1
|
Friedlová N, Bortlíková L, Dosedělová L, Uhrík L, Hupp TR, Hernychová L, Vojtěšek B, Nekulová M. IFITM1 as a modulator of surfaceome dynamics and aggressive phenotype in cervical cancer cells. Oncol Rep 2025; 53:71. [PMID: 40314078 PMCID: PMC12059461 DOI: 10.3892/or.2025.8904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/27/2025] [Indexed: 05/03/2025] Open
Abstract
Interferon‑induced transmembrane proteins (IFITMs) are frequently overexpressed in cancer cells, including cervical carcinoma cells, and play a role in the progression of various cancer types. However, their mechanisms of action remain incompletely understood. In the present study, by employing a combination of surface membrane protein isolation and quantitative mass spectrometry, it was comprehensively described how the IFITM1 protein influences the composition of the cervical cancer cell surfaceome. Additionally, the effects of interferon‑γ on protein expression and cell surface exposure were evaluated in the presence and absence of IFITM1. The IFITM1‑regulated membrane and membrane‑associated proteins identified are involved mainly in processes such as endocytosis and lysosomal transport, cell‑cell and cell‑extracellular matrix adhesion, antigen presentation and the immune response. To complement the proteomic data, gene expression was analyzed using reverse transcription‑quantitative PCR to distinguish whether the observed changes in protein levels were attributable to transcriptional regulation or differential protein dynamics. Furthermore, the proteomic and gene expression data are supported by functional studies demonstrating the impact of the IFITM1 and IFITM3 proteins on the adhesive, migratory and invasive capabilities of cervical cancer cells, as well as their interactions with immune cells.
Collapse
Affiliation(s)
- Nela Friedlová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lucie Bortlíková
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Lenka Dosedělová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Lukáš Uhrík
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Ted R. Hupp
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
- University of Edinburgh, Institute of Genetics and Molecular Medicine, EH4 2XU Edinburgh, United Kingdom
| | - Lenka Hernychová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Bořivoj Vojtěšek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Marta Nekulová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| |
Collapse
|
2
|
Lv L, Luo H, Yi J, Zhang K, Li Y, Tong W, Jiang Y, Zhou Y, Tong G, Liu C. IFITM proteins are key entry factors for porcine epidemic diarrhea coronavirus. J Virol 2025:e0202824. [PMID: 40353666 DOI: 10.1128/jvi.02028-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/11/2025] [Indexed: 05/14/2025] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly contagious coronavirus that poses a substantial threat to the global swine industry. However, our current understanding of the host factors crucial for PEDV infection remains limited. To identify these host factors, we conducted a genome-wide CRISPR/Cas9 gene knockout screen using a PEDV-permissive cell line. Our results indicate that the endogenous expression of human interferon-inducible transmembrane protein 3 (IFITM3) enhances PEDV entry and replication. Silencing or eliminating endogenous IFITM3 in Huh7 cells significantly suppressed PEDV entry, whereas reintroducing IFITM3 partially restored susceptibility to PEDV. Overexpression of human IFITM3 or IFITM2, but not IFITM1, in Huh7.5 cells substantially increased PEDV entry and replication. Importantly, our results suggest that human IFITM3 influences PEDV entry at a later stage. Furthermore, the overexpression of porcine IFITM1 significantly enhanced PEDV infection in LLC-PK1 cells, whereas the overexpression of porcine IFITM2/3 did not produce similar effects. Notably, removing the C-terminal 15 amino acids of porcine IFITM2/3 resulted in increased PEDV entry. Coimmunoprecipitation analyses showed that all IFITMs interacted with the PEDV S1 protein, indicating a direct role in the viral entry process. Additionally, porcine IFITM1 colocalized with the PEDV S protein at the cell nuclear periphery and enhanced PEDV infection in porcine small intestinal organoids. Overall, our results suggest that IFITMs are critical in facilitating PEDV entry into cells. Targeting IFITMs may provide a promising strategy for controlling PEDV transmission and developing interventions to mitigate the virus's impact on the swine industry. IMPORTANCE Understanding the mechanisms underlying porcine epidemic diarrhea virus (PEDV) infection is vital for addressing its significant impact on the swine industry. This study reveals that interferon-inducible transmembrane (IFITM) proteins, particularly human IFITM3 and porcine IFITM1, play crucial roles in facilitating PEDV entry and replication. By elucidating these molecular interactions, the research highlights the potential of IFITMs as therapeutic targets for managing PEDV infections and paves the way for antiviral strategies. Moreover, this research extends beyond PEDV management, underscoring the critical role of host factors in controlling the spread of pathogenic coronaviruses.
Collapse
Affiliation(s)
- Lilei Lv
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huaye Luo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jingxuan Yi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kang Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yanhua Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Yifeng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Changlong Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Zhang Q, Wei Q, Guan T, Guo W, Jiang L, Cai S, Zhuang Y, Hu Y, Zhang G, Lu G, Gong L. Swine interferon-induced transmembrane proteins inhibit porcine epidemic diarrhea virus replication. Vet Microbiol 2025; 306:110495. [PMID: 40367706 DOI: 10.1016/j.vetmic.2025.110495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/17/2025] [Accepted: 03/22/2025] [Indexed: 05/16/2025]
Abstract
Porcine epidemic diarrhea (PED) caused by porcine epidemic diarrhea virus (PEDV) has significantly harmed the global pig industry economically. Interferons can induce the expression of interferon-stimulated genes (ISGs) that encode various natural antiviral immune effectors. Notably, swine interferon-induced transmembrane proteins (SwIFITMs) have not been thoroughly investigated in the context of PEDV. In the present research, we explored the anti-PEDV effects of SwIFITMs. Both interferon and PEDV were found to upregulate swine IFITM mRNA levels. Swine IFITM knockdown results showed that SwIFITM1a, -1b, and -2 most significantly reduced PEDV replication. By overexpressing SwIFITMs and establishing a SwIFITM-expressing Vero cell line, we identified SwIFITM2 as having the most pronounced anti-PEDV effect. SwIFITM2 inhibited PEDV entry phase. Additionally, SwIFITM2 interacted with PEDV S2 and N proteins in a dose-dependent manner. Furthermore, it exhibited high co-localization with caveolin-1, while demonstrating the lowest co-localization ratio with clathrin. Upon infection with PEDV, the co-localization of caveolin-1 and PEDV S2 or N protein significantly increased compared with control in the presence of SwIFITM2, indicating that SwIFITM2 may play an antiviral role by confining PEDV within caveolin-1. This study elucidates the anti-PEDV mechanisms of SwIFITMs, providing critical insights into their potential roles in viral pathogenesis and host defense.
Collapse
Affiliation(s)
- Qian Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Qinglan Wei
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Tong Guan
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Weiting Guo
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Lixin Jiang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Siqi Cai
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Yunlu Zhuang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yujie Hu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Gang Lu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.
| | - Lang Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
4
|
Gumpangseth N, Villarroel PMS, Diack A, Songhong T, Yainoy S, Hamel R, Khanom W, Koomhin P, Punsawad C, Srikiatkhachorn A, Missé D, Saetear P, Wichit S. IFITMs exhibit antiviral activity against Chikungunya and Zika virus infection via the alteration of TLRs and RLRs signaling pathways. Sci Rep 2025; 15:15769. [PMID: 40328864 PMCID: PMC12056003 DOI: 10.1038/s41598-025-00663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/29/2025] [Indexed: 05/08/2025] Open
Abstract
Chikungunya virus (CHIKV) poses a significant challenge as there are currently no targeted antiviral drugs or vaccines to combat this infection. Here, we demonstrate that interferon-induced transmembrane proteins (IFITMs), including IFITM1, IFITM2, and IFITM3, which are interferon-stimulated genes (ISGs), inhibit CHIKV infection in human skin fibroblasts. Overexpression of IFITMs in cells restricts viral infection, whereas knockdown of IFITMs enhances viral infection. IFITMs overexpression causes a substantial upregulation of antiviral genes, namely TLR3, TLR7, TLR8, and TLR9, and their downstream signaling molecules such as TRADD, IRAK1, TRAF6, and MAP3K7, involved in TLRs signaling pathways. Furthermore, the DHX58 gene encoding the LGP2 protein, a negative regulator of RIG-I in RLRs signaling pathways, was downregulated in the overexpressed cells. Transcription factors including interferon regulatory factors (IRF) 3/5/7, which are downstream signaling components of both TLR and RLR signaling pathways, were also upregulated, resulting in enhanced IFNs signaling. IFITMs not only inhibits the early and late stages of viral infection but can also alter the antiviral innate-immune response to restrict CHIKV infection in human skin fibroblasts. Additionally, IFITMs exhibit their antiviral activity against Zika virus (ZIKV). Altogether, these results show the broad-spectrum antiviral property of IFITMs against arboviruses in foreskin cells.
Collapse
Affiliation(s)
- Nuttamonpat Gumpangseth
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
- Viral Vector Joint unit and Joint Laboratory, Mahidol University, Nakhon Pathom, Thailand
| | - Paola Mariela Saba Villarroel
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
- Viral Vector Joint unit and Joint Laboratory, Mahidol University, Nakhon Pathom, Thailand
| | - Abibatou Diack
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - Thanaphon Songhong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
- Viral Vector Joint unit and Joint Laboratory, Mahidol University, Nakhon Pathom, Thailand
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Rodolphe Hamel
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
- Viral Vector Joint unit and Joint Laboratory, Mahidol University, Nakhon Pathom, Thailand
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | | | - Phanit Koomhin
- Center of Excellence in Innovation on Essential Oil, Walailak University, Nakhonsithammarat, Thailand
- School of Medicine, Walailak University, Nakhonsithammarat, Thailand
| | - Chuchard Punsawad
- School of Medicine, Walailak University, Nakhonsithammarat, Thailand
| | - Anon Srikiatkhachorn
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, Rhone Island, USA
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Dorothée Missé
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - Phoonthawee Saetear
- Flow Innovation-Research for Science and Technology Laboratories (Firstlabs), Bangkok, Thailand
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Ratchatewi, Bangkok, Thailand
| | - Sineewanlaya Wichit
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand.
- Viral Vector Joint unit and Joint Laboratory, Mahidol University, Nakhon Pathom, Thailand.
| |
Collapse
|
5
|
Lv Y, Zou W, Li L, Zhang S, Liang J, Pu J, Jiao J. IFITM2 Modulates Endocytosis Maintaining Neural Stem Cells in Developing Neocortex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2501593. [PMID: 40052215 PMCID: PMC12061285 DOI: 10.1002/advs.202501593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/17/2025] [Indexed: 05/10/2025]
Abstract
Brain development is orchestrated by a complex interplay of genetic and environmental signals, with endocytosis serving as a pivotal process in integrating extracellular cues. However, the specific role of endocytosis in neurogenesis remains unclear. We uncover a critical function of the interferon-induced transmembrane protein, IFITM2, essential for endocytic processes in radial glial cells (RGCs). IFITM2 is highly expressed near the ventricular surface in the developing brain. Loss of IFITM2 impairs endosome formation and disrupts RGC maintenance. Mechanistically, we confirmed that the YXXø endocytic motif on IFITM2 is essential for its subcellular localization, with mutations in this motif reducing endocytic vesicles. Additionally, the K82 and K87 residues of IFITM2 interact with phosphoinositides to promote endocytic vesicle formation. Polarized localization of phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) on the ventricular side suggests its role in vesicle formation. IFITM2 deficiency also leads to reduced phosphorylation of AKT and GSK3β. These findings highlight the essential role of IFITM2 in regulating endocytosis in RGCs, which is critical for maintaining neural stem cells and proper brain development, offering new insights into the connection between cellular signaling and neurogenesis in both mouse and human models.
Collapse
Affiliation(s)
- Yuqing Lv
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| | - Wenzheng Zou
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical UniversityZhanjiang523710China
| | - Lin Li
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| | - Shukui Zhang
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| | - Jiaqi Liang
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| | - Jiali Pu
- Department of NeurologySecond Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Jianwei Jiao
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
| |
Collapse
|
6
|
Sun J, Xu H, Li B, Deng W, Han X, Zhong X, Zhu J, Jiang Y, Wang Z, Zhang D, Sun G. IFITM1 aggravates ConA-Induced autoimmune hepatitis by promoting NKT cell activation through increased AMPK-Dependent mitochondrial function. Int Immunopharmacol 2025; 144:113692. [PMID: 39602958 DOI: 10.1016/j.intimp.2024.113692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Although interferon-induced transmembrane 1 (IFITM1) is known for its crucial role in antiviral immunity, its involvement in autoimmune hepatitis (AIH) remains largely unexplored. In this study, we observed that IFITM1 expression is markedly upregulated in a Concanavalin A (ConA)-induced AIH model, with particularly high and markedly elevated expression in natural killer T (NKT) cells. To further understand the role of IFITM1, we examined the responses of IFITM1-/- mice in a model of ConA-induced liver injury. In comparison to wild-type mice, IFITM1-/- mice exhibited reduced sensitivity in this model, as evidenced by significantly ameliorated necrosis areas, lower serum aminotransferase levels, a reduced number of intrahepatic NKT cells, and decreased expression of inflammatory factors, such as IL-1β, IL-6, IFN-γ and TNF-α. Notably, by using IFITM1-GFP mice and IFITM1-/- mice, we demonstrated that IFITM1 expression in NKT cells is crucial for their proliferation, proinflammatory cytokine production, and cytotoxic functions. Furthermore, analysis of single-cell RNA sequencingdata revealed that IFITM1 is essential for mitochondrial function, which is mediated by the AMP-activated protein kinase (AMPK) pathway. We also validated the importance of IFITM1 for the AMPK pathway and mitochondrial ATP synthesis in vivo. Together, our findings elucidate that IFITM1 could regulate NKT cell activation and survival by promoting mitochondrial function during AIH.
Collapse
Affiliation(s)
- Jie Sun
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Haozhe Xu
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Buer Li
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wanqing Deng
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiaotong Han
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xinjie Zhong
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jingjing Zhu
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yuan Jiang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zeyu Wang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Dong Zhang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Guangyong Sun
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
7
|
Wang Y, Ma H, Zhang B, Li S, Lu B, Qi Y, Liu T, Wang H, Kang X, Liang Y, Kong E, Cao L, Zhou B. Protein palmitoylation in hepatic diseases: Functional insights and therapeutic strategies. J Adv Res 2024:S2090-1232(24)00619-2. [PMID: 39732335 DOI: 10.1016/j.jare.2024.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Liver pathologies represent a spectrum of conditions ranging from fatty liver to the aggressive hepatocellular carcinoma (HCC), as well as parasitic infections, which collectively pose substantial global health challenges. S-palmitoylation (commonly referred to as palmitoylation), a post-translational modification (PTM) characterized by the covalent linkage of a 16-carbon palmitic acid (PA) chain to specific cysteine residues on target proteins, plays a pivotal role in diverse cellular functions and is intimately associated with the liver's physiological and pathological states. AIM OF REVIEW This study aims to elucidate how protein palmitoylation affects liver disease pathophysiology and evaluates its potential as a target for diagnostic and therapeutic interventions. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent studies have identified the key role of protein palmitoylation in regulating the development and progression of liver diseases. This review summarizes the intricate mechanisms by which protein palmitoylation modulates the pathophysiological processes of liver diseases and explores the potential of targeting protein palmitoylation modifications or the enzymes regulating this modification as prospective diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ying Wang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China; Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Haoyuan Ma
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Bowen Zhang
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Sainan Li
- Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Beijia Lu
- Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Yingcheng Qi
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Tingting Liu
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, PR China.
| | - Xiaohong Kang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Yinming Liang
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Eryan Kong
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China; Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Liu Cao
- Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Binhui Zhou
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China; Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China; Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China.
| |
Collapse
|
8
|
Chuang YC, Ou JHJ. Hepatitis B virus entry, assembly, and egress. Microbiol Mol Biol Rev 2024; 88:e0001424. [PMID: 39440957 DOI: 10.1128/mmbr.00014-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
SUMMARYHepatitis B virus (HBV) is an important human pathogen that chronically infects approximately 250 million people in the world, resulting in ~1 million deaths annually. This virus is a hepatotropic virus and can cause severe liver diseases including cirrhosis and hepatocellular carcinoma. The entry of HBV into hepatocytes is initiated by the interaction of its envelope proteins with its receptors. This is followed by the delivery of the viral nucleocapsid to the nucleus for the release of its genomic DNA and the transcription of viral RNAs. The assembly of the viral capsid particles may then take place in the nucleus or the cytoplasm and may involve cellular membranes. This is followed by the egress of the virus from infected cells. In recent years, significant research progresses had been made toward understanding the entry, the assembly, and the egress of HBV particles. In this review, we discuss the molecular pathways of these processes and compare them with those used by hepatitis delta virus and hepatitis C virus , two other hepatotropic viruses that are also enveloped. The understanding of these processes will help us to understand how HBV replicates and causes diseases, which will help to improve the treatments for HBV patients.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - J-H James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
9
|
Feng J, Rubbi L, Kianian R, Mills JN, Osadchiy V, Sigalos JT, Eleswarapu SV, Pellegrini M. Epigenetic aging of semen is associated with inflammation. Epigenetics 2024; 19:2436304. [PMID: 39637179 PMCID: PMC11622584 DOI: 10.1080/15592294.2024.2436304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
Male infertility has been a primary cause of global infertility, affecting 8-12% of couples worldwide. Previous studies have shown that semen quality decreases with advanced aging with an increased presence of inflammatory cells. In this study, we examined changes in the epigenome across a diverse cohort that includes both fertile and infertile men. We also compare the age-associated changes in semen to those observed in buccal swabs in order to characterize differences in epigenetic aging across diverse tissues. We found that variations in the semen methylome associated with aging are linked to inflammatory genes. Many age-associated sites are demethylated with advanced aging and are associated with the activation of inflammatory pathways. By contrast, we do not observe age-associated changes in inflammatory genes in buccal swab methylomes, which instead are characterized by changes to bivalent promoters. Our findings highlight the potential of epigenetic markers as indicators of male reproductive health.
Collapse
Affiliation(s)
- Junxi Feng
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA ,USA
| | - Liudmilla Rubbi
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA ,USA
| | - Reza Kianian
- Division of Andrology, Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jesse Nelson Mills
- Division of Andrology, Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Vadim Osadchiy
- Division of Andrology, Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John Tucker Sigalos
- Division of Andrology, Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sriram Venkata Eleswarapu
- Division of Andrology, Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA ,USA
| |
Collapse
|
10
|
Kordbacheh R, Ashley M, Cutts WD, Keyzer TE, Chatterjee S, Altman TJ, Alexander NG, Sparer TE, Kim BJ, Sin J. Common Chemical Plasticizer Di(2-Ethhylhexyl) Phthalate Exposure Exacerbates Coxsackievirus B3 Infection. Viruses 2024; 16:1821. [PMID: 39772131 PMCID: PMC11680387 DOI: 10.3390/v16121821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/23/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Di(2-ethhylhexyl) phthalate (DEHP) is a common plastic rubberizer. DEHP leaches from plastic matrices and is under increasing scrutiny as numerous studies have linked it to negative human health manifestations. Coxsackievirus B3 (CVB) is a human pathogen that typically causes subclinical infections but can sometimes cause severe diseases such as pancreatitis, myocarditis, and meningoencephalitis. Though CVB infections are common, severe illness is relatively rare, and it is unclear what factors mediate disease severity. In this study, we sought to determine the effects that DEHP has on CVB infection in a variety of human cell types to evaluate whether this plastic-derived pollutant could represent a proviral environmental factor. METHODS HeLa cervical cancer cells, human induced pluripotent stem cell-derived brain-like endothelial cells (iBECs), and Caco-2 colon carcinoma cells were exposed to 40 µg/mL DEHP for 24 h prior to infecting with enhanced green fluorescent protein (EGFP)-expressing CVB. The severity of the infection was evaluated via fluorescence microscopy and flow cytometry-based viral EGFP detection, viral plaque assay on tissue culture media, and Western blotting to detect VP1 viral capsid protein. Interferon-associated proteins such as interferon regulatory factor (IRF) 3, IRF7, interferon-induced transmembrane (IFITM) 2, and IFITM3 were measured by Western blotting. The roles of IFITM2 and IFITM3 in the context of CVB infection were evaluated via siRNA silencing. RESULTS We found that DEHP drastically increased CVB infection in each of the cell types we tested, and, while the cellular processes underlying DEHP's proviral properties were not entirely clear, we observed that DEHP may subvert CVB-induced interferon signaling and elevate levels of IFITMs, which appeared to bolster CVB infection. CONCLUSIONS DEHP may represent a major environmental factor associated with the severity of CVB infection. Further understanding of how DEHP exacerbates infection may better elucidate its potential role as a proviral environmental factor.
Collapse
Affiliation(s)
- Ramina Kordbacheh
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| | - Madelyn Ashley
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| | - William D. Cutts
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| | - Taryn E. Keyzer
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| | - Shruti Chatterjee
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| | - Tyler J. Altman
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| | - Natalie G. Alexander
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| | - Timothy E. Sparer
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA;
| | - Brandon J. Kim
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| | - Jon Sin
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| |
Collapse
|
11
|
Rychlik KA, Kashiwagi C, Liao J, Mathur A, Illingworth EJ, Sanchez SS, Kleensang A, Maertens A, Sillé FCM. Prenatal Arsenic Exposure and Gene Expression in Fetal Liver, Heart, Lung, and Placenta. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.10.622821. [PMID: 39605375 PMCID: PMC11601249 DOI: 10.1101/2024.11.10.622821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Prenatal arsenic exposure has been linked to a myriad of negative health effects. There is relatively little insight into the mechanisms and signaling alterations across different fetal organs that drive long-term immune-related issues following prenatal arsenic exposure. Therefore, the effects of this exposure window on gene expression in the liver, placenta, heart, and lung of gestation day (GD) 18 C57BL/6 mouse fetuses were investigated. From two weeks prior to mating until tissue collection at GD18, mice were exposed to 0 or 100 ppb sodium (meta) arsenite in drinking water. Genes of interest were analyzed by RT-qPCR, complemented with untargeted Agilent 44K microarray analysis. Data cleanup and analysis was performed in RStudio. Differentially expressed mRNAs were queried in the String Database and using Cytoscape to create interaction networks and identify significantly enriched biological pathways. A total of 251, 165, 158, and 41 genes were significantly altered in the liver, placenta, heart, and lung, respectively, when treated samples were compared to controls. Many altered pathways were immune-related, supporting prior research. Most notably, gene expression of Gbp3, a key player in the cellular response to interferon gamma, was found to be reduced in placentas of female fetuses exposed to arsenic compared to controls (p=0.0762). Impact This is the first study comparing alterations in gene expression across multiple organs following prenatal exposure to environmentally relevant levels of arsenic. These findings, elucidating the multi-organ impact of prenatal arsenic exposure on predominantly immune-related pathways, further our mechanistic understanding of the long-term health effects observed in early-life arsenic-exposed populations.
Collapse
Affiliation(s)
- K A Rychlik
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Public Health Program, School of Health Professions, Mayborn College of Health Sciences, University of Mary Hardin-Baylor, Belton, TX, USA
| | - C Kashiwagi
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - J Liao
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - A Mathur
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - E J Illingworth
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - S S Sanchez
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - A Kleensang
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - A Maertens
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - F C M Sillé
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
12
|
Li C, Guo XR, Dong ZM, Gao YJ, Li XL, Zhang L, Zheng HQ, Wang LL, Lu C, Tian XX, Yan MH. Novel interacting proteins identified by tandem affinity purification and mass spectrometry associated with IFITM3 protein during PDCoV infection. Int J Biol Macromol 2024; 277:132755. [PMID: 38821295 DOI: 10.1016/j.ijbiomac.2024.132755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/11/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Interferon-induced transmembrane 3 (IFITM3) is a membrane-associated protein that exhibits antiviral activities against a wide range of viruses through interactions with other cellular and viral proteins. However, knowledge of the mechanisms of IFITM3 in Porcine deltacoronavirus (PDCoV) infection has been lacking. In this study, we demonstrate that IFN-α treatment induces the upregulation of IFITM3 activity and thus attenuates PDCoV infection. PDCoV replication is inhibited in a dose-dependent manner by IFITM3 overexpression. To clarify the novel roles of IFITM3 during PDCoV infection, proteins that interact with IFITM3 were screened by TAP/MS in an ST cell line stably expressing IFITM3 via a lentivirus. We identified known and novel candidate IFITM3-binding proteins and analyzed the protein complexes using GO annotation, KEGG pathway analysis, and protein interaction network analysis. A total of 362 cellular proteins associate with IFITM3 during the first 24 h post-infection. Of these proteins, the relationship between IFITM3 and Rab9a was evaluated by immunofluorescence colocalization analysis using confocal microscopy. IFITM3 partially colocalized with Rab9a and Rab9a exhibited enhanced colocalization following PDCoV infection. We also demonstrated that IFITM3 interacts specifically with Rab9a. Our results considerably expand the protein networks of IFITM3, suggesting that IFITM3 participates in multiple cellular processes during PDCoV infection.
Collapse
Affiliation(s)
- Cheng Li
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; Tianjin Observation and Experimental Site of National Animal Health, Tianjin 300381, China; National Data Center of Animal Health, Tianjin 300381, China
| | - Xiao-Ran Guo
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; Tianjin Observation and Experimental Site of National Animal Health, Tianjin 300381, China; National Data Center of Animal Health, Tianjin 300381, China
| | - Zhi-Min Dong
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; Tianjin Observation and Experimental Site of National Animal Health, Tianjin 300381, China; National Data Center of Animal Health, Tianjin 300381, China
| | - Yu-Jin Gao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiu-Li Li
- Institute of Agro-product Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Li Zhang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; Tianjin Observation and Experimental Site of National Animal Health, Tianjin 300381, China; National Data Center of Animal Health, Tianjin 300381, China
| | - Hong-Qing Zheng
- Key Laboratory of Animal Epidemic Disease Diagnostic Laboratory of Molecular Biology in Xianyang City, Institute of Animal Husbandry and Veterinary Medicine, Xianyang Vocational Technical College, Xianyang, Shaanxi 712000, China
| | - Li-Li Wang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; Tianjin Observation and Experimental Site of National Animal Health, Tianjin 300381, China; National Data Center of Animal Health, Tianjin 300381, China
| | - Chao Lu
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; Tianjin Observation and Experimental Site of National Animal Health, Tianjin 300381, China; National Data Center of Animal Health, Tianjin 300381, China
| | - Xiang-Xue Tian
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; Tianjin Observation and Experimental Site of National Animal Health, Tianjin 300381, China; National Data Center of Animal Health, Tianjin 300381, China
| | - Ming-Hua Yan
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; Tianjin Observation and Experimental Site of National Animal Health, Tianjin 300381, China; National Data Center of Animal Health, Tianjin 300381, China.
| |
Collapse
|
13
|
Xie Q, Wang L, Liao X, Huang B, Luo C, Liao G, Yuan L, Liu X, Luo H, Shu Y. Research Progress into the Biological Functions of IFITM3. Viruses 2024; 16:1543. [PMID: 39459876 PMCID: PMC11512382 DOI: 10.3390/v16101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs) are upregulated by interferons. They are not only highly conserved in evolution but also structurally consistent and have almost identical structural domains and functional domains. They are all transmembrane proteins and have multiple heritable variations in genes. The IFITM protein family is closely related to a variety of biological functions, including antiviral immunity, tumor formation, bone metabolism, cell adhesion, differentiation, and intracellular signal transduction. The progress of the research on its structure and related functions, as represented by IFITM3, is reviewed.
Collapse
Affiliation(s)
- Qian Xie
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Liangliang Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China;
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China
| | - Xinzhong Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Bi Huang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Guancheng Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Lifang Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Xuejie Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| |
Collapse
|
14
|
Niu X, Zhao Y, Zhang T, Sun Y, Wei Z, Fu K, Li J, Tang M, Wan W, Gao X, Chen H, Qi R, Song B. Comprehensive succinylome analyses reveal that hyperthermia upregulates lysine succinylation of annexin A2 by downregulating sirtuin7 in human keratinocytes. J Transl Int Med 2024; 12:424-436. [PMID: 39360157 PMCID: PMC11444469 DOI: 10.2478/jtim-2022-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023] Open
Abstract
Background and Objectives Local hyperthermia at 44°C can clear multiple human papillomavirus (HPV)-infected skin lesions (warts) by targeting a single lesion, which is considered as a success of inducing antiviral immunity in the human body. However, approximately 30% of the patients had a lower response to this intervention. To identify novel molecular targets for anti-HPV immunity induction to improve local hyperthermia efficacy, we conducted a lysine succinylome assay in HaCaT cells (subjected to 44°C and 37°C water baths for 30 min). Methods The succinylome analysis was conducted on HaCaT subjected to 44°C and 37°C water bath for 30 min using antibody affinity enrichment together with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results were validated by western blot (WB), immunoprecipitation (IP), and co-immunoprecipitation (Co-IP). Then, bioinformatic analysis including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, motif characterization, secondary structure, and protein-protein interaction (PPI) was performed. Results A total of 119 proteins with 197 succinylated sites were upregulated in 44°C-treated HaCaT cells. GO annotation demonstrated that differential proteins were involved in the immune system process and viral transcription. Succinylation was significantly upregulated in annexin A2. We found that hyperthermia upregulated the succinylated level of global proteins in HaCaT cells by downregulating the desuccinylase sirtuin7 (SIRT7), which can interact with annexin A2. Conclusions Taken together, these data indicated that succinylation of annexin A2 may serve as a new drug target, which could be intervened in combination with local hyperthermia for better treatment of cutaneous warts.
Collapse
Affiliation(s)
- Xueli Niu
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Yiping Zhao
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Tao Zhang
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, Shenyang110122, Liaoning Province, China
| | - Yuzhe Sun
- Department of Dermatology, Dermatological Hospital of Southern Medical University, Guangzhou510091, Guangdong Province, China
| | - Zhendong Wei
- Department of Dermatology, The 2nd Affiliated Hospital of Dalian Medical University, Dalian116027, Liaoning Province, China
| | - Kangle Fu
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Jingyi Li
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, CardiffUK
| | - Mingsui Tang
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, CardiffUK
| | - Wenyu Wan
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Xinghua Gao
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Hongduo Chen
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Ruiqun Qi
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Bing Song
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, CardiffUK
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, Guangdong Province, China
| |
Collapse
|
15
|
Lin YC, Lu M, Cai W, Hu WS. Comparative transcriptomic and proteomic kinetic analysis of adeno-associated virus production systems. Appl Microbiol Biotechnol 2024; 108:385. [PMID: 38896252 PMCID: PMC11186941 DOI: 10.1007/s00253-024-13203-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Recombinant adeno-associated virus (rAAV) is a major gene delivery vehicle. We have constructed a stable rAAV producer cell line by integrating essential rAAV genome, viral and helper genes into the genome of HEK293 cell under the control of inducible promoters. Upon induction, the cell line produces transducing rAAV. To gain insight into enhancing rAAV productivity and vector quality, we performed a comparative transcriptomic and proteomic analysis of our synthetic cell line GX2 and two wild-type AAV (wtAAV) production systems, one by virus co-infection and the other by multi-plasmid transfection. The three systems had different kinetics in viral component synthesis but generated comparable copies of AAV genomes; however, the capsid titer of GX2 was an order of magnitude lower compared to those two wtAAV systems, indicating that its capsid production may be insufficient. The genome packaging efficiency was also lower in GX2 despite it produced higher levels of Rep52 proteins than either wtAAV systems, suggesting that Rep52 protein expression may not limit genome packaging. In the two wtAAV systems, VP were the most abundant AAV proteins and their levels continued to increase, while GX2 had high level of wasteful cargo gene expression. Furthermore, upregulated inflammation, innate immune responses, and MAPK signaling, as well as downregulated mitochondrial functions, were commonly observed in either rAAV or wtAAV systems. Overall, this comparative multi-omics study provided rich insights into host cell and viral factors that are potential targets for genetic and process intervention to enhance the productivity of synthetic rAAV producer cell lines. KEY POINTS: • wtAAV infection was more efficient in producing full viral particles than the synthetic cell GX2. • Capsid protein synthesis, genome replication, and packaging may limit rAAV production in GX2. • wtAAV infection and rAAV production in GX2 elicited similar host cell responses.
Collapse
Affiliation(s)
- Yu-Chieh Lin
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E, Minneapolis, MN, 55455-0132, USA
| | - Min Lu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E, Minneapolis, MN, 55455-0132, USA
| | - Wen Cai
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E, Minneapolis, MN, 55455-0132, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E, Minneapolis, MN, 55455-0132, USA.
| |
Collapse
|
16
|
Li H, Chen M, Zheng T, Lei X, Lin C, Li S, Mo J, Ning Z. IFITM1 and IFITM2 inhibit the replication of senecavirus A by positive feedback with RIG-I signaling pathway. Vet Microbiol 2024; 292:110050. [PMID: 38484578 DOI: 10.1016/j.vetmic.2024.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/02/2024] [Accepted: 03/09/2024] [Indexed: 04/10/2024]
Abstract
The role of host factors in the replication of emerging senecavirus A (SVA) which induced porcine idiopathic vesicular disease (PIVD) distributed worldwide remains obscure. Here, interferon-induced transmembrane (IFITM) protein 1 and 2 inhibit SVA replication by positive feedback with RIG-I signaling pathway was reported. The expression levels of IFITM1 and IFITM2 increased significantly in SVA infected 3D4/21 cells. Infection experiments of cells with over and interference expression of IFITM1 and IFITM2 showed that these two proteins inhibit SVA replication by regulating the expression of interferon beta (IFN-β), IFN-stimulated gene 15 (ISG-15), interleukin 6 (IL-6), IL-8, tumor necrosis factor alpha (TNF-α), IFN regulatory factor-3 (IRF3), and IRF7. Further results showed that antiviral responses of IFITM1 and IFITM2 were achieved by activating retinoic acid-inducible gene I (RIG-I) signaling pathway which in turn enhanced the expression of IFITM1 and IFITM2. It is noteworthy that conserved domains of these two proteins also paly the similar role. These findings provide new data on the role of host factors in infection and replication of SVA and help to develop new agents against the virus.
Collapse
Affiliation(s)
- Huizi Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ming Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Tingting Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoling Lei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Cunhao Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shuo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiacong Mo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China.
| |
Collapse
|
17
|
Bhatnagar A, Chopra U, Raja S, Das KD, Mahalingam S, Chakravortty D, Srinivasula SM. TLR-mediated aggresome-like induced structures comprise antimicrobial peptides and attenuate intracellular bacterial survival. Mol Biol Cell 2024; 35:ar34. [PMID: 38170582 PMCID: PMC10916861 DOI: 10.1091/mbc.e23-09-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Immune cells employ diverse mechanisms for host defense. Macrophages, in response to TLR activation, assemble aggresome-like induced structures (ALIS). Our group has shown TLR4-signaling transcriptionally upregulates p62/sequestome1, which assembles ALIS. We have demonstrated that TLR4-mediated autophagy is, in fact, selective-autophagy of ALIS. We hypothesize that TLR-mediated autophagy and ALIS contribute to host-defense. Here we show that ALIS are assembled in macrophages upon exposure to different bacteria. These structures are associated with pathogen-containing phagosomes. Importantly, we present evidence of increased bacterial burden, where ALIS assembly is prevented with p62-specific siRNA. We have employed 3D-super-resolution structured illumination microscopy (3D-SR-SIM) and mass-spectrometric (MS) analyses to gain insight into the assembly of ALIS. Ultra-structural analyses of known constituents of ALIS (p62, ubiquitin, LC3) reveal that ALIS are organized structures with distinct patterns of alignment. Furthermore, MS-analyses of ALIS identified, among others, several proteins of known antimicrobial properties. We have validated MS data by testing the association of some of these molecules (Bst2, IFITM2, IFITM3) with ALIS and the phagocytosed-bacteria. We surmise that AMPs enrichment in ALIS leads to their delivery to bacteria-containing phagosomes and restricts the bacteria. Our findings in this paper support hitherto unknown functions of ALIS in host-defense.
Collapse
Affiliation(s)
- Anushree Bhatnagar
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| | - Umesh Chopra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sebastian Raja
- Laboratory of Molecular Cell Biology, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Krishanu Dey Das
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| | - S. Mahalingam
- Laboratory of Molecular Cell Biology, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Dipshikha Chakravortty
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Srinivasa Murty Srinivasula
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| |
Collapse
|
18
|
Chen HW, Zhang YG, Zhang WJ, Su J, Wu H, Fu ZF, Cui M. Palmitoylation of hIFITM1 inhibits JEV infection and contributes to BBB stabilization. Int J Biol Macromol 2024; 262:129731. [PMID: 38278394 DOI: 10.1016/j.ijbiomac.2024.129731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Human brain microvascular endothelial cells (hBMECs) are the main component cells of the blood-brain barrier (BBB) and play a crucial role in responding to viral infections to prevent the central nervous system (CNS) from viral invasion. Interferon-inducible transmembrane protein 1 (IFITM1) is a multifunctional membrane protein downstream of type-I interferon. In this study, we discovered that hIFITM1 expression was highly upregulated in hBMECs during Japanese encephalitis virus (JEV) infection. Depletion of hIFITM1 with CRISPR/Cas9 in hBMECs enhanced JEV replication, while overexpression of hIFITM1 restricted the viruses. Additionally, overexpression of hIFITM1 promoted the monolayer formation of hBMECs with a better integrity and a higher transendothelial electrical resistance (TEER), and reduced the penetration of JEV across the BBB. However, the function of hIFITM1 is governed by palmitoylation. Mutations of palmitoylation residues in conserved CD225 domain of hIFITM1 impaired its antiviral capacity. Moreover, mutants retained hIFITM1 in the cytoplasm and lessened its interaction with tight junction protein Occludin. Taken together, palmitoylation of hIFITM1 is essential for its antiviral activity in hBMECs, and more notably, for the maintenance of BBB homeostasis.
Collapse
Affiliation(s)
- Hao-Wei Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ya-Ge Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Wei-Jia Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jie Su
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hao Wu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhen-Fang Fu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Min Cui
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| |
Collapse
|
19
|
Cai Q, Sun N, Zhang Y, Wang J, Pan C, Chen Y, Li L, Li X, Liu W, Aliyari SR, Yang H, Cheng G. Interferon-stimulated gene PVRL4 broadly suppresses viral entry by inhibiting viral-cellular membrane fusion. Cell Biosci 2024; 14:23. [PMID: 38368366 PMCID: PMC10873969 DOI: 10.1186/s13578-024-01202-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/30/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Viral infection elicits the type I interferon (IFN-I) response in host cells and subsequently inhibits viral infection through inducing hundreds of IFN-stimulated genes (ISGs) that counteract many steps in the virus life cycle. However, most of ISGs have unclear functions and mechanisms in viral infection. Thus, more work is required to elucidate the role and mechanisms of individual ISGs against different types of viruses. RESULTS Herein, we demonstrate that poliovirus receptor-like protein4 (PVRL4) is an ISG strongly induced by IFN-I stimulation and various viral infections. Overexpression of PVRL4 protein broadly restricts growth of enveloped RNA and DNA viruses, including vesicular stomatitis virus (VSV), herpes simplex virus 1 (HSV-1), influenza A virus (IAV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) whereas deletion of PVRL4 in host cells increases viral infections. Mechanistically, it suppresses viral entry by blocking viral-cellular membrane fusion through inhibiting endosomal acidification. The vivo studies demonstrate that Pvrl4-deficient mice were more susceptible to the infection of VSV and IAV. CONCLUSION Overall, our studies not only identify PVRL4 as an intrinsic broad-spectrum antiviral ISG, but also provide a candidate host-directed target for antiviral therapy against various viruses including SARS-CoV-2 and its variants in the future.
Collapse
Affiliation(s)
- Qiaomei Cai
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Nina Sun
- Department of Microbiology and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yurui Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Jingfeng Wang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Chaohu Pan
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Yu Chen
- Clinical Microbiology and Immunology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Lili Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Xiaorong Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Wancheng Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250000, Shandong, China
| | - Saba R Aliyari
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Heng Yang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China.
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
20
|
Phan T, Ye Q, Stach C, Lin YC, Cao H, Bowen A, Langlois RA, Hu WS. Synthetic Cell Lines for Inducible Packaging of Influenza A Virus. ACS Synth Biol 2024; 13:546-557. [PMID: 38259154 PMCID: PMC10878389 DOI: 10.1021/acssynbio.3c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024]
Abstract
Influenza A virus (IAV) is a negative-sense RNA virus that causes seasonal infections and periodic pandemics, inflicting huge economic and human costs on society. The current production of influenza virus for vaccines is initiated by generating a seed virus through the transfection of multiple plasmids in HEK293 cells followed by the infection of seed viruses into embryonated chicken eggs or cultured mammalian cells. We took a system design and synthetic biology approach to engineer cell lines that can be induced to produce all viral components except hemagglutinin (HA) and neuraminidase (NA), which are the antigens that specify the variants of IAV. Upon the transfection of HA and NA, the cell line can produce infectious IAV particles. RNA-Seq transcriptome analysis revealed inefficient synthesis of viral RNA and upregulated expression of genes involved in host response to viral infection as potential limiting factors and offered possible targets for enhancing the productivity of the synthetic cell line. Overall, we showed for the first time that it was possible to create packaging cell lines for the production of a cytopathic negative-sense RNA virus. The approach allows for the exploitation of altered kinetics of the synthesis of viral components and offers a new method for manufacturing viral vaccines.
Collapse
Affiliation(s)
- Thu Phan
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Qian Ye
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Christopher Stach
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yu-Chieh Lin
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Haoyu Cao
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Annika Bowen
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ryan A. Langlois
- Department
of Microbiology and Immunology, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wei-Shou Hu
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Ban M, Bredikhin D, Huang Y, Bonder MJ, Katarzyna K, Oliver AJ, Wilson NK, Coupland P, Hadfield J, Göttgens B, Madissoon E, Stegle O, Sawcer S. Expression profiling of cerebrospinal fluid identifies dysregulated antiviral mechanisms in multiple sclerosis. Brain 2024; 147:554-565. [PMID: 38038362 PMCID: PMC10834244 DOI: 10.1093/brain/awad404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/06/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023] Open
Abstract
Despite the overwhelming evidence that multiple sclerosis is an autoimmune disease, relatively little is known about the precise nature of the immune dysregulation underlying the development of the disease. Reasoning that the CSF from patients might be enriched for cells relevant in pathogenesis, we have completed a high-resolution single-cell analysis of 96 732 CSF cells collected from 33 patients with multiple sclerosis (n = 48 675) and 48 patients with other neurological diseases (n = 48 057). Completing comprehensive cell type annotation, we identified a rare population of CD8+ T cells, characterized by the upregulation of inhibitory receptors, increased in patients with multiple sclerosis. Applying a Multi-Omics Factor Analysis to these single-cell data further revealed that activity in pathways responsible for controlling inflammatory and type 1 interferon responses are altered in multiple sclerosis in both T cells and myeloid cells. We also undertook a systematic search for expression quantitative trait loci in the CSF cells. Of particular interest were two expression quantitative trait loci in CD8+ T cells that were fine mapped to multiple sclerosis susceptibility variants in the viral control genes ZC3HAV1 (rs10271373) and IFITM2 (rs1059091). Further analysis suggests that these associations likely reflect genetic effects on RNA splicing and cell-type specific gene expression respectively. Collectively, our study suggests that alterations in viral control mechanisms might be important in the development of multiple sclerosis.
Collapse
Affiliation(s)
- Maria Ban
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Danila Bredikhin
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Yuanhua Huang
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge CB10 1SD, UK
| | - Marc Jan Bonder
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kania Katarzyna
- University of Cambridge, CRUK Cambridge Institute, Cambridge CB2 0RE, UK
| | - Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Nicola K Wilson
- Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Paul Coupland
- University of Cambridge, CRUK Cambridge Institute, Cambridge CB2 0RE, UK
| | - James Hadfield
- University of Cambridge, CRUK Cambridge Institute, Cambridge CB2 0RE, UK
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Elo Madissoon
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge CB10 1SD, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Oliver Stegle
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge CB10 1SD, UK
| | - Stephen Sawcer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
22
|
Wu J, Tang R, Zhang X, Gao M, Guo L, Zhang L, Shi D, Zhang X, Shi H, Song H, Feng L, Chen J. IFITM3 restricts porcine deltacoronavirus infection by targeting its Spike protein. Vet Microbiol 2024; 288:109953. [PMID: 38118371 DOI: 10.1016/j.vetmic.2023.109953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023]
Abstract
The discovery of antiviral molecules is crucial for controlling porcine deltacoronavirus (PDCoV). Previous studies have provided evidence that the IFN-inducible transmembrane protein 3 (IFITM3), which is coded by an interferon-stimulated gene, prevents the infections of a number of enveloped viruses. Nevertheless, the involvement of IFITM3 in PDCoV infection remains unexplored. In this study, it was observed that the overexpression of IFITM3 successfully restrictes the infection of PDCoV in cell cultures. Conversely, the suppression of IFITM3 facilitates the infection of PDCoV in IPI-2I and IPEC-J2 cells. Further studies revealed that IFITM3 limits the attachment phase of viral infection by interacting with the S1 subunit of the PDCoV Spike (S) protein. In addition, IFITM3 is verified as a member of the CD225 family, the GxxxG conserved motif of this family is important for it to limit PDCoV infection. In summary, this study reveals the mechanism of IFITM3 as an antiviral molecule to inhibit PDCoV infection, and also provides theoretical supports for screening effective anti-PDCoV drugs.
Collapse
Affiliation(s)
- Jianxiao Wu
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Rongfeng Tang
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaorong Zhang
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Mingzhe Gao
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Longjun Guo
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Liaoyuan Zhang
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Da Shi
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Zhang
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hongyan Shi
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hongying Song
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Li Feng
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Jianfei Chen
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
23
|
Liang T, Wang X, Wang Y, Ma W. IFN-γ Triggered IFITM2 Expression to Induce Malignant Phenotype in Elderly GBM. J Mol Neurosci 2023; 73:946-955. [PMID: 37889394 DOI: 10.1007/s12031-023-02156-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/07/2023] [Indexed: 10/28/2023]
Abstract
Advanced age is an important risk factor for the worse clinical presentation of gliomas, especially glioblastoma (GBM). The tumor microenvironment (TME) in elderly GBM (eGBM) patients is considerably different from that in young ones, which causes the inferior clinical outcome. Based on the data from the Chinese Glioma Genome Atlas RNA sequence (CGGA RNA-seq), the Cancer Genome Atlas RNA array (TCGA RNA-array), and gene set enrichment (GSE) 16011 array sets, the differential genes and function between eGBM (≥ 60 years old) and young GBM (yGBM, 20-60 years old) groups were explored. Immunohistochemistry (IHC) was utilized to depict the abundance of CD8+ cells (the main resource of IFN-γ) and IFITM2 protein expression in GBM samples. Furthermore, reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting (WB) were performed to verify the link between IFN-γ and IFITM2. Moreover, the small-interfering RNA (siRNA) of IFITM2 was used to explore the function of IFITM2 in GBM. Characterized by inflammatory TME and higher IFITM2 expression, eGBM harbored a shorter survival time. Chemotaxis and inflammatory cytokine-related genes were enriched in the eGBM group, with more infiltrative CD8+ T cells. The IHC of CD8 and IFITM2-staining could demonstrate these results. In addition, the IFN-γ response pathway was activated in eGBM and resulted in a dismal outcome. Next, it was found that IFITM2 triggered by IFN-γ played a key role in IFN-γ-induced malignant phenotype in eGBM.
Collapse
Affiliation(s)
- Tingyu Liang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoxuan Wang
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
24
|
Papadopoulou G, Petroulia S, Karamichali E, Dimitriadis A, Marousis D, Ioannidou E, Papazafiri P, Koskinas J, Foka P, Georgopoulou U. The Epigenetic Controller Lysine-Specific Demethylase 1 (LSD1) Regulates the Outcome of Hepatitis C Viral Infection. Cells 2023; 12:2568. [PMID: 37947646 PMCID: PMC10648375 DOI: 10.3390/cells12212568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Hepatitis C virus (HCV) alters gene expression epigenetically to rearrange the cellular microenvironment in a beneficial way for its life cycle. The host epigenetic changes induced by HCV lead to metabolic dysfunction and malignant transformation. Lysine-specific demethylase 1 (LSD1) is an epigenetic controller of critical cellular functions that are essential for HCV propagation. We investigated the putative role of LSD1 in the establishment of HCV infection using genetic engineering and pharmacological inhibition to alter endogenous LSD1 levels. We demonstrated for the first time that HCV replication was inhibited in LSD1-overexpressing cells, while specific HCV proteins differentially fine-tuned endogenous LSD1 expression levels. Electroporation of the full-length HCV genome and subgenomic replicons in LSD1 overexpression enhanced translation and partially restored HCV replication, suggesting that HCV might be inhibited by LSD1 during the early steps of infection. Conversely, the inhibition of LSD1, followed by HCV infection in vitro, increased viral replication. LSD1 was shown to participate in an intriguing antiviral mechanism, where it activates endolysosomal interferon-induced transmembrane protein 3 (IFITM3) via demethylation, leading endocytosed HCV virions to degradation. Our study proposes that HCV-mediated LSD1 oscillations over countless viral life cycles throughout chronic HCV infection may promote epigenetic changes related to HCV-induced hepatocarcinogenesis.
Collapse
Affiliation(s)
- Georgia Papadopoulou
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Stavroula Petroulia
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Eirini Karamichali
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Alexios Dimitriadis
- Molecular Biology and Immunobiotechnology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Dimitrios Marousis
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Elisavet Ioannidou
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Panagiota Papazafiri
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - John Koskinas
- 2nd Department of Internal Medicine, Medical School of Athens, Hippokration General Hospital, 11521 Athens, Greece
| | - Pelagia Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Urania Georgopoulou
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
25
|
Ye Y, Fu Y, Lin C, Shen Y, Yu Q, Yao X, Huang Q, Liu C, Zeng Y, Chen T, Wu S, Xun Z, Ou Q. Oncostatin M Induces IFITM1 Expression to Inhibit Hepatitis B Virus Replication Via JAK-STAT Signaling. Cell Mol Gastroenterol Hepatol 2023; 17:219-235. [PMID: 37879404 PMCID: PMC10760422 DOI: 10.1016/j.jcmgh.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND & AIMS Functional cure is achieved by a limited number of patients with chronic hepatitis B (CHB) after nucleotide analogue(s) and interferon treatment. It is urgent to develop therapies that can help a larger proportion of patients achieve functional cure. The present study was designed to explore the anti-hepatitis B virus (HBV) potency of interleukin-6 family cytokines and to characterize the underlying mechanisms of the cytokine displaying the highest anti-HBV potency. METHODS HBV-infected cells were used to screened the anti-HBV potency of interleukin-6 family cytokines. The concentration of oncostatin M (OSM) in patients with chronic HBV infection was examined by enzyme-linked immunosorbent assay. The underlying mechanism of OSM anti-HBV was explored through RNA-seq. C57BL/6 mice injected with rAAV8-1.3HBV were used to explore the suppression effect of OSM on HBV in vivo. RESULTS OSM is the most effective of the interleukin-6 family cytokines for suppression of HBV replication (percentage of average inhibition: hepatitis B surface antigen, 34.44%; hepatitis B e antigen, 32.52%; HBV DNA, 61.57%). Hepatitis B e antigen-positive CHB patients with high OSM levels had lower hepatitis B surface antigen and hepatitis B e antigen than those with low levels. OSM activated JAK-STAT signaling pathway promoting the formation of STAT1-IRF9 transcription factor complex. Following this, OSM increased the expression of various genes with known functions in innate and adaptive immunity, which was higher expression in patients with CHB in immune clearance phase than in immune tolerance phase (data from GEO: GSE65359). Interferon-induced transmembrane protein 1, one of the most differentially expressed genes, was identified as an HBV restriction factor involved in OSM-mediated anti-HBV effect. In vivo, we also found OSM significantly inhibited HBV replication and induced expression of antiviral effector interferon-induced transmembrane protein 1. CONCLUSIONS Our study shows that OSM remodels the immune response against HBV and exerts potent anti-HBV activity, supporting its further development as a potential therapy for treating CHB.
Collapse
Affiliation(s)
- Yuchen Ye
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Ya Fu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Caorui Lin
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ye Shen
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Qingqing Yu
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Xiaobao Yao
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Qunfang Huang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Can Liu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yongbin Zeng
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Tianbin Chen
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Songhang Wu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhen Xun
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Qishui Ou
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
26
|
Cai J, Cui J, Wang L. S-palmitoylation regulates innate immune signaling pathways: molecular mechanisms and targeted therapies. Eur J Immunol 2023; 53:e2350476. [PMID: 37369620 DOI: 10.1002/eji.202350476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/10/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
S-palmitoylation is a reversible posttranslational lipid modification that targets cysteine residues of proteins and plays critical roles in regulating the biological processes of substrate proteins. The innate immune system serves as the first line of defense against pathogenic invaders and participates in the maintenance of tissue homeostasis. Emerging studies have uncovered the functions of S-palmitoylation in modulating innate immune responses. In this review, we focus on the reversible palmitoylation of innate immune signaling proteins, with particular emphasis on its roles in the regulation of protein localization, protein stability, and protein-protein interactions. We also highlight the potential and challenge of developing therapies that target S-palmitoylation or de-palmitoylation for various diseases.
Collapse
Affiliation(s)
- Jing Cai
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liqiu Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
27
|
Ma J, Tu Z, Du S, Zhang X, Wang J, Guo J, Feng Y, He H, Wang H, Li C, Tu C, Liu Y. IFITM3 restricts RABV infection through inhibiting viral entry and mTORC1- dependent autophagy. Vet Microbiol 2023; 284:109823. [PMID: 37392666 DOI: 10.1016/j.vetmic.2023.109823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Rabies, which caused by rabies virus (RABV), is a zoonotic and life-threatening disease with 100% mortality, and there is no effective treatment thus far due to the unclear pathogenesis and less of treatment targets. Interferon-induced transmembrane protein 3 (IFITM3) has recently been identified as an important anti-viral host effector induced by type I interferon. However, the role of IFITM3 in RABV infection has not been elucidated. In this study, we demonstrated that IFITM3 is a crucial restriction factor for RABV, the viral-induced IFITM3 significantly inhibited RABV replication, while knockdown of IFITM3 had the opposite effect. We then identified that IFNβ induces the upregulation of IFITM3 in the absence or presence of RABV infection, meanwhile, IFITM3 positively regulates RABV-triggered production of IFNβ in a feedback manner. In-depth research we found that IFITM3 not only inhibits the virus absorb and entry, but also inhibits viral replication through mTORC1-dependent autophagy. All these findings broaden our understanding of IFITM3 function and uncover a novel mechanism against RABV infection.
Collapse
Affiliation(s)
- Jiaqi Ma
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhongzhong Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Shouwen Du
- Department of infectious diseases, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Xinying Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Jie Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; Engineering Research Center of Glycoconjugates of Ministry of Education, Jinlin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jianxiong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Ye Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Chang Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China.
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China.
| | - Yan Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China.
| |
Collapse
|
28
|
Tipper DJ, Harley CA. Spf1 and Ste24: quality controllers of transmembrane protein topology in the eukaryotic cell. Front Cell Dev Biol 2023; 11:1220441. [PMID: 37635876 PMCID: PMC10456885 DOI: 10.3389/fcell.2023.1220441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023] Open
Abstract
DNA replication, transcription, and translation in eukaryotic cells occur with decreasing but still high fidelity. In contrast, for the estimated 33% of the human proteome that is inserted as transmembrane (TM) proteins, insertion with a non-functional inverted topology is frequent. Correct topology is essential for function and trafficking to appropriate cellular compartments and is controlled principally by responses to charged residues within 15 residues of the inserted TM domain (TMD); the flank with the higher positive charge remains in the cytosol (inside), following the positive inside rule (PIR). Yeast (Saccharomyces cerevisiae) mutants that increase insertion contrary to the PIR were selected. Mutants with strong phenotypes were found only in SPF1 and STE24 (human cell orthologs are ATP13A1 and ZMPSte24) with, at the time, no known relevant functions. Spf1/Atp13A1 is now known to dislocate to the cytosol TM proteins inserted contrary to the PIR, allowing energy-conserving reinsertion. We hypothesize that Spf1 and Ste24 both recognize the short, positively charged ER luminal peptides of TM proteins inserted contrary to the PIR, accepting these peptides into their large membrane-spanning, water-filled cavities through interaction with their many interior surface negative charges. While entry was demonstrated for Spf1, no published evidence directly demonstrates substrate entry to the Ste24 cavity, internal access to its zinc metalloprotease (ZMP) site, or active withdrawal of fragments, which may be essential for function. Spf1 and Ste24 comprise a PIR quality control system that is conserved in all eukaryotes and presumably evolved in prokaryotic progenitors as they gained differentiated membrane functions. About 75% of the PIR is imposed by this quality control system, which joins the UPR, ERAD, and autophagy (ER-phagy) in coordinated, overlapping quality control of ER protein function.
Collapse
Affiliation(s)
- Donald J. Tipper
- University of Massachusetts Medical School, Worcester, MA, United States
| | - Carol A. Harley
- i3S-Instituto de Investigação e Inovação em Saude, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
29
|
Ismailov ZB, Belykh ES, Chernykh AA, Udoratina AM, Kazakov DV, Rybak AV, Kerimova SN, Velegzhaninov IO. Systematic review of comparative transcriptomic studies of cellular resistance to genotoxic stress. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108467. [PMID: 37657754 DOI: 10.1016/j.mrrev.2023.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
The development of resistance by tumor cells to various types of therapy is a significant problem that decreases the effectiveness of oncology treatments. For more than two decades, comparative transcriptomic studies of tumor cells with different sensitivities to ionizing radiation and chemotherapeutic agents have been conducted in order to identify the causes and mechanisms underlying this phenomenon. However, the results of such studies have little in common and often contradict each other. We have assumed that a systematic analysis of a large number of such studies will provide new knowledge about the mechanisms of development of therapeutic resistance in tumor cells. Our comparison of 123 differentially expressed gene (DEG) lists published in 98 papers suggests a very low degree of consistency between the study results. Grouping the data by type of genotoxic agent and tumor type did not increase the similarity. The most frequently overexpressed genes were found to be those encoding the transport protein ABCB1 and the antiviral defense protein IFITM1. We put forward a hypothesis that the role played by the overexpression of the latter in the development of resistance may be associated not only with the stimulation of proliferation, but also with the limitation of exosomal communication and, as a result, with a decrease in the bystander effect. Among down regulated DEGs, BNIP3 was observed most frequently. The expression of BNIP3, together with BNIP3L, is often suppressed in cells resistant to non-platinum genotoxic chemotherapeutic agents, whereas it is increased in cells resistant to ionizing radiation. These observations are likely to be mediated by the binary effects of these gene products on survival, and regulation of apoptosis and autophagy. The combined data also show that even such obvious mechanisms as inhibition of apoptosis and increase of proliferation are not universal but show multidirectional changes.
Collapse
Affiliation(s)
- Z B Ismailov
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia
| | - E S Belykh
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia
| | - A A Chernykh
- Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 50 Pervomaiskaya St., Syktyvkar 167982, Russia
| | - A M Udoratina
- Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603022, Russia
| | - D V Kazakov
- Institute of Physics and Mathematics of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 4 Oplesnina St., Syktyvkar 167982, Russia
| | - A V Rybak
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia
| | - S N Kerimova
- State Medical Institution Komi Republican Oncology Center, 46 Nyuvchimskoe highway, Syktyvkar 167904, Russia
| | - I O Velegzhaninov
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia.
| |
Collapse
|
30
|
Chen C, Wang J, Liu YM, Hu J. Single-cell analysis of adult human heart across healthy and cardiovascular disease patients reveals the cellular landscape underlying SARS-CoV-2 invasion of myocardial tissue through ACE2. J Transl Med 2023; 21:358. [PMID: 37259108 DOI: 10.1186/s12967-023-04224-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND The distribution of ACE2 and accessory proteases (ANAD17 and CTSL) in cardiovascular tissue and the host cell receptor binding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are crucial to understanding the virus's cell invasion, which may play a significant role in determining the viral tropism and its clinical manifestations. METHODS We conducted a comprehensive analysis of the cell type-specific expression of ACE2, ADAM17, and CTSL in myocardial tissue from 10 patients using RNA sequencing. Our study included a meta-analysis of 2 heart single-cell RNA-sequencing studies with a total of 90,024 cells from 250 heart samples of 10 individuals. We used co-expression analysis to locate specific cell types that SARS-CoV-2 may invade. RESULTS Our results revealed cell-type specific associations between male gender and the expression levels of ACE2, ADAM17, and CTSL, including pericytes and fibroblasts. AGT, CALM3, PCSK5, NRP1, and LMAN were identified as potential accessory proteases that might facilitate viral invasion. Enrichment analysis highlighted the extracellular matrix interaction pathway, adherent plaque pathway, vascular smooth muscle contraction inflammatory response, and oxidative stress as potential immune pathways involved in viral infection, providing potential molecular targets for therapeutic intervention. We also found specific high expression of IFITM3 and AGT in pericytes and differences in the IFN-II signaling pathway and PAR signaling pathway in fibroblasts from different cardiovascular comorbidities. CONCLUSIONS Our data indicated possible high-risk groups for COVID-19 and provided emerging avenues for future investigations of its pathogenesis. TRIAL REGISTRATION (Not applicable).
Collapse
Affiliation(s)
- Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China.
| | - Yong-Mei Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| |
Collapse
|
31
|
Zhang L, Yang G, Wang J, Zhang J, Chen K, Xiong X, Zhu Y, Xu C, Wang J. Ethyl Gallate Inhibits Bovine Viral Diarrhea Virus by Promoting IFITM3 Expression, Lysosomal Acidification and Protease Activity. Int J Mol Sci 2023; 24:ijms24108637. [PMID: 37239983 DOI: 10.3390/ijms24108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) is a highly contagious viral disease which causes economic losses to the cattle industry. Ethyl gallate (EG) is a phenolic acid derivative which has various potentials to modulate the host response to pathogens, such as via antioxidant activity, antibacterial activity, inhibition of the production of cell adhesion factors, and so on. This study aimed to evaluate if EG influences BVDV infection in Madin-Darby Bovine Kidney (MDBK) cells, and to understand the antiviral mechanism. Data indicated that EG effectively inhibited BVDV infection by co-treatment and post-treatment in MDBK cells with noncytotoxic doses. In addition, EG suppressed BVDV infection at an early stage of the viral life cycle by blocking entry and replication steps but not viral attachment and release. Moreover, EG strongly inhibited BVDV infection by promoting interferon-induced transmembrane protein 3 (IFITM3) expression, which localized to the cytoplasm. The protein level of cathepsin B was significantly reduced by BVDV infection, whereas with treatment with EG, it was significantly enhanced. The fluorescence intensities of acridine orange (AO) staining were significantly decreased in BVDV-infected cells but increased in EG-treated cells. Finally, Western blot and immunofluorescence analyses demonstrated that EG treatment significantly enhanced the protein levels of autophagy markers LC3 and p62. Chloroquine (CQ) significantly increased IFITM3 expression, and Rapamycin significantly decreased it. Thus, EG may regulate IFITM3 expression through autophagy. Our results showed that EG could have a solid antiviral activity on BVDV replication in MDBK cells via increased IFITM3 expression, lysosomal acidification, protease activity, and regulated autophagy. EG might have value for further development as an antiviral agent.
Collapse
Affiliation(s)
- Linlin Zhang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Guanghui Yang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Jun Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Jialu Zhang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Keyuan Chen
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xiaoran Xiong
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|
32
|
ISHIKAWA-Sasaki K, Murata T, Sasaki J. IFITM1 enhances nonenveloped viral RNA replication by facilitating cholesterol transport to the Golgi. PLoS Pathog 2023; 19:e1011383. [PMID: 37252940 PMCID: PMC10256215 DOI: 10.1371/journal.ppat.1011383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/09/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023] Open
Abstract
Aichi virus (AiV), a small non-enveloped RNA virus, hijacks the endoplasmic reticulum (ER)-Golgi cholesterol transport machinery to form cholesterol-rich replication sites originating from Golgi membranes. Interferon-induced transmembrane proteins (IFITMs) are antiviral restriction factors, whose involvement in intracellular cholesterol transport is suggested. Here, we describe the roles of IFITM1 in cholesterol transport that affect AiV RNA replication. IFITM1 stimulated AiV RNA replication and its knockdown significantly reduced the replication. In replicon RNA-transfected or infected cells, endogenous IFITM1 localized to the viral RNA replication sites. Further, IFITM1 interacted with viral proteins and host Golgi proteins, ACBD3, PI4KB, OSBP, which constitute the replication sites. When overexpressed, IFITM1 localized to the Golgi as well as endosomes, and this phenotype was also observed for endogenous IFITM1 early in AiV RNA replication, leading to the distribution of cholesterol at the Golgi-derived replication sites. The pharmacological inhibition of ER-Golgi cholesterol transport or endosomal cholesterol export impaired AiV RNA replication and cholesterol accumulation at the replication sites. Such defects were corrected by expression of IFITM1. Overexpressed IFITM1 facilitated late endosome-Golgi cholesterol transport without any viral proteins. In summary, we propose a model in which IFITM1 enhances cholesterol transport to the Golgi to accumulate cholesterol at Golgi-derived replication sites, providing a novel mechanism by which IFITM1 enables efficient genome replication of non-enveloped RNA virus.
Collapse
Affiliation(s)
- Kumiko ISHIKAWA-Sasaki
- Department of Virology, Fujita Health University School of Medicine, Kutsukakecho, Toyoake, Aichi, Japan
| | - Takayuki Murata
- Department of Virology, Fujita Health University School of Medicine, Kutsukakecho, Toyoake, Aichi, Japan
| | - Jun Sasaki
- Department of Virology, Fujita Health University School of Medicine, Kutsukakecho, Toyoake, Aichi, Japan
| |
Collapse
|
33
|
Bailly C, Thuru X. Targeting of Tetraspanin CD81 with Monoclonal Antibodies and Small Molecules to Combat Cancers and Viral Diseases. Cancers (Basel) 2023; 15:cancers15072186. [PMID: 37046846 PMCID: PMC10093296 DOI: 10.3390/cancers15072186] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Tetraspanin CD81 plays major roles in cell-cell interactions and the regulation of cellular trafficking. This cholesterol-embarking transmembrane protein is a co-receptor for several viruses, including HCV, HIV-1 and Chikungunya virus, which exploits the large extracellular loop EC2 for cell entry. CD81 is also an anticancer target implicated in cancer cell proliferation and mobility, and in tumor metastasis. CD81 signaling contributes to the development of solid tumors (notably colorectal, liver and gastric cancers) and has been implicated in the aggressivity of B-cell lymphomas. A variety of protein partners can interact with CD81, either to regulate attachment and uptake of viruses (HCV E2, claudin-1, IFIM1) or to contribute to tumor growth and dissemination (CD19, CD44, EWI-2). CD81-protein interactions can be modulated with molecules targeting the extracellular domain of CD81, investigated as antiviral and/or anticancer agents. Several monoclonal antibodies anti-CD81 have been developed, notably mAb 5A6 active against invasion and metastasis of triple-negative breast cancer cells. CD81-EC2 can also be targeted with natural products (trachelogenin and harzianoic acids A-B) and synthetic compounds (such as benzothiazole-quinoline derivatives). They are weak CD81 binders but offer templates for the design of new compounds targeting the open EC2 loop. There is no anti-CD81 compound in clinical development at present, but this structurally well-characterized tetraspanin warrants more substantial considerations as a drug target.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, F-59290 Lille, France
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France
- CNRS, Inserm, CHU Lille, UMR9020-U1277-Canther-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France
| | - Xavier Thuru
- CNRS, Inserm, CHU Lille, UMR9020-U1277-Canther-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France
| |
Collapse
|
34
|
Chen J, Li P, Zou W, Jiang Y, Li L, Hao P, Gao Z, Qu Q, Pang Z, Zhuang X, Nan F, Jin N, Du S, Li C. Identification of a Novel Interferon Lambda Splice Variant in Chickens. J Virol 2023; 97:e0174322. [PMID: 36877044 PMCID: PMC10062172 DOI: 10.1128/jvi.01743-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/08/2023] [Indexed: 03/07/2023] Open
Abstract
Type III interferons (IFNLs) have critical roles in the host's innate immune system, also serving as the first line against pathogenic infections of mucosal surfaces. In mammals, several IFNLs have been reported; however, only limited data on the repertoire of IFNLs in avian species is available. Previous studies showed only one member in chicken (chIFNL3). Herein, we identified a novel chicken IFNL for the first time, termed chIFNL3a, which contains 354 bp, and encodes 118 amino acids. The predicted protein is 57.1% amino acid identity with chIFNL. Genetic, evolutionary, and sequence analyses indicated that the new open reading frame (ORF) groups with type III chicken IFNs represent a novel splice variant. Compared to IFNs from different species, the new ORF is clustered within the type III IFNs group. Further study showed that chIFNL3a could activate a panel of IFN-regulated genes and function mediated by the IFNL receptor, and chIFNL3a markedly inhibited the replication of Newcastle disease virus (NDV) and influenza virus in vitro. These data collectively shed light on the repertoire of IFNs in avian species and provide useful information that further elucidate the interaction of the chIFNLs and viral infection of poultry. IMPORTANCE Interferons (IFNs) are critical soluble factors in the immune system, and are composed of 3 types (I, II, and III) that utilize different receptor complexes (IFN-αR1/IFN-αR2, IFN-γR1/IFN-γR2, and IFN-λR1/IL-10R2, respectively). Herein, we identified IFNL from the genomic sequences of chicken and termed it chIFNL3a, located on chromosome 7 of chicken. Phylogenetically clustered with all known types of chicken IFNs, the finding of this IFN is considered a type III IFN. To further evaluate the biological properties of chIFNL3a, the target protein was prepared by the baculovirus expression system (BES), which could markedly inhibit the replication of NDV and influenza viruses. In this study, we uncovered a new interferon lambda splice variant of chicken, termed chIFNL3a, which could inhibit viral replication in cells. Importantly, these novel findings may extend to other viruses, offering a new direction for therapeutic interventions.
Collapse
Affiliation(s)
- Jing Chen
- College of Veterinary Medicine, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Peiheng Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wancheng Zou
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yuhang Jiang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Pengfei Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zihan Gao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Qiaoqiao Qu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhaoxia Pang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xinyu Zhuang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Fulong Nan
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningyi Jin
- College of Veterinary Medicine, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shouwen Du
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
35
|
Klein S, Golani G, Lolicato F, Lahr C, Beyer D, Herrmann A, Wachsmuth-Melm M, Reddmann N, Brecht R, Hosseinzadeh M, Kolovou A, Makroczyova J, Peterl S, Schorb M, Schwab Y, Brügger B, Nickel W, Schwarz US, Chlanda P. IFITM3 blocks influenza virus entry by sorting lipids and stabilizing hemifusion. Cell Host Microbe 2023; 31:616-633.e20. [PMID: 37003257 DOI: 10.1016/j.chom.2023.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 04/03/2023]
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) inhibits the entry of numerous viruses through undefined molecular mechanisms. IFITM3 localizes in the endosomal-lysosomal system and specifically affects virus fusion with target cell membranes. We found that IFITM3 induces local lipid sorting, resulting in an increased concentration of lipids disfavoring viral fusion at the hemifusion site. This increases the energy barrier for fusion pore formation and the hemifusion dwell time, promoting viral degradation in lysosomes. In situ cryo-electron tomography captured IFITM3-mediated arrest of influenza A virus membrane fusion. Observation of hemifusion diaphragms between viral particles and late endosomal membranes confirmed hemifusion stabilization as a molecular mechanism of IFITM3. The presence of the influenza fusion protein hemagglutinin in post-fusion conformation close to hemifusion sites further indicated that IFITM3 does not interfere with the viral fusion machinery. Collectively, these findings show that IFITM3 induces lipid sorting to stabilize hemifusion and prevent virus entry into target cells.
Collapse
Affiliation(s)
- Steffen Klein
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Gonen Golani
- BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany; Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany; Department of Physics, University of Helsinki, Helsinki, Finland
| | - Carmen Lahr
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Daniel Beyer
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Alexia Herrmann
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Moritz Wachsmuth-Melm
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Nina Reddmann
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Romy Brecht
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Mehdi Hosseinzadeh
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Androniki Kolovou
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Jana Makroczyova
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Sarah Peterl
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Martin Schorb
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Yannick Schwab
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Ulrich S Schwarz
- BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany; Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Petr Chlanda
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
36
|
Jabin A, Uddin MF, Al Azad S, Rahman A, Tabassum F, Sarker P, Morshed AKMH, Rahman S, Raisa FF, Sakib MR, Olive AH, Islam T, Tahsin R, Ahmed SZ, Biswas P, Habiba MU, Siddiquy M, Jafary M. Target-specificity of different amyrin subunits in impeding HCV influx mechanism inside the human cells considering the quantum tunnel profiles and molecular strings of the CD81 receptor: a combined in silico and in vivo study. In Silico Pharmacol 2023; 11:8. [PMID: 36999133 PMCID: PMC10052254 DOI: 10.1007/s40203-023-00144-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/11/2023] [Indexed: 03/31/2023] Open
Abstract
HCV is a hepatotropic RNA virus recognized for its frequent virulence and fatality worldwide. Despite many vaccine development programs underway, researchers are on a quest for natural bioactive compounds due to their multivalent efficiencies against viral infections, considering which the current research aimed to figure out the target-specificity and therapeutic potentiality of α, β, and δ subunits of amyrin, as novel bioactive components against the HCV influx mechanism. Initially, the novelty of amyrin subunits was conducted from 203 pharmacophores, comparing their in-silico pharmacokinetic and pharmacodynamic profiles. Besides, the best active site of CD81 was determined following the quantum tunneling algorithm. The molecular dynamic simulation was conducted (100 ns) following the molecular docking steps to reveal the parameters- RMSD (Å); Cα; RMSF (Å); MolSA (Å2); Rg (nm); PSA (Å); SASA (Å2), and the MM-GBSA dG binding scores. Besides, molecular strings of CD81, along with the co-expressed genes, were classified, as responsible for encoding CD81-mediated protein clusters during HCV infection, resulting in the potentiality of amyrins as targeted prophylactics in HCV infection. Finally, in vivo profiling of the oxidative stress marker, liver-specific enzymes, and antioxidant markers was conducted in the DMN-induced mice model, where β-amyrin scored the most significant values in all aspects.
Collapse
Affiliation(s)
- Anika Jabin
- grid.443020.10000 0001 2295 3329Department of Biochemistry and Microbiology, North South University, Dhaka, 1229 Bangladesh
| | - Mohammad Fahim Uddin
- grid.413273.00000 0001 0574 8737College of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang People’s Republic of China
| | - Salauddin Al Azad
- grid.258151.a0000 0001 0708 1323Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu Province People’s Republic of China
| | - Ashfaque Rahman
- grid.443020.10000 0001 2295 3329Department of Biochemistry and Microbiology, North South University, Dhaka, 1229 Bangladesh
| | - Fawzia Tabassum
- grid.412506.40000 0001 0689 2212Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Pritthy Sarker
- grid.443020.10000 0001 2295 3329Department of Biochemistry and Microbiology, North South University, Dhaka, 1229 Bangladesh
| | - A K M Helal Morshed
- grid.207374.50000 0001 2189 3846Pathology and Pathophysiology Major, Academy of Medical Science, Zhengzhou University, Zhengzhou City, 450001 Henan Province People’s Republic of China
| | - Samiur Rahman
- grid.443020.10000 0001 2295 3329Department of Biochemistry and Microbiology, North South University, Dhaka, 1229 Bangladesh
| | - Fatima Fairuz Raisa
- grid.52681.380000 0001 0746 8691Department of Electrical and Electronic Engineering, Brac University, Dhaka, 1212 Bangladesh
| | - Musfiqur Rahman Sakib
- grid.449329.10000 0004 4683 9733Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Abeer Hasan Olive
- grid.442996.40000 0004 0451 6987Department of Pharmacy, East West University, Dhaka, 1212 Bangladesh
| | - Tabassum Islam
- grid.442996.40000 0004 0451 6987Department of Computer Science and Engineering, East West University, Dhaka, 1212 Bangladesh
| | - Ramisha Tahsin
- grid.443020.10000 0001 2295 3329Department of Pharmaceutical Sciences, North South University, Dhaka, 1229 Bangladesh
| | - Shahlaa Zernaz Ahmed
- grid.443020.10000 0001 2295 3329Department of Biochemistry and Microbiology, North South University, Dhaka, 1229 Bangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Mst. Umme Habiba
- Data Science Research Unit, RPG Interface Lab, Jashore, 7400 Bangladesh
| | - Mahbuba Siddiquy
- grid.258151.a0000 0001 0708 1323State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu Province People’s Republic of China
| | - Maryam Jafary
- grid.411705.60000 0001 0166 0922Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, 1416634793 Iran
| |
Collapse
|
37
|
Meischel T, Fritzlar S, Villalón-Letelier F, Smith JM, Brooks AG, Reading PC, Londrigan SL. Caveats of Using Overexpression Approaches to Screen Cellular Host IFITM Proteins for Antiviral Activity. Pathogens 2023; 12:pathogens12040519. [PMID: 37111405 PMCID: PMC10145288 DOI: 10.3390/pathogens12040519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Ectopic protein overexpression in immortalised cell lines is a commonly used method to screen host factors for their antiviral activity against different viruses. However, the question remains as to what extent such artificial protein overexpression recapitulates endogenous protein function. Previously, we used a doxycycline-inducible overexpression system, in conjunction with approaches to modulate the expression of endogenous protein, to demonstrate the antiviral activity of IFITM1, IFITM2, and IFITM3 against influenza A virus (IAV) but not parainfluenza virus-3 (PIV-3) in A549 cells. We now show that constitutive overexpression of the same IFITM constructs in A549 cells led to a significant restriction of PIV-3 infection by all three IFITM proteins. Variable IFITM mRNA and protein expression levels were detected in A549 cells with constitutive versus inducible overexpression of each IFITM. Our findings show that overexpression approaches can lead to levels of IFITM1, IFITM2, and IFITM3 that significantly exceed those achieved through interferon stimulation of endogenous protein. We propose that exceedingly high levels of overexpressed IFITMs may not accurately reflect the true function of endogenous protein, thus contributing to discrepancies when attributing the antiviral activity of individual IFITM proteins against different viruses. Our findings clearly highlight the caveats associated with overexpression approaches used to screen cellular host proteins for antiviral activity.
Collapse
Affiliation(s)
- Tina Meischel
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Svenja Fritzlar
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Fernando Villalón-Letelier
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Jeffrey M. Smith
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Andrew G. Brooks
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Patrick C. Reading
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Sarah L. Londrigan
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
- Correspondence: ; Tel.: +61-3-8344-5708
| |
Collapse
|
38
|
Barakat LA, Elsergany AR, Ghattas MH, Mahsoub N, Bondok RM. Relationship between interferon-induced transmembrane protein 3 and matrix metalloproteinase-9 gene polymorphisms in patients with hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2023; 47:102110. [PMID: 36914067 DOI: 10.1016/j.clinre.2023.102110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/08/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
BACKGROUND Hepatocellular carcinoma originates from hepatocytes as a result of the effects of numerous genetic variations. Interferon-Induced Transmembrane protein 3 (IFITM3) is involved in the processes of cellular differentiation, apoptosis, cell adhesion, and immune cell regulation. Matrix Metalloproteinase-9 (MMP-9) are zinc dependent endopeptidases that cleave extracellular matrix contents and play an important role in the progression of cancer. OBJECTIVE The study aimed to outline the key molecular biology progression in hepatocellular carcinoma and the relationship between hepatocellular cancer and genetic polymorphisms of IFITM3 and MMP-9. METHODS In total 200 patients with hepatocellular carcinoma patients (n=100) and a control group with Hepatitis C virus (n=100) which collected randomly from the EL-Mansoura oncology center during the interval between June 2020 and October 2021. The expression of MMP-9 and the IFITM3 SNP was investigated. MMP-9 gene polymorphisms were estimated by using PCR-RFLP and IFITM3 gene was detected using DNA sequencing, ELISA was used to measure protein levels of MMP-9 and IFITM3. RESULTS The T allele of MMP-9 was more frequent among patients (n=121) than control subjects (n=71). The C allele of IFITM3 was more frequent among patients (n=112) than control subjects (n=83), polymorphisms of the genes linked to a high risk of disease development, patients of MMP-9 (TT genotype), odd ratio (OR) = 2.63, IFITM3 (CC genotype), OR= 2.43. CONCLUSIONS We found that the genetic polymorphisms of MMP-9 and IFITM3 are related to the occurrence and development of hepatocellular carcinoma. This study might be utilized in clinical diagnosis and therapy and to provide a baseline for prevention.
Collapse
Affiliation(s)
- Lamiaa A Barakat
- Department of Biochemistry, Faculty of Science, Port-Said University, Egypt.
| | - Alyaa R Elsergany
- Internal Medicine Department , Oncology Center, Faculty of Medicine, Mansoura University, Egypt
| | - Maivel H Ghattas
- Department of Medical Biochemistry, Faculty of Medicine, Port-Said University, Egypt
| | - Nancy Mahsoub
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Egypt
| | - Rania M Bondok
- Department of Biochemistry, Faculty of Science, Port-Said University, Egypt
| |
Collapse
|
39
|
Insights into the Structure and Function of TRIP-1, a Newly Identified Member in Calcified Tissues. Biomolecules 2023; 13:biom13030412. [PMID: 36979349 PMCID: PMC10046519 DOI: 10.3390/biom13030412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Eukaryotic initiation factor subunit I (EIF3i), also called as p36 or TRIP-1, is a component of the translation initiation complex and acts as a modulator of TGF-β signaling. We demonstrated earlier that this intracellular protein is not only exported to the extracellular matrix via exosomes but also binds calcium phosphate and promotes hydroxyapatite nucleation. To assess other functional roles of TRIP-1, we first examined their phylogeny and showed that it is highly conserved in eukaryotes. Comparing human EIF3i sequence with that of 63 other eukaryotic species showed that more than 50% of its sequence is conserved, suggesting the preservation of its important functional role (translation initiation) during evolution. TRIP-1 contains WD40 domains and predicting its function based on this structural motif is difficult as it is present in a vast array of proteins with a wide variety of functions. Therefore, bioinformatics analysis was performed to identify putative regulatory functions for TRIP-1 by examining the structural domains and post-translational modifications and establishing an interactive network using known interacting partners such as type I collagen. Insight into the function of TRIP-1 was also determined by examining structurally similar proteins such as Wdr5 and GPSß, which contain a ß-propeller structure which has been implicated in the calcification process. Further, proteomic analysis of matrix vesicles isolated from TRIP-1-overexpressing preosteoblastic MC3T3-E1 cells demonstrated the expression of several key biomineralization-related proteins, thereby confirming its role in the calcification process. Finally, we demonstrated that the proteomic signature in TRIP1-OE MVs facilitated osteogenic differentiation of stem cells. Overall, we demonstrated by bioinformatics that TRIP-1 has a unique structure and proteomic analysis suggested that the unique osteogenic cargo within the matrix vesicles facilitates matrix mineralization.
Collapse
|
40
|
Suzuki Y. Interferon-induced restriction of Chikungunya virus infection. Antiviral Res 2023; 210:105487. [PMID: 36657882 DOI: 10.1016/j.antiviral.2022.105487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Chikungunya virus (CHIKV) is an enveloped RNA virus that causes Chikungunya fever (CHIKF), which is transmitted to humans through the bite of infected Aedes mosquitos. Although CHIKVF had been regarded as an endemic disease in limited regions of Africa and Asia, the recent global reemergence of CHIKV heightened awareness of this infectious disease, and CHIKV infection is currently considered an increasing threat to public health. However, no specific drug or licensed vaccine is available for CHIKV infection. As seen in other RNA virus infections, CHIKV triggers the interferon (IFN) response that plays a central role in host defense against pathogens. Experimental evidence has demonstrated that control of CHIVK replication by the IFN response is achieved by antiviral effector molecules called interferon-stimulated genes (ISGs), whose expressions are upregulated by IFN stimulation. This review details the molecular basis of the IFN-mediated suppression of CHIKV, particularly the ISGs restricting CHIKV replication.
Collapse
Affiliation(s)
- Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan.
| |
Collapse
|
41
|
Abstract
Interferon-inducible transmembrane (IFITM) proteins are small homologous proteins that are encoded by the interferon-stimulated genes (ISGs), which can be strongly induced by interferon (IFN) and provide resistance to invasion by a variety of viral pathogens. However, the exact molecular mechanisms underlying this function have remained elusive. The antiviral activity of IFITMs from different species depends on S-palmitoylation at conserved cysteine residues. However, specific enzymes involved in the dynamic palmitoylation cycle of IFITMs, especially depalmitoylase, have not yet been reported. Here, we demonstrate that α/-hydrolase domain-containing 16A (ABHD16A) is a depalmitoylase and a negative regulator of IFITM protein that can catalyze the depalmitoyl reaction of S-palmitoylated IFITM proteins, thereby decreasing their antiviral activities on RNA viruses. Using the acyl-PEGyl exchange gel shift (APEGS) assay, we identified ABHD16A proteins from humans, pigs, and mice that can directly participate in the palmitoylation/depalmitoylation cycles of IFITMs in the constructed abhd16a-/- cells and ABHD16A-overexpressing cells. Furthermore, we showed that ABHD16A functions as a regulator of subcellular localization of IFITM proteins and is related to the immune system. It is tempting to suggest that pharmacological intervention in IFITMs and ABHD16A can be achieved either through controlling their expression or regulating their activity, thereby providing a broad-spectrum therapeutic strategy for animal viral diseases. IMPORTANCE IFITM protein is the cells first line of antiviral defense that blocks early stages of viral replication; the underlying mechanism might be associated with the proper distribution in cells. The palmitoylation/depalmitoylation cycle can dynamically regulate protein localization, stability, and function. This work is the first one that found the critical enzyme that participates in the palmitoylation/depalmitoylation cycle of IFITM, and this type of palmitoyl loss may be an essential regulation mode for balancing the antiviral functions of the IFN pathway. These findings imply that the pharmacological intervention in IFITM and ABHD16A, either through controlling their expression or regulating their activities, could provide a broad-spectrum therapeutic strategy for animal viral diseases and complications linked to interferon elevation.
Collapse
|
42
|
Jiménez-Munguía I, Beaven AH, Blank PS, Sodt AJ, Zimmerberg J. Interferon-induced transmembrane protein 3 (IFITM3) and its antiviral activity. Curr Opin Struct Biol 2022; 77:102467. [PMID: 36306674 DOI: 10.1016/j.sbi.2022.102467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 01/30/2023]
Abstract
Infections caused by enveloped viruses require fusion with cellular membranes for viral genome entry. Viral entry occurs following an interaction of viral and cellular membranes allowing the formation of fusion pores, by which the virus accesses the cytoplasm. Here, we focus on interferon-induced transmembrane protein 3 (IFITM3) and its antiviral activity. IFITM3 is predicted to block or stall viral fusion at an intermediate state, causing viral propagation to fail. After introducing IFITM3, we describe the generalized lipid membrane fusion pathway and how it can be stalled, particularly with respect to IFITM3, and current questions regarding IFITM3's topology, with specific emphasis on IFITM3's amphipathic α-helix (AAH) 59V-68M, which is necessary for the antiviral activity. We report new hydrophobicity and hydrophobic moment calculations for this peptide and a variety of active site peptides from known membrane-remodeling proteins. Finally, we discuss the effects of posttranslational modifications and localization, how IFITM3's AAH may block viral fusion, and possible ramifications of membrane composition.
Collapse
Affiliation(s)
- I Jiménez-Munguía
- Section on Integrative Biophysics Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), MD, USA
| | - A H Beaven
- Unit on Membrane Chemical Physics Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH) MD, USA; Postdoctoral Research Associate Program, National Institute of General Medical Sciences National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - P S Blank
- Section on Integrative Biophysics Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), MD, USA
| | - A J Sodt
- Unit on Membrane Chemical Physics Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH) MD, USA.
| | - J Zimmerberg
- Section on Integrative Biophysics Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), MD, USA.
| |
Collapse
|
43
|
Wang Z, Tuo X, Zhang J, Chai K, Tan J, Qiao W. Antiviral role of IFITM3 in prototype foamy virus infection. Virol J 2022; 19:195. [PMID: 36419065 PMCID: PMC9682733 DOI: 10.1186/s12985-022-01931-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Foamy viruses (FVs) are retroviruses with unique replication strategies that cause lifelong latent infections in their hosts. FVs can also produce foam-like cytopathic effects in vitro. However, the effect of host cytokines on FV replication requires further investigation. Although interferon induced transmembrane (IFITMs) proteins have become the focus of antiviral immune response research due to their broad-spectrum antiviral ability, it remains unclear whether IFITMs can affect FV replication. METHOD In this study, the PFV virus titer was characterized by measuring luciferase activity after co-incubation of PFVL cell lines with the cell culture supernatants (cell-free PFV) or the cells transfected with pcPFV plasmid/infected with PFV (cell-associated PFV). The foam-like cytopathic effects of PFV infected cells was observed to reflect the virus replication. The total RNA of PFV infected cells was extracted, and the viral genome was quantified by Quantitative reverse transcription PCR to detect the PFV entry into target cells. RESULTS In the present study, we demonstrated that IFITM1-3 overexpression inhibited prototype foamy virus (PFV) replication. In addition, an IFITM3 knockdown by small interfering RNA increased PFV replication. We further demonstrated that IFITM3 inhibited PFV entry into host cells. Moreover, IFITM3 also reduced the number of PFV envelope proteins, which was related to IFITM3 promoted envelope degradation through the lysosomal pathway. CONCLUSIONS Taken together, these results demonstrate that IFITM3 inhibits PFV replication by inhibiting PFV entry into target cells and reducing the number of PFV envelope.
Collapse
Affiliation(s)
- Zhaohuan Wang
- grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Xiaopeng Tuo
- grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China ,Present Address: Merck Sharp & Dohme Corp, Building 21, Rongda Road, Chaoyang District, Beijing, 1000102 People’s Republic of China
| | - Junshi Zhang
- grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China ,grid.417031.00000 0004 1799 2675Present Address: Department of Hematology, Oncology Centrer, Tianjin People’s Hospital, No. 190 Jieyuan Road, Hongqiao District, Tianjin, 300121 People’s Republic of China
| | - Keli Chai
- grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China ,grid.417303.20000 0000 9927 0537Present Address: Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002 Jiangsu China
| | - Juan Tan
- grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Wentao Qiao
- grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China
| |
Collapse
|
44
|
Friedlová N, Zavadil Kokáš F, Hupp TR, Vojtěšek B, Nekulová M. IFITM protein regulation and functions: Far beyond the fight against viruses. Front Immunol 2022; 13:1042368. [PMID: 36466909 PMCID: PMC9716219 DOI: 10.3389/fimmu.2022.1042368] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Interferons (IFNs) are important cytokines that regulate immune responses through the activation of hundreds of genes, including interferon-induced transmembrane proteins (IFITMs). This evolutionarily conserved protein family includes five functionally active homologs in humans. Despite the high sequence homology, IFITMs vary in expression, subcellular localization and function. The initially described adhesive and antiproliferative or pro-oncogenic functions of IFITM proteins were diluted by the discovery of their antiviral properties. The large set of viruses that is inhibited by these proteins is constantly expanding, as are the possible mechanisms of action. In addition to their beneficial antiviral effects, IFITM proteins are often upregulated in a broad spectrum of cancers. IFITM proteins have been linked to most hallmarks of cancer, including tumor cell proliferation, therapeutic resistance, angiogenesis, invasion, and metastasis. Recent studies have described the involvement of IFITM proteins in antitumor immunity. This review summarizes various levels of IFITM protein regulation and the physiological and pathological functions of these proteins, with an emphasis on tumorigenesis and antitumor immunity.
Collapse
Affiliation(s)
- Nela Friedlová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Filip Zavadil Kokáš
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Ted R. Hupp
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Bořivoj Vojtěšek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Marta Nekulová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| |
Collapse
|
45
|
Liu XH, Zhou JT, Yan CX, Cheng C, Fan JN, Xu J, Zheng Q, Bai Q, Li Z, Li S, Li X. Single-cell RNA sequencing reveals a novel inhibitory effect of ApoA4 on NAFL mediated by liver-specific subsets of myeloid cells. Front Immunol 2022; 13:1038401. [PMID: 36426356 PMCID: PMC9678944 DOI: 10.3389/fimmu.2022.1038401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/20/2022] [Indexed: 10/24/2023] Open
Abstract
The liver immune microenvironment is a key element in the development of hepatic inflammation in NAFLD. ApoA4 deficiency increases the hepatic lipid burden, insulin resistance, and metabolic inflammation. However, the effect of ApoA4 on liver immune cells and the precise immune cell subsets that exacerbate fatty liver remain elusive. The aim of this study was to profile the hepatic immune cells affected by ApoA4 in NAFL. We performed scRNA-seq on liver immune cells from WT and ApoA4-deficient mice administered a high-fat diet. Immunostaining and qRT-PCR analysis were used to validate the results of scRNA-seq. We identified 10 discrete immune cell populations comprising macrophages, DCs, granulocytes, B, T and NK&NKT cells and characterized their subsets, gene expression profiles, and functional modules. ApoA4 deficiency led to significant increases in the abundance of specific subsets, including inflammatory macrophages (2-Mφ-Cxcl9 and 4-Mφ-Cxcl2) and activated granulocytes (0-Gran-Wfdc17). Moreover, ApoA4 deficiency resulted in higher Lgals3, Ctss, Fcgr2b, Spp1, Cxcl2, and Elane levels and lower Nr4a1 levels in hepatic immune cells. These genes were consistent with human NAFLD-associated marker genes linked to disease severity. The expression of NE and IL-1β in granulocytes and macrophages as key ApoA4 targets were validate in the presence or absence of ApoA4 by immunostaining. The scRNA-seq data analyses revealed reprogramming of liver immune cells resulted from ApoA4 deficiency. We uncovered that the emergence of ApoA4-associated immune subsets (namely Cxcl9+ macrophage, Cxcl2+ macrophage and Wfdc17+ granulocyte), pathways, and NAFLD-related marker genes may promote the development of NAFL. These findings may provide novel therapeutic targets for NAFL and the foundations for further studying the effects of ApoA4 on immune cells in various diseases.
Collapse
Affiliation(s)
- Xiao-Huan Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Precision Medical Institute, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Jin-Ting Zhou
- Key laboratory of Ministry of Public Health for Forensic Sciences, Western China Science & Technology Innovation Harbour, Xi’an, China
| | - Chun-xia Yan
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Pathology, Bio-Evidence Sciences Academy, The Western China Science and Technology Innovation Port, Xi’an Jiaotong University, Xi’an, China
| | - Cheng Cheng
- Key laboratory of Ministry of Public Health for Forensic Sciences, Western China Science & Technology Innovation Harbour, Xi’an, China
| | - Jing-Na Fan
- Key laboratory of Ministry of Public Health for Forensic Sciences, Western China Science & Technology Innovation Harbour, Xi’an, China
| | - Jing Xu
- Division of Endocrinology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Qiangsun Zheng
- Division of Cardiology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Qiang Bai
- Laboratory of Immunophysiology, GIGA Institute, Liège University, Liège, Belgium
| | - Zongfang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Precision Medical Institute, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Shengbin Li
- Key laboratory of Ministry of Public Health for Forensic Sciences, Western China Science & Technology Innovation Harbour, Xi’an, China
| | - Xiaoming Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Precision Medical Institute, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
46
|
Listopad S, Magnan C, Asghar A, Stolz A, Tayek JA, Liu ZX, Morgan TR, Norden-Krichmar TM. Differentiating between liver diseases by applying multiclass machine learning approaches to transcriptomics of liver tissue or blood-based samples. JHEP Rep 2022; 4:100560. [PMID: 36119721 PMCID: PMC9472076 DOI: 10.1016/j.jhepr.2022.100560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/08/2023] Open
Abstract
Background & Aims Liver disease carries significant healthcare burden and frequently requires a combination of blood tests, imaging, and invasive liver biopsy to diagnose. Distinguishing between inflammatory liver diseases, which may have similar clinical presentations, is particularly challenging. In this study, we implemented a machine learning pipeline for the identification of diagnostic gene expression biomarkers across several alcohol-associated and non-alcohol-associated liver diseases, using either liver tissue or blood-based samples. Methods We collected peripheral blood mononuclear cells (PBMCs) and liver tissue samples from participants with alcohol-associated hepatitis (AH), alcohol-associated cirrhosis (AC), non-alcohol-associated fatty liver disease, chronic HCV infection, and healthy controls. We performed RNA sequencing (RNA-seq) on 137 PBMC samples and 67 liver tissue samples. Using gene expression data, we implemented a machine learning feature selection and classification pipeline to identify diagnostic biomarkers which distinguish between the liver disease groups. The liver tissue results were validated using a public independent RNA-seq dataset. The biomarkers were computationally validated for biological relevance using pathway analysis tools. Results Utilizing liver tissue RNA-seq data, we distinguished between AH, AC, and healthy conditions with overall accuracies of 90% in our dataset, and 82% in the independent dataset, with 33 genes. Distinguishing 4 liver conditions and healthy controls yielded 91% overall accuracy in our liver tissue dataset with 39 genes, and 75% overall accuracy in our PBMC dataset with 75 genes. Conclusions Our machine learning pipeline was effective at identifying a small set of diagnostic gene biomarkers and classifying several liver diseases using RNA-seq data from liver tissue and PBMCs. The methodologies implemented and genes identified in this study may facilitate future efforts toward a liquid biopsy diagnostic for liver diseases. Lay summary Distinguishing between inflammatory liver diseases without multiple tests can be challenging due to their clinically similar characteristics. To lay the groundwork for the development of a non-invasive blood-based diagnostic across a range of liver diseases, we compared samples from participants with alcohol-associated hepatitis, alcohol-associated cirrhosis, chronic hepatitis C infection, and non-alcohol-associated fatty liver disease. We used a machine learning computational approach to demonstrate that gene expression data generated from either liver tissue or blood samples can be used to discover a small set of gene biomarkers for effective diagnosis of these liver diseases.
Collapse
Key Words
- AC, alcohol-associated cirrhosis
- AH, alcohol-associated hepatitis
- AKR1B10, aldo-keto reductase family 1 member B10
- BTM, blood transcription module
- Classification
- DE, differential expression
- FPKM, fragments per kilobase of exon model per million reads mapped
- GSEA, gene set-enrichment analysis
- IG, information gain
- IPA, Ingenuity Pathway Analysis
- LR, logistic regression
- LTCDS, liver tissue cell distribution system
- LV, liver tissue
- ML, machine learning
- MMP, matrix metalloproteases
- NAFLD, non-alcohol-associated fatty liver disease
- PBMCs, peripheral blood mononuclear cells
- RNA sequencing
- RNA-seq, RNA sequencing
- SCAHC, Southern California Alcoholic Hepatitis Consortium
- SVM, support vector machine
- TNF, tumor necrosis factor
- alcohol-associated liver disease
- biomarker discovery
- kNN, k-nearest neighbors
Collapse
Affiliation(s)
- Stanislav Listopad
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Christophe Magnan
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Aliya Asghar
- Medicine and Research Services, VA Long Beach Healthcare System, Long Beach, CA 90822, USA
| | - Andrew Stolz
- Division of Gastrointestinal & Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - John A. Tayek
- Division of General Internal Medicine, Harbor-UCLA Medical Center, University of California Los Angeles, Torrance, CA 90509, USA
| | - Zhang-Xu Liu
- Division of Gastrointestinal & Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Timothy R. Morgan
- Medicine and Research Services, VA Long Beach Healthcare System, Long Beach, CA 90822, USA
| | - Trina M. Norden-Krichmar
- Department of Computer Science, University of California, Irvine, CA 92697, USA,Department of Epidemiology and Biostatistics, University of California, Irvine, CA 92697, USA,Corresponding author. Address: Department of Epidemiology and Biostatistics, University of California, Irvine, CA 92697 USA; Tel.: 949-824-8802.
| |
Collapse
|
47
|
Harmon E, Doan A, Bautista-Garrido J, Jung JE, Marrelli SP, Kim GS. Increased Expression of Interferon-Induced Transmembrane 3 (IFITM3) in Stroke and Other Inflammatory Conditions in the Brain. Int J Mol Sci 2022; 23:8885. [PMID: 36012150 PMCID: PMC9408431 DOI: 10.3390/ijms23168885] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Microglia, the resident innate immune cells of the brain, become more highly reactive with aging and diseased conditions. In collaboration with other cell types in brains, microglia can contribute both to worsened outcome following stroke or other neurodegenerative diseases and to the recovery process by changing their phenotype toward reparative microglia. Recently, IFITM3 (a member of the "interferon-inducible transmembrane" family) has been revealed as a molecular mediator between amyloid pathology and neuroinflammation. Expression of IFITM3 in glial cells, especially microglia following stroke, is not well described. Here, we present evidence that ischemic stroke causes an increase in IFITM3 expression along with increased microglial activation marker genes in aged brains. To further validate the induction of IFITM3 in post-stroke brains, primary microglia and microglial-like cells were exposed to a variety of inflammatory conditions, which significantly induced IFITM3 as well as other inflammatory markers. These findings suggest the critical role of IFITM3 in inducing inflammation. Our findings on the expression of IFITM3 in microglia and in aged brains following stroke could establish the basic foundations for the role of IFITM3 in a variety of neurodegenerative diseases, particularly those that are prevalent or enhanced in the aged brain.
Collapse
Affiliation(s)
| | | | | | | | | | - Gab Seok Kim
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
48
|
Gómez-Herranz M, Faktor J, Yébenes Mayordomo M, Pilch M, Nekulova M, Hernychova L, Ball KL, Vojtesek B, Hupp TR, Kote S. Emergent Role of IFITM1/3 towards Splicing Factor (SRSF1) and Antigen-Presenting Molecule (HLA-B) in Cervical Cancer. Biomolecules 2022; 12:1090. [PMID: 36008984 PMCID: PMC9405601 DOI: 10.3390/biom12081090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
The IFITM restriction factors play a role in cancer cell progression through undefined mechanisms. We investigate new protein-protein interactions for IFITM1/3 in the context of cancer that would shed some light on how IFITM1/3 attenuate the expression of targeted proteins such as HLA-B. SBP-tagged IFITM1 protein was used to identify an association of IFITM1 protein with the SRSF1 splicing factor and transporter of mRNA to the ribosome. Using in situ proximity ligation assays, we confirmed a predominant cytosolic protein-protein association for SRSF1 and IFITM1/3. Accordingly, IFITM1/3 interacted with HLA-B mRNA in response to IFNγ stimulation using RNA-protein proximity ligation assays. In addition, RT-qPCR assays in IFITM1/IFITM3 null cells and wt-SiHa cells indicated that HLA-B gene expression at the mRNA level does not account for lowered HLA-B protein synthesis in response to IFNγ. Complementary, shotgun RNA sequencing did not show major transcript differences between IFITM1/IFITM3 null cells and wt-SiHa cells. Furthermore, ribosome profiling using sucrose gradient sedimentation identified a reduction in 80S ribosomal fraction an IFITM1/IFITM3 null cells compared to wild type. It was partially reverted by IFITM1/3 complementation. Our data link IFITM1/3 proteins to HLA-B mRNA and SRSF1 and, all together, our results begin to elucidate how IFITM1/3 catalyze the synthesis of target proteins. IFITMs are widely studied for their role in inhibiting viruses, and multiple studies have associated IFITMs with cancer progression. Our study has identified new proteins associated with IFITMs which support their role in mediating protein expression; a pivotal function that is highly relevant for viral infection and cancer progression. Our results suggest that IFITM1/3 affect the expression of targeted proteins; among them, we identified HLA-B. Changes in HLA-B expression could impact the presentation and recognition of oncogenic antigens on the cell surface by cytotoxic T cells and, ultimately, limit tumor cell eradication. In addition, the role of IFITMs in mediating protein abundance is relevant, as it has the potential for regulating the expression of viral and oncogenic proteins.
Collapse
Affiliation(s)
- Maria Gómez-Herranz
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
- International Centre for Cancer Vaccine Science, University of Gdańsk, 80-822 Gdańsk, Poland
| | - Jakub Faktor
- International Centre for Cancer Vaccine Science, University of Gdańsk, 80-822 Gdańsk, Poland
- Masaryk Memorial Cancer Institute, Research Centre for Applied Molecular Oncology, 65653 Brno, Czech Republic
| | - Marcos Yébenes Mayordomo
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
- International Centre for Cancer Vaccine Science, University of Gdańsk, 80-822 Gdańsk, Poland
| | - Magdalena Pilch
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
- International Centre for Cancer Vaccine Science, University of Gdańsk, 80-822 Gdańsk, Poland
| | - Marta Nekulova
- Masaryk Memorial Cancer Institute, Research Centre for Applied Molecular Oncology, 65653 Brno, Czech Republic
| | - Lenka Hernychova
- Masaryk Memorial Cancer Institute, Research Centre for Applied Molecular Oncology, 65653 Brno, Czech Republic
| | - Kathryn L. Ball
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Borivoj Vojtesek
- Masaryk Memorial Cancer Institute, Research Centre for Applied Molecular Oncology, 65653 Brno, Czech Republic
| | - Ted R. Hupp
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
- International Centre for Cancer Vaccine Science, University of Gdańsk, 80-822 Gdańsk, Poland
- Masaryk Memorial Cancer Institute, Research Centre for Applied Molecular Oncology, 65653 Brno, Czech Republic
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdańsk, 80-822 Gdańsk, Poland
| |
Collapse
|
49
|
Bekkar A, Isorce N, Snäkä T, Claudinot S, Desponds C, Kopelyanskiy D, Prével F, Reverte M, Xenarios I, Fasel N, Teixeira F. Dissection of the macrophage response towards infection by the Leishmania-viral endosymbiont duo and dynamics of the type I interferon response. Front Cell Infect Microbiol 2022; 12:941888. [PMID: 35992159 PMCID: PMC9386148 DOI: 10.3389/fcimb.2022.941888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
Leishmania RNA virus 1 (LRV1) is a double-stranded RNA virus found in some strains of the human protozoan parasite Leishmania, the causative agent of leishmaniasis, a neglected tropical disease. Interestingly, the presence of LRV1 inside Leishmania constitutes an important virulence factor that worsens the leishmaniasis outcome in a type I interferon (IFN)–dependent manner and contributes to treatment failure. Understanding how macrophages respond toward Leishmania alone or in combination with LRV1 as well as the role that type I IFNs may play during infection is fundamental to oversee new therapeutic strategies. To dissect the macrophage response toward infection, RNA sequencing was performed on murine wild-type and Ifnar-deficient bone marrow–derived macrophages infected with Leishmania guyanensis (Lgy) devoid or not of LRV1. Additionally, macrophages were treated with poly I:C (mimetic virus) or with type I IFNs. By implementing a weighted gene correlation network analysis, the groups of genes (modules) with similar expression patterns, for example, functionally related, coregulated, or the members of the same functional pathway, were identified. These modules followed patterns dependent on Leishmania, LRV1, or Leishmania exacerbated by the presence of LRV1. Not only the visualization of how individual genes were embedded to form modules but also how different modules were related to each other were observed. Thus, in the context of the observed hyperinflammatory phenotype associated to the presence of LRV1, it was noted that the biomarkers tumor-necrosis factor α (TNF-α) and the interleukin 6 (IL-6) belonged to different modules and that their regulating specific Src-family kinases were segregated oppositely. In addition, this network approach revealed the strong and sustained effect of LRV1 on the macrophage response and genes that had an early, late, or sustained impact during infection, uncovering the dynamics of the IFN response. Overall, this study contributed to shed light and dissect the intricate macrophage response toward infection by the Leishmania-LRV1 duo and revealed the crosstalk between modules made of coregulated genes and provided a new resource that can be further explored to study the impact of Leishmania on the macrophage response.
Collapse
Affiliation(s)
- Amel Bekkar
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Nathalie Isorce
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Tiia Snäkä
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | | | - Chantal Desponds
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | | | - Florence Prével
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Marta Reverte
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Ioannis Xenarios
- Agora Center, Center Hospitalier Universitaire (CHUV), Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Fasel
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- *Correspondence: Nicolas Fasel, ; Filipa Teixeira,
| | - Filipa Teixeira
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- *Correspondence: Nicolas Fasel, ; Filipa Teixeira,
| |
Collapse
|
50
|
Xu W, Wang Y, Li L, Qu X, Liu Q, Li T, Wu S, Liao M, Jin N, Du S, Li C. Transmembrane domain of IFITM3 is responsible for its interaction with influenza virus HA 2 subunit. Virol Sin 2022; 37:664-675. [PMID: 35809785 PMCID: PMC9583175 DOI: 10.1016/j.virs.2022.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
Interferon-inducible transmembrane protein 3 (IFITM3) inhibits influenza virus infection by blocking viral membrane fusion, but the exact mechanism remains elusive. Here, we investigated the function and key region of IFITM3 in blocking influenza virus entry mediated by hemagglutinin (HA). The restriction of IFITM3 on HA-mediated viral entry was confirmed by pseudovirus harboring HA protein from H5 and H7 influenza viruses. Subcellular co-localization and immunocoprecipitation analyses revealed that IFITM3 partially co-located with the full-length HA protein and could directly interact with HA2 subunit but not HA1 subunit of H5 and H7 virus. Truncated analyses showed that the transmembrane domain of the IFITM3 and HA2 subunit might play an important role in their interaction. Finally, this interaction of IFITM3 was also verified with HA2 subunits from other subtypes of influenza A virus and influenza B virus. Overall, our data demonstrate for the first time a direct interaction between IFITM3 and influenza HA protein via the transmembrane domain, providing a new perspective for further exploring the biological significance of IFITM3 restriction on influenza virus infection or HA-mediated antagonism or escape. IFITM3 interacts with HA2 subunit of hemagglutinin from multiple subtypes of influenza A and B virus. Interaction between IFITM3 and HA2 subunit is mediated by binding to the transmembrane domain of HA. Affinity of IFITM3 intramembrane domain or transmembrane domain to HA2 subunit of H5 and H7 subtype is different. Transmembrane domain of IFITM3 is responsible for its interaction with the HA2 subunit. There are differences in the binding ability of IFITM3 to HA2 from different serotypes.
Collapse
Affiliation(s)
- Wang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yuhang Wang
- Department of Infectious Diseases, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Xiaoyun Qu
- Key Laboratory of Zoonosis of Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Quan Liu
- Key Laboratory of Zoonosis of Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Tiyuan Li
- Department of Infectious Diseases, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Shipin Wu
- Department of Infectious Diseases, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Ming Liao
- Key Laboratory of Zoonosis of Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Ningyi Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China; Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Shouwen Du
- Department of Infectious Diseases, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China.
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| |
Collapse
|