1
|
Kar A, Narayan A, Malik V, Mandal K. Rational engineering of an antimalarial peptide with enhanced proteolytic stability and preserved parasite invasion inhibitory activity. RSC Chem Biol 2025; 6:65-72. [PMID: 39574463 PMCID: PMC11576825 DOI: 10.1039/d4cb00229f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
We describe rational chemical engineering to enhance the proteolytic stability of a chimeric peptide using a combination of unique strategies that involve the incorporation of a series of d-amino acids into the parent l-peptide sequence and restricting the conformational freedom of the peptide by covalent stitching. We hypothesize that replacing a stretch of sequence of an unstructured peptide motif with d-amino acids would increase its proteolytic stability without significantly affecting its affinity to the target protein. Also, considering the Cβ-Cβ distances, replacing an appropriate pair of residues with cysteine to form an additional disulfide bond in the molecule would provide additional stability to the engineered peptide. To verify this hypothesis, we have implemented these strategies to a previously reported peptidic inhibitor RR, against P. falciparum invasion into red blood cells (RBCs) and designed two novel heterochiral chimeric peptides, RR-I and RR-II. We have demonstrated that these peptides exhibit remarkable inhibitory activity with dramatically enhanced proteolytic stability. Finally, we have designed a cyclic analog, RR-III, to enhance the stability of the peptide against endopeptidases. The RR-III peptide exhibits the same inhibitory activity as RR-II while demonstrating impressive resistance to enzymatic degradation and prolonged stability in human plasma. These developments hold promise for a new generation of peptide-based therapeutics, showcasing the potential of residue selection for tailored modifications, as demonstrated in this work.
Collapse
Affiliation(s)
- Abhisek Kar
- Tata Institute of Fundamental Research Hyderabad 36/p Gopanpally Hyderabad Telangana - 500046 India
| | - Akash Narayan
- Tata Institute of Fundamental Research Hyderabad 36/p Gopanpally Hyderabad Telangana - 500046 India
| | - Vishal Malik
- Tata Institute of Fundamental Research Hyderabad 36/p Gopanpally Hyderabad Telangana - 500046 India
| | - Kalyaneswar Mandal
- Tata Institute of Fundamental Research Hyderabad 36/p Gopanpally Hyderabad Telangana - 500046 India
| |
Collapse
|
2
|
Singer M, Kanatani S, Castillo SG, Frischknecht F, Sinnis P. The Plasmodium circumsporozoite protein. Trends Parasitol 2024; 40:1124-1134. [PMID: 39572325 DOI: 10.1016/j.pt.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 12/07/2024]
Abstract
The circumsporozoite protein (CSP) is one of the most studied proteins of the malaria parasite. It is the target of the only licensed malaria vaccines and is essential for sporozoite formation and infectivity. Yet, the mechanisms by which CSP functions and its interactions with other proteins are only beginning to be understood. Here we review the current state of knowledge of CSP structure and function, as sporozoites develop in the mosquito and establish infection in the mammalian host, and outline outstanding questions that need to be addressed.
Collapse
Affiliation(s)
- Mirko Singer
- Parasitology, Center for Infectious Diseases, Heidelberg University Medical Faculty, Heidelberg, Germany
| | - Sachie Kanatani
- Johns Hopkins School of Public Health and Johns Hopkins Malaria Research Institute, 615 North Wolfe Street, Baltimore, MD, USA
| | - Stefano Garcia Castillo
- Johns Hopkins School of Public Health and Johns Hopkins Malaria Research Institute, 615 North Wolfe Street, Baltimore, MD, USA
| | - Friedrich Frischknecht
- Parasitology, Center for Infectious Diseases, Heidelberg University Medical Faculty, Heidelberg, Germany; German Center for Infection Research, partner site Heidelberg, Heidelberg, Germany
| | - Photini Sinnis
- Johns Hopkins School of Public Health and Johns Hopkins Malaria Research Institute, 615 North Wolfe Street, Baltimore, MD, USA.
| |
Collapse
|
3
|
Kehrer J, Pietsch E, Ricken D, Strauss L, Heinze JM, Gilberger T, Frischknecht F. APEX-based proximity labeling in Plasmodium identifies a membrane protein with dual functions during mosquito infection. PLoS Pathog 2024; 20:e1012788. [PMID: 39693377 DOI: 10.1371/journal.ppat.1012788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/02/2025] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Transmission of the malaria parasite Plasmodium to mosquitoes necessitates gamete egress from red blood cells to allow zygote formation and ookinete motility to enable penetration of the midgut epithelium. Both processes are dependent on the secretion of proteins from distinct sets of specialized vesicles. Inhibiting some of these proteins has shown potential for blocking parasite transmission to the mosquito. To identify new transmission blocking vaccine candidates, we aimed to define the microneme content from ookinetes of the rodent model organism Plasmodium berghei using APEX2-mediated rapid proximity-dependent biotinylation. Besides known proteins of ookinete micronemes, this identified over 50 novel candidates and sharpened the list of a previous survey based on subcellular fractionation. Functional analysis of a first candidate uncovered a dual role for this membrane protein in male gametogenesis and ookinete midgut traversal. Mutation of a putative trafficking motif in the C-terminus affected ookinete to oocyst transition but not gamete formation. This suggests the existence of distinct functional and transport requirements for Plasmodium proteins in different parasite stages.
Collapse
Affiliation(s)
- Jessica Kehrer
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF, partner site Heidelberg, Heidelberg, Germany
| | - Emma Pietsch
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
- CSSB Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Dominik Ricken
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
| | - Léanne Strauss
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
| | - Julia M Heinze
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
| | - Tim Gilberger
- CSSB Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Friedrich Frischknecht
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF, partner site Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Kals E, Kals M, Lees RA, Introini V, Kemp A, Silvester E, Collins CR, Umrekar T, Kotar J, Cicuta P, Rayner JC. Application of optical tweezer technology reveals that PfEBA and PfRH ligands, not PfMSP1, play a central role in Plasmodium falciparum merozoite-erythrocyte attachment. PLoS Pathog 2024; 20:e1012041. [PMID: 39312588 PMCID: PMC11449297 DOI: 10.1371/journal.ppat.1012041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 10/03/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Malaria pathogenesis and parasite multiplication depend on the ability of Plasmodium merozoites to invade human erythrocytes. Invasion is a complex multi-step process involving multiple parasite proteins which can differ between species and has been most extensively studied in P. falciparum. However, dissecting the precise role of individual proteins has to date been limited by the availability of quantifiable phenotypic assays. In this study, we apply a new approach to assigning function to invasion proteins by using optical tweezers to directly manipulate recently egressed P. falciparum merozoites and erythrocytes and quantify the strength of attachment between them, as well as the frequency with which such attachments occur. Using a range of inhibitors, antibodies, and genetically modified strains including some generated specifically for this work, we quantitated the contribution of individual P. falciparum proteins to these merozoite-erythrocyte attachment interactions. Conditional deletion of the major P. falciparum merozoite surface protein PfMSP1, long thought to play a central role in initial attachment, had no impact on the force needed to pull merozoites and erythrocytes apart, whereas interventions that disrupted the function of several members of the EBA-175 like Antigen (PfEBA) family and Reticulocyte Binding Protein Homologue (PfRH) invasion ligand families did have a significant negative impact on attachment. Deletion of individual PfEBA and PfRH ligands reinforced the known redundancy within these families, with the deletion of some ligands impacting detachment force while others did not. By comparing over 4000 individual merozoite-erythrocyte interactions in a range of conditions and strains, we establish that the PfEBA/PfRH families play a central role in P. falciparum merozoite attachment, not the major merozoite surface protein PfMSP1.
Collapse
Affiliation(s)
- Emma Kals
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Morten Kals
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Rebecca A. Lees
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Viola Introini
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- EMBL Barcelona, Barcelona, Spain
| | - Alison Kemp
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Eleanor Silvester
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Christine R. Collins
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Trishant Umrekar
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Jurij Kotar
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Bulloch MS, Huynh LK, Kennedy K, Ralton JE, McConville MJ, Ralph SA. Apicoplast-derived isoprenoids are essential for biosynthesis of GPI protein anchors, and consequently for egress and invasion in Plasmodium falciparum. PLoS Pathog 2024; 20:e1012484. [PMID: 39241090 PMCID: PMC11414934 DOI: 10.1371/journal.ppat.1012484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/20/2024] [Accepted: 08/06/2024] [Indexed: 09/08/2024] Open
Abstract
Glycophosphatidylinositol (GPI) anchors are the predominant glycoconjugate in Plasmodium parasites, enabling modified proteins to associate with biological membranes. GPI biosynthesis commences with donation of a mannose residue held by dolichol-phosphate at the endoplasmic reticulum membrane. In Plasmodium dolichols are derived from isoprenoid precursors synthesised in the Plasmodium apicoplast, a relict plastid organelle of prokaryotic origin. We found that treatment of Plasmodium parasites with apicoplast inhibitors decreases the synthesis of isoprenoid and GPI intermediates resulting in GPI-anchored proteins becoming untethered from their normal membrane association. Even when other isoprenoids were chemically rescued, GPI depletion led to an arrest in schizont stage parasites, which had defects in segmentation and egress. In those daughter parasites (merozoites) that did form, proteins that would normally be GPI-anchored were mislocalised, and when these merozoites were artificially released they were able to attach to but not invade new red blood cells. Our data provides further evidence for the importance of GPI biosynthesis during the asexual cycle of P. falciparum, and indicates that GPI biosynthesis, and by extension egress and invasion, is dependent on isoprenoids synthesised in the apicoplast.
Collapse
Affiliation(s)
- Michaela S. Bulloch
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Long K. Huynh
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Kit Kennedy
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Julie E. Ralton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Malcolm J. McConville
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart A. Ralph
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Li J, Shami GJ, Liffner B, Cho E, Braet F, Duraisingh MT, Absalon S, Dixon MWA, Tilley L. Disruption of Plasmodium falciparum kinetochore proteins destabilises the nexus between the centrosome equivalent and the mitotic apparatus. Nat Commun 2024; 15:5794. [PMID: 38987258 PMCID: PMC11237077 DOI: 10.1038/s41467-024-50167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
Plasmodium falciparum is the causative agent of malaria and remains a pathogen of global importance. Asexual blood stage replication, via a process called schizogony, is an important target for the development of new antimalarials. Here we use ultrastructure-expansion microscopy to probe the organisation of the chromosome-capturing kinetochores in relation to the mitotic spindle, the centriolar plaque, the centromeres and the apical organelles during schizont development. Conditional disruption of the kinetochore components, PfNDC80 and PfNuf2, is associated with aberrant mitotic spindle organisation, disruption of the centromere marker, CENH3 and impaired karyokinesis. Surprisingly, kinetochore disruption also leads to disengagement of the centrosome equivalent from the nuclear envelope. Severing the connection between the nucleus and the apical complex leads to the formation of merozoites lacking nuclei. Here, we show that correct assembly of the kinetochore/spindle complex plays a previously unrecognised role in positioning the nascent apical complex in developing P. falciparum merozoites.
Collapse
Affiliation(s)
- Jiahong Li
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Gerald J Shami
- School of Medical Sciences (Molecular and Cellular Biomedicine) & Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, Australia
| | - Benjamin Liffner
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ellie Cho
- Biological Optical Microscopy Platform, The University of Melbourne, Parkville, VIC, Australia
| | - Filip Braet
- School of Medical Sciences (Molecular and Cellular Biomedicine) & Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, Australia
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew W A Dixon
- Department of Infectious Diseases, The Peter Doherty Institute, The University of Melbourne, Parkville, VIC, Australia.
- Walter and Eliza Hall Institute, Parkville, VIC, Australia.
| | - Leann Tilley
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
7
|
Ghosh A, Varshney A, Narwal SK, Nirdosh, Gupta R, Mishra S. The novel Plasmodium berghei protein S14 is essential for sporozoite gliding motility and infectivity. J Cell Sci 2024; 137:jcs261857. [PMID: 38832798 DOI: 10.1242/jcs.261857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
Plasmodium sporozoites are the infective forms of the malaria parasite in the mosquito and vertebrate host. Gliding motility allows sporozoites to migrate and invade mosquito salivary glands and mammalian hosts. Motility and invasion are powered by an actin-myosin motor complex linked to the glideosome, which contains glideosome-associated proteins (GAPs), MyoA and the myosin A tail-interacting protein (MTIP). However, the role of several proteins involved in gliding motility remains unknown. We identified that the S14 gene is upregulated in sporozoite from transcriptome data of Plasmodium yoelii and further confirmed its transcription in P. berghei sporozoites using real-time PCR. C-terminal 3×HA-mCherry tagging revealed that S14 is expressed and localized on the inner membrane complex of the sporozoites. We disrupted S14 in P. berghei and demonstrated that it is essential for sporozoite gliding motility, and salivary gland and hepatocyte invasion. The gliding and invasion-deficient S14 knockout sporozoites showed normal expression and organization of inner membrane complex and surface proteins. Taken together, our data show that S14 plays a role in the function of the glideosome and is essential for malaria transmission.
Collapse
Affiliation(s)
- Ankit Ghosh
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Aastha Varshney
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sunil Kumar Narwal
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Nirdosh
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Roshni Gupta
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Sy Thau N, Nguyen TK, Truong NV, Chu TTH, Na SH, Moon RW, Lau YL, Nyunt MH, Park WS, Chun WJ, Lu F, Lee SK, Han JH, Han ET. Characterization of merozoite-specific thrombospondin-related anonymous protein (MTRAP) in Plasmodium vivax and P. knowlesi parasites. Front Cell Infect Microbiol 2024; 14:1354880. [PMID: 38465236 PMCID: PMC10920329 DOI: 10.3389/fcimb.2024.1354880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Plasmodium vivax, the most widespread human malaria parasite, and P. knowlesi, an emerging Plasmodium that infects humans, are the phylogenetically closest malarial species that infect humans, which may induce cross-species reactivity across most co-endemic areas in Southeast Asia. The thrombospondin-related anonymous protein (TRAP) family is indispensable for motility and host cell invasion in the growth and development of Plasmodium parasites. The merozoite-specific TRAP (MTRAP), expressed in blood-stage merozoites, is supposed to be essential for human erythrocyte invasion. We aimed to characterize MTRAPs in blood-stage P. vivax and P. knowlesi parasites and ascertain their cross-species immunoreactivity. Recombinant P. vivax and P. knowlesi MTRAPs of full-length ectodomains were expressed in a mammalian expression system. The MTRAP-specific immunoglobulin G, obtained from immune animals, was used in an immunofluorescence assay for subcellular localization and invasion inhibitory activity in blood-stage parasites was determined. The cross-species humoral immune responses were analyzed in the sera of patients with P. vivax or P. knowlesi infections. The MTRAPs of P. vivax (PvMTRAP) and P. knowlesi (PkMTRAP) were localized on the rhoptry body of merozoites in blood-stage parasites. Both anti-PvMTRAP and anti-PkMTRAP antibodies inhibited erythrocyte invasion of blood-stage P. knowlesi parasites. The humoral immune response to PvMTRAP showed high immunogenicity, longevity, and cross-species immunoreactivity with P. knowlesi. MTRAPs are promising candidates for development of vaccines and therapeutics against vivax and knowlesi malaria.
Collapse
Affiliation(s)
- Nguyen Sy Thau
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, Republic of Korea
| | - Tuyet-Kha Nguyen
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, Republic of Korea
| | - Nguyen Van Truong
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, Republic of Korea
| | - Thi-Thanh Hang Chu
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, Republic of Korea
| | - Sung-Hun Na
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Gangwon-d, Republic of Korea
| | - Robert W. Moon
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | - Won-Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Wan-Joo Chun
- Department of Pharmacology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Feng Lu
- Department of Pathogen Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Seong-Kyun Lee
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, Republic of Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, Republic of Korea
| |
Collapse
|
9
|
Barmade MA, Agrawal P, Rajput SR, Murumkar PR, Rana B, Sahal D, Yadav MR. Novel quinolinepiperazinyl-aryltetrazoles targeting the blood stage of Plasmodium falciparum. RSC Med Chem 2024; 15:572-594. [PMID: 38389888 PMCID: PMC10880932 DOI: 10.1039/d3md00417a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/04/2023] [Indexed: 02/24/2024] Open
Abstract
The emergence of drug resistance against the frontline antimalarials is a major challenge in the treatment of malaria. In view of emerging reports on drug-resistant strains of Plasmodium against artemisinin combination therapy, a dire need is felt for the discovery of novel compounds acting against novel targets in the parasite. In this study, we identified a novel series of quinolinepiperazinyl-aryltetrazoles (QPTs) targeting the blood stage of Plasmodium. In vitro anti-plasmodial activity screening revealed that most of the compounds showed IC50 < 10 μM against chloroquine-resistant PfINDO strain, with the most promising lead compounds 66 and 75 showing IC50 values of 2.25 and 1.79 μM, respectively. Further, compounds 64-66, 68, 75-77 and 84 were found to be selective (selectivity index >50) in their action against Pf over a mammalian cell line, with compounds 66 and 75 offering the highest selectivity indexes of 178 and 223, respectively. Explorations into the action of lead compounds 66 and 75 revealed their selective cidal activity towards trophozoites and schizonts. In a ring-stage survival assay, 75 showed cidal activity against the early rings of artemisinin-resistant PfCam3.1R539T. Further, 66 and 75 in combination with artemisinin and pyrimethamine showed additive to weak synergistic interactions. Of these two in vitro lead molecules, only 66 restricted rise in the percentage of parasitemia to about 10% in P. berghei-infected mice with a median survival time of 28 days as compared to the untreated control, which showed the percentage of parasitemia >30%, and a median survival of 20 days. Promising antimalarial activity, high selectivity, and additive interaction with artemisinin and pyrimethamine indicate the potential of these compounds to be further optimized chemically as future drug candidates against malaria.
Collapse
Affiliation(s)
- Mahesh A Barmade
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda Vadodara-390001 Gujarat India
| | - Prakhar Agrawal
- Malaria Drug Discovery Laboratory, ICGEB Aruna Asaf Ali Marg New Delhi-110067 India
| | - Sweta R Rajput
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda Vadodara-390001 Gujarat India
| | - Prashant R Murumkar
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda Vadodara-390001 Gujarat India
| | - Bhavika Rana
- Malaria Drug Discovery Laboratory, ICGEB Aruna Asaf Ali Marg New Delhi-110067 India
| | - Dinkar Sahal
- Malaria Drug Discovery Laboratory, ICGEB Aruna Asaf Ali Marg New Delhi-110067 India
| | - Mange Ram Yadav
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda Vadodara-390001 Gujarat India
- Research and Development Cell, Parul University Waghodia Road, P. O. Limda Vadodara-391760 Gujarat India
| |
Collapse
|
10
|
Bennink S, Pradel G. The Multiple Roles of LCCL Domain-Containing Proteins for Malaria Parasite Transmission. Microorganisms 2024; 12:279. [PMID: 38399683 PMCID: PMC10892792 DOI: 10.3390/microorganisms12020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Multi-protein complexes are crucial for various essential biological processes of the malaria parasite Plasmodium, such as protein synthesis, host cell invasion and adhesion. Especially during the sexual phase of the parasite, which takes place in the midgut of the mosquito vector, protein complexes are required for fertilization, sporulation and ultimately for the successful transmission of the parasite. Among the most noticeable protein complexes of the transmission stages are the ones formed by the LCCL domain-containing protein family that play critical roles in the generation of infective sporozoites. The six members of this protein family are characterized by numerous adhesive modules and domains typically found in secreted proteins. This review summarizes the findings of expression and functional studies on the LCCL domain-containing proteins of the human pathogenic P. falciparum and the rodent-infecting P. berghei and discusses the common features and differences of the homologous proteins.
Collapse
Affiliation(s)
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany;
| |
Collapse
|
11
|
Ong HW, de Silva C, Avalani K, Kwarcinski F, Mansfield CR, Chirgwin M, Truong A, Derbyshire ER, Zutshi R, Drewry DH. Characterization of 2,4-Dianilinopyrimidines Against Five P. falciparum Kinases PfARK1, PfARK3, PfNEK3, PfPK9, and PfPKB. ACS Med Chem Lett 2023; 14:1774-1784. [PMID: 38116430 PMCID: PMC10726455 DOI: 10.1021/acsmedchemlett.3c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
Plasmodium kinases are increasingly recognized as potential novel antiplasmodial targets for the treatment of malaria, but only a small subset of these kinases have had structure-activity relationship (SAR) campaigns reported. Herein we report the discovery of CZC-54252 (1) as an inhibitor of five P. falciparum kinases PfARK1, PfARK3, PfNEK3, PfPK9, and PfPKB. 39 analogues were evaluated against all five kinases to establish SAR at three regions of the kinase active site. Nanomolar inhibitors of each kinase were discovered. We identified common and divergent SAR trends across all five kinases, highlighting substituents in each region that improve potency and selectivity for each kinase. Potent analogues were evaluated against the P. falciparum blood stage. Eight submicromolar inhibitors were discovered, of which 37 demonstrated potent antiplasmodial activity (EC50 = 0.16 μM). Our results provide an understanding of features needed to inhibit each individual kinase and lay groundwork for future optimization efforts toward novel antimalarials.
Collapse
Affiliation(s)
- Han Wee Ong
- Structural
Genomics Consortium and Division of Chemical Biology and Medicinal
Chemistry, Eshelman School of Pharmacy,
University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Chandi de Silva
- Luceome
Biotechnologies, LLC, 1665 East 18th Street, Suite 106, Tucson, Arizona 85719, United States
| | - Krisha Avalani
- Luceome
Biotechnologies, LLC, 1665 East 18th Street, Suite 106, Tucson, Arizona 85719, United States
| | - Frank Kwarcinski
- Luceome
Biotechnologies, LLC, 1665 East 18th Street, Suite 106, Tucson, Arizona 85719, United States
| | - Christopher R. Mansfield
- Department
of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, North Carolina 27710, United States
| | - Michael Chirgwin
- Department
of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| | - Anna Truong
- Department
of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| | - Emily R. Derbyshire
- Department
of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, North Carolina 27710, United States
- Department
of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| | - Reena Zutshi
- Luceome
Biotechnologies, LLC, 1665 East 18th Street, Suite 106, Tucson, Arizona 85719, United States
| | - David H. Drewry
- Structural
Genomics Consortium and Division of Chemical Biology and Medicinal
Chemistry, Eshelman School of Pharmacy,
University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger
Comprehensive Cancer Center, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
12
|
Andrews M, Baum J, Gilson PR, Wilson DW. Bottoms up! Malaria parasite invasion the right way around. Trends Parasitol 2023; 39:1004-1013. [PMID: 37827961 DOI: 10.1016/j.pt.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023]
Abstract
A critical part of the malaria parasite's life cycle is invasion of red blood cells (RBCs) by merozoites. Inside RBCs, the parasite forms a schizont, which undergoes segmentation to produce daughter merozoites. These cells are released, establishing cycles of invasion. Traditionally, merozoites are represented as nonmotile, egg-shaped cells that invade RBCs 'narrower end' first and pack within schizonts with this narrower end facing outwards. Here, we discuss recent evidence and re-evaluate previous data which suggest that merozoites are capable of motility and have spherical or elongated-teardrop shapes. Furthermore, merozoites invade RBCs 'wider end' first and pack within schizonts with this wider end facing outwards. We encourage the field to review this revised model and consider its implications for future studies.
Collapse
Affiliation(s)
- Mia Andrews
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Jake Baum
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW 2052, Australia; Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Paul R Gilson
- Burnet Institute, Melbourne 3004, Victoria, Australia; Department of Microbiology and Immunology, The University of Melbourne, Melbourne 3010, Victoria, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia; Burnet Institute, Melbourne 3004, Victoria, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, 5005, SA, Australia.
| |
Collapse
|
13
|
Nguyen TS, Park JH, Nguyen TK, Nguyen TV, Lee SK, Na SH, Han JH, Park WS, Chun W, Lu F, Han ET. Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) interacts with human CD36, suggesting a novel ligand-receptor interaction for reticulocyte invasion. Parasit Vectors 2023; 16:426. [PMID: 37981686 PMCID: PMC10658926 DOI: 10.1186/s13071-023-06031-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/24/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND The Plasmodium vivax merozoite restrictively invades immature erythrocytes, suggesting that its ligand(s) might interact with corresponding receptor(s) that are selectively abundant on reticulocytes to complete the invasion. Finding the ligand‒receptor interaction involved in P. vivax invasion is critical to vivax malaria management; nevertheless, it remains to be unraveled. METHODS A library of reticulocyte receptors and P. vivax ligands were expressed by a HEK293E mammalian cell expression system and were then used to screen the interaction using enzyme-linked immunosorbent assay (ELISA). A flow cytometry-based erythrocyte binding assay and bio-layer interferometry experiment were further utilized to cellularly and quantitatively identify the ligand‒receptor interaction, respectively. RESULTS Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) was found to interact with human CD36 using systematic screening. This interaction was specific at a molecular level from in vitro analysis and comparable to that of P. vivax Duffy binding protein (PvDBP) and Duffy antigen receptor for chemokines (DARC) (KD: 37.0 ± 1.4 nM and 7.7 ± 0.5 nM, respectively). Flow cytometry indicated that PvMTRAP preferentially binds to reticulocytes, on which CD36 is selectively present. CONCLUSIONS Human CD36 is selectively abundant on reticulocytes and is able to interact specifically with PvMTRAP, suggesting that it may function as a ligand and receptor during the invasion of reticulocytes by P. vivax.
Collapse
Affiliation(s)
- Thau Sy Nguyen
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Ji-Hoon Park
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-Si, 13488, Republic of Korea
| | - Tuyet-Kha Nguyen
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Truong Van Nguyen
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Seong-Kyun Lee
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Sung-Hun Na
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Won-Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Wanjoo Chun
- Department of Pharmacology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Feng Lu
- Department of Pathogen Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea.
| |
Collapse
|
14
|
Agrawal P, Kumari S, Mohmmed A, Malhotra P, Sharma U, Sahal D. Identification of Novel, Potent, and Selective Compounds against Malaria Using Glideosomal-Associated Protein 50 as a Drug Target. ACS OMEGA 2023; 8:38506-38523. [PMID: 37867646 PMCID: PMC10586260 DOI: 10.1021/acsomega.3c05323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/01/2023] [Indexed: 10/24/2023]
Abstract
Phylum apicomplexan consists of parasites, such as Plasmodium and Toxoplasma. These obligate intracellular parasites enter host cells via an energy-dependent process using specialized machinery, called the glideosome. In the present study, we used Plasmodium falciparum GAP50, a glideosome-associated protein, as a target to screen 951 different compounds from diverse chemical libraries. Using different screening methods, eight compounds (Hayatinine, Curine, MMV689758 (Bedaquiline), MMV1634402 (Brilacidin), and MMV688271, MMV782353, MMV642550, and USINB4-124-8) were identified, which showed promising binding affinity (KD < 75 μM), along with submicromolar range antiparasitic efficacy and selectivity index > 100 fold for malaria parasite. These eight compounds were effective against Chloroquine-resistant PfINDO and Artemisinin-resistant PfCam3.1R359T strains. Studies on the effect of these compounds at asexual blood stages showed that these eight compounds act differently at different developmental stages, indicating the binding of these compounds to other Plasmodium proteins, in addition to PfGAP50. We further studied the effects of compounds (Bedaquiline and USINB4-124-8) in an in vivoPlasmodium berghei mouse model of malaria. Importantly, the oral delivery of Bedaquiline (50 mg/kg b. wt.) showed substantial suppression of parasitemia, and three out of seven mice were cured of the infection. Thus, our study provides new scaffolds for the development of antimalarials that can act at multiple Plasmodium lifecycle stages.
Collapse
Affiliation(s)
- Prakhar Agrawal
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Surekha Kumari
- Chemical
Technology Division, CSIR-Institute of Himalayan
Bioresource Technology, Palampur 176061, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Asif Mohmmed
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Pawan Malhotra
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Upendra Sharma
- Chemical
Technology Division, CSIR-Institute of Himalayan
Bioresource Technology, Palampur 176061, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Dinkar Sahal
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| |
Collapse
|
15
|
Vigetti L, Tardieux I. Fostering innovation to solve the biomechanics of microbe-host interactions: Focus on the adhesive forces underlying Apicomplexa parasite biology. Biol Cell 2023; 115:e202300016. [PMID: 37227253 DOI: 10.1111/boc.202300016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
The protozoa, Toxoplasma gondii and Plasmodium spp., are preeminent members of the Apicomplexa parasitic phylum in large part due to their public health and economic impact. Hence, they serve as model unicellular eukaryotes with which to explore the repertoire of molecular and cellular strategies that specific developmental morphotypes deploy to timely adjust to their host(s) in order to perpetuate. In particular, host tissue- and cell-invasive morphotypes termed zoites alternate extracellular and intracellular lifestyles, thereby sensing and reacting to a wealth of host-derived biomechanical cues over their partnership. In the recent years, biophysical tools especially related to real time force measurement have been introduced, teaching us how creative are these microbes to shape a unique motility system that powers fast gliding through a variety of extracellular matrices, across cellular barriers, in vascular systems or into host cells. Equally performant was this toolkit to start illuminating how parasites manipulate their hosting cell adhesive and rheological properties to their advantage. In this review, besides highlighting major discoveries along the way, we discuss the most promising development, synergy, and multimodal integration in active noninvasive force microscopy methods. These should in the near future unlock current limitations and allow capturing, from molecules to tissues, the many biomechanical and biophysical interplays over the dynamic host and microbe partnership.
Collapse
Affiliation(s)
- Luis Vigetti
- Team Biomechanics of Host-Parasite Interactions, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, University of Grenoble Alpes, Grenoble, France
| | - Isabelle Tardieux
- Team Biomechanics of Host-Parasite Interactions, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, University of Grenoble Alpes, Grenoble, France
| |
Collapse
|
16
|
Collier S, Pietsch E, Dans M, Ling D, Tavella TA, Lopaticki S, Marapana DS, Shibu MA, Andrew D, Tiash S, McMillan PJ, Gilson P, Tilley L, Dixon MWA. Plasmodium falciparum formins are essential for invasion and sexual stage development. Commun Biol 2023; 6:861. [PMID: 37596377 PMCID: PMC10439200 DOI: 10.1038/s42003-023-05233-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
The malaria parasite uses actin-based mechanisms throughout its lifecycle to control a range of biological processes including intracellular trafficking, gene regulation, parasite motility and invasion. In this work we assign functions to the Plasmodium falciparum formins 1 and 2 (FRM1 and FRM2) proteins in asexual and sexual blood stage development. We show that FRM1 is essential for merozoite invasion and FRM2 is required for efficient cell division. We also observed divergent functions for FRM1 and FRM2 in gametocyte development. Conditional deletion of FRM1 leads to a delay in gametocyte stage progression. We show that FRM2 controls the actin and microtubule cytoskeletons in developing gametocytes, with premature removal of the protein resulting in a loss of transmissible stage V gametocytes. Lastly, we show that targeting formin proteins with the small molecule inhibitor of formin homology domain 2 (SMIFH2) leads to a multistage block in asexual and sexual stage parasite development.
Collapse
Affiliation(s)
- Sophie Collier
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Emma Pietsch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Madeline Dans
- The Macfarlane Burnet Institute for Medical Research, 85 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Dawson Ling
- The Macfarlane Burnet Institute for Medical Research, 85 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Tatyana A Tavella
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sash Lopaticki
- Department of Infectious Diseases, Doherty Institute, University of Melbourne, Parkville, VIC, 3010, Australia
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Danushka S Marapana
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Mohini A Shibu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dean Andrew
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Snigdha Tiash
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul J McMillan
- Biological Optical Microscopy Platform, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul Gilson
- The Macfarlane Burnet Institute for Medical Research, 85 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Matthew W A Dixon
- Department of Infectious Diseases, Doherty Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
17
|
Morano AA, Rudlaff RM, Dvorin JD. A PPP-type pseudophosphatase is required for the maintenance of basal complex integrity in Plasmodium falciparum. Nat Commun 2023; 14:3916. [PMID: 37400439 DOI: 10.1038/s41467-023-39435-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
During its asexual blood stage, P. falciparum replicates via schizogony, wherein dozens of daughter cells are formed within a single parent. The basal complex, a contractile ring that separates daughter cells, is critical for schizogony. In this study, we identify a Plasmodium basal complex protein essential for basal complex maintenance. Using multiple microscopy techniques, we demonstrate that PfPPP8 is required for uniform basal complex expansion and maintenance of its integrity. We characterize PfPPP8 as the founding member of a novel family of pseudophosphatases with homologs in other Apicomplexan parasites. By co-immunoprecipitation, we identify two additional new basal complex proteins. We characterize the unique temporal localizations of these new basal complex proteins (late-arriving) and of PfPPP8 (early-departing). In this work, we identify a novel basal complex protein, determine its specific role in segmentation, identify a new pseudophosphatase family, and establish that the P. falciparum basal complex is a dynamic structure.
Collapse
Affiliation(s)
- Alexander A Morano
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, 02115, USA
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Rachel M Rudlaff
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, 02115, USA
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
18
|
Hassert M, Arumugam S, Harty JT. Memory CD8+ T cell-mediated protection against liver-stage malaria. Immunol Rev 2023; 316:84-103. [PMID: 37014087 PMCID: PMC10524177 DOI: 10.1111/imr.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Nearly half of the world's population is at risk of malaria, a disease caused by the protozoan parasite Plasmodium, which is estimated to cause more than 240,000,000 infections and kill more than 600,000 people annually. The emergence of Plasmodia resistant to chemoprophylactic treatment highlights the urgency to develop more effective vaccines. In this regard, whole sporozoite vaccination approaches in murine models and human challenge studies have provided substantial insight into the immune correlates of protection from malaria. From these studies, CD8+ T cells have come to the forefront, being identified as critical for vaccine-mediated liver-stage immunity that can prevent the establishment of the symptomatic blood stages and subsequent transmission of infection. However, the unique biological characteristics required for CD8+ T cell protection from liver-stage malaria dictate that more work must be done to design effective vaccines. In this review, we will highlight a subset of studies that reveal basic aspects of memory CD8+ T cell-mediated protection from liver-stage malaria infection.
Collapse
Affiliation(s)
- Mariah Hassert
- Department of Pathology, University of Iowa- Carver College of Medicine, Iowa City, IA, USA
| | - Sahaana Arumugam
- Department of Pathology, University of Iowa- Carver College of Medicine, Iowa City, IA, USA
- Medical Scientist Training Program, University of Iowa- Carver College of Medicine, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa- Carver College of Medicine, Iowa City, IA, USA
| | - John T. Harty
- Department of Pathology, University of Iowa- Carver College of Medicine, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa- Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
19
|
He L, Qiu Y, Pang G, Li S, Wang J, Feng Y, Chen L, Zhu L, Liu Y, Cui L, Cao Y, Zhu X. Plasmodium falciparum GAP40 Plays an Essential Role in Merozoite Invasion and Gametocytogenesis. Microbiol Spectr 2023; 11:e0143423. [PMID: 37249423 PMCID: PMC10269477 DOI: 10.1128/spectrum.01434-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Cyclic invasion of red blood cells (RBCs) by Plasmodium merozoites is associated with the symptoms and pathology of malaria. Merozoite invasion is powered actively and rapidly by a parasite actomyosin motor called the glideosome. The ability of the glideosome to generate force to support merozoite entry into the host RBCs is thought to rely on its stable anchoring within the inner membrane complex (IMC) through membrane-resident proteins, such as GAP50 and GAP40. Using a conditional knockdown (KD) approach, we determined that PfGAP40 was required for asexual blood-stage replication. PfGAP40 is not needed for merozoite egress from host RBCs or for the attachment of merozoites to new RBCs. PfGAP40 coprecipitates with PfGAP45 and PfGAP50. During merozoite invasion, PfGAP40 is associated strongly with stabilizing the expression levels of PfGAP45 and PfGAP50 in the schizont stage. Although PfGAP40 KD did not influence IMC integrity, it impaired the maturation of gametocytes. In addition, PfGAP40 is phosphorylated, and mutations that block phosphorylation of PfGAP40 at the C-terminal serine residues S370, S372, S376, S405, S409, S420, and S445 reduced merozoite invasion efficiency. Overall, our findings implicate PfGAP40 as an important regulator for the gliding activity of merozoites and suggest that phosphorylation is required for PfGAP40 function. IMPORTANCE Red blood cell invasion is central to the pathogenesis of the malaria parasite, and the parasite proteins involved in this process are potential therapeutic targets. Gliding motility powers merozoite invasion and is driven by a unique molecular motor termed the glideosome. The glideosome is stably anchored to the parasite inner membrane complex (IMC) through membrane-resident proteins. In the present study, we demonstrate the importance of an IMC-resident glideosome component, PfGAP40, that plays a critical role in stabilizing the expression levels of glideosome components in the schizont stage. We determined that phosphorylation of PfGAP40 at C-terminal residues is required for efficient merozoite invasion.
Collapse
Affiliation(s)
- Lu He
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yue Qiu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Geping Pang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Siqi Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Jingjing Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yonghui Feng
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, Liaoning, China
- National Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Lumeng Chen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Liying Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yinjie Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Liwang Cui
- College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Xiaotong Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
20
|
Barnes CBG, Dans MG, Jonsdottir TK, Crabb BS, Gilson PR. PfATP4 inhibitors in the Medicines for Malaria Venture Malaria Box and Pathogen Box block the schizont-to-ring transition by inhibiting egress rather than invasion. Front Cell Infect Microbiol 2022; 12:1060202. [PMID: 36530423 PMCID: PMC9747762 DOI: 10.3389/fcimb.2022.1060202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
The cation efflux pump Plasmodium falciparum ATPase 4 (PfATP4) maintains Na+ homeostasis in malaria parasites and has been implicated in the mechanism of action of many structurally diverse antimalarial agents, including >7% of the antimalarial compounds in the Medicines for Malaria Venture's 'Malaria Box' and 'Pathogen Box'. Recent screens of the 'Malaria Box' and 'Pathogen Box' revealed that many PfATP4 inhibitors prevent parasites from exiting their host red blood cell (egress) or entering new host cells (invasion), suggesting that these compounds may have additional molecular targets involved in egress or invasion. Here, we demonstrate that five PfATP4 inhibitors reduce egress but not invasion. These compounds appear to inhibit egress by blocking the activation of protein kinase G, an enzyme that, once stimulated, rapidly activates parasite egress. We establish a direct link between egress and PfATP4 function by showing that the inhibition of egress is attenuated in a Na+-depleted environment and in parasites with a mutation in pfatp4. Finally, we show that PfATP4 inhibitors induce host cell lysis when administered prior to the completion of parasite replication. Since host cell lysis mimics egress but is not followed by invasion, this phenomenon likely explains why several PfATP4 inhibitors were previously classified as invasion inhibitors. Collectively, our results confirm that PfATP4-mediated Na+ efflux is critical to the regulation of parasite egress.
Collapse
Affiliation(s)
- Claudia B. G. Barnes
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Madeline G. Dans
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia,School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Thorey K. Jonsdottir
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Brendan S. Crabb
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia,Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Paul R. Gilson
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia,Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia,*Correspondence: Paul R. Gilson,
| |
Collapse
|
21
|
Analysis of Plasmodium falciparum myosin B ATPase activity and structure in complex with the calmodulin-like domain of its light chain MLC-B. J Biol Chem 2022; 298:102634. [PMID: 36273584 PMCID: PMC9692044 DOI: 10.1016/j.jbc.2022.102634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
Abstract
Myosin B (MyoB) is a class 14 myosin expressed in all invasive stages of the malaria parasite, Plasmodium falciparum. It is not associated with the glideosome complex that drives motility and invasion of host cells. During red blood cell invasion, MyoB remains at the apical tip of the merozoite but is no longer observed once invasion is completed. MyoB is not essential for parasite survival, but when it is knocked out, merozoites are delayed in the initial stages of red blood cell invasion, giving rise to a growth defect that correlates with reduced invasion success. Therefore, further characterization is needed to understand how MyoB contributes to parasite invasion. Here, we have expressed and purified functional MyoB with the help of parasite-specific chaperones Hsp90 and Unc45, characterized its binding to actin and its known light chain MLC-B using biochemical and biophysical methods and determined its low-resolution structure in solution using small angle X-ray scattering. In addition to MLC-B, we found that four other putative regulatory light chains bind to the MyoB IQ2 motif in vitro. The purified recombinant MyoB adopted the overall shape of a myosin, exhibited actin-activated ATPase activity, and moved actin filaments in vitro. Additionally, we determined that the ADP release rate was faster than the ATP turnover number, and thus, does not appear to be rate limiting. This, together with the observed high affinity to actin and the specific localization of MyoB, may point toward a role in tethering and/or force sensing during early stages of invasion.
Collapse
|
22
|
Anam Z, Kumari G, Mukherjee S, Rex DAB, Biswas S, Maurya P, Ravikumar S, Gupta N, Kushawaha AK, Sah RK, Chaurasiya A, Singhal J, Singh N, Kaushik S, Prasad TSK, Pati S, Ranganathan A, Singh S. Complementary crosstalk between palmitoylation and phosphorylation events in MTIP regulates its role during Plasmodium falciparum invasion. Front Cell Infect Microbiol 2022; 12:924424. [PMID: 36250062 PMCID: PMC9556994 DOI: 10.3389/fcimb.2022.924424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022] Open
Abstract
Post-translational modifications (PTMs) including phosphorylation and palmitoylation have emerged as crucial biomolecular events that govern many cellular processes including functioning of motility- and invasion-associated proteins during Plasmodium falciparum invasion. However, no study has ever focused on understanding the possibility of a crosstalk between these two molecular events and its direct impact on preinvasion- and invasion-associated protein–protein interaction (PPI) network-based molecular machinery. Here, we used an integrated in silico analysis to enrich two different catalogues of proteins: (i) the first group defines the cumulative pool of phosphorylated and palmitoylated proteins, and (ii) the second group represents a common set of proteins predicted to have both phosphorylation and palmitoylation. Subsequent PPI analysis identified an important protein cluster comprising myosin A tail interacting protein (MTIP) as one of the hub proteins of the glideosome motor complex in P. falciparum, predicted to have dual modification with the possibility of a crosstalk between the same. Our findings suggested that blocking palmitoylation led to reduced phosphorylation and blocking phosphorylation led to abrogated palmitoylation of MTIP. As a result of the crosstalk between these biomolecular events, MTIP’s interaction with myosin A was found to be abrogated. Next, the crosstalk between phosphorylation and palmitoylation was confirmed at a global proteome level by click chemistry and the phenotypic effect of this crosstalk was observed via synergistic inhibition in P. falciparum invasion using checkerboard assay and isobologram method. Overall, our findings revealed, for the first time, an interdependence between two PTM types, their possible crosstalk, and its direct impact on MTIP-mediated invasion via glideosome assembly protein myosin A in P. falciparum. These insights can be exploited for futuristic drug discovery platforms targeting parasite molecular machinery for developing novel antimalarial therapeutics.
Collapse
Affiliation(s)
- Zille Anam
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Geeta Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Soumyadeep Mukherjee
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | | | - Shreeja Biswas
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Preeti Maurya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Susendaran Ravikumar
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | - Nutan Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | | | - Raj Kumar Sah
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ayushi Chaurasiya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Jhalak Singhal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Niharika Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shikha Kaushik
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
- *Correspondence: Shailja Singh, ; Anand Ranganathan, ; Soumya Pati,
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- *Correspondence: Shailja Singh, ; Anand Ranganathan, ; Soumya Pati,
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- *Correspondence: Shailja Singh, ; Anand Ranganathan, ; Soumya Pati,
| |
Collapse
|
23
|
Tryptophan C-mannosylation is critical for Plasmodium falciparum transmission. Nat Commun 2022; 13:4400. [PMID: 35906227 PMCID: PMC9338275 DOI: 10.1038/s41467-022-32076-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022] Open
Abstract
Tryptophan C-mannosylation stabilizes proteins bearing a thrombospondin repeat (TSR) domain in metazoans. Here we show that Plasmodium falciparum expresses a DPY19 tryptophan C-mannosyltransferase in the endoplasmic reticulum and that DPY19-deficiency abolishes C-glycosylation, destabilizes members of the TRAP adhesin family and inhibits transmission to mosquitoes. Imaging P. falciparum gametogenesis in its entirety in four dimensions using lattice light-sheet microscopy reveals defects in ΔDPY19 gametocyte egress and exflagellation. While egress is diminished, ΔDPY19 microgametes still fertilize macrogametes, forming ookinetes, but these are abrogated for mosquito infection. The gametogenesis defects correspond with destabilization of MTRAP, which we show is C-mannosylated in P. falciparum, and the ookinete defect is concordant with defective CTRP secretion on the ΔDPY19 background. Genetic complementation of DPY19 restores ookinete infectivity, sporozoite production and C-mannosylation activity. Therefore, tryptophan C-mannosylation by DPY19 ensures TSR protein quality control at two lifecycle stages for successful transmission of the human malaria parasite. Here, Lopaticki et al. show that Plasmodium falciparum expresses a Dpy19 C-mannosyltransferase in the endoplasmic reticulum that glycosylates TSR domains. Functional characterization shows that PfDpy19 plays a critical role in transmission through mosquitoes as PfDpy19-deficiency abolishes C-glycosylation and destabilizes proteins relevant for gametogenesis and oocyst formation.
Collapse
|
24
|
Possenti A, Di Cristina M, Nicastro C, Lunghi M, Messina V, Piro F, Tramontana L, Cherchi S, Falchi M, Bertuccini L, Spano F. Functional Characterization of the Thrombospondin-Related Paralogous Proteins Rhoptry Discharge Factors 1 and 2 Unveils Phenotypic Plasticity in Toxoplasma gondii Rhoptry Exocytosis. Front Microbiol 2022; 13:899243. [PMID: 35756016 PMCID: PMC9218915 DOI: 10.3389/fmicb.2022.899243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
To gain access to the intracellular cytoplasmic niche essential for their growth and replication, apicomplexan parasites such as Toxoplasma gondii rely on the timely secretion of two types of apical organelles named micronemes and rhoptries. Rhoptry proteins are key to host cell invasion and remodeling, however, the molecular mechanisms underlying the tight control of rhoptry discharge are poorly understood. Here, we report the identification and functional characterization of two novel T. gondii thrombospondin-related proteins implicated in rhoptry exocytosis. The two proteins, already annotated as MIC15 and MIC14, were renamed rhoptry discharge factor 1 (RDF1) and rhoptry discharge factor 2 (RDF2) and found to be exclusive of the Coccidia class of apicomplexan parasites. Furthermore, they were shown to have a paralogous relationship and share a C-terminal transmembrane domain followed by a short cytoplasmic tail. Immunofluorescence analysis of T. gondii tachyzoites revealed that RDF1 presents a diffuse punctate localization not reminiscent of any know subcellular compartment, whereas RDF2 was not detected. Using a conditional knockdown approach, we demonstrated that RDF1 loss caused a marked growth defect. The lack of the protein did not affect parasite gliding motility, host cell attachment, replication and egress, whereas invasion was dramatically reduced. Notably, while RDF1 depletion did not result in altered microneme exocytosis, rhoptry discharge was found to be heavily impaired. Interestingly, rhoptry secretion was reversed by spontaneous upregulation of the RDF2 gene in knockdown parasites grown under constant RDF1 repression. Collectively, our results identify RDF1 and RDF2 as additional key players in the pathway controlling rhoptry discharge. Furthermore, this study unveils a new example of compensatory mechanism contributing to phenotypic plasticity in T. gondii.
Collapse
Affiliation(s)
- Alessia Possenti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Manlio Di Cristina
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Chiara Nicastro
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Matteo Lunghi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Valeria Messina
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Federica Piro
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Lorenzo Tramontana
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Cherchi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Mario Falchi
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | | | - Furio Spano
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
25
|
Arranz-Solís D, Saeij JPJ. New Avenues to Design Toxoplasma Vaccines Based on Oocysts and Cysts. Front Immunol 2022; 13:910961. [PMID: 35734184 PMCID: PMC9207213 DOI: 10.3389/fimmu.2022.910961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
Toxoplasmosis is a worldwide disease affecting all warm-blooded animals, including humans. Vaccination strategies aimed at inducing an efficient immune response while preventing transmission have been attempted in the past. While many different approaches can partially protect immunized animals against subsequent infections, full and lasting protection is rarely attained and only with live-attenuated vaccines. In addition, vaccines based on mutant strains that are deficient in forming the chronic phase of the parasite (such as Toxovax™) cannot be extensively used due to their zoonotic potential and the possibility of reversion to virulent phenotypes. An increasing number of studies using emerging genetic-engineering tools have been conducted to design novel vaccines based on recombinant proteins, DNA or delivery systems such as nanoparticles. However, these are usually less efficient due to their antigenic simplicity. In this perspective article we discuss potential target genes and novel strategies to generate live-attenuated long-lasting vaccines based on tissue cysts and oocysts, which are the environmentally resistant chronic forms of Toxoplasma. By selectively disrupting genes important for parasite dissemination, cyst formation and/or sporozoite invasion, alone or in combination, a vaccine based on a live-attenuated strain that elicits a protective immune response while preventing the transmission of Toxoplasma could be created. Finally, further improvements of protocols to generate Toxoplasma sexual stages in vitro might lead to the production of oocysts from such a strain without the need for using mice or cats.
Collapse
Affiliation(s)
| | - Jeroen P. J. Saeij
- Pathology, Microbiology and Immunology department, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| |
Collapse
|
26
|
Elaagip A, Absalon S, Florentin A. Apicoplast Dynamics During Plasmodium Cell Cycle. Front Cell Infect Microbiol 2022; 12:864819. [PMID: 35573785 PMCID: PMC9100674 DOI: 10.3389/fcimb.2022.864819] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
Abstract
The deadly malaria parasite, Plasmodium falciparum, contains a unique subcellular organelle termed the apicoplast, which is a clinically-proven antimalarial drug target. The apicoplast is a plastid with essential metabolic functions that evolved via secondary endosymbiosis. As an ancient endosymbiont, the apicoplast retained its own genome and it must be inherited by daughter cells during cell division. During the asexual replication of P. falciparum inside human red blood cells, both the parasite, and the apicoplast inside it, undergo massive morphological changes, including DNA replication and division. The apicoplast is an integral part of the cell and thus its development is tightly synchronized with the cell cycle. At the same time, certain aspects of its dynamics are independent of nuclear division, representing a degree of autonomy in organelle biogenesis. Here, we review the different aspects of organelle dynamics during P. falciparum intraerythrocytic replication, summarize our current understanding of these processes, and describe the many open questions in this area of parasite basic cell biology.
Collapse
Affiliation(s)
- Arwa Elaagip
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Sabrina Absalon, ; Anat Florentin,
| | - Anat Florentin
- The Kuvin Center for the Study of Infectious and Tropical Diseases, Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Sabrina Absalon, ; Anat Florentin,
| |
Collapse
|
27
|
Paoletta MS, Wilkowsky SE. Thrombospondin Related Anonymous Protein Superfamily in Vector-Borne Apicomplexans: The Parasite’s Toolkit for Cell Invasion. Front Cell Infect Microbiol 2022; 12:831592. [PMID: 35463644 PMCID: PMC9019593 DOI: 10.3389/fcimb.2022.831592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Apicomplexan parasites transmitted by vectors, including Babesia spp. and Plasmodium spp., cause severe disease in both humans and animals. These parasites have a complex life cycle during which they migrate, invade, and replicate in contrasting hosts such as the mammal and the invertebrate vector. The interaction of parasites with the host cell is mediated by adhesive proteins which play a key role in the different cellular processes regarding successful progression of the life cycle. Thrombospondin related anonymous protein (TRAP) is a superfamily of adhesins that are involved in motility, invasion and egress of the parasite. These proteins are stored and released from apical organelles and have either one or two types of adhesive domains, namely thrombospondin type 1 repeat and von Willebrand factor type A, that upon secretion are located in the extracellular portion of the molecule. Proteins from the TRAP superfamily have been intensively studied in Plasmodium species and to a lesser extent in Babesia spp., where they have proven to be functionally relevant throughout the entire parasite’s journey both in the arthropod vector and in the mammalian host. In recent years new findings provided answers to the role of TRAP proteins and in some cases the function of these adhesins during the parasite’s life cycle was redefined. In this review we will discuss the current knowledge of the diverse roles of the TRAP superfamily in vector-borne parasites from Class Aconoidasida. We will focus on the varied approaches that allowed the understanding of protein function and the relevance of TRAP- superfamily throughout the entire parasite’s cell cycle.
Collapse
|
28
|
Fréville A, Gnangnon B, Khelifa AS, Gissot M, Khalife J, Pierrot C. Deciphering the Role of Protein Phosphatases in Apicomplexa: The Future of Innovative Therapeutics? Microorganisms 2022; 10:microorganisms10030585. [PMID: 35336160 PMCID: PMC8949495 DOI: 10.3390/microorganisms10030585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/10/2022] Open
Abstract
Parasites belonging to the Apicomplexa phylum still represent a major public health and world-wide socioeconomic burden that is greatly amplified by the spread of resistances against known therapeutic drugs. Therefore, it is essential to provide the scientific and medical communities with innovative strategies specifically targeting these organisms. In this review, we present an overview of the diversity of the phosphatome as well as the variety of functions that phosphatases display throughout the Apicomplexan parasites’ life cycles. We also discuss how this diversity could be used for the design of innovative and specific new drugs/therapeutic strategies.
Collapse
Affiliation(s)
- Aline Fréville
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, Keppel Street, London WC1E 7HT, UK
- Correspondence: (A.F.); (C.P.)
| | - Bénédicte Gnangnon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Department of Epidemiology, Center for Communicable Diseases Dynamics, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Asma S. Khelifa
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Mathieu Gissot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Jamal Khalife
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Christine Pierrot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Correspondence: (A.F.); (C.P.)
| |
Collapse
|
29
|
Cell biological analysis reveals an essential role for Pfcerli2 in erythrocyte invasion by malaria parasites. Commun Biol 2022; 5:121. [PMID: 35140336 PMCID: PMC8828742 DOI: 10.1038/s42003-022-03020-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/23/2021] [Indexed: 01/01/2023] Open
Abstract
Merozoite invasion of host red blood cells (RBCs) is essential for survival of the human malaria parasite Plasmodium falciparum. Proteins involved with RBC binding and invasion are secreted from dual-club shaped organelles at the apical tip of the merozoite called the rhoptries. Here we characterise P. falciparum Cytosolically Exposed Rhoptry Leaflet Interacting protein 2 (PfCERLI2), as a rhoptry bulb protein that is essential for merozoite invasion. Phylogenetic analyses show that cerli2 arose through an ancestral gene duplication of cerli1. We show that PfCERLI2 is essential for blood-stage growth and localises to the cytosolic face of the rhoptry bulb. Inducible knockdown of PfCERLI2 led to a proportion of merozoites failing to invade and was associated with elongation of the rhoptry organelle during merozoite development and inhibition of rhoptry antigen processing. These findings identify PfCERLI2 as a protein that has key roles in rhoptry biology during merozoite invasion. Benjamin Liffner and Miguel Balbin et al. report that the Plasmodium falciparum protein, PfCERLI2, localises to the cytosolic face of the parasite’s rhoptry bulb and is essential for invasion and growth within human red blood cells.
Collapse
|
30
|
Molecular mechanisms of hematological and biochemical alterations in malaria: A review. Mol Biochem Parasitol 2021; 247:111446. [PMID: 34953384 DOI: 10.1016/j.molbiopara.2021.111446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/20/2021] [Accepted: 12/19/2021] [Indexed: 11/20/2022]
Abstract
Malaria is a dangerous disease that contributes to millions of hospital visits and hundreds of thousands of deaths, especially in children residing in sub-Saharan Africa. Although several interventions such as vector control, case detection, and treatment are already in place, there is no substantive reduction in the disease burden. Several studies in the past have reported the emergence of resistant strains of malaria parasites (MPs) and mosquitoes, and poor adherence and inaccessibility to effective antimalarial drugs as the major factors for this persistent menace of malaria infections. Moreover, victory against MP infections for many years has been hampered by an incomplete understanding of the complex nature of malaria pathogenesis. Very recent studies have identified different complex interactions and hematological alterations induced by malaria parasites. However, no studies have hybridized these alterations for a better understanding of Malaria pathogenesis. Hence, this review thoroughly discusses the molecular mechanisms of all reported hematological and biochemical alterations induced by MPs infections. Specifically, the mechanisms in which MP-infection induces anemia, thrombocytopenia, leukopenia, dyslipidemia, hypoglycemia, oxidative stress, and liver and kidney malfunctions were presented. The study also discussed how MPs evade the host's immune response and suggested strategies to limit evasion of the host's immune response to combat malaria and its complications.
Collapse
|
31
|
Abstract
Plasmodium falciparum, the Apicomplexan parasite that causes the most severe form of human malaria, divides via schizogony during the asexual blood stage of its life cycle. In this method of cell division, multiple daughter cells are generated from a single schizont by segmentation. During segmentation, the basal complex forms at the basal end of the nascent daughter parasites and likely facilitates cell shape and cytokinesis. The requirement and function for each of the individual protein components within the basal complex remain largely unknown in P. falciparum. In this work, we demonstrate that the P. falciparum membrane occupation and recognition nexus repeat-containing protein 1 (PfMORN1) is not required for asexual replication. Following inducible knockout of PfMORN1, we find no detectable defect in asexual parasite morphology or replicative fitness. IMPORTANCEPlasmodium falciparum parasites cause the most severe form of human malaria. During the clinically relevant blood stage of its life cycle, the parasites divide via schizogony. In this divergent method of cell division, the components for multiple daughter cells are generated within a common cytoplasm. At the end of schizogony, segmentation partitions the organelles into invasive daughter parasites. The basal complex is a ring-shaped molecular machine that is critical for segmentation. The requirement for individual proteins within the basal complex is incompletely understood. We demonstrate that the PfMORN1 protein is dispensable for blood stage replication of P. falciparum. This result highlights important differences between Plasmodium parasites and Toxoplasma gondii, where the ortholog T. gondii MORN1 (TgMORN1) is required for asexual replication.
Collapse
|
32
|
Abstract
Plasmodium malaria parasites use a unique substrate-dependent locomotion, termed gliding motility, to migrate through tissues and invade cells. Previously, it was thought that the small labile invasive stages that invade erythrocytes, merozoites, use this motility solely to penetrate target erythrocytes. Here we reveal that merozoites use gliding motility for translocation across host cells prior to invasion. This forms an important preinvasion step that is powered by a conserved actomyosin motor and is regulated by a complex signaling pathway. This work broadens our understanding of the role of gliding motility and invasion in the blood and will have a significant impact on our understanding of blood stage host–pathogen interactions and parasite biology, with implications for interventions targeting erythrocyte invasion. Plasmodium malaria parasites are obligate intracellular protozoans that use a unique form of locomotion, termed gliding motility, to move through host tissues and invade cells. The process is substrate dependent and powered by an actomyosin motor that drives the posterior translocation of extracellular adhesins which, in turn, propel the parasite forward. Gliding motility is essential for tissue translocation in the sporozoite and ookinete stages; however, the short-lived erythrocyte-invading merozoite stage has never been observed to undergo gliding movement. Here we show Plasmodium merozoites possess the ability to undergo gliding motility in vitro and that this mechanism is likely an important precursor step for successful parasite invasion. We demonstrate that two human infective species, Plasmodium falciparum and Plasmodium knowlesi, have distinct merozoite motility profiles which may reflect distinct invasion strategies. Additionally, we develop and validate a higher throughput assay to evaluate the effects of genetic and pharmacological perturbations on both the molecular motor and the complex signaling cascade that regulates motility in merozoites. The discovery of merozoite motility provides a model to study the glideosome and adds a dimension for work aiming to develop treatments targeting the blood stage invasion pathways.
Collapse
|
33
|
Saini E, Sheokand PK, Sharma V, Agrawal P, Kaur I, Singh S, Mohmmed A, Malhotra P. Plasmodium falciparum PhIL1-associated complex plays an essential role in merozoite reorientation and invasion of host erythrocytes. PLoS Pathog 2021; 17:e1009750. [PMID: 34324609 PMCID: PMC8321122 DOI: 10.1371/journal.ppat.1009750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022] Open
Abstract
The human malaria parasite, Plasmodium falciparum possesses unique gliding machinery referred to as the glideosome that powers its entry into the insect and vertebrate hosts. Several parasite proteins including Photosensitized INA-labelled protein 1 (PhIL1) have been shown to associate with glideosome machinery. Here we describe a novel PhIL1 associated protein complex that co-exists with the glideosome motor complex in the inner membrane complex of the merozoite. Using an experimental genetics approach, we characterized the role(s) of three proteins associated with PhIL1: a glideosome associated protein- PfGAPM2, an IMC structural protein- PfALV5, and an uncharacterized protein—referred here as PfPhIP (PhIL1 Interacting Protein). Parasites lacking PfPhIP or PfGAPM2 were unable to invade host RBCs. Additionally, the downregulation of PfPhIP resulted in significant defects in merozoite segmentation. Furthermore, the PfPhIP and PfGAPM2 depleted parasites showed abrogation of reorientation/gliding. However, initial attachment with host RBCs was not affected in these parasites. Together, the data presented here show that proteins of the PhIL1-associated complex play an important role in the orientation of P. falciparum merozoites following initial attachment, which is crucial for the formation of a tight junction and hence invasion of host erythrocytes. Invasion of Plasmodium merozoites into RBCs is a multistep process that involves initial attachment of merozoites to the RBC surface, their reorientation, and subsequent gliding into RBCs using glideosome machinery. The glideosome machinery lies between the plasma membrane and inner membrane complex (IMC) and consists of MyoA, its interacting protein; MTIP, gliding associated proteins (GAPs), and a Photosensitized INA labeled protein (PhIL1)-associated protein complex. Here, we demonstrate that the deletion of any of two components of the PhIL1-associated complex, PfPhIP or PfGAPM2, aborts merozoite reorientation and blocks their invasion into RBCs. The study thus provides new molecular and mechanistic insights into merozoite invasion of RBCs.
Collapse
Affiliation(s)
- Ekta Saini
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Vaibhav Sharma
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Prakhar Agrawal
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Inderjeet Kaur
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- * E-mail: (AM); (PM)
| | - Pawan Malhotra
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- * E-mail: (AM); (PM)
| |
Collapse
|
34
|
Koudatsu S, Masatani T, Konishi R, Asada M, Hakimi H, Kurokawa Y, Tomioku K, Kaneko O, Fujita A. Glycosphingolipid GM3 is localized in both exoplasmic and cytoplasmic leaflets of Plasmodium falciparum malaria parasite plasma membrane. Sci Rep 2021; 11:14890. [PMID: 34290278 PMCID: PMC8295280 DOI: 10.1038/s41598-021-94037-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
Lipid rafts, sterol-rich and sphingolipid-rich microdomains on the plasma membrane are important in processes like cell signaling, adhesion, and protein and lipid transport. The virulence of many eukaryotic parasites is related to raft microdomains on the cell membrane. In the malaria parasite Plasmodium falciparum, glycosylphosphatidylinositol-anchored proteins, which are important for invasion and are possible targets for vaccine development, are localized in the raft. However, rafts are poorly understood. We used quick-freezing and freeze-fracture immuno-electron microscopy to examine the localization of monosialotetrahexosylganglioside (GM1) and monosialodihexosylganglioside (GM3), putative raft microdomain components in P. falciparum and infected erythrocytes. This method immobilizes molecules in situ, minimizing artifacts. GM3 was localized in the exoplasmic (EF) and cytoplasmic leaflets (PF) of the parasite and the parasitophorous vacuole (PV) membranes, but solely in the EF of the infected erythrocyte membrane, as in the case for uninfected erythrocytes. Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) was localized solely in the PF of erythrocyte, parasite, and PV membranes. This is the first time that GM3, the major component of raft microdomains, was found in the PF of a biological membrane. The unique localization of raft microdomains may be due to P. falciparum lipid metabolism and its unique biological processes, like protein transport from the parasite to infected erythrocytes.
Collapse
Affiliation(s)
- Shiomi Koudatsu
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan
| | - Tatsunori Masatani
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan.,Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Rikako Konishi
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan
| | - Masahito Asada
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan.,National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, 080-8555, Japan
| | - Hassan Hakimi
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan.,National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, 080-8555, Japan
| | - Yuna Kurokawa
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan
| | - Kanna Tomioku
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
| | - Akikazu Fujita
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan.
| |
Collapse
|
35
|
Wichers JS, Wunderlich J, Heincke D, Pazicky S, Strauss J, Schmitt M, Kimmel J, Wilcke L, Scharf S, von Thien H, Burda PC, Spielmann T, Löw C, Filarsky M, Bachmann A, Gilberger TW. Identification of novel inner membrane complex and apical annuli proteins of the malaria parasite Plasmodium falciparum. Cell Microbiol 2021; 23:e13341. [PMID: 33830607 DOI: 10.1111/cmi.13341] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
The inner membrane complex (IMC) is a defining feature of apicomplexan parasites, which confers stability and shape to the cell, functions as a scaffolding compartment during the formation of daughter cells and plays an important role in motility and invasion during different life cycle stages of these single-celled organisms. To explore the IMC proteome of the malaria parasite Plasmodium falciparum we applied a proximity-dependent biotin identification (BioID)-based proteomics approach, using the established IMC marker protein Photosensitized INA-Labelled protein 1 (PhIL1) as bait in asexual blood-stage parasites. Subsequent mass spectrometry-based peptide identification revealed enrichment of 12 known IMC proteins and several uncharacterized candidate proteins. We validated nine of these previously uncharacterized proteins by endogenous GFP-tagging. Six of these represent new IMC proteins, while three proteins have a distinct apical localization that most likely represents structures described as apical annuli in Toxoplasma gondii. Additionally, various Kelch13 interacting candidates were identified, suggesting an association of the Kelch13 compartment and the IMC in schizont and merozoite stages. This work extends the number of validated IMC proteins in the malaria parasite and reveals for the first time the existence of apical annuli proteins in P. falciparum. Additionally, it provides evidence for a spatial association between the Kelch13 compartment and the IMC in late blood-stage parasites.
Collapse
Affiliation(s)
- Jan Stephan Wichers
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Juliane Wunderlich
- Centre for Structural Systems Biology, Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Dorothee Heincke
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Samuel Pazicky
- Centre for Structural Systems Biology, Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Jan Strauss
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Marius Schmitt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jessica Kimmel
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Louisa Wilcke
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Sarah Scharf
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Heidrun von Thien
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology, Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Michael Filarsky
- Centre for Structural Systems Biology, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Anna Bachmann
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany.,German Centre for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Braunschweig, Germany
| | - Tim W Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| |
Collapse
|
36
|
Haase S, Condron M, Miller D, Cherkaoui D, Jordan S, Gulbis JM, Baum J. Identification and characterisation of a phospholipid scramblase in the malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 2021; 243:111374. [PMID: 33974939 PMCID: PMC8202325 DOI: 10.1016/j.molbiopara.2021.111374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Abstract
Recent studies highlight the emerging role of lipids as important messengers in malaria parasite biology. In an attempt to identify interacting proteins and regulators of these dynamic and versatile molecules, we hypothesised the involvement of phospholipid translocases and their substrates in the infection of the host erythrocyte by the malaria parasite Plasmodium spp. Here, using a data base searching approach of the Plasmodium Genomics Resources (www.plasmodb.org), we have identified a putative phospholipid (PL) scramblase in P. falciparum (PfPLSCR) that is conserved across the genus and in closely related unicellular algae. By reconstituting recombinant PfPLSCR into liposomes, we demonstrate metal ion dependent PL translocase activity and substrate preference, confirming PfPLSCR as a bona fide scramblase. We show that PfPLSCR is expressed during asexual and sexual parasite development, localising to different membranous compartments of the parasite throughout the intra-erythrocytic life cycle. Two different gene knockout approaches, however, suggest that PfPLSCR is not essential for erythrocyte invasion and asexual parasite development, pointing towards a possible role in other stages of the parasite life cycle.
Collapse
Affiliation(s)
- Silvia Haase
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK.
| | - Melanie Condron
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - David Miller
- Division of Structural Biology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Dounia Cherkaoui
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK
| | - Sarah Jordan
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK
| | - Jacqueline M Gulbis
- Division of Structural Biology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jake Baum
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK.
| |
Collapse
|
37
|
Liffner B, Balbin JM, Wichers JS, Gilberger TW, Wilson DW. The Ins and Outs of Plasmodium Rhoptries, Focusing on the Cytosolic Side. Trends Parasitol 2021; 37:638-650. [PMID: 33941492 DOI: 10.1016/j.pt.2021.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/19/2021] [Accepted: 03/15/2021] [Indexed: 01/13/2023]
Abstract
Parasites of the genus Plasmodium cause human and animal malaria, leading to significant health and economic impacts. A key aspect of the complex life cycle of Plasmodium parasites is the invasion of the parasite into its host cell, which is mediated by secretory organelles. The largest of these organelles, the rhoptry, undergoes rapid and profound physiological changes when it secretes its contents during merozoite and sporozoite invasion of the host erythrocyte and hepatocyte, respectively. Here we discuss recent advancements in our understanding of the dynamic rhoptry biology during the parasite's invasive stages, with a focus on the roles of cytosolically exposed rhoptry-interacting proteins (C-RIPs). We explore potential similarities between the molecular mechanisms driving merozoite and sporozoite rhoptry function.
Collapse
Affiliation(s)
- Benjamin Liffner
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Juan Miguel Balbin
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Jan Stephan Wichers
- Centre for Structural Systems Biology, 22607, Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, 22607, Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; Biology Department, University of Hamburg, 20146 Hamburg, Germany
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia; Burnet Institute, 85 Commercial Road, Melbourne 3004, Victoria, Australia.
| |
Collapse
|
38
|
Morano AA, Dvorin JD. The Ringleaders: Understanding the Apicomplexan Basal Complex Through Comparison to Established Contractile Ring Systems. Front Cell Infect Microbiol 2021; 11:656976. [PMID: 33954122 PMCID: PMC8089483 DOI: 10.3389/fcimb.2021.656976] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/19/2021] [Indexed: 12/02/2022] Open
Abstract
The actomyosin contractile ring is a key feature of eukaryotic cytokinesis, conserved across many eukaryotic kingdoms. Recent research into the cell biology of the divergent eukaryotic clade Apicomplexa has revealed a contractile ring structure required for asexual division in the medically relevant genera Toxoplasma and Plasmodium; however, the structure of the contractile ring, known as the basal complex in these parasites, remains poorly characterized and in the absence of a myosin II homolog, it is unclear how the force required of a cytokinetic contractile ring is generated. Here, we review the literature on the basal complex in Apicomplexans, summarizing what is known about its formation and function, and attempt to provide possible answers to this question and suggest new avenues of study by comparing the Apicomplexan basal complex to well-studied, established cytokinetic contractile rings and their mechanisms in organisms such as S. cerevisiae and D. melanogaster. We also compare the basal complex to structures formed during mitochondrial and plastid division and cytokinetic mechanisms of organisms beyond the Opisthokonts, considering Apicomplexan diversity and divergence.
Collapse
Affiliation(s)
- Alexander A Morano
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, United States.,Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
39
|
Jaskiewicz JJ, Tremblay JM, Tzipori S, Shoemaker CB. Identification and characterization of a new 34 kDa MORN motif-containing sporozoite surface-exposed protein, Cp-P34, unique to Cryptosporidium. Int J Parasitol 2021; 51:761-775. [PMID: 33774040 DOI: 10.1016/j.ijpara.2021.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 01/28/2021] [Indexed: 10/21/2022]
Abstract
Despite the public health impact of childhood diarrhea caused by Cryptosporidium, effective drugs and vaccines against this parasite are unavailable. Efforts to identify vaccine targets have focused on critical externally exposed virulence factors expressed in the parasite s invasive stages. However, no single surface antigen has yet been found that can elicit a significant protective immune response and it is likely that pooling multiple immune targets will be necessary. Discovery of surface proteins on Cryptosporidium sporozoites is therefore vital to this effort to develop a multi-antigenic vaccine. In this study we applied a novel single-domain camelid antibody (VHH) selection method to identify immunogenic proteins expressed on the surface of Cryptosporidium parvum sporozoites. By this approach, VHHs were identified that recognize two sporozoite surface-exposed antigens, the previously identified gp900 and an unrecognized immunogenic protein, Cp-P34. This Cp-P34 antigen, which contains multiple Membrane Occupation and Recognition Nexus (MORN) repeats, is found in excysted sporozoites as well as in the parasite s intracellular stages. Cp-P34 appears to accumulate inside the parasite and transiently appears on the surface of sporozoites to be shed in trails. Identical or nearly identical orthologs of Cp-P34 are found in the Cryptosporidium hominis and Cryptosporidium tyzzeri genomes. Except for the conserved MORN motifs, the Cp-P34 gene shares no significant homology with genes of other protozoans and thus appears to be unique to Cryptosporidium spp. Cp-P34 elicits immune responses in naturally exposed alpacas and warrants further investigation as a potential vaccine candidate.
Collapse
Affiliation(s)
- Justyna J Jaskiewicz
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Jacqueline M Tremblay
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Charles B Shoemaker
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA.
| |
Collapse
|
40
|
Al-Quraishy S, Abdel-Maksoud MA, Al-Shaebi EM, Dkhil MA. Botanical candidates from Saudi Arabian flora as potential therapeutics for Plasmodium infection. Saudi J Biol Sci 2021; 28:1374-1379. [PMID: 33613066 PMCID: PMC7878689 DOI: 10.1016/j.sjbs.2020.11.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/21/2023] Open
Abstract
Malaria is a lethal parasitic disease affecting over two hundred million people worldwide and kills almost half a million people per year. Until now, there is no curative treatment for this disease that has a substantial morbidity. The available chemotherapeutic agents are unable to completely control the infection with the continuous appearance of drug resistance. Consequently, the search for new therapeutic agents with high safety profiles and low side effects is of paramount importance. Several natural products have been investigated and proven to have antimalarial effects either in vivo or in vitro. A large number of plants have been studied globally for their antimalarial activities. However, studies that have been conducted in this field in Saudi Arabia are not enough. This article presents global and local research on the need for novel natural antimalarial agents with a particular emphasis on studies involving plants from Saudi Arabian flora.
Collapse
Affiliation(s)
- Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
| | | | - Esam M Al-Shaebi
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
| | - Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University, Saudi Arabia.,Department of Zoology and Entomology, Faculty of Science, Helwan University, Egypt
| |
Collapse
|
41
|
Identification and Molecular Dissection of IMC32, a Conserved Toxoplasma Inner Membrane Complex Protein That Is Essential for Parasite Replication. mBio 2021; 12:mBio.03622-20. [PMID: 33593973 PMCID: PMC8545131 DOI: 10.1128/mbio.03622-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inner membrane complex (IMC) is a unique organelle of apicomplexan parasites that plays critical roles in parasite motility, host cell invasion, and replication. Despite the common functions of the organelle, relatively few IMC proteins are conserved across the phylum and the precise roles of many IMC components remain to be characterized. Here, we identify a novel component of the Toxoplasma gondii IMC (IMC32) that localizes to the body portion of the IMC and is recruited to developing daughter buds early during endodyogeny. IMC32 is essential for parasite survival, as its conditional depletion results in a complete collapse of the IMC that is lethal to the parasite. We demonstrate that localization of IMC32 is dependent on both an N-terminal palmitoylation site and a series of C-terminal coiled-coil domains. Using deletion analyses and functional complementation, we show that two conserved regions within the C-terminal coiled-coil domains play critical roles in protein function during replication. Together, this work reveals an essential component of parasite replication that provides a novel target for therapeutic intervention of T. gondii and related apicomplexan parasites.IMPORTANCE The IMC is an important organelle that apicomplexan parasites use to maintain their intracellular lifestyle. While many IMC proteins have been identified, only a few central players that are essential for internal budding have been described and even fewer are conserved across the phylum. Here, we identify IMC32, a novel component of the Toxoplasma gondii IMC that localizes to very early daughter buds, indicating a role in the early stages of parasite replication. We then demonstrate that IMC32 is essential for parasite survival and pinpoint conserved regions within the protein that are important for membrane association and daughter cell formation. As IMC32 is unique to these parasites and not present in their mammalian hosts, it serves as a new target for the development of drugs that exclusively affect these important intracellular pathogens.
Collapse
|
42
|
Ferreira JL, Heincke D, Wichers JS, Liffner B, Wilson DW, Gilberger TW. The Dynamic Roles of the Inner Membrane Complex in the Multiple Stages of the Malaria Parasite. Front Cell Infect Microbiol 2021; 10:611801. [PMID: 33489940 PMCID: PMC7820811 DOI: 10.3389/fcimb.2020.611801] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/30/2020] [Indexed: 01/31/2023] Open
Abstract
Apicomplexan parasites, such as human malaria parasites, have complex lifecycles encompassing multiple and diverse environmental niches. Invading, replicating, and escaping from different cell types, along with exploiting each intracellular niche, necessitate large and dynamic changes in parasite morphology and cellular architecture. The inner membrane complex (IMC) is a unique structural element that is intricately involved with these distinct morphological changes. The IMC is a double membrane organelle that forms de novo and is located beneath the plasma membrane of these single-celled organisms. In Plasmodium spp. parasites it has three major purposes: it confers stability and shape to the cell, functions as an important scaffolding compartment during the formation of daughter cells, and plays a major role in motility and invasion. Recent years have revealed greater insights into the architecture, protein composition and function of the IMC. Here, we discuss the multiple roles of the IMC in each parasite lifecycle stage as well as insights into its sub-compartmentalization, biogenesis, disassembly and regulation during stage conversion of P. falciparum.
Collapse
Affiliation(s)
- Josie Liane Ferreira
- Centre for Structural Systems Biology, Hamburg, Germany
- Heinrich Pette Institut, Leibniz-Institut für Experimentelle Virologie, Hamburg, Germany
| | - Dorothee Heincke
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Jan Stephan Wichers
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Benjamin Liffner
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Danny W. Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Burnet Institute, Melbourne, VIC, Australia
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| |
Collapse
|
43
|
Grasso F, Mochi S, Fratini F, Olivieri A, Currà C, Siden Kiamos I, Deligianni E, Birago C, Picci L, Pizzi E, Pace T, Ponzi M. A Comprehensive Gender-related Secretome of Plasmodium berghei Sexual Stages. Mol Cell Proteomics 2020; 19:1986-1997. [PMID: 32883804 PMCID: PMC7710150 DOI: 10.1074/mcp.ra120.002212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 11/06/2022] Open
Abstract
Plasmodium, the malaria parasite, undergoes a complex life cycle alternating between a vertebrate host and a mosquito vector of the genus Anopheles In red blood cells of the vertebrate host, Plasmodium multiplies asexually or differentiates into gamete precursors, the male and female gametocytes, responsible for parasite transmission. Sexual stage maturation occurs in the midgut of the mosquito vector, where male and female gametes egress from the host erythrocytes to fuse and form a zygote. Gamete egress entails the successive rupture of two membranes surrounding the parasite, the parasitophorous vacuole membrane and the erythrocyte plasma membrane. In this study, we used the rodent model parasite Plasmodium berghei to design a label-free quantitative proteomic approach aimed at identifying gender-related proteins differentially released/secreted by purified mature gametocytes when activated to form gametes. We compared the abundance of molecules secreted by wild type gametocytes of both genders with that of a transgenic line defective in male gamete maturation and egress. This enabled us to provide a comprehensive data set of egress-related molecules and their gender specificity. Using specific antibodies, we validated eleven candidate molecules, predicted as either gender-specific or common to both male and female gametocytes. All of them localize to punctuate, vesicle-like structures that relocate to cell periphery upon activation, but only three of them localize to the gametocyte-specific secretory vesicles named osmiophilic bodies. Our results confirm that the egress process involves a tightly coordinated secretory apparatus that includes different types of vesicles and may put the basis for functional studies aimed at designing novel transmission-blocking molecules.
Collapse
Affiliation(s)
- Felicia Grasso
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Stefania Mochi
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Federica Fratini
- Istituto Superiore di Sanità, Servizio Grandi Strumentazioni e Core Facilities, Rome, Italy
| | - Anna Olivieri
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Chiara Currà
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Inga Siden Kiamos
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Elena Deligianni
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Cecilia Birago
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Leonardo Picci
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Elisabetta Pizzi
- Istituto Superiore di Sanità, Servizio Grandi Strumentazioni e Core Facilities, Rome, Italy
| | - Tomasino Pace
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Marta Ponzi
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| |
Collapse
|
44
|
Yang T, Yeoh LM, Tutor MV, Dixon MW, McMillan PJ, Xie SC, Bridgford JL, Gillett DL, Duffy MF, Ralph SA, McConville MJ, Tilley L, Cobbold SA. Decreased K13 Abundance Reduces Hemoglobin Catabolism and Proteotoxic Stress, Underpinning Artemisinin Resistance. Cell Rep 2020; 29:2917-2928.e5. [PMID: 31775055 DOI: 10.1016/j.celrep.2019.10.095] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/08/2019] [Accepted: 10/23/2019] [Indexed: 01/09/2023] Open
Abstract
Increased tolerance of Plasmodium falciparum to front-line artemisinin antimalarials (ARTs) is associated with mutations in Kelch13 (K13), although the precise role of K13 remains unclear. Here, we show that K13 mutations result in decreased expression of this protein, while mislocalization of K13 mimics resistance-conferring mutations, pinpointing partial loss of function of K13 as the relevant molecular event. K13-GFP is associated with ∼170 nm diameter doughnut-shaped structures at the parasite periphery, consistent with the location and dimensions of cytostomes. Moreover, the hemoglobin-peptide profile of ring-stage parasites is reduced when K13 is mislocalized. We developed a pulse-SILAC approach to quantify protein turnover and observe less disruption to protein turnover following ART exposure when K13 is mislocalized. Our findings suggest that K13 regulates digestive vacuole biogenesis and the uptake/degradation of hemoglobin and that ART resistance is mediated by a decrease in heme-dependent drug activation, less proteotoxicity, and increased survival of parasite ring stages.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Lee M Yeoh
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Madel V Tutor
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Matthew W Dixon
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Paul J McMillan
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia; Biological Optical Microscopy Platform, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Stanley C Xie
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jessica L Bridgford
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - David L Gillett
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Michael F Duffy
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Stuart A Ralph
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Simon A Cobbold
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
45
|
Moussaoui D, Robblee JP, Auguin D, Krementsova EB, Haase S, Blake TCA, Baum J, Robert-Paganin J, Trybus KM, Houdusse A. Full-length Plasmodium falciparum myosin A and essential light chain PfELC structures provide new anti-malarial targets. eLife 2020; 9:e60581. [PMID: 33046215 PMCID: PMC7553781 DOI: 10.7554/elife.60581] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Parasites from the genus Plasmodium are the causative agents of malaria. The mobility, infectivity, and ultimately pathogenesis of Plasmodium falciparum rely on a macromolecular complex, called the glideosome. At the core of the glideosome is an essential and divergent Myosin A motor (PfMyoA), a first order drug target against malaria. Here, we present the full-length structure of PfMyoA in two states of its motor cycle. We report novel interactions that are essential for motor priming and the mode of recognition of its two light chains (PfELC and MTIP) by two degenerate IQ motifs. Kinetic and motility assays using PfMyoA variants, along with molecular dynamics, demonstrate how specific priming and atypical sequence adaptations tune the motor's mechano-chemical properties. Supported by evidence for an essential role of the PfELC in malaria pathogenesis, these structures provide a blueprint for the design of future anti-malarials targeting both the glideosome motor and its regulatory elements.
Collapse
Affiliation(s)
- Dihia Moussaoui
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144ParisFrance
| | - James P Robblee
- Department of Molecular Physiology and Biophysics, University of VermontBurlingtonUnited States
| | - Daniel Auguin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d’Orléans, INRAE, USC1328OrléansFrance
| | - Elena B Krementsova
- Department of Molecular Physiology and Biophysics, University of VermontBurlingtonUnited States
| | - Silvia Haase
- Department of Life Sciences, Imperial College London, South KensingtonLondonUnited Kingdom
| | - Thomas CA Blake
- Department of Life Sciences, Imperial College London, South KensingtonLondonUnited Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South KensingtonLondonUnited Kingdom
| | - Julien Robert-Paganin
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144ParisFrance
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of VermontBurlingtonUnited States
| | - Anne Houdusse
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144ParisFrance
| |
Collapse
|
46
|
Blake TCA, Haase S, Baum J. Actomyosin forces and the energetics of red blood cell invasion by the malaria parasite Plasmodium falciparum. PLoS Pathog 2020; 16:e1009007. [PMID: 33104759 PMCID: PMC7644091 DOI: 10.1371/journal.ppat.1009007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/05/2020] [Accepted: 09/28/2020] [Indexed: 11/29/2022] Open
Abstract
All symptoms of malaria disease are associated with the asexual blood stages of development, involving cycles of red blood cell (RBC) invasion and egress by the Plasmodium spp. merozoite. Merozoite invasion is rapid and is actively powered by a parasite actomyosin motor. The current accepted model for actomyosin force generation envisages arrays of parasite myosins, pushing against short actin filaments connected to the external milieu that drive the merozoite forwards into the RBC. In Plasmodium falciparum, the most virulent human malaria species, Myosin A (PfMyoA) is critical for parasite replication. However, the precise function of PfMyoA in invasion, its regulation, the role of other myosins and overall energetics of invasion remain unclear. Here, we developed a conditional mutagenesis strategy combined with live video microscopy to probe PfMyoA function and that of the auxiliary motor PfMyoB in invasion. By imaging conditional mutants with increasing defects in force production, based on disruption to a key PfMyoA phospho-regulation site, the absence of the PfMyoA essential light chain, or complete motor absence, we define three distinct stages of incomplete RBC invasion. These three defects reveal three energetic barriers to successful entry: RBC deformation (pre-entry), mid-invasion initiation, and completion of internalisation, each requiring an active parasite motor. In defining distinct energetic barriers to invasion, these data illuminate the mechanical challenges faced in this remarkable process of protozoan parasitism, highlighting distinct myosin functions and identifying potential targets for preventing malaria pathogenesis.
Collapse
Affiliation(s)
- Thomas C. A. Blake
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Silvia Haase
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| |
Collapse
|
47
|
Jennison C, Lucantoni L, O'Neill MT, McConville R, Erickson SM, Cowman AF, Sleebs BE, Avery VM, Boddey JA. Inhibition of Plasmepsin V Activity Blocks Plasmodium falciparum Gametocytogenesis and Transmission to Mosquitoes. Cell Rep 2020; 29:3796-3806.e4. [PMID: 31851913 DOI: 10.1016/j.celrep.2019.11.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/14/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Plasmodium falciparum gametocytes infect mosquitoes and are responsible for malaria transmission. New interventions that block transmission could accelerate malaria elimination. Gametocytes develop within erythrocytes and activate protein export pathways that remodel the host cell. Plasmepsin V (PMV) is an aspartyl protease that is required for protein export in asexual parasites, but its function and essentiality in gametocytes has not been definitively proven, nor has PMV been assessed as a transmission-blocking drug target. Here, we show that PMV is expressed and can be inhibited specifically in P. falciparum stage I-II gametocytes. PMV inhibitors block processing and export of gametocyte effector proteins and inhibit development of stage II-V gametocytes. Gametocytogenesis in the presence of sublethal inhibitor concentrations results in stage V gametocytes that fail to infect mosquitoes. Therefore, PMV primes gametocyte effectors for export, which is essential for the development and fitness of gametocytes for transmission to mosquitoes.
Collapse
Affiliation(s)
- Charlie Jennison
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Leonardo Lucantoni
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan 4111, QLD, Australia
| | - Matthew T O'Neill
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia
| | - Robyn McConville
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Sara M Erickson
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan 4111, QLD, Australia
| | - Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia.
| |
Collapse
|
48
|
Abstract
Malaria elimination efforts have been repeatedly hindered by the evolution and spread of multidrug-resistant strains of Plasmodium falciparum. The absence of a commercially available vaccine emphasizes the need for a better understanding of Plasmodium biology in order to further translational research. This has been partly facilitated by targeted gene deletion strategies for the functional analysis of parasite genes. However, genes that are essential for parasite replication in erythrocytes are refractory to such methods, and require conditional knockdown or knockout approaches to dissect their function. One such approach is the TetR-DOZI system that employs multiple synthetic aptamers in the untranslated regions of target genes to control their expression in a tetracycline-dependent manner. Maintaining modified parasites with intact aptamer copies has been challenging since these repeats can be lost by recombination. By interspacing the aptamers with unique sequences, we created a stable genetic system that remains effective at controlling target gene expression. One of the most powerful approaches to understanding gene function involves turning genes on and off at will and measuring the impact at the cellular or organismal level. This particularly applies to the cohort of essential genes where traditional gene knockouts are inviable. In Plasmodium falciparum, conditional control of gene expression has been achieved by using multicomponent systems in which individual modules interact with each other to regulate DNA recombination, transcription, or posttranscriptional processes. The recently devised TetR-DOZI aptamer system relies on the ligand-regulatable interaction of a protein module with synthetic RNA aptamers to control the translation of a target gene. This technique has been successfully employed to study essential genes in P. falciparum and involves the insertion of several aptamer copies into the 3′ untranslated regions (UTRs), which provide control over mRNA fate. However, aptamer repeats are prone to recombination and one or more copies can be lost from the system, resulting in a loss of control over target gene expression. We rectified this issue by redesigning the aptamer array to minimize recombination while preserving the control elements. As proof of concept, we compared the original and modified arrays for their ability to knock down the levels of a putative essential apicoplast protein (PF3D7_0815700) and demonstrated that the modified array is highly stable and efficient. This redesign will enhance the utility of a tool that is quickly becoming a favored strategy for genetic studies in P. falciparum. IMPORTANCE Malaria elimination efforts have been repeatedly hindered by the evolution and spread of multidrug-resistant strains of Plasmodium falciparum. The absence of a commercially available vaccine emphasizes the need for a better understanding of Plasmodium biology in order to further translational research. This has been partly facilitated by targeted gene deletion strategies for the functional analysis of parasite genes. However, genes that are essential for parasite replication in erythrocytes are refractory to such methods, and require conditional knockdown or knockout approaches to dissect their function. One such approach is the TetR-DOZI system that employs multiple synthetic aptamers in the untranslated regions of target genes to control their expression in a tetracycline-dependent manner. Maintaining modified parasites with intact aptamer copies has been challenging since these repeats can be lost by recombination. By interspacing the aptamers with unique sequences, we created a stable genetic system that remains effective at controlling target gene expression.
Collapse
|
49
|
Rapid activation of distinct members of multigene families in Plasmodium spp. Commun Biol 2020; 3:351. [PMID: 32620892 PMCID: PMC7334209 DOI: 10.1038/s42003-020-1081-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/17/2020] [Indexed: 01/23/2023] Open
Abstract
The genomes of Plasmodium spp. encode a number of different multigene families that are thought to play a critical role for survival. However, with the exception of the P. falciparum var genes, very little is known about the biological roles of any of the other multigene families. Using the recently developed Selection Linked Integration method, we have been able to activate the expression of a single member of a multigene family of our choice in Plasmodium spp. from its endogenous promoter. We demonstrate the usefulness of this approach by activating the expression of a unique var, rifin and stevor in P. falciparum as well as yir in P. yoelii. Characterization of the selected parasites reveals differences between the different families in terms of mutual exclusive control, co-regulation, and host adaptation. Our results further support the application of the approach for the study of multigene families in Plasmodium and other organisms. Omelianczyk, Loh et al. activate the expression of a single member of a multigene family in Plasmodium spp. from its endogenous promoter, identifying differences between the different families. This study supports the application of the Selection Linked Integration method for studying multigene families in Plasmodium.
Collapse
|
50
|
Amlabu E, Ilani P, Opoku G, Nyarko PB, Quansah E, Thiam LG, Anim M, Ayivor-Djanie R, Akuh OA, Mensah-Brown H, Rayner JC, Awandare GA. Molecular Characterization and Immuno-Reactivity Patterns of a Novel Plasmodium falciparum Armadillo-Type Repeat Protein, PfATRP. Front Cell Infect Microbiol 2020; 10:114. [PMID: 32266165 PMCID: PMC7100384 DOI: 10.3389/fcimb.2020.00114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/02/2020] [Indexed: 01/30/2023] Open
Abstract
Nearly half of the genes in the Plasmodium falciparum genome have not yet been functionally investigated. We used homology-based structural modeling to identify multiple copies of Armadillo repeats within one uncharacterized gene expressed during the intraerythrocytic stages, PF3D7_0410600, subsequently referred to as P. falciparum Armadillo-Type Repeat Protein (PfATRP). Soluble recombinant PfATRP was expressed in a bacterial expression system, purified to apparent homogeneity and the identity of the recombinant PfATRP was confirmed by mass spectrometry. Affinity-purified α-PfATRP rabbit antibodies specifically recognized the recombinant protein. Immunofluorescence assays revealed that α-PfATRP rabbit antibodies reacted with P. falciparum schizonts. Anti-PfATRP antibody exhibited peripheral staining patterns around the merozoites. Given the localization of PfATRP in merozoites, we tested for an egress phenotype during schizont arrest assays and demonstrated that native PfATRP is inaccessible on the surface of merozoites in intact schizonts. Dual immunofluorescence assays with markers for the inner membrane complex (IMC) and microtubules suggest partial colocalization in both asexual and sexual stage parasites. Using the soluble recombinant PfATRP in a screen of plasma samples revealed that malaria-infected children have naturally acquired PfATRP-specific antibodies.
Collapse
Affiliation(s)
- Emmanuel Amlabu
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Kogi State University, Anyigba, Nigeria
| | - Philip Ilani
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Grace Opoku
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Prince B. Nyarko
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Evelyn Quansah
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Laty G. Thiam
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Manfred Anim
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Reuben Ayivor-Djanie
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biomedical Sciences, SBBS, University of Health and Allied Sciences, Ho, Ghana
| | - Ojo-ajogu Akuh
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Henrietta Mensah-Brown
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Gordon A. Awandare
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|