1
|
Gurevich M, Zilkha-Falb R, Sherman J, Usdin M, Raposo C, Craveiro L, Sonis P, Magalashvili D, Menascu S, Dolev M, Achiron A. Machine learning-based prediction of disease progression in primary progressive multiple sclerosis. Brain Commun 2025; 7:fcae427. [PMID: 39781330 PMCID: PMC11707605 DOI: 10.1093/braincomms/fcae427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/19/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025] Open
Abstract
Primary progressive multiple sclerosis (PPMS) affects 10-15% of multiple sclerosis patients and presents significant variability in the rate of disability progression. Identifying key biological features and patients at higher risk for fast progression is crucial to develop and optimize treatment strategies. Peripheral blood cell transcriptome has the potential to provide valuable information to predict patients' outcomes. In this study, we utilized a machine learning framework applied to the baseline blood transcriptional profiles and brain MRI radiological enumerations to develop prognostic models. These models aim to identify PPMS patients likely to experience significant disease progression and who could benefit from early treatment intervention. RNA-sequence analysis was performed on total RNA extracted from peripheral blood mononuclear cells of PPMS patients in the placebo arm of the ORATORIO clinical trial (NCT01412333), using Illumina NovaSeq S2. Cross-validation algorithms from Partek Genome Suite (www.partek.com) were applied to predict disability progression and brain volume loss over 120 weeks. For disability progression prediction, we analysed blood RNA samples from 135 PPMS patients (61 females and 74 males) with a mean ± standard error age of 44.0 ± 0.7 years, disease duration of 5.9 ± 0.32 years and a median baseline Expanded Disability Status Scale (EDSS) score of 4.3 (range 3.5-6.5). Over the 120-week study, 39.3% (53/135) of patients reached the disability progression end-point, with an average EDSS score increase of 1.3 ± 0.16. For brain volume loss prediction, blood RNA samples from 94 PPMS patients (41 females and 53 males), mean ± standard error age of 43.7 ± 0.7 years and a median baseline EDSS of 4.0 (range 3.0-6.5) were used. Sixty-seven per cent (63/94) experienced significant brain volume loss. For the prediction of disability progression, we developed a two-level procedure. In the first level, a 10-gene predictor achieved a classification accuracy of 70.9 ± 4.5% in identifying patients reaching the disability end-point within 120 weeks. In the second level, a four-gene classifier distinguished between fast and slow disability progression with a 506-day cut-off, achieving 74.1 ± 5.2% accuracy. For brain volume loss prediction, a 12-gene classifier reached an accuracy of 70.2 ± 6.7%, which improved to 74.1 ± 5.2% when combined with baseline brain MRI measurements. In conclusion, our study demonstrates that blood transcriptome data, alone or combined with baseline brain MRI metrics, can effectively predict disability progression and brain volume loss in PPMS patients.
Collapse
Affiliation(s)
- Michael Gurevich
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan 5262, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv 6139601, Israel
| | - Rina Zilkha-Falb
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan 5262, Israel
| | - Jia Sherman
- Research & Development, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Maxime Usdin
- Research & Development, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Catarina Raposo
- Roche Innovation Center Basel, Hoffmann-La Roche Ltd., Basel 4070, Switzerland
| | - Licinio Craveiro
- Roche Innovation Center Basel, Hoffmann-La Roche Ltd., Basel 4070, Switzerland
| | - Polina Sonis
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan 5262, Israel
| | | | - Shay Menascu
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan 5262, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv 6139601, Israel
| | - Mark Dolev
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan 5262, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv 6139601, Israel
| | - Anat Achiron
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan 5262, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv 6139601, Israel
| |
Collapse
|
2
|
Zhao H, Cao N, Liu Q, Zhang Y, Jin R, Lai H, Zheng L, Zhang H, Zhu Y, Ma Y, Yang Z, Wu Z, Li W, Liu Y, Cheng L, Chen Y. Inhibition of the E3 ligase UBR5 stabilizes TERT and protects vascular organoids from oxidative stress. J Transl Med 2024; 22:1080. [PMID: 39609696 PMCID: PMC11605888 DOI: 10.1186/s12967-024-05887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Excessive oxidative stress is known to cause endothelial dysfunction and drive cardiovascular diseases (CVD). While telomerase reverse transcriptase (TERT) shows protective effects against oxidative stress in rodents and is associated to human flow-mediated dilation in CVD, its regulatory mechanisms in human vascular systems under pathological oxidative stress require further investigation. METHODS Human induced pluripotent stem cells (hiPSCs) were used to create vascular organoids (VOs). These VOs and human umbilical vein endothelial cells (HUVECs) were subjected to oxidative stress through both hydrogen peroxide (H2O2) and oxidized low-density lipoprotein (oxLDL) models. The effects of TERT overexpression by inhibition of the ubiquitin protein ligase E3 component N-recognin 5 (UBR5) on reactive oxygen species (ROS)-induced vascular injury and cellular senescence were assessed using neovascular sprouting assays, senescence-associated β-galactosidase (SA-β-Gal) staining, and senescence-associated secretory phenotype (SASP) assays. RESULTS ROS significantly impaired VO development and endothelial progenitor cell (EPC) angiogenesis, evidenced by reduced neovascular sprouting and increased senescence markers, including elevated SA-β-Gal activity and SASP-related cytokine levels. Overexpression of TERT counteracted these effects, restoring VO development and EPC function. Immunoprecipitation-mass spectrometry identified UBR5 as a critical TERT regulator, facilitating its degradation. Inhibition of UBR5 stabilized TERT, improving VO angiogenic capacity, and reducing SA-β-Gal activity and SASP cytokine levels. CONCLUSIONS Inhibiting UBR5 stabilizes TERT, which preserves EPC angiogenic capacity, reduces VO impairment, and delays endothelial cell senescence under oxidative stress. These findings highlight the potential of targeting UBR5 to enhance vascular health in oxidative stress-related conditions.
Collapse
Affiliation(s)
- Haijing Zhao
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, 100037, People's Republic of China
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Nian Cao
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, 100037, People's Republic of China
| | - Qi Liu
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Yingyue Zhang
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, 100037, People's Republic of China
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Rui Jin
- Beijing Institute of Biotechnology, Beijing, 100850, People's Republic of China
| | - Huiying Lai
- Department of Clinical Laboratory, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Li Zheng
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Honghong Zhang
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, 100037, People's Republic of China
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Yue Zhu
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, 100037, People's Republic of China
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Yuhan Ma
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Zengao Yang
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zhengfeng Wu
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, 100037, People's Republic of China
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Weini Li
- Department of Biomedical Science, Cedars-Sinai Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Yuqi Liu
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, 100037, People's Republic of China.
- National Key Laboratory of Kidney Diseases, Beijing, 100853, People's Republic of China.
- Department of Cardiology, National Clinical Research Center of Geriatric Disease, Beijing, 100853, People's Republic of China.
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Beijing, 100853, People's Republic of China.
| | - Long Cheng
- The Key Laboratory of Geriatrics, Institute of Geriatric Medicine, Beijing Institute of Geriatrics, Chinese Academy of Medical Sciences, Beijing Hospital/National Centre of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China.
- Beijing Institute of Biotechnology, Beijing, 100850, People's Republic of China.
| | - Yundai Chen
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, 100037, People's Republic of China.
| |
Collapse
|
3
|
Mabanglo MF, Wilson B, Noureldin M, Kimani SW, Mamai A, Krausser C, González-Álvarez H, Srivastava S, Mohammed M, Hoffer L, Chan M, Avrumutsoae J, Li ASM, Hajian T, Tucker S, Green S, Szewczyk M, Barsyte-Lovejoy D, Santhakumar V, Ackloo S, Loppnau P, Li Y, Seitova A, Kiyota T, Wang JG, Privé GG, Kuntz DA, Patel B, Rathod V, Vala A, Rout B, Aman A, Poda G, Uehling D, Ramnauth J, Halabelian L, Marcellus R, Al-Awar R, Vedadi M. Crystal structures of DCAF1-PROTAC-WDR5 ternary complexes provide insight into DCAF1 substrate specificity. Nat Commun 2024; 15:10165. [PMID: 39580491 PMCID: PMC11585590 DOI: 10.1038/s41467-024-54500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) have been explored for the degradation of drug targets for more than two decades. However, only a handful of E3 ligase substrate receptors have been efficiently used. Downregulation and mutation of these receptors would reduce the effectiveness of such PROTACs. We recently developed potent ligands for DCAF1, a substrate receptor of EDVP and CUL4 E3 ligases. Here, we focus on DCAF1 toward the development of PROTACs for WDR5, a drug target in various cancers. We report four DCAF1-based PROTACs with endogenous and exogenous WDR5 degradation effects and high-resolution crystal structures of the ternary complexes of DCAF1-PROTAC-WDR5. The structures reveal detailed insights into the interaction of DCAF1 with various WDR5-PROTACs, indicating a significant role of DCAF1 loops in providing needed surface plasticity, and reflecting the mechanism by which DCAF1 functions as a substrate receptor for E3 ligases with diverse sets of substrates.
Collapse
Affiliation(s)
- Mark F Mabanglo
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Brian Wilson
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Mahmoud Noureldin
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Serah W Kimani
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Ahmed Mamai
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Chiara Krausser
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Héctor González-Álvarez
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Smriti Srivastava
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Mohammed Mohammed
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Laurent Hoffer
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Manuel Chan
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Jamie Avrumutsoae
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Alice Shi Ming Li
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Taraneh Hajian
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Sarah Tucker
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Stuart Green
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Magdalena Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | | - Suzanne Ackloo
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Almagul Seitova
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Taira Kiyota
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Jue George Wang
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Gilbert G Privé
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Douglas A Kuntz
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Bhashant Patel
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Ahmedabad, Gujarat, India
| | - Vaibhavi Rathod
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Ahmedabad, Gujarat, India
| | - Anand Vala
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Ahmedabad, Gujarat, India
| | - Bhimsen Rout
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Ahmedabad, Gujarat, India
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Gennady Poda
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - David Uehling
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Jailall Ramnauth
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Richard Marcellus
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Rima Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, Canada.
| | - Masoud Vedadi
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Liu M, Zhang Y, Jian Y, Gu L, Zhang D, Zhou H, Wang Y, Xu ZX. The regulations of telomerase reverse transcriptase (TERT) in cancer. Cell Death Dis 2024; 15:90. [PMID: 38278800 PMCID: PMC10817947 DOI: 10.1038/s41419-024-06454-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Abnormal activation of telomerase occurs in most cancer types, which facilitates escaping from cell senescence. As the key component of telomerase, telomerase reverse transcriptase (TERT) is regulated by various regulation pathways. TERT gene changing in its promoter and phosphorylation respectively leads to TERT ectopic expression at the transcription and protein levels. The co-interacting factors play an important role in the regulation of TERT in different cancer types. In this review, we focus on the regulators of TERT and these downstream functions in cancer regulation. Determining the specific regulatory mechanism will help to facilitate the development of a cancer treatment strategy that targets telomerase and cancer cell senescence. As the most important catalytic subunit component of telomerase, TERT is rapidly regulated by transcriptional factors and PTM-related activation. These changes directly influence TERT-related telomere maintenance by regulating telomerase activity in telomerase-positive cancer cells, telomerase assembly with telomere-binding proteins, and recruiting telomerase to the telomere. Besides, there are also non-canonical functions that are influenced by TERT, including the basic biological functions of cancer cells, such as proliferation, apoptosis, cell cycle regulation, initiating cell formation, EMT, and cell invasion. Other downstream effects are the results of the influence of transcriptional factors by TERT. Currently, some small molecular inhibitors of TERT and TERT vaccine are under research as a clinical therapeutic target. Purposeful work is in progress.
Collapse
Affiliation(s)
- Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yuning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yongping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Liting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
5
|
Mochimaru Y, Yoshida K. Functional Roles of DYRK2 as a Tumor Regulator. Curr Issues Mol Biol 2023; 45:8539-8551. [PMID: 37886981 PMCID: PMC10605165 DOI: 10.3390/cimb45100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023] Open
Abstract
The dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) regulates the induction of apoptosis and DNA repair, metastasis inhibition, cell cycle G1/S transition, protein scaffold stability for E3 ligase complexes, and embryogenesis. Owing to these functions, DYRK2 is thought to regulate tumorigenesis, and its function in cancer has been investigated. Notably, DYRK2 has been reported to function as a tumor suppressor; however, it has also been reported to act as an oncogene in some cancers. This discrepancy makes it difficult to elucidate the conserved functions of DYRK2 in cancer. Here, we reviewed the functions of DYRK2 in various cancers. Patient tissue samples were evaluated for each cancer type. Although some studies have used cell lines and/or xenografts to elucidate the mechanism of DYRK2 function, these studies are not sufficient to understand the role of DYRK2 in cancers. In particular, studies using genetically modified mice would help us to understand the reported functional duality of DYRK2 in cancer.
Collapse
Affiliation(s)
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
| |
Collapse
|
6
|
Miao Q, Kadam VD, Mukherjee A, Tan Z, Teng M. Unlocking DCAFs To Catalyze Degrader Development: An Arena for Innovative Approaches. J Med Chem 2023; 66:13369-13383. [PMID: 37738232 DOI: 10.1021/acs.jmedchem.3c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Chemically induced proximity-based targeted protein degradation (TPD) has become a prominent paradigm in drug discovery. With the clinical benefit demonstrated by certain small-molecule protein degraders that target the cullin-RING E3 ubiquitin ligases (CRLs), the field has proactively strategized to tackle anticipated drug resistance by harnessing additional E3 ubiquitin ligases to enrich the arsenal of this therapeutic approach. Here, we endeavor to explore the collaborative efforts involved in unlocking a broad range of CRL4DCAF for degrader drug development. Throughout the discussion, we also highlight how both conventional and innovative approaches in drug discovery can be taken to realize this objective. Moving ahead, we expect a greater allocation of resources in TPD to pursue these high-hanging fruits.
Collapse
Affiliation(s)
- Qi Miao
- Center for Drug Discovery, Department of Pathology & Immunology, and Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Vilas D Kadam
- Center for Drug Discovery, Department of Pathology & Immunology, and Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Ayan Mukherjee
- Center for Drug Discovery, Department of Pathology & Immunology, and Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Zhi Tan
- Center for Drug Discovery, Department of Pathology & Immunology, and Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Mingxing Teng
- Center for Drug Discovery, Department of Pathology & Immunology, and Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
7
|
Oswald J, Constantine M, Adegbuyi A, Omorogbe E, Dellomo AJ, Ehrlich ES. E3 Ubiquitin Ligases in Gammaherpesviruses and HIV: A Review of Virus Adaptation and Exploitation. Viruses 2023; 15:1935. [PMID: 37766341 PMCID: PMC10535929 DOI: 10.3390/v15091935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
For productive infection and replication to occur, viruses must control cellular machinery and counteract restriction factors and antiviral proteins. Viruses can accomplish this, in part, via the regulation of cellular gene expression and post-transcriptional and post-translational control. Many viruses co-opt and counteract cellular processes via modulation of the host post-translational modification machinery and encoding or hijacking kinases, SUMO ligases, deubiquitinases, and ubiquitin ligases, in addition to other modifiers. In this review, we focus on three oncoviruses, Epstein-Barr virus (EBV), Kaposi's sarcoma herpesvirus (KSHV), and human immunodeficiency virus (HIV) and their interactions with the ubiquitin-proteasome system via viral-encoded or cellular E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Elana S. Ehrlich
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| |
Collapse
|
8
|
Yang R, Han Y, Guan X, Hong Y, Meng J, Ding S, Long Q, Yi W. Regulation and clinical potential of telomerase reverse transcriptase (TERT/hTERT) in breast cancer. Cell Commun Signal 2023; 21:218. [PMID: 37612721 PMCID: PMC10463831 DOI: 10.1186/s12964-023-01244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/23/2023] [Indexed: 08/25/2023] Open
Abstract
Telomerase reverse transcriptase (TERT/hTERT) serves as the pivotal catalytic subunit of telomerase, a crucial enzyme responsible for telomere maintenance and human genome stability. The high activation of hTERT, observed in over 90% of tumors, plays a significant role in tumor initiation and progression. An in-depth exploration of hTERT activation mechanisms in cancer holds promise for advancing our understanding of the disease and developing more effective treatment strategies. In breast cancer, the expression of hTERT is regulated by epigenetic, transcriptional, post-translational modification mechanisms and DNA variation. Besides its canonical function in telomere maintenance, hTERT exerts non-canonical roles that contribute to disease progression through telomerase-independent mechanisms. This comprehensive review summarizes the regulatory mechanisms governing hTERT in breast cancer and elucidates the functional implications of its activation. Given the overexpression of hTERT in most breast cancer cells, the detection of hTERT and its associated molecules are potential for enhancing early screening and prognostic evaluation of breast cancer. Although still in its early stages, therapeutic approaches targeting hTERT and its regulatory molecules show promise as viable strategies for breast cancer treatment. These methods are also discussed in this paper. Video Abstract.
Collapse
Affiliation(s)
- Ruozhu Yang
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Yi Han
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Xinyu Guan
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Yue Hong
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Jiahao Meng
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Shirong Ding
- Department of Oncology, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| | - Qian Long
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| | - Wenjun Yi
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| |
Collapse
|
9
|
Li AM, Kimani S, Wilson B, Noureldin M, González-Álvarez H, Mamai A, Hoffer L, Guilinger JP, Zhang Y, von Rechenberg M, Disch JS, Mulhern CJ, Slakman BL, Cuozzo JW, Dong A, Poda G, Mohammed M, Saraon P, Mittal M, Modh P, Rathod V, Patel B, Ackloo S, Santhakumar V, Szewczyk MM, Barsyte-Lovejoy D, Arrowsmith CH, Marcellus R, Guié MA, Keefe AD, Brown PJ, Halabelian L, Al-awar R, Vedadi M. Discovery of Nanomolar DCAF1 Small Molecule Ligands. J Med Chem 2023; 66:5041-5060. [PMID: 36948210 PMCID: PMC10108359 DOI: 10.1021/acs.jmedchem.2c02132] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Indexed: 03/24/2023]
Abstract
DCAF1 is a substrate receptor of two distinct E3 ligases (CRL4DCAF1 and EDVP), plays a critical physiological role in protein degradation, and is considered a drug target for various cancers. Antagonists of DCAF1 could be used toward the development of therapeutics for cancers and viral treatments. We used the WDR domain of DCAF1 to screen a 114-billion-compound DNA encoded library (DEL) and identified candidate compounds using similarity search and machine learning. This led to the discovery of a compound (Z1391232269) with an SPR KD of 11 μM. Structure-guided hit optimization led to the discovery of OICR-8268 (26e) with an SPR KD of 38 nM and cellular target engagement with EC50 of 10 μM as measured by cellular thermal shift assay (CETSA). OICR-8268 is an excellent tool compound to enable the development of next-generation DCAF1 ligands toward cancer therapeutics, further investigation of DCAF1 functions in cells, and the development of DCAF1-based PROTACs.
Collapse
Affiliation(s)
- Alice
Shi Ming Li
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Serah Kimani
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Princess
Margaret Cancer Centre, University Health
Network, Toronto, Ontario M5G 2C1, Canada
| | - Brian Wilson
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Mahmoud Noureldin
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Héctor González-Álvarez
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ahmed Mamai
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Laurent Hoffer
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | | | - Ying Zhang
- X-Chem
Inc., Waltham, Massachusetts 02453, United States
| | | | - Jeremy S. Disch
- Relay Therapeutics, Cambridge, Massachusetts 02139, United States
| | | | | | - John W. Cuozzo
- Relay Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Aiping Dong
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Gennady Poda
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Mohammed Mohammed
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Punit Saraon
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Manish Mittal
- Piramal
Discovery Solutions, Pharmaceutical Special Economic Zone, Ahmedabad, Gujarat 382213, India
| | - Pratik Modh
- Piramal
Discovery Solutions, Pharmaceutical Special Economic Zone, Ahmedabad, Gujarat 382213, India
| | - Vaibhavi Rathod
- Piramal
Discovery Solutions, Pharmaceutical Special Economic Zone, Ahmedabad, Gujarat 382213, India
| | - Bhashant Patel
- Piramal
Discovery Solutions, Pharmaceutical Special Economic Zone, Ahmedabad, Gujarat 382213, India
| | - Suzanne Ackloo
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | | | - Magdalena M Szewczyk
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Dalia Barsyte-Lovejoy
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Cheryl H. Arrowsmith
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Princess
Margaret Cancer Centre, University Health
Network, Toronto, Ontario M5G 2C1, Canada
- Department
of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Richard Marcellus
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | | | | | - Peter J. Brown
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Levon Halabelian
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Rima Al-awar
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Masoud Vedadi
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
10
|
Davis JA, Reyes AV, Nitika, Saha A, Wolfgeher DJ, Xu SL, Truman AW, Li B, Chakrabarti K. Proteomic analysis defines the interactome of telomerase in the protozoan parasite, Trypanosoma brucei. Front Cell Dev Biol 2023; 11:1110423. [PMID: 37009488 PMCID: PMC10061497 DOI: 10.3389/fcell.2023.1110423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
Telomerase is a ribonucleoprotein enzyme responsible for maintaining the telomeric end of the chromosome. The telomerase enzyme requires two main components to function: the telomerase reverse transcriptase (TERT) and the telomerase RNA (TR), which provides the template for telomeric DNA synthesis. TR is a long non-coding RNA, which forms the basis of a large structural scaffold upon which many accessory proteins can bind and form the complete telomerase holoenzyme. These accessory protein interactions are required for telomerase activity and regulation inside cells. The interacting partners of TERT have been well studied in yeast, human, and Tetrahymena models, but not in parasitic protozoa, including clinically relevant human parasites. Here, using the protozoan parasite, Trypanosoma brucei (T. brucei) as a model, we have identified the interactome of T. brucei TERT (TbTERT) using a mass spectrometry-based approach. We identified previously known and unknown interacting factors of TbTERT, highlighting unique features of T. brucei telomerase biology. These unique interactions with TbTERT, suggest mechanistic differences in telomere maintenance between T. brucei and other eukaryotes.
Collapse
Affiliation(s)
- Justin A. Davis
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, United States
| | - Andres V. Reyes
- Department of Plant Biology and Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, CA, United States
| | - Nitika
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, United States
| | - Arpita Saha
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Arts and Sciences, Cleveland State University, Cleveland, OH, United States
| | - Donald J. Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| | - Shou-Ling Xu
- Department of Plant Biology and Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, CA, United States
| | - Andrew W. Truman
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, United States
| | - Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Arts and Sciences, Cleveland State University, Cleveland, OH, United States
| | - Kausik Chakrabarti
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, United States
| |
Collapse
|
11
|
Shepelev N, Dontsova O, Rubtsova M. Post-Transcriptional and Post-Translational Modifications in Telomerase Biogenesis and Recruitment to Telomeres. Int J Mol Sci 2023; 24:5027. [PMID: 36902458 PMCID: PMC10003056 DOI: 10.3390/ijms24055027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Telomere length is associated with the proliferative potential of cells. Telomerase is an enzyme that elongates telomeres throughout the entire lifespan of an organism in stem cells, germ cells, and cells of constantly renewed tissues. It is activated during cellular division, including regeneration and immune responses. The biogenesis of telomerase components and their assembly and functional localization to the telomere is a complex system regulated at multiple levels, where each step must be tuned to the cellular requirements. Any defect in the function or localization of the components of the telomerase biogenesis and functional system will affect the maintenance of telomere length, which is critical to the processes of regeneration, immune response, embryonic development, and cancer progression. An understanding of the regulatory mechanisms of telomerase biogenesis and activity is necessary for the development of approaches toward manipulating telomerase to influence these processes. The present review focuses on the molecular mechanisms involved in the major steps of telomerase regulation and the role of post-transcriptional and post-translational modifications in telomerase biogenesis and function in yeast and vertebrates.
Collapse
Affiliation(s)
- Nikita Shepelev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Olga Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Maria Rubtsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
12
|
FOXM1 increases hTERT protein stability and indicates poor prognosis in gastric cancer. Neoplasia 2022; 36:100863. [PMID: 36528911 PMCID: PMC9792884 DOI: 10.1016/j.neo.2022.100863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Gastric cancer is one of most lethal diseases across the world. However, the underlying mechanism of gastric cancer carcinogenesis and development is still not fully known. Forkhead box M1 (FOXM1) belongs to the FOX family and has crucial roles in transactivation of multiple oncogenes in several cancer types, including gastric cancer. Recent studies have also shown the non-transcriptional function of FOXM1 via protein-protein interactions. Human telomerase reverse transcriptase (hTERT) is the core subunit of telomerase that facilitates cancer initiation and progression by maintaining cell immortalization, promoting cell proliferation and inhibiting cell apoptosis. However, the relationship between FOXM1 and hTERT in gastric cancer is still unclear. In our study, we found that FOXM1 and hTERT were convergent to the cell cycle-related pathways and they were positively related with advanced gastric cancer stages and poor outcomes. Simultaneous high levels of FOXM1 and hTERT predicted the worst prognosis. FOXM1 could increase hTERT protein rather than mRNA levels in a non-transcriptional manner. Mechanistically, FOXM1 interrupted the interaction between the E3 ligase MKRN1 and hTERT and decreased hTERT protein degradation. Further studies revealed that FOXM1 interacted with hTERT through its DNA-binding domain (DBD) region. Finally, we found that hTERT played important roles in FOXM1-mediated activation of the Wnt/β-catenin pathway to promote gastric cancer cell proliferation. Taken together, we found a novel non-classical function of FOXM1 to increase hTERT protein stability. Targeting the FOXM1-hTERT pathway may be a potential therapeutic strategy in treating gastric cancer.
Collapse
|
13
|
Kawamura A, Yoshida S, Aoki K, Shimoyama Y, Yamada K, Yoshida K. DYRK2 maintains genome stability via neddylation of cullins in response to DNA damage. J Cell Sci 2022; 135:jcs259514. [PMID: 35582972 DOI: 10.1242/jcs.259514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/03/2022] [Indexed: 11/20/2022] Open
Abstract
Neural precursor cell-expressed developmentally down-regulated 8 (NEDD8), an ubiquitin-like protein, is an essential regulator of the DNA damage response. Numerous studies have shown that neddylation (conjugation of NEDD8 to target proteins) dysfunction causes several human diseases, such as cancer. Hence clarifying the regulatory mechanism of neddylation could provide insight into the mechanism of genome stability underlying the DNA damage response (DDR) and carcinogenesis. Here, we demonstrate that dual-specificity tyrosine-regulated kinase 2 (DYRK2) is a novel regulator of neddylation and maintains genome stability. Deletion of DYRK2 leads to persistent DNA double-strand breaks (DSBs) and subsequent genome instability. Mechanistically, DYRK2 promotes neddylation through forming a complex with NAE1, which is a component of NEDD8-activating enzyme E1, and maintaining its protein level by suppressing polyubiquitylation. The present study is the first to demonstrate that DYRK2 controls neddylation and is necessary for maintaining genome stability. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Akira Kawamura
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Katsuhiko Aoki
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Yuya Shimoyama
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
- Department of Surgery, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Kohji Yamada
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| |
Collapse
|
14
|
Imaizumi Y, Yoshida S, Kanegae Y, Eto K, Yoshida K. Enforced dual-specificity tyrosine-regulated kinase 2 expression by adenovirus-mediated gene transfer inhibits tumor growth and metastasis of colorectal cancer. Cancer Sci 2022; 113:960-970. [PMID: 34932844 PMCID: PMC8898707 DOI: 10.1111/cas.15247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022] Open
Abstract
Colorectal cancer is one of the most common gastrointestinal tumors with good outcomes; however, with distant metastasis, the outcomes are poor. Novel treatment methods are urgently needed. Our in vitro studies indicate that dual-specificity tyrosine-regulated kinase 2 (DYRK2) functions as a tumor suppressor in colorectal cancer by regulating cell survival, proliferation, and apoptosis induction. In addition, DYRK2 expression is decreased in tumor tissues compared to nontumor tissues in colorectal cancer, indicating a correlation with clinical prognosis. In this context, we devised a novel therapeutic strategy to overexpress DYRK2 in tumors by adenovirus-mediated gene transfer. The present study shows that overexpression of DYRK2 in colon cancer cell lines by adenovirus inhibits cell proliferation and induces apoptosis in vitro. Furthermore, in mouse subcutaneous xenograft and liver metastasis models, enforced expression of DYRK2 by direct or intravenous injection of adenovirus to the tumor significantly inhibits tumor growth. Taken together, these findings show that adenovirus-based overexpression of DYRK2 could be a novel gene therapy for liver metastasis of colorectal cancer.
Collapse
Affiliation(s)
- Yuta Imaizumi
- Department of BiochemistryThe Jikei University School of MedicineTokyoJapan
- Department of SurgeryThe Jikei University School of MedicineTokyoJapan
| | - Saishu Yoshida
- Department of BiochemistryThe Jikei University School of MedicineTokyoJapan
| | - Yumi Kanegae
- Core Research Facilities for Basic ScienceResearch Center for Medical ScienceThe Jikei University School of MedicineTokyoJapan
| | - Ken Eto
- Department of SurgeryThe Jikei University School of MedicineTokyoJapan
| | - Kiyotsugu Yoshida
- Department of BiochemistryThe Jikei University School of MedicineTokyoJapan
| |
Collapse
|
15
|
Role of ubiquitin-protein ligase UBR5 in the disassembly of mitotic checkpoint complexes. Proc Natl Acad Sci U S A 2022; 119:2121478119. [PMID: 35217622 PMCID: PMC8892521 DOI: 10.1073/pnas.2121478119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 11/18/2022] Open
Abstract
The mitotic checkpoint system is essential for the prevention of mistakes in the segregation of chromosomes in mitosis. As long as chromosomes are not attached correctly to the mitotic spindle, a mitotic checkpoint complex (MCC) is assembled and inhibits the action of ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) to initiate anaphase. When the checkpoint is turned off, MCC is disassembled, allowing anaphase initiation. The mechanisms of MCC disassembly have been studied, but the regulation of this process remained obscure. We found that a second ubiquitin ligase, UBR5 (ubiquitin-protein ligase N-recognin 5), ubiquitylates MCC components and stimulates the disassembly of MCC from APC/C, as well as the dissociation of a subcomplex of MCC. The mitotic (or spindle assembly) checkpoint system ensures accurate chromosome segregation in mitosis by preventing the onset of anaphase until correct bipolar attachment of sister chromosomes to the mitotic spindle is attained. It acts by promoting the assembly of a mitotic checkpoint complex (MCC), composed of mitotic checkpoint proteins BubR1, Bub3, Mad2, and Cdc20. MCC binds to and inhibits the action of ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome), which targets for degradation regulators of anaphase initiation. When the checkpoint system is satisfied, MCCs are disassembled, allowing the recovery of APC/C activity and initiation of anaphase. Many of the pathways of the disassembly of the different MCCs have been elucidated, but the mode of their regulation remained unknown. We find that UBR5 (ubiquitin-protein ligase N-recognin 5) is associated with the APC/C*MCC complex immunopurified from extracts of nocodazole-arrested HeLa cells. UBR5 binds to mitotic checkpoint proteins BubR1, Bub3, and Cdc20 and promotes their polyubiquitylation in vitro. The dissociation of a Bub3*BubR1 subcomplex of MCC is stimulated by UBR5-dependent ubiquitylation, as suggested by observations that this process in mitotic extracts requires UBR5 and α−β bond hydrolysis of adenosine triphosphate. Furthermore, a system reconstituted from purified recombinant components carries out UBR5- and ubiquitylation-dependent dissociation of Bub3*BubR1. Immunodepletion of UBR5 from mitotic extracts slows down the release of MCC components from APC/C and prolongs the lag period in the recovery of APC/C activity in the exit from mitotic checkpoint arrest. We suggest that UBR5 may be involved in the regulation of the inactivation of the mitotic checkpoint.
Collapse
|
16
|
Lara-Chica M, Correa-Sáez A, Jiménez-Izquierdo R, Garrido-Rodríguez M, Ponce FJ, Moreno R, Morrison K, Di Vona C, Arató K, Jiménez-Jiménez C, Morrugares R, Schmitz ML, de la Luna S, de la Vega L, Calzado MA. A novel CDC25A/DYRK2 regulatory switch modulates cell cycle and survival. Cell Death Differ 2022; 29:105-117. [PMID: 34363019 PMCID: PMC8738746 DOI: 10.1038/s41418-021-00845-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/30/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
The cell division cycle 25A (CDC25A) phosphatase is a key regulator of cell cycle progression that acts on the phosphorylation status of Cyclin-Cyclin-dependent kinase complexes, with an emergent role in the DNA damage response and cell survival control. The regulation of CDC25A activity and its protein level is essential to control the cell cycle and maintain genomic integrity. Here we describe a novel ubiquitin/proteasome-mediated pathway negatively regulating CDC25A stability, dependent on its phosphorylation by the serine/threonine kinase DYRK2. DYRK2 phosphorylates CDC25A on at least 7 residues, resulting in its degradation independent of the known CDC25A E3 ubiquitin ligases. CDC25A in turn is able to control the phosphorylation of DYRK2 at several residues outside from its activation loop, thus affecting DYRK2 localization and activity. An inverse correlation between DYRK2 and CDC25A protein amounts was observed during cell cycle progression and in response to DNA damage, with CDC25A accumulation responding to the manipulation of DYRK2 levels or activity in either physiological scenario. Functional data show that the pro-survival activity of CDC25A and the pro-apoptotic activity of DYRK2 could be partly explained by the mutual regulation between both proteins. Moreover, DYRK2 modulation of CDC25A expression and/or activity contributes to the DYRK2 role in cell cycle regulation. Altogether, we provide evidence suggesting that DYRK2 and CDC25A mutually control their activity and stability by a feedback regulatory loop, with a relevant effect on the genotoxic stress pathway, apoptosis, and cell cycle regulation.
Collapse
Affiliation(s)
- Maribel Lara-Chica
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Alejandro Correa-Sáez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rafael Jiménez-Izquierdo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Martín Garrido-Rodríguez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Francisco J Ponce
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rita Moreno
- Division of Cellular Medicine, School of Medicine, University of Dundee, Scotland, UK
| | - Kimberley Morrison
- Division of Cellular Medicine, School of Medicine, University of Dundee, Scotland, UK
| | - Chiara Di Vona
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Krisztina Arató
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Carla Jiménez-Jiménez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rosario Morrugares
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus-Liebig-University, Member of the German Center for Lung Research, Giessen, Germany
| | - Susana de la Luna
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Laureano de la Vega
- Division of Cellular Medicine, School of Medicine, University of Dundee, Scotland, UK
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
17
|
Abraham SP, Nita A, Krejci P, Bosakova M. Cilia kinases in skeletal development and homeostasis. Dev Dyn 2021; 251:577-608. [PMID: 34582081 DOI: 10.1002/dvdy.426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
Primary cilia are dynamic compartments that regulate multiple aspects of cellular signaling. The production, maintenance, and function of cilia involve more than 1000 genes in mammals, and their mutations disrupt the ciliary signaling which manifests in a plethora of pathological conditions-the ciliopathies. Skeletal ciliopathies are genetic disorders affecting the development and homeostasis of the skeleton, and encompass a broad spectrum of pathologies ranging from isolated polydactyly to lethal syndromic dysplasias. The recent advances in forward genetics allowed for the identification of novel regulators of skeletogenesis, and revealed a growing list of ciliary proteins that are critical for signaling pathways implicated in bone physiology. Among these, a group of protein kinases involved in cilia assembly, maintenance, signaling, and disassembly has emerged. In this review, we summarize the functions of cilia kinases in skeletal development and disease, and discuss the available and upcoming treatment options.
Collapse
Affiliation(s)
- Sara P Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
18
|
Dar AA, Sawada K, Dybas JM, Moser EK, Lewis EL, Park E, Fazelinia H, Spruce LA, Ding H, Seeholzer SH, Oliver PM. The E3 ubiquitin ligase Cul4b promotes CD4+ T cell expansion by aiding the repair of damaged DNA. PLoS Biol 2021; 19:e3001041. [PMID: 33524014 PMCID: PMC7888682 DOI: 10.1371/journal.pbio.3001041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 02/17/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022] Open
Abstract
The capacity for T cells to become activated and clonally expand during pathogen invasion is pivotal for protective immunity. Our understanding of how T cell receptor (TCR) signaling prepares cells for this rapid expansion remains limited. Here we provide evidence that the E3 ubiquitin ligase Cullin-4b (Cul4b) regulates this process. The abundance of total and neddylated Cul4b increased following TCR stimulation. Disruption of Cul4b resulted in impaired proliferation and survival of activated T cells. Additionally, Cul4b-deficient CD4+ T cells accumulated DNA damage. In T cells, Cul4b preferentially associated with the substrate receptor DCAF1, and Cul4b and DCAF1 were found to interact with proteins that promote the sensing or repair of damaged DNA. While Cul4b-deficient CD4+ T cells showed evidence of DNA damage sensing, downstream phosphorylation of SMC1A did not occur. These findings reveal an essential role for Cul4b in promoting the repair of damaged DNA to allow survival and expansion of activated T cells.
Collapse
Affiliation(s)
- Asif A. Dar
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Keisuke Sawada
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Joseph M. Dybas
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Biomedical Health and Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Emily K. Moser
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Emma L. Lewis
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eddie Park
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Hossein Fazelinia
- Division of Cell Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Lynn A. Spruce
- Division of Cell Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Hua Ding
- Division of Cell Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Steven H. Seeholzer
- Division of Cell Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Paula M. Oliver
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pathology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
19
|
Tandon V, de la Vega L, Banerjee S. Emerging roles of DYRK2 in cancer. J Biol Chem 2021; 296:100233. [PMID: 33376136 PMCID: PMC7948649 DOI: 10.1074/jbc.rev120.015217] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, the CMGC kinase DYRK2 has been reported as a tumor suppressor across various cancers triggering major antitumor and proapoptotic signals in breast, colon, liver, ovary, brain, and lung cancers, with lower DYRK2 expression correlated with poorer prognosis in patients. Contrary to this, various medicinal chemistry studies reported robust antiproliferative properties of DYRK2 inhibitors, whereas unbiased 'omics' and genome-wide association study-based studies identified DYRK2 as a highly overexpressed kinase in various patient tumor samples. A major paradigm shift occurred in the last 4 years when DYRK2 was found to regulate proteostasis in cancer via a two-pronged mechanism. DYRK2 phosphorylated and activated the 26S proteasome to enhance degradation of misfolded/tumor-suppressor proteins while also promoting the nuclear stability and transcriptional activity of its substrate, heat-shock factor 1 triggering protein folding. Together, DYRK2 regulates proteostasis and promotes protumorigenic survival for specific cancers. Indeed, potent and selective small-molecule inhibitors of DYRK2 exhibit in vitro and in vivo anti-tumor activity in triple-negative breast cancer and myeloma models. However, with conflicting and contradictory reports across different cancers, the overarching role of DYRK2 remains enigmatic. Specific cancer (sub)types coupled to spatiotemporal interactions with substrates could decide the procancer or anticancer role of DYRK2. The current review aims to provide a balanced and critical appreciation of the literature to date, highlighting top substrates such as p53, c-Myc, c-Jun, heat-shock factor 1, proteasome, or NOTCH1, to discuss DYRK2 inhibitors available to the scientific community and to shed light on this duality of protumorigenic and antitumorigenic roles of DYRK2.
Collapse
Affiliation(s)
- Vasudha Tandon
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Laureano de la Vega
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Sourav Banerjee
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
20
|
Chen J, Nelson C, Wong M, Tee AE, Liu PY, La T, Fletcher JI, Kamili A, Mayoh C, Bartenhagen C, Trahair TN, Xu N, Jayatilleke N, Wong M, Peng H, Atmadibrata B, Cheung BB, Lan Q, Bryan TM, Mestdagh P, Vandesompele J, Combaret V, Boeva V, Wang JY, Janoueix-Lerosey I, Cowley MJ, MacKenzie KL, Dolnikov A, Li J, Polly P, Marshall GM, Reddel RR, Norris MD, Haber M, Fischer M, Zhang XD, Pickett HA, Liu T. Targeted Therapy of TERT-Rearranged Neuroblastoma with BET Bromodomain Inhibitor and Proteasome Inhibitor Combination Therapy. Clin Cancer Res 2020; 27:1438-1451. [PMID: 33310889 DOI: 10.1158/1078-0432.ccr-20-3044] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/23/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE TERT gene rearrangement with transcriptional superenhancers leads to TERT overexpression and neuroblastoma. No targeted therapy is available for clinical trials in patients with TERT-rearranged neuroblastoma. EXPERIMENTAL DESIGN Anticancer agents exerting the best synergistic anticancer effects with BET bromodomain inhibitors were identified by screening an FDA-approved oncology drug library. The synergistic effects of the BET bromodomain inhibitor OTX015 and the proteasome inhibitor carfilzomib were examined by immunoblot and flow cytometry analysis. The anticancer efficacy of OTX015 and carfilzomib combination therapy was investigated in mice xenografted with TERT-rearranged neuroblastoma cell lines or patient-derived xenograft (PDX) tumor cells, and the role of TERT reduction in the anticancer efficacy was examined through rescue experiments in mice. RESULTS The BET bromodomain protein BRD4 promoted TERT-rearranged neuroblastoma cell proliferation through upregulating TERT expression. Screening of an approved oncology drug library identified the proteasome inhibitor carfilzomib as the agent exerting the best synergistic anticancer effects with BET bromodomain inhibitors including OTX015. OTX015 and carfilzomib synergistically reduced TERT protein expression, induced endoplasmic reticulum stress, and induced TERT-rearranged neuroblastoma cell apoptosis which was blocked by TERT overexpression and endoplasmic reticulum stress antagonists. In mice xenografted with TERT-rearranged neuroblastoma cell lines or PDX tumor cells, OTX015 and carfilzomib synergistically blocked TERT expression, induced tumor cell apoptosis, suppressed tumor progression, and improved mouse survival, which was largely reversed by forced TERT overexpression. CONCLUSIONS OTX015 and carfilzomib combination therapy is likely to be translated into the first clinical trial of a targeted therapy in patients with TERT-rearranged neuroblastoma.
Collapse
Affiliation(s)
- Jingwei Chen
- Children's Cancer Institute, Randwick, Sydney, Australia
- School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Christopher Nelson
- Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Matthew Wong
- Children's Cancer Institute, Randwick, Sydney, Australia
- School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Andrew E Tee
- Children's Cancer Institute, Randwick, Sydney, Australia
- School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Pei Y Liu
- Children's Cancer Institute, Randwick, Sydney, Australia
- School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Ting La
- School of Medicine and Public Health, Priority Research Centre for Cancer Research, University of Newcastle, Callaghan, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute, Randwick, Sydney, Australia
- School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Alvin Kamili
- Children's Cancer Institute, Randwick, Sydney, Australia
- School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Randwick, Sydney, Australia
- School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Christoph Bartenhagen
- Department of Experimental Pediatric Oncology, Medical Faculty, University Hospital, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Toby N Trahair
- Children's Cancer Institute, Randwick, Sydney, Australia
- School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Ning Xu
- Children's Cancer Institute, Randwick, Sydney, Australia
- School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Nisitha Jayatilleke
- Children's Cancer Institute, Randwick, Sydney, Australia
- School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Marie Wong
- Children's Cancer Institute, Randwick, Sydney, Australia
- School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Hui Peng
- Advanced Analytics Institute, University of Technology Sydney, Ultimo, Australia
| | | | - Belamy B Cheung
- Children's Cancer Institute, Randwick, Sydney, Australia
- School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Pieter Mestdagh
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Jo Vandesompele
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Valerie Combaret
- Centre Léon-Bérard, Laboratoire de Recherche Translationnelle, Lyon, France
| | - Valentina Boeva
- ETH Zürich, Department of Computer Science, Institute for Machine Learning, Swiss Institute of Bioinformaticsics (SIB), Zurich, Switzerland
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Université Paris Descartes UMR-S1016, Paris, France
| | - Jenny Y Wang
- Children's Cancer Institute, Randwick, Sydney, Australia
- School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Isabelle Janoueix-Lerosey
- Institut Curie, Paris Sciences et Lettres Research University, INSERM, U830, Equipe Labellisée Ligue contre le Cancer, Paris, France
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Mark J Cowley
- Children's Cancer Institute, Randwick, Sydney, Australia
- School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Karen L MacKenzie
- Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Alla Dolnikov
- Children's Cancer Institute, Randwick, Sydney, Australia
- School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Jinyan Li
- Advanced Analytics Institute, University of Technology Sydney, Ultimo, Australia
| | - Patsie Polly
- Department of Pathology, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Glenn M Marshall
- Children's Cancer Institute, Randwick, Sydney, Australia
- School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Roger R Reddel
- Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Murray D Norris
- Children's Cancer Institute, Randwick, Sydney, Australia
- School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Michelle Haber
- Children's Cancer Institute, Randwick, Sydney, Australia
- School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, Medical Faculty, University Hospital, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Xu D Zhang
- School of Medicine and Public Health, Priority Research Centre for Cancer Research, University of Newcastle, Callaghan, Australia
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Hilda A Pickett
- Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Tao Liu
- Children's Cancer Institute, Randwick, Sydney, Australia.
- School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Correa-Sáez A, Jiménez-Izquierdo R, Garrido-Rodríguez M, Morrugares R, Muñoz E, Calzado MA. Updating dual-specificity tyrosine-phosphorylation-regulated kinase 2 (DYRK2): molecular basis, functions and role in diseases. Cell Mol Life Sci 2020; 77:4747-4763. [PMID: 32462403 PMCID: PMC7658070 DOI: 10.1007/s00018-020-03556-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022]
Abstract
Members of the dual-specificity tyrosine-regulated kinase (DYRKs) subfamily possess a distinctive capacity to phosphorylate tyrosine, serine, and threonine residues. Among the DYRK class II members, DYRK2 is considered a unique protein due to its role in disease. According to the post-transcriptional and post-translational modifications, DYRK2 expression greatly differs among human tissues. Regarding its mechanism of action, this kinase performs direct phosphorylation on its substrates or acts as a priming kinase, enabling subsequent substrate phosphorylation by GSK3β. Moreover, DYRK2 acts as a scaffold for the EDVP E3 ligase complex during the G2/M phase of cell cycle. DYRK2 functions such as cell survival, cell development, cell differentiation, proteasome regulation, and microtubules were studied in complete detail in this review. We have also gathered available information from different bioinformatic resources to show DYRK2 interactome, normal and tumoral tissue expression, and recurrent cancer mutations. Then, here we present an innovative approach to clarify DYRK2 functionality and importance. DYRK2 roles in diseases have been studied in detail, highlighting this kinase as a key protein in cancer development. First, DYRK2 regulation of c-Jun, c-Myc, Rpt3, TERT, and katanin p60 reveals the implication of this kinase in cell-cycle-mediated cancer development. Additionally, depletion of this kinase correlated with reduced apoptosis, with consequences on cancer patient response to chemotherapy. Other functions like cancer stem cell formation and epithelial-mesenchymal transition regulation are also controlled by DYRK2. Furthermore, the pharmacological modulation of this protein by different inhibitors (harmine, curcumine, LDN192960, and ID-8) has enabled to clarify DYRK2 functionality.
Collapse
Affiliation(s)
- Alejandro Correa-Sáez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rafael Jiménez-Izquierdo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Martín Garrido-Rodríguez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rosario Morrugares
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain.
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
22
|
Park CS, Lacorazza HD. DYRK2 controls a key regulatory network in chronic myeloid leukemia stem cells. Exp Mol Med 2020; 52:1663-1672. [PMID: 33067577 PMCID: PMC8080801 DOI: 10.1038/s12276-020-00515-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 02/02/2023] Open
Abstract
Chronic myeloid leukemia is a hematological cancer driven by the oncoprotein BCR-ABL1, and lifelong treatment with tyrosine kinase inhibitors extends patient survival to nearly the life expectancy of the general population. Despite advances in the development of more potent tyrosine kinase inhibitors to induce a durable deep molecular response, more than half of patients relapse upon treatment discontinuation. This clinical finding supports the paradigm that leukemia stem cells feed the neoplasm, resist tyrosine kinase inhibition, and reactivate upon drug withdrawal depending on the fitness of the patient's immune surveillance. This concept lends support to the idea that treatment-free remission is not achieved solely with tyrosine kinase inhibitors and that new molecular targets independent of BCR-ABL1 signaling are needed in order to develop adjuvant therapy to more efficiently eradicate the leukemia stem cell population responsible for chemoresistance and relapse. Future efforts must focus on the identification of new targets to support the discovery of potent and safe small molecules able to specifically eradicate the leukemic stem cell population. In this review, we briefly discuss molecular maintenance in leukemia stem cells in chronic myeloid leukemia and provide a more in-depth discussion of the dual-specificity kinase DYRK2, which has been identified as a novel actionable checkpoint in a critical leukemic network. DYRK2 controls the activation of p53 and proteasomal degradation of c-MYC, leading to impaired survival and self-renewal of leukemia stem cells; thus, pharmacological activation of DYRK2 as an adjuvant to standard therapy has the potential to induce treatment-free remission.
Collapse
MESH Headings
- Animals
- Carrier Proteins/metabolism
- Cell Self Renewal/genetics
- Disease Susceptibility
- Energy Metabolism
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Protein Binding
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Signal Transduction
- Dyrk Kinases
Collapse
Affiliation(s)
- Chun Shik Park
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - H Daniel Lacorazza
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
23
|
Boni J, Rubio-Perez C, López-Bigas N, Fillat C, de la Luna S. The DYRK Family of Kinases in Cancer: Molecular Functions and Therapeutic Opportunities. Cancers (Basel) 2020; 12:cancers12082106. [PMID: 32751160 PMCID: PMC7465136 DOI: 10.3390/cancers12082106] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
DYRK (dual-specificity tyrosine-regulated kinases) are an evolutionary conserved family of protein kinases with members from yeast to humans. In humans, DYRKs are pleiotropic factors that phosphorylate a broad set of proteins involved in many different cellular processes. These include factors that have been associated with all the hallmarks of cancer, from genomic instability to increased proliferation and resistance, programmed cell death, or signaling pathways whose dysfunction is relevant to tumor onset and progression. In accordance with an involvement of DYRK kinases in the regulation of tumorigenic processes, an increasing number of research studies have been published in recent years showing either alterations of DYRK gene expression in tumor samples and/or providing evidence of DYRK-dependent mechanisms that contribute to tumor initiation and/or progression. In the present article, we will review the current understanding of the role of DYRK family members in cancer initiation and progression, providing an overview of the small molecules that act as DYRK inhibitors and discussing the clinical implications and therapeutic opportunities currently available.
Collapse
Affiliation(s)
- Jacopo Boni
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Carlota Rubio-Perez
- Cancer Science Programme, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (C.R.-P.); (N.L.-B.)
| | - Nuria López-Bigas
- Cancer Science Programme, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (C.R.-P.); (N.L.-B.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Cristina Fillat
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain;
| | - Susana de la Luna
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-933-160-144
| |
Collapse
|
24
|
Mehnert M, Ciuffa R, Frommelt F, Uliana F, van Drogen A, Ruminski K, Gstaiger M, Aebersold R. Multi-layered proteomic analyses decode compositional and functional effects of cancer mutations on kinase complexes. Nat Commun 2020; 11:3563. [PMID: 32678104 PMCID: PMC7366679 DOI: 10.1038/s41467-020-17387-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 06/26/2020] [Indexed: 01/09/2023] Open
Abstract
Rapidly increasing availability of genomic data and ensuing identification of disease associated mutations allows for an unbiased insight into genetic drivers of disease development. However, determination of molecular mechanisms by which individual genomic changes affect biochemical processes remains a major challenge. Here, we develop a multilayered proteomic workflow to explore how genetic lesions modulate the proteome and are translated into molecular phenotypes. Using this workflow we determine how expression of a panel of disease-associated mutations in the Dyrk2 protein kinase alter the composition, topology and activity of this kinase complex as well as the phosphoproteomic state of the cell. The data show that altered protein-protein interactions caused by the mutations are associated with topological changes and affected phosphorylation of known cancer driver proteins, thus linking Dyrk2 mutations with cancer-related biochemical processes. Overall, we discover multiple mutation-specific functionally relevant changes, thus highlighting the extensive plasticity of molecular responses to genetic lesions.
Collapse
Affiliation(s)
- Martin Mehnert
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland.
| | - Rodolfo Ciuffa
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Fabian Frommelt
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Federico Uliana
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Audrey van Drogen
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Kilian Ruminski
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland.
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland.
- Faculty of Science, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
Jansons J, Bayurova E, Skrastina D, Kurlanda A, Fridrihsone I, Kostyushev D, Kostyusheva A, Artyuhov A, Dashinimaev E, Avdoshina D, Kondrashova A, Valuev-Elliston V, Latyshev O, Eliseeva O, Petkov S, Abakumov M, Hippe L, Kholodnyuk I, Starodubova E, Gorodnicheva T, Ivanov A, Gordeychuk I, Isaguliants M. Expression of the Reverse Transcriptase Domain of Telomerase Reverse Transcriptase Induces Lytic Cellular Response in DNA-Immunized Mice and Limits Tumorigenic and Metastatic Potential of Murine Adenocarcinoma 4T1 Cells. Vaccines (Basel) 2020; 8:318. [PMID: 32570805 PMCID: PMC7350266 DOI: 10.3390/vaccines8020318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) is a classic tumor-associated antigen overexpressed in majority of tumors. Several TERT-based cancer vaccines are currently in clinical trials, but immune correlates of their antitumor activity remain largely unknown. Here, we characterized fine specificity and lytic potential of immune response against rat TERT in mice. BALB/c mice were primed with plasmids encoding expression-optimized hemagglutinin-tagged or nontagged TERT or empty vector and boosted with same DNA mixed with plasmid encoding firefly luciferase (Luc DNA). Injections were followed by electroporation. Photon emission from booster sites was assessed by in vivo bioluminescent imaging. Two weeks post boost, mice were sacrificed and assessed for IFN-γ, interleukin-2 (IL-2), and tumor necrosis factor alpha (TNF-α) production by T-cells upon their stimulation with TERT peptides and for anti-TERT antibodies. All TERT DNA-immunized mice developed cellular and antibody response against epitopes at the N-terminus and reverse transcriptase domain (rtTERT) of TERT. Photon emission from mice boosted with TERT/TERT-HA+Luc DNA was 100 times lower than from vector+Luc DNA-boosted controls. Bioluminescence loss correlated with percent of IFN-γ/IL-2/TNF-α producing CD8+ and CD4+ T-cells specific to rtTERT, indicating immune clearance of TERT/Luc-coexpressing cells. We made murine adenocarcinoma 4T1luc2 cells to express rtTERT by lentiviral transduction. Expression of rtTERT significantly reduced the capacity of 4T1luc2 to form tumors and metastasize in mice, while not affecting in vitro growth. Mice which rejected the tumors developed T-cell response against rtTERT and low/no response to the autoepitope of TERT. This advances rtTERT as key component of TERT-based therapeutic vaccines against cancer.
Collapse
Affiliation(s)
- Juris Jansons
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia;
| | - Ekaterina Bayurova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 127994, Russia; (D.A.); (A.K.)
| | - Dace Skrastina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia;
| | - Alisa Kurlanda
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
| | - Ilze Fridrihsone
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
| | - Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow 127994, Russia; (D.K.); (A.K.)
| | - Anastasia Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow 127994, Russia; (D.K.); (A.K.)
| | - Alexander Artyuhov
- Center for Precision Genome Editing and Genetic Technologies, Pirogov Russian National Research Medical University, Moscow 127994, Russia; (A.A.); (E.D.)
| | - Erdem Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies, Pirogov Russian National Research Medical University, Moscow 127994, Russia; (A.A.); (E.D.)
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 127994, Russia
| | - Darya Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 127994, Russia; (D.A.); (A.K.)
| | - Alla Kondrashova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 127994, Russia; (D.A.); (A.K.)
| | - Vladimir Valuev-Elliston
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 127994, Russia; (V.V.-E.); (E.S.)
| | - Oleg Latyshev
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
| | - Olesja Eliseeva
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Maxim Abakumov
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology MISIS, Moscow 127994, Russia
- Department of Medical Nanobiotechnologies, Pirogov Russian National Research Medical University, Moscow 127994, Russia
| | - Laura Hippe
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
| | - Irina Kholodnyuk
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
| | - Elizaveta Starodubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 127994, Russia; (V.V.-E.); (E.S.)
| | | | - Alexander Ivanov
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 127994, Russia; (V.V.-E.); (E.S.)
| | - Ilya Gordeychuk
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 127994, Russia; (D.A.); (A.K.)
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia
| | - Maria Isaguliants
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 127994, Russia; (D.A.); (A.K.)
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| |
Collapse
|
26
|
Kumamoto T, Yamada K, Yoshida S, Aoki K, Hirooka S, Eto K, Yanaga K, Yoshida K. Impairment of DYRK2 by DNMT1‑mediated transcription augments carcinogenesis in human colorectal cancer. Int J Oncol 2020; 56:1529-1539. [PMID: 32236621 DOI: 10.3892/ijo.2020.5020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Dual specificity tyrosine‑phosphorylation‑regulated kinase 2 (DYRK2) is a protein kinase that functions as a novel tumor suppressor. Previous studies have reported that DYRK2 expression is decreased in colorectal cancer compared with adjacent non‑tumor tissues. However, the regulatory mechanisms by which the expression of DYRK2 is diminished remain unknown. The aim of the present study was to determine the regulatory mechanisms of DYRK2 expression. The present study identified the promoter regions of the DYRK2 gene and demonstrated that they contained CpG islands in human cancer cells. In addition, the DYRK2 promoter region exhibited a higher level of methylation in colorectal cancer tissues compared with healthy tissues from clinical samples. DYRK2 expression was increased at the mRNA and protein level in colorectal cancer cell lines by treatment with 5‑Azacytidine, a demethylating agent. The results further demonstrated that knockdown of DNA methyltransferase (DNMT) 1 elevated DYRK2 expression in colorectal cancer cell lines. A colitis‑related mouse carcinogenesis model also exhibited a lower DYRK2 level in colorectal cancer tissues compared with adjacent non‑tumor tissues. In this model, nuclear staining of DNMT1 was detected in colorectal cancer cells, whereas a cytoplastic distribution pattern of DNMT1 staining was exhibited in healthy tissue. Overall, these findings suggested that DYRK2 expression was downregulated via transcriptional regulation by DNMT1 to elevate the proliferation of colorectal cancer cells.
Collapse
Affiliation(s)
- Tomotaka Kumamoto
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105‑8461, Japan
| | - Kohji Yamada
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105‑8461, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105‑8461, Japan
| | - Katsuhiko Aoki
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105‑8461, Japan
| | - Shinichi Hirooka
- Department of Pathology, The Jikei University School of Medicine, Tokyo 105‑8461, Japan
| | - Ken Eto
- Department of Surgery, The Jikei University School of Medicine, Tokyo 105‑8461, Japan
| | - Katsuhiko Yanaga
- Department of Surgery, The Jikei University School of Medicine, Tokyo 105‑8461, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105‑8461, Japan
| |
Collapse
|
27
|
Yasukawa M, Ando Y, Yamashita T, Matsuda Y, Shoji S, Morioka MS, Kawaji H, Shiozawa K, Machitani M, Abe T, Yamada S, Kaneko MK, Kato Y, Furuta Y, Kondo T, Shirouzu M, Hayashizaki Y, Kaneko S, Masutomi K. CDK1 dependent phosphorylation of hTERT contributes to cancer progression. Nat Commun 2020; 11:1557. [PMID: 32214089 PMCID: PMC7096428 DOI: 10.1038/s41467-020-15289-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/03/2020] [Indexed: 12/24/2022] Open
Abstract
The telomerase reverse transcriptase is upregulated in the majority of human cancers and contributes directly to cell transformation. Here we report that hTERT is phosphorylated at threonine 249 during mitosis by the serine/threonine kinase CDK1. Clinicopathological analyses reveal that phosphorylation of hTERT at threonine 249 occurs more frequently in aggressive cancers. Using CRISPR/Cas9 genome editing, we introduce substitution mutations at threonine 249 in the endogenous hTERT locus and find that phosphorylation of threonine 249 is necessary for hTERT-mediated RNA dependent RNA polymerase (RdRP) activity but dispensable for reverse transcriptase and terminal transferase activities. Cap Analysis of Gene Expression (CAGE) demonstrates that hTERT phosphorylation at 249 regulates the expression of specific genes that are necessary for cancer cell proliferation and tumor formation. These observations indicate that phosphorylation at threonine 249 regulates hTERT RdRP and contributes to cancer progression in a telomere independent manner. Regulated telomerase reverse transcriptase (hTERT) activity is common in human tumors. Here, the authors show that hTERT is phosphorylated by CDK1 and that this event is necessary for hTERT-mediated RNA dependent RNA polymerase activity but not for reverse transcriptase and terminal transferase activities.
Collapse
Affiliation(s)
- Mami Yasukawa
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Yoshinari Ando
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, 920-8641, Japan
| | - Yoko Matsuda
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, 173-0015, Japan.,Oncology Pathology, Department of Pathology and Host-Defense, Kagawa University, Kagawa, 761-0793, Japan
| | - Shisako Shoji
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, 230-0045, Japan
| | - Masaki Suimye Morioka
- Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Hideya Kawaji
- Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.,RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, 351-0198, Japan
| | - Kumiko Shiozawa
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Mitsuhiro Machitani
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Takaya Abe
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan
| | - Shinji Yamada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, 980-8579, Japan
| | - Yasuhide Furuta
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, 230-0045, Japan
| | | | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, 920-8641, Japan
| | - Kenkichi Masutomi
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.
| |
Collapse
|
28
|
Yoshida S, Yoshida K. Multiple functions of DYRK2 in cancer and tissue development. FEBS Lett 2019; 593:2953-2965. [PMID: 31505048 DOI: 10.1002/1873-3468.13601] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 01/09/2023]
Abstract
Dual-specificity tyrosine-regulated kinases (DYRKs) are evolutionarily conserved from yeast to mammals. Accumulating studies have revealed that DYRKs have important roles in regulation of the cell cycle and survival. DYRK2, a member of the class II DYRK family protein, is a key regulator of p53, and phosphorylates it at Ser46 to induce apoptosis in response to DNA damage. Moreover, recent studies have uncovered that DYRK2 regulates G1/S transition, epithelial-mesenchymal-transition, and stemness in human cancer cells. DYRK2 also appears to have roles in tissue development in lower eukaryotes. Thus, the elucidation of mechanisms for DYRK2 during mammalian tissue development will promote the understanding of cell differentiation, tissue homeostasis, and congenital diseases as well as cancer. In this review, we discuss the roles of DYRK2 in tumor cells. Moreover, we focus on DYRK2-dependent developmental mechanisms in several species including fly (Drosophila), worm (Caenorhabditis elegans), zebrafish (Danio rerio), and mammals.
Collapse
Affiliation(s)
- Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
29
|
Investigating the structural features of chromodomain proteins in the human genome and predictive impacts of their mutations in cancers. Int J Biol Macromol 2019; 131:1101-1116. [PMID: 30917913 DOI: 10.1016/j.ijbiomac.2019.03.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 11/22/2022]
Abstract
Epigenetic readers are specific proteins which recognize histone marks and represents the underlying mechanism for chromatin regulation. Histone H3 lysine methylation is a potential epigenetic code for the chromatin organization and transcriptional control. Recognition of histone methylation is achieved by evolutionary conserved reader modules known as chromodomain, identified in several proteins, and is involved in transcriptional silencing and chromatin remodelling. Genetic perturbations within the structurally conserved chromodomain could potentially mistarget the reader protein and impair their regulatory pathways, ultimately leading to cellular chaos by setting the stage for tumor development and progression. Here, we report the structural conservations associated with diverse functions, prognostic significance and functional consequences of mutations within chromodomain of human proteins in distinct cancers. We have extensively analysed chromodomain containing human proteins in terms of their structural-functional ability to act as a molecular switch in the recognition of methyl-lysine recognition. We further investigated the combinatorial potential, target promiscuity and binding specificity associated with their underlying mechanisms. Indeed, the molecular mechanism of epigenetic silencing significantly underlies a newer cancer therapy approach. We hope that a critical understanding of chromodomains will pave the way for novel paths of research providing newer insights into the designing of effective anti-cancer therapies.
Collapse
|
30
|
Shen Q, Qiu Z, Wu W, Zheng J, Jia Z. Characterization of interaction and ubiquitination of phosphoenolpyruvate carboxykinase by E3 ligase UBR5. Biol Open 2018; 7:bio.037366. [PMID: 30552140 PMCID: PMC6310884 DOI: 10.1242/bio.037366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK1) is ubiquitinated by E3 ubiquitin ligase UBR5, which was thought to be facilitated by the acetylation of Lys70, Lys71 and Lys594 in PEPCK1. Here, we made a series of UBR5 HECT domain truncation variants and, through pull-down assay, showed that the N-terminal lobe of the UBR5 HECT domain is largely responsible for interacting with PEPCK1. We mutated all three lysine residues thought to be acetylated in PEPCK1 but were surprised to observe no loss of binding to UBR5 HECT domain. Furthermore, two PEPCK1 truncation variants (74-622 aa and 10-560 aa) lacking these lysine residues were still able to bind with UBR5 and ubiquitinated in HEK293T cells. To discover the ubiquitination site(s) of PEPCK1, which is currently unknown, the Lys residues of PEPCK1 were mutated to Ala and the ubiquitination level of the PEPCK1 mutants was assessed. Results revealed at least two ubiquitination sites (Lys243 and Lys342), which represent the first time that ubiquitination sites of PEPCK1 have been identified. Our pull-down experiments further show that the lack of ubiquitination of PEPCK1 Lys243Ala and Lys342Ala mutants is not due to their binding to UBR5, which remained unchanged. Taken together, our work has provided new insights into UBR5 mediated ubiquitination of PEPCK1. Summary: Identification of the recruit function of the N-terminal lobe of the UBR5 HECT domain and ubiquitination site(s) of PEPCK1.
Collapse
Affiliation(s)
- Qingya Shen
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhiyu Qiu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wenping Wu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jimin Zheng
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zongchao Jia
- Department of Biochemical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
31
|
Hossain D, Ferreira Barbosa JA, Cohen ÉA, Tsang WY. HIV-1 Vpr hijacks EDD-DYRK2-DDB1 DCAF1 to disrupt centrosome homeostasis. J Biol Chem 2018; 293:9448-9460. [PMID: 29724823 PMCID: PMC6005440 DOI: 10.1074/jbc.ra117.001444] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/17/2018] [Indexed: 11/06/2022] Open
Abstract
Viruses exploit the host cell machinery for their own profit. To evade innate immune sensing and promote viral replication, HIV type 1 (HIV-1) subverts DNA repair regulatory proteins and induces G2/M arrest. The preintegration complex of HIV-1 is known to traffic along microtubules and accumulate near the microtubule-organizing center. The centrosome is the major microtubule-organizing center in most eukaryotic cells, but precisely how HIV-1 impinges on centrosome biology remains poorly understood. We report here that the HIV-1 accessory protein viral protein R (Vpr) localized to the centrosome through binding to DCAF1, forming a complex with the ubiquitin ligase EDD-DYRK2-DDB1DCAF1 and Cep78, a resident centrosomal protein previously shown to inhibit EDD-DYRK2-DDB1DCAF1 Vpr did not affect ubiquitination of Cep78. Rather, it enhanced ubiquitination of an EDD-DYRK2-DDB1DCAF1 substrate, CP110, leading to its degradation, an effect that could be overcome by Cep78 expression. The down-regulation of CP110 and elongation of centrioles provoked by Vpr were independent of G2/M arrest. Infection of T lymphocytes with HIV-1, but not with HIV-1 lacking Vpr, promoted CP110 degradation and centriole elongation. Elongated centrioles recruited more γ-tubulin to the centrosome, resulting in increased microtubule nucleation. Our results suggest that Vpr is targeted to the centrosome where it hijacks a ubiquitin ligase, disrupting organelle homeostasis, which may contribute to HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Delowar Hossain
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
- the Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | | | - Éric A Cohen
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
- the Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
- the Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Montreal, Quebec H3C 3J7, Canada, and
| | - William Y Tsang
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada,
- the Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
- the Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
32
|
Wang P, Li J, Gong P, Wang W, Ai Y, Zhang X. An OTU deubiquitinating enzyme in Eimeria tenella interacts with Eimeria tenella virus RDRP. Parasit Vectors 2018; 11:74. [PMID: 29386062 PMCID: PMC5793433 DOI: 10.1186/s13071-018-2626-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 01/08/2018] [Indexed: 01/09/2023] Open
Abstract
Background Chicken coccidiosis, a disease caused by seven species of Eimeria (Apicomplexa: Coccidia), inflicts severe economic losses on the poultry industry. Eimeria tenella is the one of the most virulent species pathogenic to chickens. Many parasitic protozoans are parasitised by double-stranded (ds) RNA viruses, and the influence of protozoan viruses on parasitic protozoans has been extensively reported. E. tenella RNA virus 1 (Etv) was identified in E. tenella, and the complete genome sequence of Etv was analysed. Here, we screened Etv-RNA-dependent RNA polymerase (RDRP)-interacting host protein E. tenella ovarian tumour (OTU) protein-like cysteine protease (Et-OTU) using a yeast two-hybrid system with pGBKT7-RDRP plasmid serving as bait. A previous study demonstrated that Et-OTU could regulate the telomerase activity of E. tenella, indicating that Et-OTU affects E. tenella proliferation. However, whether Etv-RDRP affects the molecular biological characteristics of E. tenella by interacting with OTU remains unclear. Results We obtained seven positive clones from the initial screen, and six of the seven preys were identified as false-positives. Finally, we identified an RDRP-associated protein predicted to be an E. tenella OTU protein. A α-galactosidase assay showed that the bait vector did not activate the GAL4 reporter gene, indicating no autoactivation activity from the RDRP bait fusion. Pull-down and co-immunoprecipitation assays verified the interaction between Et-OTU and Etv-RDRP both intracellularly and extracellularly. Additionally, Et-OTU was able to deconjugate K48- and K6-linked di-ubiquitin (di-Ub) chains in vitro but not K63-, K11-, K29-, or K33-linked di-Ub chains. The C239A and H351A mutations eliminated the deubiquitinase (DUB) activity of Et-OTU, whereas the D236A mutation did not. Additionally, when combined with RDRP, the DUB activity of Et-OTU towards K48- and K6-linked chains was significantly enhanced. Conclusion Etv-RDRP interacts with Et-OTU both intracellularly and extracellularly. Etv-RDRP enhances the hydrolysis of Et-OTU to K6- or K48-linked ubiquitin chains. This study lays the foundation for further research on the relationship between E. tenella and Etv.
Collapse
Affiliation(s)
- Pu Wang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jianhua Li
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Pengtao Gong
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Weirong Wang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yongxing Ai
- College of Animal Science, Jilin University, Changchun, 130062, China.
| | - Xichen Zhang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
33
|
Watanabe S, Fujiyama H, Takafuji T, Kayama K, Matsumoto M, Nakayama KI, Yoshida K, Sugimoto N, Fujita M. Glutamate-rich WD40 repeat containing 1 regulates ribosomal protein L23 levels via the ubiquitin-proteasome system. J Cell Sci 2018; 131:jcs.213009. [DOI: 10.1242/jcs.213009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 06/11/2018] [Indexed: 01/01/2023] Open
Abstract
GRWD1 is a Cdt1-binding protein that promotes MCM loading through its histone chaperone activity. GRWD1 acts as a tumor-promoting factor by downregulating p53 via the RPL11-MDM2-p53 axis. Here, we identified GRWD1-interacting proteins using a proteomics approach and showed that GRWD1 interacts with various proteins involved in transcription, translation, DNA replication and repair, chromatin organization, and ubiquitin-mediated proteolysis. We focused on the ribosomal protein RPL23, which positively regulates nucleolar stress responses through MDM2 binding and inhibition, thereby functioning as a tumor suppressor. Overexpression of GRWD1 decreased RPL23 protein levels and stability; this effect was restored by the proteasome inhibitor MG132. EDD, an E3 ubiquitin ligase that interacts with GRWD1, also downregulated RPL23, and the decrease was further enhanced by co-expression of GRWD1. Conversely, siRNA-mediated GRWD1 knockdown upregulated RPL23. Co-expression of GRWD1 and EDD promoted RPL23 ubiquitination. These data suggest that GRWD1 acts together with EDD to negatively regulate RPL23 via the ubiquitin-proteasome system. GRWD1 reversed the RPL23-mediated inhibition of anchorage-independent growth in cancer cells. Our data suggest that GRWD1-induced RPL23 proteolysis plays a role in p53 downregulation and tumorigenesis.
Collapse
Affiliation(s)
- Shinya Watanabe
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroki Fujiyama
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuya Takafuji
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kota Kayama
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kazumasa Yoshida
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Nozomi Sugimoto
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
34
|
Cho JH, Kim SA, Seo YS, Park SG, Park BC, Kim JH, Kim S. The p90 ribosomal S6 kinase-UBR5 pathway controls Toll-like receptor signaling via miRNA-induced translational inhibition of tumor necrosis factor receptor-associated factor 3. J Biol Chem 2017; 292:11804-11814. [PMID: 28559278 DOI: 10.1074/jbc.m117.785170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/18/2017] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression. For example, miRNAs repress gene expression by recruiting the miRNA-induced silencing complex (miRISC), a ribonucleoprotein complex that contains miRNA-engaged Argonaute (Ago) and the scaffold protein GW182. Recently, ubiquitin-protein ligase E3 component N-recognin 5 (UBR5) has been identified as a component of miRISC. UBR5 directly interacts with GW182 proteins and participates in miRNA silencing by recruiting downstream effectors, such as the translation regulator DEAD-box helicase 6 (DDX6) and transducer of ERBB2,1/2,2 (Tob1/2), to the Ago-GW182 complex. However, the regulation of miRISC-associated UBR5 remains largely elusive. In the present study, we showed that UBR5 down-regulates the levels of TNF receptor-associated factor 3 (TRAF3), a key component of Toll-like receptor signaling, via the miRNA pathway. We further demonstrated that p90 ribosomal S6 kinase (p90RSK) is an upstream regulator of UBR5. p90RSK phosphorylates UBR5 at Thr637, Ser1227, and Ser2483, and this phosphorylation is required for the translational repression of TRAF3 mRNA. Phosphorylated UBR5 co-localized with GW182 and Ago2 in cytoplasmic speckles, which implies that miRISC is affected by phospho-UBR5. Collectively, these results indicated that the p90RSK-UBR5 pathway stimulates miRNA-mediated translational repression of TRAF3. Our work has added another layer to the regulation of miRISC.
Collapse
Affiliation(s)
- Jin Hwa Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sung Ah Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; Department of Functional Genomics, School of Bioscience, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Yeon-Soo Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sung Goo Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; Department of Functional Genomics, School of Bioscience, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Byoung Chul Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; Department of Bioanalytical Science, School of Bioscience, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Jeong-Hoon Kim
- Department of Functional Genomics, School of Bioscience, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea; Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
| | - Sunhong Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; Department of Biomolecular Science, School of Bioscience, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
35
|
Liu H, Liu Z, Wang Y, Stinchcombe TE, Owzar K, Han Y, Hung RJ, Brhane Y, McLaughlin J, Brennan P, Bickeböller H, Rosenberger A, Houlston RS, Caporaso N, Landi MT, Brüske I, Risch A, Wu X, Ye Y, Christiani DC, Amos CI, Wei Q. Functional variants in DCAF4 associated with lung cancer risk in European populations. Carcinogenesis 2017; 38:541-551. [PMID: 28383684 PMCID: PMC6074950 DOI: 10.1093/carcin/bgx033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/13/2017] [Accepted: 03/24/2017] [Indexed: 11/14/2022] Open
Abstract
Cullin-RING ubiquitin ligases (CRLs) responsible for substrate specificity of ubiquitination play a key role in cell-cycle control and DNA damage response. In this study, we assessed associations between 16 599 SNPs in 115 CRL genes and lung cancer risk by using summary data of six published genome-wide association studies (GWASs) of 12 160 cases and 16 838 cases of European ancestry. As a result, we identified three independent SNPs in DCAF4 (rs117781739, rs12587742 and rs2240980) associated with lung cancer risk (odds ratio = 0.91, 1.09 and 1.09, respectively; 95% confidence interval = 0.88-0.95, 1.05-1.14 and 1.05-1.13, respectively; and P = 3.99 × 10-6, 4.97 × 10-5 and 1.44 × 10-5, respectively) after multiple comparison correction by a false discovery rate <0.05. Since SNP rs12587742 is located within the promoter region and one CpG island of DCAF4, we further performed in silico functional analyses and found that the rs12587742 variant A allele was associated with an increased mRNA expression (P = 2.20 × 10-16, 1.79 × 10-13 and 0.001 in blood cells, normal lung tissues and tumor tissues of lung squamous carcinoma, respectively) and a decreased methylation status (P = 2.48 × 10-9 and 0.032 in adipose and lung tumor tissues, respectively). Moreover, evidence from differential expression analyses further supported an oncogenic effect of DCAF4 on lung cancer, with higher mRNA levels in both lung squamous carcinoma and adenocarcinoma (P = 4.48 × 10-11 and 1.22 × 10-9, respectively) than in adjacent normal tissues. Taken together, our results suggest that rs12587742 is associated with an increased lung cancer risk, possibly by up-regulating mRNA expression and decreasing methylation status of DCAF4.
Collapse
Affiliation(s)
- Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zhensheng Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yanru Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas E Stinchcombe
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kouros Owzar
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Younghun Han
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario M5G 1X5,Canada
| | - Yonathan Brhane
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario M5G 1X5,Canada
| | | | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer, 69372 Lyon, France
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Richard S Houlston
- Division of Genetics and Epidemiology, the Institute of Cancer Research, London SW7 3RP, UK
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria T Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Irene Brüske
- Helmholtz Centre Munich, German Research Centre for Environmental Health, Institute of Epidemiology I, 85764 Neuherberg, Germany
| | - Angela Risch
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David C Christiani
- Massachusetts General Hospital, Boston, MA 02114, USA and
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | - Christopher I Amos
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
36
|
Hossain D, Javadi Esfehani Y, Das A, Tsang WY. Cep78 controls centrosome homeostasis by inhibiting EDD-DYRK2-DDB1 VprBP. EMBO Rep 2017; 18:632-644. [PMID: 28242748 PMCID: PMC5376967 DOI: 10.15252/embr.201642377] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 01/13/2017] [Accepted: 02/03/2017] [Indexed: 01/08/2023] Open
Abstract
The centrosome plays a critical role in various cellular processes including cell division and cilia formation, and deregulation of centrosome homeostasis is a hallmark feature of many human diseases. Here, we show that centrosomal protein of 78 kDa (Cep78) localizes to mature centrioles and directly interacts with viral protein R binding protein (VprBP). Although VprBP is a component of two distinct E3 ubiquitin ligases, EDD-DYRK2-DDB1VprBP and CRL4VprBP, Cep78 binds specifically to EDD-DYRK2-DDB1VprBP and inhibits its activity. A pool of EDD-DYRK2-DDB1VprBP is active at the centrosome and mediates ubiquitination of CP110, a novel centrosomal substrate. Deregulation of Cep78 or EDD-DYRK2-DDB1VprBP perturbs CP110 ubiquitination and protein stability, thereby affecting centriole length and cilia assembly. Mechanistically, ubiquitination of CP110 entails its phosphorylation by DYRK2 and binding to VprBP Cep78 specifically impedes the transfer of ubiquitin from EDD to CP110 without affecting CP110 phosphorylation and binding to VprBP Thus, we identify Cep78 as a new player that regulates centrosome homeostasis by inhibiting the final step of the enzymatic reaction catalyzed by EDD-DYRK2-DDB1VprBP.
Collapse
Affiliation(s)
- Delowar Hossain
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Yalda Javadi Esfehani
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Arindam Das
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - William Y Tsang
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
37
|
Mimoto R, Imawari Y, Hirooka S, Takeyama H, Yoshida K. Impairment of DYRK2 augments stem-like traits by promoting KLF4 expression in breast cancer. Oncogene 2017; 36:1862-1872. [PMID: 27721402 DOI: 10.1038/onc.2016.349] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 08/05/2016] [Accepted: 08/15/2016] [Indexed: 01/03/2023]
Abstract
Whereas accumulating studies have supported the cancer stem cell theory, a specific therapy targeting a cancer stem cell subpopulation has not been established. Here, we show that dual-specificity tyrosine phosphorylation-kinase 2 (DYRK2) is a novel negative regulator for formation of breast cancer stem cells. Downregulation of DYRK2 promotes cancer stem-like traits in vitro, tumourigenesis in vivo and the proportion of the cancer stem cell population in human breast cancer tissues. We found that Krupple-like factor 4 (KLF4) serves as a key mediator of DYRK2's control over the cancer stem phenotype. Reduced DYRK2 expression increases KLF4 expression, which induces cancer stem-like properties. We identified androgen receptor (AR) as a transcription factor binding to the KLF4 promoter region; this process is dependent on DYRK2 kinase activity. Our findings delineate a mechanism of cancer stem cell regulation by the DYRK2-AR-KLF4 axis in breast cancer. Targeting of this pathway may be a promising strategy against breast cancer stem cells.
Collapse
Affiliation(s)
- R Mimoto
- Department of Biochemistry, Jikei University School of Medicine, Tokyo, Japan
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | - Y Imawari
- Department of Biochemistry, Jikei University School of Medicine, Tokyo, Japan
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | - S Hirooka
- Department of Pathology, Jikei University School of Medicine, Tokyo, Japan
| | - H Takeyama
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | - K Yoshida
- Department of Biochemistry, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
38
|
Yamamoto T, Taira Nihira N, Yogosawa S, Aoki K, Takeda H, Sawasaki T, Yoshida K. Interaction between RNF8 and DYRK2 is required for the recruitment of DNA repair molecules to DNA double-strand breaks. FEBS Lett 2017; 591:842-853. [PMID: 28194753 DOI: 10.1002/1873-3468.12596] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 01/12/2023]
Abstract
The genome of eukaryotic cells is frequently exposed to damage by various genotoxins. Phosphorylation of histone H2AX at Serine 139 (γ-H2AX) is a hallmark of DNA damage. RNF8 monoubiquitinates γ-H2AX with the Lys63-linked ubiquitin chain to tether DNA repair molecules at DNA lesions. A high-throughput screening identified RNF8 as a binding partner of dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2). Notably, DNA damage-induced monoubiquitination of γ-H2AX is impaired in DYRK2-depleted cells. The foci formation of p53-binding protein 1 at DNA double-strand break sites is suppressed in DYRK2 knockdown cells, which fail to repair the DNA damage. A homologous recombination assay showed decreased repair efficiency in DYRK2-depleted cells. Our findings indicate direct interaction of DYRK2 with RNF8 in regulating response to DNA damage.
Collapse
Affiliation(s)
- Takenori Yamamoto
- Department of Biochemistry, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Naoe Taira Nihira
- Department of Biochemistry, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Satomi Yogosawa
- Department of Biochemistry, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Katsuhiko Aoki
- Department of Biochemistry, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Hiroyuki Takeda
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime, Japan
| | - Tatsuya Sawasaki
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| |
Collapse
|
39
|
Mimoto R, Nihira NT, Hirooka S, Takeyama H, Yoshida K. Diminished DYRK2 sensitizes hormone receptor-positive breast cancer to everolimus by the escape from degrading mTOR. Cancer Lett 2017; 384:27-38. [PMID: 27746162 DOI: 10.1016/j.canlet.2016.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 12/25/2022]
Abstract
Mammalian target of rapamycin (mTOR) inhibitor, everolimus, provides benefit for metastatic hormone receptor positive breast cancer after failure of the endocrine therapy. The present report highlights Dual Specificity Tyrosine Phosphorylation Regulated Kinase 2 (DYRK2) as a predictive marker for everolimus sensitivity. The key node and KEGG pathway analyses revealed that mTORC1 pathway is activated in DYRK2-depleted cells. Everolimus was more effective in DYRK2-depleted cells compared with control cells. In xenograft model, everolimus treatment significantly inhibited tumor growth compared with vehicle or eribulin treatment. In clinical analysis, patients with low DYRK2 expression acquired longer treatment period and had higher clinical benefit rate than those with high DYRK2 expression (171 vs 82 days; P < 0.05 and 50% vs 12.5%, respectively). We further investigated the underlying mechanism by which DYRK2 regulates mTORC1 pathway. The ectopic expression of DYRK2 promoted phosphorylation of Thr631 for the ubiquitination and degradation of mTOR. DYRK2 expression levels may thus predict clinical responses to everolimus.
Collapse
Affiliation(s)
- Rei Mimoto
- Department of Biochemistry, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan; Department of Surgery, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Naoe T Nihira
- Department of Biochemistry, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| | - Shinichi Hirooka
- Department of Pathology, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Hiroshi Takeyama
- Department of Surgery, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| |
Collapse
|
40
|
Identification of KIAA1199 as a Biomarker for Pancreatic Intraepithelial Neoplasia. Sci Rep 2016; 6:38273. [PMID: 27922049 PMCID: PMC5138641 DOI: 10.1038/srep38273] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 10/06/2016] [Indexed: 02/03/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive cancers and has an extremely poor prognosis. Despite recent progress in both basic and clinical research, most pancreatic cancers are detected at an incurable stage owing to the absence of disease-specific symptoms. Thus, developing novel approaches for detecting pancreatic cancer at an early stage is imperative. Our in silico and immunohistochemical analyses showed that KIAA1199 is specifically expressed in human pancreatic cancer cells and pancreatic intraepithelial neoplasia, the early lesion of pancreatic cancer, in a genetically engineered mouse model and in human patient samples. We also detected secreted KIAA1199 protein in blood samples obtained from pancreatic cancer mouse models, but not in normal mice. Furthermore, we found that assessing KIAA1199 autoantibody increased the sensitivity of detecting pancreatic cancer. These results indicate the potential benefits of using KIAA1199 as a biomarker for early-stage pancreatic cancer.
Collapse
|
41
|
Downregulation of the proapoptotic protein MOAP-1 by the UBR5 ubiquitin ligase and its role in ovarian cancer resistance to cisplatin. Oncogene 2016; 36:1698-1706. [PMID: 27721409 PMCID: PMC5447866 DOI: 10.1038/onc.2016.336] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/01/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022]
Abstract
Evasion of apoptosis allows many cancers to resist chemotherapy. Apoptosis is mediated by the serial activation of caspase family proteins. These proteases are often activated upon the release of cytochrome c from the mitochondria, which is promoted by the proapoptotic Bcl-2 family protein, Bax. This function of Bax is enhanced by the MOAP-1 (modulator of apoptosis protein 1) protein in response to DNA damage. Previously, we reported that MOAP-1 is targeted for ubiquitylation and degradation by the APC/CCdh1 ubiquitin ligase. In this study, we identify the HECT (homologous to the E6-AP carboxyl terminus) family E3 ubiquitin ligase, UBR5, as a novel ubiquitin ligase for MOAP-1. We demonstrate that UBR5 interacts physically with MOAP-1, ubiquitylates MOAP-1 in vitro and inhibits MOAP-1 stability in cultured cells. In addition, we show that Dyrk2 kinase, a reported UBR5 interactor, cooperates with UBR5 in mediating MOAP-1 ubiquitylation. Importantly, we found that cisplatin-resistant ovarian cancer cell lines exhibit lower levels of MOAP-1 accumulation than their sensitive counterparts upon cisplatin treatment, consistent with the previously reported role of MOAP-1 in modulating cisplatin-induced apoptosis. Accordingly, UBR5 knockdown increased MOAP-1 expression, enhanced Bax activation and sensitized otherwise resistant cells to cisplatin-induced apoptosis. Furthermore, UBR5 expression was higher in ovarian cancers from cisplatin-resistant patients than from cisplatin-responsive patients. These results show that UBR5 downregulates proapoptotic MOAP-1 and suggest that UBR5 can confer cisplatin resistance in ovarian cancer. Thus UBR5 may be an attractive therapeutic target for ovarian cancer treatment.
Collapse
|
42
|
Wnt2 complements Wnt/β-catenin signaling in colorectal cancer. Oncotarget 2016; 6:37257-68. [PMID: 26484565 PMCID: PMC4741928 DOI: 10.18632/oncotarget.6133] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022] Open
Abstract
Wnt2 is implicated in various human cancers. However, it remains unknown how Wnt2 is upregulated in human cancer and contributes to tumorigenesis. Here we found that Wnt2 is highly expressed in colorectal cancer (CRC) cells. In addition to co-expression of Wnt2 with Wnt/β-catenin target genes in CRC, knockdown or knockout of Wnt2 significantly downregulates Wnt/β-catenin target gene expression in CRC cells. Importantly, depletion or ablation of endogenous Wnt2 inhibits CRC cell proliferation. Similarly, neutralizing secreted Wnt2 reduces Wnt target gene expression and suppresses CRC cell proliferation. Conversely, Wnt2 increases cell proliferation of intestinal epithelial cells. Intriguingly, WNT2 expression is transcriptionally silenced by EZH2-mediated H3K27me3 histone modification in non-CRC cells, However, WNT2 expression is de-repressed by the loss of PRC2's promoter occupancy in CRC cells. Our results reveal the unexpected roles of Wnt2 in complementing Wnt/β-catenin signaling for CRC cell proliferation.
Collapse
|
43
|
Rohani L, Fabian C, Holland H, Naaldijk Y, Dressel R, Löffler-Wirth H, Binder H, Arnold A, Stolzing A. Generation of human induced pluripotent stem cells using non-synthetic mRNA. Stem Cell Res 2016; 16:662-72. [DOI: 10.1016/j.scr.2016.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/28/2016] [Accepted: 03/17/2016] [Indexed: 11/24/2022] Open
|
44
|
Jun S, Jung YS, Suh HN, Wang W, Kim MJ, Oh YS, Lien EM, Shen X, Matsumoto Y, McCrea PD, Li L, Chen J, Park JI. LIG4 mediates Wnt signalling-induced radioresistance. Nat Commun 2016; 7:10994. [PMID: 27009971 PMCID: PMC4820809 DOI: 10.1038/ncomms10994] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/05/2016] [Indexed: 01/13/2023] Open
Abstract
Despite the implication of Wnt signalling in radioresistance, the underlying mechanisms are unknown. Here we find that high Wnt signalling is associated with radioresistance in colorectal cancer (CRC) cells and intestinal stem cells (ISCs). We find that LIG4, a DNA ligase in DNA double-strand break repair, is a direct target of β-catenin. Wnt signalling enhances non-homologous end-joining repair in CRC, which is mediated by LIG4 transactivated by β-catenin. During radiation-induced intestinal regeneration, LIG4 mainly expressed in the crypts is conditionally upregulated in ISCs, accompanied by Wnt/β-catenin signalling activation. Importantly, among the DNA repair genes, LIG4 is highly upregulated in human CRC cells, in correlation with β-catenin hyperactivation. Furthermore, blocking LIG4 sensitizes CRC cells to radiation. Our results reveal the molecular mechanism of Wnt signalling-induced radioresistance in CRC and ISCs, and further unveils the unexpected convergence between Wnt signalling and DNA repair pathways in tumorigenesis and tissue regeneration. The Wnt/β-catenin signalling pathway contributes to radio resistance in intestinal stem cells but the underlying mechanism is currently unknown. In this study, the authors demonstrate that LIG4, a DNA ligase involved in the DNA repair process, is a direct target of β-catenin and it specifically mediates non-homologous end joining repair in colorectal cancer cells.
Collapse
Affiliation(s)
- Sohee Jun
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Youn-Sang Jung
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Han Na Suh
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wenqi Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Moon Jong Kim
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Young Sun Oh
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Esther M Lien
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xi Shen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yoshihisa Matsumoto
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Pierre D McCrea
- Department of Molecular Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Graduate School of Biomedical Sciences at Houston, The University of Texas Health Science Center and MD Anderson Cancer Center, Houston, Texas 77030, USA.,Program in Genes and Development, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lei Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Graduate School of Biomedical Sciences at Houston, The University of Texas Health Science Center and MD Anderson Cancer Center, Houston, Texas 77030, USA.,Program in Genes and Development, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Graduate School of Biomedical Sciences at Houston, The University of Texas Health Science Center and MD Anderson Cancer Center, Houston, Texas 77030, USA.,Program in Genes and Development, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Graduate School of Biomedical Sciences at Houston, The University of Texas Health Science Center and MD Anderson Cancer Center, Houston, Texas 77030, USA.,Program in Genes and Development, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
45
|
Muñoz-Escobar J, Matta-Camacho E, Kozlov G, Gehring K. The MLLE domain of the ubiquitin ligase UBR5 binds to its catalytic domain to regulate substrate binding. J Biol Chem 2015. [PMID: 26224628 DOI: 10.1074/jbc.m115.672246] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
E3 ubiquitin ligases catalyze the transfer of ubiquitin from an E2-conjugating enzyme to a substrate. UBR5, homologous to the E6AP C terminus (HECT)-type E3 ligase, mediates the ubiquitination of proteins involved in translation regulation, DNA damage response, and gluconeogenesis. In addition, UBR5 functions in a ligase-independent manner by prompting protein/protein interactions without ubiquitination of the binding partner. Despite recent functional studies, the mechanisms involved in substrate recognition and selective ubiquitination of its binding partners remain elusive. The C terminus of UBR5 harbors the HECT catalytic domain and an adjacent MLLE domain. MLLE domains mediate protein/protein interactions through the binding of a conserved peptide motif, termed PAM2. Here, we characterize the binding properties of the UBR5 MLLE domain to PAM2 peptides from Paip1 and GW182. The crystal structure with a Paip1 PAM2 peptide reveals the network of hydrophobic and ionic interactions that drive binding. In addition, we identify a novel interaction of the MLLE domain with the adjacent HECT domain mediated by a PAM2-like sequence. Our results confirm the role of the MLLE domain of UBR5 in substrate recruitment and suggest a potential role in regulating UBR5 ligase activity.
Collapse
Affiliation(s)
- Juliana Muñoz-Escobar
- From the Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Edna Matta-Camacho
- From the Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Guennadi Kozlov
- From the Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Kalle Gehring
- From the Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, Québec H3G 0B1, Canada
| |
Collapse
|
46
|
Huang Y, Sun L, Liu N, Wei Q, Jiang L, Tong X, Ye X. Polo-like Kinase 1 (Plk1) Up-regulates Telomerase Activity by Affecting Human Telomerase Reverse Transcriptase (hTERT) Stability. J Biol Chem 2015; 290:18865-73. [PMID: 26070557 PMCID: PMC4513140 DOI: 10.1074/jbc.m114.635375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 06/11/2015] [Indexed: 12/13/2022] Open
Abstract
Maintenance of telomere is regulated by active telomerase complex, including telomerase holoenzyme and its associated proteins. The activity of telomerase is precisely controlled in cells, and its dysregulation is one of the hallmarks of cancer. The telomerase catalytic subunit human telomerase reverse transcriptase (hTERT) plays a central role for telomerase activity. In this study, we indentified that Polo-like kinase 1 (Plk1) is a novel telomerase-associated protein. Plk1 can interact with hTERT independently of its kinase activity. More importantly, we found that Plk1 is associated with active telomerase complex. In addition, we demonstrated that knockdown of Plk1 caused the reduction of telomerase activity, whereas overexpression of Plk1 increased telomerase activity. Further analysis showed that overexpression of Plk1 led to a significant increase of hTERT protein by prolonging its half-life but did not affect the level of hTERT mRNA. Furthermore, we found that Plk1 enhanced the chromatin loading of hTERT and inhibited its ubiquitination. This implied that Plk1 affected hTERT stability by inhibiting its ubiquitin-mediated degradation. Collectively, these observations suggested that Plk1 is a positive modulator of telomerase by enhancing the stability of hTERT.
Collapse
Affiliation(s)
- Yan Huang
- From the CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) and the University of Chinese Academy of Sciences, Beijing 100101, China
| | - Liping Sun
- From the CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) and the University of Chinese Academy of Sciences, Beijing 100101, China
| | - Ningning Liu
- From the CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) and the University of Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Wei
- From the CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) and the University of Chinese Academy of Sciences, Beijing 100101, China
| | - Liangzhen Jiang
- From the CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) and the University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaomei Tong
- From the CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) and
| | - Xin Ye
- From the CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) and
| |
Collapse
|
47
|
Romani B, Shaykh Baygloo N, Aghasadeghi MR, Allahbakhshi E. HIV-1 Vpr Protein Enhances Proteasomal Degradation of MCM10 DNA Replication Factor through the Cul4-DDB1[VprBP] E3 Ubiquitin Ligase to Induce G2/M Cell Cycle Arrest. J Biol Chem 2015; 290:17380-9. [PMID: 26032416 DOI: 10.1074/jbc.m115.641522] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus type 1 Vpr is an accessory protein that induces G2/M cell cycle arrest. It is well documented that interaction of Vpr with the Cul4-DDB1[VprBP] E3 ubiquitin ligase is essential for the induction of G2/M arrest. In this study, we show that HIV-1 Vpr indirectly binds MCM10, a eukaryotic DNA replication factor, in a Vpr-binding protein (VprBP) (VprBP)-dependent manner. Binding of Vpr to MCM10 enhanced ubiquitination and proteasomal degradation of MCM10. G2/M-defective mutants of Vpr were not able to deplete MCM10, and we show that Vpr-induced depletion of MCM10 is related to the ability of Vpr to induce G2/M arrest. Our study demonstrates that MCM10 is the natural substrate of the Cul4-DDB1[VprBP] E3 ubiquitin ligase whose degradation is regulated by VprBP, but Vpr enhances the proteasomal degradation of MCM10 by interacting with VprBP.
Collapse
Affiliation(s)
- Bizhan Romani
- From the Department of Biology, Faculty of Science, University of Isfahan, Isfahan 81746-73441, the Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz 61357-15794, and
| | - Nima Shaykh Baygloo
- From the Department of Biology, Faculty of Science, University of Isfahan, Isfahan 81746-73441
| | | | - Elham Allahbakhshi
- the Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz 61357-15794, and
| |
Collapse
|
48
|
Jun S, Lee S, Kim HC, Ng C, Schneider AM, Ji H, Ying H, Wang H, DePinho RA, Park JI. PAF-mediated MAPK signaling hyperactivation via LAMTOR3 induces pancreatic tumorigenesis. Cell Rep 2015; 5:314-22. [PMID: 24209743 DOI: 10.1016/j.celrep.2013.09.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/20/2013] [Accepted: 09/19/2013] [Indexed: 12/14/2022] Open
Abstract
Deregulation of mitogen-activated protein kinase (MAPK) signaling leads to development of pancreatic cancer. Although Ras-mutation-driven pancreatic tumorigenesis is well understood, the underlying mechanism of Ras-independent MAPK hyperactivation remains elusive. Here, we have identified a distinct function of PCNA-associated factor (PAF) in modulating MAPK signaling. PAF is overexpressed in pancreatic cancer and required for pancreatic cancer cell proliferation. In mouse models, PAF expression induced pancreatic intraepithelial neoplasia with expression of pancreatic cancer stem cell markers. PAF-induced ductal epithelial cell hyperproliferation was accompanied by extracellular signal-regulated kinase (ERK) phosphorylation independently of Ras or Raf mutations. Intriguingly, PAF transcriptionally activated the expression of late endosomal/lysosomal adaptor, MAPK and mTOR activator 3 (LAMTOR3), which hyperphosphorylates MEK and ERK and is necessary for pancreatic cancer cell proliferation. Our results reveal an unsuspected mechanism of mitogenic signaling activation via LAMTOR3 and suggest that PAF-induced MAPK hyperactivation contributes to pancreatic tumorigenesis.
Collapse
|
49
|
Nihira NT, Yoshida K. Engagement of DYRK2 in proper control for cell division. Cell Cycle 2015; 14:802-7. [PMID: 25603354 PMCID: PMC4613861 DOI: 10.1080/15384101.2015.1007751] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 01/07/2015] [Indexed: 12/24/2022] Open
Abstract
Dysregulation of cell cycle machinery causes abnormal cell division, leading to cancer development. To drive cell cycle properly, expression levels of cell cycle regulators are tightly regulated through the cell cycle. Dual specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) is a Ser/Thr kinase, and its intracellular functions had not been elucidated for decades. Recent studies have shown that DYRK2 down-regulates key molecules on cell cycle control. This review mainly highlights the DYRK2 function during cell division. In addition, we summarize tumor suppressive role of DYRK2 in cancer cells and discuss future research directions for DYRK2 toward the novel cancer therapies.
Collapse
Affiliation(s)
- Naoe Taira Nihira
- Department of Biochemistry; The Jikei University School of Medicine; Minato-ku, Tokyo, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry; The Jikei University School of Medicine; Minato-ku, Tokyo, Japan
| |
Collapse
|
50
|
Enomoto Y, Yamashita SI, Yoshinaga Y, Fukami Y, Miyahara S, Nabeshima K, Iwasaki A. Downregulation of DYRK2 can be a predictor of recurrence in early stage breast cancer. Tumour Biol 2014; 35:11021-5. [PMID: 25095982 DOI: 10.1007/s13277-014-2413-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/28/2014] [Indexed: 01/08/2023] Open
Abstract
This study investigated the potential of DYRK2, a dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase gene, to predict disease-free survival for patients with early stage breast cancer. Two hundred and seventy-four patients with breast cancer underwent surgery from January 2000 to December 2009. All patients were in stage I or II. Immunohistochemical (IHC) analysis was used to determine the expression of DYRK2, which was examined for its association with clinicopathological factors or prognosis. A total of 85 of 274 cases (31%) were DYRK2 positive. No correlation was found between DYRK2 expression by IHC and clinicopathological factors such as tumor size, histological grade, hormone receptor status, and HER2 status; however, lymph node involvement was closely associated with DYRK2 expression. Ten-year disease-free survival in the DYRK2-positive group without node metastasis (95.9%) was significantly better than that in the DYRK2-negative group (87.3%, p = 0.015). These data show that DYRK2 expression is associated with lymph node involvement and is a possible predictive factor of breast cancer recurrence.
Collapse
MESH Headings
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/metabolism
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/secondary
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/mortality
- Carcinoma, Lobular/secondary
- Down-Regulation
- Female
- Follow-Up Studies
- Humans
- Immunoenzyme Techniques
- Lymphatic Metastasis
- Neoplasm Grading
- Neoplasm Recurrence, Local/diagnosis
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/mortality
- Neoplasm Staging
- Prognosis
- Protein Serine-Threonine Kinases/metabolism
- Protein-Tyrosine Kinases/metabolism
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Survival Rate
- Dyrk Kinases
Collapse
Affiliation(s)
- Yasuko Enomoto
- Department of General Thoracic, Breast, and Pediatric Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonanku, Fukuoka, 814-0180, Japan
| | | | | | | | | | | | | |
Collapse
|