1
|
L’Estrange-Stranieri E, Gottschalk TA, Wright MD, Hibbs ML. The dualistic role of Lyn tyrosine kinase in immune cell signaling: implications for systemic lupus erythematosus. Front Immunol 2024; 15:1395427. [PMID: 39007135 PMCID: PMC11239442 DOI: 10.3389/fimmu.2024.1395427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Systemic lupus erythematosus (SLE, lupus) is a debilitating, multisystem autoimmune disease that can affect any organ in the body. The disease is characterized by circulating autoantibodies that accumulate in organs and tissues, which triggers an inflammatory response that can cause permanent damage leading to significant morbidity and mortality. Lyn, a member of the Src family of non-receptor protein tyrosine kinases, is highly implicated in SLE as remarkably both mice lacking Lyn or expressing a gain-of-function mutation in Lyn develop spontaneous lupus-like disease due to altered signaling in B lymphocytes and myeloid cells, suggesting its expression or activation state plays a critical role in maintaining tolerance. The past 30 years of research has begun to elucidate the role of Lyn in a duplicitous signaling network of activating and inhibitory immunoreceptors and related targets, including interactions with the interferon regulatory factor family in the toll-like receptor pathway. Gain-of-function mutations in Lyn have now been identified in human cases and like mouse models, cause severe systemic autoinflammation. Studies of Lyn in SLE patients have presented mixed findings, which may reflect the heterogeneity of disease processes in SLE, with impairment or enhancement in Lyn function affecting subsets of SLE patients that may be a means of stratification. In this review, we present an overview of the phosphorylation and protein-binding targets of Lyn in B lymphocytes and myeloid cells, highlighting the structural domains of the protein that are involved in its function, and provide an update on studies of Lyn in SLE patients.
Collapse
Affiliation(s)
- Elan L’Estrange-Stranieri
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Timothy A. Gottschalk
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Mark D. Wright
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Margaret L. Hibbs
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Jesudason CD, Mason ER, Chu S, Oblak AL, Javens-Wolfe J, Moussaif M, Durst G, Hipskind P, Beck DE, Dong J, Amarasinghe O, Zhang ZY, Hamdani AK, Singhal K, Mesecar AD, Souza S, Jacobson M, Salvo JD, Soni DM, Kandasamy M, Masters AR, Quinney SK, Doolen S, Huhe H, Rizzo SJS, Lamb BT, Palkowitz AD, Richardson TI. SHIP1 therapeutic target enablement: Identification and evaluation of inhibitors for the treatment of late-onset Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12429. [PMID: 38023622 PMCID: PMC10655782 DOI: 10.1002/trc2.12429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/29/2023] [Accepted: 09/17/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION The risk of developing Alzheimer's disease is associated with genes involved in microglial function. Inositol polyphosphate-5-phosphatase (INPP5D), which encodes Src homology 2 (SH2) domain-containing inositol polyphosphate 5-phosphatase 1 (SHIP1), is a risk gene expressed in microglia. Because SHIP1 binds receptor immunoreceptor tyrosine-based inhibitory motifs (ITIMs), competes with kinases, and converts PI(3,4,5)P3 to PI(3,4)P2, it is a negative regulator of microglia function. Validated inhibitors are needed to evaluate SHIP1 as a potential therapeutic target. METHODS We identified inhibitors and screened the enzymatic domain of SHIP1. A protein construct containing two domains was used to evaluate enzyme inhibitor potency and selectivity versus SHIP2. Inhibitors were tested against a construct containing all ordered domains of the human and mouse proteins. A cellular thermal shift assay (CETSA) provided evidence of target engagement in cells. Phospho-AKT levels provided further evidence of on-target pharmacology. A high-content imaging assay was used to study the pharmacology of SHIP1 inhibition while monitoring cell health. Physicochemical and absorption, distribution, metabolism, and excretion (ADME) properties were evaluated to select a compound suitable for in vivo studies. RESULTS SHIP1 inhibitors displayed a remarkable array of activities and cellular pharmacology. Inhibitory potency was dependent on the protein construct used to assess enzymatic activity. Some inhibitors failed to engage the target in cells. Inhibitors that were active in the CETSA consistently destabilized the protein and reduced pAKT levels. Many SHIP1 inhibitors were cytotoxic either at high concentration due to cell stress or they potently induced cell death depending on the compound and cell type. One compound activated microglia, inducing phagocytosis at concentrations that did not result in significant cell death. A pharmacokinetic study demonstrated brain exposures in mice upon oral administration. DISCUSSION 3-((2,4-Dichlorobenzyl)oxy)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl) pyridine activated primary mouse microglia and demonstrated exposures in mouse brain upon oral dosing. Although this compound is our recommended chemical probe for investigating the pharmacology of SHIP1 inhibition at this time, further optimization is required for clinical studies. Highlights Cellular thermal shift assay (CETSA) and signaling (pAKT) assays were developed to provide evidence of src homology 2 (SH2) domain-contaning inositol phosphatase 1 (SHIP1) target engagement and on-target activity in cellular assays.A phenotypic high-content imaging assay with simultaneous measures of phagocytosis, cell number, and nuclear intensity was developed to explore cellular pharmacology and monitor cell health.SHIP1 inhibitors demonstrate a wide range of activity and cellular pharmacology, and many reported inhibitors are cytotoxic.The chemical probe 3-((2,4-dichlorobenzyl)oxy)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl) pyridine is recommended to explore SHIP1 pharmacology.
Collapse
Affiliation(s)
| | - Emily R Mason
- Indiana University School of Medicine Indianapolis Indiana USA
| | - Shaoyou Chu
- Indiana University School of Medicine Indianapolis Indiana USA
| | - Adrian L Oblak
- Indiana University School of Medicine Indianapolis Indiana USA
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis Indiana USA
| | | | | | | | | | - Daniel E Beck
- Institute for Drug Discovery Purdue University West Lafayette Indiana USA
| | - Jiajun Dong
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University West Lafayette Indiana USA
| | - Ovini Amarasinghe
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University West Lafayette Indiana USA
| | - Zhong-Yin Zhang
- Institute for Drug Discovery Purdue University West Lafayette Indiana USA
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University West Lafayette Indiana USA
| | - Adam K Hamdani
- Department of Biochemistry Purdue University West Lafayette Indiana USA
| | - Kratika Singhal
- Department of Biochemistry Purdue University West Lafayette Indiana USA
| | - Andrew D Mesecar
- Department of Biochemistry Purdue University West Lafayette Indiana USA
| | | | | | | | - Disha M Soni
- Indiana University School of Medicine Indianapolis Indiana USA
| | | | | | - Sara K Quinney
- Indiana University School of Medicine Indianapolis Indiana USA
| | - Suzanne Doolen
- University of Pittsburgh School of Medicine Pittsburgh Pennsylvania USA
| | - Hasi Huhe
- University of Pittsburgh School of Medicine Pittsburgh Pennsylvania USA
| | | | - Bruce T Lamb
- Indiana University School of Medicine Indianapolis Indiana USA
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis Indiana USA
| | - Alan D Palkowitz
- Indiana University School of Medicine Indianapolis Indiana USA
- Indiana Biosciences Research Institute Indianapolis Indiana USA
| | - Timothy I Richardson
- Indiana University School of Medicine Indianapolis Indiana USA
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis Indiana USA
- Indiana Biosciences Research Institute Indianapolis Indiana USA
| |
Collapse
|
3
|
Chu E, Mychasiuk R, Tsantikos E, Raftery AL, L’Estrange-Stranieri E, Dill LK, Semple BD, Hibbs ML. Regulation of Microglial Signaling by Lyn and SHIP-1 in the Steady-State Adult Mouse Brain. Cells 2023; 12:2378. [PMID: 37830592 PMCID: PMC10571795 DOI: 10.3390/cells12192378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Chronic neuroinflammation and glial activation are associated with the development of many neurodegenerative diseases and neuropsychological disorders. Recent evidence suggests that the protein tyrosine kinase Lyn and the lipid phosphatase SH2 domain-containing inositol 5' phosphatase-1 (SHIP-1) regulate neuroimmunological responses, but their homeostatic roles remain unclear. The current study investigated the roles of Lyn and SHIP-1 in microglial responses in the steady-state adult mouse brain. Young adult Lyn-/- and SHIP-1-/- mice underwent a series of neurobehavior tests and postmortem brain analyses. The microglial phenotype and activation state were examined by immunofluorescence and flow cytometry, and neuroimmune responses were assessed using gene expression analysis. Lyn-/- mice had an unaltered behavioral phenotype, neuroimmune response, and microglial phenotype, while SHIP-1-/- mice demonstrated reduced explorative activity and exhibited microglia with elevated activation markers but reduced granularity. In addition, expression of several neuroinflammatory genes was increased in SHIP-1-/- mice. In response to LPS stimulation ex vivo, the microglia from both Lyn-/- and SHIP-1-/- showed evidence of hyper-activity with augmented TNF-α production. Together, these findings demonstrate that both Lyn and SHIP-1 have the propensity to control microglial responses, but only SHIP-1 regulates neuroinflammation and microglial activation in the steady-state adult brain, while Lyn activity appears dispensable for maintaining brain homeostasis.
Collapse
Affiliation(s)
- Erskine Chu
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
| | - Evelyn Tsantikos
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| | - April L. Raftery
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| | - Elan L’Estrange-Stranieri
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| | - Larissa K. Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Bridgette D. Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Margaret L. Hibbs
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| |
Collapse
|
4
|
Ehm P, Bettin B, Jücker M. Activated Src kinases downstream of BCR-ABL and Flt3 induces proteasomal degradation of SHIP1 by phosphorylation of tyrosine 1021. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119467. [PMID: 36958526 DOI: 10.1016/j.bbamcr.2023.119467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 03/25/2023]
Abstract
Within the various subtypes of ALL, patients with a BCR-ABL-positive background as well as with a genetic change in the KMT2A gene have by far the worst survival probabilities. Interestingly, both subtypes are characterized by highly activated tyrosine kinases. SHIP1 serves as an important negative regulator of the PI3K/AKT signaling pathway, which is often constitutively activated in ALL. The protein expression of SHIP1 is decreased in most T-ALL and in some subgroups of B-ALL. In this study, we analyzed the expression of SHIP1 protein in detail in the context of groups with aberrant activated tyrosine kinases, namely BCR-ABL (Ph+) and Flt3 (KMT2A translocations). We demonstrate that constitutively activated Src kinases downstream of BCR-ABL and receptor tyrosine kinases reduce the SHIP1 expression in a SHIP1-Y1021 phosphorylated-dependent manner with subsequent ubiquitin marked proteasomal degradation. Inhibition of BCR-ABL (Imatinib), Flt3 (Quizartinib) or Src-Kinase-Family (Saracatinib) leads to significant reconstitution of SHIP1 protein expression. These results further support a functional role of SHIP1 as tumor suppressor protein and could be the basis for the establishment of a targeted therapy form.
Collapse
Affiliation(s)
- Patrick Ehm
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Research Institute Children's Cancer Center Hamburg, Hamburg and Dept. of Pediatric Oncology and Hematology, University Medical Center, Hamburg, Germany.
| | - Bettina Bettin
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
5
|
Hoang DH, Zhao D, Branciamore S, Maestrini D, Rodriguez IR, Kuo YH, Rockne R, Khaled SK, Zhang B, Nguyen LXT, Marcucci G. MicroRNA networks in FLT3-ITD acute myeloid leukemia. Proc Natl Acad Sci U S A 2022; 119:e2112482119. [PMID: 35412895 PMCID: PMC9169767 DOI: 10.1073/pnas.2112482119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/11/2022] [Indexed: 12/29/2022] Open
Abstract
MiR-126 and miR-155 are key microRNAs (miRNAs) that regulate, respectively, hematopoietic cell quiescence and proliferation. Herein we showed that in acute myeloid leukemia (AML), the biogenesis of these two miRNAs is interconnected through a network of regulatory loops driven by the FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD). In fact, FLT3-ITD induces the expression of miR-155 through a noncanonical mechanism of miRNA biogenesis that implicates cytoplasmic Drosha ribonuclease III (DROSHA). In turn, miR-155 down-regulates SH2-containing inositol phosphatase 1 (SHIP1), thereby increasing phosphor-protein kinase B (AKT) that in turn serine-phosphorylates, stabilizes, and activates Sprouty related EVH1 domain containing 1 (SPRED1). Activated SPRED1 inhibits the RAN/XPO5 complex and blocks the nucleus-to-cytoplasm transport of pre-miR-126, which cannot then complete the last steps of biogenesis. The net result is aberrantly low levels of mature miR-126 that allow quiescent leukemia blasts to be recruited into the cell cycle and proliferate. Thus, miR-126 down-regulation in proliferating AML blasts is downstream of FLT3-ITD–dependent miR-155 expression that initiates a complex circuit of concatenated regulatory feedback (i.e., miR-126/SPRED1, miR-155/human dead-box protein 3 [DDX3X]) and feed-forward (i.e., miR-155/SHIP1/AKT/miR-126) regulatory loops that eventually converge into an output signal for leukemic growth.
Collapse
Affiliation(s)
- Dinh Hoa Hoang
- Gehr Family Center for Leukemia Research, City of Hope Medical Center, Hematologic Malignancies Research Institute and Center for Stem Cell Transplantation, Duarte, CA 91010
| | - Dandan Zhao
- Gehr Family Center for Leukemia Research, City of Hope Medical Center, Hematologic Malignancies Research Institute and Center for Stem Cell Transplantation, Duarte, CA 91010
| | - Sergio Branciamore
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology and Computational Systems Biology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Davide Maestrini
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology and Computational Systems Biology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Ivan R. Rodriguez
- Gehr Family Center for Leukemia Research, City of Hope Medical Center, Hematologic Malignancies Research Institute and Center for Stem Cell Transplantation, Duarte, CA 91010
| | - Ya-Huei Kuo
- Gehr Family Center for Leukemia Research, City of Hope Medical Center, Hematologic Malignancies Research Institute and Center for Stem Cell Transplantation, Duarte, CA 91010
| | - Russell Rockne
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology and Computational Systems Biology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Samer K. Khaled
- Gehr Family Center for Leukemia Research, City of Hope Medical Center, Hematologic Malignancies Research Institute and Center for Stem Cell Transplantation, Duarte, CA 91010
| | - Bin Zhang
- Gehr Family Center for Leukemia Research, City of Hope Medical Center, Hematologic Malignancies Research Institute and Center for Stem Cell Transplantation, Duarte, CA 91010
| | - Le Xuan Truong Nguyen
- Gehr Family Center for Leukemia Research, City of Hope Medical Center, Hematologic Malignancies Research Institute and Center for Stem Cell Transplantation, Duarte, CA 91010
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, City of Hope Medical Center, Hematologic Malignancies Research Institute and Center for Stem Cell Transplantation, Duarte, CA 91010
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA 91010
| |
Collapse
|
6
|
Pedicone C, Fernandes S, Matera A, Meyer ST, Loh S, Ha JH, Bernard D, Chisholm JD, Paolicelli RC, Kerr WG. Discovery of a novel SHIP1 agonist that promotes degradation of lipid-laden phagocytic cargo by microglia. iScience 2022; 25:104170. [PMID: 35465359 PMCID: PMC9020084 DOI: 10.1016/j.isci.2022.104170] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/31/2021] [Accepted: 03/24/2022] [Indexed: 12/01/2022] Open
Abstract
Here, we describe the use of artificial intelligence to identify novel agonists of the SH2-containing 5′ inositol phosphatase 1 (SHIP1). One of the compounds, K306, represents the most potent agonist identified to date. We find that K306 exhibits selectivity for SHIP1 vs. the paralog enzyme SHIP2, and this activation does not require the C2 domain of SHIP1 which other known SHIP1 agonists require. Thus, K306 represents a new class of SHIP1 agonists with a novel mode of agonism. Importantly, we find that K306 can suppress induction of inflammatory cytokines and iNOS in macrophages or microglia, but not by their SHIP1-deficient counterparts. K306 also reduces TNF-α production in vivo in an LPS-induced endotoxemia assay. Finally, we show that K306 enhances phagolysosomal degradation of synaptosomes and dead neurons by microglia revealing a novel function for SHIP1 that might be exploited therapeutically in dementia. Discovery of a potent SHIP1 selective agonist (K306) via artificial intelligence SHIP1 agonism via K306 is independent of the C2 domain and increases PI(3,4)P2 levels K306 reduces IL-6, TNF-α, and iNOS induction in microglia and macrophages K306 promotes phagocytic degradation of lipid-laden but not protein cargo in microglia
Collapse
Affiliation(s)
- Chiara Pedicone
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sandra Fernandes
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Alessandro Matera
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Shea T Meyer
- Chemistry Department, Syracuse University, Syracuse, NY 13210, USA
| | - Stewart Loh
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jeung-Hoi Ha
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | - John D Chisholm
- Chemistry Department, Syracuse University, Syracuse, NY 13210, USA
| | | | - William G Kerr
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.,Chemistry Department, Syracuse University, Syracuse, NY 13210, USA
| |
Collapse
|
7
|
A Fish Leukocyte Immune-Type Receptor Uses a Novel Intracytoplasmic Tail Networking Mechanism to Cross-Inhibit the Phagocytic Response. Int J Mol Sci 2020; 21:ijms21145146. [PMID: 32708174 PMCID: PMC7404264 DOI: 10.3390/ijms21145146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/04/2023] Open
Abstract
Channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs) are a family of immunoregulatory proteins shown to regulate several innate immune cell effector responses, including phagocytosis. The precise mechanisms of IpLITR-mediated regulation of the phagocytic process are not entirely understood, but we have previously shown that different IpLITR-types use classical as well as novel pathways for controlling immune cell-mediated target engulfment. To date, all functional assessments of IpLITR-mediated regulatory actions have focused on the independent characterization of select IpLITR-types in transfected cells. As members of the immunoglobulin superfamily, many IpLITRs share similar extracellular Ig-like domains, thus it is possible that various IpLITR actions are influenced by cross-talk mechanisms between different IpLITR-types; analogous to the paired innate receptor paradigm in mammals. Here, we describe in detail the co-expression of different IpLITR-types in the human embryonic AD293 cell line and examination of their receptor cross-talk mechanisms during the regulation of the phagocytic response using imaging flow cytometry, confocal microscopy, and immunoprecipitation protocols. Overall, our data provides interesting new insights into the integrated control of phagocytosis via the antagonistic networking of independent IpLITR-types that requires the selective recruitment of inhibitory signaling molecules for the initiation and sustained cross-inhibition of phagocytosis.
Collapse
|
8
|
Qin S, Li J, Zhou C, Privratsky B, Schettler J, Deng X, Xia Z, Zeng Y, Wu H, Wu M. SHIP-1 Regulates Phagocytosis and M2 Polarization Through the PI3K/Akt-STAT5-Trib1 Circuit in Pseudomonas aeruginosa Infection. Front Immunol 2020; 11:307. [PMID: 32256487 PMCID: PMC7093384 DOI: 10.3389/fimmu.2020.00307] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/06/2020] [Indexed: 02/05/2023] Open
Abstract
SHIP-1 is an inositol phosphatase that hydrolyzes phosphatidylinositol 3-kinase (PI3K) products and negatively regulates protein kinase B (Akt) activity, thereby modulating a variety of cellular processes in mammals. However, the role of SHIP-1 in bacterial-induced sepsis is largely unknown. Here, we show that SHIP-1 regulates inflammatory responses during Gram-negative bacterium Pseudomonas aeruginosa infection. We found that infected-SHIP-1-/- mice exhibited decreased survival rates, increased inflammatory responses, and susceptibility owing to elevated expression of PI3K than wild-type (WT) mice. Inhibiting SHIP-1 via siRNA silencing resulted in lipid raft aggregates, aggravated oxidative damage, and bacterial burden in macrophages after PAO1 infection. Mechanistically, SHIP-1 deficiency augmented phosphorylation of PI3K and nuclear transcription of signal transducer and activator of transcription 5 (STAT5) to induce the expression of Trib1, which is critical for differentiation of M2 but not M1 macrophages. These findings reveal a previously unrecognized role of SHIP-1 in inflammatory responses and macrophage homeostasis during P. aeruginosa infection through a PI3K/Akt-STAT5-Trib1 axis.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaxin Li
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanmin Zhou
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Breanna Privratsky
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Jacob Schettler
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Xin Deng
- Department of Pediatrics and Department of Pulmonary & Critical Care Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenwei Xia
- Department of Pediatrics and Department of Pulmonary & Critical Care Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Zeng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Wu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
9
|
Roberts ME, Barvalia M, Silva JAFD, Cederberg RA, Chu W, Wong A, Tai DC, Chen S, Matos I, Priatel JJ, Cullis PR, Harder KW. Deep Phenotyping by Mass Cytometry and Single-Cell RNA-Sequencing Reveals LYN-Regulated Signaling Profiles Underlying Monocyte Subset Heterogeneity and Lifespan. Circ Res 2020; 126:e61-e79. [PMID: 32151196 DOI: 10.1161/circresaha.119.315708] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RATIONALE Monocytes are key effectors of the mononuclear phagocyte system, playing critical roles in regulating tissue homeostasis and coordinating inflammatory reactions, including those involved in chronic inflammatory diseases such as atherosclerosis. Monocytes have traditionally been divided into 2 major subsets termed conventional monocytes and patrolling monocytes (pMo) but recent systems immunology approaches have identified marked heterogeneity within these cells, and much of what regulates monocyte population homeostasis remains unknown. We and others have previously identified LYN tyrosine kinase as a key negative regulator of myeloid cell biology; however, LYN's role in regulating specific monocyte subset homeostasis has not been investigated. OBJECTIVE We sought to comprehensively profile monocytes to elucidate the underlying heterogeneity within monocytes and dissect how Lyn deficiency affects monocyte subset composition, signaling, and gene expression. We further tested the biological significance of these findings in a model of atherosclerosis. METHODS AND RESULTS Mass cytometric analysis of monocyte subsets and signaling pathway activation patterns in conventional monocytes and pMos revealed distinct baseline signaling profiles and far greater heterogeneity than previously described. Lyn deficiency led to a selective expansion of pMos and alterations in specific signaling pathways within these cells, revealing a critical role for LYN in pMo physiology. LYN's role in regulating pMos was cell-intrinsic and correlated with an increased circulating half-life of Lyn-deficient pMos. Furthermore, single-cell RNA sequencing revealed marked perturbations in the gene expression profiles of Lyn-/- monocytes with upregulation of genes involved in pMo development, survival, and function. Lyn deficiency also led to a significant increase in aorta-associated pMos and protected Ldlr-/- mice from high-fat diet-induced atherosclerosis. CONCLUSIONS Together our data identify LYN as a key regulator of pMo development and a potential therapeutic target in inflammatory diseases regulated by pMos.
Collapse
Affiliation(s)
- Morgan E Roberts
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - Maunish Barvalia
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - Jessica A F D Silva
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - Rachel A Cederberg
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - William Chu
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - Amanda Wong
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - Daven C Tai
- Department of Pediatrics (D.C.T.), University of British Columbia, Vancouver, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, Canada (D.C.T., J.J.P.)
| | - Sam Chen
- Department of Biochemistry and Molecular Biology (S.C., P.R.C.), University of British Columbia, Vancouver, Canada
| | - Israel Matos
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - John J Priatel
- Department of Pathology and Laboratory Medicine (J.J.P.), University of British Columbia, Vancouver, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, Canada (D.C.T., J.J.P.)
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology (S.C., P.R.C.), University of British Columbia, Vancouver, Canada
| | - Kenneth W Harder
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| |
Collapse
|
10
|
Sundaravel S, Kuo WL, Jeong JJ, Choudhary GS, Gordon-Mitchell S, Liu H, Bhagat TD, McGraw KL, Gurbuxani S, List AF, Verma A, Wickrema A. Loss of Function of DOCK4 in Myelodysplastic Syndromes Stem Cells is Restored by Inhibitors of DOCK4 Signaling Networks. Clin Cancer Res 2019; 25:5638-5649. [PMID: 31308061 DOI: 10.1158/1078-0432.ccr-19-0924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/13/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE Myelodysplastic syndromes (MDS) with deletion of chromosome 7q/7 [-7/(del)7q MDS] is associated with worse outcomes and needs novel insights into pathogenesis. Reduced expression of signaling protein dedicator of cytokinesis 4 (DOCK4) in patients with -7/(del)7q MDS leads to a block in hematopoietic stem cell (HSC) differentiation. Identification of targetable signaling networks downstream of DOCK4 will provide means to restore hematopoietic differentiation in MDS.Experimental Design: We utilized phosphoproteomics approaches to identify signaling proteins perturbed as a result of reduced expression of DOCK4 in human HSCs and tested their functional significance in primary model systems. RESULTS We demonstrate that reduced levels of DOCK4 lead to increased global tyrosine phosphorylation of proteins in primary human HSCs. LYN kinase and phosphatases INPP5D (SHIP1) and PTPN6 (SHP1) displayed greatest levels of tyrosine phosphorylation when DOCK4 expression levels were reduced using DOCK4-specific siRNA. Our data also found that increased phosphorylation of SHIP1 and SHP1 phosphatases were due to LYN kinase targeting these phosphatases as substrates. Increased migration and impediment of HSC differentiation were consequences of these signaling alterations. Pharmacologic inhibition of SHP1 reversed these functional aberrations in HSCs expressing low DOCK4 levels. In addition, differentiation block seen in DOCK4 haplo-insufficient [-7/(del)7q] MDS was rescued by inhibition of SHP1 phosphatase. CONCLUSIONS LYN kinase and phosphatases SHP1 and SHIP1 are perturbed when DOCK4 expression levels are low. Inhibition of SHP1 promotes erythroid differentiation in healthy HSCs and in -7/(del)7q MDS samples with low DOCK4 expression. Inhibitors of LYN, SHP1 and SHIP1 also abrogated increased migratory properties in HSCs expressing reduced levels of DOCK4.
Collapse
Affiliation(s)
- Sriram Sundaravel
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Wen-Liang Kuo
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Jong Jin Jeong
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Gaurav S Choudhary
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | | | - Hui Liu
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Tushar D Bhagat
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | | | - Sandeep Gurbuxani
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | | | - Amit Verma
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Amittha Wickrema
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
11
|
Altman AM, Mahmud J, Nikolovska-Coleska Z, Chan G. HCMV modulation of cellular PI3K/AKT/mTOR signaling: New opportunities for therapeutic intervention? Antiviral Res 2019; 163:82-90. [PMID: 30668978 PMCID: PMC6391997 DOI: 10.1016/j.antiviral.2019.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 12/15/2022]
Abstract
Human cytomegalovirus (HCMV) remains a major public health burden domestically and abroad. Current approved therapies, including ganciclovir, are only moderately efficacious, with many transplant patients suffering from a variety of side effects. A major impediment to the efficacy of current anti-HCMV drugs is their antiviral effects are restricted to the lytic stage of viral replication. Consequently, the non-lytic stages of the viral lifecycle remain major sources of HCMV infection associated with transplant recipients and ultimately the cause of morbidity and mortality. While work continues on new antivirals that block lytic replication, the dormant stages of HCMV's unique lifecycle need to be concurrently assessed for new therapeutic interventions. In this review, we will examine the role that the PI3K/Akt/mTOR signaling axis plays during the different stages of HCMV's lifecycle, and describe the advantages of targeting this cellular pathway as an antiviral strategy. In particular, we focus on the potential of exploiting the unique modifications HCMV imparts on the PI3K/Akt/mTOR pathway during quiescent infection of monocytes, which serve an essential role in the dissemination strategy of the virus.
Collapse
Affiliation(s)
- Aaron M Altman
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jamil Mahmud
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | - Gary Chan
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
12
|
Poles WA, Nishi EE, de Oliveira MB, Eugênio AIP, de Andrade TA, Campos AHFM, de Campos RR, Vassallo J, Alves AC, Scapulatempo Neto C, Paes RAP, Landman G, Zerbini MCN, Colleoni GWB. Targeting the polarization of tumor-associated macrophages and modulating mir-155 expression might be a new approach to treat diffuse large B-cell lymphoma of the elderly. Cancer Immunol Immunother 2019; 68:269-282. [PMID: 30430204 PMCID: PMC11028330 DOI: 10.1007/s00262-018-2273-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 11/08/2018] [Indexed: 11/25/2022]
Abstract
Aging immune deterioration and Epstein-Barr (EBV) intrinsic mechanisms play an essential role in EBV-positive diffuse large B-cell lymphoma (DLBCL) of the elderly (EBV + DLBCLe) pathogenesis, through the expression of viral proteins, interaction with host molecules and epigenetic regulation, such as miR-155, required for induction of M1 phenotype of macrophages. This study aims to evaluate the relationship between macrophage polarization pattern in the tumor microenvironment and relative expression of miR-155 in EBV + DLBCLe and EBV-negative DLBCL patients. We studied 28 EBV + DLBCLe and 65 EBV-negative DLBCL patients. Tumor-associated macrophages (TAM) were evaluated by expression of CD68, CD163 and CD163/CD68 ratio (degree of M2 polarization), using tissue microarray. RNA was extracted from paraffin-embedded tumor samples for miR-155 relative expression study. We found a significantly higher CD163/CD68 ratio in EBV + DLBCLe compared to EBV-negative DLBCL. In EBV-negative DLBCL, CD163/CD68 ratio was higher among advanced-staged/high-tumor burden disease and overexpression of miR-155 was associated with decreased polarization to the M2 phenotype of macrophages. The opposite was observed in EBV + DLBCLe patients: we found a positive association between miR-155 relative expression and CD163/CD68 ratio, which was not significant after outlier exclusion. We believe that the higher CD163/CD68 ratio in this group is probably due to the presence of the EBV since it directly affects macrophage polarization towards M2 phenotype through cytokine secretion in the tumor microenvironment. Therapeutic strategies modulating miR-155 expression or preventing immuno-regulatory and pro-tumor macrophage polarization could be adjuvants in EBV + DLBCLe therapy since this entity has a rich infiltration of M2 macrophages in its tumor microenvironment.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Epstein-Barr Virus Infections/complications
- Epstein-Barr Virus Infections/immunology
- Epstein-Barr Virus Infections/virology
- Female
- Gene Expression Regulation, Neoplastic/immunology
- Herpesvirus 4, Human/immunology
- Herpesvirus 4, Human/physiology
- Humans
- Lymphoma, Large B-Cell, Diffuse/complications
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Macrophage Activation/immunology
- Macrophages/classification
- Macrophages/immunology
- Macrophages/metabolism
- Male
- MicroRNAs/genetics
- MicroRNAs/immunology
- Middle Aged
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Wagner A Poles
- Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, Rua Diogo de Faria, 824, 5° andar, Hemocentro, CEP 04037-002, Sao Paulo, Brazil
| | - Erika E Nishi
- Department of Physiology, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Mariana B de Oliveira
- Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, Rua Diogo de Faria, 824, 5° andar, Hemocentro, CEP 04037-002, Sao Paulo, Brazil
| | - Angela I P Eugênio
- Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, Rua Diogo de Faria, 824, 5° andar, Hemocentro, CEP 04037-002, Sao Paulo, Brazil
| | - Tathiana A de Andrade
- Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, Rua Diogo de Faria, 824, 5° andar, Hemocentro, CEP 04037-002, Sao Paulo, Brazil
| | | | - Ruy R de Campos
- Department of Physiology, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - José Vassallo
- Department of Pathology, AC Camargo Cancer Center, Sao Paulo, Brazil
| | - Antonio C Alves
- Department of Pathology, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | | | | | - Gilles Landman
- Department of Pathology, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | | | - Gisele W B Colleoni
- Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, Rua Diogo de Faria, 824, 5° andar, Hemocentro, CEP 04037-002, Sao Paulo, Brazil.
| |
Collapse
|
13
|
Hibbs ML, Raftery AL, Tsantikos E. Regulation of hematopoietic cell signaling by SHIP-1 inositol phosphatase: growth factors and beyond. Growth Factors 2018; 36:213-231. [PMID: 30764683 DOI: 10.1080/08977194.2019.1569649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SHIP-1 is a hematopoietic-specific inositol phosphatase activated downstream of a multitude of receptors including those for growth factors, cytokines, antigen, immunoglobulin and toll-like receptor agonists where it exerts inhibitory control. While it is constitutively expressed in all immune cells, SHIP-1 expression is negatively regulated by the inflammatory and oncogenic micro-RNA miR-155. Knockout mouse studies have shown the importance of SHIP-1 in various immune cell subsets and have revealed a range of immune-mediated pathologies that are engendered due to loss of SHIP-1's regulatory activity, impelling investigations into the role of SHIP-1 in human disease. In this review, we provide an overview of the literature relating to the role of SHIP-1 in hematopoietic cell signaling and function, we summarize recent reports that highlight the dysregulation of the SHIP-1 pathway in cancers, autoimmune disorders and inflammatory diseases, and lastly we discuss the importance of SHIP-1 in restraining myeloid growth factor signaling.
Collapse
Affiliation(s)
- Margaret L Hibbs
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| | - April L Raftery
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| | - Evelyn Tsantikos
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| |
Collapse
|
14
|
Li R, Fang L, Pu Q, Lin P, Hoggarth A, Huang H, Li X, Li G, Wu M. Lyn prevents aberrant inflammatory responses to Pseudomonas infection in mammalian systems by repressing a SHIP-1-associated signaling cluster. Signal Transduct Target Ther 2016; 1:16032. [PMID: 29263906 PMCID: PMC5661651 DOI: 10.1038/sigtrans.2016.32] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 02/05/2023] Open
Abstract
The pleiotropic Src kinase Lyn has critical roles in host defense in alveolar macrophages against bacterial infection, but the underlying mechanism for Lyn-mediated inflammatory response remains largely elusive. Using mouse Pseudomonas aeruginosa infection models, we observed that Lyn-/- mice manifest severe lung injury and enhanced inflammatory responses, compared with wild-type littermates. We demonstrate that Lyn exerts this immune function through interaction with IL-6 receptor and cytoskeletal protein Ezrin via its SH2 and SH3 domains. Depletion of Lyn results in excessive STAT3 activation, and enhanced the Src homology 2-containing inositol-5-phopsphatase 1 (SHIP-1) expression. Deletion of SHIP-1 in Lyn-/- mice (double knockout) promotes mouse survival and reduces inflammatory responses during P. aeruginosa infection, revealing the rescue of the deadly infectious phenotype in Lyn deficiency. Mechanistically, loss of SHIP-1 reduces NF-κB-dependent cytokine production and dampens MAP kinase activation through a TLR4-independent PI3K/Akt pathway. These findings reveal Lyn as a regulator for host immune response against P. aeruginosa infection through SHIP-1 and IL-6/STAT3 signaling pathway in alveolar macrophages.
Collapse
Affiliation(s)
- Rongpeng Li
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R., China
| | - Lizhu Fang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ping Lin
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Austin Hoggarth
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Huang Huang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Xuefeng Li
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Guoping Li
- Inflammation and Allergic Disease Research Unit, First Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
15
|
Control of the Inflammatory Macrophage Transcriptional Signature by miR-155. PLoS One 2016; 11:e0159724. [PMID: 27447824 PMCID: PMC4957803 DOI: 10.1371/journal.pone.0159724] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/07/2016] [Indexed: 12/24/2022] Open
Abstract
Inflammatory M1 spectrum macrophages protect from infection but can cause inflammatory disease and tissue damage, whereas alternatively activated/M2 spectrum macrophages reduce inflammation and promote tissue repair. Modulation of macrophage phenotype may be therapeutically beneficial and requires further understanding of the molecular programs that control macrophage differentiation. A potential mechanism by which macrophages differentiate may be through microRNA (miRNA), which bind to messenger RNA and post-transcriptionally modify gene expression, cell phenotype and function. We hypothesized that the inflammation-associated miRNA, miR-155, would be required for typical development of macrophage inflammatory state. miR-155 was rapidly up-regulated over 100-fold in inflammatory M1(LPS + IFN-γ), but not M2(IL-4), macrophages. Inflammatory genes Inos, Il1b and Tnfa and their corresponding protein or enzymatic products were reduced up to 72% in miR-155 knockout mouse M1(LPS + IFN-γ) macrophages, but miR-155 deficiency did not affect expression of the M2-associated gene Arg1 in M2(IL-4) macrophages. Additionally, a miR-155 oligonucleotide inhibitor efficiently suppressed Inos and Tnfa gene expression in wild-type M1(LPS + IFN-γ) macrophages. Comparative transcriptional profiling of unstimulated and M1(LPS + IFN-γ) macrophages derived from wild-type (WT) and miR-155 knockout (KO) mice revealed that half (approximately 650 genes) of the signature we previously identified in WT M1(LPS + IFN-γ) macrophages was dependent on miR-155. Real-Time PCR of independent datasets confirmed that miR-155 contributed to suppression of its validated mRNA targets Inpp5d, Tspan14, Ptprj and Mafb and induction of Inos, Il1b, Tnfa, Il6 and Il12. Overall, these data indicate that miR-155 plays an essential role in driving the inflammatory phenotype of M1(LPS+ IFN-γ) macrophages.
Collapse
|
16
|
Human Cytomegalovirus Induces an Atypical Activation of Akt To Stimulate the Survival of Short-Lived Monocytes. J Virol 2016; 90:6443-6452. [PMID: 27147739 DOI: 10.1128/jvi.00214-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/26/2016] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV) is a pervasive herpesvirus responsible for significant morbidity and mortality among immunodeficient/naive hosts. Following a primary HCMV infection, circulating blood monocytes mediate the systemic spread of the virus. Extending the short 48-h life span of monocytes is critical to the viral dissemination process, as these blood-borne cells are nonpermissive for virus replication until they are fully differentiated into macrophages. Here, we show that HCMV glycoprotein gB binding to cellular epidermal growth factor receptor (EGFR) during HCMV entry initiated a rapid (within 15 min) activation of the apoptosis suppressor Akt, which was maintained through 72 h. The virus-induced activation of Akt was more robust than that with the normal myeloid growth factor macrophage colony-stimulating factor (M-CSF) and was essential for infected monocytes to bypass the 48-h viability checkpoint. Activation of phosphoinositide 3-kinase (PI3K) following EGFR engagement by HCMV mediated the phosphorylation of Akt. Moreover, HCMV entry drove a switch away from the PI3K p110δ isoform, which was required for the viability of uninfected monocytes, to the p110β isoform in order to facilitate the Akt-dependent prosurvival state within infected cells. Simultaneously, in contrast to M-CSF, HCMV promoted a rapid increase in SH2 domain-containing inositol 5-phosphatase 1 (SHIP1) expression, leading to signaling through a noncanonical Akt activation pathway. To ensure maximum Akt activity, HCMV also induced an early phosphorylation-dependent inactivation of the negative regulator phosphatase and tensin homolog. Overall, our data indicate that HCMV hijacks the upstream Akt signaling network to induce a nontraditional activation of Akt and subsequently a prosurvival decision at the 48-h cell fate checkpoint, a vital step for HCMV's dissemination and persistence strategy. IMPORTANCE HCMV is found throughout the world with a prevalence of 55 to 100% within the human population. HCMV infection is generally asymptomatic in immunocompetent or naive individuals but is a significant cause of morbidity and mortality among the immunocompromised. Widespread organ inflammation is associated with symptomatic infections, which is a direct consequence of the viral dissemination strategy. Inflammatory peripheral blood monocytes facilitate the spread of HCMV. However, HCMV must subvert the naturally short life span of monocytes. In this work, we demonstrate that HCMV induces the activation of Akt, an antiapoptotic protein, in a manner distinct from that of normal myeloid growth factors. Moreover, we decipher how HCMV dysregulates the upstream Akt signaling network during viral entry to promote an Akt-dependent prosurvival state following infection. Delineation of the virus-specific mechanisms that regulate cellular prosurvival pathways in order to drive the survival of HCMV-infected monocytes is important to identifying new anti-HCMV therapeutic targets.
Collapse
|
17
|
Targeting miR-155 to Treat Experimental Scleroderma. Sci Rep 2016; 6:20314. [PMID: 26828700 PMCID: PMC4734331 DOI: 10.1038/srep20314] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/30/2015] [Indexed: 01/08/2023] Open
Abstract
Scleroderma is a refractory autoimmune skin fibrotic disorder. Alterations of microRNAs in lesional skin could be a new approach to treating the disease. Here, we found that expression of miR-155 was up regulated in lesional skin tissue from patients with either systemic or localized scleroderma, and correlated with fibrosis area. Then we demonstrated the potential of miR-155 as a therapeutic target in pre-clinical scleroderma models. MiR-155−/− mice were resistant to bleomycin induced skin fibrosis. Moreover, topical antagomiR-155 could effectively treat mice primed with subcutaneous bleomycin. In primary skin fibroblast, miR-155 silencing could inhibit collagen synthesis function, as well as signaling intensity of two pro-fibrotic pathways, Wnt/β-catenin and Akt, simultaneously. We further showed that miR-155 could regulate the two pathways via directly targeting casein kinase 1α (CK1α) and Src homology 2-containing inositol phosphatase-1 (SHIP-1), as previous reports. Mice with miR-155 knockout or topical antagomir-155 treatment showed inhibited Wnt/β-catenin and Akt signaling in skin upon bleomycin challenge. Together, our data suggest the potential of miR-155 silencing as a promising treatment for dermal fibrosis, especially in topical applications.
Collapse
|
18
|
Li X, Long J, He T, Belshaw R, Scott J. Integrated genomic approaches identify major pathways and upstream regulators in late onset Alzheimer's disease. Sci Rep 2015. [PMID: 26202100 PMCID: PMC4511863 DOI: 10.1038/srep12393] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previous studies have evaluated gene expression in Alzheimer’s disease (AD) brains to identify mechanistic processes, but have been limited by the size of the datasets studied. Here we have implemented a novel meta-analysis approach to identify differentially expressed genes (DEGs) in published datasets comprising 450 late onset AD (LOAD) brains and 212 controls. We found 3124 DEGs, many of which were highly correlated with Braak stage and cerebral atrophy. Pathway Analysis revealed the most perturbed pathways to be (a) nitric oxide and reactive oxygen species in macrophages (NOROS), (b) NFkB and (c) mitochondrial dysfunction. NOROS was also up-regulated, and mitochondrial dysfunction down-regulated, in healthy ageing subjects. Upstream regulator analysis predicted the TLR4 ligands, STAT3 and NFKBIA, for activated pathways and RICTOR for mitochondrial genes. Protein-protein interaction network analysis emphasised the role of NFKB; identified a key interaction of CLU with complement; and linked TYROBP, TREM2 and DOK3 to modulation of LPS signalling through TLR4 and to phosphatidylinositol metabolism. We suggest that NEUROD6, ZCCHC17, PPEF1 and MANBAL are potentially implicated in LOAD, with predicted links to calcium signalling and protein mannosylation. Our study demonstrates a highly injurious combination of TLR4-mediated NFKB signalling, NOROS inflammatory pathway activation, and mitochondrial dysfunction in LOAD.
Collapse
Affiliation(s)
- Xinzhong Li
- Centre for Biostatistics, Bioinformatics and Biomarkers, Plymouth University, Plymouth UK
| | - Jintao Long
- Centre for Biostatistics, Bioinformatics and Biomarkers, Plymouth University, Plymouth UK
| | - Taigang He
- Institute of Cardiovascular and Cell Sciences, St. George University, London UK
| | - Robert Belshaw
- School of Biomedicine and Healthcare Sciences, Plymouth University, Plymouth UK
| | - James Scott
- National Heart and Lung Institute, Imperial College, London UK
| |
Collapse
|
19
|
Specific binding of the WASP N-terminal domain to Btk is critical for TLR2 signaling in macrophages. Mol Immunol 2015; 63:328-36. [DOI: 10.1016/j.molimm.2014.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 02/06/2023]
|
20
|
Leaker BR, Barnes PJ, O'Connor BJ, Ali FY, Tam P, Neville J, Mackenzie LF, MacRury T. The effects of the novel SHIP1 activator AQX-1125 on allergen-induced responses in mild-to-moderate asthma. Clin Exp Allergy 2014; 44:1146-53. [PMID: 25040039 DOI: 10.1111/cea.12370] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/02/2014] [Accepted: 07/01/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND SH2-containing inositol-5'-phosphatase 1 (SHIP1) is an endogenous inhibitor of the phosphoinositide-3-kinase pathway that is involved in the activation and chemotaxis of inflammatory cells. AQX-1125 is a first-in-class, oral SHIP1 activator with a novel anti-inflammatory mode of action. OBJECTIVE To evaluate the effects of AQX-1125 on airway responses to allergen challenge in mild-to-moderate asthmatic patients. METHODS A randomized, double-blind, placebo-controlled, two-way crossover study was performed in 22 steroid-naïve mild-to-moderate asthmatics with a documented late-phase response to inhaled allergen (LAR). AQX-1125 (450 mg daily) or placebo was administered orally for 7 days. Allergen challenge was performed on day 6 (2 h postdose), followed by methacholine challenge (day 7), and induced sputum collection and fractional exhaled nitric oxide (FeNO). RESULTS AQX-1125 significantly attenuated the late-phase response compared with placebo (FEV1 4-10 h: mean difference 150 mL, 20%; P = 0.027) and significantly increased the minimum FEV1 during LAR (mean difference 180 mL; P = 0.014). AQX-1125 had no effect on the early-phase response. AQX-1125 showed a trend in reduction of sputum eosinophils, neutrophils and macrophages although this did not achieve significance as there were only 11 paired samples for analysis. There was no effect on methacholine responsiveness or FeNO. Pharmacokinetic data showed AQX-1125 was rapidly absorbed with geometric mean Cmax and AUC0-24 h values of 1417 ng/mL and 16 727 h ng/mL, respectively. AQX-1125 was well tolerated, but mild GI side-effects (dyspepsia, nausea and abdominal pain) were described in 4/22 subjects on active treatment. These side-effects were mild self-limiting, required no further treatment and did not lead to discontinuation of therapy. CONCLUSION AND CLINICAL RELEVANCE AQX-1125, a novel oral SHIP1 activator, significantly reduces the late response to allergen challenge, with a trend to reduce airway inflammation. AQX-1125 was safe and well tolerated and merits further investigation in inflammatory disorders.
Collapse
Affiliation(s)
- B R Leaker
- Respiratory Clinical Trials Ltd., London, UK
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Xue H, Hua LM, Guo M, Luo JM. SHIP1 is targeted by miR-155 in acute myeloid leukemia. Oncol Rep 2014; 32:2253-9. [PMID: 25175984 DOI: 10.3892/or.2014.3435] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/29/2014] [Indexed: 11/06/2022] Open
Abstract
The SH2 domain-containing inositol 5'-phosphatase 1 (SHIP1) has been implicated as a suppressor of hematopoietic transformation as its activity can inhibit the PI3K/Akt signaling pathway. Reduced activity of SHIP1 has been observed in acute myeloid leukemia (AML). SHIP1 is a target of microRNA-155 (miR-155). Therefore, the aim of the present study was to investigate the role of miR-155/SHIP1 in the pathogenesis of AML. We examined the levels of SHIP1 protein and miR-155 in tissue samples of patients with AML and in AML cell lines. In addition, we investigated cell proliferation, apoptosis and expression of SHIP1/PI3K/AKT pathway molecules in the THP-1 and U937 cell lines after miR-155 inhibitor or mimics were transfected. We showed that the levels of SHIP1 protein were significantly decreased in tissue samples of patients with some subtypes of AML (M4 or M5) and in AML cell lines with concomitant overexpression of miR-155. In addition, we demonstrated that decreased expression of SHIP1 in the AML cell lines was a consequence of increased levels of miR-155 and can therefore be reversed in vitro through inhibition of miR-155, with subsequent inhibition of cell proliferation and promotion of cell apoptosis. In conclusion, expression of the SHIP1 protein is targeted by miR-155 in AML. miR-155 acts as an onco-miR, and the miR-155/SHIP1/PI3K/AKT signaling pathway could play an important role in the pathogenesis of AML.
Collapse
Affiliation(s)
- Hua Xue
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Luo-Ming Hua
- Department of Hematology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Ming Guo
- Department of Hematology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Jian-Min Luo
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
22
|
Abstract
The CSF-1 receptor (CSF-1R) is activated by the homodimeric growth factors colony-stimulating factor-1 (CSF-1) and interleukin-34 (IL-34). It plays important roles in development and in innate immunity by regulating the development of most tissue macrophages and osteoclasts, of Langerhans cells of the skin, of Paneth cells of the small intestine, and of brain microglia. It also regulates the differentiation of neural progenitor cells and controls functions of oocytes and trophoblastic cells in the female reproductive tract. Owing to this broad tissue expression pattern, it plays a central role in neoplastic, inflammatory, and neurological diseases. In this review we summarize the evolution, structure, and regulation of expression of the CSF-1R gene. We discuss the structures of CSF-1, IL-34, and the CSF-1R and the mechanism of ligand binding to and activation of the receptor. We further describe the pathways regulating macrophage survival, proliferation, differentiation, and chemotaxis downstream from the CSF-1R.
Collapse
Affiliation(s)
- E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
23
|
Maxwell MJ, Srivastava N, Park MY, Tsantikos E, Engelman RW, Kerr WG, Hibbs ML. SHIP-1 deficiency in the myeloid compartment is insufficient to induce myeloid expansion or chronic inflammation. Genes Immun 2014; 15:233-40. [PMID: 24598798 DOI: 10.1038/gene.2014.9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/17/2013] [Accepted: 01/13/2014] [Indexed: 01/17/2023]
Abstract
SHIP-1 has an important role in controlling immune cell function through its ability to downmodulate PI3K signaling pathways that regulate cell survival and responses to stimulation. Mice deficient in SHIP-1 display several chronic inflammatory phenotypes including antibody-mediated autoimmune disease, Crohn's disease-like ileitis and a lung disease reminiscent of chronic obstructive pulmonary disease. The ileum and lungs of SHIP-1-deficient mice are infiltrated at an early age with abundant myeloid cells and the mice have a limited lifespan primarily thought to be due to the consolidation of lungs with spontaneously activated macrophages. To determine whether the myeloid compartment is the key initiator of inflammatory disease in SHIP-1-deficient mice, we examined two independent strains of mice harboring myeloid-restricted deletion of SHIP-1. Contrary to expectations, conditional deletion of SHIP-1 in myeloid cells did not result in consolidating pneumonia or segmental ileitis typical of germline SHIP-1 deficiency. In addition, other myeloid cell abnormalities characteristic of germline loss of SHIP-1, including flagrant splenomegaly and enhanced myelopoiesis, were absent in mice lacking SHIP-1 in myeloid cells. This study indicates that the spontaneous inflammatory disease characteristic of germline SHIP-1 deficiency is not initiated solely by LysM-positive myeloid cells but requires the simultaneous loss of SHIP-1 in other hematolymphoid lineages.
Collapse
Affiliation(s)
- M J Maxwell
- Department of Immunology, Leukocyte Signalling Laboratory, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | - N Srivastava
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - M-Y Park
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - E Tsantikos
- Department of Immunology, Leukocyte Signalling Laboratory, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | - R W Engelman
- Departments of Pathology and Cell Biology and Pediatrics, H. Lee Moffitt Comprehensive Cancer Center and Research Institute, University of South Florida, Tampa, FL, USA
| | - W G Kerr
- 1] Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA [2] Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY, USA [3] Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | - M L Hibbs
- Department of Immunology, Leukocyte Signalling Laboratory, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Viernes DR, Choi LB, Kerr WG, Chisholm JD. Discovery and development of small molecule SHIP phosphatase modulators. Med Res Rev 2013; 34:795-824. [PMID: 24302498 DOI: 10.1002/med.21305] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Inositol phospholipids play an important role in the transfer of signaling information across the cell membrane in eukaryotes. These signals are often governed by the phosphorylation patterns on the inositols, which are mediated by a number of inositol kinases and phosphatases. The src homology 2 (SH2) containing inositol 5-phosphatase (SHIP) plays a central role in these processes, influencing signals delivered through the PI3K/Akt/mTOR pathway. SHIP modulation by small molecules has been implicated as a treatment in a number of human disease states, including cancer, inflammatory diseases, diabetes, atherosclerosis, and Alzheimer's disease. In addition, alteration of SHIP phosphatase activity may provide a means to facilitate bone marrow transplantation and increase blood cell production. This review discusses the cellular signaling pathways and protein-protein interactions that provide the molecular basis for targeting the SHIP enzyme in these disease states. In addition, a comprehensive survey of small molecule modulators of SHIP1 and SHIP2 is provided, with a focus on the structure, potency, selectivity, and solubility properties of these compounds.
Collapse
Affiliation(s)
- Dennis R Viernes
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244
| | - Lydia B Choi
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244
| | - William G Kerr
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244.,Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA 13210.,Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY, USA 13210
| | - John D Chisholm
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244
| |
Collapse
|
25
|
Lin SC, Karoly ED, Taatjes DJ. The human ΔNp53 isoform triggers metabolic and gene expression changes that activate mTOR and alter mitochondrial function. Aging Cell 2013; 12:863-72. [PMID: 23734707 DOI: 10.1111/acel.12108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2013] [Indexed: 12/20/2022] Open
Abstract
A naturally occurring p53 isoform that lacks 39 residues at the N-terminus (denoted ΔNp53), when expressed with wild-type p53 (WTp53), forms mixed ΔNp53:WTp53 tetramers and causes accelerated aging in mice. Cellular alterations specific to ΔNp53:WTp53 have been difficult to assess because ΔNp53 and WTp53 coexpression results in tetramer heterogeneity, including formation of contaminating WTp53 tetramers. Based on the p53 tetramer structure, we expressed ΔNp53 and WTp53 as a single transcript that maintained tetramer architecture, ensuring a 2:2 ΔNp53:WTp53 stoichiometry. As expected, ΔNp53:WTp53 tetramers were stable and transcriptionally active in vitro and in cells, largely mimicking the function of WTp53 tetramers. Microarray analyses, however, revealed about 80 genes whose expression was altered twofold or more in ΔNp53:WTp53 cells. Moreover, global metabolomic profiling quantitated hundreds of biochemicals across different experiments (WTp53, ΔNp53:WTp53, plus controls). When evaluated collectively, these data suggested altered mTOR signaling and mitochondrial function-each canonical regulators of longevity-in cells expressing ΔNp53:WTp53 vs. WTp53. Increased levels of free amino acids, increased expression of IRS-1, and decreased expression of INPP5D/SHIP-1 suggested activated mTOR signaling in ΔNp53:WTp53 cells; this was confirmed upon comparative analyses of several mTOR pathway intermediates. We also observed changes in mitochondrial function in ΔNp53:WTp53 cells, which correlated with increased MARS2 expression and increased levels of carnitine, acetyl CoA, ATP, and Krebs cycle intermediates. Finally, increased levels of succinate and 2-hydroxyglutarate indicate potential epigenetic means to propagate ΔNp53:WTp53-induced gene expression changes to cell progeny. This may be especially important for aging, as biological effects manifest over time.
Collapse
Affiliation(s)
- Shih-Chieh Lin
- Department of Chemistry and Biochemistry; University of Colorado; Boulder; CO 80303; USA
| | | | - Dylan J. Taatjes
- Department of Chemistry and Biochemistry; University of Colorado; Boulder; CO 80303; USA
| |
Collapse
|
26
|
Stenton GR, Mackenzie LF, Tam P, Cross JL, Harwig C, Raymond J, Toews J, Wu J, Ogden N, MacRury T, Szabo C. Characterization of AQX-1125, a small-molecule SHIP1 activator: Part 1. Effects on inflammatory cell activation and chemotaxis in vitro and pharmacokinetic characterization in vivo. Br J Pharmacol 2013; 168:1506-18. [PMID: 23121445 DOI: 10.1111/bph.12039] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 09/14/2012] [Accepted: 10/16/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The SH2-containing inositol-5'-phosphatase 1 (SHIP1) metabolizes PI(3,4,5)P3 to PI(3,4)P2. SHIP1-deficient mice exhibit progressive inflammation. Pharmacological activation of SHIP1 is emerging as a potential therapy for pulmonary inflammatory diseases. Here we characterize the efficacy of AQX-1125, a small-molecule SHIP1 activator currently in clinical development. EXPERIMENTAL APPROACH The effects of AQX-1125 were tested in several in vitro assays: on enzyme catalytic activity utilizing recombinant human SHIP1, on Akt phosphorylation in SHIP1-proficient and SHIP1-deficient cell lines, on cytokine release in murine splenocytes, on human leukocyte chemotaxis using modified Boyden chambers and on β-hexosaminidase release from murine mast cells. In addition, pharmacokinetic and drug distribution studies were performed in rats and dogs. RESULTS AQX-1125 increased the catalytic activity of human recombinant SHIP1, an effect, which was absent after deletion of the C2 region. AQX-1125 inhibited Akt phosphorylation in SHIP1-proficient but not in SHIP1-deficient cells, reduced cytokine production in splenocytes, inhibited the activation of mast cells and inhibited human leukocyte chemotaxis. In vivo, AQX-1125 exhibited >80% oral bioavailability and >5 h terminal half-life. CONCLUSIONS Consistent with the role of SHIP1 in cell activation and chemotaxis, the SHIP1 activator AQX-1125 inhibits Akt phosphorylation, inflammatory mediator production and leukocyte chemotaxis in vitro. The in vitro effects and the pharmacokinetic properties of the compound make it a suitable candidate for in vivo testing in various models of inflammation.
Collapse
|
27
|
A role for miR-155 in enabling tumor-infiltrating innate immune cells to mount effective antitumor responses in mice. Blood 2013; 122:243-52. [PMID: 23487026 DOI: 10.1182/blood-2012-08-449306] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A productive immune response requires transient upregulation of the microRNA miR-155 in hematopoietic cells mediating innate and adaptive immunity. In order to investigate miR-155 in the context of tumor-associated immune responses, we stably knocked down (KD) miR-155 in the myeloid compartment of MMTV-PyMT mice, a mouse model of spontaneous breast carcinogenesis that closely mimics tumor-host interactions seen in humans. Notably, miR-155/KD significantly accelerated tumor growth by impairing classic activation of tumor-associated macrophages (TAMs). This created an imbalance toward a protumoral microenvironment as evidenced by a lower proportion of CD11c(+) TAMs, reduced expression of activation markers, and the skewing of immune cells within the tumor toward an macrophage type 2/T helper 2 response. This study highlights the importance of tumor-infiltrating hematopoietic cells in constraining carcinogenesis and establishes an antitumoral function of a prototypical oncomiR.
Collapse
|
28
|
Analyzing primary Hodgkin and Reed-Sternberg cells to capture the molecular and cellular pathogenesis of classical Hodgkin lymphoma. Blood 2012; 120:4609-20. [DOI: 10.1182/blood-2012-05-428896] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
The pathogenesis of classical Hodgkin lymphoma (cHL), the most common lymphoma in the young, is still enigmatic, largely because its Hodgkin and Reed-Sternberg (HRS) tumor cells are rare in the involved lymph node and therefore difficult to analyze. Here, by overcoming this technical challenge and performing, for the first time, a genome-wide transcriptional analysis of microdissected HRS cells compared with other B-cell lymphomas, cHL lines, and normal B-cell subsets, we show that they differ extensively from the usually studied cHL cell lines, that the lost B-cell identity of cHLs is not linked to the acquisition of a plasma cell-like gene expression program, and that Epstein-Barr virus infection of HRS cells has a minor transcriptional influence on the established cHL clone. Moreover, although cHL appears a distinct lymphoma entity overall, HRS cells of its histologic subtypes diverged in their similarity to other related lymphomas. Unexpectedly, we identified 2 molecular subgroups of cHL associated with differential strengths of the transcription factor activity of the NOTCH1, MYC, and IRF4 proto-oncogenes. Finally, HRS cells display deregulated expression of several genes potentially highly relevant to lymphoma pathogenesis, including silencing of the apoptosis-inducer BIK and of INPP5D, an inhibitor of the PI3K-driven oncogenic pathway.
Collapse
|
29
|
Banerjee N, Talcott S, Safe S, Mertens –Talcott SU. Cytotoxicity of pomegranate polyphenolics in breast cancer cells in vitro and vivo: potential role of miRNA-27a and miRNA-155 in cell survival and inflammation. Breast Cancer Res Treat 2012; 136:21-34. [PMID: 22941571 PMCID: PMC3488590 DOI: 10.1007/s10549-012-2224-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/17/2012] [Indexed: 12/18/2022]
Abstract
Several studies have demonstrated that polyphenolics from pomegranate (Punica granatum L.) are potent inhibitors of cancer cell proliferation and induce apoptosis, cell cycle arrest, and also decrease inflammation in vitro and vivo. There is growing evidence that botanicals exert their cytotoxic and anti-inflammatory activities, at least in part, by decreasing specificity protein (Sp) transcription factors. These are overexpressed in breast tumors and regulate genes important for cancer cell survival and inflammation such as the p65 unit of NF-κB. Moreover, previous studies have shown that Pg extracts decrease inflammation in lung cancer cell lines by inhibiting phosphatidylinositol-3,4,5-trisphosphate (PI3K)-dependent phosphorylation of AKT in vitro and inhibiting the activation of NF-kB in vivo. The objective of this study was to investigate the roles of miR-27a-ZBTB10-Sp and miR-155-SHIP-1-PI3K on the anti-inflammatory and cytotoxic activity of pomegranate extract. Pg extract (2.5-50 μg/ml) inhibited growth of BT-474 and MDA-MB-231 cells but not the non-cancer MCF-10F and MCF-12F cells. Pg extract significantly decreased Sp1, Sp3, and Sp4 as well as miR-27a in BT474 and MDA-MB-231 cells and increased expression of the transcriptional repressor ZBTB10. A significant decrease in Sp proteins and Sp-regulated genes was also observed. Pg extract also induced SHIP-1 expression and this was accompanied by downregulation of miRNA-155 and inhibition of PI3K-dependent phosphorylation of AKT. Similar results were observed in tumors from nude mice bearing BT474 cells as xenografts and treated with Pg extract. The effects of antagomirs and knockdown of SHIP-1 by RNA interference confirmed that the anti-inflammatory and cytotoxic effects of Pg extract were partly due to the disruption of both miR-27a-ZBTB10 and miR-155-SHIP-1. In summary, the anticancer activities of Pg extract in breast cancer cells were due in part to targeting microRNAs155 and 27a. Both pathways play an important role in the proliferative/inflammatory phenotype exhibited by these cell lines.
Collapse
Affiliation(s)
- Nivedita Banerjee
- Interdisciplinary Program of Toxicology, Texas A&M University, College Station, TX 77843
- Department of Nutrition & Food Science, Texas A&M University, College Station, TX 77843
| | - Stephen Talcott
- Department of Nutrition & Food Science, Texas A&M University, College Station, TX 77843
| | - Stephen Safe
- Interdisciplinary Program of Toxicology, Texas A&M University, College Station, TX 77843
- Department of Veterinary Physiology & Pharmacology. College of Veterinary Medicine, Texas A&M University, College Station, TX 77843
| | - Susanne U Mertens –Talcott
- Interdisciplinary Program of Toxicology, Texas A&M University, College Station, TX 77843
- Department of Nutrition & Food Science, Texas A&M University, College Station, TX 77843
- Department of Veterinary Physiology & Pharmacology. College of Veterinary Medicine, Texas A&M University, College Station, TX 77843
- Institute for Obesity Research and Program Evaluation, Texas A&M University, College Station, TX 77843
| |
Collapse
|
30
|
Lam PY, Yoo SK, Green JM, Huttenlocher A. The SH2-domain-containing inositol 5-phosphatase (SHIP) limits the motility of neutrophils and their recruitment to wounds in zebrafish. J Cell Sci 2012; 125:4973-8. [PMID: 22946052 DOI: 10.1242/jcs.106625] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neutrophil recruitment to sites of injury or infection is essential for host defense, but it needs to be tightly regulated to prevent tissue damage. Phosphoinositide 3-kinase (PI3K), which generates the phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P(3)], is necessary for neutrophil motility in vivo; however, the role of SH2-domain-containing 5-inositol phosphatase (SHIP) enzymes, which hydrolyze PI(3,4,5)P(3) to phosphatidylinositol 3,4-bisphosphate [PI(3,4)P(2)], is not well understood. Here we show that SHIP phosphatases limit neutrophil motility in live zebrafish. Using real-time imaging of bioprobes specific for PI(3,4,5)P(3) and PI(3,4)P(2) in neutrophils, we found that PI(3,4,5)P(3) and PI(3,4)P(2) accumulate at the leading edge while PI(3,4)P(2) also localizes to the trailing edge of migrating neutrophils in vivo. Depletion of SHIP phosphatases using morpholino oligonucleotides led to increased neutrophil 3D motility and neutrophil infiltration into wounds. The increase in neutrophil wound recruitment in SHIP morphants was rescued by treatment with low dose PI3Kγ inhibitor, suggesting that SHIP limits neutrophil motility by modulating PI3K signaling. Moreover, overexpression of the SHIP phosphatase domain in neutrophils impaired neutrophil 3D migration. Taken together, our findings suggest that SHIP phosphatases control neutrophil inflammation by limiting neutrophil motility in vivo.
Collapse
Affiliation(s)
- Pui-ying Lam
- Department of Medical Microbiology and Immunology; University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
31
|
Dyson JM, Fedele CG, Davies EM, Becanovic J, Mitchell CA. Phosphoinositide phosphatases: just as important as the kinases. Subcell Biochem 2012; 58:215-279. [PMID: 22403078 DOI: 10.1007/978-94-007-3012-0_7] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phosphoinositide phosphatases comprise several large enzyme families with over 35 mammalian enzymes identified to date that degrade many phosphoinositide signals. Growth factor or insulin stimulation activates the phosphoinositide 3-kinase that phosphorylates phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] to form phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)], which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) to PtdIns(4,5)P(2), or by the 5-phosphatases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). 5-phosphatases also hydrolyze PtdIns(4,5)P(2) forming PtdIns(4)P. Ten mammalian 5-phosphatases have been identified, which regulate hematopoietic cell proliferation, synaptic vesicle recycling, insulin signaling, and embryonic development. Two 5-phosphatase genes, OCRL and INPP5E are mutated in Lowe and Joubert syndrome respectively. SHIP [SH2 (Src homology 2)-domain inositol phosphatase] 2, and SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) negatively regulate insulin signaling and glucose homeostasis. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. SHIP1 controls hematopoietic cell proliferation and is mutated in some leukemias. The inositol polyphosphate 4-phosphatases, INPP4A and INPP4B degrade PtdIns(3,4)P(2) to PtdIns(3)P and regulate neuroexcitatory cell death, or act as a tumor suppressor in breast cancer respectively. The Sac phosphatases degrade multiple phosphoinositides, such as PtdIns(3)P, PtdIns(4)P, PtdIns(5)P and PtdIns(3,5)P(2) to form PtdIns. Mutation in the Sac phosphatase gene, FIG4, leads to a degenerative neuropathy. Therefore the phosphatases, like the lipid kinases, play major roles in regulating cellular functions and their mutation or altered expression leads to many human diseases.
Collapse
Affiliation(s)
- Jennifer M Dyson
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, 3800, Clayton, Australia
| | | | | | | | | |
Collapse
|
32
|
Wang Y, Piper MG, Marsh CB. The role of Src family kinases in mediating M-CSF receptor signaling and monocytic cell survival. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/abb.2012.35077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Phosphatases: the new brakes for cancer development? Enzyme Res 2011; 2012:659649. [PMID: 22121480 PMCID: PMC3206369 DOI: 10.1155/2012/659649] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/25/2011] [Accepted: 09/20/2011] [Indexed: 12/18/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) pathway plays a pivotal role in the maintenance of processes such as cell growth, proliferation, survival, and metabolism in all cells and tissues. Dysregulation of the PI3K/Akt signaling pathway occurs in patients with many cancers and other disorders. This aberrant activation of PI3K/Akt pathway is primarily caused by loss of function of all negative controllers known as inositol polyphosphate phosphatases and phosphoprotein phosphatases. Recent studies provided evidence of distinct functions of the four main phosphatases—phosphatase and tensin homologue deleted on chromosome 10 (PTEN), Src homology 2-containing inositol 5′-phosphatase (SHIP), inositol polyphosphate 4-phosphatase type II (INPP4B), and protein phosphatase 2A (PP2A)—in different tissues with respect to regulation of cancer development. We will review the structures and functions of PTEN, SHIP, INPP4B, and PP2A phosphatases in suppressing cancer progression and their deregulation in cancer and highlight recent advances in our understanding of the PI3K/Akt signaling axis.
Collapse
|
34
|
Charles N, Rivera J. Basophils and autoreactive IgE in the pathogenesis of systemic lupus erythematosus. Curr Allergy Asthma Rep 2011; 11:378-87. [PMID: 21805094 PMCID: PMC3462345 DOI: 10.1007/s11882-011-0216-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous disease that can affect multiple organs. A hallmark of this disease, as is the case for other autoimmune diseases, is the presence of large numbers of autoantibodies. As such, SLE is considered to be a B-cell disease perpetuated by the expansion of autoreactive T and B cells. The T cells involved have long been considered to be T-helper type 1 (Th1) and Th17 cells, as these potent proinflammatory cells can be found in the tissues of SLE patients. Recent advances point to a role for the Th2 environment in contributing to SLE through promotion of autoantibody production. Here we describe the recent work focusing on autoreactive IgE and the activation of basophils as promoting the production of autoantibodies in SLE. The findings, both in a murine model of SLE and in humans with SLE, support the concept that the activation of the basophil by autoreactive IgE-containing immune complexes serves to amplify the production of autoantibodies and contributes to the pathogenesis of disease. We propose that therapeutic targeting of this amplification loop by reducing the levels of circulating autoreactive IgE may have benefit in SLE.
Collapse
Affiliation(s)
- Nicolas Charles
- Inserm U699, Faculté de Médecine, Xavier Bichat - Université Paris VII Denis Diderot, 75870 PARIS cedex 18, FRANCE
| | - Juan Rivera
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
35
|
Park H, Ishihara D, Cox D. Regulation of tyrosine phosphorylation in macrophage phagocytosis and chemotaxis. Arch Biochem Biophys 2011; 510:101-11. [PMID: 21356194 PMCID: PMC3114168 DOI: 10.1016/j.abb.2011.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 12/22/2022]
Abstract
Macrophages display a large variety of surface receptors that are critical for their normal cellular functions in host defense, including finding sites of infection (chemotaxis) and removing foreign particles (phagocytosis). However, inappropriate regulation of these processes can lead to human diseases. Many of these receptors utilize tyrosine phosphorylation cascades to initiate and terminate signals leading to cell migration and clearance of infection. Actin remodeling dominates these processes and many regulators have been identified. This review focuses on how tyrosine kinases and phosphatases regulate actin dynamics leading to macrophage chemotaxis and phagocytosis.
Collapse
Affiliation(s)
- Haein Park
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dan Ishihara
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dianne Cox
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
36
|
Condé C, Gloire G, Piette J. Enzymatic and non-enzymatic activities of SHIP-1 in signal transduction and cancer. Biochem Pharmacol 2011; 82:1320-34. [PMID: 21672530 DOI: 10.1016/j.bcp.2011.05.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 05/27/2011] [Indexed: 12/29/2022]
Abstract
PI3K cascade is a central signaling pathway regulating cell proliferation, growth, differentiation, and survival. Tight regulation of the PI3K signaling pathway is necessary to avoid aberrant cell proliferation and cancer development. Together with SHIP-1, the inositol phosphatases PTEN and SHIP-2 are the gatekeepers of this pathway. In this review, we will focus on SHIP-1 functions. Negative regulation of immune cell activation by SHIP-1 is well characterized. Besides its catalytic activity, SHIP-1 also displays non-enzymatic activity playing role in several immune pathways. Indeed, SHIP-1 exhibits several domains that mediate protein-protein interaction. This review emphasizes the negative regulation of immune cell activation by SHIP-1 that is mediated by its protein-protein interaction.
Collapse
Affiliation(s)
- Claude Condé
- Laboratory of Virology & Immunology, GIGA-Research B34, University of Liège, B-4000 Liège, Belgium
| | | | | |
Collapse
|
37
|
McMaken S, Exline MC, Mehta P, Piper M, Wang Y, Fischer SN, Newland CA, Schrader CA, Balser SR, Sarkar A, Baran CP, Marsh CB, Cook CH, Phillips GS, Ali NA. Thrombospondin-1 contributes to mortality in murine sepsis through effects on innate immunity. PLoS One 2011; 6:e19654. [PMID: 21573017 PMCID: PMC3090410 DOI: 10.1371/journal.pone.0019654] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 04/13/2011] [Indexed: 01/15/2023] Open
Abstract
Background Thrombospondin-1 (TSP-1) is involved in many biological processes, including immune and tissue injury response, but its role in sepsis is unknown. Cell surface expression of TSP-1 on platelets is increased in sepsis and could activate the anti-inflammatory cytokine transforming growth factor beta (TGFβ1) affecting outcome. Because of these observations we sought to determine the importance of TSP-1 in sepsis. Methodology/Principal Findings We performed studies on TSP-1 null and wild type (WT) C57BL/6J mice to determine the importance of TSP-1 in sepsis. We utilized the cecal ligation puncture (CLP) and intraperitoneal E.coli injection (IP E.coli) models of peritoneal sepsis. Additionally, bone-marrow-derived macrophages (BMMs) were used to determine phagocytic activity. TSP-1−/− animals experienced lower mortality than WT mice after CLP. Tissue and peritoneal lavage TGFβ1 levels were unchanged between animals of each genotype. In addition, there is no difference between the levels of major innate cytokines between the two groups of animals. PLF from WT mice contained a greater bacterial load than TSP-1−/− mice after CLP. The survival advantage for TSP-1−/− animals persisted when IP E.coli injections were performed. TSP-1−/− BMMs had increased phagocytic capacity compared to WT. Conclusions TSP-1 deficiency was protective in two murine models of peritoneal sepsis, independent of TGFβ1 activation. Our studies suggest TSP-1 expression is associated with decreased phagocytosis and possibly bacterial clearance, leading to increased peritoneal inflammation and mortality in WT mice. These data support the contention that TSP-1 should be more fully explored in the human condition.
Collapse
Affiliation(s)
- Sara McMaken
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Matthew C. Exline
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Payal Mehta
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Melissa Piper
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Yijie Wang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Sara N. Fischer
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Christie A. Newland
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Carrie A. Schrader
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Shannon R. Balser
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Anasuya Sarkar
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Christopher P. Baran
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Clay B. Marsh
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Charles H. Cook
- Department of Surgery, Ohio State University, Columbus, Ohio, United States of America
| | - Gary S. Phillips
- The Center for Biostatistics, Ohio State University, Columbus, Ohio, United States of America
| | - Naeem A. Ali
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
38
|
Hou S, Pauls SD, Liu P, Marshall AJ. The PH domain adaptor protein Bam32/DAPP1 functions in mast cells to restrain FcɛRI-induced calcium flux and granule release. Mol Immunol 2010; 48:89-97. [PMID: 20956018 DOI: 10.1016/j.molimm.2010.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/07/2010] [Accepted: 09/14/2010] [Indexed: 12/12/2022]
Abstract
Mast cell activation triggered by IgE binding to its high affinity receptor FcɛRI is highly dependent on signaling via phosphoinositde 3-kinases (PI3K). The phosphoinositide phosphatase SHIP controls mast cell activation by regulating accumulation of D3 phosphoinositide second messengers generated by PI3K. The PH domain adaptor protein Bam32/DAPP1 binds specifically to the D3 phosphoinositides PI(3,4,5)P3 and PI(3,4)P2 (the substrate and product of SHIP respectively). In B cells, Bam32 is phosphorylated by Src family kinases including Lyn, and is required for antigen receptor-induced activation; however the function of Bam32 in mast cells is unknown. Here we report that Bam32 is expressed in mast cells, is recruited to the plasma membrane upon stimulation and functions in FcɛRI signaling. Examination of bone marrow-derived mast cells (BMMC) isolated from Bam32-deficient mice revealed enhanced FcɛRI-induced degranulation and IL-6 production, indicating that Bam32 may function to restrain signaling via FcɛRI. These enhanced degranulation responses were PI3K-dependent, as indicated by blockade with PI3K inhibitors wortmannin or IC87114. While Bam32-deficient BMMC showed reduced FcɛRI-induced activation of mitogen-activated protein kinases ERK and JNK, FcɛRI-induced calcium flux and phosphorylation of PLCγ1 and Akt were increased. Bam32-deficient BMMC showed significantly reduced phosphorylation of Lyn and SHIP, indicating reduced activity of inhibitory signaling pathways. Together our results identify Bam32 as a novel regulator of mast cell activation, potentially functioning in membrane-proximal integration of positive and negative signaling pathways.
Collapse
Affiliation(s)
- Sen Hou
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0W3, Canada
| | | | | | | |
Collapse
|
39
|
Alvarez-Errico D, Yamashita Y, Suzuki R, Odom S, Furumoto Y, Yamashita T, Rivera J. Functional analysis of Lyn kinase A and B isoforms reveals redundant and distinct roles in Fc epsilon RI-dependent mast cell activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:5000-8. [PMID: 20308635 PMCID: PMC2948211 DOI: 10.4049/jimmunol.0904064] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Engagement of FcepsilonRI causes its phosphorylation by Lyn kinase. Two alternatively spliced variants, Lyn A and B, are expressed in mast cells, and both isoforms interact with FcepsilonRI. Unlike Lyn A, Lyn B lacks a 21-aa region in the N-terminal unique domain. In this study, we investigated the role of Lyn A and B isoforms in mast cell signaling and responses. Lyn B was found to be a poor inducer of mast cell degranulation and was less potent in both inositol 1,4,5-triphosphate production and calcium responses. Expression of Lyn B alone showed reduced phosphorylation of both phospholipase Cgamma-1 and -2 and decreased interaction of phospholipase Cgamma-1 with the phosphorylated linker for activation of T cells. Lyn B also showed increased binding of tyrosine-phosphorylated proteins, which included the negative regulatory lipid phosphatase SHIP-1. In contrast, both Lyn A and B caused similar total cellular tyrosine phosphorylation and FcepsilonRI phosphorylation and neither Lyn A nor Lyn B alone could completely restore mast cell degranulation or dampen the excessive cytokine production seen in the absence of Lyn. However, expression of both isoforms showed complementation and normalized responses. These findings demonstrate that Lyn B differs from Lyn A in its association with SHIP-1 and in the regulation of calcium responses. However, complementation of both isoforms is required in mast cell activation.
Collapse
Affiliation(s)
- Damiana Alvarez-Errico
- Laboratory of Molecular Imunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892
| | - Yumi Yamashita
- Laboratory of Molecular Imunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892
- Department of Immunology, School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Ryo Suzuki
- Laboratory of Molecular Imunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892
| | - Sandra Odom
- Laboratory of Molecular Imunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892
| | - Yasuko Furumoto
- Laboratory of Molecular Imunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892
| | - Toshiyuki Yamashita
- Laboratory of Molecular Imunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892
- Department of Immunology, School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Juan Rivera
- Laboratory of Molecular Imunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892
| |
Collapse
|
40
|
Ruschmann J, Ho V, Antignano F, Kuroda E, Lam V, Ibaraki M, Snyder K, Kim C, Flavell RA, Kawakami T, Sly L, Turhan AG, Krystal G. Tyrosine phosphorylation of SHIP promotes its proteasomal degradation. Exp Hematol 2010; 38:392-402, 402.e1. [PMID: 20304029 DOI: 10.1016/j.exphem.2010.03.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 03/02/2010] [Accepted: 03/08/2010] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The activity of the SH2-containing-phosphatidylinositol-5'-phosphatase (SHIP, also known as SHIP1), a critical hematopoietic-restricted negative regulator of the PI3 kinase (PI3K) pathway, is regulated in large part via its protein levels. We sought to determine the mechanism(s) involved in its downregulation by BCR-ABL and by interleukin (IL)-4. MATERIALS AND METHODS We used Ba/F3(p210-tetOFF) cells to study the downregulation of SHIP by BCR-ABL and bone marrow-derived macrophages to study SHIP's downregulation by IL-4. RESULTS We show herein that BCR-ABL downregulates SHIP, but not SHIP2 or PTEN, and this can be blocked with the Src kinase inhibitor PP2, which inhibits the tyrosine phosphorylation of SHIP, or with the proteasomal inhibitor MG-132. We also show, using anti-SHIP immunoprecipitates, that c-Cbl and Cbl-b are associated with SHIP and that BCR-ABL induces SHIP's polyubiquitination. This ubiquitination can be blocked with PP2, consistent with the tyrosine phosphorylation of SHIP acting as a signal for its ubiquitination. In bone marrow-derived macrophages, IL-4 also leads to the proteasomal degradation of SHIP but, unlike in Ba/F3(p210-tetOFF) cells, SHIP2 is also proteasomally degraded and the degradation of both inositol phosphatases can be prevented with PP2 or MG-132. CONCLUSION Our results suggest that SHIP protein levels can be reduced via BCR-ABL and/or Src family member-induced tyrosine phosphorylation of SHIP because this triggers its polyubiquitination and degradation within the proteasome.
Collapse
Affiliation(s)
- Jens Ruschmann
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Keck S, Freudenberg M, Huber M. Activation of murine macrophages via TLR2 and TLR4 is negatively regulated by a Lyn/PI3K module and promoted by SHIP1. THE JOURNAL OF IMMUNOLOGY 2010; 184:5809-18. [PMID: 20385881 DOI: 10.4049/jimmunol.0901423] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Src family kinases are involved in a plethora of aspects of cellular signaling. We demonstrate in this study that the Src family kinase Lyn negatively regulates TLR signaling in murine bone marrow-derived macrophages (BMM Phis) and in vivo. LPS-stimulated Lyn(-/-) BMM Phis produced significantly more IL-6, TNF-alpha, and IFN-alpha/beta compared with wild type (WT) BMM Phis, suggesting that Lyn is able to control both MyD88- and TRIF-dependent signaling pathways downstream of TLR4. CD14 was not involved in this type of regulation. Moreover, Lyn attenuated proinflammatory cytokine production in BMM Phis in response to the TLR2 ligand FSL-1, but not to ligands for TLR3 (dsRNA) or TLR9 (CpG 1668). In agreement with these in vitro experiments, Lyn-deficient mice produced higher amounts of proinflammatory cytokines than did WT mice after i. v. injection of LPS or FSL-1. Although Lyn clearly acted as a negative regulator downstream of TLR4 and TLR2, it did not, different from what was proposed previously, prevent the induction of LPS tolerance. Stimulation with a low dose of LPS resulted in reduced production of proinflammatory cytokines after subsequent stimulation with a high dose of LPS in both WT and Lyn(-/-) BMM Phis, as well as in vivo. Mechanistically, Lyn interacted with PI3K; in correlation, PI3K inhibition resulted in increased LPS-triggered cytokine production. In this line, SHIP1(-/-) BMM Phis, exerting enhanced PI3K-pathway activation, produced fewer cytokines than did WT BMM Phis. The data suggest that the Lyn-mediated negative regulation of TLR signaling proceeds, at least in part, via PI3K.
Collapse
Affiliation(s)
- Simone Keck
- Department of Molecular Immunology, Biology III, University of Freiburg, Germany
| | | | | |
Collapse
|
42
|
Antignano F, Ibaraki M, Kim C, Ruschmann J, Zhang A, Helgason CD, Krystal G. SHIP is required for dendritic cell maturation. THE JOURNAL OF IMMUNOLOGY 2010; 184:2805-13. [PMID: 20154203 DOI: 10.4049/jimmunol.0903170] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although several groups have investigated the role of SHIP in macrophage (M) development and function, SHIP's contribution to the generation, maturation, and innate immune activation of dendritic cells (DCs) is poorly understood. We show herein that SHIP negatively regulates the generation of DCs from bone marrow precursors in vitro and in vivo, as illustrated by the enhanced expansion of DCs from SHIP(-/-) GM-CSF cultures, as well as increased numbers of DCs in the spleens of SHIP-deficient mice. Interestingly, however, these SHIP(-/-) DCs display a relatively immature phenotype and secrete substantially lower levels of IL-12 after TLR ligand stimulation than wild type DCs. This, in turn, leads to a dramatically reduced stimulation of Ag-specific T cell proliferation and Th1 cell responses in vitro and in vivo. This immature phenotype of SHIP(-/-) DCs could be reversed with the PI3K inhibitors LY294002 and wortmannin, suggesting that SHIP promotes DC maturation by reducing the levels of the PI3K second messenger phosphatidylinositol-3,4,5-trisphosphate. These results are consistent with SHIP being a negative regulator of GM-CSF-derived DC generation but a positive regulator of GM-CSF-derived DC maturation and function.
Collapse
Affiliation(s)
- Frann Antignano
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Oracki SA, Tsantikos E, Quilici C, Light A, Schmidt T, Lew AM, Martin JE, Smith KG, Hibbs ML, Tarlinton DM. CTLA4Ig alters the course of autoimmune disease development in Lyn-/- mice. THE JOURNAL OF IMMUNOLOGY 2009; 184:757-63. [PMID: 19966213 DOI: 10.4049/jimmunol.0804349] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Lyn-deficient (Lyn(-/-)) mice develop an age-dependent autoimmune disease similar to systemic lupus erythematosus, characterized by the production of IgG anti-nuclear Ab. To determine the extent to which this autoimmune phenotype is driven by T cell costimulation, we generated Lyn(-/-) mice expressing a soluble form of the T cell inhibitory molecule, CTLA4 (CTLA4Ig). Surprisingly, although CTLA4Ig prevented myeloid hyperplasia, splenomegaly and IgG anti-nuclear Ab production in Lyn(-/-) mice, it did not inhibit immune complex deposition and tissue destruction in the kidney. In fact, regardless of CTLA4Ig expression, Lyn(-/-) serum contained elevated titers of IgA anti-nuclear Ab, although generally IgA deposition in the kidney was only revealed in the absence of self-reactive IgG. This demonstrated that activation of autoreactive B cell clones in Lyn(-/-) mice can still occur despite impaired costimulation. Indeed, CTLA4Ig did not alter perturbed Lyn(-/-) B cell development and behavior, and plasma cell frequencies were predominantly unaffected. These results suggest that when self-reactive B cell clones are unimpeded in acquiring T cell help, they secrete pathogenic IgG autoantibodies that trigger the fulminant autoimmunity normally observed in Lyn(-/-) mice. The absence of these IgG immune complexes reveals an IgA-mediated axis of autoimmunity that is not sufficient to cause splenomegaly or extramedullary myelopoiesis, but which mediates destructive glomerulonephritis. These findings have implications for the understanding of the basis of Ab-mediated autoimmune diseases and for their treatment with CTLA4Ig.
Collapse
Affiliation(s)
- Sarah A Oracki
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Poderycki M, Tomimori Y, Ando T, Xiao W, Maeda-Yamamoto M, Sauer K, Kawakami Y, Kawakami T. A minor catalytic activity of Src family kinases is sufficient for maximal activation of mast cells via the high-affinity IgE receptor. THE JOURNAL OF IMMUNOLOGY 2009; 184:84-93. [PMID: 19949072 DOI: 10.4049/jimmunol.0901590] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Src family kinases (SFK) are critical for initiating and regulating the response of mast cells activated by engagement of the high-affinity IgE receptor, FcepsilonRI. Lyn is the predominant SFK in mast cells and has been ascribed both positive and negative roles in regulating mast cell activation. We analyzed the mast cell phenotype of WeeB, a recently described mouse mutant that expresses a Lyn protein with profoundly reduced catalytic activity. Surprisingly, we found that this residual activity is sufficient for wild-type levels of cytokine production and degranulation in bone marrow-derived mast cells after low-intensity stimulation with anti-IgE. High-intensity stimulation of lyn(-/-) bone marrow-derived mast cells with highly multivalent Ag resulted in enhanced cytokine production as previously reported, and WeeB cells displayed an intermediate phenotype. Under this latter condition, SFK inhibition using PP2 increased cytokine production in wild-type and WeeB but not lyn(-/-) cells, resulting in substantially higher levels in the PP2-treated WeeB than in lyn(-/-) cells. Restoration of wild-type and WeeB lyn alleles in lyn(-/-) cells generated activation phenotypes similar to those in nontransduced wild-type and WeeB cells, respectively, whereas a kinase-dead allele resulted in a phenotype similar to that of empty-vector-transduced cells. These data indicate that inhibition of Lyn and/or SFK activity can result in higher levels of mast cell activation than simple deletion of lyn and that only near-complete inhibition of Lyn can impair its positive regulatory functions. Furthermore, the data suggest that both positive and negative regulatory functions of Lyn are predominantly carried out by its catalytic activity and not an adaptor function.
Collapse
Affiliation(s)
- Michael Poderycki
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Activation of SHIP via a small molecule agonist kills multiple myeloma cells. Exp Hematol 2009; 37:1274-83. [DOI: 10.1016/j.exphem.2009.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/04/2009] [Accepted: 08/18/2009] [Indexed: 11/22/2022]
|
46
|
Colony-stimulating factor-1-induced oscillations in phosphatidylinositol-3 kinase/AKT are required for caspase activation in monocytes undergoing differentiation into macrophages. Blood 2009; 114:3633-41. [PMID: 19721010 DOI: 10.1182/blood-2009-03-208843] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The differentiation of human peripheral blood monocytes into resident macrophages is driven by colony-stimulating factor-1 (CSF-1), which upon interaction with CSF-1 receptor (CSF-1R) induces within minutes the phosphorylation of its cytoplasmic tyrosine residues and the activation of multiple signaling complexes. Caspase-8 and -3 are activated at day 2 to 3 and contribute to macrophage differentiation, for example, through cleavage of nucleophosmin. Here, we show that the phosphatidylinositol-3 kinase and the downstream serine/threonine kinase AKT connect CSF-1R activation to caspase-8 cleavage. Most importantly, we demonstrate that successive waves of AKT activation with increasing amplitude and duration are required to provoke the formation of the caspase-8-activating molecular platform. CSF-1 and its receptor are both required for oscillations in AKT activation to occur, and expression of a constitutively active AKT mutant prevents the macrophage differentiation process. The extracellular receptor kinase 1/2 pathway is activated with a coordinated oscillatory kinetics in a CSF-1R-dependent manner but plays an accessory role in caspase activation and nucleophosmin cleavage. Altogether, CSF-1 stimulation activates a molecular clock that involves phosphatidylinositol-3 kinase and AKT to promote caspase activation. This oscillatory signaling pathway, which is coordinated with extracellular receptor kinase 1/2 oscillatory activation, involves CSF-1 and CSF-1R and controls the terminal differentiation of macrophages.
Collapse
|
47
|
Lyn, PKC-delta, SHIP-1 interactions regulate GPVI-mediated platelet-dense granule secretion. Blood 2009; 114:3056-63. [PMID: 19587372 DOI: 10.1182/blood-2008-11-188516] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein kinase C-delta (PKC-delta) is expressed in platelets and activated downstream of protease-activated receptors (PARs) and glycoprotein VI (GPVI) receptors. We have previously shown that PKC-delta positively regulates PAR-mediated dense granule secretion, whereas it negatively regulates GPVI-mediated dense granule secretion. We further investigated the mechanism of such differential regulation of dense granule release by PKC-delta in platelets. SH2 domain-containing inositol phosphatase-1 (SHIP-1) is phosphorylated on Y1020, a marker for its activation, upon stimulation of human platelets with PAR agonists SFLLRN and AYPGKF or GPVI agonist convulxin. GPVI-mediated SHIP-1 phosphorylation occurred rapidly at 15 seconds, whereas PAR-mediated phosphorylation was delayed, occurring at 1 minute. Lyn and SHIP-1, but not SHIP-2 or Shc, preferentially associated with PKC-delta on stimulation of platelets with a GPVI agonist, but not with a PAR agonist. In PKC-delta-null murine platelets, convulxin-induced SHIP-1 phosphorylation was inhibited. Furthermore, in Lyn null murine platelets, GPVI-mediated phosphorylations on Y-1020 of SHIP-1 and Y311 of PKC-delta were inhibited. In murine platelets lacking Lyn or SHIP-1, GPVI-mediated dense granule secretions are potentiated, whereas PAR-mediated dense granule secretions are inhibited. Therefore, we conclude that Lyn-mediated phosphorylations of PKC-delta and SHIP-1 and their associations negatively regulate GPVI-mediated dense granule secretion in platelets.
Collapse
|
48
|
Abstract
Polymorphonuclear leukocytes (PMNs) are the most abundant white cell in humans and an essential component of the innate immune system. PMNs are typically the first type of leukocyte recruited to sites of infection or areas of inflammation. Ingestion of microorganisms triggers production of reactive oxygen species and fusion of cytoplasmic granules with forming phagosomes, leading to effective killing of ingested microbes. Phagocytosis of bacteria typically accelerates neutrophil apoptosis, which ultimately promotes the resolution of infection. However, some bacterial pathogens alter PMN apoptosis to survive and thereby cause disease. Herein, we review PMN apoptosis and the ability of microorganisms to alter this important process.
Collapse
Affiliation(s)
- Adam D Kennedy
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | | |
Collapse
|
49
|
Kannan S, Huang H, Seeger D, Audet A, Chen Y, Huang C, Gao H, Li S, Wu M. Alveolar epithelial type II cells activate alveolar macrophages and mitigate P. Aeruginosa infection. PLoS One 2009; 4:e4891. [PMID: 19305493 PMCID: PMC2654511 DOI: 10.1371/journal.pone.0004891] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 02/02/2009] [Indexed: 12/20/2022] Open
Abstract
Although alveolar epithelial type II cells (AECII) perform substantial roles in the maintenance of alveolar integrity, the extent of their contributions to immune defense is poorly understood. Here, we demonstrate that AECII activates alveolar macrophages (AM) functions, such as phagocytosis using a conditioned medium from AECII infected by P. aeruginosa. AECII-derived chemokine MCP-1, a monocyte chemoattractant protein, was identified as a main factor in enhancing AM function. We proposed that the enhanced immune potency of AECII may play a critical role in alleviation of bacterial propagation and pneumonia. The ability of phagocytosis and superoxide release by AM was reduced by MCP-1 neutralizing antibodies. Furthermore, MCP-1(-/-) mice showed an increased bacterial burden under PAO1 and PAK infection vs. wt littermates. AM from MCP-1(-/-) mice also demonstrated less superoxide and impaired phagocytosis over the controls. In addition, AECII conditioned medium increased the host defense of airway in MCP-1(-/-) mice through the activation of AM function. Mechanistically, we found that Lyn mediated NFkappaB activation led to increased gene expression and secretion of MCP-1. Consequently Lyn(-/-) mice had reduced MCP-1 secretion and resulted in a decrease in superoxide and phagocytosis by AM. Collectively, our data indicate that AECII may serve as an immune booster for fighting bacterial infections, particularly in severe immunocompromised conditions.
Collapse
Affiliation(s)
- Shibichakravarthy Kannan
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Huang Huang
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Drew Seeger
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Aaron Audet
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Yaoyu Chen
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Canhua Huang
- State Key Laboratory for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongwei Gao
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Shaoguang Li
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Min Wu
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota, United States of America
- State Key Laboratory for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- * E-mail:
| |
Collapse
|
50
|
Abstract
Lyn is an Src family kinase present in B lymphocytes and myeloid cells. In these cell types, Lyn establishes signaling thresholds by acting as both a positive and a negative modulator of a variety of signaling responses and effector functions. Lyn deficiency in mice results in the development of myeloproliferation and autoimmunity. The latter has been attributed to the hyper-reactivity of Lyn-deficient B cells due to the unique role of Lyn in downmodulating B-cell receptor activation, mainly through phosphorylation of inhibitory molecules and receptors. Myeloproliferation results, on the other hand, from the enhanced sensitivity of Lyn-deficient progenitors to a number of colony-stimulating factors (CSFs). The hyper-sensitivity to myeloid growth factors may also be secondary to poor inhibitory receptor phosphorylation, leading to impaired recruitment/activation of tyrosine phosphatases and reduced downmodulation of CSF signaling responses. Despite these observations, the overall role of Lyn in the modulation of myeloid cell effector functions is much less well understood, as often both positive and negative roles of this kinase have been reported. In this review, we discuss the current knowledge of the duplicitous nature of Lyn in the modulation of myeloid cell signaling and function.
Collapse
Affiliation(s)
- Patrizia Scapini
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0451, USA
| | | | | | | |
Collapse
|