1
|
Considine P, Punnabhum P, Davidson CG, Armstrong GB, Kreiner M, Bax HJ, Chauhan J, Spicer J, Josephs DH, Karagiannis SN, Halbert G, Rattray Z. Assessment of biophysical properties of the first-in-class anti-cancer IgE antibody drug MOv18 IgE demonstrates monomeric purity and stability. MAbs 2025; 17:2512211. [PMID: 40432600 PMCID: PMC12123954 DOI: 10.1080/19420862.2025.2512211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/21/2025] [Accepted: 05/22/2025] [Indexed: 05/29/2025] Open
Abstract
Therapeutic monoclonal antibodies, which are almost exclusively IgG isotypes, show significant promise but are prone to poor solution stability, including aggregation and elevated solution viscosity at dose-relevant concentrations. Recombinant IgE antibodies are emerging cancer immunotherapies. The first-in-class MOv18 IgE, recognizing the cancer-associated antigen folate receptor-alpha (FRα), completed a Phase 1 clinical trial in patients with solid tumors, showing early signs of efficacy at a low dose. The inaugural process development and scaled manufacture of MOv18 IgE for clinical testing were undertaken with little baseline knowledge about the solution phase behavior of recombinant IgE at dose-relevant concentrations. We evaluated MOv18 IgE physical stability in response to environmental and formulation stresses encountered throughout shelf life. We analyzed changes in physical stability using multiple orthogonal analytical techniques, including particle tracking analysis, size exclusion chromatography, and multidetector flow field flow fractionation hyphenated with UV. We used dynamic and multiangle light scattering to profile aggregation status. Formulation at pH 6.5, selected for use in the Phase 1 trial, resulted in high monomeric purity and no submicron proteinaceous particulates. Formulation at pH 5.5 and 7.5 induced significant submicron and sub-visible particle formation. IgE formulation was resistant to aggregation in response to freeze-thaw stress, retaining high monomeric purity. Exposure to thermal stress at elevated temperatures resulted in loss of monomeric purity and aggregation. Agitation stress-induced submicron and subvisible aggregation, but monomeric purity was not significantly affected. MOv18 IgE retains monomeric purity in response to formulation and stress conditions, confirming stability. Our results offer crucial guidance for future IgE-based drug development.
Collapse
Affiliation(s)
- Paul Considine
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Panida Punnabhum
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Callum G. Davidson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Georgina B. Armstrong
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Drug Substance Development, GlaxoSmithKline, Stevenage, UK
| | - Michaela Kreiner
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Cancer Research UK Formulation Unit, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Heather J. Bax
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences & KHP Centre for Translational Medicine, Guy’s Hospital, King’s College London, London, UK
| | - Jitesh Chauhan
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences & KHP Centre for Translational Medicine, Guy’s Hospital, King’s College London, London, UK
| | - James Spicer
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
- Cancer Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Debra H. Josephs
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences & KHP Centre for Translational Medicine, Guy’s Hospital, King’s College London, London, UK
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
- Cancer Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences & KHP Centre for Translational Medicine, Guy’s Hospital, King’s College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Cancer Centre, London, UK
| | - Gavin Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Cancer Research UK Formulation Unit, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Zahra Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
2
|
Manchekar TV, B D S, Kamble RS, Bhagwat S, Dandekar P, Jain R. Comparative analysis of pH shift-induced aggregation in IgG subclasses: Unveiling distinct pathways, mechanisms, and kinetics. Int J Biol Macromol 2025; 316:144413. [PMID: 40403800 DOI: 10.1016/j.ijbiomac.2025.144413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 05/05/2025] [Accepted: 05/18/2025] [Indexed: 05/24/2025]
Abstract
Therapeutic proteins are inherently challenging to stabilize due to their structure, physicochemical properties, and pronounced sensitivity to environmental factors such as pH and ionic strength. This research focuses on understanding the aggregation mechanisms and kinetics of three IgG subclasses during acidic pH exposure and subsequent neutralization, mimicking pH shift encountered in downstream processing conditions. Using orthogonal analytical methods, including SEC, AUC, and DLS, we tracked the formation of initial dimers and their progression to high-molecular-weight species (HMWs). Conformational changes leading to aggregation were analyzed with DSC, CD, ATR-FTIR and fluorescence spectroscopy. The Lumry-Eyring model, which accounts for the reversibility of each step in the aggregation process, was employed. The kinetic rate constants of each step were optimized using MATLAB. This model enabled detailed mapping of transitions from monomers to intermediates, and further to dimers or higher oligomers. We have analyzed the product formation during neutralization of acid-stressed samples and observed distinct behavior among the IgG subclasses. IgG1 dimers, not only dissociated into monomers but also formed trimers or HMWs, whereas IgG2 and IgG4 predominantly formed tetramers or HMWs with limited reversion to monomers. Such fundamental investigations are crucial for optimizing monoclonal antibody development, ensuring therapeutic efficacy, and mitigating safety risks associated with aggregation.
Collapse
Affiliation(s)
- Triveni Vilas Manchekar
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Spoorthi B D
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Rahul Shrikant Kamble
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Sunil Bhagwat
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India; Indian Institute of Science Education and Research, Pune, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
3
|
Sarsarshahi S, Bhattacharya S, Zacharias ZR, Kamel ES, Houtman JCD, Nejadnik R. Highly variable aggregation and glycosylation profiles and their roles in immunogenicity to protein-based therapeutics. J Pharm Sci 2025; 114:103771. [PMID: 40139530 DOI: 10.1016/j.xphs.2025.103771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Production of antibodies against protein-based therapeutics (e.g., monoclonal antibodies (mAbs)) by a recipient's immune system can vary from benign symptoms to chronic neutralization of the compound, and in rare cases, a lethal cytokine storm. One critical factor that can induce or contribute to an anti-drug antibody (ADA) response is believed to be the presence of aggregated proteins in protein-based therapeutics. There is a high level of variability in the aggregation of different proteins, which adds to the complexity in understanding the immune response to these drugs. Furthermore, the level of glycosylation of proteins, which increases drug stability, functionality, and serum half-life, is highly variable and may influence their immunogenicity. Considering the abundance of literature on the effect of aggregation and glycosylation on the immunogenicity of protein-based therapeutics, this review aims to summarize the current knowledge and clarify the immunogenic effects of different protein-based therapeutics such as mAbs. This review focuses on the properties of aggregated proteins and elucidates their relationship with immunogenicity. The contribution of different immune cell subsets and the mechanisms in aggregation-induced immunogenicity are also reviewed. Finally, the potential effects of each glycan, such as sialic acid, mannose, and fucose, on protein-based therapeutics' immunogenicity and stability is discussed.
Collapse
Affiliation(s)
- Sina Sarsarshahi
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Sanghati Bhattacharya
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Zeb R Zacharias
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States; Human Immunology Core, University of Iowa, Iowa City, IA, United States
| | - Eman S Kamel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Jon C D Houtman
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States; Human Immunology Core, University of Iowa, Iowa City, IA, United States; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Reza Nejadnik
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
4
|
Sreenivasan S, Rathore AS. Impact of Various Forced Oxidative Stress Factors in Rapid Degradation of mAb: Trastuzumab as a Case Study. Pharm Res 2025; 42:335-351. [PMID: 39849217 DOI: 10.1007/s11095-025-03816-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/01/2025] [Indexed: 01/25/2025]
Abstract
PURPOSE Therapeutic monoclonal antibodies (mAbs) are prone to degradation via aggregation and fragmentation. In this study, forced degradation of trastuzumab (TmAb) was explored in saline and in-vitro models having H2O2 and exposed to UV light (case study 1), both bleomycin (BML) formulation and ferrous ions (Fe2+) (case study 2), and sodium hypochlorite (NaOCl) (case study 3). METHODS Size exclusion chromatography, dynamic light scattering, spectroscopic analysis, and fluorescence microscope image processing was carried out for characterizing TmAb degradation. RESULTS Saline samples containing TmAb and 0.1% H2O2 incubated at 40ºC for 1 h in the presence of UV light showed increased monomer loss by more than 40% compared to TmAb sample without H2O2 exposed to UV light. Saline containing TmAb having both 0.1-unit BML and 0.25 mM Fe2+ showed increased monomer loss by more than 50% compared to TmAb in saline having only Fe2+ or BML. A higher TmAb degradation was also observed in saline containing 0.01% NaOCl compared to saline without NaOCl. Samples containing aggregates of mAb showed altered protein structure. Degradation of TmAb in saline increased with time, temperature, and concentrations of H2O2, Fe2+, and NaOCl. At different analysis time points, TmAb monomer loss was higher in saline compared to human serum filtrate, an in-vitro model. Aggregate particles (> 2 µm size) of TmAb were also observed in serum containing both Fe2+ and BML. CONCLUSION It can be concluded that rapid TmAb degradation significantly enhanced due to various stress factors, and the aggregates could result in enhanced immunogenic risk to the patients.
Collapse
Affiliation(s)
- Shravan Sreenivasan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
- DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
5
|
Cohen JR, Joubert MK, Tabassum S, Capili A, Carreon J, Xiang C, Prabhu S, Merlo A, Mytych D, Dolan DG, Kouda R. Experimental validation of a parenteral permitted daily exposure value for cleaning-induced degradants from recombinant therapeutic proteins with in vitro immunogenicity assays. J Pharm Sci 2025; 114:866-877. [PMID: 39490658 DOI: 10.1016/j.xphs.2024.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Multiproduct manufacturing of biotherapeutic proteins generate cleaning-induced protein degradants because of extreme pH and temperature conditions during the cleaning process. Cleaning Acceptance limits are calculated based on the maximum allowable carryover (MAC) assessment of the previously manufactured active pharmaceutical ingredient (API) - or drug product - based on the permitted daily exposure (PDE) of the previously manufactured API into the dose of subsequent product. In this study, we tested a previously determined PDE value for cleaning-induced protein degradants of 650 µg/dose. A bench-scale cleaning method was used to generate cleaning induced degradants from both a half-life extension (HLE) BiTE® molecule and a mAb product. For this investigation, degradants of HLE BiTE®-A and mAb-1 were characterized alone or after spiking of 650 µg of degradants of HLE BiTE®-A or 650 µg degradants of mAb-1, into mAb-1, respectively. These samples were characterized by endotoxin testing, size exclusion chromatography (SEC), light obscuration by HIAC, and micro-fluidic imaging (MFI). These results suggest that significant degradation of the molecule occurs because of the cleaning procedure, and it is no longer in the intact form or active state. The potential immogenic impact was assessed using a cell line assay to assess immune activation, and a human Peripheral Blood Mononuclear Cell (PBMC) assay to assess T cell activation, T cell proliferation, and cytokine release after 20 h and 7 days. Findings from the various in vitro cell-based immune activation assays suggest that the presence of 650 µg of carryover of degradants either alone or spiked into the same or a cross-product do not increase immunogenicity risk in cell-based assays - suggesting that the current PDE of 650 µg/dose for cleaning-induced degradant carryover does not have a risk of immunogenicity in patients.
Collapse
Affiliation(s)
- Joseph R Cohen
- The Department of Process Development, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, United States.
| | - Marisa K Joubert
- The Department of Process Development, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, United States
| | - Syeda Tabassum
- The Department of Process Development, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, United States
| | - Allyson Capili
- The Department of Process Development, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, United States
| | - Julia Carreon
- The Department of Process Development, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, United States
| | - Cathie Xiang
- The Department of Process Development, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, United States
| | - Siddharth Prabhu
- The Department of Process Development, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, United States
| | - Anthony Merlo
- The Department of Process Development, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, United States
| | - Dan Mytych
- The Department of Clinical Immunology, Amgen Inc., Thousand Oaks, CA 91320, United States
| | - David G Dolan
- The Department of Environmental Health and Safety, Amgen Inc., Thousand Oaks, CA 91320, United States
| | - Ram Kouda
- The Department of Process Development, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, United States.
| |
Collapse
|
6
|
Nakae T, Maruyama S, Ogawa T, Hasegawa S, Obana M, Fujio Y. Application of one-class classification using deep learning technique improves the classification of subvisible particles. J Pharm Sci 2025; 114:1117-1124. [PMID: 39615881 DOI: 10.1016/j.xphs.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/24/2025]
Abstract
Capturing subvisible particles using flow imaging microscopy is useful for evaluating protein aggregates that may induce immunogenicity. Automated labeling is desirable to distinguish harmless components such as silicone oil (SO) from subvisible particles. The one-class classifier, which requires only target class data for model establishment, is suitable for machine learning and proposes a useful solution for distinguishing a subject with heterogeneous but stable distributions, such as SO. However, the effectiveness of the application of one-class classifiers to subvisible particles remains unclear. In this study, we investigated whether deep learning techniques can improve the performance on a variety of images. We prepared datasets using SO and two types of protein aggregates: immunoglobulin G-derived aggregates (AggIgG) and albumin-derived aggregates (AggAlb). The deep-learning technique improved the classification scores for both AggIgG and AggAlb. The classification scores for AggIgG were more satisfactory than those for AggAlb. Cluster analysis revealed that one-class classification using deep learning techniques achieved excellent effectiveness across almost all clusters in classifying AggIgG. Collectively, the deep learning technique remarkably improved the one-class classification of subvisible particles of AggIgG and AggAlb. Combined with deep learning, one-class classification can contribute to the evaluation of subvisible particles, particularly for AggIgG.
Collapse
Affiliation(s)
- Takafumi Nakae
- Formulation Technology Research Laboratories, Daiichi Sankyo Co., Ltd., Hiratsuka, Kanagawa, Japan; Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Sunao Maruyama
- Formulation Technology Research Laboratories, Daiichi Sankyo Co., Ltd., Hiratsuka, Kanagawa, Japan
| | - Toru Ogawa
- Formulation Technology Research Laboratories, Daiichi Sankyo Co., Ltd., Hiratsuka, Kanagawa, Japan
| | - Susumu Hasegawa
- Formulation Technology Research Laboratories, Daiichi Sankyo Co., Ltd., Hiratsuka, Kanagawa, Japan
| | - Masanori Obana
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
| |
Collapse
|
7
|
Kjellström A, Cederwall I, Martínez CS, Kwok S, Rosenthal F, Elofsson U, Paulsson M, Wahlgren M. Pneumatic tube transport of trastuzumab in IV bags-Effect of headspace and surfactant on subvisible particle formation. J Pharm Sci 2025; 114:1142-1151. [PMID: 39793760 DOI: 10.1016/j.xphs.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 01/13/2025]
Abstract
In hospitals, IV bags can be prepared in advance for logistical and microbial safety reasons in a compounding unit and then transported to wards. Transport of protein drugs using a pneumatic tube system has been reported to result in high particle levels. In this study, pneumatic tube transport of trastuzumab in saline polyolefin bags was compared to delivery by hospital porters using an electric platform truck in an underground tunnel system. The transport was tracked using designed smart labels. Two strategies to prevent particle formation, removing headspace and adding the surfactant polysorbate 20 were evaluated. The transport by pneumatic tube had a higher level of shock and vibration than truck delivery. The total particle count measured using flow microscopy also increased more for pneumatic transport than for transport by vehicle. Removing the headspace decreased particle formation for both transports. Surfactant decreases particles over 10 µm for trastuzumab in saline IV bags but increases the total particle levels. Pneumatic tube transport of saline in polyolefin bags resulted in high particle levels and surfactant increased the total particle count. Removing headspace is a measure that can be incorporated into compounding practices to cover for inadequate surfactant levels in IV bags.
Collapse
Affiliation(s)
- Anna Kjellström
- Department of Process and Life Science Engineering, Div. Food and Pharma, Lund University, P.O. Box 124, 22100 Lund, Sweden.
| | - Ida Cederwall
- RISE, Research Institutes of Sweden, Div. Life Science, Chemical Process and Pharmaceutical Development, Stockholm, Sweden
| | | | - Stanley Kwok
- Late Stage Formulation Sciences, BioPharmaceuticals Development, Dosage Form Design & Development, AstraZeneca, Gaithersburg, USA
| | - Florian Rosenthal
- Pharmaceutical Development, F. Hoffmann-La Roche Ltd. Basel, Switzerland
| | - Ulla Elofsson
- RISE, Research Institutes of Sweden, Div. Life Science, Chemical Process and Pharmaceutical Development, Stockholm, Sweden
| | - Mattias Paulsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Marie Wahlgren
- Department of Process and Life Science Engineering, Div. Food and Pharma, Lund University, P.O. Box 124, 22100 Lund, Sweden
| |
Collapse
|
8
|
Dykstra AB, Lubinsky TG, Vitrac H, Campuzano IDG, Bondarenko PV, Simone AR. Utilization of Liquid Chromatography-Mass Spectrometry and High-Resolution Ion Mobility-Mass Spectrometry to Characterize Therapeutically Relevant Peptides with Asparagine Deamidation and Isoaspartate. Anal Chem 2025; 97:749-757. [PMID: 39714115 DOI: 10.1021/acs.analchem.4c05246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Rapid identification of asparagine (Asn) deamidation and isoaspartate (isoAsp) in proteins remains a challenging analytical task during the development of biological therapeutics. For this study, 46 therapeutically relevant peptides corresponding to 13 peptide families (13 unmodified peptides and 33 modified peptides) were obtained; modified peptides included Asn deamidation and isoAsp. The peptide families were characterized by three methods: reversed-phase ultrahigh performance liquid chromatography-mass spectrometry (RP-UHPLC-MS); flow injection analysis high-resolution ion mobility-mass spectrometry (FIA-HRIM-MS); and shortened gradient RP-UHPLC-HRIM-MS. UHPLC-MS data acquisition was 2 h per injection, in contrast to high-throughput 1 min data acquisition of the FIA-HRIM-MS technique. A rapid 2D peptide map has been demonstrated by combining shortened gradient RP-UHPLC with HRIM, to optimize the resolution of the Asn-, Asp-, and isoAsp-containing peptides, increasing the likelihood of detecting peptides containing these quality attributes with expedited data acquisition. Additionally, this paper provides an ion mobility calibration data set for therapeutically relevant peptides (unmodified and modified) over an ion-neutral collisional cross-section range of 300-800 Å2.
Collapse
Affiliation(s)
- Andrew B Dykstra
- Pre-Pivotal Attribute Sciences, Amgen, Inc, Thousand Oaks, California 91320, United States
| | | | - Heidi Vitrac
- MOBILion Systems, Chadds Ford, Pennsylvania 19317, United States
| | - Iain D G Campuzano
- Molecular Analytics, Amgen, Inc, Thousand Oaks, California 91320, United States
| | - Pavel V Bondarenko
- Pre-Pivotal Attribute Sciences, Amgen, Inc, Thousand Oaks, California 91320, United States
| | - Ashli R Simone
- MOBILion Systems, Chadds Ford, Pennsylvania 19317, United States
| |
Collapse
|
9
|
Sreenivasan S, Schöneich C, Rathore AS. Aggregation of therapeutic monoclonal antibodies due to thermal and air/liquid interfacial agitation stress: Occurrence, stability assessment strategies, aggregation mechanism, influencing factors, and ways to enhance stability. Int J Pharm 2024; 666:124735. [PMID: 39326478 DOI: 10.1016/j.ijpharm.2024.124735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Therapeutic proteins, such as monoclonal antibodies (mAbs) are known to undergo stability related issues during various stages of product life cycle resulting in the formation of aggregates and fragments. Aggregates of mAb might result in reduced therapeutic activity and could cause various adverse immunogenic responses. Sample containing mAb undergo aggregation due to various types of stress factors, and there is always a continuous interest among researchers and manufacturers to determine the effect of different factors on the stability of mAb. Thermal stress and air/liquid interfacial agitation stress are among two of the common stress factors to which samples containing mAb are exposed to during various stages. Initial part of this review articles aims to provide a generalized understanding of aggregation of mAb such as size ranges of aggregates, aggregate types, stress factors, analytical techniques, permissible aggregate limits, and stability assessment methods. This article further aims to explain different aspects associated with aggregation of mAb in liquid samples due to thermal and air/liquid interfacial agitation stress. Under each stress category, the occurrence of stress during product life cycle, type of aggregates formed, mechanism of aggregation, strategies used by various researchers to expose mAb containing samples to stress, different factors affecting aggregation, fate of aggregates in human body fluids, and strategies used to enhance mAb stability has been explained in detail. The authors hope that this article provides a detailed understanding about stability of mAb due to thermal and air/liquid interfacial stress with relevance to product life cycle from manufacturing to administration into patients.
Collapse
Affiliation(s)
- Shravan Sreenivasan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India
| | | | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India.
| |
Collapse
|
10
|
Carter PJ, Quarmby V. Immunogenicity risk assessment and mitigation for engineered antibody and protein therapeutics. Nat Rev Drug Discov 2024; 23:898-913. [PMID: 39424922 DOI: 10.1038/s41573-024-01051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/21/2024]
Abstract
Remarkable progress has been made in recent decades in engineering antibodies and other protein therapeutics, including enhancements to existing functions as well as the advent of novel molecules that confer biological activities previously unknown in nature. These protein therapeutics have brought major benefits to patients across multiple areas of medicine. One major ongoing challenge is that protein therapeutics can elicit unwanted immune responses (immunogenicity) in treated patients, including the generation of anti-drug antibodies. In rare and unpredictable cases, anti-drug antibodies can seriously compromise therapeutic safety and/or efficacy. Systematic deconvolution of this immunogenicity problem is confounded by the complexity of its many contributing factors and the inherent limitations of available experimental and computational methods. Nevertheless, continued progress with the assessment and mitigation of immunogenicity risk at the preclinical stage has the potential to reduce the incidence and severity of clinical immunogenicity events. This Review focuses on identifying key unsolved anti-drug antibody-related challenges and offers some pragmatic approaches towards addressing them. Examples are drawn mainly from antibodies, given that the majority of available clinical data are from this class of protein therapeutics. Plausible and seemingly tractable solutions are in sight for some immunogenicity problems, whereas other challenges will likely require completely new approaches.
Collapse
Affiliation(s)
- Paul J Carter
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA, USA.
| | - Valerie Quarmby
- Department of BioAnalytical Sciences, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
11
|
Milef G, Ghazvini S, Prajapati I, Chen YC, Wang Y, Boroumand M. Particle formation in response to different protein formulations and containers: Insights from machine learning analysis of particle images. J Pharm Sci 2024; 113:3470-3478. [PMID: 39389538 DOI: 10.1016/j.xphs.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Subvisible particle count is a biotherapeutics stability indicator widely used by pharmaceutical industries. A variety of stresses that biotherapeutics are exposed to during development can impact particle morphology. By classifying particle morphological differences, stresses that have been applied to monoclonal antibodies (mAbs) can be identified. This study aims to evaluate common biotherapeutic drug storage and shipment conditions that are known to impact protein aggregation. Two different studies were conducted to capture particle images using micro-flow imaging and to classify particles using a convolutional neural network. The first study evaluated particles produced in response to agitation, heat, and freeze-thaw stresses in one mAb formulated in five different formulations. The second study evaluated particles from two common drug containers, a high-density polyethylene bottle and a glass vial, in six mAbs exposed solely to agitation stress. An extension of this study was also conducted to evaluate the impact of sequential stress exposure compared to exposure to one stress alone, on particle morphology. Overall, the convolutional neural network was able to classify particles belonging to a particular formulation or container. These studies indicate that storage and shipping stresses can impact particle morphology according to formulation composition and mAb.
Collapse
Affiliation(s)
- Gabriella Milef
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA.
| | - Saba Ghazvini
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Indira Prajapati
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Yu-Chieh Chen
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Yibo Wang
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Mehdi Boroumand
- Data Science and Modeling, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
12
|
Wohlfart S, Herth J, Böhmann MB, Pander G, Herbster L, Mier W, Auffarth GU, Uhl P, Hammer M. Exposure to Silicone Oil Endotamponades Induces VEGF Antibody Aggregation and Loss of Functionality. Invest Ophthalmol Vis Sci 2024; 65:56. [PMID: 39589347 PMCID: PMC11601135 DOI: 10.1167/iovs.65.13.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/02/2024] [Indexed: 11/27/2024] Open
Abstract
Purpose To investigate the interaction of a common monoclonal antibody (bevacizumab) with silicone oils and vitreous substitute hydrogels. Methods Protein content (spectrophotometry) and bioactivity (ELISA) of bevacizumab were assessed after direct contact to silicone oil and vitreous substitute hydrogels up to 24 hours. To detect antibody aggregation, particle size was determined by dynamic light scattering. Changes in secondary protein structure were assessed using circular dichroism. Experiments were translated to another antibody, trastuzumab, because its bioactivity can be additionally quantified by its binding to the membrane of HER2-positive cells. Results The functionality of bevacizumab gradually decreased during exposure to silicone oils with only 30% of activity remaining after 24 hours. Although circular dichroism did not reveal structural changes, the particle size increased drastically, indicating antibody aggregation for both antibodies. Exposure to silicone oil strongly reduced binding of trastuzumab to HER2-positive cells. The addition of polysorbate, a common stabilizer for antibody formulations, dose-dependently prevented aggregation, with 62% aggregation observed at 0.04% polysorbate compared to only 10% aggregation at 0.5% polysorbate. No aggregation occurred after exposure to vitreous body replacement hydrogels. Conclusions Contact to silicone oils induces a major loss of functionality of bevacizumab and trastuzumab. This limits clinical use during silicone oil tamponade. The beneficial effect of adding polysorbate suggests that loss of solubilizer is a likely cause of aggregation. Hydrogels, alternatives for vitreous body replacement, do not impair antibody functionality.
Collapse
Affiliation(s)
- Sabrina Wohlfart
- The David J Apple Laboratory for Vision Research, Heidelberg, Germany
| | - Jonathan Herth
- The David J Apple Laboratory for Vision Research, Heidelberg, Germany
| | - Manuel Ben Böhmann
- Institute for Pharmacy and Molecular Biotechnology, Heidelberg University, Germany
| | - Giulia Pander
- Institute for Pharmacy and Molecular Biotechnology, Heidelberg University, Germany
| | - Lorenz Herbster
- Institute for Pharmacy and Molecular Biotechnology, Heidelberg University, Germany
| | - Walter Mier
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Gerd Uwe Auffarth
- The David J Apple Laboratory for Vision Research, Heidelberg, Germany
- University Eye Clinic Heidelberg, Heidelberg, Germany
| | - Philipp Uhl
- Institute for Pharmacy and Molecular Biotechnology, Heidelberg University, Germany
| | - Maximilian Hammer
- The David J Apple Laboratory for Vision Research, Heidelberg, Germany
- University Eye Clinic Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
13
|
Meng HK, Pang KT, Wan C, Zheng ZY, Beiying Q, Yang Y, Zhang W, Ho YS, Walsh I, Chia S. Thermal and pH stress dictate distinct mechanisms of monoclonal antibody aggregation. Int J Biol Macromol 2024; 282:136601. [PMID: 39427803 DOI: 10.1016/j.ijbiomac.2024.136601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/24/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
Protein aggregation is a significant challenge in the development of monoclonal antibodies (mAbs), which can be exacerbated by stress conditions encountered along its production pipeline. In this study, we examine how thermal and pH stress conditions influence mAb aggregation mechanisms. We observe a complex interplay between these factors that significantly affects mAb stability, particularly under combined stress conditions. The mAb aggregates formed also varied distinctly in size and properties depending on the pH and thermal conditions, suggesting differences in their underlying mechanisms. Using a combination of experimental methods and kinetic modelling, we found that acidic pH conditions primarily promoted aggregation via the mAb unfolding step, while higher temperature conditions facilitated the formation of larger aggregates via monomer-independent cluster-cluster aggregation steps. These insights underscore the importance of extrinsic stress conditions in determining mAb aggregation propensity, and potentially provides a quantitative framework to holistically assess this across various accelerated stress conditions for the development of stable biologics.
Collapse
Affiliation(s)
- Hoi Kong Meng
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kuin Tian Pang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore; School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technology University, Singapore
| | - Corrine Wan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Zi Ying Zheng
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Qiu Beiying
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wei Zhang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ian Walsh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Sean Chia
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
14
|
Liang M, Goss M, Cao S, Yang C. Non-Destructive Analysis of Subvisible Particles with Mie-Scattering-Based Light Sheet Technology: System Development. J Pharm Sci 2024; 113:2817-2825. [PMID: 39032825 DOI: 10.1016/j.xphs.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
The characteristics of subvisible particles (SbVPs) are critical quality attributes of injectable and ophthalmic solutions in pharmaceutical manufacturing. However, current compendial SbVP testing methods, namely the light obstruction method and the microscopic particle count method, are destructive and wasteful of target samples. In this study, we present the development of a non-destructive SbVP analyzer aiming to analyze SbVPs directly in drug product (DP) containers while keeping the samples intact. Custom sample housings are developed and incorporated into the analyzer to reduce optical aberrations introduced by the curvature of typical pharmaceutical DP sample containers. The analyzer integrates a light-sheet microscope structure and models the side scattering event from a particle with Mie scattering theory with refractive indices as prior information. Equivalent spherical particle size under assigned refractive index values is estimated, and the particle concentration is determined based on the number of scattering events and the volume sampled by the light sheet. The resulting analyzer's capability and performance to non-destructively analyze SbVPs in DP containers were evaluated using a series of polystyrene bead suspensions in ISO 2R and 6R vials. Our results and analysis show the particle analyzer is capable of directly detecting SbVPs from intact DP containers, sorting SbVPs into commonly used size bins (e.g. ≥ 2 µm, ≥ 5 µm, ≥ 10 µm, and ≥ 25 µm), and reliably quantifying SbVPs in the concentration range of 4.6e2 to 5.0e5 particle/mL with a margin of ± 15 % error based on a 90 % confidence interval.
Collapse
Affiliation(s)
- Mingshu Liang
- California Institute of Technology, Electrical Engineering, Pasadena, CA 91125, USA
| | - Monica Goss
- Amgen Process Development, Thousand Oaks, CA 91320, USA
| | - Shawn Cao
- Amgen Process Development, Thousand Oaks, CA 91320, USA.
| | - Changhuei Yang
- California Institute of Technology, Electrical Engineering, Pasadena, CA 91125, USA.
| |
Collapse
|
15
|
Hollis WC, Farooq S, Khoshi MR, Patel M, Karnaukhova E, Eller N, Holada K, Scott DE, Simak J. Submicron immunoglobulin particles exhibit FcγRII-dependent toxicity linked to autophagy in TNFα-stimulated endothelial cells. Cell Mol Life Sci 2024; 81:376. [PMID: 39212707 PMCID: PMC11364738 DOI: 10.1007/s00018-024-05342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/07/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024]
Abstract
In intravenous immunoglobulins (IVIG), and some other immunoglobulin products, protein particles have been implicated in adverse events. Role and mechanisms of immunoglobulin particles in vascular adverse effects of blood components and manufactured biologics have not been elucidated. We have developed a model of spherical silica microparticles (SiMPs) of distinct sizes 200-2000 nm coated with different IVIG- or albumin (HSA)-coronas and investigated their effects on cultured human umbilical vein endothelial cells (HUVEC). IVIG products (1-20 mg/mL), bare SiMPs or SiMPs with IVIG-corona, did not display significant toxicity to unstimulated HUVEC. In contrast, in TNFα-stimulated HUVEC, IVIG-SiMPs induced decrease of HUVEC viability compared to HSA-SiMPs, while no toxicity of soluble IVIG was observed. 200 nm IVIG-SiMPs after 24 h treatment further increased ICAM1 (intercellular adhesion molecule 1) and tissue factor surface expression, apoptosis, mammalian target of rapamacin (mTOR)-dependent activation of autophagy, and release of extracellular vesicles, positive for mitophagy markers. Toxic effects of IVIG-SiMPs were most prominent for 200 nm SiMPs and decreased with larger SiMP size. Using blocking antibodies, toxicity of IVIG-SiMPs was found dependent on FcγRII receptor expression on HUVEC, which increased after TNFα-stimulation. Similar results were observed with different IVIG products and research grade IgG preparations. In conclusion, submicron particles with immunoglobulin corona induced size-dependent toxicity in TNFα-stimulated HUVEC via FcγRII receptors, associated with apoptosis and mTOR-dependent activation of autophagy. Testing of IVIG toxicity in endothelial cells prestimulated with proinflammatory cytokines is relevant to clinical conditions. Our results warrant further studies on endothelial toxicity of sub-visible immunoglobulin particles.
Collapse
Affiliation(s)
- Wanida C Hollis
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Sehrish Farooq
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - M Reza Khoshi
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Mehulkumar Patel
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
- Center for Devices and Radiological Health, FDA, Silver Spring, MD, USA
| | - Elena Karnaukhova
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Nancy Eller
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dorothy E Scott
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Jan Simak
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA.
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, Center for Biologics Evaluation and Research, Food and Drug Administration, OBRR, 10903 New Hampshire Avenue, WO Bldg. 52/72, Rm. 4210, Silver Spring, MD, USA.
| |
Collapse
|
16
|
Tang L, Geng H, Zhang L, Wang X, Fei M, Yang B, Sun H, Zhang Z. In-Depth Characterization for Methionine Oxidization in Complementary Domain Region by Hydrophobic Interaction Chromatography. ACS Pharmacol Transl Sci 2024; 7:2476-2483. [PMID: 39144558 PMCID: PMC11320724 DOI: 10.1021/acsptsci.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 08/16/2024]
Abstract
The oxidation of the complementarity-determining region (CDR) in monoclonal antibodies (mAbs) is a critical quality attribute that can affect the clinical efficacy and safety of recombinant mAb therapeutics. In this study, a robust hydrophobic interaction chromatography (HIC) method was developed to quantify and characterize CDR oxidation variants in mAb-A by using a Proteomix Butyl-NP5 column. The HIC analysis revealed oxidation variants that eluted earlier than the main species with weaker hydrophobicity. It was found that Met105 in the CDR was more susceptible to oxidation. Additionally, it was noted that the oxidation of Met105 on a single heavy chain resulted in elution at a distinct position compared to the oxidation on two heavy chains. This observation led to the fractionation and enrichment of the oxidized variants for further evaluation of their biofunction. The study also demonstrated that the oxidation of Met105 did not impact the antigen-binding capacity but significantly reduced the PD-1/PD-L1 blockade activity of mAb-A. The HIC method, which was employed to quantify CDR oxidation, underwent validation and was subsequently utilized for stability studies as well as for assessing the similarity between mAb-A and its reference product.
Collapse
Affiliation(s)
| | | | - Lei Zhang
- Analytical Science Development, Henlius Biologics Co., Ltd, Shanghai 201616, China
| | - Xinyi Wang
- Analytical Science Development, Henlius Biologics Co., Ltd, Shanghai 201616, China
| | - Mengdan Fei
- Analytical Science Development, Henlius Biologics Co., Ltd, Shanghai 201616, China
| | - Boyuan Yang
- Analytical Science Development, Henlius Biologics Co., Ltd, Shanghai 201616, China
| | - Haijie Sun
- Analytical Science Development, Henlius Biologics Co., Ltd, Shanghai 201616, China
| | - Zhongli Zhang
- Analytical Science Development, Henlius Biologics Co., Ltd, Shanghai 201616, China
| |
Collapse
|
17
|
Brack L, Merkel O, Schroeder R. A rapid method to monitor structural perturbations of high-concentrated therapeutic antibody solutions using Intrinsic Tryptophan Fluorescence Emission spectroscopy. Eur J Pharm Biopharm 2024; 201:114377. [PMID: 38955284 DOI: 10.1016/j.ejpb.2024.114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/14/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Drug product development of therapeutic antibody formulations is still dictated by the risk of protein particle formation during processing or storage, which can lead to loss of potency and potential immunogenic reactions. Since structural perturbations are the main driver for irreversible protein aggregation, the conformational integrity of antibodies should be closely monitored. The present study evaluated the applicability of a plate reader-based high throughput method for Intrinsic Tryptophan Fluorescence Emission (ITFE) spectroscopy to detect protein aggregation due to protein unfolding in high-concentrated therapeutic antibody samples. The impact of fluorophore concentration on the ITFE signal in microplate readers was investigated by analysis of dilution series of two therapeutic antibodies and pure tryptophan. At low antibody concentrations (< 5 mg/mL, equivalent to 0.8 mM tryptophan), the low inner filter effect suggests a quasi-linear relationship between antibody concentration and ITFE intensity. In contrast, the constant ITFE intensity at high protein concentrations (> 40 mg/mL, equivalent to 6.1 mM tryptophan) indicate that ITFE spectroscopy measurements of IgG1 antibodies are feasible in therapeutically relevant concentrations (up to 223 mg/mL). Furthermore, the capability of the method to detect low levels of unfolding (around 1 %) was confirmed by limit of detection (LOD) determination with temperature-stressed antibody samples as degradation standards. Change of fluorescence intensity at the maximum (ΔIaM) was identified as sensitive descriptor for protein degradation, providing the lowest LOD values. The results demonstrate that ITFE spectroscopy performed in a microplate reader is a valuable tool for high-throughput monitoring of protein degradation in therapeutic antibody formulations.
Collapse
Affiliation(s)
- Lennart Brack
- AbbVie Deutschland GmbH & Co KG, Product Development Science & Technology, Ludwigshafen am Rhein, Germany.
| | - Olivia Merkel
- Ludwig-Maximilians-University, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Munich, Germany
| | - Rudolf Schroeder
- AbbVie Deutschland GmbH & Co KG, Product Development Science & Technology, Ludwigshafen am Rhein, Germany
| |
Collapse
|
18
|
Tathe U, Khopkar S, Rasam P, Kancherla A, Dandekar P, Jain R. Impact of stirring material on formation of submicron and subvisible aggregates in mAbs by quantitative laser diffraction, dynamic light scattering and background membrane imaging. Int J Pharm 2024; 660:124321. [PMID: 38857661 DOI: 10.1016/j.ijpharm.2024.124321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Aggregation of monoclonal antibodies (mAbs) is the driving force for their undesirable immunogenic effects. There are multiple factors responsible for aggregation in therapeutic proteins. One significant cause is the process-related shear and interfacial stress generated due to impellers and stirrers. This investigation focuses on understanding the possible aggregation arising upon stirring mAb formulations using stirrers made of different materials. We used quantitative laser diffraction (qLD) to monitor and quantify the stirring induced formation of submicron and subvisible aggregates in the size range from 100 nm to 10 µm. We analysed various aspects of aggregate generation, such as onset of aggregation, particle size distribution, and concentration of aggregates generated using stirrers of different materials. We observed that mixing with stainless steel stirrers resulted in a quicker onset of aggregation and led to significantly higher concentrations of aggregates. Analysis of the stirred samples using dynamic light scattering (DLS) and background imaging technique (BMI) were conducted to complement the qLD analysis. All the three techniques resulted in a similar trend, showing presence of larger and higher quantities of aggregates in steel stirred samples, as compared to those stirred using PEEK and glass. Additionally, we performed SEC-HPLC to quantify the soluble fraction of monomer and recorded that the least amount was present in the steel stirred samples. This work highlights the need for optimizing the materials used for fabricating the stirrers/impellers.
Collapse
Affiliation(s)
- Utkarsh Tathe
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Sampada Khopkar
- Shimadzu Analytical (India) Private Limited, 1 A/B, Rushabh Chambers, Marol, Andheri East, Mumbai 400059, India
| | - Pratap Rasam
- Shimadzu Analytical (India) Private Limited, 1 A/B, Rushabh Chambers, Marol, Andheri East, Mumbai 400059, India
| | - Aswani Kancherla
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| | - Ratnesh Jain
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
19
|
Liu F, Hutchinson R. Visible particles in parenteral drug products: A review of current safety assessment practice. Curr Res Toxicol 2024; 7:100175. [PMID: 38975062 PMCID: PMC11223083 DOI: 10.1016/j.crtox.2024.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Parenteral drug products (PDPs) are administered extensively to treat various diseases. Product quality plays a critical role in ensuring patient safety and product efficacy. One important quality challenge is the contamination of particles in PDPs. Particle presence in PDPs represents potential safety risk to patients. Differential guidance and practice have been in place for visible (VPs) and subvisible particles (SVPs) in PDPs. For SVPs, the amount limits have been harmonized in multiple Pharmacopeias. The pharmaceutical industry follows the guided limits for regulatory and quality compliance. However, for VPs, no such acceptable limit has been set. This results in not only quality but also safety challenges for manufacturers and drug developers in managing and evaluating VPs. It is important to understand the potential safety risk of VPs so these can be weighed against the benefit of the PDPs. To evaluate their potential risk(s), it is necessary to understand their nature, origin, frequency of their occurrence, safety risk, the risk mitigation measures, and the method to evaluate their safety. The current paper reviews the critical literature on these aspects and provides insight into considerations when performing safety assessment and managing the risk(s) for VPs in PDPs.
Collapse
Affiliation(s)
- Frank Liu
- Safe Product Services LLC, Pittsfield, MA, USA
| | | |
Collapse
|
20
|
Fernandez-Mendivil C, Kinsella NM, Ebbers HC. A Retrospective Analysis of the Potential Impact of Differences in Aggregates on Clinical Immunogenicity of Biosimilars and their Reference Products. Clin Pharmacol Ther 2024; 115:1122-1131. [PMID: 38284504 DOI: 10.1002/cpt.3180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
Aggregates, in particular high molecular weight species (HMWs), have been linked to increased immunogenicity. The current understanding on the impact of HMWs is mainly based on in vitro and nonclinical studies and there are only limited data available associating differences in HMWs in marketed monoclonal antibodies (mAbs) to clinical outcomes. Biosimilars offer a unique opportunity to study the potential association between quality parameters and clinical outcomes. We performed a retrospective evaluation to investigate the association between HMW content and reported antidrug-antibody (ADA) incidence in 30 full-length biosimilar mAbs approved in the European Union and the United States. Information for HMW content and ADA incidence were collected from publicly available sources. Differences in HMW content between biosimilars and their reference products (RPs) ranged from -0.75 to 1.65% with slightly higher differences observed in antineoplastic products as compared with immunosuppressant products. The difference in the ADA incidence between the RP and the biosimilar for the programs studied ranged from -11.0 to 18.5%. No association was observed between differences in HMW content and reported ADA incidence, in neither phase I nor phase III studies. Our results show that the limited differences in the content of HMWs between marketed biosimilars and reference mAbs were not associated with differences in reported immunogenicity, determined as incidence of ADAs and neutralizing ADAs in comparative clinical studies.
Collapse
|
21
|
Martins-Ribeiro A, Kizhedath A, Ahmed SS, Glassey J, Ishaq A, Freer M, Dickinson AM. A Human Skin Explant Test as a Novel In Vitro Assay for the Detection of Skin Sensitization to Aggregated Monoclonal Antibodies. TOXICS 2024; 12:332. [PMID: 38787111 PMCID: PMC11125788 DOI: 10.3390/toxics12050332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Introduction: Monoclonal antibodies (mAbs) are important therapeutics. However, the enhanced potential for aggregation has become a critical quality parameter during the production of mAbs. Furthermore, mAb aggregation may also present a potential health risk in a clinical setting during the administration of mAb therapeutics to patients. While the extent of immunotoxicity in patient populations is uncertain, reports show it can lead to immune responses via cell activation and cytokine release. In this study, an autologous in vitro skin test designed to predict adverse immune events, including skin sensitization, was used as a novel assay for the assessment of immunotoxicity caused by mAb aggregation. Material and Methods: Aggregation of mAbs was induced by a heat stress protocol, followed by characterization of protein content by analytical ultra-centrifugation and transmission electron microscopy, revealing a 4% aggregation level of total protein content. Immunotoxicity and potential skin sensitization caused by the aggregates, were then tested in a skin explant assay. Results: Aggregated Herceptin and Rituximab caused skin sensitization, as shown by histopathological damage (grade II-III positive response) together with positive staining for Heat Shock Protein 70 (HSP70). Changes in T cell proliferation were not observed. Cytokine analysis revealed a significant increase of IL-10 for the most extreme condition of aggregation (65 °C at pH3) and a trend for an overall increase of IFN-γ, especially in response to Rituximab. Conclusions: The skin explant assay demonstrated that aggregated mAbs showed adverse immune reactions, as demonstrated as skin sensitization, with histopathological grades II-III. The assay may, therefore, be a novel tool for assessing immunotoxicity and skin sensitization caused by mAb aggregation.
Collapse
Affiliation(s)
- Ana Martins-Ribeiro
- Alcyomics Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle Upon Tyne NE4 5BX, UK; (A.M.-R.); (M.F.)
- Translational and Clinical Research Institute Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Arathi Kizhedath
- Chemical Engineering and Advanced Materials, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Shaheda Sameena Ahmed
- Alcyomics Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle Upon Tyne NE4 5BX, UK; (A.M.-R.); (M.F.)
| | - Jarka Glassey
- Chemical Engineering and Advanced Materials, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Abbas Ishaq
- Alcyomics Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle Upon Tyne NE4 5BX, UK; (A.M.-R.); (M.F.)
| | - Matthew Freer
- Alcyomics Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle Upon Tyne NE4 5BX, UK; (A.M.-R.); (M.F.)
| | - Anne Mary Dickinson
- Alcyomics Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle Upon Tyne NE4 5BX, UK; (A.M.-R.); (M.F.)
- Translational and Clinical Research Institute Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
22
|
Garcia LFC, Wowk PF, Albrecht L. Unraveling the Impact of Extracellular Vesicle-Depleted Serum on Endothelial Cell Characteristics over Time. Int J Mol Sci 2024; 25:4761. [PMID: 38731980 PMCID: PMC11084606 DOI: 10.3390/ijms25094761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024] Open
Abstract
Extracellular vesicles (EVs) are produced by all kinds of cells, including endothelial cells. It has been observed that EVs present in fetal bovine serum (FBS), broadly used in cell culture, can be a confounding factor and lead to misinterpretation of results. To investigate this phenomenon, human brain microvascular endothelial cells (HBMECs) were cultured for 2 or 24 h in the presence of EV-depleted FBS (EVdS). Cell death, gene and protein expression, and the presence of EVs isolated from these cells were evaluated. The uptake of EVs, intercellular adhesion molecule 1 (ICAM-1) expression, and monocyte adhesion to endothelial cells exposed to EVs were also evaluated. Our results revealed higher apoptosis rates in cells cultured with EVdS for 2 and 24 h. There was an increase in interleukin 8 (IL8) expression after 2 h and a decrease in interleukin 6 (IL6) and IL8 expression after 24 h of culture. Among the proteins identified in EVs isolated from cells cultured for 2 h (EV2h), several were related to ribosomes and carbon metabolism. EVs from cells cultured for 24 h (EV24h) presented a protein profile associated with cell adhesion and platelet activation. Additionally, HBMECs exhibited increased uptake of EV2h. Treatment of endothelial cells with EV2h resulted in greater ICAM-1 expression and greater adherence to monocytes than did treatment with EV24h. According to our data, HBMEC cultivated with EVdS produce EVs with different physical characteristics and protein levels that vary over time.
Collapse
Affiliation(s)
| | - Pryscilla Fanini Wowk
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, PR, Brazil;
| | - Letusa Albrecht
- Laboratório de Pesquisa em Apicomplexa, ICC-Fiocruz-PR, Curitiba 81350-010, PR, Brazil;
| |
Collapse
|
23
|
Barcelo-Chong CM, Filipe V, Nakach M, Inês Ré M. How spray drying processing and solution composition can affect the mAbs stability in reconstituted solutions for subcutaneous injections. Part II: Exploring each protein stabilizer effect. Int J Pharm 2024; 655:124014. [PMID: 38513817 DOI: 10.1016/j.ijpharm.2024.124014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/25/2024] [Accepted: 02/18/2024] [Indexed: 03/23/2024]
Abstract
Despite extensive research in spray drying of biopharmaceuticals, identifying the optimal formulation composition and process conditions to minimize the various stresses a biopharmaceutical undergoes during this drying process. The current study extends previous research on investigating how spray drying processing and solution composition can affect the stability of monoclonal antibodies (mAbs) in reconstituted solutions for subcutaneous injections. The decoupling process stresses on a model mAb (mAb-A) compared to the effect of coupled spray-drying stresses revealed that excipients and protein concentration had a more pronounced effect on stabilizing mAb-A against shear and thermal/dehydration stresses than spray drying operating conditions. These results prompted the continuation of the study, with the aim to investigate in greater depth the effect of mAb-A concentration in the formulation designated to spray-drying and then the effect of type and the concentration of individual excipients (sugars, amino acids and surfactants). The outcomes of this investigation suggest that a general increase in the concentration of excipients, particularly surfactants, correlates with a reduction in aggregation and turbidity observed in the reconstituted spray-dried mAb-A powders. These results, contribute to the identification of a suitable composition for a spray-dried mAb-A powder that ensures robust stability of the protein in reconstituted solutions intended for subcutaneous injection. This valuable insight has important implications for advancing the development of pharmaceutical formulations with enhanced stability and efficacy.
Collapse
Affiliation(s)
| | - Vasco Filipe
- Sanofi R&D, 1, Impasse des Ateliers, 94403 Vitry sur Seine, France
| | - Mostafa Nakach
- Sanofi R&D, 1, Impasse des Ateliers, 94403 Vitry sur Seine, France
| | - Maria Inês Ré
- IMT Mines Albi, RAPSODEE UMR CNRS 5302, Albi, France
| |
Collapse
|
24
|
Cohen JR, Brych SR, Prabhu S, Bi V, Elbaradei A, Tokuda JM, Xiang C, Hokom M, Cui X, Ly C, Amos N, Sun J, Calamba D, Herskovitz J, Capili A, Nourbakhsh K, Merlo A, Carreon J, Wypych J, Narhi LO, Jawa V, Joubert MK. A High Threshold of Biotherapeutic Aggregate Numbers is Needed to Induce an Immunogenic Response In Vitro, In Vivo, and in the Clinic. Pharm Res 2024; 41:651-672. [PMID: 38519817 DOI: 10.1007/s11095-024-03678-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/15/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND AND PURPOSE There is concern that subvisible aggregates in biotherapeutic drug products pose a risk to patient safety. We investigated the threshold of biotherapeutic aggregates needed to induce immunogenic responses. METHODS AND RESULTS Highly aggregated samples were tested in cell-based assays and induced cellular responses in a manner that depended on the number of particles. The threshold of immune activation varied by disease state (cancer, rheumatoid arthritis, allergy), concomitant therapies, and particle number. Compared to healthy donors, disease state patients showed an equal or lower response at the late phase (7 days), suggesting they may not have a higher risk of responding to aggregates. Xeno-het mice were used to assess the threshold of immune activation in vivo. Although highly aggregated samples (~ 1,600,000 particles/mL) induced a weak and transient immunogenic response in mice, a 100-fold dilution of this sample (~ 16,000 particles/mL) did not induce immunogenicity. To confirm this result, subvisible particles (up to ~ 18,000 particles/mL, containing aggregates and silicone oil droplets) produced under representative administration practices (created upon infusion of a drug product through an IV catheter) did not induce a response in cell-based assays or appear to increase the rate of adverse events or immunogenicity during phase 3 clinical trials. CONCLUSION The ability of biotherapeutic aggregates to elicit an immune response in vitro, in vivo, and in the clinic depends on high numbers of particles. This suggests that there is a high threshold for aggregates to induce an immunogenic response which is well beyond that seen in standard biotherapeutic drug products.
Collapse
Affiliation(s)
- Joseph R Cohen
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA.
| | - Stephen R Brych
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Siddharth Prabhu
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Vivian Bi
- The Department of Biosimilars, Amgen Inc, Thousand Oaks, CA, 91320, USA
| | - Ahmed Elbaradei
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Joshua M Tokuda
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Cathie Xiang
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Martha Hokom
- The Department of Clinical Immunology, Amgen Inc, Thousand Oaks, CA, 91320, USA
- Department of BioAnalytical Sciences, Genentech, Inc, South San Francisco, CA, 94080, USA
| | - Xiaohong Cui
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Claudia Ly
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Nathan Amos
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Jilin Sun
- Translational Safety and Bioanalytical Sciences, Amgen Inc, Thousand Oaks, CA, 91320, USA
| | - Dominador Calamba
- Translational Safety and Bioanalytical Sciences, Amgen Inc, Thousand Oaks, CA, 91320, USA
| | - Jonathan Herskovitz
- The Department of Clinical Immunology, Amgen Inc, Thousand Oaks, CA, 91320, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Allyson Capili
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Kimya Nourbakhsh
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Anthony Merlo
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Julia Carreon
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Jette Wypych
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Linda O Narhi
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Vibha Jawa
- The Department of Clinical Immunology, Amgen Inc, Thousand Oaks, CA, 91320, USA
- Department of Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Princeton, NJ, 08543, USA
| | - Marisa K Joubert
- The Department of Process Development, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA, 91320, USA.
| |
Collapse
|
25
|
Sreenivasan S, Patil SS, Rathore AS. Does Aggregation of Therapeutic IgGs in PBS Offer a True Picture of What Happens in Models Derived from Human Body Fluids? J Pharm Sci 2024; 113:596-603. [PMID: 37717637 DOI: 10.1016/j.xphs.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Therapeutic proteins such as monoclonal antibodies (mAb) are known to form aggregates due to various factors. Phosphate buffered saline (PBS), human serum, and human serum filtrate (HSF) are some of the models used to analyze mAb stability in physiologically relevant in-vitro conditions. In this study, aggregation of mAb in PBS and models derived from body fluids seeded with mAb samples subjected to various stresses were compared. Samples containing mAb subjected to pH, temperature, UV light, stirring, and interfacial agitation stress were seeded into different models for 2 case studies. In the first case study, %HMW (high molecular weight species) of mAb in PBS and HSF were compared using size exclusion chromatography. It was found that change in %HMW was higher in PBS compared to HSF. For example, PBS containing mAb that was subjected to UV light stress showed change in HMW by >10 % over 72 h, but the change was <5 % in HSF. In second case study, aggregates particles of FITC tagged mAb were monitored in PBS and serum using fluorescence microscope image processing. It was found that PBS and serum containing mAb subjected to stirring and interfacial agitation resulted in aggregates of >2 µm size, and average size and percentage number of particles having >10 µm size was higher in serum compared to PBS at all analysis time point. Overall, it was found that aggregation of mAb in PBS was different from that in human body fluids. Second case study also showed the importance of advanced strategies for further characterization of mAb in serum.
Collapse
Affiliation(s)
- Shravan Sreenivasan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas-110016, India
| | - Sanjeet S Patil
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas-110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas-110016, India.
| |
Collapse
|
26
|
Dasnoy S, Illartin M, Queffelec J, Nkunku A, Peerboom C. Combined Effect of Shaking Orbit and Vial Orientation on the Agitation-Induced Aggregation of Proteins. J Pharm Sci 2024; 113:669-679. [PMID: 37611666 DOI: 10.1016/j.xphs.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Orbital shaking in a glass vial is a commonly used forced degradation test to evaluate protein propensity for agitation-induced aggregation. Vial shaking in horizontal orientation has been widely recommended to maximize the air-liquid interface area while ensuring solution contact with the stopper. We evaluated the impact of shaking orbit diameter and frequency, and glass vial orientation (horizontal versus vertical) on the aggregation of three proteins prepared in surfactant-free formulation buffers. As soon as an orbit-specific frequency threshold was reached, an increase in turbidity was observed for the three proteins in vertical orientation only when using a 3 mm agitation orbit, and in horizontal orientation only when using a 30 mm agitation orbit. Orthogonal analyses confirmed turbidity was linked to protein aggregation. The most turbid samples had a visually more homogeneous appearance in vertical than in horizontal orientation, in line with the predicted dispersion of air and liquid phases obtained from computational fluid dynamics agitation simulations. Both shaking orbits were used to assess the performance of nonionic surfactants. We show that the propensity of a protein to aggregate in a vial agitated in horizontal or vertical orientation depends on the shaking orbit, and confirm that Brij® 58 and FM1000 prevent proteins from agitation-induced aggregation at lower concentrations than polysorbate 80.
Collapse
Affiliation(s)
| | - Marion Illartin
- UCB Pharma, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium; Institut Mines-Télécom (IMT) Mines Albi, Allée des Sciences, 81000 Albi, France
| | - Julie Queffelec
- UCB Pharma, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium; Institut Mines-Télécom (IMT) Mines Albi, Allée des Sciences, 81000 Albi, France
| | - Aubrey Nkunku
- UCB Pharma, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium; ALTEN Belgium, Chaussée de Charleroi 112, 1060 Bruxelles, Belgium
| | - Claude Peerboom
- UCB Pharma, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| |
Collapse
|
27
|
Sreenivasan S, Rathore AS. Taurine, a Naturally Occurring Amino Acid, as a Physical Stability Enhancer of Different Monoclonal Antibodies. AAPS J 2024; 26:25. [PMID: 38355847 DOI: 10.1208/s12248-024-00893-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/01/2024] [Indexed: 02/16/2024] Open
Abstract
Degradation of therapeutic monoclonal antibodies (mAbs) is a major concern as it affects efficacy, shelf-life, and safety of the product. Taurine, a naturally occurring amino acid, is investigated in this study as a potential mAb stabilizer with an extensive analytical characterization to monitor product degradation. Forced degradation of trastuzumab biosimilar (mAb1)-containing samples by thermal stress for 30 min resulted in high-molecular-weight species by more than 65% in sample without taurine compared to the sample with taurine. Samples containing mAb1 without taurine also resulted in higher Z-average diameter, altered protein structure, higher hydrophobicity, and lower melting temperature compared to samples with taurine. The stabilizing effect of taurine was retained at different mAb and taurine concentrations, time, temperatures, and buffers, and at the presence of polysorbate 80 (PS80). Even the lowest taurine concentration (10 mM) considered in this study, which is in the range of taurine levels in amino acid injections, resulted in enhanced mAb stability. Taurine-containing samples resulted in 90% less hemolysis than samples containing PS80. Additionally, mAb in the presence of taurine showed enhanced stability upon subjecting to stress with light of 365 nm wavelength, combination of light and H2O2, and combination of Fe2+ and H2O2, as samples containing mAb without taurine resulted in increased degradation products by more than 50% compared to samples with taurine upon subjecting to these stresses for 60 min. In conclusion, the presence of taurine enhanced physical stability of mAb by preventing aggregate formation, and the industry can consider it as a new mAb stabilizer.
Collapse
Affiliation(s)
- Shravan Sreenivasan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
28
|
Li M, Beaumont VA, Akbar S, Duncan H, Creasy A, Wang W, Sackett K, Marzilli L, Rouse JC, Kim HY. Comprehensive characterization of higher order structure changes in methionine oxidized monoclonal antibodies via NMR chemometric analysis and biophysical approaches. MAbs 2024; 16:2292688. [PMID: 38117548 PMCID: PMC10761137 DOI: 10.1080/19420862.2023.2292688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
The higher order structure (HOS) of monoclonal antibodies (mAbs) is an important quality attribute with strong contribution to clinically relevant biological functions and drug safety. Due to the multi-faceted nature of HOS, the synergy of multiple complementary analytical approaches can substantially improve the understanding, accuracy, and resolution of HOS characterization. In this study, we applied one- and two-dimensional (1D and 2D) nuclear magnetic resonance (NMR) spectroscopy coupled with chemometric analysis, as well as circular dichroism (CD), differential scanning calorimetry (DSC), and fluorescence spectroscopy as orthogonal methods, to characterize the impact of methionine (Met) oxidation on the HOS of an IgG1 mAb. We used a forced degradation method involving concentration-dependent oxidation by peracetic acid, in which Met oxidation is site-specifically quantified by liquid chromatography-mass spectrometry. Conventional biophysical techniques report nuanced results, in which CD detects no change to the secondary structure and little change in the tertiary structure. Yet, DSC measurements show the destabilization of Fab and Fc domains due to Met oxidation. More importantly, our study demonstrates that 1D and 2D NMR and chemometric analysis can provide semi-quantitative analysis of chemical modifications and resolve localized conformational changes with high sensitivity. Furthermore, we leveraged a novel 15N-Met labeling technique of the antibody to directly observe structural perturbations at the oxidation sites. The NMR methods described here to probe HOS changes are highly reliable and practical in biopharmaceutical characterization.
Collapse
Affiliation(s)
- Mingyue Li
- Pfizer, Inc. BioTherapeutics Pharmaceutical Sciences, Analytical Research and Development, Andover, MA, USA
| | - Victor A. Beaumont
- Pfizer, Inc. Pharmaceutical Sciences Small Molecules, Analytical Research and Development, Sandwich, United Kingdom
| | - Shahajahan Akbar
- Pfizer, Inc. BioTherapeutics Pharmaceutical Sciences, Analytical Research and Development, Andover, MA, USA
| | - Hannah Duncan
- Pfizer, Inc. BioTherapeutics Pharmaceutical Sciences, Analytical Research and Development, Andover, MA, USA
| | - Arch Creasy
- Pfizer, Inc. BioTherapeutics Pharmaceutical Sciences, Bioprocess Research and Development, Andover, MA, USA
| | - Wenge Wang
- Pfizer, Inc. BioTherapeutics Pharmaceutical Sciences, Bioprocess Research and Development, Andover, MA, USA
| | - Kelly Sackett
- Pfizer, Inc. BioTherapeutics Pharmaceutical Sciences, Analytical Research and Development, Andover, MA, USA
| | - Lisa Marzilli
- Pfizer, Inc. BioTherapeutics Pharmaceutical Sciences, Analytical Research and Development, Andover, MA, USA
| | - Jason C. Rouse
- Pfizer, Inc. BioTherapeutics Pharmaceutical Sciences, Analytical Research and Development, Andover, MA, USA
| | - Hai-Young Kim
- Pfizer, Inc. BioTherapeutics Pharmaceutical Sciences, Analytical Research and Development, Andover, MA, USA
| |
Collapse
|
29
|
Wu KW, Chen TH, Yang TC, Wang SC, Shameem M, Graham KS. Continuous monitoring of a monoclonal antibody by size exclusion chromatography reveals a correlation between system suitability parameters and column aging. J Pharm Biomed Anal 2023; 235:115622. [PMID: 37540994 DOI: 10.1016/j.jpba.2023.115622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Size exclusion chromatography (SEC) is a foundational analytical method to assess product purity of biological molecules. To ensure accurate and reproducible data that meet regulatory agency standards, it is critical to monitor the chromatographic column with efficient and continuous approaches. In this study, 19 SEC columns (Waters Acquity BEH200) were evaluated using an in-house monoclonal antibody made at Regeneron. System suitability parameters (SSPs) were used to monitor the performance of the SEC assay, including USP resolution, USP plate count, USP tailing factor, asymmetry factor, elution time, peak width, and peak height. A general linear model was built and revealed that elution time, peak width, asymmetry factor, and tailing factor increased with injection number, while peak height, resolution, and plate count decreased. After 1000 injections, tailing factor and peak width increased by more than 10%, while resolution and plate count decreased by more than 10% from their respective starting values.
Collapse
Affiliation(s)
- Kai-Wei Wu
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi, University, MS 38677, USA
| | - Tse-Hong Chen
- Formulation Development Group, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA.
| | - Teng-Chieh Yang
- Formulation Development Group, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Shao-Chun Wang
- Formulation Development Group, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Mohammed Shameem
- Formulation Development Group, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Kenneth S Graham
- Formulation Development Group, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| |
Collapse
|
30
|
Pang KT, Yang YS, Zhang W, Ho YS, Sormanni P, Michaels TCT, Walsh I, Chia S. Understanding and controlling the molecular mechanisms of protein aggregation in mAb therapeutics. Biotechnol Adv 2023; 67:108192. [PMID: 37290583 DOI: 10.1016/j.biotechadv.2023.108192] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
In antibody development and manufacturing, protein aggregation is a common challenge that can lead to serious efficacy and safety issues. To mitigate this problem, it is important to investigate its molecular origins. This review discusses (1) our current molecular understanding and theoretical models of antibody aggregation, (2) how various stress conditions related to antibody upstream and downstream bioprocesses can trigger aggregation, and (3) current mitigation strategies employed towards inhibiting aggregation. We discuss the relevance of the aggregation phenomenon in the context of novel antibody modalities and highlight how in silico approaches can be exploited to mitigate it.
Collapse
Affiliation(s)
- Kuin Tian Pang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore; School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technology University, Singapore
| | - Yuan Sheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Wei Zhang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Pietro Sormanni
- Chemistry of Health, Yusuf Hamied Department of Chemistry, University of Cambridge, United Kingdom
| | - Thomas C T Michaels
- Department of Biology, Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland; Bringing Materials to Life Initiative, ETH Zurich, Switzerland
| | - Ian Walsh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Sean Chia
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
31
|
Di Ianni A, Barbero L, Fraone T, Cowan K, Sirtori FR. Preclinical risk assessment strategy to mitigate the T-cell dependent immunogenicity of protein biotherapeutics: State of the art, challenges and future perspectives. J Pharm Biomed Anal 2023; 234:115500. [PMID: 37311374 DOI: 10.1016/j.jpba.2023.115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Protein therapeutics hold a prominent role and have brought significant diversity in efficacious medicinal products. Not just monoclonal antibodies and different antibody formats (pegylated antigen-binding fragments, bispecifics, antibody-drug conjugates, single chain variable fragments, nanobodies, dia-, tria- and tetrabodies), but also purified blood products, growth factors, recombinant cytokines, enzyme replacement factors, fusion proteins are all good instances of therapeutic proteins that have been developed in the past decades and approved for their value in oncology, immune-oncology, and autoimmune diseases discovery programs. Although there was an ingrained belief that fully humanized proteins were expected to have limited immunogenicity, adverse effects associated with immune responses to biological therapies raised some concern in biotech companies. Consequently, drug developers are designing strategies to assess potential immune responses to protein therapeutics during both the preclinical and clinical phases of development. Despite the many factors that can contribute to protein immunogenicity, T cell- (thymus-) dependent (Td) immunogenicity seems to play a crucial role in the development of anti-drug antibodies (ADAs) to biologics. A broad range of methodologies to predict and rationally assess Td immune responses to protein drugs has been developed. This review aims to briefly summarize the preclinical immunogenicity risk assessment strategy to mitigate the risk of potential immunogenic candidates coming towards clinical phases, discussing the advantages and limitations of these technologies, and suggesting a rational approach for assessing and mitigating Td immunogenicity.
Collapse
Affiliation(s)
- Andrea Di Ianni
- University of Turin, Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., an affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy
| | - Luca Barbero
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., an affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy
| | - Tiziana Fraone
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., an affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy
| | - Kyra Cowan
- New Biological Entities, Drug Metabolism and Pharmacokinetics (NBE-DMPK), Research and Development, Merck KGaA, Frankfurterstrasse 250, 64293 Darmstadt, Germany
| | - Federico Riccardi Sirtori
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., an affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy.
| |
Collapse
|
32
|
Liu GY, Zhang Z, Yan Y, Wang S, Li N. Discovery and Characterization of an Acid-Labile Serine-Lysine Cross-Link in Antibody High-Molecular-Weight Species Using a Multipronged Mass Spectrometry Approach. Anal Chem 2023; 95:13813-13821. [PMID: 37674418 PMCID: PMC10515106 DOI: 10.1021/acs.analchem.3c01602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
Characterizing the cross-links responsible for the covalent high-molecular-weight (HMW) species in therapeutic monoclonal antibodies (mAbs) is of great importance as it not only provides a framework for risk assessment but also offers insights for process improvement. However, owing to the complexity and low abundance, identification of novel and unknown cross-links in mAb products can be very challenging. Here, applying a multipronged MS-based approach, we report the discovery of a novel covalent cross-link formed via an imine bond between lysine and serine residues. In particular, this Ser-Lys cross-link was found to be acid-labile and can be easily overlooked by conventional LC-MS techniques operated at low pH. It is worth noting that although imine-based cross-link has been previously reported in collagen protein cross-linking, this is the first time that a Ser-Lys cross-link has been found in a mAb product that contributes to covalent HMW species formation.
Collapse
Affiliation(s)
- Gao-Yuan Liu
- Analytical Chemistry, Regeneron
Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Zhengqi Zhang
- Analytical Chemistry, Regeneron
Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Yuetian Yan
- Analytical Chemistry, Regeneron
Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Shunhai Wang
- Analytical Chemistry, Regeneron
Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Ning Li
- Analytical Chemistry, Regeneron
Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| |
Collapse
|
33
|
Shrivastava A, Mandal S, Pattanayek SK, Rathore AS. Rapid Estimation of Size-Based Heterogeneity in Monoclonal Antibodies by Machine Learning-Enhanced Dynamic Light Scattering. Anal Chem 2023; 95:8299-8309. [PMID: 37200383 DOI: 10.1021/acs.analchem.3c00650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Aggregation of monoclonal antibody therapeutics is a serious concern that is believed to impact product safety and efficacy. There is a need for analytical approaches that enable rapid estimation of mAb aggregates. Dynamic light scattering (DLS) is a well-established technique for estimating the average size of protein aggregates or for evaluating sample stability. It is usually used to measure the size and size distribution over a wide range of nano- to micro-sized particles using time-dependent fluctuations in the intensity of scattered light arising from the Brownian motion of particles. In this study, we present a novel DLS-based approach that allows us to quantify the relative percentage of multimers (monomer, dimer, trimer, and tetramer) in a monoclonal antibody (mAb) therapeutic product. The proposed approach uses a machine learning (ML) algorithm and regression to model the system and predict the amount of relevant species such as monomer, dimer, trimer, and tetramer of a mAb in the size range of 10-100 nm. The proposed DLS-ML technique compares favorably to all potential alternatives with respect to the key method attributes, including per sample cost of analysis, per sample time of data acquisition along with ML-based aggregate prediction (<2 min), sample requirements (<3 μg), and user-friendliness of analysis. The proposed rapid method can serve as an orthogonal tool to size exclusion chromatography, which is the current industry workhorse for aggregate assessment.
Collapse
Affiliation(s)
- Anuj Shrivastava
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Shyamapada Mandal
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Sudip K Pattanayek
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
34
|
Sreenivasan S, Rathore AS. Combined Presence of Ferrous Ions and Hydrogen Peroxide in Normal Saline and In Vitro Models Induces Enhanced Aggregation of Therapeutic IgG due to Hydroxyl Radicals. Mol Pharm 2023. [PMID: 37189260 DOI: 10.1021/acs.molpharmaceut.3c00051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Therapeutic monoclonal antibodies (mAb) are known to form aggregates and fragments upon exposure to hydrogen peroxide (H2O2) and ferrous ions (Fe2+). H2O2 and Fe2+ react to form hydroxyl radicals that are detrimental to protein structures. In this study, aggregation of mAb in the combined presence of Fe2+ and H2O2 was investigated in saline and physiologically relevant in vitro models. In the first case study, forced degradation of mAb in saline (a fluid used for administration of mAb) was carried out at 55 °C in the combined presence of 0.2 mM Fe2+ and 0.1% H2O2. The control and stressed samples were analyzed using an array of techniques including visual observation, size-exclusion chromatography (SEC), dynamic light scattering (DLS), microscopy, UV-vis, fluorescence, Fourier transform infrared spectroscopy, and cell-based toxicity assays. At the end of 1 h, samples having the combined presence of both Fe2+ and H2O2 exhibited more than 20% HMW (high molecular weight species), whereas samples having only Fe2+, H2O2, or neither resulted in less than 3% HMW. Aggregate-rich samples also exhibited altered protein structures and hydrophobicity. Aggregation increased upon increasing the time, temperature, and concentration of Fe2+ and H2O2. Samples having both Fe2+ and H2O2 also showed higher cytotoxicity in red blood cells. Samples of mAb with chlorides of copper and cobalt with H2O2 also resulted in multifold degradation. The first case study showed enhanced aggregation of mAb in the combined presence of Fe2+ and H2O2 in saline. In the second case study, aggregation of mAb was investigated in artificially prepared extracellular saline and in vitro models such as macromolecule free fraction of serum and serum. In the presence of both Fe2+ and H2O2, %HMW was higher in extracellular saline compared to macromolecule free fraction of serum. Further, in vitro models having the combined presence of Fe2+ and H2O2 resulted in enhanced aggregation of mAb compared to models that had neither.
Collapse
Affiliation(s)
- Shravan Sreenivasan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
35
|
Pujahari SR, Mali PS, Purusottam RN, Kumar A. Combined Liquid-State and Solid-State Nuclear Magnetic Resonance at Natural Abundance for Comparative Higher Order Structure Assessment in the Formulated-State of Biphasic Biopharmaceutics. Anal Chem 2023. [PMID: 37154614 DOI: 10.1021/acs.analchem.2c05485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A higher-order structure (HOS) is critical to a biopharmaceutical drug as the three-dimensional structure governs its function. Even the partial perturbation in the HOS of the drug can alter the biological efficiency and efficacy. Due to current limitations in analytical technologies, it is imperative to develop a protocol to characterize the HOS of biopharmaceuticals in the native formulated state. This becomes even more challenging for the suspension formulations where solution and solid phases co-exist. Here, we have used a combinatorial approach using liquid (1D 1H) and solid-state (13C CP MAS) NMR methodology to demonstrate the HOS in the biphasic microcrystalline suspension drug in its formulated state. The data were further assessed by principal component analysis and Mahalanobis distance (DM) calculation for quantitative assessment. This approach is sufficient to provide information regarding the protein HOS and the local dynamics of the molecule when combined with orthogonal techniques such as X-ray scattering. Our method can be an elegant tool to investigate batch-to-batch variation in the process of manufacture and storage as well as a biosimilarity comparison study for biphasic/microcrystalline suspension.
Collapse
Affiliation(s)
| | - Pramod S Mali
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Rudra N Purusottam
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
36
|
Salami H, Wang S, Skomski D. Evaluation of a Self-Supervised Machine Learning Method for Screening of Particulate Samples: A Case Study in Liquid Formulations. J Pharm Sci 2023; 112:771-778. [PMID: 36240862 DOI: 10.1016/j.xphs.2022.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Imaging is commonly used as a characterization method in the pharmaceuticals industry, including for quantifying subvisible particles in solid and liquid formulations. Extracting information beyond particle size, such as classifying morphological subpopulations, requires some type of image analysis method. Suggested methods to classify particles have been based on pre-determined morphological features or use supervised training of convolutional neural networks to learn image representations in relation to ground truth labels. Complications arising from highly complex morphologies, unforeseen classes, and time-consuming preparation of ground truth labels, are some of the challenges faced by these methods. In this work, we evaluate the application of a self-supervised contrastive learning method in studying particle images from therapeutic solutions. Unlike with supervised training, this approach does not require ground truth labels and representations are learned by comparing particle images and their augmentations. This method provides a fast and easily implementable tool of coarse screening for morphological attribute assessment. Furthermore, our analysis shows that in cases with relatively balanced datasets, a small subset of an image dataset is sufficient to train a convolutional neural network encoder capable of extracting useful image representations. It is also demonstrated that particle classes typically observed in protein solutions administered by pre-filled syringes emerge as separated clusters in the encoder's embedding space, facilitating performing tasks such as training weakly-supervised classifiers or identifying the presence of new subpopulations.
Collapse
Affiliation(s)
- Hossein Salami
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, USA
| | - Shubing Wang
- Department of Biometrics Research, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Daniel Skomski
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, USA.
| |
Collapse
|
37
|
In vitro and in vivo immunogenicity assessment of protein aggregate characteristics. Int J Pharm 2023; 631:122490. [PMID: 36521637 DOI: 10.1016/j.ijpharm.2022.122490] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The immunogenicity risk of therapeutic protein aggregates has been extensively investigated over the past decades. While it is established that not all aggregates are equally immunogenic, the specific aggregate characteristics, which are most likely to induce an immune response, remain ambiguous. The aim of this study was to perform comprehensive in vitro and in vivo immunogenicity assessment of human insulin aggregates varying in size, structure and chemical modifications, while keeping other morphological characteristics constant. We found that flexible aggregates with highly altered secondary structure were most immunogenic in all setups, while compact aggregates with native-like structure were found to be immunogenic primarily in vivo. Moreover, sub-visible (1-100 µm) aggregates were found to be more immunogenic than sub-micron (0.1-1 µm) aggregates, while chemical modifications (deamidation, ethylation and covalent dimers) were not found to have any measurable impact on immunogenicity. The findings highlight the importance of utilizing aggregates varying in few characteristics for assessment of immunogenicity risk of specific morphological features and may provide a workflow for reliable particle analysis in biotherapeutics.
Collapse
|
38
|
Nishiumi H, Deiringer N, Krause N, Yoneda S, Torisu T, Menzen T, Friess W, Uchiyama S. Utility of Three Flow Imaging Microscopy Instruments for Image Analysis in Evaluating four Types of Subvisible Particle in Biopharmaceuticals. J Pharm Sci 2022; 111:3017-3028. [PMID: 35948157 DOI: 10.1016/j.xphs.2022.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022]
Abstract
Subvisible particles (SVPs) are a critical quality attribute of parenteral and ophthalmic products. United States Pharmacopeia recommends the characterizations of SVPs which are classified into intrinsic, extrinsic, and inherent particles. Flow imaging microscopy (FIM) is useful as an orthogonal method in both the quantification and classification of SVPs because FIM instruments provide particle images. In addition to the conventionally used FlowCam (Yokogawa Fluid Imaging Technologies) and Micro-Flow Imaging (Bio-Techne) instruments, the iSpect DIA-10 (Shimadzu) instrument has recently been released. The three instruments have similar detection principles but different optical settings and image processing, which may lead to different results of the quantification and classification of SVPs based on the information from particle images. The present study compares four types of SVP (protein aggregates, silicone oil droplets, and surrogates for solid free-fatty-acid particles, milled-lipid particles, and sprayed-lipid particles) to compare the results of size distributions and classification abilities obtained using morphological features and a deep-learning approach. Although the three FIM instruments were effective in classifying the four types of SVP through convolutional neural network analysis, there was no agreement on the size distribution for the same protein aggregate solution, suggesting that using the classifiers of the FIM instruments could result in different evaluations of SVPs in the field of biopharmaceuticals.
Collapse
Affiliation(s)
- Haruka Nishiumi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Natalie Deiringer
- Department of Pharmacy; Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| | - Nils Krause
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152, Martinsried, Germany
| | - Saki Yoneda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuo Torisu
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tim Menzen
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152, Martinsried, Germany
| | - Wolfgang Friess
- Department of Pharmacy; Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; U-medico Inc., 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
39
|
Thite NG, Ghazvini S, Wallace N, Feldman N, Calderon CP, Randolph TW. Machine Learning Analysis Provides Insight into Mechanisms of Protein Particle Formation Inside Containers During Mechanical Agitation. J Pharm Sci 2022; 111:2730-2744. [PMID: 35835184 PMCID: PMC9481670 DOI: 10.1016/j.xphs.2022.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
Abstract
Container choice can influence particle generation within protein formulations. Incompatibility between proteins and containers can manifest as increased particle concentrations, shifts in particle size distributions and changes in particle morphology distributions. In this study, flow imaging microscopy (FIM) combined with machine learning-based goodness-of-fit hypothesis testing algorithms were used in accelerated stability studies to investigate the impact of containers on particle formation. Containers in four major container categories subdivided into eleven container types were filled with monoclonal antibody formulations and agitated with and without headspace, producing subvisible particles. Digital images of the particles were recorded using flow imaging microscopy and analyzed with machine learning algorithms. Particle morphology distributions depended on container category and type, revealing differences that would not have been obvious by analysis of particle concentrations or container surface characteristics alone. Additionally, the algorithm was used to compare morphologies of particles generated in containers against those generated using isolated stresses at air-liquid and container-air-liquid interfaces. These comparisons showed that the morphology distributions of particles formed during agitation most closely resemble distributions that result from exposure of proteins to moving triple interface lines at points where container-air-liquid interfaces intersect. The approach described here can be used to identify dominant causes of particle generation due to protein-container interactions.
Collapse
Affiliation(s)
- Nidhi G Thite
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Saba Ghazvini
- AstraZeneca Gaithersburg, Maryland 20878, United States
| | | | - Naomi Feldman
- AstraZeneca Gaithersburg, Maryland 20878, United States
| | - Christopher P Calderon
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, United States; Ursa Analytics, Denver, CO 80212, United States
| | - Theodore W Randolph
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, United States.
| |
Collapse
|
40
|
Hu M, Molden R, Hu Y, Huang Y, Qiu H, Li N. Host cell protein identification in monoclonal antibody high molecular weight species. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1210:123448. [PMID: 36115198 DOI: 10.1016/j.jchromb.2022.123448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
High molecular weight (HMW) species are product-related variants that may impact therapeutic product safety and efficacy. Therefore, HMW species and aggregates are considered critical quality attributes and their levels should be closely monitored and controlled during drug development, commercial manufacturing, and shelf-life storage period for therapeutic monoclonal antibody drug products. Various biophysical and analytical methods have been developed to characterize the HMW species to understand their mechanisms of formation and assess potential product risk. However, host cell protein (HCP) analysis has seldom been conducted to characterize the impurities in aggregates. In this work, HCP analysis of enriched HMW species and drug substance (DS) from five different monoclonal antibodies (mAbs) was performed. More HCPs are identified in the enriched HMW than in the DS, thus demonstrating a potential interaction between HCPs and HMW. Certain HCPs, including commonly detected HCPs and problematic HCPs, were enriched in HMW fractions. Especially, the most abundant HCP from mAb1, CC motif chemokine, was 46 times more abundant in enriched HMW than DS. The enriched HMW was further fractionated into enriched dimers and enriched very HMW (vHMW) fractions. The CC motif chemokine was found to interact mainly with mAb1 dimer species rather than vHMW fraction. Removing the HMW species from mAb1 significantly decreased the CC motif chemokine level in the final mAb1 DS. Our findings demonstrate that some HCPs are more preferentially bound to HMW species and this finding may provide a new opportunity for removing HCPs in downstream purification steps.
Collapse
Affiliation(s)
- Mengqi Hu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591-6707, USA
| | - Rosalynn Molden
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591-6707, USA
| | - Yunli Hu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591-6707, USA.
| | - Yu Huang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591-6707, USA
| | - Haibo Qiu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591-6707, USA.
| | - Ning Li
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591-6707, USA
| |
Collapse
|
41
|
Biophysical and pharmacokinetic characterization of a small-molecule inhibitor of RUNX1/ETO tetramerization with anti-leukemic effects. Sci Rep 2022; 12:14158. [PMID: 35986043 PMCID: PMC9391460 DOI: 10.1038/s41598-022-17913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022] Open
Abstract
Acute myeloid leukemia (AML) is a malignant disease of immature myeloid cells and the most prevalent acute leukemia among adults. The oncogenic homo-tetrameric fusion protein RUNX1/ETO results from the chromosomal translocation t(8;21) and is found in AML patients. The nervy homology region 2 (NHR2) domain of ETO mediates tetramerization; this oligomerization is essential for oncogenic activity. Previously, we identified the first-in-class small-molecule inhibitor of NHR2 tetramer formation, 7.44, which was shown to specifically interfere with NHR2, restore gene expression down-regulated by RUNX1/ETO, inhibit the proliferation of RUNX1/ETO-depending SKNO-1 cells, and reduce the RUNX1/ETO-related tumor growth in a mouse model. However, no biophysical and structural characterization of 7.44 binding to the NHR2 domain has been reported. Likewise, the compound has not been characterized as to physicochemical, pharmacokinetic, and toxicological properties. Here, we characterize the interaction between the NHR2 domain of RUNX1/ETO and 7.44 by biophysical assays and show that 7.44 interferes with NHR2 tetramer stability and leads to an increase in the dimer population of NHR2. The affinity of 7.44 with respect to binding to NHR2 is Klig = 3.75 ± 1.22 µM. By NMR spectroscopy combined with molecular dynamics simulations, we show that 7.44 binds with both heteroaromatic moieties to NHR2 and interacts with or leads to conformational changes in the N-termini of the NHR2 tetramer. Finally, we demonstrate that 7.44 has favorable physicochemical, pharmacokinetic, and toxicological properties. Together with biochemical, cellular, and in vivo assessments, the results reveal 7.44 as a lead for further optimization towards targeted therapy of t(8;21) AML.
Collapse
|
42
|
In-Silico Characterization of von Willebrand Factor Bound to FVIII. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Factor VIII belongs to the coagulation cascade and is expressed as a long pre-protein (mature form, 2351 amino acids long). FVIII is deficient or defective in hemophilic A patients, who need to be treated with hemoderivatives or recombinant FVIII substitutes, i.e., biologic drugs. The interaction between FVIII and von Willebrand factor (VWF) influences the pharmacokinetics of FVIII medications. In vivo, full-length FVIII (FL-FVIII) is secreted in a plasma-inactive form, which includes the B domain, which is then proteolyzed by thrombin protease activity, leading to an inactive plasma intermediate. In this work, we analyzed through a computational approach the binding of VWF with two structure models of FVIII (secreted full-length with B domain, and B domain-deleted FVIII). We included in our analysis the atomic model of efanesoctocog alfa, a novel and investigational recombinant FVIII medication, in which the VWF is covalently linked to FVIII. We carried out a structural analysis of VWF/FVIII interfaces by means of protein–protein docking, PISA (Proteins, Interfaces, Structures and Assemblies), and protein contact networks (PCN) analyses. Accordingly, our computational approaches to previously published experimental data demonstrated that the domains A3-C1 of B domain-deleted FVIII (BDD-FVIII) is the preferential binding site for VWF. Overall, our computational approach applied to topological analysis of protein–protein interface can be aimed at the rational design of biologic drugs other than FVIII medications.
Collapse
|
43
|
Swanson MD, Rios S, Mittal S, Soder G, Jawa V. Immunogenicity Risk Assessment of Spontaneously Occurring Therapeutic Monoclonal Antibody Aggregates. Front Immunol 2022; 13:915412. [PMID: 35967308 PMCID: PMC9364768 DOI: 10.3389/fimmu.2022.915412] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Aggregates of therapeutic proteins have been associated with increased immunogenicity in pre-clinical models as well as in human patients. Recent studies to understand aggregates and their immunogenicity risks use artificial stress methods to induce high levels of aggregation. These methods may be less biologically relevant in terms of their quantity than those that occur spontaneously during processing and storage. Here we describe the immunogenicity risk due to spontaneously occurring therapeutic antibody aggregates using peripheral blood mononuclear cells (PBMC) and a cell line with a reporter gene for immune activation: THP-1 BLUE NFκB. The spontaneously occurring therapeutic protein aggregates were obtained from process intermediates and final formulated drug substance from stability retains. Spontaneously occurring aggregates elicited innate immune responses for several donors in a PBMC assay with cytokine and chemokine production as a readout for immune activation. Meanwhile, no significant adaptive phase responses to spontaneously occurring aggregate samples were detected. While the THP-1 BLUE NFκB cell line and PBMC assays both responded to high stress induced aggregates, only the PBMC from a limited subset of donors responded to processing-induced aggregates. In this case study, levels of antibody aggregation occurring at process relevant levels are lower than those induced by stirring and may pose lower risk in vivo. Our methodologies can further inform additional immunogenicity risk assessments using a pre-clinical in vitro risk assessment approach utilizing human derived immune cells.
Collapse
Affiliation(s)
- Michael D. Swanson
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, United States
- *Correspondence: Michael D. Swanson,
| | - Shantel Rios
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, United States
| | - Sarita Mittal
- Analytical R&D, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, United States
| | - George Soder
- Analytical R&D, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, United States
| | - Vibha Jawa
- Nonclinical Disposition and Bioanalysis, Bristol Myers Squibb, Princeton, NJ, United States
| |
Collapse
|
44
|
Detergent micelle conjugates containing amino acid monomers allow purification of human IgG near neutral pH. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1206:123358. [PMID: 35780745 DOI: 10.1016/j.jchromb.2022.123358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022]
Abstract
Industrial scale production of therapeutic monoclonal antibodies (mAbs) is commonly achieved with Protein A chromatography, a process that requires exposure of the antibody to strongly acidic conditions during the eluting step. Exposure to acid inactivates virus contaminants but may, in parallel, lead to antibody aggregation that must be eliminated or kept at acceptably low levels. This report seeks to provide a practical method for overcoming a long-standing problem. We show how Brij-O20 detergent micelles, conjugated by the amphiphilic [(bathophenanthroline)3:Fe2+] complex in the presence of amino acid monomers: phenylalanine (Phe), tyrosine (Tyr), tryptophan (Trp), isoleucine (Ile) or valine (Val), efficiently capture polyclonal human IgG (hIgG) at neutral pH and allow its recovery by extraction either at pH 4 (85-97% yield) or at pH 6.3 (72-84% yield). Of the five amino acid monomers surveyed, Phe or Tyr produced the highest overall process yield at both pH 4 and 6.3. The monomeric state of the purified hIgG's was confirmed by dynamic light scattering (DLS). Potential advantages of the purification method are discussed.
Collapse
|
45
|
Calderon CP, Levačić AK, Helbig C, Wuchner K, Menzen T. Combining Machine Learning and Backgrounded Membrane Imaging: A Case Study in Comparing and Classifying Different Types of Biopharmaceutically Relevant Particles. J Pharm Sci 2022; 111:2422-2434. [PMID: 35661758 PMCID: PMC9391316 DOI: 10.1016/j.xphs.2022.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022]
Abstract
This study investigates how backgrounded membrane imaging (BMI) can be used in combination with convolutional neural networks (CNNs) in order to quantitatively and qualitatively study subvisible particles in both protein biopharmaceuticals and samples containing synthetic model particles. BMI requires low sample volumes and avoids many technical complications associated with imaging particles in solution, e.g., air bubble interference, low refractive index contrast between solution and particles of interest, etc. Hence, BMI is an attractive technique for characterizing particles at various stages of drug product development. However, to date, the morphological information encoded in brightfield BMI images has scarcely been utilized. Here we show that CNN based methods can be useful in extracting morphological information from (label-free) brightfield BMI particle images. Images of particles from biopharmaceutical products and from laboratory prepared samples were analyzed with two types of CNN based approaches: traditional supervised classifiers and a recently proposed fingerprinting analysis method. We demonstrate that the CNN based methods are able to efficiently leverage BMI data to distinguish between particles comprised of different proteins, various fatty acids (representing polysorbate degradation related particles), and protein surrogates (NIST ETFE reference material) only based on BMI images. The utility of using the fingerprinting method for comparing morphological differences and similarities of particles formed in distinct drug products and/or laboratory prepared samples is further demonstrated and discussed through three case studies.
Collapse
Affiliation(s)
- Christopher P Calderon
- Ursa Analytics, Inc., Denver, CO 80212; Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States.
| | - Ana Krhač Levačić
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| | - Constanze Helbig
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| | - Klaus Wuchner
- Janssen Research and Development, DPDS BTDS Analytical Development, Hochstr. 201, 8200 Schaffhausen, Switzerland
| | - Tim Menzen
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany.
| |
Collapse
|
46
|
Fluidized bed centrifugation of precipitated and flocculated cell cultures: An intensified clarification approach for monoclonal antibodies. J Biotechnol 2022; 352:16-25. [DOI: 10.1016/j.jbiotec.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/11/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
|
47
|
Comprehensive Analysis of Nivolumab, A Therapeutic Anti-Pd-1 Monoclonal Antibody: Impact of Handling and Stress. Pharmaceutics 2022; 14:pharmaceutics14040692. [PMID: 35456527 PMCID: PMC9025134 DOI: 10.3390/pharmaceutics14040692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Nivolumab, formulated in the medicine Opdivo® (10 mg/mL), is a therapeutic monoclonal antibody (mAb) used in the treatment of different types of cancer. Currently, there is insufficient knowledge about the behaviour of this protein with regards to the risk associated with its routine handling or unintentional mishandling, or when subjected to stress conditions in hospitals. These conditions can be simulated in forced degradation studies, which provide an in-depth understanding of the biophysical and biochemical properties of mAbs. In this study, we carried out a physicochemical and functional characterisation of nivolumab, which was subjected to various stress conditions: heat, freeze/thaw cycles, agitation, light exposure and high hypertonic solution. We used a wide range of analytical techniques: Far-UV CD, IT-FS, DLS, SE/UHPLC(UV)-[Native]MS, and ELISA. The results show that exposure to light was the stress test with the greatest impact on the samples, revelling the formation of non-natural dimers and a different isoform profile. In addition, nivolumab (Opdivo®) demonstrated stability up to 60 °C (1 h). As regards functionality all the nivolumab (Opdivo®) stressed samples were found to be stable except for those subjected to light and agitation, and to a lesser extent, those subjected to FTC 5 and NaCl stresses.
Collapse
|
48
|
Aggregates Associated with Instability of Antibodies during Aerosolization Induce Adverse Immunological Effects. Pharmaceutics 2022; 14:pharmaceutics14030671. [PMID: 35336045 PMCID: PMC8949695 DOI: 10.3390/pharmaceutics14030671] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Immunogenicity refers to the inherent ability of a molecule to stimulate an immune response. Aggregates are one of the major risk factors for the undesired immunogenicity of therapeutic antibodies (Ab) and may ultimately result in immune-mediated adverse effects. For Ab delivered by inhalation, it is necessary to consider the interaction between aggregates resulting from the instability of the Ab during aerosolization and the lung mucosa. The aim of this study was to determine the impact of aggregates produced during aerosolization of therapeutic Ab on the immune system. Methods: Human and murine immunoglobulin G (IgG) were aerosolized using a clinically-relevant nebulizer and their immunogenic potency was assessed, both in vitro using a standard human monocyte-derived dendritic cell (MoDC) reporter assay and in vivo in immune cells in the airway compartment, lung parenchyma and spleen of healthy C57BL/6 mice after pulmonary administration. Results: IgG aggregates, produced during nebulization, induced a dose-dependent activation of MoDC characterized by the enhanced production of cytokines and expression of co-stimulatory markers. Interestingly, in vivo administration of high amounts of nebulization-mediated IgG aggregates resulted in a profound and sustained local and systemic depletion of immune cells, which was attributable to cell death. This cytotoxic effect was observed when nebulized IgG was administered locally in the airways as compared to a systemic administration but was mitigated by improving IgG stability during nebulization, through the addition of polysorbates to the formulation. Conclusion: Although inhalation delivery represents an attractive alternative route for delivering Ab to treat respiratory infections, our findings indicate that it is critical to prevent IgG aggregation during the nebulization process to avoid pro-inflammatory and cytotoxic effects. The optimization of Ab formulation can mitigate adverse effects induced by nebulization.
Collapse
|
49
|
Cavicchi RE, Philips LA, Cheong FC, Ruffner DB, Kasimbeg P, Vreeland W. Distribution of Average Aggregate Density from Stir-stressed NISTmAb Protein. J Pharm Sci 2022; 111:1614-1624. [DOI: 10.1016/j.xphs.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022]
|
50
|
Tokuda JM, Xie J, Jawa V, Hawkins JM, Ferbas J, Joh NH, Joubert MK. Use of in vitro human skin models to assess potential immune activation in response to biotherapeutic attributes and process-related impurities. J Pharm Sci 2022; 111:1012-1023. [DOI: 10.1016/j.xphs.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 12/21/2022]
|