell lysate; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3; V-ATPase: vacuolar-type H+-translocating ATPase.
Collapse
Affiliation(s)
- Eun-Ji Choi
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Korea
- College of Pharmacy, Ajou University, Suwon, Gyeonggi-do, Korea
| | - Hyun-Taek Oh
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Korea
- Department of BioHealth Regulatory Science, Graduate School of Ajou University, Suwon, Gyeonggi-do, Korea
| | - Seon-Hyeong Lee
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi-do, Korea
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, Xiamen, China
| | - Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, Xiamen, China
| | - Soo-Youl Kim
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi-do, Korea
| | - Sunghyouk Park
- Natural Products Research Institute and College of Pharmacy, Seoul National University, Seoul, Korea
| | - Tong-Shin Chang
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Korea
| | - Byung-Hoon Lee
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Korea
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, Xiamen, China
| | - Sang-Min Jeon
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Korea
- College of Pharmacy, Ajou University, Suwon, Gyeonggi-do, Korea
- Department of BioHealth Regulatory Science, Graduate School of Ajou University, Suwon, Gyeonggi-do, Korea
| |
Collapse
|
47
|
Guo B, Shi X, Jiang Q, Pan Y, Yang Y, Liu Y, Chen S, Zhu W, Ren L, Liang R, Chen X, Xu H, Wei L, Lin Y, Wang J, Qiu C, Zhou H, Rao L, Wang L, Chen R, Chen S. Targeting Immunoproteasome in Polarized Macrophages Ameliorates Experimental Emphysema Via Activating NRF1/2-P62 Axis and Suppressing IRF4 Transcription. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405318. [PMID: 39356034 PMCID: PMC11600198 DOI: 10.1002/advs.202405318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/22/2024] [Indexed: 10/03/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) stands as the prevailing chronic airway ailment, characterized by chronic bronchitis and emphysema. Current medications fall short in treatment of these diseases, underscoring the urgent need for effective therapy. Prior research indicated immunoproteasome inhibition alleviated various inflammatory diseases by modulating immune cell functions. However, its therapeutic potential in COPD remains largely unexplored. Here, an elevated expression of immunoproteasome subunits LMP2 and LMP7 in the macrophages isolated from mouse with LPS/Elastase-induced emphysema and polarized macrophages in vitro is observed. Subsequently, intranasal administration of the immunoproteasome-specific inhibitor ONX-0914 significantly mitigated COPD-associated airway inflammation and improved lung function in mice by suppressing macrophage polarization. Additionally, ONX-0914 capsulated in PLGA nanoparticles exhibited more pronounced therapeutic effect on COPD than naked ONX-0914 by targeting immunoproteasome in polarized macrophages. Mechanistically, ONX-0914 activated autophagy and endoplasmic reticulum (ER) stress are not attribute to the ONX-0914 mediated suppression of macrophage polarization. Intriguingly, ONX-0914 inhibited M1 polarization through the nuclear factor erythroid 2-related factor-1 (NRF1) and NRF2-P62 axis, while the suppression of M2 polarization is regulated by inhibiting the transcription of interferon regulatory factor 4 (IRF4). In summary, the findings suggest that targeting immunoproteasome in macrophages holds promise as a therapeutic strategy for COPD.
Collapse
Affiliation(s)
- Bingxin Guo
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Xing Shi
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Qiong Jiang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Yuanwei Pan
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Yuqiong Yang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory DiseaseFirst Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510150China
| | - Yuanyuan Liu
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Post‐doctoral Scientific Research Station of Basic Medicine, The Second Clinical Medical CollegeJinan UniversityGuangzhou510632China
| | - Shuyu Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Wenjiao Zhu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Laibin Ren
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Ruifang Liang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Post‐doctoral Scientific Research Station of Basic Medicine, The Second Clinical Medical CollegeJinan UniversityGuangzhou510632China
| | - Xue Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Haizhao Xu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Laiyou Wei
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Yongjian Lin
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Jinyong Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Chen Qiu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Haibo Zhou
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Lang Rao
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Lingwei Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Rongchang Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Shanze Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
48
|
Baral K, Joshi S, Lopez A, Mugon G, Chanda A, Chandrasheker AA, Hinton C, Thapa K, Mercer A, Spade L, Liu G, Bhetwal BP, Fang J, Khambu B. Transcriptional changes impact hepatic proteome in autophagy-impaired liver. FEBS Open Bio 2024; 14:1851-1863. [PMID: 39284785 PMCID: PMC11532973 DOI: 10.1002/2211-5463.13898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 11/05/2024] Open
Abstract
Hepatic proteomes are intricately controlled through biosynthesis, extracellular secretion, and intrahepatic degradation. Autophagy governs lysosome-mediated intrahepatic degradation and the hepatic proteome. When autophagy is impaired, it leads to the accumulation of intrahepatic proteins, causing proteinopathy. This study investigates whether autophagy can modulate the hepatic proteome non-degradatively. Utilizing conditional, inducible, and hepatotoxin models of hepatic autophagy impairment, we assessed the overall hepatic proteome expression using Coomassie brilliant blue (CBB) staining and liquid chromatography-tandem mass spectrometry (LC/MS). We pinpointed and confirmed four specific hepatic proteins-Cps1, Ahcy, Ca3, and Gstm1-that were selectively modified in autophagy-deficient livers. Expression of Cps1, Ahcy, and Ca3 were significantly reduced, while Gstm1 expression increased in livers with autophagy impairment. Interestingly, these changes in hepatic protein levels were not due to defective autophagic degradation but were associated with alterations in mRNA transcript levels. Moreover, as a result of autophagic dysfunction, sustained activation of the nuclear erythroid-derived 2-like 2 (Nrf2) transcription factor, transcriptionally regulated the mRNA levels of these proteins. Our findings indicate that autophagy can influence hepatic proteins not solely via traditional degradative routes but also through non-degradative transcriptional processes by modulating Nrf2.
Collapse
Affiliation(s)
- Kamal Baral
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLAUSA
| | | | - Adriana Lopez
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLAUSA
| | - Gavisha Mugon
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLAUSA
| | - Aroma Chanda
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLAUSA
| | - Arya A. Chandrasheker
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLAUSA
| | - Cameron Hinton
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLAUSA
| | - Kapil Thapa
- Department of Cell and Molecular BiologySchool of Science and EngineeringNew OrleansLAUSA
| | - Arissa Mercer
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLAUSA
| | - Leah Spade
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLAUSA
| | - Gang Liu
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLAUSA
| | | | - Jia Fang
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLAUSA
| | - Bilon Khambu
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLAUSA
| |
Collapse
|
49
|
Jiang X, Yu M, Wang WK, Zhu LY, Wang X, Jin HC, Feng LF. The regulation and function of Nrf2 signaling in ferroptosis-activated cancer therapy. Acta Pharmacol Sin 2024; 45:2229-2240. [PMID: 39020084 PMCID: PMC11489423 DOI: 10.1038/s41401-024-01336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/04/2024] [Indexed: 07/19/2024]
Abstract
Ferroptosis is an iron-dependent programmed cell death process that involves lipid oxidation via the Fenton reaction to produce lipid peroxides, causing disruption of the lipid bilayer, which is essential for cellular survival. Ferroptosis has been implicated in the occurrence and treatment response of various types of cancer, and targeting ferroptosis has emerged as a promising strategy for cancer therapy. However, cancer cells can escape cellular ferroptosis by activating or remodeling various signaling pathways, including oxidative stress pathways, thereby limiting the efficacy of ferroptosis-activating targeted therapy. The key anti-oxidative transcription factor, nuclear factor E2 related factor 2 (Nrf2 or NFE2L2), plays a dominant role in defense machinery by reprogramming the iron, intermediate, and glutathione peroxidase 4 (GPX4)-related network and the antioxidant system to attenuate ferroptosis. In this review, we summarize the recent advances in the regulation and function of Nrf2 signaling in ferroptosis-activated cancer therapy and explore the prospect of combining Nrf2 inhibitors and ferroptosis inducers as a promising cancer treatment strategy.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Min Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, School of Medicine, Zhejiang University, Jinhua, 321000, China
| | - Wei-Kai Wang
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Li-Yuan Zhu
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Xian Wang
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Hong-Chuan Jin
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Li-Feng Feng
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
50
|
Martinez-Canton M, Galvan-Alvarez V, Martin-Rincon M, Calbet JAL, Gallego-Selles A. Unlocking peak performance: The role of Nrf2 in enhancing exercise outcomes and training adaptation in humans. Free Radic Biol Med 2024; 224:168-181. [PMID: 39151836 DOI: 10.1016/j.freeradbiomed.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Since the discovery of the nuclear factor erythroid-derived 2-like 2 (Nrf2) transcription factor thirty years ago, it has been shown that it regulates more than 250 genes involved in a multitude of biological processes, including redox balance, mitochondrial biogenesis, metabolism, detoxification, cytoprotection, inflammation, immunity, autophagy, cell differentiation, and xenobiotic metabolism. In skeletal muscle, Nrf2 signalling is primarily activated in response to perturbation of redox balance by reactive oxygen species or electrophiles. Initial investigations into human skeletal muscle Nrf2 responses to exercise, dating back roughly a decade, have consistently indicated that exercise-induced ROS production stimulates Nrf2 signalling. Notably, recent studies employing Nrf2 knockout mice have revealed impaired skeletal muscle contractile function characterised by reduced force output and increased fatigue susceptibility compared to wild-type counterparts. These deficiencies partially stem from diminished basal mitochondrial respiratory capacity and an impaired capacity to upregulate specific mitochondrial proteins in response to training, findings corroborated by inducible muscle-specific Nrf2 knockout models. In humans, baseline Nrf2 expression in skeletal muscle correlates with maximal oxygen uptake and high-intensity exercise performance. This manuscript delves into the mechanisms underpinning Nrf2 signalling in response to acute exercise in human skeletal muscle, highlighting the involvement of ROS, antioxidants and Keap1/Nrf2 signalling in exercise performance. Furthermore, it explores Nrf2's role in mediating adaptations to chronic exercise and its impact on overall exercise performance. Additionally, the influence of diet and certain supplements on basal Nrf2 expression and its role in modulating acute and chronic exercise responses are briefly addressed.
Collapse
Affiliation(s)
- Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806, Oslo, Norway; School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada.
| | - Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|