1
|
Zaitseva E, Zaitsev E, Melikov K, Arakelyan A, Marin M, Villasmil R, Margolis LB, Melikyan GB, Chernomordik LV. Fusion Stage of HIV-1 Entry Depends on Virus-Induced Cell Surface Exposure of Phosphatidylserine. Cell Host Microbe 2017; 22:99-110.e7. [PMID: 28704658 PMCID: PMC5558241 DOI: 10.1016/j.chom.2017.06.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/13/2017] [Accepted: 06/22/2017] [Indexed: 12/18/2022]
Abstract
HIV-1 entry into host cells starts with interactions between the viral envelope glycoprotein (Env) and cellular CD4 receptors and coreceptors. Previous work has suggested that efficient HIV entry also depends on intracellular signaling, but this remains controversial. Here we report that formation of the pre-fusion Env-CD4-coreceptor complexes triggers non-apoptotic cell surface exposure of the membrane lipid phosphatidylserine (PS). HIV-1-induced PS redistribution depends on Ca2+ signaling triggered by Env-coreceptor interactions and involves the lipid scramblase TMEM16F. Externalized PS strongly promotes Env-mediated membrane fusion and HIV-1 infection. Blocking externalized PS or suppressing TMEM16F inhibited Env-mediated fusion. Exogenously added PS promoted fusion, with fusion dependence on PS being especially strong for cells with low surface density of coreceptors. These findings suggest that cell-surface PS acts as an important cofactor that promotes the fusogenic restructuring of pre-fusion complexes and likely focuses the infection on cells conducive to PS signaling.
Collapse
Affiliation(s)
- Elena Zaitseva
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Eugene Zaitsev
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Kamran Melikov
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anush Arakelyan
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mariana Marin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Rafael Villasmil
- Flow Cytometry Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Leonid B Margolis
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Gregory B Melikyan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Leonid V Chernomordik
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Apellániz B, Nieva JL. The Use of Liposomes to Shape Epitope Structure and Modulate Immunogenic Responses of Peptide Vaccines Against HIV MPER. PEPTIDE AND PROTEIN VACCINES 2015; 99:15-54. [DOI: 10.1016/bs.apcsb.2015.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
3
|
Benen TD, Tonks P, Kliche A, Kapzan R, Heeney JL, Wagner R. Development and immunological assessment of VLP-based immunogens exposing the membrane-proximal region of the HIV-1 gp41 protein. J Biomed Sci 2014; 21:79. [PMID: 25160824 PMCID: PMC4256929 DOI: 10.1186/s12929-014-0079-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 08/11/2014] [Indexed: 11/10/2022] Open
Abstract
Background The membrane-proximal external region (MPER) of HIV-1 gp41 is particularly conserved and target for the potent broadly neutralizing monoclonal antibodies (bnMAbs) 2F5, 4E10 and 10E8. Epitope focusing and stabilization present promising strategies to enhance the quality of immune responses to specific epitopes. Results The aim of this work was to design and evaluate novel immunogens based on the gp41 MPER with the potential to elicit cross-clade neutralizing antibodies. For that purpose, gp41 was truncated N-terminally in order to dispose immunodominant, non-neutralizing sites and enhance the exposure of conserved regions. To stabilize a trimeric conformation, heterologous GCN4 and HA2 zipper domains were fused based on an in silico “best-fit” model to the protein’s amino terminus. Cell surface exposure of resulting proteins and their selective binding to bnMAbs 2F5 and 4E10 could be shown by cytometric analyses. Incorporation into VLPs and preservation of antigenic structures were verified by electron microscopy, and the oligomeric state was successfully stabilized by zipper domains. These gp41 immunogens were evaluated for antigenicity in an immunization study in rabbits primed with homologous DNA expression plasmids and boosted with virus-like particle (VLP) proteins. Low titers of anti-MPER antibodies were measured by IgG ELISA, and low neutralizing activity could be detected against a clade C and B viral isolate in sera. Conclusions Thus, although neutralizing titers were very moderate, induction of cross-clade neutralizing antibodies seems possible following immunization with MPER-focusing immunogens. However, further refinement of MPER presentation and immunogenicity is clearly needed to induce substantial neutralization responses to these epitopes. Electronic supplementary material The online version of this article (doi:10.1186/s12929-014-0079-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Ralf Wagner
- Molecular Microbiology and Gene Therapy Unit, Institute of Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, 93053, Germany.
| |
Collapse
|
4
|
Schwarzer R, Levental I, Gramatica A, Scolari S, Buschmann V, Veit M, Herrmann A. The cholesterol-binding motif of the HIV-1 glycoprotein gp41 regulates lateral sorting and oligomerization. Cell Microbiol 2014; 16:1565-81. [PMID: 24844300 DOI: 10.1111/cmi.12314] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/24/2014] [Accepted: 05/13/2014] [Indexed: 12/12/2022]
Abstract
Enveloped viruses often use membrane lipid rafts to assemble and bud, augment infection and spread efficiently. However, the molecular bases and functional consequences of the partitioning of viral glycoproteins into microdomains remain intriguing questions in virus biology. Here, we measured Foerster resonance energy transfer by fluorescence lifetime imaging microscopy (FLIM-FRET) to study the role of distinct membrane proximal regions of the human immunodeficiency virus glycoprotein gp41 for lipid raft partitioning in living Chinese hamster ovary cells (CHO-K1). Gp41 was labelled with a fluorescent protein at the exoplasmic face of the membrane, preventing any interference of the fluorophore with the proposed role of the transmembrane and cytoplasmic domains in lateral organization of gp41. Raft localization was deduced from interaction with an established raft marker, a fluorescently tagged glycophosphatidylinositol anchor and the cholesterol recognition amino acid consensus (CRAC) was identified as the crucial lateral sorting determinant in CHO-K1 cells. Interestingly, the raft association of gp41 indicates a substantial cell-to-cell heterogeneity of the plasma membrane microdomains. In complementary fluorescence polarization microscopy, a distinct CRAC requirement was found for the oligomerization of the gp41 variants. Our data provide further insight into the molecular basis and biological implications of the cholesterol dependent lateral sorting of viral glycoproteins for virus assembly at cellular membranes.
Collapse
Affiliation(s)
- Roland Schwarzer
- Department of Biology, Molecular Biophysics, Humboldt University, 10115, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
5
|
Mohan T, Verma P, Rao D. Comparative mucosal immunogenicity of HIV gp41 membrane-proximal external region (MPER) containing single and multiple repeats of ELDKWA sequence with defensin peptides. Immunobiology 2014; 219:292-301. [DOI: 10.1016/j.imbio.2013.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/05/2013] [Accepted: 11/10/2013] [Indexed: 11/29/2022]
|
6
|
Structure of an HIV-1-neutralizing antibody target, the lipid-bound gp41 envelope membrane proximal region trimer. Proc Natl Acad Sci U S A 2014; 111:1391-6. [PMID: 24474763 DOI: 10.1073/pnas.1309842111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The membrane proximal external region (MPER) of HIV-1 glycoprotein (gp) 41 is involved in viral-host cell membrane fusion. It contains short amino acid sequences that are binding sites for the HIV-1 broadly neutralizing antibodies 2F5, 4E10, and 10E8, making these binding sites important targets for HIV-1 vaccine development. We report a high-resolution structure of a designed MPER trimer assembled on a detergent micelle. The NMR solution structure of this trimeric domain, designated gp41-M-MAT, shows that the three MPER peptides each adopt symmetric α-helical conformations exposing the amino acid side chains of the antibody binding sites. The helices are closely associated at their N termini, bend between the 2F5 and 4E10 epitopes, and gradually separate toward the C termini, where they associate with the membrane. The mAbs 2F5 and 4E10 bind gp41-M-MAT with nanomolar affinities, consistent with the substantial exposure of their respective epitopes in the trimer structure. The traditional structure determination of gp41-M-MAT using the Xplor-NIH protocol was validated by independently determining the structure using the DISCO sparse-data protocol, which exploits geometric arrangement algorithms that guarantee to compute all structures and assignments that satisfy the data.
Collapse
|
7
|
Lutje Hulsik D, Liu YY, Strokappe NM, Battella S, El Khattabi M, McCoy LE, Sabin C, Hinz A, Hock M, Macheboeuf P, Bonvin AMJJ, Langedijk JPM, Davis D, Forsman Quigley A, Aasa-Chapman MMI, Seaman MS, Ramos A, Poignard P, Favier A, Simorre JP, Weiss RA, Verrips CT, Weissenhorn W, Rutten L. A gp41 MPER-specific llama VHH requires a hydrophobic CDR3 for neutralization but not for antigen recognition. PLoS Pathog 2013; 9:e1003202. [PMID: 23505368 PMCID: PMC3591319 DOI: 10.1371/journal.ppat.1003202] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/07/2013] [Indexed: 01/28/2023] Open
Abstract
The membrane proximal external region (MPER) of the HIV-1 glycoprotein gp41 is targeted by the broadly neutralizing antibodies 2F5 and 4E10. To date, no immunization regimen in animals or humans has produced HIV-1 neutralizing MPER-specific antibodies. We immunized llamas with gp41-MPER proteoliposomes and selected a MPER-specific single chain antibody (VHH), 2H10, whose epitope overlaps with that of mAb 2F5. Bi-2H10, a bivalent form of 2H10, which displayed an approximately 20-fold increased affinity compared to the monovalent 2H10, neutralized various sensitive and resistant HIV-1 strains, as well as SHIV strains in TZM-bl cells. X-ray and NMR analyses combined with mutagenesis and modeling revealed that 2H10 recognizes its gp41 epitope in a helical conformation. Notably, tryptophan 100 at the tip of the long CDR3 is not required for gp41 interaction but essential for neutralization. Thus bi-2H10 is an anti-MPER antibody generated by immunization that requires hydrophobic CDR3 determinants in addition to epitope recognition for neutralization similar to the mode of neutralization employed by mAbs 2F5 and 4E10.
Collapse
Affiliation(s)
- David Lutje Hulsik
- Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Ying-ying Liu
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Nika M. Strokappe
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Simone Battella
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Mohamed El Khattabi
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Laura E. McCoy
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Charles Sabin
- Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Andreas Hinz
- Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Miriam Hock
- Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Pauline Macheboeuf
- Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Alexandre M. J. J. Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | - David Davis
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Anna Forsman Quigley
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Marlén M. I. Aasa-Chapman
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Michael S. Seaman
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alejandra Ramos
- Department of Immunology and Microbial Science, International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Pascal Poignard
- Department of Immunology and Microbial Science, International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Adrien Favier
- CNRS, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France
- CEA, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France
- UJF-Grenoble-1, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France
| | - Jean-Pierre Simorre
- CNRS, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France
- CEA, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France
- UJF-Grenoble-1, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France
| | - Robin A. Weiss
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - C. Theo Verrips
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, The Netherlands
- QVQ BV, Utrecht, The Netherlands
| | - Winfried Weissenhorn
- Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
- * E-mail: (WW); (LR)
| | - Lucy Rutten
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, The Netherlands
- * E-mail: (WW); (LR)
| |
Collapse
|
8
|
|
9
|
Lotter-Stark HCT, Rybicki EP, Chikwamba RK. Plant made anti-HIV microbicides--a field of opportunity. Biotechnol Adv 2012; 30:1614-26. [PMID: 22750509 PMCID: PMC7132877 DOI: 10.1016/j.biotechadv.2012.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 06/10/2012] [Accepted: 06/20/2012] [Indexed: 12/15/2022]
Abstract
HIV remains a significant global burden and without an effective vaccine, it is crucial to develop microbicides to halt the initial transmission of the virus. Several microbicides have been researched with various levels of success. Amongst these, the broadly neutralising antibodies and peptide lectins are promising in that they can immediately act on the virus and have proven efficacious in in vitro and in vivo protection studies. For the purpose of development and access by the relevant population groups, it is crucial that these microbicides be produced at low cost. For the promising protein and peptide candidate molecules, it appears that current production systems are overburdened and expensive to establish and maintain. With recent developments in vector systems for protein expression coupled with downstream protein purification technologies, plants are rapidly gaining credibility as alternative production systems. Here we evaluate the advances made in host and vector system development for plant expression as well as the progress made in expressing HIV neutralising antibodies and peptide lectins using plant-based platforms.
Collapse
|
10
|
Jung CH, Choi JK, Yang Y, Koh HJ, Heo P, Yoon KJ, Kim S, Park WS, Shing HJ, Kweon DH. A botulinum neurotoxin-like function of Potentilla chinensis extract that inhibits neuronal SNARE complex formation, membrane fusion, neuroexocytosis, and muscle contraction. PHARMACEUTICAL BIOLOGY 2012; 50:1157-1167. [PMID: 22881141 DOI: 10.3109/13880209.2012.661743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT Botulinum neurotoxins (BoNTs) are popularly used to treat various diseases and for cosmetic purposes. They act by blocking neurotransmission through specific cleavage of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Recently, several polyphenols were shown to interfere with SNARE complex formation by wedging into the hydrophobic core interface, thereby leading to reduced neuroexocytosis. OBJECTIVE In order to find industrially-viable plant extract that functions like BoNT, 71 methanol extracts of flowers were screened and BoNT-like activity of selected extract was evaluated. MATERIALS AND METHODS After evaluating the inhibitory effect of 71 flower methanol extracts on SNARE complex formation, seven candidates were selected and they were subjected to SNARE-driven membrane fusion assay. Neurotransmitter release from neuronal PC12 cells and SNARE complex formation inside the cell was also evaluated. Finally, the effect of one selected extract on muscle contraction and digit abduction score was determined. RESULTS The extract of Potentilla chinensis Ser. (Rosaceae)(Chinese cinquefoil) flower inhibited neurotransmitter release from neuronal PC12 cells by approximately 90% at a concentration of 10 μg/mL. The extract inhibited neuroexocytosis by interfering with SNARE complex formation inside cells. It reduced muscle contraction of phrenic nerve-hemidiaphragm by approximately 70% in 60 min, which is comparable to the action of the Ca²⁺-channel blocker verapamil and BoNT type A. DISCUSSION AND CONCLUSION While BoNT blocks neuroexocytosis by cleaving SNARE proteins, the Potentilla chinensis extract exhibited the same activity by inhibiting SNARE complex formation. The extract paralyzed muscle as efficiently as BoNT, suggesting the potential versatility in cosmetics and therapeutics.
Collapse
Affiliation(s)
- Chang-Hwa Jung
- School of Life Science and Biotechnology and Center for Human Interface Nano Technology, Sungkyunkwan University, Gyeonggi-do, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Neutralizing epitopes in the membrane-proximal external region of HIV-1 gp41 are influenced by the transmembrane domain and the plasma membrane. J Virol 2012; 86:2930-41. [PMID: 22238313 DOI: 10.1128/jvi.06349-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Failure to elicit broadly neutralizing (bNt) antibodies (Abs) against the membrane-proximal external region of HIV-1 gp41 (MPER) reflects the difficulty of mimicking its neutralization-competent structure (NCS). Here, we analyzed MPER antigenicity in the context of the plasma membrane and identified a role for the gp41 transmembrane domain (TM) in exposing the epitopes of three bNt monoclonal Abs (MAbs) (2F5, 4E10, and Z13e1). We transiently expressed DNA constructs encoding gp41 ectodomain fragments fused to either the TM of the platelet-derived growth factor receptor (PDGFR) or the gp41 TM and cytoplasmic tail domain (CT). Constructs encoding the MPER tethered to the gp41 TM followed by a 27-residue CT fragment (MPER-TM1) produced optimal MAb binding. Critical binding residues for the three Nt MAbs were identified using a panel of 24 MPER-TM1 mutants bearing single amino acid substitutions in the MPER; many were previously shown to affect MAb-mediated viral neutralization. Moreover, non-Nt mutants of MAbs 2F5 and 4E10 exhibited a reduction in binding to MPER-TM1 and yet maintained binding to synthetic MPER peptides, indicating that MPER-TM1 better approximates the MPER NCS than peptides. Replacement of the gp41 TM and CT of MPER-TM1 with the PDGFR TM reduced binding by MAb 4E10, but not 2F5, indicating that the gp41 TM plays a pivotal role in orienting the 4E10 epitope, and more globally, in affecting MPER exposure.
Collapse
|
12
|
Binding of anti-membrane-proximal gp41 monoclonal antibodies to CD4-liganded and -unliganded human immunodeficiency virus type 1 and simian immunodeficiency virus virions. J Virol 2011; 86:1820-31. [PMID: 22090143 DOI: 10.1128/jvi.05489-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The broadly neutralizing monoclonal antibodies (MAbs) 4E10, 2F5, and Z13e1 target membrane-proximal external region (MPER) epitopes of HIV-1 gp41 in a manner that remains controversial. The requirements for initial lipid bilayer binding and/or CD4 ligation have been proposed. To further investigate these issues, we probed for binding of these MAbs to human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) virions with protein A-conjugated gold (PAG) nanoparticles using negative-stain electron microscopy. We found moderate levels of PAG associated with unliganded HIV-1 and SIV virions incubated with the three MAbs. Significantly higher levels of PAG were associated with CD4-liganded HIV-1 (epitope-positive) but not SIV (epitope-negative) virions. A chimeric SIV virion displaying the HIV-1 4E10 epitope also showed significantly higher PAG association after CD4 ligation and incubation with 4E10. MAbs accumulated rapidly on CD4-liganded virions and slowly on unliganded virions, although both reached similar levels in time. Anti-MPER epitope-specific binding was stable to washout. Virions incubated with an irrelevant MAb or CD4-only (no MAb) showed negligible PAG association, as did a vesicle-rich fraction devoid of virions. Preincubation with Fab 4E10 inhibited both specific and nonspecific 4E10 IgG binding. Our data provide evidence for moderate association of anti-MPER MAbs to viral surfaces but not lipid vesicles, even in the absence of cognate epitopes. Significantly greater MAb interaction occurs in epitope-positive virions following long incubation or CD4 ligation. These findings are consistent with a two-stage binding model where these anti-MPER MAbs bind first to the viral lipid bilayer and then to the MPER epitopes following spontaneous or induced exposure.
Collapse
|
13
|
Girard MP, Osmanov S, Assossou OM, Kieny MP. Human immunodeficiency virus (HIV) immunopathogenesis and vaccine development: a review. Vaccine 2011; 29:6191-218. [PMID: 21718747 DOI: 10.1016/j.vaccine.2011.06.085] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 02/08/2023]
Abstract
The development of a safe, effective and globally affordable HIV vaccine offers the best hope for the future control of the HIV-1 pandemic. Since 1987, scores of candidate HIV-1 vaccines have been developed which elicited varying degrees of protective responses in nonhuman primate models, including DNA vaccines, subunit vaccines, live vectored recombinant vaccines and various prime-boost combinations. Four of these candidate vaccines have been tested for efficacy in human volunteers, but, to the exception of the recent RV144 Phase III trial in Thailand, which elicited a modest but statistically significant level of protection against infection, none has shown efficacy in preventing HIV-1 infection or in controlling virus replication and delaying progression of disease in humans. Protection against infection was observed in the RV144 trial, but intensive research is needed to try to understand the protective immune mechanisms at stake. Building-up on the results of the RV144 trial and deciphering what possibly are the immune correlates of protection are the top research priorities of the moment, which will certainly accelerate the development of an highly effective vaccine that could be used in conjunction with other HIV prevention and treatment strategies. This article reviews the state of the art of HIV vaccine development and discusses the formidable scientific challenges met in this endeavor, in the context of a better understanding of the immunopathogenesis of the disease.
Collapse
Affiliation(s)
- Marc P Girard
- University Paris 7, French National Academy of Medicine, 39 rue Seignemartin, FR 69008 Lyon, France.
| | | | | | | |
Collapse
|
14
|
Abstract
OBJECTIVES 2F5 and 4E10 are two broadly neutralizing monoclonal antibodies (mAbs) targeting the membrane proximal external region (MPER) of HIV-1 gp41 envelope protein. This region, which contacts the viral membrane, is highly conserved and has been regarded as a promising target for vaccine development. We aimed to clarify the basis of 2F5 and 4E10 molecular interactions with epitope cores in MPER and lipid bilayers. DESIGN Microscopy-based approaches were used to infer and quantify the effects of both mAbs on membranes, in the presence and absence of the epitope cores. Supported lipid bilayers (SLBs), with and without phase separation, were used as membrane models. Fluorescent-labeled and nonlabeled MPER-derived peptides containing both 2F5 and 4E10 epitopes were used. METHODS mAbs 2F5 and 4E10 membrane interactions, in the presence or absence of MPER-derived peptides, were evaluated by combined atomic force and confocal microscopies. RESULTS Both mAbs form lipid-segregated aggregates on SLBs and do not induce other significant membrane perturbations. Furthermore, the affinity of MPER toward membranes is differently affected by both mAbs and correlates with the mAbs-epitope core lipid interactions. 2F5 is able to dock the MPER peptide on the membrane, whereas 4E10 extracts the MPER from the lipid bilayer. CONCLUSION The results reveal the molecular details underneath 2F5/4E10 membrane-epitope binding and a model is proposed to explain the differential mAbs neutralization efficacies, which relates to the exposure of the epitopes in the lipid bilayers and the role of the lipids in mAb-epitope binding.
Collapse
|
15
|
Hepatitis B virus surface antigen assembly function persists when entire transmembrane domains 1 and 3 are replaced by a heterologous transmembrane sequence. J Virol 2010; 85:2439-48. [PMID: 21177825 DOI: 10.1128/jvi.02061-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Native hepatitis B surface antigen (HBsAg) spontaneously assembles into 22-nm subviral particles. The particles are lipoprotein micelles, in which HBsAg is believed to span the lipid layer four times. The first two transmembrane domains, TM1 and TM2, are required for particle assembly. We have probed the requirements for particle assembly by replacing the entire first or third TM domain of HBsAg with the transmembrane domain of HIV gp41. We found that either TM domain of HBsAg could be replaced, resulting in HBsAg-gp41 chimeras that formed particles efficiently. HBsAg formed particles even when both TM1 and TM3 were replaced with the gp41 domain. The results indicate remarkable flexibility in HBsAg particle formation and provide a novel way to express heterologous membrane proteins that are anchored to a lipid surface by their own membrane-spanning domain. The membrane-proximal exposed region (MPER) of gp41 is an important target of broadly reactive neutralizing antibodies against HIV-1, and HBsAg-MPER particles may provide a good platform for future vaccine development.
Collapse
|
16
|
Kozlov MM, McMahon HT, Chernomordik LV. Protein-driven membrane stresses in fusion and fission. Trends Biochem Sci 2010; 35:699-706. [PMID: 20638285 PMCID: PMC3556487 DOI: 10.1016/j.tibs.2010.06.003] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/16/2010] [Accepted: 06/16/2010] [Indexed: 11/22/2022]
Abstract
Cellular membranes undergo continuous remodeling. Exocytosis and endocytosis, mitochondrial fusion and fission, entry of enveloped viruses into host cells and release of the newly assembled virions, cell-to-cell fusion and cell division, and budding and fusion of transport carriers all proceed via topologically similar, but oppositely ordered, membrane rearrangements. The biophysical similarities and differences between membrane fusion and fission become more evident if we disregard the accompanying biological processes and consider only remodeling of the lipid bilayer. The forces that determine the bilayer propensity to undergo fusion or fission come from proteins and in most cases from membrane-bound proteins. In this review, we consider the mechanistic principles underlying the fusion and fission reactions and discuss the current hypotheses on how specific proteins act in the two types of membrane remodeling.
Collapse
Affiliation(s)
- Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel.
| | | | | |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW HIV-1 neutralizing antibodies are directed to the Envelope glycoprotein trimer on the surface of the virion and block entry into target cells in vitro. During infection, closely related but distinct variants arise in infected individuals, and the interplay of Envelope and neutralizing antibodies is a dynamic process. Vaccines that generate neutralizing antibodies and drugs that inhibit entry must address the issue of variation of subtypes worldwide. The purpose of this review is to summarize major advances in the neutralizing antibody field published during 2005 and early 2006. RECENT FINDINGS The main themes that are covered in this review include new findings in the development of neutralizing antibodies during natural and experimental infection, characterization of monoclonal antibodies with neutralizing activity, Envelope structural data, the development of novel Envelope constructs, and novel approaches designed to generate neutralizing antibodies by vaccination. SUMMARY Advances leading to a better understanding of the structure of the Envelope and the character of neutralizing antibodies that develop during the course of infection have provided important clues to guide the design of better immunogens and drugs to block attachment. These findings have implications for prophylactic and therapeutic vaccine approaches, drugs, and antibody-based therapies to reduce HIV transmission.
Collapse
|
18
|
Watson DS, Szoka FC. Role of lipid structure in the humoral immune response in mice to covalent lipid-peptides from the membrane proximal region of HIV-1 gp41. Vaccine 2009; 27:4672-83. [PMID: 19520200 PMCID: PMC2730955 DOI: 10.1016/j.vaccine.2009.05.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 05/21/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
Abstract
The membrane proximal region (MPR) of HIV-1 gp41 is a desirable target for development of a vaccine that elicits neutralizing antibodies since the patient-derived monoclonal antibodies, 2F5 and 4E10, bind to the MPR and neutralize primary HIV isolates. The 2F5 and 4E10 antibodies cross-react with lipids and structural studies suggest that MPR immunogens may be presented in a membrane environment. We hypothesized that covalent attachment of lipid anchors would enhance the humoral immune response to MPR-derived peptides presented in liposomal bilayers. In a comparison of eight lipids conjugated to an extended 2F5 epitope peptide, a sterol, cholesterol hemisuccinate (CHEMS), was found to promote the strongest anti-peptide IgG titers (6.4 x 10(4)) in sera of BALB/C mice. Two lipid anchors, palmitic acid and phosphatidylcholine, failed to elicit a detectable serum anti-peptide IgG response. Association with the liposomal vehicle contributed to the ability of a lipopeptide to elicit anti-peptide antibodies, but no other single factor, such as position of the lipid anchor, peptide helical content, lipopeptide partition coefficient, or presence of phosphate on the anchor clearly determined lipopeptide potency. Conjugation to CHEMS also rendered a 4E10 epitope peptide immunogenic (5.6 x 10(2) IgG titer in serum). Finally, attachment of CHEMS to a peptide spanning both the 2F5 and 4E10 epitopes elicited serum IgG antibodies that bound to each of the individual epitopes as well as to recombinant gp140. Further research into the mechanism of how structure influences the immune response to the MPR may lead to immunogens that could be useful in prime-boost regimens for focusing the immune response in an HIV vaccine.
Collapse
Affiliation(s)
- Douglas S. Watson
- Departments of Bioengineering and Therapeutic Sciences and Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143-0912
- Joint Graduate Group in Bioengineering, UC San Francisco / UC Berkeley, San Francisco, CA 94143
| | - Francis C. Szoka
- Departments of Bioengineering and Therapeutic Sciences and Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143-0912
- Joint Graduate Group in Bioengineering, UC San Francisco / UC Berkeley, San Francisco, CA 94143
| |
Collapse
|
19
|
Abad C, Martínez-Gil L, Tamborero S, Mingarro I. Membrane topology of gp41 and amyloid precursor protein: interfering transmembrane interactions as potential targets for HIV and Alzheimer treatment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2132-41. [PMID: 19619504 PMCID: PMC7094694 DOI: 10.1016/j.bbamem.2009.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/29/2009] [Accepted: 07/13/2009] [Indexed: 01/08/2023]
Abstract
The amyloid precursor protein (APP), that plays a critical role in the development of senile plaques in Alzheimer disease (AD), and the gp41 envelope protein of the human immunodeficiency virus (HIV), the causative agent of the acquired immunodeficiency syndrome (AIDS), are single-spanning type-1 transmembrane (TM) glycoproteins with the ability to form homo-oligomers. In this review we describe similarities, both in structural terms and sequence determinants of their TM and juxtamembrane regions. The TM domains are essential not only for anchoring the proteins in membranes but also have functional roles. Both TM segments contain GxxxG motifs that drive TM associations within the lipid bilayer. They also each possess similar sequence motifs, positioned at the membrane interface preceding their TM domains. These domains are known as cholesterol recognition/interaction amino acid consensus (CRAC) motif in gp41 and CRAC-like motif in APP. Moreover, in the cytoplasmic domain of both proteins other α-helical membranotropic regions with functional implications have been identified. Recent drug developments targeting both diseases are reviewed and the potential use of TM interaction modulators as therapeutic targets is discussed.
Collapse
Affiliation(s)
- Concepción Abad
- Departament de Bioquímica i Biologia Molecular, Universitat de València. Dr. Moliner, 50, E-46100 Burjassot, Spain
| | | | | | | |
Collapse
|
20
|
Hinz A, Schoehn G, Quendler H, Hulsik DL, Stiegler G, Katinger H, Seaman MS, Montefiori D, Weissenhorn W. Characterization of a trimeric MPER containing HIV-1 gp41 antigen. Virology 2009; 390:221-7. [PMID: 19539967 DOI: 10.1016/j.virol.2009.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/17/2009] [Accepted: 05/15/2009] [Indexed: 01/08/2023]
Abstract
The membrane-proximal external region (MPER) of gp41 is considered as a prime target for the induction of neutralizing antibodies, since it contains the epitopes for three broadly neutralizing antibodies (2F5, 4E10 and Z13). Here we present a novel gp41 construct (HA-gp41) comprising gp41 HR2 and MPER fused to two triple-stranded coiled-coil domains at both ends. HA-gp41 is trimeric, has a high helical content in solution and forms rod-like structures as revealed by negative staining electron microscopy. Immunization of rabbits with HA-gp41 induced antibodies directed against MPER, which failed to exert significant neutralization capacity against envelopes from primary isolates. Thus trimerisation of MPER regions does not suffice to induce a potent neutralizing antibody response specific for conserved regions within gp41.
Collapse
Affiliation(s)
- Andreas Hinz
- Unit for Virus Host Cell Interaction, UMI 3265 UJF-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Veiga AS, Pattenden LK, Fletcher JM, Castanho MARB, Aguilar MI. Interactions of HIV-1 antibodies 2F5 and 4E10 with a gp41 epitope prebound to host and viral membrane model systems. Chembiochem 2009; 10:1032-44. [PMID: 19283693 DOI: 10.1002/cbic.200800609] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two HIV-1 recognition domains for the human monoclonal antibodies (MAb) 2F5, which recognises the core sequence ELDKWA, and 4E10, which recognises the core sequence NWFNIT, serve as promising models for immunogens in vaccine development against HIV-1. However, the failure of these recognition domains to generate broadly reactive neutralizing antibodies, and the putative membrane-binding properties of the antibodies raised to these recognition domains, suggest that additional features or recognition motifs are required to form an efficient immunogen, which could possibly include the membrane components. In this study we used an extended peptide epitope sequence derived from the gp41 native sequence (H-NEQELLELDKWASLWNWFNITNWLWYIK-NH), which contains the two recognition domains for 2F5 and 4E10, to examine the role of model cell (POPC) and viral (POPC/cholesterol/sphingomyelin) membranes in the recognition of these two antibodies. By using a surface plasmon resonance biosensor, the binding of 2F5 and 4E10 to membranes was compared and contrasted in the presence and absence of prebound peptide epitope. The recognition of the peptide epitope by each MAb was found to be distinct; 2F5 exhibited strong and almost irreversible binding to both membranes in the presence of the peptide, but bound weakly in the absence of the peptide epitope. In contrast, 4E10 exhibited strong membrane binding in the presence or absence of the peptide epitope, and the binding was essentially irreversible in the presence of the peptide epitope. Overall, these results demonstrate that both 2F5 and 4E10 can bind to membranes prior to epitope recognition, but that high-affinity recognition of gp41-derived epitope sequences by 2F5 and 4E10 occurs in a membrane context. Moreover, 4E10 might utilise the membrane to access and bind to gp41; such membrane properties of 2F5 and 4E10 could be exploited in immunogen design.
Collapse
Affiliation(s)
- Ana S Veiga
- Instituto de Medicina Molecular, Lisboa, Portugal
| | | | | | | | | |
Collapse
|
22
|
Liu J, Deng Y, Dey AK, Moore JP, Lu M. Structure of the HIV-1 gp41 membrane-proximal ectodomain region in a putative prefusion conformation. Biochemistry 2009; 48:2915-23. [PMID: 19226163 PMCID: PMC2765501 DOI: 10.1021/bi802303b] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conserved membrane-proximal external region (MPER) of the HIV-1 gp41 envelope protein is the established target for very rare but broadly neutralizing monoclonal antibodies (NAbs) elicited during natural human infection. Nevertheless, attempts to generate an HIV-1 neutralizing antibody response with immunogens bearing MPER epitopes have met with limited success. Here we show that the MPER peptide (residues 662-683) forms a labile alpha-helical trimer in aqueous solution and report the crystal structure of this autonomous folding subdomain stabilized by addition of a C-terminal isoleucine zipper motif. The structure reveals a parallel triple-stranded coiled coil in which the neutralization epitope residues are buried within the interface between the associating MPER helices. Accordingly, both the 2F5 and 4E10 NAbs recognize the isolated MPER peptide but fail to bind the trimeric MPER subdomain. We propose that the trimeric MPER structure represents the prefusion conformation of gp41, preceding the putative prehairpin intermediate and the postfusion trimer-of-hairpins structure. As such, the MPER trimer should inform the design of new HIV-1 immunogens to elicit broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021
| | - Yiqun Deng
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021
| | - Antu K. Dey
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| | - Min Lu
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021
| |
Collapse
|
23
|
Broad neutralization of human immunodeficiency virus type 1 (HIV-1) elicited from human rhinoviruses that display the HIV-1 gp41 ELDKWA epitope. J Virol 2009; 83:5087-100. [PMID: 19279101 DOI: 10.1128/jvi.00184-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In efforts to develop AIDS vaccine components, we generated combinatorial libraries of recombinant human rhinoviruses that display the well-conserved ELDKWA epitope of the membrane-proximal external region of human immunodeficiency virus type 1 (HIV-1) gp41. The broadly neutralizing human monoclonal antibody 2F5 was used to select for viruses whose ELDKWA conformations resemble those of HIV. Immunization of guinea pigs with different chimeras, some boosted with ELDKWA-based peptides, elicited antibodies capable of neutralizing HIV-1 pseudoviruses of diverse subtypes and coreceptor usages. These recombinant immunogens are the first reported that elicit broad, albeit modest, neutralization of HIV-1 using an ELDKWA-based epitope and are among the few reported that elicit broad neutralization directed against any recombinant HIV epitope, providing a critical advance in developing effective AIDS vaccine components.
Collapse
|
24
|
Coûtant J, Yu H, Clément M, Alfsen A, Toma F, Curmi PA, Bomsel M. Both lipid environment and pH are critical for determining physiological solution structure of 3‐D‐conserved epitopes of the HIV‐1 gp41‐MPER peptide P1. FASEB J 2008; 22:4338-51. [DOI: 10.1096/fj.08-113142] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jérôme Coûtant
- Structure Activité des Biomolécules Normales et PathologiquesINSERM/UEVE U829 Université d'EvryEvryFrance
| | - Huifeng Yu
- Entrée Muqueuse du VIH et Immunite Muqueuse, Departement de Biologie CellulaireInstitut Cochin, Université Paris Descartes, CNRS UMR 8104ParisFrance
- INSERM U567ParisFrance
| | - Marie‐Jeanne Clément
- Structure Activité des Biomolécules Normales et PathologiquesINSERM/UEVE U829 Université d'EvryEvryFrance
| | - Annette Alfsen
- Entrée Muqueuse du VIH et Immunite Muqueuse, Departement de Biologie CellulaireInstitut Cochin, Université Paris Descartes, CNRS UMR 8104ParisFrance
- INSERM U567ParisFrance
| | - Flavio Toma
- Structure Activité des Biomolécules Normales et PathologiquesINSERM/UEVE U829 Université d'EvryEvryFrance
| | - Patrick A. Curmi
- Structure Activité des Biomolécules Normales et PathologiquesINSERM/UEVE U829 Université d'EvryEvryFrance
| | - Morgane Bomsel
- Entrée Muqueuse du VIH et Immunite Muqueuse, Departement de Biologie CellulaireInstitut Cochin, Université Paris Descartes, CNRS UMR 8104ParisFrance
- INSERM U567ParisFrance
| |
Collapse
|
25
|
The membrane-proximal external region of the human immunodeficiency virus type 1 envelope: dominant site of antibody neutralization and target for vaccine design. Microbiol Mol Biol Rev 2008; 72:54-84, table of contents. [PMID: 18322034 DOI: 10.1128/mmbr.00020-07] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Enormous efforts have been made to produce a protective vaccine against human immunodeficiency virus type 1; there has been little success. However, the identification of broadly neutralizing antibodies against epitopes on the highly conserved membrane-proximal external region (MPER) of the gp41 envelope protein has delineated this region as an attractive vaccine target. Furthermore, emerging structural information on the MPER has provided vaccine designers with new insights for building relevant immunogens. This review describes the current state of the field regarding (i) the structure and function of the gp41 MPER; (ii) the structure and binding mechanisms of the broadly neutralizing antibodies 2F5, 4E10, and Z13; and (iii) the development of an MPER-targeting vaccine. In addition, emerging approaches to vaccine design are presented.
Collapse
|
26
|
Wagner A, Stiegler G, Vorauer-Uhl K, Katinger H, Quendler H, Hinz A, Weissenhorn W. One step membrane incorporation of viral antigens as a vaccine candidate against HIV. J Liposome Res 2008; 17:139-54. [PMID: 18027234 DOI: 10.1080/08982100701530159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Liposomes can been used as potential immunoadjuvants, because they have the ability to elicit both a cellular mediated immune response and a humoral immune response. Studies have shown liposomes to be effective immunopotentiators in hepatitis A and influenza vaccines. For all these purposes, liposomes can be prepared by different methods. After disperging suitable membrane lipids in an aqueous phase and spontaneous formation of multilamellar large vesicles (MLV), mechanical procedures such as ultrasonication, homogenization by a French press or by other high pressure devices and, or extrusion through polycarbonate membranes with defined pore sizes lead to a reduction in size and number of lamellae of the vesicles. A second group of preparation procedures uses suitable detergents, e.g., bile salts or alkylglycosides. A third group of procedures starts with dissolving the lipids in an organic solvent and mixing it with an aqueous phase. The concentration of the organic solvent is then reduced by suitable procedures. Here we present a new technique for the preparation of liposomes with associated membrane proteins, where lipid vesicles are formed immediately after injection into a micellar protein solution. The model membrane protein used for these studies is a truncated recombinant gp41 produced in E. coli. This viral membrane antigen is a possible candidate protein for the establishment of HIV-vaccines. The data presented here, show an efficient and reproducible one step membrane protein encapsulation procedure into liposomes in a closed and sterile containment. We examined encapsulation efficiency, membrane protein conformation and immunogenicity of this possible liposomal vaccine candidate, which can be produced in GMP-compliant quality with the described technique.
Collapse
Affiliation(s)
- Andreas Wagner
- Polymun Scientific, Immunbiologische Forschung GmbH, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
27
|
Sapir A, Avinoam O, Podbilewicz B, Chernomordik LV. Viral and developmental cell fusion mechanisms: conservation and divergence. Dev Cell 2008; 14:11-21. [PMID: 18194649 PMCID: PMC3549671 DOI: 10.1016/j.devcel.2007.12.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Membrane fusion is a fundamental requirement in numerous developmental, physiological, and pathological processes in eukaryotes. So far, only a limited number of viral and cellular fusogens, proteins that fuse membranes, have been isolated and characterized. Despite the diversity in structures and functions of known fusogens, some common principles of action apply to all fusion reactions. These can serve as guidelines in the search for new fusogens, and may allow the formulation of a cross-species, unified theory to explain divergent and convergent evolutionary principles of membrane fusion.
Collapse
Affiliation(s)
- Amir Sapir
- Department of Biology, The Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Ori Avinoam
- Department of Biology, The Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Benjamin Podbilewicz
- Department of Biology, The Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Leonid V. Chernomordik
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
28
|
Manrique A, Rusert P, Joos B, Fischer M, Kuster H, Leemann C, Niederöst B, Weber R, Stiegler G, Katinger H, Günthard HF, Trkola A. In vivo and in vitro escape from neutralizing antibodies 2G12, 2F5, and 4E10. J Virol 2007; 81:8793-808. [PMID: 17567707 PMCID: PMC1951363 DOI: 10.1128/jvi.00598-07] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 03/28/2007] [Indexed: 02/07/2023] Open
Abstract
Recently, passive immunization of human immunodeficiency virus (HIV)-infected individuals with monoclonal antibodies (MAbs) 2G12, 2F5, and 4E10 provided evidence of the in vivo activity of 2G12 but raised concerns about the function of the two membrane-proximal external region (MPER)-specific MAbs (A. Trkola, H. Kuster, P. Rusert, B. Joos, M. Fischer, C. Leemann, A. Manrique, M. Huber, M. Rehr, A. Oxenius, R. Weber, G. Stiegler, B. Vcelar, H. Katinger, L. Aceto, and H. F. Gunthard, Nat. Med. 11:615-622, 2005). In the light of MPER-targeting vaccines under development, we performed an in-depth analysis of the emergence of mutations conferring resistance to these three MAbs to further elucidate their activity. Clonal analysis of the MPER of plasma virus samples derived during antibody treatment confirmed that no changes in this region had occurred in vivo. Sequence analysis of the 2G12 epitope relevant N-glycosylation sites of viruses derived from 13 patients during the trial supported the phenotypic evaluation, demonstrating that mutations in these sites are associated with resistance. In vitro selection experiments with isolates of four of these individuals corroborated the in vivo finding that virus strains rapidly escape 2G12 pressure. Notably, in vitro resistance mutations differed, in most cases, from those found in vivo. Importantly, in vitro selection with 2F5 and 4E10 demonstrated that resistance to these MAbs can be difficult to achieve and can lead to selection of variants with impaired infectivity. This remarkable vulnerability of the virus to interference within the MPER calls for a further evaluation of the safety and efficacy of MPER-targeting therapeutic and vaccination strategies.
Collapse
Affiliation(s)
- Amapola Manrique
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kim M, Qiao Z, Yu J, Montefiori D, Reinherz EL. Immunogenicity of recombinant human immunodeficiency virus type 1-like particles expressing gp41 derivatives in a pre-fusion state. Vaccine 2007; 25:5102-14. [PMID: 17055621 PMCID: PMC2705924 DOI: 10.1016/j.vaccine.2006.09.071] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 09/13/2006] [Accepted: 09/15/2006] [Indexed: 11/22/2022]
Abstract
The conserved membrane proximal external region (MPER) of the ectodomain of human immunodeficiency virus type 1 (HIV-1) gp41 is the target of two broadly neutralizing antibodies, 2F5 and 4E10. However, no neutralizing antibodies have been elicited against immunogens bearing these epitopes. Given that structural and biochemical studies suggest that the lipid membrane of the virion is involved in their proper configuration, HIV-1 gp41 derivatives in a pre-fusion state were expressed on the surface of immature virus like particles (VLP) derived from Sf9 cells. Guinea pigs were immunized with three doses of VLPs or Sf9 cells presenting gp41 derivatives with or without E. coli heat-labile enterotoxin (LT) as an adjuvant. While immune sera contained high titer anti-VLP antibodies, the specific anti-gp41 antibody responses were low with no neutralizing antibodies detected. An explanation for this absence may be the low level of gp41 expression relative to the many other proteins derived from host cells which are incorporated onto the VLP surface. In addition, the anti-gp41 immune response was preferentially directed to the C-helical domain, away from the MPER. Future vaccine design needs to contend with the complexity of epitope display as well as immunodominance.
Collapse
Affiliation(s)
- Mikyung Kim
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Massachusetts 02115
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Zhisong Qiao
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Massachusetts 02115
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Jessica Yu
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Massachusetts 02115
| | - David Montefiori
- Department of Surgery, Duke University, Medical Center, Durham, North Carolina 27710
| | - Ellis L. Reinherz
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Massachusetts 02115
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
30
|
Giannecchini S, D'Ursi AM, Esposito C, Scrima M, Zabogli E, Freer G, Rovero P, Bendinelli M. Antibodies generated in cats by a lipopeptide reproducing the membrane-proximal external region of the feline immunodeficiency virus transmembrane enhance virus infectivity. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:944-51. [PMID: 17596431 PMCID: PMC2044484 DOI: 10.1128/cvi.00140-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The immunogenicity of a lipoylated peptide (lipo-P59) reproducing the membrane-proximal external region (MPER) of the transmembrane glycoprotein of feline immunodeficiency virus (FIV) was investigated with cats. In the attempt to mimic the context in which MPER is located within intact virions, lipo-P59 was administered in association with membrane-like micelles. Analyses showed that in this milieu, lipo-P59 had a remarkable propensity to be positioned at the membrane interface, displayed a large number of ordered structures folded in turn helices, and was as active as lipo-P59 alone at inhibiting FIV infectivity in vitro. The antibodies developed differed from the ones previously obtained by immunizing cats with the nonlipoylated version of the peptide (G. Freer, S. Giannecchini, A. Tissot, M. F. Bachmann, P. Rovero, P. F. Serres, and M. Bendinelli, Virology 322:360-369, 2004) in epitope specificity and in the fact that they bound FIV virions. However, they too lacked virus-neutralizing activity and actually enhanced FIV infectivity for lymphoid cell cultures. It is concluded that the use of MPER-reproducing oligopeptides is not a viable approach for vaccinating against FIV.
Collapse
Affiliation(s)
- Simone Giannecchini
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, I-56127 Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wagner A, Platzgummer M, Kreismayr G, Quendler H, Stiegler G, Ferko B, Vecera G, Vorauer-Uhl K, Katinger H. GMP production of liposomes--a new industrial approach. J Liposome Res 2006; 16:311-9. [PMID: 16952884 DOI: 10.1080/08982100600851086] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A new scalable liposome production system is presented, which is based on the ethanol injection technique. The system permits liposome manufacture regardless of production scale, as scale is determined only by free disposable vessel volumes. Once the parameters are defined, an easy scale up can be performed by just changing the process vessels. These vessels are fully sterilizeable and all raw materials are transferred into the sanitized and sterilized system via 0.2 microm filters to guarantee an aseptic production. Liposome size can be controlled by the local lipid concentration at the injection point depending on process parameters like injection pressure, lipid concentration and injection rate. These defined process parameters are furthermore responsible for highly reproducible results with respect to vesicle diameters and encapsulation rates Compared to other technologies like the film method which is normally followed by size reduction through high pressure homogenization, ultrasonication or extrusion, no mechanical forces are needed to generate homogeneous and narrow distributed liposomes. Another important advantage of this method is the suitability for the entrapment of many different drug substances such as large hydrophilic proteins by passive encapsulation, small amphiphilic drugs by a one step remote loading technique or membrane association of antigens for vaccination approaches.
Collapse
Affiliation(s)
- Andreas Wagner
- Polymun Scientific Immunbiologische Forschung GmbH, Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hager-Braun C, Katinger H, Tomer KB. The HIV-neutralizing monoclonal antibody 4E10 recognizes N-terminal sequences on the native antigen. THE JOURNAL OF IMMUNOLOGY 2006; 176:7471-81. [PMID: 16751393 DOI: 10.4049/jimmunol.176.12.7471] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Characterization of the epitope recognized by the broadly neutralizing anti-HIV Ab 4E10 has, heretofore, focused on a linear sequence from the gp41 pretransmembrane region (PTMR). Attempts to generate neutralizing Abs based on this linear epitope sequence have been unsuccessful. We have characterized the antigenic determinants on recombinant glycosylated full-length Ags, and nonglycosylated and truncated Ags recognized by 4E10 using epitope extraction and excision assays in conjunction with MALDI mass spectrometry. The mAb recognized the peptides (34)LWVTVYYGVPVWK(46) and (512)AVGIGAVFLGFLGAAGSTMGAASMTLTVQAR(542) located at the N-terminal region of gp120 and gp41, respectively. Immunoassays verified AV(L/M)FLGFLGAA as the gp41 epitope core. Recognition of the peptide from the gp41 PTMR was detected only in constructs in which the N termini of the mature envelope proteins were missing. In this region, the epitope core is located in the sequence (672)WFDITNWLWY(681). We hypothesize that the hydrophobic surface of the paratope functions as a "trap" for the viral sequences, which are responsible for insertion into the host cell membrane. As the N-terminal region of gp120, the fusogenic peptide of gp41, and the PTMR of gp41 show high sequence homology among various HIV strains, this model is consistent with the broadly neutralizing capabilities of 4E10.
Collapse
Affiliation(s)
- Christine Hager-Braun
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
33
|
Melikyan GB, Egelhofer M, von Laer D. Membrane-anchored inhibitory peptides capture human immunodeficiency virus type 1 gp41 conformations that engage the target membrane prior to fusion. J Virol 2006; 80:3249-58. [PMID: 16537592 PMCID: PMC1440409 DOI: 10.1128/jvi.80.7.3249-3258.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soluble peptides derived from the C-terminal heptad repeat domain of human immunodeficiency virus type 1 (HIV-1) gp41 are potent inhibitors of HIV-1 entry and gp41-induced fusion. Target membrane-anchored variants of these peptides have been shown to retain inhibitory activity. Both soluble and membrane-anchored C peptides (MACs) are thought to block fusion by binding to the N-terminal coiled coil domain of gp41 and preventing formation of the final six-helix bundle structure. However, interactions of target MACs with gp41 must be restricted to a subset of trimers that have their hydrophobic fusion peptides inserted into the target membrane. This unique feature of MACs was used to identify the intermediate step of fusion at which gp41 engaged the target membrane. Fusion between HIV envelope-expressing effector cells and target cells was measured by fluorescence microscopy. Expression of MACs in target cells led to less than twofold reduction in the extent of fusion. However, when reaction was first arrested by adding lysolipids that disfavored membrane merger, and the lipids were subsequently removed by washing, control cells supported fusion, whereas those that expressed MACs did not. The drastically improved potency of MACs implies that, at lipid-arrested stage, gp41 bridges the viral and target cell membranes and therefore more optimally binds the membrane-anchored peptides. Experimental demonstration of this intermediate shows that, similar to fusion induced by many other viral glycoproteins, engaging the target membrane by HIV-1 gp41 permits coupling between six-helix bundle formation and membrane merger.
Collapse
Affiliation(s)
- Gregory B Melikyan
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
34
|
|