1
|
Ghosh S, Chorghade R, Diehl RC, Dodge GJ, Bae S, Dugan AE, Halim M, Wuo MG, Bartlett H, Herndon L, Kiessling LL, Imperiali B. Tools for investigating host-microbe crosstalk using glycan analysis probes inspired by human lectins. Glycobiology 2025; 35:cwaf031. [PMID: 40421735 PMCID: PMC12167852 DOI: 10.1093/glycob/cwaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 05/06/2025] [Accepted: 05/14/2025] [Indexed: 05/28/2025] Open
Abstract
Human lectins are critical carbohydrate-binding proteins that recognize diverse glycoconjugates from microorganisms and can play a key role in host-microbe interactions. Despite their importance in immune recognition and microbe binding, the specific glycan ligands and functions of many human lectins remain poorly understood. Using previous proof-of-concept studies on selected lectins as the foundation for this work, we present ten additional glycan analysis probes (GAPs) from a diverse set of human soluble lectins, offering robust tools to investigate glycan-mediated interactions. We describe a protein engineering platform that enables scalable production of GAPs that maintain native-like conformations and oligomerization states, equipped with functional reporter tags for targeted glycan profiling. We demonstrate that the soluble GAP reagents can be used in various applications, including glycan array analysis, mucin-binding assays, tissue staining, and microbe binding in complex populations. These capabilities make GAPs valuable for dissecting interactions relevant to understanding host responses to microbes. The tools can also be used to probe differential microbial and mammalian glycan interactions, which are crucial for understanding the interactions of lectins in a physiological environment where both glycan types exist. GAPs have potential as diagnostic and prognostic tools for detecting glycan alterations in chronic diseases, microbial dysbiosis, and immune-related conditions.
Collapse
Affiliation(s)
- Soumi Ghosh
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Rajeev Chorghade
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Roger C Diehl
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Greg J Dodge
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Sunhee Bae
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Amanda E Dugan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Melanie Halim
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Michael G Wuo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Helen Bartlett
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Liam Herndon
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| |
Collapse
|
2
|
Ghosh S, Chorghade R, Diehl RC, Dodge GJ, Bae S, Dugan AE, Halim M, Wuo MG, Bartlett H, Herndon L, Kiessling LL, Imperiali B. Glycan analysis probes inspired by human lectins for investigating host-microbe crosstalk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.24.630132. [PMID: 39763805 PMCID: PMC11703188 DOI: 10.1101/2024.12.24.630132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Human lectins are critical carbohydrate-binding proteins that recognize diverse glycoconjugates from microorganisms and can play a key role in host-microbe interactions. Despite their importance in immune recognition and pathogen binding, the specific glycan ligands and functions of many human lectins remain poorly understood. Using previous proof-of-concept studies on selected lectins as the foundation for this work, we present ten additional glycan analysis probes (GAPs) from a diverse set of human soluble lectins, offering robust tools to investigate glycan-mediated interactions. We describe a protein engineering platform that enables scalable production of GAPs that maintain native-like conformations and oligomerization states, equipped with functional reporter tags for targeted glycan profiling. We demonstrate that the soluble GAP reagents can be used in various applications, including glycan array analysis, mucin-binding assays, tissue staining, and microbe binding in complex populations. These capabilities make GAPs valuable for dissecting interactions relevant to understanding host responses to microbes. The tools can be used to distinguish microbial from mammalian glycans, which is crucial for understanding the cross-target interactions of lectins in a physiological environment where both glycan types exist. GAPs have potential as diagnostic and prognostic tools for detecting glycan alterations in chronic diseases, microbial dysbiosis, and immune-related conditions.
Collapse
Affiliation(s)
- Soumi Ghosh
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rajeev Chorghade
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roger C Diehl
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Greg J Dodge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sunhee Bae
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amanda E Dugan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Melanie Halim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael G Wuo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Helen Bartlett
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Liam Herndon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
3
|
Anbuhl SM, Dervillez X, Neubacher S, Schriek AI, Bobkov V, de Taeye SW, Szpakowska M, Siderius M, Grossmann TN, Chevigné A, Smit MJ, Heukers R. Multivalent CXCR4-targeting nanobody formats differently affect affinity, receptor clustering, and antagonism. Biochem Pharmacol 2024; 227:116457. [PMID: 39098732 DOI: 10.1016/j.bcp.2024.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/12/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
The chemokine receptor CXCR4 is involved in the development and migration of stem and immune cells but is also implicated in tumor progression and metastasis for a variety of cancers. Antagonizing ligand (CXCL12)-induced CXCR4 signaling is, therefore, of therapeutic interest. Currently, there are two small-molecule CXCR4 antagonists on the market for the mobilization of hematopoietic stem cells. Other molecules with improved potencies and safety profiles are being developed for different indications, including cancer. Moreover, multiple antagonistic nanobodies targeting CXCR4 displayed similar or better potencies as compared to the CXCR4-targeting molecule AMD3100 (Plerixafor), which was further enhanced through avid binding of bivalent derivatives. In this study, we aimed to compare the affinities of various multivalent nanobody formats which might be differently impacted by avidity. By fusion to a flexible GS-linker, Fc-region of human IgG1, different C4bp/CLR multimerization domains, or via site-directed conjugation to a trivalent linker scaffold, we generated different types of multivalent nanobodies with varying valencies ranging from bivalent to decavalent. Of these, C-terminal fusion, especially to human Fc, was most advantageous with a 2-log-fold and 3-log-fold increased potency in inhibiting CXCL12-mediated Gαi- or β-arrestin recruitment, respectively. Overall, we describe strategies for generating multivalent and high-potency CXCR4 antagonistic nanobodies able to induce receptor clustering and conclude that fusion to an Fc-tail results in the highest avidity effect irrespective of the hinge linker.
Collapse
Affiliation(s)
- Stephanie M Anbuhl
- QVQ Holding BV, 3584 CL Utrecht, The Netherlands; Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV, The Netherlands; Amsterdam Institute of Molecular and Life Sciences (AIMMS), 1081 HV, Amsterdam, The Netherlands
| | - Xavier Dervillez
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Saskia Neubacher
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), 1081 HV, Amsterdam, The Netherlands; Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, The Netherlands; Incircular BV, 1081 HZ Amsterdam, The Netherlands
| | - Angela I Schriek
- Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam UMC, Location University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Infectious diseases, Amsterdam, The Netherlands
| | - Vladimir Bobkov
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV, The Netherlands; Amsterdam Institute of Molecular and Life Sciences (AIMMS), 1081 HV, Amsterdam, The Netherlands; Argenx, 9052 Ghent, Belgium
| | - Steven W de Taeye
- Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam UMC, Location University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Infectious diseases, Amsterdam, The Netherlands
| | - Martyna Szpakowska
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Marco Siderius
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV, The Netherlands; Amsterdam Institute of Molecular and Life Sciences (AIMMS), 1081 HV, Amsterdam, The Netherlands
| | - Tom N Grossmann
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), 1081 HV, Amsterdam, The Netherlands; Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, The Netherlands; Incircular BV, 1081 HZ Amsterdam, The Netherlands
| | - Andy Chevigné
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Martine J Smit
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV, The Netherlands; Amsterdam Institute of Molecular and Life Sciences (AIMMS), 1081 HV, Amsterdam, The Netherlands
| | - Raimond Heukers
- QVQ Holding BV, 3584 CL Utrecht, The Netherlands; Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV, The Netherlands; Amsterdam Institute of Molecular and Life Sciences (AIMMS), 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Tanio M. Calcium-dependent reversible coaggregation activity of C-reactive protein and M-ficolin. Mol Immunol 2022; 149:157-164. [PMID: 35841688 DOI: 10.1016/j.molimm.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/10/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
C-reactive protein (CRP) and M-ficolin are the pattern recognition proteins of the innate immune system. In this report, a mixture of CRP and M-ficolin reversibly co-aggregated in a calcium-dependent manner. This coaggregation was enhanced at low pH (6.5) or low salt (35 mM NaCl) concentrations. The co-aggregate was dissolved by adding EDTA and reformed by adding calcium. The M-ficolin fibrinogen-like domain (FD1), the ligand-binding domain of M-ficolin, also showed calcium-dependent coaggregation with CRP, indicating that reversible coaggregation is caused by CRP interacting with FD1. Interestingly, adding phosphocholine (PC), the ligand of CRP, to a CRP-FD1 mixture abolished the reversible coaggregation activity. PC also inhibited the interaction between CRP and FD1. These results indicate that CRP retains PC-binding activity in the coaggregation state and that FD1 binds specifically to the PC-binding site on CRP but does not fully occupy the five PC-binding sites on a CRP pentamer as judged by SDS-PAGE analysis of precipitates. Coaggregation analysis using FD1 mutants showed that FD1 also retains ligand-binding activity in the coaggregation state and that coaggregation requires the trimeric form of FD1. It was also found that modifications to the ligand-binding site of FD1 affect coaggregation efficiency. Although the biological functions of the coaggregation activity of CRP and M-ficolin remain unresolved, the co-aggregates may function as bacteria-trapping particles with affinities for ligands of CRP and M-ficolin. In addition, coaggregation may be involved in CRP deposition in the lesions of several arterial diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- Michikazu Tanio
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Musashimurayama-city, Tokyo 208-0011, Japan.
| |
Collapse
|
5
|
Zhao K, Qin Y, Nan X, Zhou K, Song Y, Li W, Wang Q. The role of ficolin as a pattern recognition receptor in antibacterial immunity in Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2022; 128:494-504. [PMID: 36002084 DOI: 10.1016/j.fsi.2022.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Ficolin, a member of the fibrinogen-related proteins family (FREPs), functions as a pattern recognition receptor (PRR) in vertebrates and in invertebrates as a novel lectin. In this study, we discovered the Ficolin homolog of Chinese mitten crab (Eriocheir sinensis), which we named EsFicolin. The obtained sequence showed that it has a highly conserved C-terminal fibrinogen-related domain (FReD) and a coiled-coil structure for trimer formation. EsFicolin was up-regulated in hemocytes after being stimulated by bacteria. Recombinant EsFicolin protein binds to gram-negative and gram-positive bacteria and agglutinates bacteria through pathogen-associated molecular patterns. In-depth study found that recombinant EsFicolin could effectively remove bacteria and showed direct antibacterial activity. EsFicolin could also promote the phagocytosis of hemocytes to enhance bacterial clearance. These findings suggest that EsFicolin plays an important role in the crab antibacterial immune response.
Collapse
Affiliation(s)
- Ke Zhao
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yukai Qin
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xingyu Nan
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kaimin Zhou
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yu Song
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
6
|
Utilization of Whole Exome Sequencing in Non-Syndromic Premature Ovarian Failure: Ficolin-3 Gene Mutation in an Iranian Family. IRANIAN BIOMEDICAL JOURNAL 2021; 25:441-6. [PMID: 34641644 DOI: 10.52547/ibj.25.6.441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Premature ovarian failure is a heterogeneous disorder, leading to early menopause. Several genes have been identified as the cause of non-syndromic premature ovarian failure (POF). Our aim was to explore the genetic defects in Iranian patients with POF. Methods We studied a family with three females exhibiting non-syndromic POF. WES was performed for one of the affected individuals after ruling out the presence of CGG repeat expansion at fragile X mental retardation 1 gene in the family. Sanger sequencing was used to confirm the candidate sequence variants in the proband, and screening of the detected mutation was performed for the other affected and unaffected members of the family. Results A homozygous frameshift mutation, c.349delC, was identified in ficolin-3 (FCN3) gene in the proband and two other patients. The parents and two healthy brothers were heterozygous for the mutation, and an unaffected sister was homozygous for wild type. Conclusion This is the first report of a mutation in FCN3 gene in a family with POF. Our findings can lead to the enhancement of genetic databases of patients with POF, specifically for families with high-risk background.
Collapse
|
7
|
Murugaiah V, Varghese PM, Beirag N, DeCordova S, Sim RB, Kishore U. Complement Proteins as Soluble Pattern Recognition Receptors for Pathogenic Viruses. Viruses 2021; 13:v13050824. [PMID: 34063241 PMCID: PMC8147407 DOI: 10.3390/v13050824] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
The complement system represents a crucial part of innate immunity. It contains a diverse range of soluble activators, membrane-bound receptors, and regulators. Its principal function is to eliminate pathogens via activation of three distinct pathways: classical, alternative, and lectin. In the case of viruses, the complement activation results in effector functions such as virion opsonisation by complement components, phagocytosis induction, virolysis by the membrane attack complex, and promotion of immune responses through anaphylatoxins and chemotactic factors. Recent studies have shown that the addition of individual complement components can neutralise viruses without requiring the activation of the complement cascade. While the complement-mediated effector functions can neutralise a diverse range of viruses, numerous viruses have evolved mechanisms to subvert complement recognition/activation by encoding several proteins that inhibit the complement system, contributing to viral survival and pathogenesis. This review focuses on these complement-dependent and -independent interactions of complement components (especially C1q, C4b-binding protein, properdin, factor H, Mannose-binding lectin, and Ficolins) with several viruses and their consequences.
Collapse
Affiliation(s)
- Valarmathy Murugaiah
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (V.M.); (P.M.V.); (N.B.); (S.D.)
| | - Praveen M. Varghese
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (V.M.); (P.M.V.); (N.B.); (S.D.)
| | - Nazar Beirag
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (V.M.); (P.M.V.); (N.B.); (S.D.)
| | - Syreeta DeCordova
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (V.M.); (P.M.V.); (N.B.); (S.D.)
| | - Robert B. Sim
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (V.M.); (P.M.V.); (N.B.); (S.D.)
- Correspondence: or
| |
Collapse
|
8
|
Singrang N, Laophetsakunchai S, Tran BN, Matsudaira PT, Tassanakajon A, Wangkanont K. Biochemical and structural characterization of a recombinant fibrinogen-related lectin from Penaeus monodon. Sci Rep 2021; 11:2934. [PMID: 33536457 PMCID: PMC7858579 DOI: 10.1038/s41598-021-82301-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/19/2021] [Indexed: 11/25/2022] Open
Abstract
Fibrinogen-related lectins are carbohydrate-binding proteins of the innate immune system that recognize glycan structures on microbial surfaces. These innate immune lectins are crucial for invertebrates as they do not rely on adaptive immunity for pathogen clearance. Here, we characterize a recombinant fibrinogen-related lectin PmFREP from the black tiger shrimp Penaeus monodon expressed in the Trichoplusia ni insect cell. Electron microscopy and cross-linking experiments revealed that PmFREP is a disulfide-linked dimer of pentamers distinct from other fibrinogen-related lectins. The full-length protein binds N-acetyl sugars in a Ca2+ ion-independent manner. PmFREP recognized and agglutinated Pseudomonas aeruginosa. Weak binding was detected with other bacteria, including Vibrio parahaemolyticus, but no agglutination activity was observed. The biologically active PmFREP will not only be a crucial tool to elucidate the innate immune signaling in P. monodon and other economically important species, but will also aid in detection and prevention of shrimp bacterial infectious diseases.
Collapse
Affiliation(s)
- Nongnuch Singrang
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Sirasit Laophetsakunchai
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Bich Ngoc Tran
- Department of Biological Sciences, Faculty of Science, Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Paul T Matsudaira
- Department of Biological Sciences, Faculty of Science, Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kittikhun Wangkanont
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand. .,Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
9
|
Oangkhana P, Amparyup P, Tassanakajon A, Preetham E, Wongpanya R. Characterization and functional analysis of fibrinogen-related protein (FreP) in the black tiger shrimp, Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2021; 109:87-96. [PMID: 33359206 DOI: 10.1016/j.fsi.2020.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Ficolin is classified as an immune related protein containing collagen-like and fibrinogen-related domain (FreD). In invertebrates, the functions of fibrinogen-related proteins (FrePs) are of importance to innate immunity. In this study, a FreP in the black tiger shrimp Penaeus monodon was identified and characterized. The PmFreP cDNA is 1,007 bp long with a 921 bp-open reading frame that encodes for 306 amino acids. The deduced PmFreP sequence consists of a signal peptide, an unknown region and the FreD. Phylogenetic analysis showed that PmFreP was clustered with fibrinogen-like proteins in crustaceans which was separated from vertebrate ficolin-like proteins. The deduced fibrinogen-like domain contains four conserved cysteine residues (Cys96, Cys127, Cys249, and Cys262) that are responsible for the formation of disulfide bridges. Gene expression analysis shows that Pmfrep is mainly expressed in the intestine and the expression is significantly upregulated after Vibrio harveyi and white spot syndrome virus (WSSV) challenge. Recombinant PmFreP (rPmFreP) were successfully expressed and purified, and forms a trimeric structure as judged by native-PAGE. Bacterial binding assay showed that the rPmFreD can bind and agglutinate Gram-negative and Gram-positive bacteria in the presence of calcium (Ca2+) ions. Moreover, the rPmFreP facilitates the clearance of V. harveyi in vivo. Overall, our results suggested that the PmFreP may serve as pattern recognition receptors implicated in shrimp innate immunity.
Collapse
Affiliation(s)
- Prawit Oangkhana
- Interdisciplinary Program in Genetic Engineering, Graduate School, Kasetsart University, Chatuchak, Bangkok, 10903, Thailand.
| | - Piti Amparyup
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
| | - Elumalai Preetham
- School of Processing Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kerala, India.
| | - Ratree Wongpanya
- Interdisciplinary Program in Genetic Engineering, Graduate School, Kasetsart University, Chatuchak, Bangkok, 10903, Thailand; Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Bangkok, 10900, Thailand.
| |
Collapse
|
10
|
Jarlhelt I, Pilely K, Clausen JB, Skjoedt MO, Bayarri-Olmos R, Garred P. Circulating Ficolin-2 and Ficolin-3 Form Heterocomplexes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1919-1928. [PMID: 32094208 DOI: 10.4049/jimmunol.1900694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/18/2020] [Indexed: 01/16/2023]
Abstract
The complement system constitutes an important part of the innate immune system. The collectins and the ficolins are soluble pattern recognition molecules that contribute to complement activation via the lectin pathway. During previous experiments with ficolin-2 and ficolin-3, we have observed that the molecules may interact. We therefore hypothesized the existence of stable ficolin-2/-3 heterocomplexes. We could demonstrate ficolin-2/-3 heterocomplexes in normal human serum and plasma by ELISA using Abs specific for ficolin-2 and ficolin-3. The formation of heteromeric protein complexes were validated by coimmunoprecipitation and Western blot analysis. When recombinant ficolin-2 and recombinant ficolin-3 were mixed, no complexes were formed. However, when coexpressing ficolin-2 and ficolin-3 in Chinese hamster ovary cells, we could detect ficolin-2/-3 heterocomplexes in the supernatant. Furthermore, we measured concentration of the ficolin-2/-3 heterocomplexes in arbitrary units in 94 healthy individuals. We also established the relationship between the concentrations of ficolin-2, ficolin-3, and the ficolin-2/-3 heterocomplexes. We observed that the concentration of the ficolin-2/-3 heterocomplex correlated significantly with ficolin-2 (ρ: 0.24, p < 0.018) and ficolin-3 concentrations (ρ: 0.46, p < 0.0001). In conclusion, we describe a novel protein complex between ficolin-2 and ficolin-3 present in serum and plasma, which might be of additional biological relevance apart from the native ficolin-2 and ficolin-3 molecules.
Collapse
Affiliation(s)
- Ida Jarlhelt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jytte Bryde Clausen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
11
|
Eriksson O, Chiu J, Hogg PJ, Atkinson JP, Liszewski MK, Flaumenhaft R, Furie B. Thiol isomerase ERp57 targets and modulates the lectin pathway of complement activation. J Biol Chem 2019; 294:4878-4888. [PMID: 30670593 DOI: 10.1074/jbc.ra118.006792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/13/2019] [Indexed: 11/06/2022] Open
Abstract
ER protein 57 (ERp57), a thiol isomerase secreted from vascular cells, is essential for complete thrombus formation in vivo, but other extracellular ERp57 functions remain unexplored. Here, we employed a kinetic substrate-trapping approach to identify extracellular protein substrates of ERp57 in platelet-rich plasma. MS-based identification with immunochemical confirmation combined with gene ontology enrichment analysis revealed that ERp57 targets, among other substrates, components of the lectin pathway of complement activation: mannose-binding lectin, ficolin-2, ficolin-3, collectin-10, collectin-11, mannose-binding lectin-associated serine protease-1, and mannose-binding lectin-associated serine protease-2. Ficolin-3, the most abundant lectin pathway initiator in humans, circulates as disulfide-linked multimers of a monomer. ERp57 attenuated ficolin-3 ligand recognition and complement activation by cleaving intermolecular disulfide bonds in large ficolin-3 multimers, thereby reducing multimer size and ligand-binding affinity. We used MS to identify the disulfide-bonding pattern in ficolin-3 multimers and the disulfide bonds targeted by ERp57 and found that Cys6 and Cys23 in the N-terminal region of ficolin-3 form the intermolecular disulfide bonds in ficolin-3 multimers that are reduced by ERp57. Our results not only demonstrate that ERp57 can negatively regulate complement activation, but also identify a control mechanism for lectin pathway initiation in the vasculature. We conclude that extensive multimerization in large ficolin-3 multimers leads to a high affinity for ligands and strong complement-activating potential and that ERp57 suppresses complement activation by cleaving disulfide bonds in ficolin-3 and reducing its multimer size.
Collapse
Affiliation(s)
- Oskar Eriksson
- From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Joyce Chiu
- the Centenary Institute, National Health and Medical Research Council Clinical Trials Centre, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia, and
| | - Philip J Hogg
- the Centenary Institute, National Health and Medical Research Council Clinical Trials Centre, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia, and
| | - John P Atkinson
- the Department of Medicine/Rheumatology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - M Kathryn Liszewski
- the Department of Medicine/Rheumatology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Robert Flaumenhaft
- From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Bruce Furie
- From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115,
| |
Collapse
|
12
|
Fraser RS, Arroyo LG, Meyer A, Lillie BN. Identification of genetic variation in equine collagenous lectins using targeted resequencing. Vet Immunol Immunopathol 2018; 202:153-163. [PMID: 30078590 DOI: 10.1016/j.vetimm.2018.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 12/30/2022]
Abstract
Collagenous lectins are a family of soluble pattern recognition receptors that play an important role in innate immune resistance to infectious disease. Through recognition of carbohydrate motifs on the surface of pathogens, some collagenous lectins can activate the lectin pathway of complement, providing an effective means of host defense. Genetic polymorphisms in collagenous lectins have been shown in several species to predispose animals to a variety of infectious diseases. Infectious diseases are an important cause of morbidity in horses, however little is known regarding the role of equine collagenous lectins. Using a high-throughput, targeted re-sequencing approach, the relationship between genetic variation in equine collagenous lectin genes and susceptibility to disease was investigated. DNA was isolated from tissues obtained from horses submitted for post-mortem examination. Animals were divided into two populations, those with infectious or autoinflammatory diseases (n = 37) and those without (n = 52), and then subdivided by dominant pathological process for a total of 21 pools, each containing 4-5 horses. DNA was extracted from each horse and pooled in equimolar amounts, and the exons, introns, upstream (approximately 50 kb) and downstream (approximately 3 kb) regulatory regions for the 11 equine collagenous lectin genes and related MASP genes were targeted for re-sequencing. A custom target capture kit was used to prepare a sequencing library, which was sequenced on an Illumina MiSeq. After implementing quality control filters, 4559 variants were identified. Of these, 92 were present in the coding regions (43 missense, 1 nonsense, and 48 synonymous), 1414 in introns, 3029 in the upstream region, and 240 in the downstream region. In silico analysis of the missense short nucleotide variants identified 12 mutations with potential to disrupt collagenous lectin protein structure or function, 280 mutations located within predicted transcription factor binding sites, and 95 mutations located within predicted microRNA binding elements. Analysis of allelic association identified 113 mutations that segregated between the infectious/autoinflammatory and non-infectious populations. The variants discovered in this experiment represent potential genetic contributors to disease susceptibility of horses, and will serve as candidates for further population-level genotyping. This study contributes to the growing body of evidence that pooled, high-throughput sequencing is a viable strategy for cost-effective variant discovery.
Collapse
Affiliation(s)
- Russell S Fraser
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1E 2W1, Canada.
| | - Luis G Arroyo
- Department of Clinical Studies, University of Guelph, Guelph, Ontario, N1E 2W1, Canada.
| | - Ann Meyer
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1E 2W1, Canada.
| | - Brandon N Lillie
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1E 2W1, Canada.
| |
Collapse
|
13
|
Garred P, Genster N, Pilely K, Bayarri-Olmos R, Rosbjerg A, Ma YJ, Skjoedt MO. A journey through the lectin pathway of complement-MBL and beyond. Immunol Rev 2016; 274:74-97. [PMID: 27782323 DOI: 10.1111/imr.12468] [Citation(s) in RCA: 314] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mannose-binding lectin (MBL), collectin-10, collectin-11, and the ficolins (ficolin-1, ficolin-2, and ficolin-3) are soluble pattern recognition molecules in the lectin complement pathway. These proteins act as mediators of host defense and participate in maintenance of tissue homeostasis. They bind to conserved pathogen-specific structures and altered self-antigens and form complexes with the pentraxins to modulate innate immune functions. All molecules exhibit distinct expression in different tissue compartments, but all are found to a varying degree in the circulation. A common feature of these molecules is their ability to interact with a set of serine proteases named MASPs (MASP-1, MASP-2, and MASP-3). MASP-1 and -2 trigger the activation of the lectin pathway and MASP-3 may be involved in the activation of the alternative pathway of complement. Furthermore, MASPs mediate processes related to coagulation, bradykinin release, and endothelial and platelet activation. Variant alleles affecting expression and structure of the proteins have been associated with a variety of infectious and non-infectious diseases, most commonly as disease modifiers. Notably, the severe 3MC (Malpuech, Michels, Mingarelli, and Carnevale) embryonic development syndrome originates from rare mutations affecting either collectin-11 or MASP-3, indicating a broader functionality of the complement system than previously anticipated. This review summarizes the characteristics of the molecules in the lectin pathway.
Collapse
Affiliation(s)
- Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ying Jie Ma
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Geno KA, Spencer BL, Nahm MH. Rapid and efficient purification of ficolin-2 using a disposable CELLine bioreactor. J Immunol Methods 2015; 424:106-10. [PMID: 26021447 PMCID: PMC4560653 DOI: 10.1016/j.jim.2015.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/22/2015] [Accepted: 05/22/2015] [Indexed: 10/23/2022]
Abstract
The human opsonin ficolin-2 (L-ficolin) is an innate pattern-recognizing molecule that binds to acetylated moieties. Upon binding, ficolin-2 activates complement through the lectin pathway, opsonizing the target to promote phagocytic clearance. Ficolin-2 has been found to interact with a growing number of pathogenic bacteria, fungi, and viruses. Ficolin-2 also has proposed roles in host homeostasis, including the clearance of apoptotic cells. Consequently, there is an increased interest in studying ficolin-2, and access to purified ficolin-2 is necessary for these studies. Ficolin-2 purified from serum, plasma, or cell culture supernatants has been a useful tool in the characterization of ficolin-2 function; however, available protocols are laborious and inefficient, requiring additional processing of starting materials (e.g., polyethylene glycol precipitation or dialysis) and multiple steps of purification. Here, we investigated a simple solution to the problem: use of a simple, disposable bioreactor requiring only standard tissue culture equipment. Using this system, we generated cell culture supernatants containing high concentrations of recombinant ficolin-2, which permitted rapid purification of high-purity recombinant ficolin-2 without processing the supernatants. Purified recombinant ficolin-2 retained its binding capacity and supported complement activation in vitro. Bioreactor cultivation will likely be generally useful in the production of other recombinant proteins in the study of the complement system.
Collapse
Affiliation(s)
- K Aaron Geno
- Department of Pathology, University of Alabama at Birmingham, P210 West Pavilion, 619 19th Street South, Birmingham, AL 35233, USA.
| | - Brady L Spencer
- Department of Pathology, University of Alabama at Birmingham, P210 West Pavilion, 619 19th Street South, Birmingham, AL 35233, USA.
| | - Moon H Nahm
- Department of Pathology, University of Alabama at Birmingham, P210 West Pavilion, 619 19th Street South, Birmingham, AL 35233, USA; Department of Microbiology, University of Alabama at Birmingham, Bevill Biomedical Research Building, Suite 276/11, 1720 2nd Avenue South, Birmingham, AL 35294, USA.
| |
Collapse
|
15
|
Endo Y, Matsushita M, Fujita T. New insights into the role of ficolins in the lectin pathway of innate immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:49-110. [PMID: 25805122 DOI: 10.1016/bs.ircmb.2015.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the innate immune system, a variety of recognition molecules provide the first-line host defense to prevent infection and maintain endogenous homeostasis. Ficolin is a soluble recognition molecule, which senses pathogen-associated molecular patterns on microbes and aberrant sugar structures on self-cells. It consists of a collagen-like stalk and a globular fibrinogen-like domain, the latter binding to carbohydrates such as N-acetylglucosamine. Ficolins have been widely identified in animals from higher invertebrates to mammals. In mammals, ficolins form complexes with mannose-binding lectin-associated serine proteases (MASPs), and ficolin-MASP complexes trigger complement activation via the lectin pathway. Once activated, complement mediates many immune responses including opsonization, phagocytosis, and cytokine production. Although the precise function of each ficolin is still under investigation, accumulating information suggests that ficolins have a crucial role in host defense by recognizing a variety of microorganisms and interacting with effector proteins.
Collapse
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan; Radioisotope Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Kanagawa, Japan
| | - Teizo Fujita
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan; Fukushima General Hygiene Institute, Fukushima, Japan
| |
Collapse
|
16
|
Human lectins and their roles in viral infections. Molecules 2015; 20:2229-71. [PMID: 25642836 PMCID: PMC6272597 DOI: 10.3390/molecules20022229] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 12/20/2022] Open
Abstract
Innate recognition of virus proteins is an important component of the immune response to viral pathogens. A component of this immune recognition is the family of lectins; pattern recognition receptors (PRRs) that recognise viral pathogen-associated molecular patterns (PAMPs) including viral glycoproteins. In this review we discuss the contribution of soluble and membrane-associated PRRs to immunity against virus pathogens, and the potential role of these molecules in facilitating virus replication. These processes are illustrated with examples of viruses including human immunodeficiency virus (HIV), hepatitis C virus (HCV) and Ebola virus (EBOV). We focus on the structure, function and genetics of the well-characterised C-type lectin mannose-binding lectin, the ficolins, and the membrane-bound CD209 proteins expressed on dendritic cells. The potential for lectin-based antiviral therapies is also discussed.
Collapse
|
17
|
Hein E, Garred P. The Lectin Pathway of Complement and Biocompatibility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 865:77-92. [PMID: 26306444 DOI: 10.1007/978-3-319-18603-0_5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In modern health technologies the use of biomaterials in the form of stents, haemodialysis tubes, artificial implants, bypass circuits etc. is rapidly expanding. The exposure of synthetic, foreign surfaces to the blood and tissue of the host, calls for strict biocompatibility in respect to contact activation, the coagulation system and the complement system. The complement system is an important part of the initial immune response and consists of fluid phase molecules in the blood stream. Three different activation pathways can initiate the complement system, the lectin, the classical and the alternative pathway, all converging in an amplification loop of the cascade system and downstream reactions. Thus, when exposed to foreign substances complement components will be activated and lead to a powerful inflammatory response. Biosurface induced complement activation is a recognised issue that has been broadly documented. However, the specific role of lectin pathway and the pattern recognition molecules initiating the pathway has only been transiently investigated. Here we review the current data on the field.
Collapse
Affiliation(s)
- Estrid Hein
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen O, Denmark
| | | |
Collapse
|
18
|
The emerging role of complement lectin pathway in trypanosomatids: molecular bases in activation, genetic deficiencies, susceptibility to infection, and complement system-based therapeutics. ScientificWorldJournal 2013; 2013:675898. [PMID: 23533355 PMCID: PMC3595680 DOI: 10.1155/2013/675898] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/01/2013] [Indexed: 12/21/2022] Open
Abstract
The innate immune system is evolutionary and ancient and is the pivotal line of the host defense system to protect against invading pathogens and abnormal self-derived components. Cellular and molecular components are involved in recognition and effector mechanisms for a successful innate immune response. The complement lectin pathway (CLP) was discovered in 1990. These new components at the complement world are very efficient. Mannan-binding lectin (MBL) and ficolin not only recognize many molecular patterns of pathogens rapidly to activate complement but also display several strategies to evade innate immunity. Many studies have shown a relation between the deficit of complement factors and susceptibility to infection. The recently discovered CLP was shown to be important in host defense against protozoan microbes. Although the recognition of pathogen-associated molecular patterns by MBL and Ficolins reveal efficient complement activations, an increase in deficiency of complement factors and diversity of parasite strategies of immune evasion demonstrate the unsuccessful effort to control the infection. In the present paper, we will discuss basic aspects of complement activation, the structure of the lectin pathway components, genetic deficiency of complement factors, and new therapeutic opportunities to target the complement system to control infection.
Collapse
|
19
|
Characterization of fibrinogen-like protein 2 (FGL2): monomeric FGL2 has enhanced immunosuppressive activity in comparison to oligomeric FGL2. Int J Biochem Cell Biol 2012; 45:408-18. [PMID: 23127799 DOI: 10.1016/j.biocel.2012.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/17/2012] [Accepted: 10/25/2012] [Indexed: 12/15/2022]
Abstract
Fibrinogen-like protein 2 (FGL2), a novel effector molecule of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg), mediates its suppressive activity through binding to low affinity Fcγ receptors expressed on antigen presenting cells (APCs). FGL2 has been implicated in the pathogenesis of viral hepatitis, xeno- and allotransplant rejection, and rheumatoid arthritis. Here we fully analyzed the structure-function relationships of recombinant murine FGL2 generated in COS-7 cells and identified the receptor binding domains. Native FGL2 exists as an oligomer with a molecular weight of approximately 260 kDa, while under reducing conditions, FGL2 has a molecular weight of 65 kDa suggesting that native FGL2 is composed of four monomers. By site-directed mutation, cysteines at positions 94, 97, 184 and 187, found in the coiled-coil domain were shown to be crucial for FGL2 oligomerization. Monomeric FGL2 had a lower affinity binding to APCs, but increased immunosuppressive activity compared to oligomeric FGL2. Deglycosylation demonstrated that sugar moieties are critical for maintaining solubility of FGL2. SWISS-MODEL analysis suggested that FGL2 has a similar tertiary structure with other members of the fibrinogen family such as fibrinogen and tachylectin. Mutational analysis of cysteine residues and Western blots suggested an asymmetric bouquet-shaped quaternary structure for oligomeric FGL2, resembling many pattern-recognition molecules in the lectin pathway of innate immunity. The functional motifs of FGL2 were mapped to the C terminal globular domain, using a peptide blockade assay. These results collectively define the biochemical and immunological determinants of FGL2, an important immunosuppressive molecule of Treg providing important insights for designing FGL2-related therapeutics.
Collapse
|
20
|
Wang X, Ju Z, Huang J, Hou M, Zhou L, Qi C, Zhang Y, Gao Q, Pan Q, Li G, Zhong J, Wang C. The relationship between the variants of the bovine MBL2 gene and milk production traits, mastitis, serum MBL-C levels and complement activity. Vet Immunol Immunopathol 2012; 148:311-9. [PMID: 22771198 DOI: 10.1016/j.vetimm.2012.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/12/2012] [Accepted: 06/13/2012] [Indexed: 11/26/2022]
Abstract
Mannose-binding lectin (MBL), a calcium-dependent collagenous lectin, plays an important role in the host immune defence against a wide range of pathogens. There are MBL1 and MBL2 genes which encode the MBL-A and MBL-C proteins, respectively. This study was carried out to investigate the relationship between the variants of the bovine MBL2 gene and milk production traits, mastitis, serum MBL-C levels and hemolytic complement activity in both classical pathway (CH50) and alternative pathway (ACH50) in Chinese Holstein cattle. Four single-nucleotide polymorphisms (SNPs) in the exon 1 of the MBL2 gene in Chinese Holstein cattle and Luxi yellow cattle were identified by the direct sequencing method. The SNP g.201 G>A was identified as a non-synonymous mutation (codon 31, Arg>Gln) at the N-terminus cysteine-rich domain and the SNPs g.234 C>A and g.235 G>A (codon 42) made Pro to Gln at the 1st Gly-X-Y repeat of the collagen-like domain, while the SNP g.244 T>C (codon 45) was identified as a synonymous mutation (Asn>Asn) at the 2 th Gly-X-Y repeat of the collagen-like domain. The SNP markers (g.201 G>A, and g.234 C>A) were significantly correlated with somatic cell score (SCS) (P<0.05). The concentration of MBL-C protein in serum ranges from 0.8 to 7.4 μg/mL by enzyme-linked immunosorbent assay. Six combinations of different haplotypes from the four SNPs were identified in Chinese Holstein cattle. Statistical analysis revealed that cows with the haplotype combination H4H5 exhibited the lowest SCS. The CH50 value of H4H5 and H5H5 cow are significantly higher than H2H5 haplotype combination (P<0.05). The association analysis results showed that the haplotype combination H4H5 may be used as a tolerance haplotype combination for the bovine mastitis.
Collapse
Affiliation(s)
- Xinju Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan 250131, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Endo Y, Matsushita M, Fujita T. The role of ficolins in the lectin pathway of innate immunity. Int J Biochem Cell Biol 2011; 43:705-12. [PMID: 21315829 DOI: 10.1016/j.biocel.2011.02.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 11/29/2022]
Abstract
Ficolins are a family of oligomeric proteins consisting of an N-terminal collagen-like domain and a C-terminal globular fibrinogen-like domain. They are novel lectins that employ the fibrinogen-like domain as a functional domain. Ficolins specifically recognize N-acetyl compounds such as N-acetylglucosamine, components of bacterial and fungal cell walls, and certain bacteria. Like mannose-binding lectin (MBL), ficolins circulate in complexes with MBL-associated serine proteases (MASPs). MASP complexes form with ficolins and MBL, thereby activating the complement through the lectin pathway. Upon binding of ficolins and MBL to carbohydrates on pathogens, MASPs convert to active forms, and subsequently activate the complement. The activated complements lead to pathogen phagocytosis, aggregation and lysis. In humans, three ficolins (L-, M- and H-ficolins) have been identified, which exhibit differences in tissue expression, protein location site, ligand-binding and bacteria-recognition, suggesting a specific role of each ficolin. In addition, these ficolins form complexes with three MASPs (MASP-1, MASP-2 and MASP-3) and two nonenzymatic proteins (sMAP and MAP-1), suggesting a highly sophisticated organization and regulated activation of the ficolin-dependent lectin pathway. This review provides an overview of our current knowledge of ficolins, especially human ficolins and their mouse homologues. We also discuss their possible physiological roles in innate immunity, especially their defensive role against bacterial infection.
Collapse
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, 1-Hikarigaoka, Fukushima 960-1295, Japan.
| | | | | |
Collapse
|
22
|
Thomsen T, Schlosser A, Holmskov U, Sorensen GL. Ficolins and FIBCD1: soluble and membrane bound pattern recognition molecules with acetyl group selectivity. Mol Immunol 2011; 48:369-81. [PMID: 21071088 DOI: 10.1016/j.molimm.2010.09.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 09/30/2010] [Indexed: 12/27/2022]
Abstract
A network of molecules, which recognizes pathogens, work together to establish a quick and efficient immune response to infectious agents. Molecules containing a fibrinogen related domain in invertebrates and vertebrates have been implicated in immune responses against pathogens, and characterized as pattern recognition molecules. Ficolins are soluble oligomeric proteins composed of trimeric collagen-like regions linked to fibrinogen-related domains (FReDs) that have the ability to sense molecular patterns on both pathogens and apoptotic cell surfaces and activate the complement system. The ficolins have acetyl-binding properties, which have been localized to different binding sites in the FReD-region. A newly discovered tetrameric transmembrane protein, FIBCD1, likewise binds acetylated structures via the highly conserved FReD. This review presents current knowledge on acetyl binding FReD-containing molecules, and discusses structural resemblance but also diversity in recognition of acetylated ligands.
Collapse
Affiliation(s)
- Theresa Thomsen
- Institute of Molecular Medicine, University of Southern Denmark, Denmark
| | | | | | | |
Collapse
|
23
|
Michelow IC, Dong M, Mungall BA, Yantosca LM, Lear C, Ji X, Karpel M, Rootes CL, Brudner M, Houen G, Eisen DP, Kinane TB, Takahashi K, Stahl GL, Olinger GG, Spear GT, Ezekowitz RAB, Schmidt EV. A novel L-ficolin/mannose-binding lectin chimeric molecule with enhanced activity against Ebola virus. J Biol Chem 2010; 285:24729-39. [PMID: 20516066 PMCID: PMC2915709 DOI: 10.1074/jbc.m110.106260] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 05/28/2010] [Indexed: 12/21/2022] Open
Abstract
Ebola viruses constitute a newly emerging public threat because they cause rapidly fatal hemorrhagic fevers for which no treatment exists, and they can be manipulated as bioweapons. We targeted conserved N-glycosylated carbohydrate ligands on viral envelope surfaces using novel immune therapies. Mannose-binding lectin (MBL) and L-ficolin (L-FCN) were selected because they function as opsonins and activate complement. Given that MBL has a complex quaternary structure unsuitable for large scale cost-effective production, we sought to develop a less complex chimeric fusion protein with similar ligand recognition and enhanced effector functions. We tested recombinant human MBL and three L-FCN/MBL variants that contained the MBL carbohydrate recognition domain and varying lengths of the L-FCN collagenous domain. Non-reduced chimeric proteins formed predominantly nona- and dodecameric oligomers, whereas recombinant human MBL formed octadecameric and larger oligomers. Surface plasmon resonance revealed that L-FCN/MBL76 had the highest binding affinities for N-acetylglucosamine-bovine serum albumin and mannan. The same chimeric protein displayed superior complement C4 cleavage and binding to calreticulin (cC1qR), a putative receptor for MBL. L-FCN/MBL76 reduced infection by wild type Ebola virus Zaire significantly greater than the other molecules. Tapping mode atomic force microscopy revealed that L-FCN/MBL76 was significantly less tall than the other molecules despite similar polypeptide lengths. We propose that alterations in the quaternary structure of L-FCN/MBL76 resulted in greater flexibility in the collagenous or neck region. Similarly, a more pliable molecule might enhance cooperativity between the carbohydrate recognition domains and their cognate ligands, complement activation, and calreticulin binding dynamics. L-FCN/MBL chimeric proteins should be considered as potential novel therapeutics.
Collapse
Affiliation(s)
- Ian C. Michelow
- From the Program of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, DK-8000 Aarhus, Denmark
| | - Bruce A. Mungall
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Livestock Industries, Geelong, Victoria 3220, Australia
| | - L. Michael Yantosca
- From the Program of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Calli Lear
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702
| | - Xin Ji
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois 60612
| | - Marshall Karpel
- From the Program of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Christina L. Rootes
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Livestock Industries, Geelong, Victoria 3220, Australia
| | - Matthew Brudner
- From the Program of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Gunnar Houen
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Damon P. Eisen
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville 3050, Australia, and
| | - T. Bernard Kinane
- From the Program of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Kazue Takahashi
- From the Program of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Gregory L. Stahl
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Gene G. Olinger
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702
| | - Gregory T. Spear
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois 60612
| | - R. Alan B. Ezekowitz
- From the Program of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Emmett V. Schmidt
- From the Program of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
24
|
Gout E, Garlatti V, Smith DF, Lacroix M, Dumestre-Pérard C, Lunardi T, Martin L, Cesbron JY, Arlaud GJ, Gaboriaud C, Thielens NM. Carbohydrate recognition properties of human ficolins: glycan array screening reveals the sialic acid binding specificity of M-ficolin. J Biol Chem 2010; 285:6612-22. [PMID: 20032467 PMCID: PMC2825457 DOI: 10.1074/jbc.m109.065854] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 12/01/2009] [Indexed: 11/06/2022] Open
Abstract
Ficolins are oligomeric innate immune recognition proteins consisting of a collagen-like region and a fibrinogen-like recognition domain that bind to pathogen- and apoptotic cell-associated molecular patterns. To investigate their carbohydrate binding specificities, serum-derived L-ficolin and recombinant H- and M-ficolins were fluorescently labeled, and their carbohydrate binding ability was analyzed by glycan array screening. L-ficolin preferentially recognized disulfated N-acetyllactosamine and tri- and tetrasaccharides containing terminal galactose or N-acetylglucosamine. Binding was sensitive to the position and orientation of the bond between N-acetyllactosamine and the adjacent carbohydrate. No significant binding of H-ficolin to any of the 377 glycans probed could be detected, providing further evidence for its poor lectin activity. M-ficolin bound preferentially to 9-O-acetylated 2-6-linked sialic acid derivatives and to various glycans containing sialic acid engaged in a 2-3 linkage. To further investigate the structural basis of sialic acid recognition by M-ficolin, point mutants were produced in which three residues of the fibrinogen domain were replaced by their counterparts in L-ficolin. Mutations G221F and A256V inhibited binding to the 9-O-acetylated sialic acid derivatives, whereas Y271F abolished interaction with all sialic acid-containing glycans. The crystal structure of the Y271F mutant fibrinogen domain was solved, showing that the mutation does not alter the structure of the ligand binding pocket. These analyses reveal novel ficolin ligands such as sulfated N-acetyllactosamine (L-ficolin) and gangliosides (M-ficolin) and provide precise insights into the sialic acid binding specificity of M-ficolin, emphasizing the essential role of Tyr(271) in this respect.
Collapse
Affiliation(s)
- Evelyne Gout
- Laboratoire d'Enzymologie Moléculaire, Institut de Biologie Structurale Jean-Pierre Ebel, Commissariat à l'Energie Atomique, CNRS UMR 5075, Université Joseph Fourier, 41 rue Jules Horowitz, Grenoble 38027 Cedex 1, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tanio M, Wakamatsu K, Kohno T. Binding site of C-reactive protein on M-ficolin. Mol Immunol 2009; 47:215-21. [PMID: 19853918 DOI: 10.1016/j.molimm.2009.09.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 09/04/2009] [Accepted: 09/25/2009] [Indexed: 01/03/2023]
Abstract
The binding abilities of human C-reactive protein (CRP) with the C-terminal fibrinogen-like (FBG) domain and the full-length form of human M-ficolin were investigated by pull-down and zonal affinity chromatography analyses. Pull-down assays using an N-acetyl-D-glucosamine (GlcNAc)-agarose column demonstrated that CRP binds to the trimeric FBG domains, and that the GlcNAc-binding ability of the FBG domain is unaffected by CRP binding. Interestingly, the full-length M-ficolin, comprising the N-terminal collagen-like (COL) and C-terminal FBG domains, displayed lower affinity for CRP, and the monomeric FBG domain showed virtually no binding to CRP, as qualitatively judged by zonal affinity chromatography using a GlcNAc column. These results indicated that CRP binding requires the trimeric form of the FBG domain, and that the presence of the COL domain reduces the interaction between CRP and M-ficolin. In addition, pull-down assays using a histidine-tag affinity column demonstrated that neither the full-length M-ficolin nor the trimeric FBG domains, immobilized through their C-terminal histidine tags, showed any affinity for CRP, indicating that the CRP binding site is located near Ala326 at the C-terminus of M-ficolin, spatially close to a neck region (around Pro115) between the FBG and COL domains. From these findings, we concluded that CRP binding is enhanced by conformational bending at the neck region of M-ficolin, to avoid steric hindrance by the COL domain. Such a situation may be generated by oligomeric M-ficolin binding to surfaces with widely distributed ligands, such as pathogens.
Collapse
Affiliation(s)
- Michikazu Tanio
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | | | | |
Collapse
|
26
|
Ohashi T, Augustus AM, Erickson HP. Transient opening of fibronectin type III (FNIII) domains: the interaction of the third FNIII domain of FN with anastellin. Biochemistry 2009; 48:4189-97. [PMID: 19320499 PMCID: PMC2680933 DOI: 10.1021/bi900001g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously reported that the fibronectin (FN) type III domains of FN may unfold to interact with anastellin and form FN aggregates. In the present study, we have focused on the interaction between anastellin and the third FN type III domain (III3), which is a key anastellin binding site on FN. Anastellin binding to III3 was monitored by 8-anilino-1-naphthalene sulfonate (ANS) fluorescence. ANS binding to anastellin dramatically increased its emission intensity, but this was reduced to half by the addition of III3, suggesting that ANS and III3 share a common hydrophobic binding site on anastellin. An engineered mutant of III3 that was stabilized by an intrachain disulfide bond did not interact with anastellin, as seen by its failure to interfere with ANS binding to anastellin. We also mutated hydrophobic core residues to destabilize III3 and found that these mutants were still capable of interacting with anastellin. Anastellin binding to III3 was also monitored using an intramolecular green fluorescent protein (GFP)-based fluorescence resonance energy transfer (FRET) construct, in which III3 was flanked by two GFP variants (III3-FRET). Anastellin bound to III3-FRET and caused an increase in the FRET signal. The dissociation constant was estimated to be approximately 210 nM. The binding kinetics of anastellin to III3-FRET fit a first-order reaction with a half-time of approximately 30 s; the kinetics with destabilized III3 mutants were even faster. Matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry suggested that the middle part of III3 became destabilized and protease sensitive upon anastellin binding. Thus, the stability of III3 seems to be a key factor in anastellin binding.
Collapse
Affiliation(s)
- Tomoo Ohashi
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
27
|
Abstract
Human M-ficolin is a pathogen-associated molecular recognition molecule in the innate immune system, and it binds to some sugars, such as GlcNAc (N-acetylglucosamine), on pathogen surfaces. From previous structural and functional studies of the FD1 (M-ficolin fibrinogen-like domain), we proposed that the ligand-binding region of FD1 exists in a conformational equilibrium between active and non-active states depending on three groups with a pK(a) of 6.2, which are probably histidine residues, and suggested that the 2-state conformational equilibrium as well as the trimer formation contributes to the discrimination mechanism between self and non-self of FD1 [Tanio, M., Kondo, S., Sugio, S. and Kohno, T. (2007) J. Biol. Chem. 282, 3889-3895]. To investigate the origins of the pH dependency, mutational analyses were performed on FD1 expressed by Brevibacillus choshinensis. The GlcNAc binding study of a series of single histidine mutants of FD1 demonstrated that His(251), His(284) and His(297) are required for the activity, and thus we concluded that the three histidines are the origins of the pH dependency of FD1. Monomeric mutants of FD1 show weaker affinity for the ligand than the trimeric wild-type, indicating that trimer formation confers high avidity for the ligand. In addition, analyses of the GlcNAc association and dissociation of FD1 provided evidence that FD1 always exchanges between the active and non-active states with the pH-dependent populations in solution. The biological roles of the histidine-regulated conformational equilibrium of M-ficolin are discussed in terms of the self and non-self discrimination mechanism.
Collapse
Affiliation(s)
- Michikazu Tanio
- Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo, Japan
| | | |
Collapse
|
28
|
Lacroix M, Dumestre-Pérard C, Schoehn G, Houen G, Cesbron JY, Arlaud GJ, Thielens NM. Residue Lys57 in the collagen-like region of human L-ficolin and its counterpart Lys47 in H-ficolin play a key role in the interaction with the mannan-binding lectin-associated serine proteases and the collectin receptor calreticulin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:456-65. [PMID: 19109177 DOI: 10.4049/jimmunol.182.1.456] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
L- and H-ficolins are serum oligomeric defense proteins consisting of a collagen-like region and a fibrinogen-like recognition domain that bind to pathogen- and apoptotic cell-associated molecular patterns. They share with mannan-binding lectin (MBL) the ability to associate with MBL-associated serine proteases (MASP)-1, -2, -3, and protein MAp19 and to trigger the lectin complement pathway through MASP-2 activation. Recent studies have revealed the essential role of Lys(55) in the collagenous region of MBL in the interaction with the MASPs and calreticulin (CRT). To test the possible involvement of the homologous residues Lys(57) of L-ficolin and Lys(47) of H-ficolin, point mutants of both proteins were produced in which these residues were mutated to Ala, Glu, or Arg. The resulting mutants exhibited oligomerization patterns and ligand binding properties similar to those of their wild-type counterparts. In contrast, all three mutations strongly inhibited the interaction of L- and H-ficolins with MAp19 and MASP-2 and impaired the ability of each ficolin to trigger the lectin pathway. In the case of MASP-1 and MASP-3, replacement of the target Lys residues by Ala or Glu abolished interaction, whereas the Lys to Arg mutations had only slight inhibitory effects. Likewise, binding of each ficolin to CRT was inhibited by mutation of Lys to Ala or Glu, but not to Arg. In conclusion, residues Lys(57) of L-ficolin and Lys(47) of H-ficolin are key components of the interaction with the MASPs and CRT, providing strong indication that MBL and the ficolins share homologous binding sites for both types of proteins.
Collapse
Affiliation(s)
- Monique Lacroix
- Institut de Biologie Structurale Jean-Pierre Ebel, Unité Mixte de Recherche 5075, Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique, Université Joseph Fourier, Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Endo Y, Fujita T. [Pattern-recognition molecule, Ficolin]. Nihon Saikingaku Zasshi 2008; 63:399-405. [PMID: 19317229 DOI: 10.3412/jsb.63.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295
| | | |
Collapse
|
30
|
Cedzynski M, Nuytinck L, Atkinson APM, St Swierzko A, Zeman K, Szemraj J, Szala A, Turner ML, Kilpatrick DC. Extremes of L-ficolin concentration in children with recurrent infections are associated with single nucleotide polymorphisms in the FCN2 gene. Clin Exp Immunol 2007; 150:99-104. [PMID: 17680820 PMCID: PMC2219292 DOI: 10.1111/j.1365-2249.2007.03471.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2007] [Indexed: 11/29/2022] Open
Abstract
L-ficolin (also called ficolin-2, P35 or hucolin) is a soluble pattern recognition molecule of suspected importance in anti-microbial immunity. It activates the lectin pathway of complement and acts as an opsonin. l-ficolin, encoded by the FCN2 gene, recognizes microbial polysaccharides and glycoconjugates rich in GlcNAc or GalNAc. We report here data concerning four single nucleotide polymorphisms (SNPs) of the FCN2 gene and their relationship to l-ficolin serum concentrations. There are two pairs of SNPs in linkage disequilibrium: ss32469536 (located in promoter) with rs7851696 (in exon 8) and ss32469537 (promoter) with ss32469544 (exon 8). We selected groups possessing low or high serum l-ficolin concentrations (or= 4.5 microg/ml, respectively) from Polish children suffering from recurrent respiratory infections (n = 146). Low l-ficolin levels were associated with variant alleles for ss32469536 and rs7851696 and normal alleles for ss32469537 and ss32469544. Conversely, high l-ficolin levels were associated with variant alleles of ss32469537 and ss32469544. FCN2 genotyping should be a valuable additional tool for disease association studies.
Collapse
Affiliation(s)
- M Cedzynski
- Laboratory of Immunobiology of Infections, Centre of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ohashi T, Galiacy SD, Briscoe G, Erickson HP. An experimental study of GFP-based FRET, with application to intrinsically unstructured proteins. Protein Sci 2007; 16:1429-38. [PMID: 17586775 PMCID: PMC2206698 DOI: 10.1110/ps.072845607] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We have experimentally studied the fluorescence resonance energy transfer (FRET) between green fluorescent protein (GFP) molecules by inserting folded or intrinsically unstructured proteins between CyPet and Ypet. We discovered that most of the enhanced FRET signal previously reported for this pair was due to enhanced dimerization, so we engineered a monomerizing mutation into each. An insert containing a single fibronectin type III domain (3.7 nm end-to-end) gave a moderate FRET signal while a two-domain insert (7.0 nm) gave no FRET. We then tested unstructured proteins of various lengths, including the charged-plus-PQ domain of ZipA, the tail domain of alpha-adducin, and the C-terminal tail domain of FtsZ. The structures of these FRET constructs were also studied by electron microscopy and sedimentation. A 12 amino acid linker and the N-terminal 33 amino acids of the charged domain of the ZipA gave strong FRET signals. The C-terminal 33 amino acids of the PQ domain of the ZipA and several unstructured proteins with 66-68 amino acids gave moderate FRET signals. The 150 amino acid charged-plus-PQ construct gave a barely detectable FRET signal. FRET efficiency was calculated from the decreased donor emission to estimate the distance between donor and acceptor. The donor-acceptor distance varied for unstructured inserts of the same length, suggesting that they had variable stiffness (persistence length). We conclude that GFP-based FRET can be useful for studying intrinsically unstructured proteins, and we present a range of calibrated protein inserts to experimentally determine the distances that can be studied.
Collapse
Affiliation(s)
- Tomoo Ohashi
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
32
|
Thielens N, Gaboriaud C, Arlaud G. Ficolins: innate immune recognition proteins for danger sensing. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s0213-9626(07)70084-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
33
|
Munthe-Fog L, Hummelshøj T, Hansen BE, Koch C, Madsen HO, Skjødt K, Garred P. The impact of FCN2 polymorphisms and haplotypes on the Ficolin-2 serum levels. Scand J Immunol 2007; 65:383-92. [PMID: 17386030 DOI: 10.1111/j.1365-3083.2007.01915.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ficolin-2 (L-ficolin), derived from the FCN2 gene, is an innate immunity pattern recognition molecule found in human serum in which inter-individual variation in serum appears to be under genetic control. To validate and extend this finding, we developed a sandwich ELISA for detection of human Ficolin-2 in serum samples and identified FCN2 genotypes with a Taq Man-based minor groove binder assay and by sequencing. Serum samples were applied to gel-permeation chromatography and fractions were analysed by an ELISA, SDS-PAGE and subsequently Western blotting. In 214 Danish blood donors, the median Ficolin-2 serum concentration was determined to 5.4 microg/ml (range: 1.0-12.2 microg/ml). An ELISA, SDS-PAGE and Western blot analysis of gel-permeation chromatography fractions showed that Ficolin-2 comprises a mixture of covalently and non-covalently linked Ficolin-2 oligomers independent of the individual genotypes. The variation in serum concentration was associated with three polymorphisms in the promoter and one polymorphism in the structural part of the FCN2 gene. Further analysis indicated that two particular alleles on the same haplotype determined a low Ficolin-2 concentration. Our results show that inter-individual variation of Ficolin-2 concentration is associated with polymorphisms in the promoter and the structural part of the FCN2 gene.
Collapse
Affiliation(s)
- L Munthe-Fog
- Tissue Typing Laboratory, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
34
|
Tanio M, Kondo S, Sugio S, Kohno T. Trivalent recognition unit of innate immunity system: crystal structure of trimeric human M-ficolin fibrinogen-like domain. J Biol Chem 2007; 282:3889-95. [PMID: 17148457 DOI: 10.1074/jbc.m608627200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ficolins are a kind of pathogen-recognition molecule in the innate immune systems. To investigate the discrimination mechanism between self and non-self by ficolins, we determined the crystal structure of the human M-ficolin fibrinogen-like domain (FD1), which is the ligand-binding domain, at 1.9A resolution. Although the FD1 monomer shares a common fold with the fibrinogen gamma fragment and tachylectin-5A, the Asp-282-Cys-283 peptide bond, which is the predicted ligand-binding site on the C-terminal P domain, is a normal trans bond, unlike the cases of the other two proteins. The trimeric formation of FD1 results in the separation of the three P domains, and the spatial arrangement of the three predicted ligand-binding sites on the trimer is very similar to that of the trimeric collectin, indicating that such an arrangement is generally required for pathogen-recognition. The ligand binding study of FD1 in solution indicated that the recombinant protein binds to N-acetyl-d-glucosamine and the peptide Gly-Pro-Arg-Pro and suggested that the ligand-binding region exhibits a conformational equilibrium involving cis-trans isomerization of the Asp-282-Cys-283 peptide bond. The crystal structure and the ligand binding study of FD1 provide an insight of the self- and non-self discrimination mechanism by ficolins.
Collapse
Affiliation(s)
- Michikazu Tanio
- Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | | | | | | |
Collapse
|
35
|
Endo Y, Matsushita M, Fujita T. Role of ficolin in innate immunity and its molecular basis. Immunobiology 2007; 212:371-9. [PMID: 17544822 DOI: 10.1016/j.imbio.2006.11.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Revised: 11/07/2006] [Accepted: 11/29/2006] [Indexed: 10/23/2022]
Abstract
Ficolin is a multimeric protein consisting of an N-terminal collagen-like domain and a C-terminal fibrinogen-like domain. The structure is similar to mannose-binding lectin (MBL) and complement C1q owing to the collagen-like stalk. Accumulating data indicate that a key function of ficolin is to recognize the carbohydrate moieties on pathogens as a pattern-recognition molecule. Two or three kinds of ficolin have been identified in each species of mammals. They are similar but with some differences in the expression site, location site, ligand-binding specificity and ability to form complexes with MBL-associated serine proteases (MASPs). Like MBL, some ficolins are serum lectins and can form a complex with MASPs and small MBL-associated protein (sMAP). This complex activates the complement through "the lectin pathway". Our recent study suggests that ficolin acts through two distinct routes: the lectin pathway and a primitive opsonophagocytosis. All these observations suggest that ficolins function in clearance of non-self, based on their location sites and their molecular features.
Collapse
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, 1-Hikarigaoka, Fukushima 960-1295, Japan.
| | | | | |
Collapse
|
36
|
Hummelshoj T, Thielens NM, Madsen HO, Arlaud GJ, Sim RB, Garred P. Molecular organization of human Ficolin-2. Mol Immunol 2007; 44:401-11. [PMID: 16595153 DOI: 10.1016/j.molimm.2006.02.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2005] [Revised: 02/24/2006] [Accepted: 02/24/2006] [Indexed: 10/24/2022]
Abstract
Human Ficolin-2 (L-Ficolin) is an oligomeric serum protein consisting of a collagen-like stalk and fibrinogen-like recognition domains. The protein binds to arrays of sugars present on different microorganisms, enhances phagocytosis and promotes activation of the lectin complement pathway. So far the detailed oligomeric structure and composition of human Ficolin-2 has not been determined. Recombinant human Ficolin-2 was expressed in Chinese hamster ovary cells and its structure and biological functions were investigated by gel filtration, sucrose density gradient ultracentrifugation, mass spectrometry and surface plasmon resonance spectroscopy. It was revealed that Ficolin-2 has a high molecular weight due to extensive disulfide bridge formation. It was able to bind to different ligands, interact with mannose-binding lectin associated serine proteases and activate the complement system. Mass values of 807 and 403 kDa were determined corresponding to a 24-mer and a 12-mer of 34.4 kDa polypeptides. However, the 24-mer was unstable and the 12-mer is likely the major functional form of the protein. Our results are consistent with the view that Ficolin-2 is built up by a mixture of stable homodimers and homotrimers. Based on our findings we propose a model in which disulfide bridges located in the N-terminal region of the polypeptides explain the oligomerization pattern of human Ficolin-2.
Collapse
Affiliation(s)
- Tina Hummelshoj
- Tissue Typing Laboratory, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
37
|
Schlosser A, Thomsen T, Shipley JM, Hein PW, Brasch F, Tornøe I, Nielsen O, Skjødt K, Palaniyar N, Steinhilber W, McCormack FX, Holmskov U. Microfibril-associated protein 4 binds to surfactant protein A (SP-A) and colocalizes with SP-A in the extracellular matrix of the lung. Scand J Immunol 2006; 64:104-16. [PMID: 16867155 DOI: 10.1111/j.1365-3083.2006.01778.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pulmonary surfactant protein A (SP-A) is an oligomeric collectin that recognizes lipid and carbohydrate moieties present on broad range of micro-organisms, and mediates microbial lysis and clearance. SP-A also modulates multiple immune-related functions including cytokine production and chemotaxis for phagocytes. Here we describe the molecular interaction between the extracellular matrix protein microfibril-associated protein 4 (MFAP4) and SP-A. MFAP4 is a collagen-binding molecule containing a C-terminal fibrinogen-like domain and a N-terminal located integrin-binding motif. We produced recombinant MFAP4 with a molecular mass of 36 and 66 kDa in the reduced and unreduced states respectively. Gel filtration chromatography and chemical crosslinking showed that MFAP4 forms oligomers of four dimers. We demonstrated calcium-dependent binding between MFAP4 and human SP-A1 and SP-A2. No binding was seen to recombinant SP-A composed of the neck region and carbohydrate recognition domain of SP-A indicating that the interaction between MFAP4 and SP-A is mediated via the collagen domain of SP-A. Monoclonal antibodies directed against MFAP4 and SP-A were used for immunohistochemical analysis, which demonstrates that the two molecules colocalize both on the elastic fibres in the interalveolar septum and in elastic lamina of pulmonary arteries of chronically inflamed lung tissue. We conclude, that MFAP4 interacts with SP-A via the collagen region in vitro, and that MFAP4 and SP-A colocates in different lung compartments indicating that the interaction may be operative in vivo.
Collapse
Affiliation(s)
- A Schlosser
- Medical Biotechnology Center, University of Southern Denmark, Odense, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Herpers BL, Immink MM, de Jong BAW, van Velzen-Blad H, de Jongh BM, van Hannen EJ. Coding and non-coding polymorphisms in the lectin pathway activator L-ficolin gene in 188 Dutch blood bank donors. Mol Immunol 2006; 43:851-5. [PMID: 16076493 DOI: 10.1016/j.molimm.2005.06.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Indexed: 10/25/2022]
Abstract
Human L-ficolin (FCN) is a serum lectin characterized by a collagen-like and a fibrinogen-like domain that can activate the lectin pathway of complement. Structural and functional similarities to mannose-binding lectin (MBL) suggest a role for L-ficolin in innate immunity. Structural polymorphisms in the MBL2 gene lead to functional deficiency of MBL. Polymorphisms in the FCN2 gene have not been studied previously. We developed 10 denaturing gradient gel electrophoresis (DGGE) assays to screen a total of 188 Dutch Caucasians for polymorphisms in FCN2. Total gene screening in this large cohort revealed 10 single nucleotide polymorphisms (SNPs). Interestingly, two conserved coding SNPs were found in exon 8, leading to amino acid substitutions within the fibrinogen-like domain. Fibrinogen-like domains are highly conserved among several proteins in many species. As this domain is responsible for binding of L-ficolin, these newly found coding polymorphisms could alter the affinity of the protein for its substrates and possibly alter the ability of L-ficolin to recognize invading microorganisms.
Collapse
Affiliation(s)
- Bjorn Lars Herpers
- St. Antonius Hospital Nieuwegein, Department of Medical Microbiology and Immunology, P.O. Box 2500, 3430 EM Nieuwegein, Netherlands.
| | | | | | | | | | | |
Collapse
|
39
|
Endo Y, Liu Y, Fujita T. Structure and function of ficolins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 586:265-79. [PMID: 16893078 DOI: 10.1007/0-387-34134-x_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, 1-Hikarigaoka, Fukushima 960-1295, Japan
| | | | | |
Collapse
|
40
|
Lillie BN, Brooks AS, Keirstead ND, Hayes MA. Comparative genetics and innate immune functions of collagenous lectins in animals. Vet Immunol Immunopathol 2005; 108:97-110. [PMID: 16098608 DOI: 10.1016/j.vetimm.2005.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Collagenous lectins such as mannan-binding lectins (MBLs), ficolins (FCNs), surfactant proteins A and D (SP-A, SP-D), conglutinin (CG), and related ruminant lectins are multimeric proteins with carbohydrate-binding domains aligned in a manner that facilitates binding to microbial surface polysaccharides. MBLs and FCNs are structurally related to C1q, but activate the lectin complement pathway via interaction with MBL-associated serine proteases (MASPs). MBLs, FCNs, and other collagenous lectins also bind to some host macromolecules and contribute to their removal. While there is evidence that some lectins and the lectin complement pathway are conserved in vertebrates, many differences in collagenous lectins have been observed among humans, rodents, and other vertebrates. For example, humans have only one MBL but three FCNs, whereas most other species express two FCNs and two MBLs. Bovidae express CG and other SP-D-related collectins that are not found in monogastric species. Some dysfunctions of human MBL are due to single nucleotide polymorphisms (SNPs) that affect its expression or structure and thereby increase susceptibility to some infections. Collagenous lectins have well-established roles in innate immunity to various microorganisms, so it is possible that some lectin genotypes or induced phenotypes influence resistance to some infectious or inflammatory diseases in animals.
Collapse
Affiliation(s)
- Brandon N Lillie
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ont., Canada N1G 2W1
| | | | | | | |
Collapse
|
41
|
Abstract
Superfibronectin (sFN) is a fibronectin (FN) aggregate that is formed by mixing FN with anastellin, a fragment of the first type III domain of FN. However, the mechanism of this aggregation has not been clear. In this study, we found that anastellin co-precipitated with FN in a ratio of approximately 4:1, anastellin:FN monomer. The primary binding site for anastellin was in the segment (III)1-3, which bound three molecules of anastellin and was able to form a precipitate without the rest of the FN molecule. Anastellin binding to (III)3 caused a conformational change in that domain that exposed a cryptic thermolysin-sensitive site. An additional anastellin binds to (III)11, where it enhances thermolysin digestion of (III)11. An engineered disulfide bond in (III)3 inhibited both aggregation and protease digestion, suggesting that the stability of (III)3 is a key factor in sFN formation. We propose a three-step model for sFN formation: 1) FN-III domains spontaneously unfold and refold; 2) anastellin binds to an unfolded domain, preventing its refolding and leaving it with exposed hydrophobic surfaces and beta-sheet edges; and 3) these exposed elements bind to similar exposed elements on other molecules, leading to aggregation. The model is consistent with our observation that the kinetics of aggregation are first order, with a reaction time of 500-700 s. Similar mechanisms may contribute to the assembly of the native FN matrix.
Collapse
Affiliation(s)
- Tomoo Ohashi
- Department of Cell Biology, Duke University, Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
42
|
Atkinson APM, Cedzynski M, Szemraj J, St Swierzko A, Bak-Romaniszyn L, Banasik M, Zeman K, Matsushita M, Turner ML, Kilpatrick DC. L-ficolin in children with recurrent respiratory infections. Clin Exp Immunol 2004; 138:517-20. [PMID: 15544630 PMCID: PMC1809226 DOI: 10.1111/j.1365-2249.2004.02634.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2004] [Indexed: 11/28/2022] Open
Abstract
The lectin pathway of complement activation is used by a collectin, mannan-binding lectin (MBL), and two ficolins, L-ficolin and H-ficolin, to opsonize microorganisms for phagocytosis. We published evidence recently that MBL insufficiency is associated with recurrent respiratory infections in childhood. We have now measured serum L-ficolin in 313 respiratory infection patients and 74 healthy control children. L-ficolin concentrations below the lower limit of the control group were found in 6% of the patients (P <0.02) and were associated most strongly with children having co-existing atopic disorders (11%; P=0.002). We suggest that L-ficolin may have a role in protection from microorganisms complicating allergic disease.
Collapse
Affiliation(s)
- A P M Atkinson
- Scottish National Blood Transfusion Service, National Science Laboratory, Edinburgh, Scotland, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|