1
|
Pérez-Sala D, Zorrilla S. Versatility of vimentin assemblies: From filaments to biomolecular condensates and back. Eur J Cell Biol 2025; 104:151487. [PMID: 40194320 DOI: 10.1016/j.ejcb.2025.151487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/26/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Cytoskeletal structures shape and confer resistance to cells. The intermediate filament protein vimentin forms versatile structures that play key roles in cytoskeletal crosstalk, in the integration of cellular responses to a variety of external and internal cues, and in the defense against stress. Such multifaceted roles can be fulfilled thanks to the vast variety of vimentin proteoforms, which in turn arise from the combinations of a myriad of tightly regulated posttranslational modifications. Diverse vimentin proteoforms will differentially shape its polymeric assemblies, underlying vimentin ability to organize in filaments, bundles, squiggles, droplets, cell surface-bound and/or various secreted forms. Interestingly, certain vimentin dots or droplets have been lately categorized as biomolecular condensates. Biomolecular condensates are phase-separated membraneless structures that are critical for the organization of cellular components and play important roles in pathophysiology. Recent findings have unveiled the importance of low complexity sequence domains in vimentin filament assembly. Moreover, several oxidants trigger the transition of vimentin filaments into phase-separated biomolecular condensates, a reversible process that may provide clues on the role of condensates as seeds for filament formation. Revisiting previous results in the light of recent knowledge prompts the hypothesis that vimentin condensates could play a role in traffic of filament precursors, cytoskeletal crosstalk and cellular responses to stress. Deciphering the "vimentin posttranslational modification code", that is, the structure-function relationships of vimentin proteoforms, constitutes a major challenge to understand the regulation of vimentin behavior and its multiple personalities. This will contribute to unveil essential cellular mechanisms and foster novel opportunities for drug discovery.
Collapse
Affiliation(s)
- Dolores Pérez-Sala
- Department of Molecular and Cellular Biosciences, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain.
| | - Silvia Zorrilla
- Department of Molecular and Cellular Biosciences, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| |
Collapse
|
2
|
Otake H, Masuda S, Yamamoto T, Miyata Y, Nakazawa Y, Yamamoto N, Taga A, Sasaki H, Nagai N. Semiquantitative analysis of protein expression in heated rat lens using shotgun proteomics. Mol Med Rep 2025; 31:26. [PMID: 39540352 DOI: 10.3892/mmr.2024.13391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024] Open
Abstract
Previous studies have reported that a strong correlation between the estimated cumulative thermal exposure in the crystalline lens and the incidence of nuclear cataracts; however, the precise relationship between temperature and cataracts remains to be fully elucidated. In the present study, the shotgun liquid chromatography/mass spectroscopy‑based global proteomic approach was applied to investigate cataract‑inducing factors in lens cultured at normal (35.0˚C) and slightly warmer (37.5˚C) conditions. In the rat lens, 190 proteins (total) were identified. Of these, 48 proteins (25.3%) were found in lenses cultured at both 35.0˚C and 37.5˚C. Moreover, 85 proteins (44.7%) were unique to lenses cultured at 35.0˚C, while 57 proteins (30.0%) were unique to lenses cultured at 37.5˚C. Protein expression changes in rat lenses cultured at 37.5˚C were examined using a label‑free semiquantitative approach that uses spectral counting and Gene Ontology analysis. Filensin and vimentin protein expression, key factors in maintaining lens structure, were decreased. These findings may serve as a valuable indicator for elucidating the relationship between temperature and the onset of nuclear cataracts.
Collapse
Affiliation(s)
- Hiroko Otake
- Faculty of Pharmacy, Kindai University, Higashiosaka, Osaka 577‑8502, Japan
| | - Shuya Masuda
- Faculty of Pharmacy, Kindai University, Higashiosaka, Osaka 577‑8502, Japan
| | - Tetsushi Yamamoto
- Faculty of Pharmacy, Kindai University, Higashiosaka, Osaka 577‑8502, Japan
| | - Yoshiki Miyata
- Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo 173‑8606, Japan
| | | | - Naoki Yamamoto
- Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi 470‑1192, Japan
| | - Atsushi Taga
- Faculty of Pharmacy, Kindai University, Higashiosaka, Osaka 577‑8502, Japan
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Ishikawa 920‑0293, Japan
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, Higashiosaka, Osaka 577‑8502, Japan
| |
Collapse
|
3
|
Zhang Y, Chen XY, Hu YZ, Zhang X, Zheng SF, Hu SS. Application of transgenic mice to the molecular pathogenesis of cataract. Int J Ophthalmol 2024; 17:1929-1948. [PMID: 39430018 PMCID: PMC11422363 DOI: 10.18240/ijo.2024.10.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/29/2024] [Indexed: 10/22/2024] Open
Abstract
One of the most prevalent disorders that cause blindness worldwide is cataract, and its essence is the visual disorder caused by the opacity of the lens. The significant degree of variation in cataracts and the fact that a variety of factors can impact a patient's lens transparency make it especially crucial to investigate the pathogenesis of cataracts at the molecular level. It has been found that more than 60 genes are linked to the formation of cataracts, and the construction of a transgenic mouse model of cataract similar to the selection of human lens clouding due to a variety of causes has become an important means of studying the pathogenesis of cataract. Therefore, the research on the application of transgenic mice to the molecular pathogenesis of cataracts will be the main topic of this review of the literature.
Collapse
Affiliation(s)
- Yue Zhang
- Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang Province, China
| | - Xiao-Ya Chen
- Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang Province, China
| | - Yu-Zhu Hu
- Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang Province, China
| | - Xiao Zhang
- Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang Province, China
| | - Shun-Fei Zheng
- Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang Province, China
| | - Shan-Shan Hu
- Department of Ophthalmology, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang Province, China
| |
Collapse
|
4
|
Coelho-Rato LS, Parvanian S, Andrs Salajkova S, Medalia O, Eriksson JE. Intermediate filaments at a glance. J Cell Sci 2024; 137:jcs261386. [PMID: 39206824 DOI: 10.1242/jcs.261386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Intermediate filaments (IFs) comprise a large family of versatile cytoskeletal proteins, divided into six subtypes with tissue-specific expression patterns. IFs have a wide repertoire of cellular functions, including providing structural support to cells, as well as active roles in mechanical support and signaling pathways. Consequently, defects in IFs are associated with more than 100 diseases. In this Cell Science at a Glance article, we discuss the established classes of IFs and their general features, their functions beyond structural support, and recent advances in the field. We also highlight their involvement in disease and potential use as clinical markers of pathological conditions. Finally, we provide our view on current knowledge gaps and the future directions of the IF field.
Collapse
Affiliation(s)
- Leila S Coelho-Rato
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
| | - Sepideh Parvanian
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Sarka Andrs Salajkova
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - John E Eriksson
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
- Euro-Bioimaging ERIC, 20520 Turku, Finland
| |
Collapse
|
5
|
Pajares MA, Pérez-Sala D. Type III intermediate filaments in redox interplay: key role of the conserved cysteine residue. Biochem Soc Trans 2024; 52:849-860. [PMID: 38451193 PMCID: PMC11088922 DOI: 10.1042/bst20231059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Intermediate filaments (IFs) are cytoskeletal elements involved in mechanotransduction and in the integration of cellular responses. They are versatile structures and their assembly and organization are finely tuned by posttranslational modifications. Among them, type III IFs, mainly vimentin, have been identified as targets of multiple oxidative and electrophilic modifications. A characteristic of most type III IF proteins is the presence in their sequence of a single, conserved cysteine residue (C328 in vimentin), that is a hot spot for these modifications and appears to play a key role in the ability of the filament network to respond to oxidative stress. Current structural models and experimental evidence indicate that this cysteine residue may occupy a strategic position in the filaments in such a way that perturbations at this site, due to chemical modification or mutation, impact filament assembly or organization in a structure-dependent manner. Cysteine-dependent regulation of vimentin can be modulated by interaction with divalent cations, such as zinc, and by pH. Importantly, vimentin remodeling induced by C328 modification may affect its interaction with cellular organelles, as well as the cross-talk between cytoskeletal networks, as seems to be the case for the reorganization of actin filaments in response to oxidants and electrophiles. In summary, the evidence herein reviewed delineates a complex interplay in which type III IFs emerge both as targets and modulators of redox signaling.
Collapse
Affiliation(s)
- María A. Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
6
|
Coelho-Rato LS, Parvanian S, Modi MK, Eriksson JE. Vimentin at the core of wound healing. Trends Cell Biol 2024; 34:239-254. [PMID: 37748934 DOI: 10.1016/j.tcb.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/27/2023]
Abstract
As a member of the large family of intermediate filaments (IFs), vimentin has emerged as a highly dynamic and versatile cytoskeletal protein involved in many key processes of wound healing. It is well established that vimentin is involved in epithelial-mesenchymal transition (EMT) during wound healing and metastasis, during which epithelial cells acquire more dynamic and motile characteristics. Moreover, vimentin participates in multiple cellular activities supporting growth, proliferation, migration, cell survival, and stress resilience. Here, we explore the role of vimentin at each phase of wound healing, with focus on how it integrates different signaling pathways and protects cells in the fluctuating and challenging environments that characterize a healing tissue.
Collapse
Affiliation(s)
- Leila S Coelho-Rato
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
| | - Sepideh Parvanian
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Mayank Kumar Modi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
| | - John E Eriksson
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Euro-Bioimaging ERIC, 20520 Turku, Finland.
| |
Collapse
|
7
|
Soleimani M, Cheraqpour K, Koganti R, Djalilian AR. Cellular senescence and ophthalmic diseases: narrative review. Graefes Arch Clin Exp Ophthalmol 2023; 261:3067-3082. [PMID: 37079093 DOI: 10.1007/s00417-023-06070-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
PURPOSE Cellular senescence is a state of permanent growth arrest whereby a cell reaches its replicative limit. However, senescence can also be triggered prematurely in certain stressors including radiation, oxidative stress, and chemotherapy. This stress-induced senescence has been studied in the context of promoting inflammation, tumor development, and several chronic degenerative diseases of aging. Emerging research has elucidated the role of senescence in various ocular diseases. METHODS The literature search was performed using PubMed with using the query (senescence OR aging) AND (eye disease OR ocular disease OR ophthalmic disease OR cornea OR glaucoma OR cataract OR retina) on October 20th, 2022. No time restriction was proposed. Articles were excluded if they were not referenced in English. RESULTS Overall, 51 articles regarding senescence and ocular diseases were found and summarized in this study. Several signaling pathways have been implicated in the development of senescence. Currently, senescence has been linked to various corneal and retinal pathologies, as well as cataract and glaucoma. Given the number of pathologies, senolytics, which are small molecules with the ability to selective targeting of senescent cells, can be used as therapeutic or prophylactic agents. CONCLUSIONS Senescence has been shown to underlie the pathogenesis of numerous ocular diseases. The overall literature on senescence and ocular disease is growing rapidly. There is an ongoing debate whether or not cellular senescence detected in experiments contributes in a significant way to diseases. Research on understanding the mechanism of senescence from ocular cells and tissues is just beginning. Multiple animal models are required to test potential senolytics. Currently, no studies exist to date which have demonstrated the benefits of senolytic therapies in human studies.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Cornea Service, Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Illinois Eye and Ear Infirmary, 1855 W. Taylor Street, M/C 648, Chicago, IL, 60612, USA
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Cornea Service, Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Illinois Eye and Ear Infirmary, 1855 W. Taylor Street, M/C 648, Chicago, IL, 60612, USA.
| |
Collapse
|
8
|
Hasegawa N, Hongo M, Okada M, Kuga T, Abe Y, Adachi J, Tomonaga T, Yamaguchi N, Nakayama Y. Phosphotyrosine proteomics in cells synchronized at monopolar cytokinesis reveals EphA2 as functioning in cytokinesis. Exp Cell Res 2023; 432:113783. [PMID: 37726045 DOI: 10.1016/j.yexcr.2023.113783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Cytokinesis is the final step of the cell division in which cellular components are separated into two daughter cells. This process is regulated through the phosphorylation of different classes of proteins by serine/threonine (Ser/Thr) kinases such as Aurora B and Polo-like kinase 1 (PLK1). Conversely, the role of phosphorylation at tyrosine residues during cytokinesis has not been studied in detail yet. In this study, we performed a phosphotyrosine proteomic analysis of cells undergoing monopolar cytokinesis synchronized by using the Eg5 inhibitor (+)-S-trityl-l-cysteine (STLC) and the CDK1 inhibitor RO-3306. Phosphotyrosine proteomics gave 362 tyrosine-phosphorylated peptides. Western blot analysis of proteins revealed tyrosine phosphorylation in mitogen-activated protein kinase 14 (MAPK14), vimentin, ephrin type-A receptor 2 (EphA2), and myelin protein zero-like protein 1 (MPZL1) during monopolar cytokinesis. Additionally, we demonstrated that EphA2, a protein with unknown function during cytokinesis, is involved in cytokinesis. EphA2 knockdown accelerated epithelial cell transforming 2 (Ect2) knockdown-induced multinucleation, suggesting that EphA2 plays a role in cytokinesis in a particular situation. The list also included many proteins previously reported to play roles during cytokinesis. These results evidence that the identified phosphopeptides facilitate the identification of novel tyrosine phosphorylation signaling involved in regulating cytokinesis.
Collapse
Affiliation(s)
- Nanami Hasegawa
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Mayue Hongo
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Misaki Okada
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Takahisa Kuga
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan; Laboratory of Analytics for Biomolecules, Faculty of Pharmaceutical Science, Setsunan University, Osaka 573-0101, Japan
| | - Yuichi Abe
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Division of Molecular Diagnostics, Aichi Cancer Center, Nagoya 464-8681, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Proteobiologics Co., Ltd., Osaka 567-0085, Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Yuji Nakayama
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| |
Collapse
|
9
|
Leube RE, Quinlan RA. Editorial: The wetware credentials of intermediate filaments involves coordinating, organising and networking in cells and tissues. Front Cell Dev Biol 2023; 11:1146618. [PMID: 36861037 PMCID: PMC9969193 DOI: 10.3389/fcell.2023.1146618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Affiliation(s)
- Rudolf E. Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany,*Correspondence: Rudolf E. Leube, ; Roy A. Quinlan,
| | - Roy A. Quinlan
- Department of Biosciences, University of Durham, Upper Mountjoy Science Site, Durham, United Kingdom,Biophysical Sciences Institute, University of Durham, Durham, United Kingdom,Department of Biological Structure, University of Washington, Seattle, WA, United States,*Correspondence: Rudolf E. Leube, ; Roy A. Quinlan,
| |
Collapse
|
10
|
Wang Y, Tseng Y, Chen K, Wang X, Mao Z, Li X. Reduction in Lens Epithelial Cell Senescence Burden through Dasatinib Plus Quercetin or Rapamycin Alleviates D-Galactose-Induced Cataract Progression. J Funct Biomater 2022; 14:jfb14010006. [PMID: 36662053 PMCID: PMC9862066 DOI: 10.3390/jfb14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Senescent cells accumulate in aged organisms and promote the progression of age-related diseases including cataracts. Therefore, we aimed to study the therapeutic effects of senescence-targeting drugs on cataracts. In this study, a 28-day D-galactose-induced cataract rat model was used. The opacity index, a grading based on slit-lamp observations, was used to assess lens cloudiness. Furthermore, the average lens density (ALD), lens density standard deviation (LDSD), and maximum lens density (MLD) obtained from Scheimpflug images were used to assess lens transparency. Immunohistochemical stainings for p16 and γH2AX were used as hallmarks of senescence. We treated rat cataract models with the senolytic drug combination dasatinib plus quercetin (D+Q) and senescence-associated secretory phenotype (SASP) inhibitors. In comparison to control lenses, D-galactose-induced cataract lenses showed a higher opacity index, ALD, LDSD, and MLD values, as well as accumulation of senescent lens epithelial cells (LECs). After D+Q treatment, ALD, LDSD, and MLD values on day 21 were significantly lower than those of vehicle-treated model rats. The expression levels of p16 and γH2AX were also reduced after D+Q administration. In addition, the SASP inhibitor rapamycin decreased the opacity index, ALD, LDSD, and MLD values on day 21. In conclusion, D+Q alleviated D-galactose-induced cataract progression by reducing the senescent LEC burden in the early stage of cataract.
Collapse
Affiliation(s)
- Yinhao Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerves, Peking University Third Hospital, Beijing 100191, China
| | - Yulin Tseng
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerves, Peking University Third Hospital, Beijing 100191, China
| | - Keyu Chen
- Department of Biochemistry and Molecular Biology, Health Science Center, Peking University, Beijing 100191, China
| | - Xinglin Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerves, Peking University Third Hospital, Beijing 100191, China
| | - Zebin Mao
- Department of Biochemistry and Molecular Biology, Health Science Center, Peking University, Beijing 100191, China
- Correspondence: (Z.M.); (X.L.)
| | - Xuemin Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerves, Peking University Third Hospital, Beijing 100191, China
- Correspondence: (Z.M.); (X.L.)
| |
Collapse
|
11
|
Kunduri G, Acharya U, Acharya JK. Lipid Polarization during Cytokinesis. Cells 2022; 11:3977. [PMID: 36552741 PMCID: PMC9776629 DOI: 10.3390/cells11243977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The plasma membrane of eukaryotic cells is composed of a large number of lipid species that are laterally segregated into functional domains as well as asymmetrically distributed between the outer and inner leaflets. Additionally, the spatial distribution and organization of these lipids dramatically change in response to various cellular states, such as cell division, differentiation, and apoptosis. Division of one cell into two daughter cells is one of the most fundamental requirements for the sustenance of growth in all living organisms. The successful completion of cytokinesis, the final stage of cell division, is critically dependent on the spatial distribution and organization of specific lipids. In this review, we discuss the properties of various lipid species associated with cytokinesis and the mechanisms involved in their polarization, including forward trafficking, endocytic recycling, local synthesis, and cortical flow models. The differences in lipid species requirements and distribution in mitotic vs. male meiotic cells will be discussed. We will concentrate on sphingolipids and phosphatidylinositols because their transbilayer organization and movement may be linked via the cytoskeleton and thus critically regulate various steps of cytokinesis.
Collapse
Affiliation(s)
- Govind Kunduri
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | | | | |
Collapse
|
12
|
Baker NE, Montagna C. Reducing the aneuploid cell burden - cell competition and the ribosome connection. Dis Model Mech 2022; 15:dmm049673. [PMID: 36444717 PMCID: PMC10621665 DOI: 10.1242/dmm.049673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Aneuploidy, the gain or loss of chromosomes, is the cause of birth defects and miscarriage and is almost ubiquitous in cancer cells. Mosaic aneuploidy causes cancer predisposition, as well as age-related disorders. Despite the cell-intrinsic mechanisms that prevent aneuploidy, sporadic aneuploid cells do arise in otherwise normal tissues. These aneuploid cells can differ from normal cells in the copy number of specific dose-sensitive genes, and may also experience proteotoxic stress associated with mismatched expression levels of many proteins. These differences may mark aneuploid cells for recognition and elimination. The ribosomal protein gene dose in aneuploid cells could be important because, in Drosophila, haploinsufficiency for these genes leads to elimination by the process of cell competition. Constitutive haploinsufficiency for human ribosomal protein genes causes Diamond Blackfan anemia, but it is not yet known whether ribosomal protein gene dose contributes to aneuploid cell elimination in mammals. In this Review, we discuss whether cell competition on the basis of ribosomal protein gene dose is a tumor suppressor mechanism, reducing the accumulation of aneuploid cells. We also discuss how this might relate to the tumor suppressor function of p53 and the p53-mediated elimination of aneuploid cells from murine embryos, and how cell competition defects could contribute to the cancer predisposition of Diamond Blackfan anemia.
Collapse
Affiliation(s)
- Nicholas E. Baker
- Departments of Genetics, Developmental and Molecular Biology, and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Cristina Montagna
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| |
Collapse
|
13
|
Kuburich NA, den Hollander P, Pietz JT, Mani SA. Vimentin and cytokeratin: Good alone, bad together. Semin Cancer Biol 2022; 86:816-826. [PMID: 34953942 PMCID: PMC9213573 DOI: 10.1016/j.semcancer.2021.12.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 01/27/2023]
Abstract
The cytoskeleton plays an integral role in maintaining the integrity of epithelial cells. Epithelial cells primarily employ cytokeratin in their cytoskeleton, whereas mesenchymal cells use vimentin. During the epithelial-mesenchymal transition (EMT), cytokeratin-positive epithelial cells begin to express vimentin. EMT induces stem cell properties and drives metastasis, chemoresistance, and tumor relapse. Most studies of the functions of cytokeratin and vimentin have relied on the use of either epithelial or mesenchymal cell types. However, it is important to understand how these two cytoskeleton intermediate filaments function when co-expressed in cells undergoing EMT. Here, we discuss the individual and shared functions of cytokeratin and vimentin that coalesce during EMT and how alterations in intermediate filament expression influence carcinoma progression.
Collapse
Affiliation(s)
- Nick A Kuburich
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Petra den Hollander
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Jordan T Pietz
- Department of Creative Services, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States.
| |
Collapse
|
14
|
Parreno J, Emin G, Vu MP, Clark JT, Aryal S, Patel SD, Cheng C. Methodologies to unlock the molecular expression and cellular structure of ocular lens epithelial cells. Front Cell Dev Biol 2022; 10:983178. [PMID: 36176273 PMCID: PMC9514789 DOI: 10.3389/fcell.2022.983178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/16/2022] [Indexed: 01/25/2023] Open
Abstract
The transparent ocular lens in the anterior chamber of the eye is responsible for fine focusing of light onto the retina. The lens is entirely cellular with bulk of the tissue composed of fiber cells, and the anterior hemisphere of the lens is covered by a monolayer of epithelial cells. Lens epithelial cells are important for maintaining fiber cell homeostasis and for continual growth of the lens tissue throughout life. Cataracts, defined as any opacity in the lens, remain the leading cause of blindness in the world. Following cataract surgery, lens epithelial cells can undergo a process of epithelial-to-mesenchymal transition (EMT), leading to secondary cataracts due to posterior capsular opacification (PCO). Since the epithelial cells make up only a small fraction of the lens, specialized techniques are required to study lens epithelial cell biology and pathology. Studies using native lens epithelial cells often require pooling of samples to obtain enough cells to make sufficient samples for traditional molecular biology techniques. Here, we provide detailed protocols that enable the study of native mouse lens epithelial cells, including immunostaining of the native lens epithelium in flat mounts, extraction of RNA and proteins from pairs of lens epithelial monolayers, and isolation of lens epithelial cells for primary culture. These protocols will enable researchers to gain better insight on representative molecular expression and cellular structure of lens epithelial cells. We also provide comparative data between native, primary culture, and immortalized lens epithelial cells and discuss the advantages and disadvantages of each technique presented.
Collapse
Affiliation(s)
- Justin Parreno
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
- *Correspondence: Justin Parreno, ; Catherine Cheng,
| | - Grace Emin
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Michael P. Vu
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN, United States
| | - Jackson T. Clark
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN, United States
| | - Sandeep Aryal
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shaili D. Patel
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Catherine Cheng
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN, United States
- *Correspondence: Justin Parreno, ; Catherine Cheng,
| |
Collapse
|
15
|
Kapuganti RS, Mohanty PP, Alone DP. Quantitative analysis of circulating levels of vimentin, clusterin and fibulin-5 in patients with pseudoexfoliation syndrome and glaucoma. Exp Eye Res 2022; 224:109236. [DOI: 10.1016/j.exer.2022.109236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/30/2022] [Accepted: 08/23/2022] [Indexed: 11/15/2022]
|
16
|
Lois-Bermejo I, González-Jiménez P, Duarte S, Pajares MA, Pérez-Sala D. Vimentin Tail Segments Are Differentially Exposed at Distinct Cellular Locations and in Response to Stress. Front Cell Dev Biol 2022; 10:908263. [PMID: 35769261 PMCID: PMC9235546 DOI: 10.3389/fcell.2022.908263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/17/2022] [Indexed: 01/13/2023] Open
Abstract
The intermediate filament protein vimentin plays a key role in cell signaling and stress sensing, as well as an integrator of cytoskeletal dynamics. The vimentin monomer consists of a central rod-like domain and intrinsically disordered head and tail domains. Although the organization of vimentin oligomers in filaments is beginning to be understood, the precise disposition of the tail region remains to be elucidated. Here we observed that electrophilic stress-induced condensation shielded vimentin from recognition by antibodies against specific segments of the tail domain. A detailed characterization revealed that vimentin tail segments are differentially exposed at distinct subcellular locations, both in basal and stress conditions. The 411–423 segment appeared accessible in all cell areas, correlating with vimentin abundance. In contrast, the 419–438 segment was more scantily recognized in perinuclear vimentin and lipoxidative stress-induced bundles, and better detected in peripheral filaments, where it appeared to protrude further from the filament core. These differences persisted in mitotic cells. Interestingly, both tail segments showed closer accessibility in calyculin A-treated cells and phosphomimetic mutants of the C-terminal region. Our results lead us to hypothesize the presence of at least two distinct arrangements of vimentin tail in cells: an “extended” conformation (accessible 419–438 segment), preferentially detected in peripheral areas with looser filaments, and a “packed” conformation (shielded 419–438 segment), preferentially detected at the cell center in robust filaments and lipoxidative stress-induced bundles. These different arrangements could be putatively interconverted by posttranslational modifications, contributing to the versatility of vimentin functions and/or interactions.
Collapse
|
17
|
Lalioti V, González-Sanz S, Lois-Bermejo I, González-Jiménez P, Viedma-Poyatos Á, Merino A, Pajares MA, Pérez-Sala D. Cell surface detection of vimentin, ACE2 and SARS-CoV-2 Spike proteins reveals selective colocalization at primary cilia. Sci Rep 2022; 12:7063. [PMID: 35487944 PMCID: PMC9052736 DOI: 10.1038/s41598-022-11248-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
The SARS-CoV-2 Spike protein mediates docking of the virus onto cells prior to viral invasion. Several cellular receptors facilitate SARS-CoV-2 Spike docking at the cell surface, of which ACE2 plays a key role in many cell types. The intermediate filament protein vimentin has been reported to be present at the surface of certain cells and act as a co-receptor for several viruses; furthermore, its potential involvement in interactions with Spike proteins has been proposed. Nevertheless, the potential colocalization of vimentin with Spike and its receptors on the cell surface has not been explored. Here we have assessed the binding of Spike protein constructs to several cell types. Incubation of cells with tagged Spike S or Spike S1 subunit led to discrete dotted patterns at the cell surface, which consistently colocalized with endogenous ACE2, but sparsely with a lipid raft marker. Vimentin immunoreactivity mostly appeared as spots or patches unevenly distributed at the surface of diverse cell types. Of note, vimentin could also be detected in extracellular particles and in the cytoplasm underlying areas of compromised plasma membrane. Interestingly, although overall colocalization of vimentin-positive spots with ACE2 or Spike was moderate, a selective enrichment of the three proteins was detected at elongated structures, positive for acetylated tubulin and ARL13B. These structures, consistent with primary cilia, concentrated Spike binding at the top of the cells. Our results suggest that a vimentin-Spike interaction could occur at selective locations of the cell surface, including ciliated structures, which can act as platforms for SARS-CoV-2 docking.
Collapse
Affiliation(s)
- Vasiliki Lalioti
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Silvia González-Sanz
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Irene Lois-Bermejo
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Patricia González-Jiménez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Álvaro Viedma-Poyatos
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Andrea Merino
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| |
Collapse
|
18
|
Abstract
More than 27 yr ago, the vimentin knockout (Vim-/- ) mouse was reported to develop and reproduce without an obvious phenotype, implying that this major cytoskeletal protein was nonessential. Subsequently, comprehensive and careful analyses have revealed numerous phenotypes in Vim-/- mice and their organs, tissues, and cells, frequently reflecting altered responses in the recovery of tissues following various insults or injuries. These findings have been supported by cell-based experiments demonstrating that vimentin intermediate filaments (IFs) play a critical role in regulating cell mechanics and are required to coordinate mechanosensing, transduction, signaling pathways, motility, and inflammatory responses. This review highlights the essential functions of vimentin IFs revealed from studies of Vim-/- mice and cells derived from them.
Collapse
Affiliation(s)
- Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois 60611, USA
| | - John E Eriksson
- Cell Biology, Faculty of Science and Technology, Åbo Akademi University, FIN-20521 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FIN-20521 Turku, Finland
- Euro-Bioimaging European Research Infrastructure Consortium (ERIC), FIN-20521 Turku, Finland
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 90 Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
- University of Newcastle, Newcastle, New South Wales 2300, Australia
| | - Robert D Goldman
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
19
|
Barnard S, Uwineza A, Kalligeraki A, McCarron R, Kruse F, Ainsbury EA, Quinlan RA. Lens Epithelial Cell Proliferation in Response to Ionizing Radiation. Radiat Res 2022; 197:92-99. [PMID: 33984857 DOI: 10.1667/rade-20-00294.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/20/2021] [Indexed: 11/03/2022]
Abstract
Lens epithelial cell proliferation and differentiation are naturally well regulated and controlled, a characteristic essential for lens structure, symmetry and function. The effect of ionizing radiation on lens epithelial cell proliferation has been demonstrated in previous studies at high acute doses, but the effect of dose and dose rate on proliferation has not yet been considered. In this work, mice received single acute doses of 0.5, 1 and 2 Gy of radiation, at dose rates of 0.063 and 0.3 Gy/min. Eye lenses were isolated postirradiation at 30 min up until 14 days and flat-mounted. Then, cell proliferation rates were determined using biomarker Ki67. As expected, radiation increased cell proliferation 2 and 24 h postirradiation transiently (undetectable 14 days postirradiation) and was dose dependent (changes were very significant at 2 Gy; P = 0.008). A dose-rate effect did not reach significance in this study (P = 0.054). However, dose rate and lens epithelial cell region showed significant interactions (P < 0.001). These observations further our mechanistic understanding of how the lens responds to radiation.
Collapse
Affiliation(s)
- S Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
- Department of Biosciences, University of Durham, Mountjoy Science Site, Durham DH13LE, United Kingdom
| | - A Uwineza
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
- Department of Biosciences, University of Durham, Mountjoy Science Site, Durham DH13LE, United Kingdom
| | - A Kalligeraki
- Department of Biosciences, University of Durham, Mountjoy Science Site, Durham DH13LE, United Kingdom
| | - R McCarron
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - F Kruse
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - E A Ainsbury
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - R A Quinlan
- Department of Biosciences, University of Durham, Mountjoy Science Site, Durham DH13LE, United Kingdom
| |
Collapse
|
20
|
Gulluni F, Prever L, Li H, Krafcikova P, Corrado I, Lo WT, Margaria JP, Chen A, De Santis MC, Cnudde SJ, Fogerty J, Yuan A, Massarotti A, Sarijalo NT, Vadas O, Williams RL, Thelen M, Powell DR, Schüler M, Wiesener MS, Balla T, Baris HN, Tiosano D, McDermott BM, Perkins BD, Ghigo A, Martini M, Haucke V, Boura E, Merlo GR, Buchner DA, Hirsch E. PI(3,4)P2-mediated cytokinetic abscission prevents early senescence and cataract formation. Science 2021; 374:eabk0410. [PMID: 34882480 PMCID: PMC7612254 DOI: 10.1126/science.abk0410] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytokinetic membrane abscission is a spatially and temporally regulated process that requires ESCRT (endosomal sorting complexes required for transport)–dependent control of membrane remodeling at the midbody, a subcellular organelle that defines the cleavage site. Alteration of ESCRT function can lead to cataract, but the underlying mechanism and its relation to cytokinesis are unclear. We found a lens-specific cytokinetic process that required PI3K-C2α (phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2α), its lipid product PI(3,4)P2 (phosphatidylinositol 3,4-bisphosphate), and the PI(3,4)P2–binding ESCRT-II subunit VPS36 (vacuolar protein-sorting-associated protein 36). Loss of each of these components led to impaired cytokinesis, triggering premature senescence in the lens of fish, mice, and humans. Thus, an evolutionarily conserved pathway underlies the cell type–specific control of cytokinesis that helps to prevent early onset cataract by protecting from senescence.
Collapse
Affiliation(s)
- Federico Gulluni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Lorenzo Prever
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Huayi Li
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Petra Krafcikova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Praha, Czech Republic
| | - Ilaria Corrado
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Wen-Ting Lo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Jean Piero Margaria
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Anlu Chen
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Maria Chiara De Santis
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Sophie J. Cnudde
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Joseph Fogerty
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Alex Yuan
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale, “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Nasrin Torabi Sarijalo
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen Nürnberg, Erlangen, Germany
| | - Oscar Vadas
- Section des Sciences Pharmaceutiques, University of Geneva, 1211 Geneva, Switzerland
| | - Roger L. Williams
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - David R. Powell
- Pharmaceutical Biology, Lexicon Pharmaceuticals, The Woodlands, TX 77381, USA
| | - Markus Schüler
- Division of Nephrology and Internal Intensive Care Medicine, Charite University, Berlin, Germany
| | - Michael S. Wiesener
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen Nürnberg, Erlangen, Germany
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hagit N. Baris
- Division of Pediatric Endocrinology, Ruth Children's Hospital, Rambam Medical Center, Haifa 30196, Israel
| | - Dov Tiosano
- Division of Pediatric Endocrinology, Ruth Children's Hospital, Rambam Medical Center, Haifa 30196, Israel
- Rappaport Family Faculty of Medicine, Technion - –Israel Institute of Technology, Haifa 30196, Israel
| | - Brian M. McDermott
- Department of Otolaryngology–Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Brian D. Perkins
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
- Freie Universität Berlin, Faculty of Biology, Chemistry and Pharmacy, 14195 Berlin, Germany
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Praha, Czech Republic
| | - Giorgio Roberto Merlo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - David A. Buchner
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| |
Collapse
|
21
|
Namba M, Kobayashi T, Kohno M, Koyano T, Hirose T, Fukushima M, Matsuyama M. Creation of X-linked Alport syndrome rat model with Col4a5 deficiency. Sci Rep 2021; 11:20836. [PMID: 34675305 PMCID: PMC8531394 DOI: 10.1038/s41598-021-00354-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/12/2021] [Indexed: 12/31/2022] Open
Abstract
Alport syndrome is an inherited chronic human kidney disease, characterized by glomerular basement membrane abnormalities. This disease is caused by mutations in COL4A3, COL4A4, or COL4A5 gene. The knockout mice for Col4α3, Col4α4, and Col4α5 are developed and well characterized for the study of Alport syndrome. However, disease progression and effects of pharmacological therapy depend on the genetic variability. This model was reliable only to mouse. In this study, we created a novel Alport syndrome rat model utilizing the rGONAD technology, which generated rat with a deletion of the Col4α5 gene. Col4α5 deficient rats showed hematuria, proteinuria, high levels of BUN, Cre, and then died at 18 to 28 weeks of age (Hemizygous mutant males). Histological and ultrastructural analyses displayed the abnormalities including parietal cell hyperplasia, mesangial sclerosis, and interstitial fibrosis. Then, we demonstrated that α3/α4/α5 (IV) and α5/α5/α6 (IV) chains of type IV collagen disrupted in Col4α5 deficient rats. Thus, Col4α5 mutant rat is a reliable candidate for the Alport syndrome model for underlying the mechanism of kidney diseases and further identifying potential therapeutic targets for human renal diseases.
Collapse
Affiliation(s)
- Masumi Namba
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Tomoe Kobayashi
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Mayumi Kohno
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Takayuki Koyano
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Takuo Hirose
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Department of Endocrinology and Applied Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaki Fukushima
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan.,Shigei Medical Research Hospital, Okayama, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan.
| |
Collapse
|
22
|
Ainsbury EA, Barnard SGR. Sensitivity and latency of ionising radiation-induced cataract. Exp Eye Res 2021; 212:108772. [PMID: 34562436 DOI: 10.1016/j.exer.2021.108772] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 01/29/2023]
Abstract
When managed with appropriate radiation protection procedures, ionising radiation is of great benefit to society. Opacification of the lens, and vision impairing cataract, have recently been recognised at potential effects of relatively low dose radiation exposure, on the order of 1 Gy or below. Within the last 10 years, understanding of the effects of low dose ionising radiation on the lens has increased, particularly in terms of DNA damage and responses, and how multiple radiation or other events in the lens might contribute to the overall risk of cataract. However, gaps remain, not least in the understanding of how radiation interacts with other risk factors such as aging, as well as the relative radiosensitivity of the lens compared to tissues of the body. This paper reviews the current literature in the field of low dose radiation cataract, with a particular focus on sensitivity and latency.
Collapse
Affiliation(s)
- Elizabeth A Ainsbury
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot Oxford, OX11 ORQ, UK.
| | - Stephen G R Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot Oxford, OX11 ORQ, UK.
| |
Collapse
|
23
|
Lee SH, Lira-Albarrán S, Saadeldin IM. Comprehensive Proteomics Analysis of In Vitro Canine Oviductal Cell-Derived Extracellular Vesicles. Animals (Basel) 2021; 11:ani11020573. [PMID: 33672125 PMCID: PMC7926305 DOI: 10.3390/ani11020573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary As the dog shows unique and peculiar reproductive characteristics, assisted reproductive techniques such as in vitro maturation and in vitro fertilization have not been well-established compared with those of other mammals. Our recent work demonstrated the interplay between in vitro oviductal cell-derived extracellular vesicles (OC-EVs) and cumulus-oocyte complexes in dogs. Here, we provided for the first time a comprehensive proteomic analysis of OC-EVs. A total of 398 proteins were identified in all OC-EVs samples. A functional enrichment analysis indicated that these core proteins were involved in the key cellular metabolic process related to oocyte maturation and embryonic development. The current comprehensive description of the canine OC-EVs proteome would provide a fundamental resource for further understanding canine reproductive physiology, the interaction of sperms with female counterparts during fertilization, early pregnancy, and establishing an efficient system of in vitro embryo production. Abstract Dogs (Canis lupus familiaris) have unique and peculiar reproductive characteristics. While the interplay between in vitro oviductal cell-derived extracellular vesicles (OC-EVs) and cumulus-oocyte complexes in dogs has begun to be elucidated, no study has yet provided extensive information on the biological content and physiological function of OC-EVs and their role in canine oocyte development. Here, we aimed to provide the first comprehensive proteomic analysis of OC-EVs. We identified 398 proteins as present in all OC-EVs samples. The functional enrichment analysis using Gene Ontology terms and an Ingenuity Pathway Analysis revealed that the identified proteins were involved in several cellular metabolic processes, including translation, synthesis, expression, and protein metabolism. Notably, the proteins were also involved in critical canonical pathways with essential functions in oocyte and embryo development, such as ERK/MAPK, EIF2, PI3K/AKT, and mTOR signaling. These data would be an important resource for studying canine reproductive physiology and establishing a successful in vitro embryo production system in dogs.
Collapse
Affiliation(s)
- Seok Hee Lee
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA;
- Correspondence: (S.H.L.); (I.M.S.); Tel.: +1-4154760932 (S.H.L.); +966-530910740 (I.M.S.)
| | - Saúl Lira-Albarrán
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA;
| | - Islam M Saadeldin
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- King Faisal Specialist Hospital & Research Centre, Department of Comparative Medicine, Riyadh 11211, Saudi Arabia
- Correspondence: (S.H.L.); (I.M.S.); Tel.: +1-4154760932 (S.H.L.); +966-530910740 (I.M.S.)
| |
Collapse
|
24
|
Saadeldin IM, Tukur HA, Aljumaah RS, Sindi RA. Rocking the Boat: The Decisive Roles of Rho Kinases During Oocyte, Blastocyst, and Stem Cell Development. Front Cell Dev Biol 2021; 8:616762. [PMID: 33505968 PMCID: PMC7829335 DOI: 10.3389/fcell.2020.616762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 01/09/2023] Open
Abstract
The rho-associated coiled-coil-containing proteins (ROCKs or rho kinase) are effectors of the small rho-GTPase rhoA, which acts as a signaling molecule to regulate a variety of cellular processes, including cell proliferation, adhesion, polarity, cytokinesis, and survival. Owing to the multifunctionality of these kinases, an increasing number of studies focus on understanding the pleiotropic effects of the ROCK signaling pathway in the coordination and control of growth (proliferation, initiation, and progression), development (morphology and differentiation), and survival in many cell types. There is growing evidence that ROCKs actively phosphorylate several actin-binding proteins and intermediate filament proteins during oocyte cytokinesis, the preimplantation embryos as well as the stem cell development and differentiation. In this review, we focus on the participation of ROCK proteins in oocyte maturation, blastocyst formation, and stem cell development with a special focus on the selective targeting of ROCK isoforms, ROCK1, and ROCK2. The selective switching of cell fate through ROCK inhibition would provide a novel paradigm for in vitro oocyte maturation, experimental embryology, and clinical applications.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia.,Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Hammed A Tukur
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Riyadh S Aljumaah
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ramya A Sindi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
25
|
Sjöqvist M, Antfolk D, Suarez-Rodriguez F, Sahlgren C. From structural resilience to cell specification - Intermediate filaments as regulators of cell fate. FASEB J 2020; 35:e21182. [PMID: 33205514 PMCID: PMC7839487 DOI: 10.1096/fj.202001627r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022]
Abstract
During the last decades intermediate filaments (IFs) have emerged as important regulators of cellular signaling events, ascribing IFs with functions beyond the structural support they provide. The organ and developmental stage‐specific expression of IFs regulate cell differentiation within developing or remodeling tissues. Lack of IFs causes perturbed stem cell differentiation in vasculature, intestine, nervous system, and mammary gland, in transgenic mouse models. The aberrant cell fate decisions are caused by deregulation of different stem cell signaling pathways, such as Notch, Wnt, YAP/TAZ, and TGFβ. Mutations in genes coding for IFs cause an array of different diseases, many related to stem cell dysfunction, but the molecular mechanisms remain unresolved. Here, we provide a comprehensive overview of how IFs interact with and regulate the activity, localization and function of different signaling proteins in stem cells, and how the assembly state and PTM profile of IFs may affect these processes. Identifying when, where and how IFs and cell signaling congregate, will expand our understanding of IF‐linked stem cell dysfunction during development and disease.
Collapse
Affiliation(s)
- Marika Sjöqvist
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Daniel Antfolk
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Freddy Suarez-Rodriguez
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
26
|
Type III intermediate filaments as targets and effectors of electrophiles and oxidants. Redox Biol 2020; 36:101582. [PMID: 32711378 PMCID: PMC7381704 DOI: 10.1016/j.redox.2020.101582] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Intermediate filaments (IFs) play key roles in cell mechanics, signaling and homeostasis. Their assembly and dynamics are finely regulated by posttranslational modifications. The type III IFs, vimentin, desmin, peripherin and glial fibrillary acidic protein (GFAP), are targets for diverse modifications by oxidants and electrophiles, for which their conserved cysteine residue emerges as a hot spot. Pathophysiological examples of these modifications include lipoxidation in cell senescence and rheumatoid arthritis, disulfide formation in cataracts and nitrosation in endothelial shear stress, although some oxidative modifications can also be detected under basal conditions. We previously proposed that cysteine residues of vimentin and GFAP act as sensors for oxidative and electrophilic stress, and as hinges influencing filament assembly. Accumulating evidence indicates that the structurally diverse cysteine modifications, either per se or in combination with other posttranslational modifications, elicit specific functional outcomes inducing distinct assemblies or network rearrangements, including filament stabilization, bundling or fragmentation. Cysteine-deficient mutants are protected from these alterations but show compromised cellular performance in network assembly and expansion, organelle positioning and aggresome formation, revealing the importance of this residue. Therefore, the high susceptibility to modification of the conserved cysteine of type III IFs and its cornerstone position in filament architecture sustains their role in redox sensing and integration of cellular responses. This has deep pathophysiological implications and supports the potential of this residue as a drug target. Type III intermediate filaments can be modified by many oxidants and electrophiles. Oxidative modifications of type III IFs occur in normal and pathological conditions. The conserved cysteine residue acts as a hub for redox/electrophilic modifications. Cysteine modifications elicit structure-dependent type III IF rearrangements. Type III intermediate filaments act as sensors for oxidative and electrophilic stress.
Collapse
|
27
|
Mónico A, Zorrilla S, Rivas G, Pérez-Sala D. Zinc Differentially Modulates the Assembly of Soluble and Polymerized Vimentin. Int J Mol Sci 2020; 21:E2426. [PMID: 32244501 PMCID: PMC7177742 DOI: 10.3390/ijms21072426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 01/12/2023] Open
Abstract
The intermediate filament protein vimentin constitutes a critical sensor for electrophilic and oxidative stress. We previously showed that vimentin interacts with zinc, which affects its assembly and redox sensing. Here, we used vimentin wt and C328S, an oxidation-resistant mutant showing improved NaCl-induced polymerization, to assess the impact of zinc on soluble and polymerized vimentin by light scattering and electron microscopy. Zinc acts as a switch, reversibly inducing the formation of vimentin oligomeric species. High zinc concentrations elicit optically-detectable vimentin structures with a characteristic morphology depending on the support. These effects also occur in vimentin C328S, but are not mimicked by magnesium. Treatment of vimentin with micromolar ZnCl2 induces fibril-like particles that do not assemble into filaments, but form aggregates upon subsequent addition of NaCl. In contrast, when added to NaCl-polymerized vimentin, zinc increases the diameter or induces lateral association of vimentin wt filaments. Remarkably, these effects are absent or attenuated in vimentin C328S filaments. Therefore, the zinc-vimentin interaction depends on the chemical environment and on the assembly state of the protein, leading to atypical polymerization of soluble vimentin, likely through electrostatic interactions, or to broadening and lateral association of preformed filaments through mechanisms requiring the cysteine residue. Thus, the impact of zinc on vimentin assembly and redox regulation is envisaged.
Collapse
Affiliation(s)
| | | | | | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Ramiro de Maeztu, 9, 28040 Madrid, Spain; (A.M.); (S.Z.); (G.R.)
| |
Collapse
|
28
|
Cogné B, Bouameur JE, Hayot G, Latypova X, Pattabiraman S, Caillaud A, Si-Tayeb K, Besnard T, Küry S, Chariau C, Gaignerie A, David L, Bordure P, Kaganovich D, Bézieau S, Golzio C, Magin TM, Isidor B. A dominant vimentin variant causes a rare syndrome with premature aging. Eur J Hum Genet 2020; 28:1218-1230. [PMID: 32066935 PMCID: PMC7609319 DOI: 10.1038/s41431-020-0583-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
Progeroid syndromes are a group of rare genetic disorders, which mimic natural aging. Unraveling the molecular defects in such conditions could impact our understanding of age-related syndromes such as Alzheimer’s or cardiovascular diseases. Here we report a de novo heterozygous missense variant in the intermediate filament vimentin (c.1160 T > C; p.(Leu387Pro)) causing a multisystem disorder associated with frontonasal dysostosis and premature aging in a 39-year-old individual. Human vimentin p.(Leu387Pro) expression in zebrafish perturbed body fat distribution, and craniofacial and peripheral nervous system development. In addition, studies in patient-derived and transfected cells revealed that the variant affects vimentin turnover and its ability to form filaments in the absence of wild-type vimentin. Vimentin p.(Leu387Pro) expression diminished the amount of peripilin and reduced lipid accumulation in differentiating adipocytes, recapitulating key patient’s features in vivo and in vitro. Our data highlight the function of vimentin during development and suggest its contribution to natural aging.
Collapse
Affiliation(s)
- Benjamin Cogné
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093, Nantes, France.,Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France
| | - Jamal-Eddine Bouameur
- Division of Cell and Developmental Biology, Institute of Biology, University of Leipzig, Philipp-Rosenthal-Strasse 55, 04103, Leipzig, Germany
| | - Gaëlle Hayot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Xenia Latypova
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093, Nantes, France.,Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France
| | - Sundararaghavan Pattabiraman
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Walweg 33, 37073, Göttingen, Germany
| | - Amandine Caillaud
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France
| | - Karim Si-Tayeb
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France
| | - Thomas Besnard
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093, Nantes, France.,Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France
| | - Sébastien Küry
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093, Nantes, France.,Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France
| | - Caroline Chariau
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, FED 4203, Inserm UMS 016, CNRS UMS 3556, F-44000, Nantes, France
| | - Anne Gaignerie
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, FED 4203, Inserm UMS 016, CNRS UMS 3556, F-44000, Nantes, France
| | - Laurent David
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, FED 4203, Inserm UMS 016, CNRS UMS 3556, F-44000, Nantes, France.,Nantes Université, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000, Nantes, France
| | - Philippe Bordure
- Centre Hospitalier Universitaire de Nantes, Service Oto-rhino-laryngologie, 9 quai Moncousu, 44093, Nantes, France
| | - Daniel Kaganovich
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Walweg 33, 37073, Göttingen, Germany.,1 Base Pharmaceuticals, 9A Monument Square, #2A, Boston, MA, 02129, USA
| | - Stéphane Bézieau
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093, Nantes, France.,Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France
| | - Christelle Golzio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France. .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France. .,Université de Strasbourg, Strasbourg, France.
| | - Thomas M Magin
- Division of Cell and Developmental Biology, Institute of Biology, University of Leipzig, Philipp-Rosenthal-Strasse 55, 04103, Leipzig, Germany.
| | - Bertrand Isidor
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093, Nantes, France. .,Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France.
| |
Collapse
|
29
|
Duarte S, Viedma-Poyatos Á, Navarro-Carrasco E, Martínez AE, Pajares MA, Pérez-Sala D. Vimentin filaments interact with the actin cortex in mitosis allowing normal cell division. Nat Commun 2019; 10:4200. [PMID: 31519880 PMCID: PMC6744490 DOI: 10.1038/s41467-019-12029-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 08/09/2019] [Indexed: 01/27/2023] Open
Abstract
The vimentin network displays remarkable plasticity to support basic cellular functions and reorganizes during cell division. Here, we show that in several cell types vimentin filaments redistribute to the cell cortex during mitosis, forming a robust framework interwoven with cortical actin and affecting its organization. Importantly, the intrinsically disordered tail domain of vimentin is essential for this redistribution, which allows normal mitotic progression. A tailless vimentin mutant forms curly bundles, which remain entangled with dividing chromosomes leading to mitotic catastrophes or asymmetric partitions. Serial deletions of vimentin tail domain gradually impair cortical association and mitosis progression. Disruption of f-actin, but not of microtubules, causes vimentin bundling near the chromosomes. Pathophysiological stimuli, including HIV-protease and lipoxidation, induce similar alterations. Interestingly, full filament formation is dispensable for cortical association, which also occurs in vimentin particles. These results unveil implications of vimentin dynamics in cell division through its interplay with the actin cortex. The intermediate filament vimentin reorganizes during mitosis, but its molecular regulation and impact on the cell during cell division is unclear. Here, the authors show that vimentin filaments redistribute to the cell cortex during mitosis intertwining with and affecting actin organization.
Collapse
Affiliation(s)
- Sofia Duarte
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Álvaro Viedma-Poyatos
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Elena Navarro-Carrasco
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Alma E Martínez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
30
|
de Pablo Y, Marasek P, Pozo-Rodrigálvarez A, Wilhelmsson U, Inagaki M, Pekna M, Pekny M. Vimentin Phosphorylation Is Required for Normal Cell Division of Immature Astrocytes. Cells 2019; 8:cells8091016. [PMID: 31480524 PMCID: PMC6769829 DOI: 10.3390/cells8091016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Vimentin (VIM) is an intermediate filament (nanofilament) protein expressed in multiple cell types, including astrocytes. Mice with VIM mutations of serine sites phosphorylated during mitosis (VIMSA/SA) show cytokinetic failure in fibroblasts and lens epithelial cells, chromosomal instability, facilitated cell senescence, and increased neuronal differentiation of neural progenitor cells. Here we report that in vitro immature VIMSA/SA astrocytes exhibit cytokinetic failure and contain vimentin accumulations that co-localize with mitochondria. This phenotype is transient and disappears with VIMSA/SA astrocyte maturation and expression of glial fibrillary acidic protein (GFAP); it is also alleviated by the inhibition of cell proliferation. To test the hypothesis that GFAP compensates for the effect of VIMSA/SA in astrocytes, we crossed the VIMSA/SA and GFAP−/− mice. Surprisingly, the fraction of VIMSA/SA immature astrocytes with abundant vimentin accumulations was reduced when on GFAP−/− background. This indicates that the disappearance of vimentin accumulations and cytokinetic failure in mature astrocyte cultures are independent of GFAP expression. Both VIMSA/SA and VIMSA/SAGFAP−/− astrocytes showed normal mitochondrial membrane potential and vulnerability to H2O2, oxygen/glucose deprivation, and chemical ischemia. Thus, mutation of mitotic phosphorylation sites in vimentin triggers formation of vimentin accumulations and cytokinetic failure in immature astrocytes without altering their vulnerability to oxidative stress.
Collapse
Affiliation(s)
- Yolanda de Pablo
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
| | - Pavel Marasek
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
| | - Andrea Pozo-Rodrigálvarez
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
| | - Ulrika Wilhelmsson
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
| | - Masaki Inagaki
- Department of Physiology, Mie University Graduate School of Medicine, Mie 5148507, Japan
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
- University of Newcastle, New South Wales 2308, Australia
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden.
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.
- University of Newcastle, New South Wales 2308, Australia.
| |
Collapse
|
31
|
Mónico A, Duarte S, Pajares MA, Pérez-Sala D. Vimentin disruption by lipoxidation and electrophiles: Role of the cysteine residue and filament dynamics. Redox Biol 2019; 23:101098. [PMID: 30658903 PMCID: PMC6859561 DOI: 10.1016/j.redox.2019.101098] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 12/17/2022] Open
Abstract
The intermediate filament protein vimentin constitutes a critical sensor for electrophilic and oxidative stress, which induce extensive reorganization of the vimentin cytoskeletal network. Here, we have investigated the mechanisms underlying these effects. In vitro, electrophilic lipids, including 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) and 4-hydroxynonenal (HNE), directly bind to vimentin, whereas the oxidant diamide induces disulfide bond formation. Mutation of the single vimentin cysteine residue (Cys328) blunts disulfide formation and reduces lipoxidation by 15d-PGJ2, but not HNE. Preincubation with these agents differentially hinders NaCl-induced filament formation by wild-type vimentin, with effects ranging from delayed elongation and increased filament diameter to severe impairment of assembly or aggregation. Conversely, the morphology of vimentin Cys328Ser filaments is mildly or not affected. Interestingly, preformed vimentin filaments are more resistant to electrophile-induced disruption, although chemical modification is not diminished, showing that vimentin (lip)oxidation prior to assembly is more deleterious. In cells, electrophiles, particularly diamide, induce a fast and drastic disruption of existing filaments, which requires the presence of Cys328. As the cellular vimentin network is under continuous remodeling, we hypothesized that vimentin exchange on filaments would be necessary for diamide-induced disruption. We confirmed that strategies reducing vimentin dynamics, as monitored by FRAP, including cysteine crosslinking and ATP synthesis inhibition, prevent diamide effect. In turn, phosphorylation may promote vimentin disassembly. Indeed, treatment with the phosphatase inhibitor calyculin A to prevent dephosphorylation intensifies electrophile-induced wild-type vimentin filament disruption. However, whereas a phosphorylation-deficient vimentin mutant is only partially protected from disorganization, Cys328Ser vimentin is virtually resistant, even in the presence of calyculin A. Together, these results indicate that modification of Cys328 and vimentin exchange are critical for electrophile-induced network disruption.
Collapse
Affiliation(s)
- Andreia Mónico
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Sofia Duarte
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; Molecular Hepatology Group, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
32
|
Liu X, Wan M. A tale of the good and bad: Cell senescence in bone homeostasis and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:97-128. [PMID: 31122396 DOI: 10.1016/bs.ircmb.2019.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Historically, cellular senescence has been viewed as an irreversible cell-cycle arrest process with distinctive phenotypic alterations that were implicated primarily in aging and tumor suppression. Recent discoveries suggest that cellular senescence represents a series of diverse, dynamic, and heterogeneous cellular states with the senescence-associated secretory phenotype (SASP). Although senescent cells typically contribute to aging and age-related diseases, accumulating evidence has shown that they also have important physiological functions during embryonic development, late pubertal bone growth cessation, and adulthood tissue remodeling. Here, we review the recent research on cellular senescence and SASP, highlighting the key pathways that mediate senescence cell-cycle arrest and initiate SASP. We also summarize recent literature on the role of cellular senescence in maintaining bone homeostasis and mediating age-associated osteoporosis, discussing both the beneficial and adverse roles of cellular senescence in bone during different physiological stages, including bone development, childhood bone growth, adulthood bone remodeling, and bone aging.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mei Wan
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
33
|
Wang J, Wang Z, Sun N, Deng C. Immobilization of titanium dioxide/ions on magnetic microspheres for enhanced recognition and extraction of mono- and multi-phosphopeptides. Mikrochim Acta 2019; 186:236. [PMID: 30868259 DOI: 10.1007/s00604-019-3346-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/27/2019] [Indexed: 11/25/2022]
Abstract
The authors are presenting a novel strategy for global phosphoproteome recognition in practical samples. It integrates metal oxide affinity chromatography (MOAC) and immobilization metal ion affinity chromatography (IMAC). This resulted in a kind of titanium dioxide/ion-based multifunctional probe (dubbed T2M). The T2M combines the features of MOAC and IMAC including their recognition preferences towards mono- and multi-phosphorylated peptides. Hence, they exhibit an outstanding recognition capability towards global phosphoproteome, high sensitivity (the limit of detection of which is merely 10 fmol) and excellent specificity in MALDI-TOF MS detection. Their performance is further demonstrated by the identification of the phosphoproteome in non-fat milk and human saliva. By combining T2M with nano LC-MS/MS, remarkable results are obtained in the tryptic digestion of healthy eye lens and cataract lens phosphoproteomes. A total of 658 and 162 phosphopeptides, respectively, were identified. This indicates that phosphorylation and the appearance of cataract can be related to each other. Graphical abstract Schematic presentation of the preparation of titanium dioxide/ion-based multifunctional magnetic nanomaterials (T2M). The T2M based enrichment protocol exhibits outstanding recognition capability towards global phosphoproteome. This protocol shows great prospect for clarifying mechanism of phosphorylation-related diseases via further information acquisition.
Collapse
Affiliation(s)
- Jiawen Wang
- Department of Chemistry and The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200433, China
| | - Zidan Wang
- Department of Chemistry and The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200433, China
| | - Nianrong Sun
- Department of Chemistry and The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200433, China.
| | - Chunhui Deng
- Department of Chemistry and The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200433, China.
- Institutes of Biomedical Sciences and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
34
|
Semelakova M, Grauzam S, Betadthunga P, Tiedeken J, Coaxum S, Neskey DM, Rosenzweig SA. Vimentin and Non-Muscle Myosin IIA are Members of the Neural Precursor Cell Expressed Developmentally Down-Regulated 9 (NEDD9) Interactome in Head and Neck Squamous Cell Carcinoma Cells. Transl Oncol 2019; 12:49-61. [PMID: 30267961 PMCID: PMC6160858 DOI: 10.1016/j.tranon.2018.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/08/2018] [Accepted: 09/08/2018] [Indexed: 12/11/2022] Open
Abstract
Here we demonstrate an interaction between neural precursor cell expressed, developmentally-downregulated 9 (NEDD9) and the cytoskeletal proteins vimentin and non-muscle myosin IIA (NMIIA), based on co-immunoprecipitation and mass spectrometric sequence identification. Vimentin was constitutively phosphorylated at Ser56 but vimentin associated with NEDD9-was not phosphorylated at Ser56. In contrast, NMIIA bound to NEDD9 was phosphorylated on S1943 consistent with its function in invasion and secretion. Treatment of cells with the vimentin-targeting steroidal lactone withaferin A had no effect on vimentin turnover as previously reported, instead causing NEDD9 cleavage and cell death. The NMIIA-selective inhibitor blebbistatin induced cells to form long extensions and attenuated secretion of matrix metalloproteinases (MMPs) 2 and 9. While the site of vimentin interaction on NEDD9 was not defined, NMIIA was found to interact with NEDD9 at its substrate domain. NEDD9 interactions with vimentin and NMIIA are consistent with these proteins having roles in MMP secretion and cell invasion. These findings suggest that a better understanding of NEDD9 signaling is likely to reveal novel therapeutic targets for the prevention of invasion and metastasis.
Collapse
Affiliation(s)
- Martina Semelakova
- Institute of Biology and Ecology, Department of Cell Biology, Faculty of Science, Pavol Jozef Šafárik University, Košice, Slovakia; Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050
| | - Stèphane Grauzam
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050
| | - Prabhakar Betadthunga
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050; Department of Post Graduate-Studies and Research in Biotechnology, Sahydri Science College, Kuvempu University, Shimoga, Karnataka, India, 577203
| | - Jessica Tiedeken
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050
| | - Sonya Coaxum
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050; Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina
| | - David M Neskey
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050; Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina; Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue MSC 550, Charleston, SC 29425-5050
| | - Steven A Rosenzweig
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050; Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue MSC 550, Charleston, SC 29425-5050.
| |
Collapse
|
35
|
NISHIMURA Y, KASAHARA K, INAGAKI M. Intermediate filaments and IF-associated proteins: from cell architecture to cell proliferation. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:479-493. [PMID: 31611503 PMCID: PMC6819152 DOI: 10.2183/pjab.95.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/08/2019] [Indexed: 05/05/2023]
Abstract
Intermediate filaments (IFs), in coordination with microfilaments and microtubules, form the structural framework of the cytoskeleton and nucleus, thereby providing mechanical support against cellular stresses and anchoring intracellular organelles in place. The assembly and disassembly of IFs are mainly regulated by the phosphorylation of IF proteins. These phosphorylation states can be tracked using antibodies raised against phosphopeptides in the target proteins. IFs exert their functions through interactions with not only structural proteins, but also non-structural proteins involved in cell signaling, such as stress responses, apoptosis, and cell proliferation. This review highlights findings related to how IFs regulate cell division through phosphorylation cascades and how trichoplein, a centriolar protein originally identified as a keratin-associated protein, regulates the cell cycle through primary cilium formation.
Collapse
Affiliation(s)
- Yuhei NISHIMURA
- Departments of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kousuke KASAHARA
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masaki INAGAKI
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
36
|
Danielsson F, Peterson MK, Caldeira Araújo H, Lautenschläger F, Gad AKB. Vimentin Diversity in Health and Disease. Cells 2018; 7:E147. [PMID: 30248895 PMCID: PMC6210396 DOI: 10.3390/cells7100147] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022] Open
Abstract
Vimentin is a protein that has been linked to a large variety of pathophysiological conditions, including cataracts, Crohn's disease, rheumatoid arthritis, HIV and cancer. Vimentin has also been shown to regulate a wide spectrum of basic cellular functions. In cells, vimentin assembles into a network of filaments that spans the cytoplasm. It can also be found in smaller, non-filamentous forms that can localise both within cells and within the extracellular microenvironment. The vimentin structure can be altered by subunit exchange, cleavage into different sizes, re-annealing, post-translational modifications and interacting proteins. Together with the observation that different domains of vimentin might have evolved under different selection pressures that defined distinct biological functions for different parts of the protein, the many diverse variants of vimentin might be the cause of its functional diversity. A number of review articles have focussed on the biology and medical aspects of intermediate filament proteins without particular commitment to vimentin, and other reviews have focussed on intermediate filaments in an in vitro context. In contrast, the present review focusses almost exclusively on vimentin, and covers both ex vivo and in vivo data from tissue culture and from living organisms, including a summary of the many phenotypes of vimentin knockout animals. Our aim is to provide a comprehensive overview of the current understanding of the many diverse aspects of vimentin, from biochemical, mechanical, cellular, systems biology and medical perspectives.
Collapse
Affiliation(s)
- Frida Danielsson
- Science for Life Laboratory, Royal Institute of Technology, 17165 Stockholm, Sweden.
| | | | | | - Franziska Lautenschläger
- Campus D2 2, Leibniz-Institut für Neue Materialien gGmbH (INM) and Experimental Physics, NT Faculty, E 2 6, Saarland University, 66123 Saarbrücken, Germany.
| | - Annica Karin Britt Gad
- Centro de Química da Madeira, Universidade da Madeira, 9020105 Funchal, Portugal.
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237 Uppsala, Sweden.
| |
Collapse
|
37
|
Tanaka K, Goto H, Nishimura Y, Kasahara K, Mizoguchi A, Inagaki M. Tetraploidy in cancer and its possible link to aging. Cancer Sci 2018; 109:2632-2640. [PMID: 29949679 PMCID: PMC6125447 DOI: 10.1111/cas.13717] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/26/2018] [Indexed: 12/23/2022] Open
Abstract
Tetraploidy, a condition in which a cell has four homologous sets of chromosomes, is often seen as a natural physiological condition but is also frequently seen in pathophysiological conditions such as cancer. Tetraploidy facilitates chromosomal instability (CIN), which is an elevated level of chromosomal loss and gain that can cause production of a wide variety of aneuploid cells that carry structural and numerical aberrations of chromosomes. The resultant genomic heterogeneity supposedly expedites karyotypic evolution that confers oncogenic potential in spite of the reduced cellular fitness caused by aneuploidy. Recent studies suggest that tetraploidy might also be associated with aging; mice with mutations in an intermediate filament protein have revealed that these tetraploidy‐prone mice exhibit tissue disorders associated with aging. Cellular senescence and its accompanying senescence‐associated secretory phenotype have now emerged as critical factors that link tetraploidy and tetraploidy‐induced CIN with cancer, and possibly with aging. Here, we review recent findings about how tetraploidy is related to cancer and possibly to aging, and discuss underlying mechanisms of the relationship, as well as how we can exploit the properties of cells exhibiting tetraploidy‐induced CIN to control these pathological conditions.
Collapse
Affiliation(s)
- Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hidemasa Goto
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kousuke Kasahara
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akira Mizoguchi
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masaki Inagaki
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
38
|
Makise M, Nakamura H, Kuniyasu A. The role of vimentin in the tumor marker Nup88-dependent multinucleated phenotype. BMC Cancer 2018; 18:519. [PMID: 29724197 PMCID: PMC5934895 DOI: 10.1186/s12885-018-4454-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
Background Nucleoporin Nup88, a component of nuclear pore complexes, is known to be overexpressed in several types of tumor tissue. The overexpression of Nup88 has been reported to promote the early step of tumorigenesis by inducing multinuclei in both HeLa cells and a mouse model. However, the molecular basis of how Nup88 leads to a multinucleated phenotype remains unclear because of a lack of information concerning its binding partners. In this study, we characterize a novel interaction between Nup88 and vimentin. We also examine the involvement of vimentin in the Nup88-dependent multinucleated phenotype. Methods Cells overexpressing tagged versions of Nup88, vimentin and their truncations were used in this study. Coprecipitation and GST-pulldown assays were carried out to analyze protein-protein interactions. Vimentin knockdown by siRNA was performed to examine the functional role of the Nup88-vimentin interaction in cells. The phosphorylation status of vimentin was analyzed by immunoblotting using an antibody specific for its phosphorylation site. Results Vimentin was identified as a Nup88 interacting partner, although it did not bind to other nucleoporins, such as Nup50, Nup214, and Nup358, in HeLa cell lysates. The N-terminal 541 amino acid residues of Nup88 was found to be responsible for its interaction with vimentin. Recombinant GST-tagged Nup88 bound to recombinant vimentin in a GST-pulldown assay. Although overexpression of Nup88 in HeLa cells was observed mainly at the nuclear rim and in the cytoplasm, colocalization with vimentin was only partially detected at or around the nuclear rim. Disruption of the Nup88-vimentin interaction by vimentin specific siRNA transfection suppressed the Nup88-dependent multinucleated phenotype. An excess amount of Nup88 in cell lysates inhibited the dephosphorylation of a serine residue (Ser83) within the vimentin N-terminal region even in the absence and presence of an exogenous phosphatase. The N-terminal 96 amino acid residues of vimentin interacted with both full-length and the N-terminal 541 residues of Nup88. Conclusions Nup88 can affect the phosphorylation status of vimentin, which may contribute to the Nup88-dependent multinucleated phenotype through changing the organization of vimentin.
Collapse
Affiliation(s)
- Masaki Makise
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan.
| | - Hideaki Nakamura
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
| | - Akihiko Kuniyasu
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
| |
Collapse
|
39
|
Inaba H, Yamakawa D, Tomono Y, Enomoto A, Mii S, Kasahara K, Goto H, Inagaki M. Regulation of keratin 5/14 intermediate filaments by CDK1, Aurora-B, and Rho-kinase. Biochem Biophys Res Commun 2018. [DOI: 10.1016/j.bbrc.2018.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Li Z, Li X, Nai S, Geng Q, Liao J, Xu X, Li J. Checkpoint kinase 1-induced phosphorylation of O-linked β- N-acetylglucosamine transferase regulates the intermediate filament network during cytokinesis. J Biol Chem 2017; 292:19548-19555. [PMID: 29021254 DOI: 10.1074/jbc.m117.811646] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/27/2017] [Indexed: 01/12/2023] Open
Abstract
Checkpoint kinase 1 (Chk1) is a kinase instrumental for orchestrating DNA replication, DNA damage checkpoints, the spindle assembly checkpoint, and cytokinesis. Despite Chk1's pivotal role in multiple cellular processes, many of its substrates remain elusive. Here, we identified O-linked β-N-acetylglucosamine (O-GlcNAc)-transferase (OGT) as one of Chk1's substrates. We found that Chk1 interacts with and phosphorylates OGT at Ser-20, which not only stabilizes OGT, but also is required for cytokinesis. Phospho-specific antibodies of OGT-pSer-20 exhibited specific signals at the midbody of the cell, consistent with midbody localization of OGT as reported previously. Moreover, phospho-deficient OGT (S20A) cells attenuated cellular O-GlcNAcylation levels and also reduced phosphorylation of Ser-71 in the cytoskeletal protein vimentin, a modification critical for severing vimentin filament during cytokinesis. Consequently, elongated vimentin bridges were observed in cells depleted of OGT via an siOGT-based approach. Lastly, expression of plasmids resistant to siOGT efficiently rescued the vimentin bridge phenotype, but the OGT-S20A rescue plasmids did not. Our results suggest a Chk1-OGT-vimentin pathway that regulates the intermediate filament network during cytokinesis.
Collapse
Affiliation(s)
- Zhe Li
- From the Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China and
| | - Xueyan Li
- From the Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China and
| | - Shanshan Nai
- From the Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China and
| | - Qizhi Geng
- From the Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China and
| | - Ji Liao
- From the Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China and
| | - Xingzhi Xu
- From the Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China and .,the Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Jing Li
- From the Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China and
| |
Collapse
|
41
|
Chen M, Puschmann TB, Marasek P, Inagaki M, Pekna M, Wilhelmsson U, Pekny M. Increased Neuronal Differentiation of Neural Progenitor Cells Derived from Phosphovimentin-Deficient Mice. Mol Neurobiol 2017; 55:5478-5489. [PMID: 28956310 PMCID: PMC5994207 DOI: 10.1007/s12035-017-0759-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/27/2017] [Indexed: 01/06/2023]
Abstract
Vimentin is an intermediate filament (also known as nanofilament) protein expressed in several cell types of the central nervous system, including astrocytes and neural stem/progenitor cells. Mutation of the vimentin serine sites that are phosphorylated during mitosis (VIMSA/SA) leads to cytokinetic failures in fibroblasts and lens epithelial cells, resulting in chromosomal instability and increased expression of cell senescence markers. In this study, we investigated morphology, proliferative capacity, and motility of VIMSA/SA astrocytes, and their effect on the differentiation of neural stem/progenitor cells. VIMSA/SA astrocytes expressed less vimentin and more GFAP but showed a well-developed intermediate filament network, exhibited normal cell morphology, proliferation, and motility in an in vitro wound closing assay. Interestingly, we found a two- to fourfold increased neuronal differentiation of VIMSA/SA neurosphere cells, both in a standard 2D and in Bioactive3D cell culture systems, and determined that this effect was neurosphere cell autonomous and not dependent on cocultured astrocytes. Using BrdU in vivo labeling to assess neural stem/progenitor cell proliferation and differentiation in the hippocampus of adult mice, one of the two major adult neurogenic regions, we found a modest increase (by 8%) in the fraction of newly born and surviving neurons. Thus, mutation of the serine sites phosphorylated in vimentin during mitosis alters intermediate filament protein expression but has no effect on astrocyte morphology or proliferation, and leads to increased neuronal differentiation of neural progenitor cells.
Collapse
Affiliation(s)
- Meng Chen
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Till B Puschmann
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Pavel Marasek
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Masaki Inagaki
- Department of Physiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,University of Newcastle, Newcastle, NSW, Australia
| | - Ulrika Wilhelmsson
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden. .,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia. .,University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|
42
|
Gullmets J, Torvaldson E, Lindqvist J, Imanishi SY, Taimen P, Meinander A, Eriksson JE. Internal epithelia in Drosophila display rudimentary competence to form cytoplasmic networks of transgenic human vimentin. FASEB J 2017; 31:5332-5341. [PMID: 28778974 DOI: 10.1096/fj.201700332r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/25/2017] [Indexed: 11/11/2022]
Abstract
Cytoplasmic intermediate filaments (cIFs) are found in all eumetazoans, except arthropods. To investigate the compatibility of cIFs in arthropods, we expressed human vimentin (hVim), a cIF with filament-forming capacity in vertebrate cells and tissues, transgenically in Drosophila Transgenic hVim could be recovered from whole-fly lysates by using a standard procedure for intermediate filament (IF) extraction. When this procedure was used to test for the possible presence of IF-like proteins in flies, only lamins and tropomyosin were observed in IF-enriched extracts, thereby providing biochemical reinforcement to the paradigm that arthropods lack cIFs. In Drosophila, transgenic hVim was unable to form filament networks in S2 cells and mesenchymal tissues; however, cage-like vimentin structures could be observed around the nuclei in internal epithelia, which suggests that Drosophila retains selective competence for filament formation. Taken together, our results imply that although the filament network formation competence is partially lost in Drosophila, a rudimentary filament network formation ability remains in epithelial cells. As a result of the observed selective competence for cIF assembly in Drosophila, we hypothesize that internal epithelial cIFs were the last cIFs to disappear from arthropods.-Gullmets, J., Torvaldson, E., Lindqvist, J., Imanishi, S. Y., Taimen, P., Meinander, A., Eriksson, J. E. Internal epithelia in Drosophila display rudimentary competence to form cytoplasmic networks of transgenic human vimentin.
Collapse
Affiliation(s)
- Josef Gullmets
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, Turku, Finland
| | - Elin Torvaldson
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Julia Lindqvist
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Pekka Taimen
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, Turku, Finland
| | - Annika Meinander
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - John E Eriksson
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; .,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
43
|
Tomiyama L, Kamino H, Fukamachi H, Urano T. Precise epitope determination of the anti-vimentin monoclonal antibody V9. Mol Med Rep 2017; 16:3917-3921. [PMID: 28765898 PMCID: PMC5646970 DOI: 10.3892/mmr.2017.7102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 03/07/2017] [Indexed: 12/26/2022] Open
Abstract
Vimentin is a type III intermediate filament protein that is typically expressed in mesenchymal cells. Overexpression of vimentin is frequently observed in several types of cancer and is often associated with epithelial‑to‑mesenchymal transition. It was recently reported that the serum vimentin level is significantly elevated in colon and liver tumors. Therefore, a more sensitive vimentin detection system may be useful for cancer screening and early detection. The V9 mouse monoclonal antibody (mAb), which recognizes the human vimentin protein, is widely used in routine pathology to identify mesenchymal cells using immunohistochemical analysis. Although it has been suggested that the epitope of the V9 mAb is located within the C‑terminal region of vimentin, the precise amino acid sequence that it recognizes has not yet been identified. In the present study, we constructed several deletion mutants of the vimentin protein and examined their reactivity with the V9 mAb to accurately map its epitope. We confirmed that its epitope resides in the C‑terminal region of vimentin, between amino acids 392‑466. Additionally, cross‑species comparison of amino acid sequence alignment of vimentin, as well as site‑directed mutagenesis, revealed that one residue, the asparagine at position 417, is critical for antibody binding. Using smaller vimentin fragments ranging in length from 9 to 13 residues, each containing this critical asparagine, we determined that the minimal residues required for V9 mAb recognition of human vimentin are the thirteen amino acid residues at positions 411-423 (411ISLPLPNFSSLNL423).
Collapse
Affiliation(s)
- Lucia Tomiyama
- Department of Biochemistry, Shimane University Faculty of Medicine, Izumo 693‑8501, Japan
| | - Hiroki Kamino
- Department of Biochemistry, Shimane University Faculty of Medicine, Izumo 693‑8501, Japan
| | - Hiroki Fukamachi
- Department of Biochemistry, Shimane University Faculty of Medicine, Izumo 693‑8501, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University Faculty of Medicine, Izumo 693‑8501, Japan
| |
Collapse
|
44
|
Andriani GA, Vijg J, Montagna C. Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain. Mech Ageing Dev 2017; 161:19-36. [PMID: 27013377 PMCID: PMC5490080 DOI: 10.1016/j.mad.2016.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 01/31/2023]
Abstract
Aneuploidy and polyploidy are a form of Genomic Instability (GIN) known as Chromosomal Instability (CIN) characterized by sporadic abnormalities in chromosome copy numbers. Aneuploidy is commonly linked to pathological states. It is a hallmark of spontaneous abortions and birth defects and it is observed virtually in every human tumor, therefore being generally regarded as detrimental for the development or the maturation of tissues under physiological conditions. Polyploidy however, occurs as part of normal physiological processes during maturation and differentiation of some mammalian cell types. Surprisingly, high levels of aneuploidy are present in the brain, and their frequency increases with age suggesting that the brain is able to maintain its functionality in the presence of high levels of mosaic aneuploidy. Because somatic aneuploidy with age can reach exceptionally high levels, it is likely to have long-term adverse effects in this organ. We describe the mechanisms accountable for an abnormal DNA content with a particular emphasis on the CNS where cell division is limited. Next, we briefly summarize the types of GIN known to date and discuss how they interconnect with CIN. Lastly we highlight how several forms of CIN may contribute to genetic variation, tissue degeneration and disease in the CNS.
Collapse
Affiliation(s)
- Grasiella A Andriani
- Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA; Department Ophthalmology and Visual Science, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA; Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Cristina Montagna
- Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA; Department of Pathology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA.
| |
Collapse
|
45
|
|
46
|
Andriani GA, Almeida VP, Faggioli F, Mauro M, Tsai WL, Santambrogio L, Maslov A, Gadina M, Campisi J, Vijg J, Montagna C. Whole Chromosome Instability induces senescence and promotes SASP. Sci Rep 2016; 6:35218. [PMID: 27731420 PMCID: PMC5059742 DOI: 10.1038/srep35218] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/26/2016] [Indexed: 12/31/2022] Open
Abstract
Age-related accumulation of ploidy changes is associated with decreased expression of genes controlling chromosome segregation and cohesin functions. To determine the consequences of whole chromosome instability (W-CIN) we down-regulated the spindle assembly checkpoint component BUB1 and the mitotic cohesin SMC1A, and used four-color-interphase-FISH coupled with BrdU incorporation and analyses of senescence features to reveal the fate of W-CIN cells. We observed significant correlations between levels of not-diploid cells and senescence-associated features (SAFs). W-CIN induced DNA double strand breaks and elevated oxidative stress, but caused low apoptosis. SAFs of W-CIN cells were remarkably similar to those induced by replicative senescence but occurred in only 13 days versus 4 months. Cultures enriched with not-diploid cells acquired a senescence-associated secretory phenotype (SASP) characterized by IL1B, CXCL8, CCL2, TNF, CCL27 and other pro-inflammatory factors including a novel SASP component CLEC11A. These findings suggest that W-CIN triggers premature senescence, presumably to prevent the propagation of cells with an abnormal DNA content. Cells deviating from diploidy have the ability to communicate with their microenvironment by secretion of an array of signaling factors. Our results suggest that aneuploid cells that accumulate during aging in some mammalian tissues potentially contribute to age-related pathologies and inflammation through SASP secretion.
Collapse
Affiliation(s)
| | - Vinnycius Pereira Almeida
- Institute of Tropical Pathology and Public Health, Federal University of Goias (UFG), Goiania, GO, Brazil
| | - Francesca Faggioli
- Departments of Genetics, Albert Einstein College of Medicine, New York, United States
| | - Maurizio Mauro
- Departments of Genetics, Albert Einstein College of Medicine, New York, United States
| | - Wanxia Li Tsai
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Alexander Maslov
- Departments of Genetics, Albert Einstein College of Medicine, New York, United States
| | - Massimo Gadina
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California, USA
| | - Jan Vijg
- Departments of Genetics, Albert Einstein College of Medicine, New York, United States.,Ophthalmology and Visual Science, Albert Einstein College of Medicine, New York, United States.,Obstetrics &Gynecology and Women's Health, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - Cristina Montagna
- Departments of Genetics, Albert Einstein College of Medicine, New York, United States.,Pathology, Albert Einstein College of Medicine, New York, United States
| |
Collapse
|
47
|
Ainsbury EA, Barnard S, Bright S, Dalke C, Jarrin M, Kunze S, Tanner R, Dynlacht JR, Quinlan RA, Graw J, Kadhim M, Hamada N. Ionizing radiation induced cataracts: Recent biological and mechanistic developments and perspectives for future research. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:238-261. [DOI: 10.1016/j.mrrev.2016.07.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 02/06/2023]
|
48
|
Makihara H, Inaba H, Enomoto A, Tanaka H, Tomono Y, Ushida K, Goto M, Kurita K, Nishida Y, Kasahara K, Goto H, Inagaki M. Desmin phosphorylation by Cdk1 is required for efficient separation of desmin intermediate filaments in mitosis and detected in murine embryonic/newborn muscle and human rhabdomyosarcoma tissues. Biochem Biophys Res Commun 2016; 478:1323-9. [PMID: 27565725 DOI: 10.1016/j.bbrc.2016.08.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/21/2016] [Indexed: 11/25/2022]
Abstract
Desmin is a type III intermediate filament (IF) component protein expressed specifically in muscular cells. Desmin is phosphorylated by Aurora-B and Rho-kinase specifically at the cleavage furrow from anaphase to telophase. The disturbance of this phosphorylation results in the formation of unusual long bridge-like IF structures (IF-bridge) between two post-mitotic (daughter) cells. Here, we report that desmin also serves as an excellent substrate for the other type of mitotic kinase, Cdk1. Desmin phosphorylation by Cdk1 loses its ability to form IFs in vitro. We have identified Ser6, Ser27, and Ser31 on murine desmin as phosphorylation sites for Cdk1. Using a site- and phosphorylation-state-specific antibody for Ser31 on desmin, we have demonstrated that Cdk1 phosphorylates desmin in entire cytoplasm from prometaphase to metaphase. Desmin mutations at Cdk1 sites exhibit IF-bridge phenotype, the frequency of which is significantly increased by the addition of Aurora-B and Rho-kinase site mutations to Cdk1 site mutations. In addition, Cdk1-induced desmin phosphorylation is detected in mitotic muscular cells of murine embryonic/newborn muscles and human rhabdomyosarcoma specimens. Therefore, Cdk1-induced desmin phosphorylation is required for efficient separation of desmin-IFs and generally detected in muscular mitotic cells in vivo.
Collapse
Affiliation(s)
- Hiroyuki Makihara
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan; Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, 464-8651, Japan
| | - Hironori Inaba
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hiroki Tanaka
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
| | - Yasuko Tomono
- Division of Molecular and Cell Biology, Shigei Medical Research Institute, Okayama, 701-0202, Japan
| | - Kaori Ushida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Mitsuo Goto
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, 464-8651, Japan
| | - Kenichi Kurita
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, 464-8651, Japan
| | - Yoshihiro Nishida
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Kousuke Kasahara
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan; Department of Physiology, Mie University School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Hidemasa Goto
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan; Department of Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Masaki Inagaki
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan; Department of Physiology, Mie University School of Medicine, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
49
|
Vimentin coordinates fibroblast proliferation and keratinocyte differentiation in wound healing via TGF-β-Slug signaling. Proc Natl Acad Sci U S A 2016; 113:E4320-7. [PMID: 27466403 DOI: 10.1073/pnas.1519197113] [Citation(s) in RCA: 291] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Vimentin has been shown to be involved in wound healing, but its functional contribution to this process is poorly understood. Here we describe a previously unrecognized function of vimentin in coordinating fibroblast proliferation and keratinocyte differentiation during wound healing. Loss of vimentin led to a severe deficiency in fibroblast growth, which in turn inhibited the activation of two major initiators of epithelial-mesenchymal transition (EMT), TGF-β1 signaling and the Zinc finger transcriptional repressor protein Slug, in vimentin-deficient (VIM(-/-)) wounds. Correspondingly, VIM(-/-) wounds exhibited loss of EMT-like keratinocyte activation, limited keratinization, and slow reepithelialization. Furthermore, the fibroblast deficiency abolished collagen accumulation in the VIM(-/-) wounds. Vimentin reconstitution in VIM(-/-) fibroblasts restored both their proliferation and TGF-β1 production. Similarly, restoring paracrine TGF-β-Slug-EMT signaling reactivated the transdifferentiation of keratinocytes, reviving their migratory properties, a critical feature for efficient healing. Our results demonstrate that vimentin orchestrates the healing by controlling fibroblast proliferation, TGF-β1-Slug signaling, collagen accumulation, and EMT processing, all of which in turn govern the required keratinocyte activation.
Collapse
|
50
|
Audette DS, Scheiblin DA, Duncan MK. The molecular mechanisms underlying lens fiber elongation. Exp Eye Res 2016; 156:41-49. [PMID: 27015931 DOI: 10.1016/j.exer.2016.03.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/28/2022]
Abstract
Lens fiber cells are highly elongated cells with complex membrane morphologies that are critical for the transparency of the ocular lens. Investigations into the molecular mechanisms underlying lens fiber cell elongation were first reported in the 1960s, however, our understanding of the process is still poor nearly 50 years later. This review summarizes what is currently hypothesized about the regulation of lens fiber cell elongation along with the available experimental evidence, and how this information relates to what is known about the regulation of cell shape/elongation in other cell types, particularly neurons.
Collapse
Affiliation(s)
- Dylan S Audette
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - David A Scheiblin
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|