1
|
Appadurai MI, Chaudhary S, Shah A, Natarajan G, Alsafwani ZW, Khan P, Shinde DD, Lele SM, Smith LM, Nasser MW, Batra SK, Ganti AK, Lakshmanan I. ST6GalNAc-I regulates tumor cell sialylation via NECTIN2/MUC5AC-mediated immunosuppression and angiogenesis in non-small cell lung cancer. J Clin Invest 2025; 135:e186863. [PMID: 40371640 PMCID: PMC12077904 DOI: 10.1172/jci186863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/12/2025] [Indexed: 05/16/2025] Open
Abstract
Glycosylation controls immune evasion, tumor progression, and metastasis. However, how tumor cell sialylation regulates immune evasion remains poorly characterized. ST6GalNAc-I, a sialyltransferase that conjugates sialic acid to the glycans in glycoproteins, was overexpressed in an aggressive-type KPA (KrasG12D/+ Trp53R172H/+ Ad-Cre) lung adenocarcinoma (LUAD) model and patient samples. Proteomic and biochemical analysis indicated that ST6GalNAc-I mediated NECTIN2 sialylation in LUAD cells. ST6GalNAc-I-deficient tumor cells cocultured with T cells were more susceptible to T cell-mediated tumor cell killing, indicating a key role for NECTIN2 in T cell dysfunction. Mice injected with St6galnac-I-knockdown syngeneic cells showed reduced lung tumor incidence and Nectin2/Tigit-associated immunosuppression. ST6GalNAc-I-deficient cells exhibited reduced P-DMEA metabolite levels, while administration of P-DMEA promoted LUAD cell proliferation via MUC5AC. MUC5AC interacted and colocalized with PRRC1 in the Golgi, suggesting a potential role for PRRC1 in MUC5AC glycosylation. Mice injected with ST6GalNAc-I/MUC5AC-deficient cells (human LUAD) exhibited reduced lung tumor incidence, angiogenesis, and liver metastases. Mechanistically, ST6GalNAc-I/MUC5AC regulates VCAN-V1, a key factor in tumor matrix remodeling during angiogenesis and metastasis. These findings demonstrate that ST6GalNAc-I-mediated sialylation of NECTIN2/MUC5AC is critical for immune evasion and tumor angiogenesis. Targeting this pathway may prevent LUAD development and/or metastasis.
Collapse
MESH Headings
- Animals
- Humans
- Lung Neoplasms/pathology
- Lung Neoplasms/immunology
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/blood supply
- Mice
- Nectins/genetics
- Nectins/immunology
- Nectins/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/blood supply
- Sialyltransferases/genetics
- Sialyltransferases/immunology
- Sialyltransferases/metabolism
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Neoplasm Proteins/metabolism
- Cell Line, Tumor
- Angiogenesis
Collapse
Affiliation(s)
| | | | - Ashu Shah
- Department of Biochemistry and Molecular Biology
| | | | | | - Parvez Khan
- Department of Biochemistry and Molecular Biology
| | | | | | | | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology
- Fred & Pamela Buffett Cancer Center; and
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology
- Fred & Pamela Buffett Cancer Center; and
| | - Apar Kishor Ganti
- Department of Biochemistry and Molecular Biology
- Fred & Pamela Buffett Cancer Center; and
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Division of Oncology-Hematology, Department of Internal Medicine, VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | | |
Collapse
|
2
|
Singh S, Julia E, Kalita P, Mason C, Ming Q, Lee-Sam A, Gordon S, Buitrago ME, Leung DW, Hwu P, Luca VC. Structure-guided engineering of CD112 receptor variants for optimized immunotherapy. Mol Ther 2025:S1525-0016(25)00311-9. [PMID: 40285356 DOI: 10.1016/j.ymthe.2025.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/13/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025] Open
Abstract
The immune checkpoint protein, CD112 receptor (CD112R, also known as PVRIG), suppresses T and natural killer (NK) cell activation upon binding to tumor-expressed CD112 (Nectin-2) ligands. Here, we determine the structure of the CD112-CD112R complex and use it to guide the engineering of multiple CD112-targeting immunotherapy candidates. The 2.2 Å-resolution crystal structure reveals an antiparallel, lock-and-key binding mode in which CD112R disrupts CD112 homodimerization. Structural analysis informed directed evolution campaigns focused on remodeling the CD112-CD112R interface, resulting in the isolation of CD112R mutants with greatly increased expression and CD112-binding affinity. The highest-affinity variant, CD112RIVE, potently inhibits CD112-CD112R interactions when utilized as a soluble CD112 trap. Furthermore, incorporating CD112R variants into chimeric antigen receptors (CARs) and T cell engagers (TCEs) leads to more robust T cell activation and killing of CD112+ triple-negative breast cancer (TNBC) cells compared with wild-type CD112R. This strategy demonstrates how structural insights can be leveraged to efficiently generate panels of "affinity-tuned" biologics for immunotherapy.
Collapse
Affiliation(s)
- Srishti Singh
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612, USA
| | - Estefania Julia
- Department of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Parismita Kalita
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Charlotte Mason
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Qianqian Ming
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Ansar Lee-Sam
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612, USA
| | - Sumai Gordon
- Department of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Maria Emilia Buitrago
- Department of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Daisy W Leung
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Patrick Hwu
- Department of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Vincent C Luca
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
3
|
Musnier A, Corde Y, Verdier A, Cortes M, Pallandre JR, Dumet C, Bouard A, Keskes A, Omahdi Z, Puard V, Poupon A, Bourquard T. AI-enhanced profiling of phage-display-identified anti-TIM3 and anti-TIGIT novel antibodies. Front Immunol 2025; 16:1499810. [PMID: 40134430 PMCID: PMC11933058 DOI: 10.3389/fimmu.2025.1499810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
Antibody discovery is a lengthy and labor-intensive process, requiring extensive laboratory work to ensure that an antibody demonstrates the appropriate efficacy, production, and safety characteristics necessary for its use as a therapeutic agent in human patients. Traditionally, this process begins with phage display or B-cells isolation campaigns, where affinity serves as the primary selection criterion. However, the initial leads identified through this approach lack sufficient characterization in terms of developability and epitope definition, which are typically performed at late stages. In this study, we present a pipeline that integrates early-stage phage display screening with AI-based characterization, enabling more informed decision-making throughout the selection process. Using immune checkpoints TIM3 and TIGIT as targets, we identified five initial leads exhibiting similar binding properties. Two of these leads were predicted to have poor developability profiles due to unfavorable surface physicochemical properties. Of the remaining three candidates, structural models of the complexes formed with their respective targets were generated for 2: T4 (against TIGIT) and 6E9 (against TIM3). The predicted epitopes allowed us to anticipate a competition with TIM3 and TIGIT binding partners, and to infer the antagonistic functions expected from these antibodies. This study lays the foundations of a multidimensional AI-driven selection of lead candidates derived from high throughput analysis.
Collapse
Affiliation(s)
| | | | | | | | - Jean-René Pallandre
- Etablissement Français du Sang - Bourgogne Franche-Comté (EFS BFC), Plateforme ITAC-UMR1098-RIGHT, Besançon, France
| | | | - Adeline Bouard
- Etablissement Français du Sang - Bourgogne Franche-Comté (EFS BFC), Plateforme ITAC-UMR1098-RIGHT, Besançon, France
| | | | | | | | | | | |
Collapse
|
4
|
Mariuzza RA, Singh P, Karade SS, Shahid S, Sharma VK. Recognition of Self and Viral Ligands by NK Cell Receptors. Immunol Rev 2025; 329:e13435. [PMID: 39748148 PMCID: PMC11695704 DOI: 10.1111/imr.13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Natural killer (NK) cells are essential elements of the innate immune response against tumors and viral infections. NK cell activation is governed by NK cell receptors that recognize both cellular (self) and viral (non-self) ligands, including MHC, MHC-related, and non-MHC molecules. These diverse receptors belong to two distinct structural families, the C-type lectin superfamily and the immunoglobulin superfamily. NK receptors include Ly49s, KIRs, LILRs, and NKG2A/CD94, which bind MHC class I (MHC-I) molecules, and NKG2D, which binds MHC-I paralogs such MICA and ULBP. Other NK receptors recognize tumor-associated antigens (NKp30, NKp44, NKp46), cell-cell adhesion proteins (KLRG1, CD96), or genetically coupled C-type lectin-like ligands (NKp65, NKR-P1). Additionally, cytomegaloviruses have evolved various immunoevasins, such as m157, m12, and UL18, which bind NK receptors and act as decoys to enable virus-infected cells to escape NK cell-mediated lysis. We review the remarkable progress made in the past 25 years in determining structures of representatives of most known NK receptors bound to MHC, MHC-like, and non-MHC ligands. Together, these structures reveal the multiplicity of solutions NK receptors have developed to recognize these molecules, and thereby mediate crucial interactions for regulating NK cytolytic activity by self and viral ligands.
Collapse
Affiliation(s)
- Roy A. Mariuzza
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Pragya Singh
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- College of Natural and Mathematical SciencesUniversity of MarylandCollege ParkMarylandUSA
| | - Sharanbasappa S. Karade
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Salman Shahid
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Vijay Kumar Sharma
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
5
|
Arafat Hossain M. A comprehensive review of immune checkpoint inhibitors for cancer treatment. Int Immunopharmacol 2024; 143:113365. [PMID: 39447408 DOI: 10.1016/j.intimp.2024.113365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Immunology-based therapies are emerging as an effective cancer treatment, using the body's immune system to target tumors. Immune checkpoints, which regulate immune responses to prevent tissue damage and autoimmunity, are often exploited by cancer cells to avoid destruction. The discovery of checkpoint proteins like PD-1/PD-L1 and CTLA-4 was pivotal in developing cancer immunotherapy. Immune checkpoint inhibitors (ICIs) have shown great success, with FDA-approved drugs like PD-1 inhibitors (Nivolumab, Pembrolizumab, Cemiplimab), PD-L1 inhibitors (Atezolizumab, Durvalumab, Avelumab), and CTLA-4 inhibitors (Ipilimumab, Tremelimumab), alongside LAG-3 inhibitor Relatlimab. Research continues on new checkpoints like TIM-3, VISTA, B7-H3, BTLA, and TIGIT. Biomarkers like PDL-1 expression, tumor mutation burden, interferon-γ presence, microbiome composition, and extracellular matrix characteristics play a crucial role in predicting responses to immunotherapy with checkpoint inhibitors. Despite their effectiveness, not all patients experience the same level of benefit, and organ-specific immune-related adverse events (irAEs) such as rash or itching, colitis, diarrhea, hyperthyroidism, and hypothyroidism may occur. Given the rapid advancements in this field and the variability in patient outcomes, there is an urgent need for a comprehensive review that consolidates the latest findings on immune checkpoint inhibitors, covering their clinical status, biomarkers, resistance mechanisms, strategies to overcome resistance, and associated adverse effects. This review aims to fill this gap by providing an analysis of the current clinical status of ICIs, emerging biomarkers, mechanisms of resistance, strategies to enhance therapeutic efficacy, and assessment of adverse effects. This review is crucial to furthering our understanding of ICIs and optimizing their application in cancer therapy.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
6
|
Barragan-Galvez JC, Hernandez-Flores A, Lopez-Ortega O, Rodriguez-Alvarez AA, Maravillas-Montero JL, Ortiz-Navarrete V. The constant domain of CRTAM is essential for high-affinity interaction with Nectin-like 2. Biochem Biophys Rep 2024; 39:101813. [PMID: 39263316 PMCID: PMC11388666 DOI: 10.1016/j.bbrep.2024.101813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
CRTAM (Class-I MHC restricted T cell-associated molecule) is a member of the Nectin-like family, composed of two extracellular domains, one constant domain (IgC) and another variable domain (IgV), expressed in activated CD8 T cells, epithelial cells, natural killer (NK) cells, and in a subpopulation of CD4 T cells. CRTAM recognizes the ligand Nectin-like 2 (Necl2) through the IgV domain. However, the role of the IgC domain during this ligand recognition has yet to be understood. In this study, we show the purification of soluble-folded Ig domains of CRTAM, and we demonstrate that the IgC domain forms a homodimer in solution via hydrophobic interactions. By surface plasmon resonance (SPR) analysis, we also demonstrate that CRTAM binds to Necl2 with an affinity of 2.16 nM. In conclusion, CRTAM's IgC is essential for a high-affinity interaction with Necl-2.
Collapse
Affiliation(s)
- Juan Carlos Barragan-Galvez
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, 36200, Mexico
| | | | - Orestes Lopez-Ortega
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, 75015, Paris, France
| | | | - Jose Luis Maravillas-Montero
- Research Support Network, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Vianney Ortiz-Navarrete
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
7
|
Murakami K, Ganguly S. The Nectin family ligands, PVRL2 and PVR, in cancer immunology and immunotherapy. Front Immunol 2024; 15:1441730. [PMID: 39156900 PMCID: PMC11327090 DOI: 10.3389/fimmu.2024.1441730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
In recent years, immunotherapy has emerged as a crucial component of cancer treatment. However, its efficacy remains limited across various cancer types, highlighting unmet needs. Poliovirus receptor-related 2 (PVRL2) and Poliovirus receptor (PVR) are members of the Nectin and Nectin-like Molecules family, known for their role as cell-cell adhesion molecules. With the development of immunotherapy, their involvement in tumor immune mechanisms as immune checkpoint factors has garnered significant attention. PVRL2 and PVR are predominantly expressed on tumor cells and antigen-presenting cells, binding to PVRIG and TIGIT, respectively, which are primarily found on T and NK cells, thereby suppressing antitumor immunity. Notably, gynecological cancers such as ovarian and endometrial cancers exhibit high expression levels of PVRL2 and PVR, with similar trends observed in various other solid and hematologic tumors. Targeting these immune checkpoint pathways offers a promising therapeutic avenue, potentially in combination with existing treatments. However, the immunomodulatory mechanism involving these bindings, known as the DNAM-1 axis, is complex, underscoring the importance of understanding it for developing novel therapies. This article comprehensively reviews the immunomodulatory mechanisms centered on PVRL2 and PVR, elucidating their implications for various cancer types.
Collapse
Affiliation(s)
| | - Sudipto Ganguly
- The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Hu S, Han P, Wang M, Cao X, Liu H, Zhang S, Zhang S, Liu J, Han Y, Xiao J, Chen Q, Miao K, Qi J, Tan S, Gao GF, Wang H. Structural basis for the immune recognition and selectivity of the immune receptor PVRIG for ligand Nectin-2. Structure 2024; 32:918-929.e4. [PMID: 38626767 DOI: 10.1016/j.str.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 06/27/2024]
Abstract
Nectin and nectin-like (Necl) co-receptor axis, comprised of receptors DNAM-1, TIGIT, CD96, PVRIG, and nectin/Necl ligands, is gaining prominence in immuno-oncology. Within this axis, the inhibitory receptor PVRIG recognizes Nectin-2 with high affinity, but the underlying molecular basis remains unknown. By determining the crystal structure of PVRIG in complex with Nectin-2, we identified a unique CC' loop in PVRIG, which complements the double-lock-and-key binding mode and contributes to its high affinity for Nectin-2. The association of the corresponding charged residues in the F-strands explains the ligand selectivity of PVRIG toward Nectin-2 but not for Necl-5. Moreover, comprehensive comparisons of the binding capacities between co-receptors and ligands provide innovative insights into the intra-axis immunoregulatory mechanism. Taken together, these findings broaden our understanding of immune recognition and regulation mediated by nectin/Necl co-receptors and provide a rationale for the development of immunotherapeutic strategies targeting the nectin/Necl axis.
Collapse
Affiliation(s)
- Songtao Hu
- Institutes of Physical Science and Information Technology, Anhui University, Anhui 230601, China; Cancer Center, Faculty of Health Sciences, University of Macau, Taipa Macau SAR, China; Beijing Life Science Academy, Beijing 102200, China
| | - Pu Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Meiyu Wang
- Institutes of Physical Science and Information Technology, Anhui University, Anhui 230601, China
| | - Xiaoqing Cao
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101125, China
| | - Hao Liu
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa Macau SAR, China
| | - Shuailong Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Anhui 230601, China
| | - Shuijun Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yi Han
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101125, China
| | - Jinhe Xiao
- Department of Prevention and Treatment of Breast Disease, Haidian District Maternal and Child Health Care Hospital, Beijing 100080, China
| | - Qiang Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa Macau SAR, China
| | - Kai Miao
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa Macau SAR, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Shuguang Tan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Han Wang
- Beijing Life Science Academy, Beijing 102200, China; Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100080, China.
| |
Collapse
|
9
|
Tarhini AA, Hedges D, Tan AC, Rodriguez P, Sukrithan V, Ratan A, McCarter MTD, Carpten J, Colman H, Ikeguchi AP, Puzanov I, Arnold SM, Churchman ML, Hwu P, Conejo-Garcia JR, Dalton WS, Weiner GJ, Eljilany I. Differences in Co-Expression of T Cell Co-Inhibitory and Co-Stimulatory Molecules with PD-1 Across Different Human Cancers. JOURNAL OF ONCOLOGY RESEARCH AND THERAPY 2024; 9:10224. [PMID: 40083977 PMCID: PMC11906192 DOI: 10.29011/2574-710x.10224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Purpose The promise of immune checkpoint inhibitor (ICI) therapy underlines the importance of comprehensively investigating the rationale for combinations with diverse immune modulators across different cancer types. Given the progress made with PD1 blockade to date, we examined mRNA co-expression levels of PD-1 with 13 immune checkpoints, including co-inhibitory receptors (LAG3, CTLA4, PD-L1, TIGIT, TIM3, VISTA, BTLA) and co-stimulatory molecules (CD28, OX40, GITR, CD137, CD27, HVEM), using RNA-Seq by Expectation-Maximization (RSEM). Methods We analyzed real-world clinical and transcriptomic data from the Total Cancer Care Protocol (NCT03977402) and Avatar® project of patients with cancer treated within the Oncology Research Information Exchange Network (ORIEN) network. Using anti-PD1 as a backbone, we intended to investigate the rationale for combinations in different cancers. Pearson's R coefficients and associated P-values were calculated using SciPy 1.7.0. Results The co-expression of PD1 with 13 immune checkpoints and PD-L1 varies across selected malignancies included. In cutaneous melanoma, PD1 expression correlated significantly with four co-inhibitory receptors (LAG3, TIM3, TIGIT, VISTA) and one co-stimulatory molecule (CD137). In urothelial carcinoma, PD1 expression significantly correlated with four co-inhibitory (TIGIT, CTLA4, LAG3, VISTA) and four co-stimulatory (OX40, CD27, CD137, HVEM) molecules. In pancreatic adenocarcinoma, only CD28 showed a significant correlation with PD1 expression. No significant correlations with PD1 expression were found in the ovarian cancer cohort. Notably, melanoma and urothelial carcinoma exhibited a dominant co-expression of co-inhibitory molecules with PD1, indicative of exhausted T cells, in contrast to the co-stimulatory molecule dominance in ovarian and pancreatic cancers, suggesting less differentiated T cells. Conclusions Our findings highlight the potential for diverse combination strategies in immunotherapy, particularly with PD1 blockade, across various cancers.
Collapse
Affiliation(s)
- Ahmad A Tarhini
- Departments of Cutaneous Oncology and Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | - Aik Choon Tan
- Huntsman Cancer Institute, Salt Lake City, UT 84132, USA
| | - Paulo Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Vineeth Sukrithan
- Department of Internal Medicine, Division of Medical Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Aakrosh Ratan
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | | | - John Carpten
- USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Howard Colman
- Huntsman Cancer Institute, Salt Lake City, UT 84132, USA
- Department of Neurosurgery, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Alexandra P Ikeguchi
- Oklahoma University Health Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Susanne M Arnold
- University of Kentucky Markey Cancer Center, Lexington, KY 40536, USA
| | | | - Patrick Hwu
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | - George J Weiner
- Department of Internal Medicine, Carver College of Medicine, University of Iowa Health Care, Iowa City, IA 52242, USA
| | - Islam Eljilany
- Departments of Cutaneous Oncology and Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
10
|
Zhang H, Lu J, Dong Q, Wang G, Wang X. CD112 is an epithelial-to-mesenchymal transition-related and immunological biomarker in pan-cancer. Transl Cancer Res 2024; 13:2387-2407. [PMID: 38881943 PMCID: PMC11170512 DOI: 10.21037/tcr-23-2258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/31/2024] [Indexed: 06/18/2024]
Abstract
Background The nectin adhesion molecule CD112, an important component of tumor progression, belongs to the nectin family. However, a comprehensive evaluation of its clinical relevance and mechanism in various cancers is yet to be conducted. Methods This investigation fully examined the relationship between prognosis and CD112 expression. We clarified the function of CD112 in tumor immunity by employing The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. This involved examining its connections to tumor mutation burden (TMB), DNA methylation, tumor immune invasion, mismatch repair (MMR), microsatellite instability (MSI), and common immune checkpoint inhibitors (ICIs). Additionally, the impact of CD112 knockdown on cell function was examined in colorectal cancer (CRC) cell lines. Results In the current study, we found malignant tissues express high levels of CD112, which was related to TMB, MMR, MSI, and DNA methylation. Survival analysis indicated that patients with high CD112 expression had an unfavorable prognosis more frequently. In addition, CD112 expression was negatively associated with infiltration levels of CD4 positive (CD4+) T cells, CD8 positive (CD8+) T cells, and T cells. Western blotting and pathway enrichment analysis showed that CD112 is significantly linked to epithelial-to-mesenchymal transition (EMT). Additionally, CRC cells migrate and proliferate less when CD112 was knocked down. CD112 expression was found to be negatively associated with anti-programmed cell death protein 1 (PD-1) and anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) treatment outcomes in patients. Conclusions CD112 may act as a possible prognostic marker in immune therapy and may stimulate tumor growth by upregulating the EMT pathway.
Collapse
Affiliation(s)
- Haotian Zhang
- Medical School of Nantong University, Nantong, China
| | - Jing Lu
- Medical School of Nantong University, Nantong, China
| | - Qingyu Dong
- Medical School of Nantong University, Nantong, China
| | - Guihua Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xudong Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
11
|
Sun J, Zhang X, Xue L, Cheng L, Zhang J, Chen X, Shen Z, Li K, Wang L, Huang C, Song J. Structural insights into the unique pH-responsive characteristics of the anti-TIGIT therapeutic antibody Ociperlimab. Structure 2024; 32:550-561.e5. [PMID: 38460520 DOI: 10.1016/j.str.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/28/2023] [Accepted: 02/13/2024] [Indexed: 03/11/2024]
Abstract
TIGIT is mainly expressed on T cells and is an inhibitory checkpoint receptor that binds to its ligand PVR in the tumor microenvironment. Anti-TIGIT monoclonal antibodies (mAbs) such as Ociperlimab and Tiragolumab block the TIGIT-PVR interaction and are in clinical development. However, the molecular blockade mechanism of these mAbs remains elusive. Here, we report the crystal structures of TIGIT in complex with Ociperlimab_Fab and Tiragolumab_Fab revealing that both mAbs bind TIGIT with a large steric clash with PVR. Furthermore, several critical epitopic residues are identified. Interestingly, the binding affinity of Ociperlimab toward TIGIT increases approximately 17-fold when lowering the pH from 7.4 to 6.0. Our structure shows a strong electrostatic interaction between ASP103HCDR3 and HIS76TIGIT explaining the pH-responsive mechanism of Ociperlimab. In contrast, Tiragolumab does not show an acidic pH-dependent binding enhancement. Our results provide valuable information that could help to improve the efficacy of therapeutic antibodies for cancer treatment.
Collapse
MESH Headings
- Hydrogen-Ion Concentration
- Humans
- Models, Molecular
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/chemistry
- Crystallography, X-Ray
- Protein Binding
- Antibodies, Monoclonal/chemistry
- Binding Sites
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/immunology
Collapse
Affiliation(s)
- Jian Sun
- Department of Biologics, BeiGene (Beijing) Co., Ltd, Beijing, China
| | - Xiangxiang Zhang
- Department of Biologics, BeiGene (Beijing) Co., Ltd, Beijing, China
| | - Liu Xue
- Department of Biologics, BeiGene (Beijing) Co., Ltd, Beijing, China
| | - Liang Cheng
- Department of Biologics, BeiGene (Beijing) Co., Ltd, Beijing, China
| | - Jing Zhang
- Department of Biologics, BeiGene (Beijing) Co., Ltd, Beijing, China
| | - Xin Chen
- Department of Translational Science, BeiGene (Beijing) Co., Ltd, Beijing, China
| | - Zhirong Shen
- Department of Translational Science, BeiGene (Beijing) Co., Ltd, Beijing, China
| | - Kang Li
- Department of Biologics, BeiGene (Beijing) Co., Ltd, Beijing, China
| | - Lai Wang
- Department of Biology, BeiGene (Beijing) Co., Ltd, Beijing, China
| | - Chichi Huang
- Department of Biologics, BeiGene (Beijing) Co., Ltd, Beijing, China
| | - Jing Song
- Department of Biologics, BeiGene (Beijing) Co., Ltd, Beijing, China.
| |
Collapse
|
12
|
Jiang S, Wang W, Yang Y. TIGIT: A potential immunotherapy target for gynecological cancers. Pathol Res Pract 2024; 255:155202. [PMID: 38367600 DOI: 10.1016/j.prp.2024.155202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Gynecological cancer represents a significant global health challenge, and conventional treatment modalities have demonstrated limited efficacy. However, recent investigations into immune checkpoint pathways have unveiled promising opportunities for enhancing the prognosis of patients with cancer. Among these pathways, TIGIT has surfaced as a compelling candidate owing to its capacity to augment the immune function of NK and T cells through blockade, thereby yielding improved anti-tumor effects and prolonged patient survival. Global clinical trials exploring TIGIT blockade therapy have yielded promising preliminary findings. Nevertheless, further research is imperative to comprehensively grasp the potential of TIGIT-based immunotherapy in optimizing therapeutic outcomes for gynecological cancers. This review primarily delineates the regulatory network and immunosuppressive mechanism of TIGIT, expounds upon its expression and therapeutic potential in three major gynecological cancers, and synthesizes the clinical trials of TIGIT-based cancer immunotherapy. Such insights aim to furnish novel perspectives and serve as reference points for subsequent research and clinical application targeting TIGIT in gynecological cancers.
Collapse
Affiliation(s)
- Siyue Jiang
- The third People's Hospital of Suining, Suining, Sichuan, China
| | - Wenhua Wang
- First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, Gansu, China.
| |
Collapse
|
13
|
Iwamoto N, Sasaki J, Ohno S, Aoki K, Usui Y, Inuki S, Ohno H, Oishi S. Synthetic studies on the extracellular domain of the T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) using Trt-K 10 solubilizing tags. Bioorg Med Chem 2024; 99:117585. [PMID: 38219557 DOI: 10.1016/j.bmc.2023.117585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
The T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) is an inhibitory immunoreceptor expressed on lymphocytes that serves as a promising target for cancer immunotherapy. In this study, facile synthetic protocols to produce the extracellular domain of TIGIT were investigated for applications of TIGIT in mirror-image screening. During the synthesis via sequential native chemical ligations, we encountered problems with significantly poor solubility of the ligated products. Introducing trityl-type solubilizing auxiliaries, which also functioned as temporary protecting groups for cysteine residues, facilitated a flexible order of ligations and efficient purification protocols. After refolding under appropriate conditions, the synthetic TIGIT showed a sufficient affinity toward its target ligand CD155.
Collapse
Affiliation(s)
- Naoya Iwamoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jumpei Sasaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Saya Ohno
- Laboratory of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Keisuke Aoki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Laboratory of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Yusuke Usui
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Laboratory of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan.
| |
Collapse
|
14
|
Xie B, Olalekan S, Back R, Ashitey NA, Eckart H, Basu A. Exploring the tumor micro-environment in primary and metastatic tumors of different ovarian cancer histotypes. Front Cell Dev Biol 2024; 11:1297219. [PMID: 38328306 PMCID: PMC10847324 DOI: 10.3389/fcell.2023.1297219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/06/2023] [Indexed: 02/09/2024] Open
Abstract
Ovarian cancer is a highly heterogeneous disease consisting of at least five different histological subtypes with varying clinical features, cells of origin, molecular composition, risk factors, and treatments. While most single-cell studies have focused on High grade serous ovarian cancer, a comprehensive landscape of the constituent cell types and their interactions within the tumor microenvironment are yet to be established in the different ovarian cancer histotypes. Further characterization of tumor progression, metastasis, and various histotypes are also needed to connect molecular signatures to pathological grading for personalized diagnosis and tailored treatment. In this study, we leveraged high-resolution single-cell RNA sequencing technology to elucidate the cellular compositions on 21 solid tumor samples collected from 12 patients with six ovarian cancer histotypes and both primary (ovaries) and metastatic (omentum, rectum) sites. The diverse collection allowed us to deconstruct the histotypes and tumor site-specific expression patterns of cells in the tumor, and identify key marker genes and ligand-receptor pairs that are active in the ovarian tumor microenvironment. Our findings can be used in improving precision disease stratification and optimizing treatment options.
Collapse
Affiliation(s)
- Bingqing Xie
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, United States
| | | | | | | | | | - Anindita Basu
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
15
|
Rahimi A, Malakoutikhah Z, Rahimmanesh I, Ferns GA, Nedaeinia R, Ishaghi SMM, Dana N, Haghjooy Javanmard S. The nexus of natural killer cells and melanoma tumor microenvironment: crosstalk, chemotherapeutic potential, and innovative NK cell-based therapeutic strategies. Cancer Cell Int 2023; 23:312. [PMID: 38057843 DOI: 10.1186/s12935-023-03134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
The metastasis of melanoma cells to regional lymph nodes and distant sites is an important contributor to cancer-related morbidity and mortality among patients with melanoma. This intricate process entails dynamic interactions involving tumor cells, cellular constituents, and non-cellular elements within the microenvironment. Moreover, both microenvironmental and systemic factors regulate the metastatic progression. Central to immunosurveillance for tumor cells are natural killer (NK) cells, prominent effectors of the innate immune system with potent antitumor and antimetastatic capabilities. Recognizing their pivotal role, contemporary immunotherapeutic strategies are actively integrating NK cells to combat metastatic tumors. Thus, a meticulous exploration of the interplay between metastatic melanoma and NK cells along the metastatic cascade is important. Given the critical involvement of NK cells within the melanoma tumor microenvironment, this comprehensive review illuminates the intricate relationship between components of the melanoma tumor microenvironment and NK cells, delineating their multifaceted roles. By shedding light on these critical aspects, this review advocates for a deeper understanding of NK cell dynamics within the melanoma context, driving forward transformative strategies to combat this cancer.
Collapse
Affiliation(s)
- Azadeh Rahimi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Malakoutikhah
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Hibler W, Merlino G, Yu Y. CAR NK Cell Therapy for the Treatment of Metastatic Melanoma: Potential & Prospects. Cells 2023; 12:2750. [PMID: 38067178 PMCID: PMC10706172 DOI: 10.3390/cells12232750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Melanoma is among the most lethal forms of cancer, accounting for 80% of deaths despite comprising just 5% of skin cancer cases. Treatment options remain limited due to the genetic and epigenetic mechanisms associated with melanoma heterogeneity that underlie the rapid development of secondary drug resistance. For this reason, the development of novel treatments remains paramount to the improvement of patient outcomes. Although the advent of chimeric antigen receptor-expressing T (CAR-T) cell immunotherapies has led to many clinical successes for hematological malignancies, these treatments are limited in their utility by their immune-induced side effects and a high risk of systemic toxicities. CAR natural killer (CAR-NK) cell immunotherapies are a particularly promising alternative to CAR-T cell immunotherapies, as they offer a more favorable safety profile and have the capacity for fine-tuned cytotoxic activity. In this review, the discussion of the prospects and potential of CAR-NK cell immunotherapies touches upon the clinical contexts of melanoma, the immunobiology of NK cells, the immunosuppressive barriers preventing endogenous immune cells from eliminating tumors, and the structure and design of chimeric antigen receptors, then finishes with a series of proposed design innovations that could improve the efficacy CAR-NK cell immunotherapies in future studies.
Collapse
Affiliation(s)
| | | | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Nersesian S, Carter EB, Lee SN, Westhaver LP, Boudreau JE. Killer instincts: natural killer cells as multifactorial cancer immunotherapy. Front Immunol 2023; 14:1269614. [PMID: 38090565 PMCID: PMC10715270 DOI: 10.3389/fimmu.2023.1269614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells integrate heterogeneous signals for activation and inhibition using germline-encoded receptors. These receptors are stochastically co-expressed, and their concurrent engagement and signaling can adjust the sensitivity of individual cells to putative targets. Against cancers, which mutate and evolve under therapeutic and immunologic pressure, the diversity for recognition provided by NK cells may be key to comprehensive cancer control. NK cells are already being trialled as adoptive cell therapy and targets for immunotherapeutic agents. However, strategies to leverage their naturally occurring diversity and agility have not yet been developed. In this review, we discuss the receptors and signaling pathways through which signals for activation or inhibition are generated in NK cells, focusing on their roles in cancer and potential as targets for immunotherapies. Finally, we consider the impacts of receptor co-expression and the potential to engage multiple pathways of NK cell reactivity to maximize the scope and strength of antitumor activities.
Collapse
Affiliation(s)
- Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Emily B. Carter
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stacey N. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | - Jeanette E. Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
18
|
Ganguli N, Kumari P, Dash S, Samanta D. Molecular and structural basis of TIGIT: Nectin-4 interaction, a recently discovered pathway crucial for cancer immunotherapy. Biochem Biophys Res Commun 2023; 677:31-37. [PMID: 37542773 DOI: 10.1016/j.bbrc.2023.07.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
TIGIT (T cell immunoglobulin and ITIM domain) is an inhibitory receptor expressed on T and NK cells that interact with cell surface glycoprotein belonging to the nectin and nectin-like family of cell adhesion molecules, particularly nectin-2 and nectin-like 5 (PVR). Nectin-4 has been recently identified as a novel ligand for TIGIT and the interaction among them inhibits NK cell cytotoxicity. In this study, biophysical experiments were conducted to decipher the mechanism of this novel interaction, followed by structure-guided mutagenesis studies to map the nectin-4 binding interface on TIGIT. Using surface plasmon resonance, we deduced that TIGIT recognizes the membrane distal ectodomain of nectin-4 and the interaction is weaker than the well-characterized TIGIT: nectin-2 interaction. Deciphering the molecular basis of this newly identified interaction between TIGIT and nectin-4 will provide us important insight into the manipulation of this inhibitory signaling pathway, especially targeting cancer cells overexpressing nectin-4 that evade the immune surveillance of the body.
Collapse
Affiliation(s)
- Namrata Ganguli
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Puja Kumari
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Sagarika Dash
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
19
|
Zeven K, De Groof TW, Ceuppens H, Awad RM, Ertveldt T, de Mey W, Meeus F, Raes G, Breckpot K, Devoogdt N. Development and evaluation of nanobody tracers for noninvasive nuclear imaging of the immune-checkpoint TIGIT. Front Immunol 2023; 14:1268900. [PMID: 37799715 PMCID: PMC10548220 DOI: 10.3389/fimmu.2023.1268900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction T cell Ig and ITIM domain receptor (TIGIT) is a next-generation immune checkpoint predominantly expressed on activated T cells and NK cells, exhibiting an unfavorable prognostic association with various malignancies. Despite the emergence of multiple TIGIT-blocking agents entering clinical trials, only a fraction of patients responded positively to anti-TIGIT therapy. Consequently, an urgent demand arises for noninvasive techniques to quantify and monitor TIGIT expression, facilitating patient stratification and enhancing therapeutic outcomes. Small antigen binding moieties such as nanobodies, are promising candidates for such tracer development. Methods We generated a panel of anti-human or anti-mouse TIGIT nanobodies from immunized llamas. In addition, we designed a single-chain variable fragment derived from the clinically tested monoclonal antibody Vibostolimab targeting TIGIT, and assessed its performance alongside the nanobodies. In vitro characterization studies were performed, including binding ability and affinity to cell expressed or recombinant TIGIT. After Technetium-99m labeling, the nanobodies and the single-chain variable fragment were evaluated in vivo for their ability to detect TIGIT expression using SPECT/CT imaging, followed by ex vivo biodistribution analysis. Results Nine nanobodies were selected for binding to recombinant and cell expressed TIGIT with low sub-nanomolar affinities and are thermostable. A six-fold higher uptake in TIGIT-overexpressing tumor was demonstrated one hour post- injection with Technetium-99m labeled nanobodies compared to an irrelevant control nanobody. Though the single-chain variable fragment exhibited superior binding to TIGIT-expressing peripheral blood mononuclear cells in vitro, its in vivo behavior yielded lower tumor-to-background ratios at one hour post- injection, indicating that nanobodies are better suited for in vivo imaging than the single-chain variable fragment. Despite the good affinity, high specificity and on-target uptake in mice in this setting, imaging of TIGIT expression on tumor- infiltrating lymphocytes within MC38 tumors remained elusive. This is likely due to the low expression levels of TIGIT in this model. Discussion The excellent affinity, high specificity and rapid on-target uptake in mice bearing TIGIT- overexpressing tumors showed the promising diagnostic potential of nanobodies to noninvasively image high TIGIT expression within the tumor. These findings hold promise for clinical translation to aid patient selection and improve therapy response.
Collapse
Affiliation(s)
- Katty Zeven
- Laboratory of Molecular Imaging and Therapy (MITH), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Timo W.M. De Groof
- Laboratory of Molecular Imaging and Therapy (MITH), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Hannelore Ceuppens
- Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Thomas Ertveldt
- Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Wout de Mey
- Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Fien Meeus
- Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Geert Raes
- Laboratory for Cellular and Molecular Immunology (CMIM), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Myeloid Cell Immunology Lab, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Nick Devoogdt
- Laboratory of Molecular Imaging and Therapy (MITH), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
20
|
Luo L, Lin C, Wang P, Cao D, Lin Y, Wang W, Zhao Y, Shi Y, Gao Z, Kang X, Zhang Y, Wang S, Wang J, Xu M, Liu H, Liu SL. Combined Use of Immune Checkpoint Inhibitors and Phytochemicals as a Novel Therapeutic Strategy against Cancer. J Cancer 2023; 14:2315-2328. [PMID: 37576404 PMCID: PMC10414047 DOI: 10.7150/jca.85966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has dramatically changed cancer treatment, opening novel opportunities to cure malignant diseases. To date, most prevalently targeted immune checkpoints are programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), with many others being under extensive investigations. However, according to available data, only a fraction of patients may respond to ICI therapy. Additionally, this therapy may cause severe adverse immune-related side effects, such as diarrhea, headache, muscle weakness, rash, hepatitis and leucopenia, although most of them are not fatal, they can affect the patient's treatment outcome and quality of life. On the other hand, growing evidence has shown that phytochemicals with anticancer effects may combine ICI therapy to augment the safety and effectiveness of the treatment against cancer while reducing the adverse side effects. In this review, we summarize the state of art in the various experiments and clinical application of ICIs plus phytochemicals, with a focus on their combined use as a novel therapeutic strategy to cure cancer.
Collapse
Affiliation(s)
- LingJie Luo
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Caiji Lin
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Pengfei Wang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Danli Cao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yiru Lin
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Wenxue Wang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yufan Zhao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yongwei Shi
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Zixiang Gao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Xin Kang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yuanyuan Zhang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Shuang Wang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Jiaxing Wang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Mengzhi Xu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Huidi Liu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada
| | - Shu-Lin Liu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada
| |
Collapse
|
21
|
Zhao J, Li L, Yin H, Feng X, Lu Q. TIGIT: An emerging immune checkpoint target for immunotherapy in autoimmune disease and cancer. Int Immunopharmacol 2023; 120:110358. [PMID: 37262959 DOI: 10.1016/j.intimp.2023.110358] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
Immune checkpoints (ICs), also referred to as co-inhibitory receptors (IRs), are essential for regulating immune cell function to maintain tolerance and prevent autoimmunity. IRs, such as programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), have been shown to possess immunoregulatory properties that are relevant to various autoimmune diseases and cancers. Tumors are characterized by suppressive microenvironments with elevated levels of IRs on tumor-infiltrating lymphocytes (TILs). Therefore, IR blockade has shown great potential in cancer therapy and has even been approved for clinical use. However, other IRs, including cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT), may also represent promising targets for anti-tumor therapy. The increasing importance of IRs in autoimmune diseases has become apparent. In mouse models, TIGIT pathway blockade or TIGIT deficiency has been linked to T cell overactivation and proliferation, exacerbation of inflammation, and increased susceptibility to autoimmune disorders. On the other hand, TIGIT activation has been shown to alleviate autoimmune disorders in murine models. Given these findings, we examine the effects of TIGIT and its potential as a therapeutic target for both autoimmune diseases and cancers. It is clear that TIGIT represents an emerging and exciting target for immunotherapy in these contexts.
Collapse
Affiliation(s)
- Junpeng Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciencs, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Liming Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciencs, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Huiqi Yin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciencs, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xiwei Feng
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciencs, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciencs, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
22
|
Esparvarinha M, Madadi S, Aslanian-Kalkhoran L, Nickho H, Dolati S, Pia H, Danaii S, Taghavi S, Yousefi M. Dominant immune cells in pregnancy and pregnancy complications: T helper cells (TH1/TH2, TH17/Treg cells), NK cells, MDSCs, and the immune checkpoints. Cell Biol Int 2023; 47:507-519. [PMID: 36335635 DOI: 10.1002/cbin.11955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
Abstract
Pregnancy problems including recurrent pregnancy loss, repeated implantation failure and pre-eclampsia are common problems in the reproductive ages. Different reasons such as genetic, immunological, and environmental agents and also infections could develop these complications. In those cases in which the cause of the abortion is diagnosed, the chance of a successful pregnancy is increased by eliminating defective factors. However, in patients with unknown causes, there may be an imbalance in immune cells pattern. As a matter of fact, an inappropriate immune response is often associated with a failed pregnancy. Hence, the focus of treatment is to increase tolerance, not to suppress maternal immune system. These findings are linked to an elevated number of Treg cells and immune checkpoints through normal pregnancy. The present review discusses the balance of myeloid-derived suppressor cells, natural killer cells, T cells, and immune checkpoints, and also targeting them to maintain pregnancy and prevent associated complications.
Collapse
Affiliation(s)
- Mojgan Esparvarinha
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Madadi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lida Aslanian-Kalkhoran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Nickho
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helen Pia
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Centre, Eastern Azerbaijan branch of ACECR, Tabriz, Iran
| | - Simin Taghavi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Rocco D, Della Gravara L, Battiloro C, Palazzolo G, Gridelli C. Recently approved and emerging monoclonal antibody immune checkpoint inhibitors for the treatment of advanced non-small cell lung cancer. Expert Opin Biol Ther 2023; 23:261-268. [PMID: 36803090 DOI: 10.1080/14712598.2023.2183116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
INTRODUCTION CTLA-4/PD-1/PD-L1- directed immune checkpoint inhibitors (ICIs) are one of the standard therapies for the treatment of advanced non-small cell lung cancer (NSCLC). However, some new classes of monoclonal antibodies are emerging as promising therapies for advanced NSCLC. AREAS COVERED Therefore, this paper aims to provide a comprehensive review of the recently approved as well as emerging monoclonal antibody immune checkpoint inhibitors for the treatment of advanced NSCLC. EXPERT OPINION Further and larger studies will be needed to explore the promising emerging data on new ICIs. Future phase III trials could allow us to properly assess the role of each immune checkpoints in the wider context of the tumor microenvironment and thus the best new ICIs to use, the best approach and the most effective subset of patients to select.
Collapse
Affiliation(s)
- Danilo Rocco
- Department of Pulmonary Oncology, AORN dei Colli Monaldi, Naples, Italy
| | - Luigi Della Gravara
- Department of Precision Medicine, Università degli studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Ciro Battiloro
- Department of Pulmonary Oncology, AORN dei Colli Monaldi, Naples, Italy
| | | | - Cesare Gridelli
- Division of Medical Oncology, S.G. Moscati Hospital, Avellino, Italy
| |
Collapse
|
24
|
Ko KP, Zhang S, Huang Y, Kim B, Zou G, Jun S, Zhang J, Martin C, Dunbar KJ, Efe G, Rustgi AK, Zhang H, Nakagawa H, Park JI. Tumor Niche Network-Defined Subtypes Predict Immunotherapy Response of Esophageal Squamous Cell Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528539. [PMID: 36824935 PMCID: PMC9949073 DOI: 10.1101/2023.02.15.528539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Despite the promising outcomes of immune checkpoint blockade (ICB), resistance to ICB presents a new challenge. Therefore, selecting patients for specific ICB applications is crucial for maximizing therapeutic efficacy. Herein we curated 69 human esophageal squamous cell cancer (ESCC) patients' tumor microenvironment (TME) single-cell transcriptomic datasets to subtype ESCC. Integrative analyses of the cellular network transcriptional signatures of T cells, myeloid cells, and fibroblasts define distinct ESCC subtypes characterized by T cell exhaustion, Interferon (IFN) a/b signaling, TIGIT enrichment, and specific marker genes. Furthermore, this approach classifies ESCC patients into ICB responders and non-responders, as validated by liquid biopsy single-cell transcriptomics. Our study stratifies ESCC patients based on TME transcriptional network, providing novel insights into tumor niche remodeling and predicting ICB responses in ESCC patients.
Collapse
Affiliation(s)
- Kyung-Pil Ko
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shengzhe Zhang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuanjian Huang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bongjun Kim
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gengyi Zou
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sohee Jun
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cecilia Martin
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Karen J. Dunbar
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gizem Efe
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Anil K. Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Haiyang Zhang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
25
|
Murata K, Murao A, Aziz M, Wang P. Extracellular CIRP Induces Novel Nectin-2+ (CD112+) Neutrophils to Promote Th1 Differentiation in Sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:310-321. [PMID: 36480269 PMCID: PMC9852067 DOI: 10.4049/jimmunol.2200308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/17/2022] [Indexed: 12/26/2022]
Abstract
Neutrophil heterogeneity represents different subtypes, states, phenotypes, and functionality of neutrophils implicated in sepsis pathobiology. Extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern that promotes inflammation and alters neutrophil phenotype and function through TLR4. Nectin-2 or CD112 is an Ig-like superfamily member. CD112 serves as the ligand for DNAM-1 (CD226), which induces Th1 differentiation in naive CD4+ T cells. Th1 cells produce IFN-γ to fuel inflammation. CD112 is expressed mainly on APCs, but its expression in neutrophils is unknown. We hypothesize that eCIRP induces CD112 expression in neutrophils, promoting Th1 differentiation in sepsis. Incubation of neutrophils with recombinant murine (rm)CIRP significantly increased the gene and protein expression of CD112 in neutrophils. Anti-TLR4 Ab-treated neutrophils significantly decreased CD112+ neutrophils compared with controls upon rmCIRP stimulation. After 4 h of rmCIRP injection in mice, CD112+ neutrophils were significantly increased in the blood and spleen. At 20 h after cecal ligation and puncture-induced sepsis, CD112+ neutrophils were also significantly increased. Blood and splenic CD112+ neutrophils in septic CIRP-/- mice were much lower than in septic wild-type mice. Coculture of naive CD4 T cells with rmCIRP-treated (CD112+) neutrophils significantly increased IFN-γ-producing Th1 cells compared with coculture with PBS-treated neutrophils. CD112 Ab significantly attenuated Th1 differentiation induced by rmCIRP-treated neutrophils. Thus, eCIRP increases CD112 expression in neutrophils via TLR4 to promote Th1 differentiation in sepsis. Targeting eCIRP may attenuate sepsis by reducing Th1-promoting CD112+ neutrophils.
Collapse
Affiliation(s)
- Kensuke Murata
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| |
Collapse
|
26
|
Diong SJJ, Jashnani A, Drake AW, Bee C, Findeisen F, Dollinger G, Wang F, Rajpal A, Strop P, Lee PS. Biophysical characterization of PVR family interactions and therapeutic antibody recognition to TIGIT. MAbs 2023; 15:2253788. [PMID: 37675979 PMCID: PMC10486284 DOI: 10.1080/19420862.2023.2253788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023] Open
Abstract
The clinical successes of immune checkpoint blockade have invigorated efforts to activate T cell-mediated responses against cancer. Targeting members of the PVR family, consisting of inhibitory receptors TIGIT, CD96, and CD112R, has been an active area of clinical investigation. In this study, the binding interactions and molecular assemblies of the PVR family receptors and ligands have been assessed in vitro. Furthermore, the anti-TIGIT monoclonal antibody BMS-986207 crystal structure in complex with TIGIT was determined and shows that the antibody binds an epitope that is commonly targeted by the CD155 ligand as well as other clinical anti-TIGIT antibodies. In contrast to previously proposed models, where TIGIT outcompetes costimulatory receptor CD226 for binding to CD155 due to much higher affinity (nanomolar range), our data rather suggest that PVR family members all engage in interactions with relatively weak affinity (micromolar range), including TIGIT and CD155 interactions. Thus, TIGIT and other PVR inhibitory receptors likely elicit immune suppression via increased surface expression rather than inherent differences in affinity. This work provides an improved foundational understanding of the PVR family network and mechanistic insight into therapeutic antibody intervention.
Collapse
Affiliation(s)
- SJ J. Diong
- Discovery Biologics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Aarti Jashnani
- Discovery Biologics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Andrew W. Drake
- Discovery Biologics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Christine Bee
- Biochemistry and Biophysics, Merck, South San Francisco, CA, USA
| | - Felix Findeisen
- Discovery Biologics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Gavin Dollinger
- Discovery Biologics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Feng Wang
- Large Molecule Drug Discovery, Genentech Research and Early Development, South San Francisco, CA, USA
| | - Arvind Rajpal
- Large Molecule Drug Discovery, Genentech Research and Early Development, South San Francisco, CA, USA
| | - Pavel Strop
- Research, Tallac Therapeutics, Burlingame, CA, USA
| | - Peter S. Lee
- Antibody Engineering, AbbVie, South San Francisco, CA, USA
| |
Collapse
|
27
|
Pawłowska A, Skiba W, Suszczyk D, Kuryło W, Jakubowicz-Gil J, Paduch R, Wertel I. The Dual Blockade of the TIGIT and PD-1/PD-L1 Pathway as a New Hope for Ovarian Cancer Patients. Cancers (Basel) 2022; 14:5757. [PMID: 36497240 PMCID: PMC9740841 DOI: 10.3390/cancers14235757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The prognosis for ovarian cancer (OC) patients is poor and the five-year survival rate is only 47%. Immune checkpoints (ICPs) appear to be the potential targets in up-and-coming OC treatment. However, the response of OC patients to immunotherapy based on programmed cell death pathway (PD-1/PD-L1) inhibitors totals only 6-15%. The promising approach is a combined therapy, including other ICPs such as the T-cell immunoglobulin and ITIM domain/CD155/DNAX accessory molecule-1 (TIGIT/CD155/DNAM-1) axis. Preclinical studies in a murine model of colorectal cancer showed that the dual blockade of PD-1/PD-L1 and TIGIT led to remission in the whole studied group vs. the regression of the tumors with the blockade of a single pathway. The approach stimulates the effector activity of T cells and NK cells, and redirects the immune system activity against the tumor. The understanding of the synergistic action of the TIGIT and PD-1/PD-L1 blockade is, however, poor. Thus, the aim of this review is to summarize the current knowledge about the mode of action of the dual TIGIT and PD-1/PD-L1 blockade and its potential benefits for OC patients. Considering the positive impact of this combined therapy in malignancies, including lung and colorectal cancer, it appears to be a promising approach in OC treatment.
Collapse
Affiliation(s)
- Anna Pawłowska
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Wiktoria Skiba
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Dorota Suszczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Weronika Kuryło
- Students’ Scientific Association, Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
28
|
[Research Progress of Immune Checkpoint TIGIT in Lung Cancer Immunotherapy]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:819-827. [PMID: 36419396 PMCID: PMC9720676 DOI: 10.3779/j.issn.1009-3419.2022.102.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain (TIGIT) is a newly discovered immune checkpoint molecule, mainly expressed on the surface of T cells and natural killer (NK) cells. By binding to cluster of differentiation 155 (CD155) and other ligands, it inhibits T cell and NK cell-mediated immune responses and affects the tumor microenvironment. Multiple preclinical studies have demonstrated that the TIGIT/CD155 pathway plays a role in a variety of solid and hematological tumors. Clinical trials investigating TIGIT inhibitors alone or in combination with programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) inhibitors for lung cancer are currently underway.
.
Collapse
|
29
|
A Novel Antibody-Drug Conjugate Targeting Nectin-2 Suppresses Ovarian Cancer Progression in Mouse Xenograft Models. Int J Mol Sci 2022; 23:ijms232012358. [PMID: 36293219 PMCID: PMC9604294 DOI: 10.3390/ijms232012358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Ovarian cancer is the fifth leading cause of cancer, followed by front line is mostly platinum agents and PARP inhibitors, and very limited option in later lines. Therefore, there is a need for alternative therapeutic options. Nectin-2, which is overexpressed in ovarian cancer, is a known immune checkpoint that deregulates immune cell function. In this study, we generated a novel anti-nectin-2 antibody (chimeric 12G1, c12G1), and further characterized it using epitope mapping, enzyme-linked immunosorbent assay, surface plasmon resonance, fluorescence-activated cell sorting, and internalization assays. The c12G1 antibody specifically bound to the C2 domain of human nectin-2 with high affinity (KD = 2.90 × 10-10 M), but not to mouse nectin-2. We then generated an antibody-drug conjugate comprising the c12G1 antibody conjugated to DM1 and investigated its cytotoxic effects against cancer cells in vitro and in vivo. c12G1-DM1 induced cell cycle arrest at the mitotic phase in nectin-2-positive ovarian cancer cells, but not in nectin-2-negative cancer cells. c12G1-DM1 induced ~100-fold cytotoxicity in ovarian cancer cells, with an IC50 in the range of 0.1 nM~7.4 nM, compared to normal IgG-DM1. In addition, c12G1-DM1 showed ~91% tumor growth inhibition in mouse xenograft models transplanted with OV-90 cells. These results suggest that c12G1-DM1 could be used as a potential therapeutic agent against nectin-2-positive ovarian cancers.
Collapse
|
30
|
Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct Target Ther 2022; 7:331. [PMID: 36123348 PMCID: PMC9485144 DOI: 10.1038/s41392-022-01136-2] [Citation(s) in RCA: 238] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Cancers are highly complex diseases that are characterized by not only the overgrowth of malignant cells but also an altered immune response. The inhibition and reprogramming of the immune system play critical roles in tumor initiation and progression. Immunotherapy aims to reactivate antitumor immune cells and overcome the immune escape mechanisms of tumors. Represented by immune checkpoint blockade and adoptive cell transfer, tumor immunotherapy has seen tremendous success in the clinic, with the capability to induce long-term regression of some tumors that are refractory to all other treatments. Among them, immune checkpoint blocking therapy, represented by PD-1/PD-L1 inhibitors (nivolumab) and CTLA-4 inhibitors (ipilimumab), has shown encouraging therapeutic effects in the treatment of various malignant tumors, such as non-small cell lung cancer (NSCLC) and melanoma. In addition, with the advent of CAR-T, CAR-M and other novel immunotherapy methods, immunotherapy has entered a new era. At present, evidence indicates that the combination of multiple immunotherapy methods may be one way to improve the therapeutic effect. However, the overall clinical response rate of tumor immunotherapy still needs improvement, which warrants the development of novel therapeutic designs as well as the discovery of biomarkers that can guide the prescription of these agents. Learning from the past success and failure of both clinical and basic research is critical for the rational design of studies in the future. In this article, we describe the efforts to manipulate the immune system against cancer and discuss different targets and cell types that can be exploited to promote the antitumor immune response.
Collapse
|
31
|
Zhou X, Khan S, Huang D, Li L. V-Set and immunoglobulin domain containing (VSIG) proteins as emerging immune checkpoint targets for cancer immunotherapy. Front Immunol 2022; 13:938470. [PMID: 36189222 PMCID: PMC9520664 DOI: 10.3389/fimmu.2022.938470] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The development of immune checkpoint inhibitors is becoming a promising approach to fight cancers. Antibodies targeting immune checkpoint proteins such as CTLA-4 and PD-1 can reinvigorate endogenous antitumor T-cell responses and bring durable advantages to several malignancies. However, only a small subset of patients benefit from these checkpoint inhibitors. Identification of new immune checkpoints with the aim of combination blockade of multiple immune inhibitory pathways is becoming necessary to improve efficiency. Recently, several B7 family-related proteins, TIGIT, VSIG4, and VSIG3, which belong to the VSIG family, have attracted substantial attention as coinhibitory receptors during T-cell activation. By interacting with their corresponding ligands, these VSIG proteins inhibit T-cell responses and maintain an immune suppressive microenvironment in tumors. These results indicated that VSIG family members are becoming putative immune checkpoints in cancer immunotherapy. In this review, we summarized the function of each VSIG protein in regulating immune responses and in tumor progression, thus providing an overview of our current understanding of VSIG family members.
Collapse
Affiliation(s)
- Xia Zhou
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sohail Khan
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dabing Huang
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Dabing Huang, ; Lu Li,
| | - Lu Li
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Dabing Huang, ; Lu Li,
| |
Collapse
|
32
|
Conner M, Hance KW, Yadavilli S, Smothers J, Waight JD. Emergence of the CD226 Axis in Cancer Immunotherapy. Front Immunol 2022; 13:914406. [PMID: 35812451 PMCID: PMC9263721 DOI: 10.3389/fimmu.2022.914406] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/26/2022] [Indexed: 01/31/2023] Open
Abstract
In recent years, a set of immune receptors that interact with members of the nectin/nectin-like (necl) family has garnered significant attention as possible points of manipulation in cancer. Central to this axis, CD226, TIGIT, and CD96 represent ligand (CD155)-competitive co-stimulatory/inhibitory receptors, analogous to the CTLA-4/B7/CD28 tripartite. The identification of PVRIG (CD112R) and CD112 has introduced complexity and enabled additional nodes of therapeutic intervention. By virtue of the clinical progression of TIGIT antagonists and emergence of novel CD96- and PVRIG-based approaches, our overall understanding of the 'CD226 axis' in cancer immunotherapy is starting to take shape. However, several questions remain regarding the unique characteristics of, and mechanistic interplay between, each receptor-ligand pair. This review provides an overview of the CD226 axis in the context of cancer, with a focus on the status of immunotherapeutic strategies (TIGIT, CD96, and PVRIG) and their underlying biology (i.e., cis/trans interactions). We also integrate our emerging knowledge of the immune populations involved, key considerations for Fc gamma (γ) receptor biology in therapeutic activity, and a snapshot of the rapidly evolving clinical landscape.
Collapse
|
33
|
Annese T, Tamma R, Ribatti D. Update in TIGIT Immune-Checkpoint Role in Cancer. Front Oncol 2022; 12:871085. [PMID: 35656508 PMCID: PMC9152184 DOI: 10.3389/fonc.2022.871085] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
The in-depth characterization of cross-talk between tumor cells and T cells in solid and hematological malignancies will have to be considered to develop new therapeutical strategies concerning the reactivation and maintenance of patient-specific antitumor responses within the patient tumor microenvironment. Activation of immune cells depends on a delicate balance between activating and inhibitory signals mediated by different receptors. T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) is an inhibitory receptor expressed by regulatory T cells (Tregs), activated T cells, and natural killer (NK) cells. TIGIT pathway regulates T cell-mediated tumor recognition in vivo and in vitro and represents an exciting target for checkpoint blockade immunotherapy. TIGIT blockade as monotherapy or in combination with other inhibitor receptors or drugs is emerging in clinical trials in patients with cancer. The purpose of this review is to update the role of TIGIT in cancer progression, looking at TIGIT pathways that are often upregulated in immune cells and at possible therapeutic strategies to avoid tumor aggressiveness, drug resistance, and treatment side effects. However, in the first part, we overviewed the role of immune checkpoints in immunoediting, the TIGIT structure and ligands, and summarized the key immune cells that express TIGIT.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Medicine and Surgery, Libera Università del Mediterraneo (LUM) Giuseppe Degennaro University, Bari, Italy.,Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
34
|
A reporter gene assay for determining the biological activity of therapeutic antibodies targeting TIGIT. Acta Pharm Sin B 2021; 11:3925-3934. [PMID: 35024316 PMCID: PMC8727920 DOI: 10.1016/j.apsb.2021.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/08/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
T cell immunoglobulin and ITIM domain (TIGIT) is a novel immune checkpoint that has been considered as a target in cancer immunotherapy. Current available bioassays for measuring the biological activity of therapeutic antibodies targeting TIGIT are restricted to mechanistic investigations because donor primary T cells are highly variable. Here, we designed a reporter gene assay comprising two cell lines, namely, CHO-CD112-CD3 scFv, which stably expresses CD112 (PVRL2, nectin-2) and a membrane-bound anti-CD3 single-chain fragment variable (scFv) as the target cell, and Jurkat-NFAT-TIGIT, which stably expresses TIGIT as well as the nuclear factor of activated T-cells (NFAT) response element-controlled luciferase gene, as the effector cell. The anti-CD3 scFv situated on the target cells activates Jurkat-NFAT-TIGIT cells through binding and crosslinking CD3 molecules of the effector cell, whereas interactions between CD112 and TIGIT prevent activation. The presence of anti-TIGIT mAbs disrupts their interaction, which in turn reverses the inactivation and luciferase expression. Optimization and validation studies have demonstrated that this assay is superior in terms of specificity, accuracy, linearity, and precision. In summary, this reliable and effective reporter gene assay may potentially be utilized in lot release control, stability assays, screening, and development of novel TIGIT-targeted therapeutic antibodies.
Collapse
|
35
|
Costa AC, Santos JMO, Gil da Costa RM, Medeiros R. Impact of immune cells on the hallmarks of cancer: A literature review. Crit Rev Oncol Hematol 2021; 168:103541. [PMID: 34801696 DOI: 10.1016/j.critrevonc.2021.103541] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Tumor-infiltrating immune cells (TIICs) are critical players in the tumor microenvironment, modulating cancer cell functions. TIICs are highly heterogenic and plastic and may either suppress cancers or provide support for tumor growth. A wide range of studies have shed light on how tumor-associated macrophages, dendritic cells, neutrophils, mast cells, natural killer cells and lymphocytes contribute for the establishment of several hallmarks of cancer and became the basis for successful immunotherapies. Many of those TIICs play pivotal roles in several hallmarks of cancer. This review contributes to elucidate the multifaceted roles of immune cells in cancer development, highlighting molecular components that constitute promising therapeutic targets. Additional studies are needed to clarify the relation between TIICs and hallmarks such as enabling replicative immortality, evading growth suppressors, sustaining proliferative signaling, resisting cell death and genome instability and mutation, to further explore their therapeutic potential and improve the outcomes of cancer patients.
Collapse
Affiliation(s)
- Alexandra C Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
| | - Joana M O Santos
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; Postgraduate Programme in Adult Health (PPGSAD), Department of Morphology, Federal University of Maranhão (UFMA), and UFMA University Hospital (HUUFMA), 65080-805, São Luís, Brazil.
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal; Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072, Porto, Portugal; CEBIMED, Faculty of Health Sciences of the Fernando Pessoa University, 4249-004, Porto, Portugal; Research Department of the Portuguese League Against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177, Porto, Portugal.
| |
Collapse
|
36
|
Lee PS, Chau B, Barman I, Bee C, Jashnani A, Hogan JM, Aguilar B, Dollinger G, Rajpal A, Strop P. Antibody blockade of CD96 by distinct molecular mechanisms. MAbs 2021; 13:1979800. [PMID: 34595996 PMCID: PMC8489928 DOI: 10.1080/19420862.2021.1979800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The molecular interactions of mouse CD96 to CD155 ligand and to two surrogate antibodies have been investigated. Biophysical and structural studies demonstrate that CD96 forms a homodimer but assembles as 1:1 heterodimeric complexes with CD155 or with one of the surrogate antibodies, which compete for the same binding interface. In comparison, the other surrogate antibody binds across the mouse CD96 dimer and recognizes a quaternary epitope spanning both protomers to block exposure of the ligand-binding site. This study reveals different blocking mechanisms and modalities of these two antibodies and may provide insight into the functional effects of antibodies against CD96.
Collapse
Affiliation(s)
- Peter S Lee
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Bryant Chau
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Ishita Barman
- Therapeutic Discovery, 3T Biosciences, South San Francisco, Ca, USA
| | - Christine Bee
- Discovery Biology, Frontier Medicines, South San Francisco, CA, USA
| | - Aarti Jashnani
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Jason M Hogan
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Barbara Aguilar
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Gavin Dollinger
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Arvind Rajpal
- Large Molecule Drug Discovery, Genentech Research and Early Development, South San Francisco, Ca, USA
| | - Pavel Strop
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| |
Collapse
|
37
|
Zeng T, Cao Y, Jin T, Tian Y, Dai C, Xu F. The CD112R/CD112 axis: a breakthrough in cancer immunotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:285. [PMID: 34507594 PMCID: PMC8431939 DOI: 10.1186/s13046-021-02053-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/27/2021] [Indexed: 01/05/2023]
Abstract
The recent discovery of immune checkpoint inhibitors is a significant milestone in cancer immunotherapy research. However, some patients with primary or adaptive drug resistance might not benefit from the overall therapeutic potential of immunotherapy in oncology. Thus, it is becoming increasingly critical for oncologists to explore the availability of new immune checkpoint inhibitors. An emerging co-inhibitory receptor, CD112R (also called PVRIG), is most commonly expressed on natural killer (NK) and T cells. It binds to its ligand (CD112 or PVRL2/nectin-2) and inhibits the strength with which T cells and NK cells respond to cancer. Therefore, CD112R is being presented as a new immune checkpoint inhibitor with high potential in cancer immunotherapy. CD112 is easily detectable on antigen-presenting or tumor cells, and its high level of expression has been linked with tumor progression and poor outcomes in most cancer patients. This review explores the molecular and functional relationship between CD112R, TIGIT, CD96, and CD226 in T cell responses. In addition, this review comprehensively discusses the recent developments of CD112R/CD112 immune checkpoints in cancer immunotherapy and prognosis.
Collapse
Affiliation(s)
- Taofei Zeng
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Yuqing Cao
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Tianqiang Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Chaoliu Dai
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
38
|
Yin W, Liu G, Li J, Bian Z. Landscape of Cell Communication in Human Dental Pulp. SMALL METHODS 2021; 5:e2100747. [PMID: 34928049 DOI: 10.1002/smtd.202100747] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/21/2021] [Indexed: 06/14/2023]
Abstract
The cellular atlas of the stroma is not well understood. Here, the cell populations in human dental pulp through single-cell RNA sequencing are profiled. Dental pulp stem cells, pulp cells, T cells, macrophages, endothelial cells, and glial cells are identified in human dental pulp. These cells support each other through sending growth signals. Based on the appearance of ligand-receptor pairs between two cell populations, pulp cells have the greatest communication with other cell types, while T cells have the least communication. In addition, T cells expressing TLR1, TLR2, and TLR4, and endothelial cells expressing TLR4, monitor bacterial invasion. These findings provide the census of normal dental pulp.
Collapse
Affiliation(s)
- Wei Yin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Gaoxia Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jinhong Li
- Department of Stomatology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Zhuan Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
39
|
Wrenn E, Huang Y, Cheung K. Collective metastasis: coordinating the multicellular voyage. Clin Exp Metastasis 2021; 38:373-399. [PMID: 34254215 PMCID: PMC8346286 DOI: 10.1007/s10585-021-10111-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022]
Abstract
The metastatic process is arduous. Cancer cells must escape the confines of the primary tumor, make their way into and travel through the circulation, then survive and proliferate in unfavorable microenvironments. A key question is how cancer cells overcome these multiple barriers to orchestrate distant organ colonization. Accumulating evidence in human patients and animal models supports the hypothesis that clusters of tumor cells can complete the entire metastatic journey in a process referred to as collective metastasis. Here we highlight recent studies unraveling how multicellular coordination, via both physical and biochemical coupling of cells, induces cooperative properties advantageous for the completion of metastasis. We discuss conceptual challenges and unique mechanisms arising from collective dissemination that are distinct from single cell-based metastasis. Finally, we consider how the dissection of molecular transitions regulating collective metastasis could offer potential insight into cancer therapy.
Collapse
Affiliation(s)
- Emma Wrenn
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, 98195, USA
| | - Yin Huang
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Kevin Cheung
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| |
Collapse
|
40
|
Lee J, Han Y, Wang W, Jo H, Kim H, Kim S, Yang KM, Kim SJ, Dhanasekaran DN, Song YS. Phytochemicals in Cancer Immune Checkpoint Inhibitor Therapy. Biomolecules 2021; 11:1107. [PMID: 34439774 PMCID: PMC8393583 DOI: 10.3390/biom11081107] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
The interaction of immune checkpoint molecules in the tumor microenvironment reduces the anti-tumor immune response by suppressing the recognition of T cells to tumor cells. Immune checkpoint inhibitor (ICI) therapy is emerging as a promising therapeutic option for cancer treatment. However, modulating the immune system with ICIs still faces obstacles with severe immunogenic side effects and a lack of response against many cancer types. Plant-derived natural compounds offer regulation on various signaling cascades and have been applied for the treatment of multiple diseases, including cancer. Accumulated evidence provides the possibility of efficacy of phytochemicals in combinational with other therapeutic agents of ICIs, effectively modulating immune checkpoint-related signaling molecules. Recently, several phytochemicals have been reported to show the modulatory effects of immune checkpoints in various cancers in in vivo or in vitro models. This review summarizes druggable immune checkpoints and their regulatory factors. In addition, phytochemicals that are capable of suppressing PD-1/PD-L1 binding, the best-studied target of ICI therapy, were comprehensively summarized and classified according to chemical structure subgroups. It may help extend further research on phytochemicals as candidates of combinational adjuvants. Future clinical trials may validate the synergetic effects of preclinically investigated phytochemicals with ICI therapy.
Collapse
Affiliation(s)
- Juwon Lee
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.L.); (Y.H.); (W.W.); (H.J.); (H.K.)
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Youngjin Han
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.L.); (Y.H.); (W.W.); (H.J.); (H.K.)
- SK Biopharmaceuticals Co., Ltd., Seongnam-si 13494, Korea
| | - Wenyu Wang
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.L.); (Y.H.); (W.W.); (H.J.); (H.K.)
- Interdisciplinary Program in Cancer Biology, Seoul National University, Seoul 03080, Korea
| | - HyunA Jo
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.L.); (Y.H.); (W.W.); (H.J.); (H.K.)
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Heeyeon Kim
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.L.); (Y.H.); (W.W.); (H.J.); (H.K.)
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Soochi Kim
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA 94304, USA;
| | - Kyung-Min Yang
- MedPacto Inc., 92, Myeongdal-ro, Seocho-gu, Seoul 06668, Korea; (K.-M.Y.); (S.-J.K.)
| | - Seong-Jin Kim
- MedPacto Inc., 92, Myeongdal-ro, Seocho-gu, Seoul 06668, Korea; (K.-M.Y.); (S.-J.K.)
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Korea
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 16229, Korea
| | - Danny N. Dhanasekaran
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yong Sang Song
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.L.); (Y.H.); (W.W.); (H.J.); (H.K.)
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Interdisciplinary Program in Cancer Biology, Seoul National University, Seoul 03080, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
41
|
Immune checkpoints and reproductive immunology: Pioneers in the future therapy of infertility related Disorders? Int Immunopharmacol 2021; 99:107935. [PMID: 34304000 DOI: 10.1016/j.intimp.2021.107935] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023]
Abstract
As co-stimulatory receptors, immune checkpoint molecules are found on the surface of various immune cells and transduce inhibitory signals following ligand binding. The most studied members in this regard include PD-1, TIM-3, and CTLA-4. The physiological part immune checkpoints possess is the prevention of dangerous immune attacks towards self-antigens throughout an immune response, which takes place through the negative regulation of the effector immune cells, through the induction of T-cell exhaustion, for instance. It has recently been suggested that each checkpoint reduces immunoactivation via distinct intracellular mechanisms of signaling. Regulators of immune checkpoints are supposed to participate actively in immune defense mechanisms against infections, preventing autoimmunity, transplantation, and tumor immune evasion. In pregnancy, as an active immunotolerance mechanism which is also natural, the maternal immune system encounters two simultaneous challenges; in addition to accepting the semi-allogeneic fetus, the maternal immune system should also prevent infections. In this regard, the part immune checkpoint molecules possess is particularly interesting. Herein, the current understanding of such part in reproductive immunology is described.
Collapse
|
42
|
Russell BL, Sooklal SA, Malindisa ST, Daka LJ, Ntwasa M. The Tumor Microenvironment Factors That Promote Resistance to Immune Checkpoint Blockade Therapy. Front Oncol 2021; 11:641428. [PMID: 34268109 PMCID: PMC8276693 DOI: 10.3389/fonc.2021.641428] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
Through genetic and epigenetic alterations, cancer cells present the immune system with a diversity of antigens or neoantigens, which the organism must distinguish from self. The immune system responds to neoantigens by activating naïve T cells, which mount an anticancer cytotoxic response. T cell activation begins when the T cell receptor (TCR) interacts with the antigen, which is displayed by the major histocompatibility complex (MHC) on antigen-presenting cells (APCs). Subsequently, accessory stimulatory or inhibitory molecules transduce a secondary signal in concert with the TCR/antigen mediated stimulus. These molecules serve to modulate the activation signal's strength at the immune synapse. Therefore, the activation signal's optimum amplitude is maintained by a balance between the costimulatory and inhibitory signals. This system comprises the so-called immune checkpoints such as the programmed cell death (PD-1) and Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and is crucial for the maintenance of self-tolerance. Cancers often evade the intrinsic anti-tumor activity present in normal physiology primarily by the downregulation of T cell activation. The blockade of the immune checkpoint inhibitors using specific monoclonal antibodies has emerged as a potentially powerful anticancer therapy strategy. Several drugs have been approved mainly for solid tumors. However, it has emerged that there are innate and acquired mechanisms by which resistance is developed against these therapies. Some of these are tumor-intrinsic mechanisms, while others are tumor-extrinsic whereby the microenvironment may have innate or acquired resistance to checkpoint inhibitors. This review article will examine mechanisms by which resistance is mounted against immune checkpoint inhibitors focussing on anti-CTL4-A and anti-PD-1/PD-Ll since drugs targeting these checkpoints are the most developed.
Collapse
Affiliation(s)
- Bonnie L. Russell
- Department of Life & Consumer Sciences, University of South Africa, Johannesburg, South Africa
- Innovation Hub, Buboo (Pty) Ltd, Pretoria, South Africa
| | - Selisha A. Sooklal
- Department of Life & Consumer Sciences, University of South Africa, Johannesburg, South Africa
| | - Sibusiso T. Malindisa
- Department of Life & Consumer Sciences, University of South Africa, Johannesburg, South Africa
| | | | - Monde Ntwasa
- Department of Life & Consumer Sciences, University of South Africa, Johannesburg, South Africa
| |
Collapse
|
43
|
DNAM-1 regulates Foxp3 expression in regulatory T cells by interfering with TIGIT under inflammatory conditions. Proc Natl Acad Sci U S A 2021; 118:2021309118. [PMID: 34011606 DOI: 10.1073/pnas.2021309118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulatory T (Treg) cells that express forkhead box P3 (Foxp3) are pivotal for immune tolerance. Although inflammatory mediators cause Foxp3 instability and Treg cell dysfunction, their regulatory mechanisms remain incompletely understood. Here, we show that the transfer of Treg cells deficient in the activating immunoreceptor DNAM-1 ameliorated the development of graft-versus-host disease better than did wild-type Treg cells. We found that DNAM-1 competes with T cell immunoreceptor with Ig and ITIM domains (TIGIT) in binding to their common ligand CD155 and therefore regulates TIGIT signaling to down-regulate Treg cell function without DNAM-1-mediated intracellular signaling. DNAM-1 deficiency augments TIGIT signaling; this subsequently inhibits activation of the protein kinase B-mammalian target of rapamycin complex 1 pathway, resulting in the maintenance of Foxp3 expression and Treg cell function under inflammatory conditions. These findings demonstrate that DNAM-1 regulates Treg cell function via TIGIT signaling and thus, it is a potential molecular target for augmenting Treg function in inflammatory diseases.
Collapse
|
44
|
Lee H, Da Silva IP, Palendira U, Scolyer RA, Long GV, Wilmott JS. Targeting NK Cells to Enhance Melanoma Response to Immunotherapies. Cancers (Basel) 2021; 13:cancers13061363. [PMID: 33802954 PMCID: PMC8002669 DOI: 10.3390/cancers13061363] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells are a key component of an innate immune system. They are important not only in initiating, but also in augmenting adaptive immune responses. NK cell activation is mediated by a carefully orchestrated balance between the signals from inhibitory and activating NK cell receptors. NK cells are potent producers of proinflammatory cytokines and are also able to elicit strong antitumor responses through secretion of perforin and granzyme B. Tumors can develop many mechanisms to evade NK cell antitumor responses, such as upregulating ligands for inhibitory receptors, secreting anti-inflammatory cytokines and recruiting immunosuppressive cells. Enhancing NK cell responses will likely augment the effectiveness of immunotherapies, and strategies to accomplish this are currently being evaluated in clinical trials. A comprehensive understanding of NK cell biology will likely provide additional opportunities to further leverage the antitumor effects of NK cells. In this review, we therefore sought to highlight NK cell biology, tumor evasion of NK cells and clinical trials that target NK cells.
Collapse
Affiliation(s)
- Hansol Lee
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health Sciences, The University of Sydney, Sydney 2006, Australia
| | - Inês Pires Da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
| | - Umaimainthan Palendira
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Department of Infectious Diseases and Immunology, The Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health Sciences, The University of Sydney, Sydney 2006, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney 2006, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Department of Medical Oncology, Royal North Shore Hospital and Mater Hospital, Sydney 2065, Australia
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia
- Correspondence: ; Tel.: +61-2-9911-7336
| | - James S. Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health Sciences, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
45
|
Johnston RJ, Lee PS, Strop P, Smyth MJ. Cancer Immunotherapy and the Nectin Family. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2021. [DOI: 10.1146/annurev-cancerbio-060920-084910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is increasingly clear that the nectin family and its immunoreceptors shape the immune response to cancer through several pathways. Yet, even as antibodies against TIGIT, CD96, and CD112R advance into clinical development, biological and therapeutic questions remain unanswered. Here, we review recent progress, prospects, and challenges to understanding and tapping this family in cancer immunotherapy.
Collapse
Affiliation(s)
- Robert J. Johnston
- Oncology Discovery, Bristol Myers Squibb, Redwood City, California 94063, USA
| | - Peter S. Lee
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, California 94063, USA;,
| | - Pavel Strop
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, California 94063, USA;,
| | - Mark J. Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| |
Collapse
|
46
|
Computer-aided design of PVR mutants with enhanced binding affinity to TIGIT. Cell Commun Signal 2021; 19:12. [PMID: 33557880 PMCID: PMC7869511 DOI: 10.1186/s12964-020-00701-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/26/2020] [Indexed: 12/13/2022] Open
Abstract
Background TIGIT, as a novel immune checkpoint molecule involved in T cell and NK cell anergy, could induce the immune tolerance and escape through binding with its ligand PVR. Blockade of TIGIT/PVR is considered as a promising strategy in cancer immunotherapy. However, to facilitate the design of inhibitors targeting TIGIT/PVR, the structural characteristics and binding mechanism still need to be further studied. Methods In this study, molecular dynamics (MD) simulations and in silico mutagenesis were used to analyze the interaction between TIGIT and its ligand PVR. Then, PVR mutants were designed and their activities were determined by using TIGIT overexpressed Jurkat cells. Results The results suggested that the loops of PVR (CC′ loop, C′C″ loop, and FG loop) underwent a large intra-molecular rearrangement, and more hydrogen bond crosslinking between PVR and TIGIT were formed during MD simulations. The potential residues for PVR to interact with TIGIT were identified and utilized to predict high affinity PVR mutants. Through the biological activity evaluation, four PVR mutants (PVRS72W, PVRS72R, PVRG131V and PVRS132Q) with enhanced affinity to TIGIT were discovered, which could elicit more potent inhibitory effects compared with the wild type PVR. Conclusions The MD simulations analysis provided new insights into the TIGIT/PVR interaction model, and the identified PVR mutants (PVRS72W, PVRS72R, PVRG131V and PVRS132Q) could serve as new candidates for immunotherapy to block TIGIT/PVR. Video Abstract
Collapse
|
47
|
Passiglia F, Reale ML, Cetoretta V, Novello S. Immune-Checkpoint Inhibitors Combinations in Metastatic NSCLC: New Options on the Horizon? Immunotargets Ther 2021; 10:9-26. [PMID: 33575224 PMCID: PMC7872895 DOI: 10.2147/itt.s253581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/13/2021] [Indexed: 11/23/2022] Open
Abstract
The therapeutic targeting of the programmed death-1 (PD-1)/programmed death ligand-1 (PD-L1) axis marked a milestone in the treatment of non-small cell lung cancer (NSCLC), leading to unprecedented response duration and long-term survival for a relevant subgroup of patients affected by non-oncogene-addicted, metastatic disease. However, the biological heterogeneity as well as the occurrence of innate/acquired resistance are well-known phenomena which significantly affect the therapeutic response to immunotherapy. To date, we are moving towards the second phase of the "immune-revolution", characterized by the advent of new immune-checkpoint inhibitors combinations, aiming to target the main resistance pathways and ultimately increase the number of NSCLC patients who may derive long-term clinical benefit from immunotherapy. In this review, we provide an updated and comprehensive overview of the main PD-1/PD-L1 inhibitors' combination approaches under clinical investigation in non-oncogene addicted, metastatic NSCLC patients, including checkpoints (other than CTLA-4) as well as "immune-metabolism" modulators, DNA repair pathway inhibitors, antiangiogenic agents, cytokines, and a new generation of vaccines, with the final aim of identifying the most promising options on the horizon.
Collapse
Affiliation(s)
- Francesco Passiglia
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy
| | - Maria Lucia Reale
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy
| | - Valeria Cetoretta
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy
| | - Silvia Novello
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy
| |
Collapse
|
48
|
Therapeutic Approaches for Metastases from Colorectal Cancer and Pancreatic Ductal Carcinoma. Pharmaceutics 2021; 13:pharmaceutics13010103. [PMID: 33466892 PMCID: PMC7830403 DOI: 10.3390/pharmaceutics13010103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the process of dissemination of a tumor, whereby cells from the primary site dislodge and find their way to other tissues where secondary tumors establish. Metastasis is the primary cause of death related to cancer. This process warrants changes in original tumoral cells and their microenvironment to establish a metastatic niche. Traditionally, cancer therapy has focused on metastasis prevention by systematic treatments or direct surgical re-sectioning. However, metastasis can still occur. More recently, new therapies direct their attention to targeting cancer stem cells. As they propose, these cells could be the orchestrators of the metastatic niche. In this review, we describe conventional and novel developments in cancer therapeutics for liver and lung metastasis. We further discuss the resistance mechanisms of targeted therapy, the advantages, and disadvantages of diverse treatment approaches, and future novel strategies to enhance cancer prognosis.
Collapse
|
49
|
Han D, Xu Y, Zhao X, Mao Y, Kang Q, Wen W, Yu X, Xu L, Liu F, Zhang M, Cui J, Wang Z, Yang Z, Du P, Qin W. A novel human anti-TIGIT monoclonal antibody with excellent function in eliciting NK cell-mediated antitumor immunity. Biochem Biophys Res Commun 2021; 534:134-140. [PMID: 33341068 DOI: 10.1016/j.bbrc.2020.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/04/2020] [Indexed: 01/31/2023]
Abstract
TIGIT is an emerging novel checkpoint target that is expressed on both tumor-infiltrating T cells and NK cells. Some current investigational antibodies targeting TIGIT have also achieved dramatic antitumor efficacy in late clinical research. Most recently, the relevance of NK cell-associated TIGIT signaling pathway to tumors' evasion of the immune system has been clearly revealed, which endows NK cells with a pivotal role in the therapeutic effects of TIGIT blockade. In this article, we describe a novel anti-TIGIT monoclonal antibody, AET2010, which was acquired from a phage-displayed human single-chain antibody library through a cell panning strategy. With emphasis on its regulation of NK cells, we confirmed the excellent ex vivo and in vivo antitumor immunity of AET2010 mediated by the NK-92MI cells. Intriguingly, our work also revealed that AET2010 displays a lower affinity but parallel avidity and activity relative to MK7684, an investigational monoclonal antibody from MSD, implying a reasonable balance of potency and potential side effects for AET2010. Together, these results are promising and warrant further development of AET2010.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- CHO Cells
- Cell Line
- Cell Line, Tumor
- Cricetulus
- Cytotoxicity, Immunologic
- Humans
- Killer Cells, Natural/immunology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasms/immunology
- Neoplasms/therapy
- Peptide Library
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/immunology
- Receptors, Virus/metabolism
- Mice
Collapse
Affiliation(s)
- Dong Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yinfeng Xu
- Beijing Institute of Biotechnology, Beijing, China
| | - Xinping Zhao
- Beijing Institute of Biotechnology, Beijing, China; PLA Center for Disease Control and Prevention, Beijing, China
| | - Yunyun Mao
- Beijing Institute of Biotechnology, Beijing, China
| | - Qinglin Kang
- Beijing Institute of Biotechnology, Beijing, China
| | - Weihong Wen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Xiaoyan Yu
- Beijing Institute of Biotechnology, Beijing, China
| | - Lei Xu
- Beijing Institute of Biotechnology, Beijing, China
| | - Fujia Liu
- Beijing Institute of Biotechnology, Beijing, China
| | | | - Jiazhen Cui
- Beijing Institute of Biotechnology, Beijing, China
| | - Zhang Wang
- Beijing Institute of Biotechnology, Beijing, China; Hainan Medical University, Haikou, China
| | - Zhixin Yang
- Beijing Institute of Biotechnology, Beijing, China.
| | - Peng Du
- Beijing Institute of Biotechnology, Beijing, China.
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
50
|
Maas RJ, Hoogstad-van Evert JS, Van der Meer JM, Mekers V, Rezaeifard S, Korman AJ, de Jonge PK, Cany J, Woestenenk R, Schaap NP, Massuger LF, Jansen JH, Hobo W, Dolstra H. TIGIT blockade enhances functionality of peritoneal NK cells with altered expression of DNAM-1/TIGIT/CD96 checkpoint molecules in ovarian cancer. Oncoimmunology 2020; 9:1843247. [PMID: 33224630 PMCID: PMC7657585 DOI: 10.1080/2162402x.2020.1843247] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Advanced ovarian cancer (OC) patients have a poor 5-year survival of only 28%, emphasizing the medical need for improved therapies. Adjuvant immunotherapy could be an attractive approach since OC is an immunogenic disease and the presence of tumor-infiltrating lymphocytes has shown to positively correlate with patient survival. Among these infiltrating lymphocytes are natural killer (NK) cells, key players involved in tumor targeting, initiated by signaling via activating and inhibitory receptors. Here, we investigated the role of the DNAM-1/TIGIT/CD96 axis in the anti-tumor response of NK cells toward OC. Ascites-derived NK cells from advanced OC patients showed lower expression of activating receptor DNAM-1 compared to healthy donor peripheral blood NK cells, while inhibitory receptor TIGIT and CD96 expression was equal or higher, respectively. This shift to a more inhibitory phenotype could also be induced in vitro by co-culturing healthy donor NK cells with OC tumor spheroids, and in vivo on intraperitoneally infused NK cells in SKOV-3 OC bearing NOD/SCID-IL2Rγnull (NSG) mice. Interestingly, TIGIT blockade enhanced degranulation and interferon gamma (IFNγ) production of healthy donor CD56dim NK cells in response to OC tumor cells, especially when DNAM-1/CD155 interactions were in place. Importantly, TIGIT blockade boosted functional responsiveness of CD56dim NK cells of OC patients with a baseline reactivity against SKOV-3 cells. Overall, our data show for the first time that checkpoint molecules TIGIT/DNAM-1/CD96 play an important role in NK cell responsiveness against OC, and provides rationale for incorporating TIGIT interference in NK cell-based immunotherapy in OC patients.
Collapse
Affiliation(s)
- Ralph Ja Maas
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Janneke S Hoogstad-van Evert
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jolien Mr Van der Meer
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vera Mekers
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Somayeh Rezaeifard
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alan J Korman
- Bristol-Myers Squibb, Redwood City, CA, USA.,AK Vir Biotechnology, San Francisco, CA, USA
| | - Paul Kjd de Jonge
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeannette Cany
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob Woestenenk
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicolaas Pm Schaap
- Department of Hematology, Radboud University Medical Center/Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Leon F Massuger
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joop H Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willemijn Hobo
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Harry Dolstra
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|