1
|
Li H, Cai X, Xu C, Yang X, Song X, Kong Y, Yang M, Wu Q, Zheng SG, Shao Y, Wang P, Zhou J, Li HB. RNA cytidine acetyltransferase NAT10 maintains T cell pathogenicity in inflammatory bowel disease. Cell Discov 2025; 11:19. [PMID: 40038243 DOI: 10.1038/s41421-025-00781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
The emerging field of epitranscriptomics is reshaping our understanding of post-transcriptional gene regulation in inflammatory diseases. N4-acetylcytidine (ac4C), the only known acetylation modification in RNA catalyzed by N-acetyltransferase 10 (NAT10), is known to enhance mRNA stability and translation, yet its role in inflammatory bowel disease (IBD) remains unclear. In this study, we discovered that Nat10 expression correlates with inflammatory and apoptotic pathways in human ulcerative colitis CD4+ T cells. Our further analysis revealed that the deficiency of NAT10 led to a disruption of T cell development at steady state, and identified a pivotal role for NAT10 in preserving the pathogenicity of naïve CD4+ T cells to induce adoptive transfer colitis. Mechanistically, the lack of NAT10 triggers the diminished stability of the anti-apoptotic gene BCL2-associated athanogene 3 (Bag3), initiating a cascade of events that includes the upregulation of apoptosis-related genes and an accelerated rate of apoptosis in T cells. Our findings reveal a previously unrecognized role of the NAT10-ac4C-Bag3 axis in preserving T cell balance and suggests that targeting RNA ac4C modification could be a promising therapeutic approach for IBD.
Collapse
Affiliation(s)
- Haixin Li
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuemin Cai
- Institute of Immunological Innovation and Translation, Chongqing Medical University, Chongqing, China
| | - Changfen Xu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhui Yang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaohan Song
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxin Kong
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Mei Yang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qielan Wu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Song Guo Zheng
- Department of Rheumatology & Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiming Shao
- The Key Laboratory of Sepsis Translational Medicine, Guangdong Medical University; Dongguan Key Laboratory of Sepsis Translational Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Jing Zhou
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hua-Bing Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Immunological Innovation and Translation, Chongqing Medical University, Chongqing, China.
- Department of Geriatrics, Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
2
|
Akele M, Iervolino M, Van Belle S, Christ F, Debyser Z. Role of LEDGF/p75 (PSIP1) in oncogenesis. Insights in molecular mechanism and therapeutic potential. Biochim Biophys Acta Rev Cancer 2025; 1880:189248. [PMID: 39701326 DOI: 10.1016/j.bbcan.2024.189248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Aberrant gene expression due to dysfunction in proteins involved in transcriptional regulation is a hallmark of tumor development. Indeed, targeting transcriptional regulators represents an emerging approach in cancer therapeutics. Lens epithelium-derived growth factor (LEDGF/p75, PSIP1) is a co-transcriptional activator that tethers several proteins to the chromatin. LEDGF/p75 has been implicated in diseases such as HIV infection and KMT2A-rearranged leukemia. Notably, LEDGF/p75 is upregulated in various human cancers including prostate and breast cancer. In this review, we discuss the essential role of LEDGF/p75 in different malignancies and explore its mechanistic contribution to tumorigenesis revealing its potential as a therapeutic target for chemotherapy.
Collapse
Affiliation(s)
- Muluembet Akele
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Matteo Iervolino
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Siska Van Belle
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Belenichev I, Popazova O, Bukhtiyarova N, Ryzhenko V, Pavlov S, Suprun E, Oksenych V, Kamyshnyi O. Targeting Mitochondrial Dysfunction in Cerebral Ischemia: Advances in Pharmacological Interventions. Antioxidants (Basel) 2025; 14:108. [PMID: 39857442 PMCID: PMC11760872 DOI: 10.3390/antiox14010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The study of mitochondrial dysfunction has become increasingly pivotal in elucidating the pathophysiology of various cerebral pathologies, particularly neurodegenerative disorders. Mitochondria are essential for cellular energy metabolism, regulation of reactive oxygen species (ROS), calcium homeostasis, and the execution of apoptotic processes. Disruptions in mitochondrial function, driven by factors such as oxidative stress, excitotoxicity, and altered ion balance, lead to neuronal death and contribute to cognitive impairments in several brain diseases. Mitochondrial dysfunction can arise from genetic mutations, ischemic events, hypoxia, and other environmental factors. This article highlights the critical role of mitochondrial dysfunction in the progression of neurodegenerative diseases and discusses the need for targeted therapeutic strategies to attenuate cellular damage, restore mitochondrial function, and enhance neuroprotection.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine;
| | - Olena Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Victor Ryzhenko
- Department of Medical and Pharmaceutical Informatics and Advanced Technologies, Zaporizhzhia State Medical University, 69000 Zaporizhzhia, Ukraine
| | - Sergii Pavlov
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Elina Suprun
- The State Institute of Neurology, Psychiatry and Narcology of the National Academy of Medical Sciences of Ukraine, 46 Academician Pavlov Street, 61076 Kharkov, Ukraine
| | | | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
4
|
Vladimirova SA, Kokoreva NE, Guzhova IV, Alhasan BA, Margulis BA, Nikotina AD. Unveiling the HSF1 Interaction Network: Key Regulators of Its Function in Cancer. Cancers (Basel) 2024; 16:4030. [PMID: 39682216 DOI: 10.3390/cancers16234030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Heat shock factor 1 (HSF1) plays a central role in orchestrating the heat shock response (HSR), leading to the activation of multiple heat shock proteins (HSPs) genes and approximately thousands of other genes involved in various cellular functions. In cancer cells, HSPs play a particular role in coping with the accumulation of damaged proteins resulting from dysregulated translation and post-translational processes. This proteotoxic stress is a hallmark of cancer cells and causes constitutive activation of HSR. Beyond its role in the HSR, HSF1 regulates diverse processes critical for tumor cells, including proliferation, cell death, and drug resistance. Emerging evidence also highlights HSF1's involvement in remodeling the tumor immune microenvironment as well as in the maintenance of cancer stem cells. Consequently, HSF1 has emerged as an attractive therapeutic target, prompting the development of specific HSF1 inhibitors that have progressed to clinical trials. Importantly, HSF1 possesses a broad interactome, forming protein-protein interactions (PPIs) with components of signaling pathways, transcription factors, and chromatin regulators. Many of these interactors modulate HSF1's activity and HSF1-dependent gene expression and are well-recognized targets for cancer therapy. This review summarizes the current knowledge on HSF1 interactions with molecular chaperones, protein kinases, and other regulatory proteins. Understanding the key HSF1 interactions promoting cancer progression, along with identifying factors that disrupt these protein complexes, may offer valuable insights for developing innovative therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Snezhana A Vladimirova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| | - Nadezhda E Kokoreva
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| | - Irina V Guzhova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| | - Bashar A Alhasan
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| | - Boris A Margulis
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| | - Alina D Nikotina
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
5
|
Varghese J, Link B, Wong B, Thundathil JC. Comparison of the developmental competence of in vitro-produced mouse embryos cultured under 5 versus 2% O 2 with in vivo-derived blastocysts. J Assist Reprod Genet 2024; 41:3089-3103. [PMID: 39313714 PMCID: PMC11621300 DOI: 10.1007/s10815-024-03267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
PURPOSE The prevalence of infertility in Canada has substantially increased over 30 years, and plateaued success rates of culture systems warrant further optimization for transfer outcomes. In clinical programs, embryos commonly undergo extended culture under 5% O2 until the blastocyst stage. The aim of this study is to characterize the developmental competence and stress-related responses of embryos cultured under 5 versus 2% O2 in comparison to in vivo-derived blastocysts. We hypothesized 2% O2 compromises developmental competence through altered embryonic stress responses and induction of apoptosis-related genes relative to those cultured under 5% O2 and in vivo-derived blastocysts. METHODS Quantitative measures of development and relative expressions of a cohort of stress-related genes in CD1 mouse zygotes cultured to blastocysts under 5 or 2% O2 were compared to in vivo-derived embryos. Apoptotic responses were evaluated using an immunofluorescence assay for Caspase-3. RESULTS The mean percentage of blastocysts developed, and total cell number of embryos derived in vivo or cultured under 5% O2 was significantly higher than those cultured under 2% O2. Blastocyst expansion was greatest in embryos cultured under 5% O2. Stress response genes were significantly upregulated in embryos cultured under 2% O2, and expression of antioxidant-related genes was significantly lower in cultured versus in vivo-derived embryos. Caspase-3 immunofluorescence was significantly higher in cultured embryos versus in vivo-derived embryos. CONCLUSION We inferred that 5% O2 systems better approximate physiologic oxygen availability for culture of mouse embryos, warranting re-evaluation of culturing embryos under threshold or sub-physiologic oxygen concentrations during clinical IVF programs.
Collapse
Affiliation(s)
- Jacob Varghese
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Brad Link
- Regional Fertility Program, 2000 Veterans Pl NW #400, Calgary, AB, T3B 4N2, Canada
| | - Ben Wong
- Regional Fertility Program, 2000 Veterans Pl NW #400, Calgary, AB, T3B 4N2, Canada
| | - Jacob C Thundathil
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
6
|
Zaman M, Khan FU, Younas W, Noorullah M, Ullah I, Li L, Zuberi A, Wang Y. Physiological and histopathological effects of polystyrene nanoparticles on the filter-feeding fish Hypophthalmichthys molitrix. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169376. [PMID: 38104827 DOI: 10.1016/j.scitotenv.2023.169376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Excessive use of plastics in daily life is causing plastic pollution in aquatic environment and threatening the aquatic life. Therefore, research on the plastic pollution in aquatic environment is crucial to understand its impact and develop effective solution for safeguarding aquatic life and ecosystem. The current study investigated the effects of water borne polystyrene nanoparticles (PS-NPs) on hemato-immunological indices, serum metabolic enzymes, gills, and liver antioxidant parameters, plasma cortisol level and histopathological changes in liver and gill tissues of the widely distributed fish Hypophthalmichthys molitrix. The fingerlings of H. molitrix were exposed to different concentrations (T1-0.5, T2-1.0, and T3-2.0 mg/L) of PS-NPs respectively for 15 days consecutively. Our results indicated the dose dependent negative effects of PS-NPs on the physiology and histopathology of H. molitrix. Immuno-hematological indices showed significant increase in WBCs count, phagocytic activity, and lysozyme activity, while decreased RBC count, Hct%, Hb level, total proteins, IgM, and respiratory burst activity were observed. The levels of antioxidant enzymes like SOD, CAT and POD showed the decreasing trends while metabolic enzymes (AST, ALT, ALP and LDH), LPO, ROS activities and relative expressions of SOD1, CAT, HIF1-α and HSP-70 genes increased with increased concentrations of PS-NPs. Moreover, blood glucose and cortisol levels also showed significant increasing trends with dose dependent manner. Histopathological examination indicated moderate to severe changes in the gills and liver tissues of the group treated with 2.0 mg/L of PS-NPs. Overall, the results showed the deleterious effects of PS-NPs on physiology, immunity, metabolism, and gene expressions of H. molitrix. It is concluded that particulate plastic pollution has deleterious effects on filter feeding fish, which might affect human health through food chain and particulate chemical toxicity.
Collapse
Affiliation(s)
- Muhib Zaman
- Fisheries & Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fahim Ullah Khan
- Fisheries & Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Waqar Younas
- Fisheries & Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Noorullah
- Fisheries & Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Imdad Ullah
- Fisheries & Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Li'ang Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Amina Zuberi
- Fisheries & Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
7
|
Dey MK, Devireddy RV. Adult Stem Cells Freezing Processes and Cryopreservation Protocols. Methods Mol Biol 2024; 2783:53-89. [PMID: 38478226 DOI: 10.1007/978-1-0716-3762-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The development of simple but effective storage protocols for adult stem cells will greatly enhance their use and utility in tissue-engineering applications. Cryopreservation has shown the most promise but is a fairly complex process, necessitating the use of chemicals called cryoprotective agents (CPAs), freezing equipment, and obviously, storage in liquid nitrogen. The purpose of this chapter is to present a general overview of cryopreservation storage techniques and the optimal protocols/results obtained in our laboratory for long-term storage of adult stem cells using freezing storage.
Collapse
Affiliation(s)
- Mohan Kumar Dey
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Ram V Devireddy
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
8
|
Huang Q, Xie R, Wu X, Zhao K, Li H, Tang H, Du H, Peng X, Chen L, Zhang J. Insights into the Protein Differentiation Mechanism between Jinhua Fatty Ham and Lean Ham through Label-Free Proteomics. Foods 2023; 12:4348. [PMID: 38231787 DOI: 10.3390/foods12234348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
Jinhua lean ham (LH), a dry-cured ham made from the defatted hind legs of pigs, has become increasingly popular among consumers with health concerns. However, the influence of fat removal on the quality of Jinhua ham is still not fully understood. Therefore, a label-free proteomics strategy was used to explore the protein differential profile between Jinhua fatty ham (FH) and lean ham (LH). Results showed that 179 differential proteins (DPs) were detected, including 82 up-regulated and 97 down-regulated DPs in LH vs. FH, among which actin, myosin, tropomyosin, aspartate aminotransferase, pyruvate carboxylase, and glucose-6-phosphate isomerase were considered the key DPs. GO analysis suggested that DPs were mainly involved in binding, catalytic activity, cellular process, and metabolic process, among which catalytic activity was significantly up-regulated in LH. Moreover, the main KEGG-enriched pathways of FH focused on glycogen metabolism, mainly including the TCA cycle, pyruvate metabolism, and glycolysis/gluconeogenesis. However, amino acid metabolism and oxidative phosphorylation were the main metabolic pathways in LH. From the protein differentiation perspective, fat removal significantly promoted protein degradation, amino acid metabolism, and the oxidative phosphorylation process. These findings could help us to understand the effects of fat removal on the nutritional metabolism of Jinhua hams and provide theoretical supports for developing healthier low-fat meat products.
Collapse
Affiliation(s)
- Qicheng Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ruoyu Xie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoli Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ke Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huanhuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Honggang Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hongying Du
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyan Peng
- College of Life Science, Yantai University, Yantai 264005, China
| | - Lihong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
9
|
Das K, Bhatt N, Parambil AM, Kumari K, Kumar R, Rawat K, Rajamani P, Bohidar HB, Nadeem A, Muthupandian S, Meena R. Divergent Responses of Hydrophilic CdSe and CdSe@CdS Core-Shell Nanocrystals in Apoptosis and In Vitro Cancer Cell Imaging: A Comparative Analysis. J Funct Biomater 2023; 14:448. [PMID: 37754862 PMCID: PMC10531721 DOI: 10.3390/jfb14090448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/28/2023] Open
Abstract
With their distinctive core-shell design, core-shell nanocrystals have drawn interest in catalysis, medicinal research, and nanotechnology. These nanocrystals have a variety of characteristics and possible uses. The application of core-shell nanocrystals offers significant potential in increasing diagnostic and therapeutic approaches for cancer research in apoptosis and in vitro cancer cell imaging. In the present study, we investigated the fluorescence behavior of hydrophilic CdSe (core-only) and CdSe@CdS (core-shell) nanocrystals (NCs) and their potential in cancer cell imaging. The addition of a CdS coating to CdSe NCs increased the fluorescence intensity tenfold. The successful fabrication of core-shell CdSe@CdS nanocrystals was proven by a larger particle size (evaluated via DLS and TEM) and their XRD pattern and surface morphology compared to CdSe (core-only) NCs. When these NCs were used for bioimaging in MCF-7 and HEK-293 cell lines, they demonstrated excellent cellular uptake due to higher fluorescence intensity within cancerous cells than normal cells. Comparative cytotoxicity studies revealed that CdSe NCs were more toxic to all three cell lines (HEK-293, MCF-7, and HeLa) than CdSe@CdS core-shell structures. Furthermore, a decrease in mitochondrial membrane potential and intracellular ROS production supported NCs inducing oxidative stress, which led to apoptosis via the mitochondria-mediated pathway. Increased cytochrome c levels, regulation of pro-apoptotic gene expression (e.g., p53, Bax), and down-regulation of Bcl-2 all suggested cellular apoptosis occurred via the intrinsic pathway. Significantly, at an equivalent dose of core-shell NCs, core-only NCs induced more oxidative stress, resulting in increased apoptosis. These findings shed light on the role of a CdS surface coating in reducing free radical release, decreasing cytotoxicity, and improving fluorescence, advancing the field of cell imaging.
Collapse
Affiliation(s)
- Kishan Das
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.D.); (H.B.B.)
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi 110096, India
| | - Neelima Bhatt
- School of Environment Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (N.B.); (A.M.P.); (R.K.); (P.R.)
| | - Ajith Manayil Parambil
- School of Environment Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (N.B.); (A.M.P.); (R.K.); (P.R.)
| | - Kajal Kumari
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Raj Kumar
- School of Environment Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (N.B.); (A.M.P.); (R.K.); (P.R.)
| | - Kamla Rawat
- Department of Chemistry, Jamia Hamdard University, New Delhi 110062, India;
| | - Paulraj Rajamani
- School of Environment Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (N.B.); (A.M.P.); (R.K.); (P.R.)
| | - Himadri B. Bohidar
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.D.); (H.B.B.)
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Saravanan Muthupandian
- AMR and Nanomedicine Laboratory, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India
| | - Ramovatar Meena
- School of Environment Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (N.B.); (A.M.P.); (R.K.); (P.R.)
| |
Collapse
|
10
|
Liu Y, Sun H, Ye R, Du J, Zhang H, Zhou A, Qiao K, Wang J. Potential candidate genes and pathways related to cytoplasmic male sterility in Dianthus spiculifolius as revealed by transcriptome analysis. PLANT CELL REPORTS 2023; 42:1503-1516. [PMID: 37452219 DOI: 10.1007/s00299-023-03045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
KEY MESSAGE We introduced the candidate gene DsHSP70 into Arabidopsis thaliana, resulting in male gametophyte sterility and abnormal degeneration of sepals and petals. Cytoplasmic male sterility (CMS) is a useful tool for hybrid production. However, the regulatory mechanism of CMS in Dianthus spiculifolius remains unclear. In this study, we investigated whether male-sterile line of D. spiculifolius has a malformed tapetum and fails to produce normal fertile pollen. RNA sequencing technology was used to compare the gene expression patterns of the D. spiculifolius male-sterile line and its male fertility maintainer line during anther development. A total of 12,365 differentially expressed genes (DEGs) were identified, among which 1765 were commonly expressed in the S1, S2 and S3 stages. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that these DEGs were mainly involved in oxidation-reduction processes, signal transduction and programmed cell death. Additionally, weighted correlation network analysis (WGCNA) showed that three modules may be related to male sterility. A putative regulatory pathway for the male sterility traits was constructed based on the reproductive development network. After introducing the candidate DsHSP70 gene into Arabidopsis thaliana, we found that overexpressing plants showed anther abortion and shorter filaments, and accompanied by abnormal degeneration of sepals and petals. In summary, our results identified potential candidate genes and pathways related to CMS in D. spiculifolius, providing new insights for further research on the mechanism of male sterility.
Collapse
Affiliation(s)
- Yingzhu Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Han Sun
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Rong Ye
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Jinxue Du
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Haizhen Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Aimin Zhou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Kun Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Jingang Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
11
|
Chen Y, Zhang Y, Wang X, Zhou J, Ma L, Li J, Yang L, Ouyang H, Yuan H, Pang D. Transmissible Gastroenteritis Virus: An Update Review and Perspective. Viruses 2023; 15:v15020359. [PMID: 36851573 PMCID: PMC9958687 DOI: 10.3390/v15020359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a member of the alphacoronavirus genus, which has caused huge threats and losses to pig husbandry with a 100% mortality in infected piglets. TGEV is observed to be recombining and evolving unstoppably in recent years, with some of these recombinant strains spreading across species, which makes the detection and prevention of TGEV more complex. This paper reviews and discusses the basic biological properties of TGEV, factors affecting virulence, viral receptors, and the latest research advances in TGEV infection-induced apoptosis and autophagy to improve understanding of the current status of TGEV and related research processes. We also highlight a possible risk of TGEV being zoonotic, which could be evidenced by the detection of CCoV-HuPn-2018 in humans.
Collapse
Affiliation(s)
- Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lerong Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jianing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lin Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Correspondence: (H.Y.); (D.P.); Tel.: +86-431-8783-6175 (D.P.)
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
- Correspondence: (H.Y.); (D.P.); Tel.: +86-431-8783-6175 (D.P.)
| |
Collapse
|
12
|
Li H, He W, Yue D, Wang M, Yuan X, Huang K. Low doses of fumonisin B1 exacerbate ochratoxin A-induced renal injury in mice and the protective roles of heat shock protein 70. Chem Biol Interact 2023; 369:110240. [PMID: 36397609 DOI: 10.1016/j.cbi.2022.110240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022]
Abstract
Fumonisin B1 (FB1) and ochratoxin A (OTA) possess nephrotoxicity to animals and widely co-exist in food and feedstuffs. FB1 rarely, while OTA often, causes toxicosis in animals. Heat shock protein 70 (Hsp70) resists lung injury induced by pneumolysin, but whether Hsp70 could remission mycotoxins-induced renal injury is still unknown. The present study aims to explore the impacts of nontoxic doses of FB1 on OTA-induced nephrotoxicity and the protective roles of Hsp70. In the mycotoxins-challenge experiment, ICR mice were co-exposed to nontoxic doses of FB1 (0, 0.2, 0.5, 1.0 mg/kg bw, IP) and toxic dose of OTA (0.4 mg/kg bw, IP) for 16 d. The results showed that the levels of BUN, Cr, MDA in serum, the Cyto C in renal tubes or glomerulus, pro-apoptosis genes and p-JNK protein expression in kidney were significantly increased. Histopathological results revealed the glomerular swelling. The above all indexes were dose-dependent. In the protection experiment, the mice were pretreated with the eukaryotic plasmid of pEGFP-C3-Hsp70, these increasing parameters in the mycotoxins-challenge experiment were reversed. In vitro, after pK-15 cells were treated with 8 μM FB1 and 5 μM OTA for 48 h, the mitochondrial membrane potential was significantly reduced, mitochondrial ROS was remarkably increased, more Cyto C was leaked from mitochondria into cytoplasm, and pro-apoptosis genes were significantly up-regulated. After the Hsp70 level was up-regulated by pEGFP-C3-Hsp70 or ML346 in pK-15 cells, these above indexes were reversed. However, activation of JNK by anisomycin significantly suppressed the protective effects of Hsp70. Our results demonstrate that the nontoxic doses of FB1 exacerbate the toxic dose of OTA-induced renal injury, while Hsp70 alleviates renal injury by inhibiting the JNK/MAPK signaling pathway. Hsp70 up-regulation may be an efficient strategy for protecting against tissue damage and bio-function impairment induced by co-exposure to FB1 and OTA.
Collapse
Affiliation(s)
- Haolei Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Wenmiao He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Dongmei Yue
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Mengmeng Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xin Yuan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
13
|
Severe heat stress modulated nuclear factor erythroid 2-related factor 2 and macrophage migration inhibitory factor pathway in rat liver. J Cell Commun Signal 2022; 16:547-566. [PMID: 35260968 PMCID: PMC9733776 DOI: 10.1007/s12079-022-00668-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Heat stress impairs physiology and overall functionality of the body at tissue and organ level in animals. Liver being a vital organ performs more than hundreds regulatory functions of the body. Present study investigates the modulation of molecular pathways that are responsible for liver damage triggered by heat stress. Male Sprague dawley rats were exposed to heat stress (45 °C) in heat simulation chamber till core temperature reaches 40 °C and 42 °C in 25 and 42 min respectively. For in-depth evaluation of liver functions during severe heat stress, hepatic transcriptome and proteome were analysed by microarray and two dimensional gel electrophoresis respectively. Results revealed major alterations in redox status, inflammation, mitochondrial dysfunction and proteostasis related pathways. Data of molecular pathway analysis demonstrate that nuclear factor erythroid 2-related factor 2 (NRF-2) mediated oxidative stress response and macrophage migration inhibitory factor (MIF) regulated inflammatory pathways were upregulated in severe heat stressed liver. Expression levels of downstream molecules of above pathways such as heat shock protein 90AB 1, peroxiredoxin 5, Jun N-terminal kinases 1/2, heme-oxygenase 1, apolipoprotein 1 and interleukin 10 were examined and result suggested the upregulation of these genes modulates the NRF-2 and MIF regulated pathways in heat stressed liver. Irregularity in molecular signalling networks lead to mitochondrial dysfunction indicated by upregulation of ATP synthase β and peroxiredoxin 1 along with decreased levels of glucose-6-phosphate dehydrogenase and enhanced activity of cytochrome c in liver mitochondria. Thus, current study demonstrated heat induced alterations in key liver functions were regulated by NRF-2 and MIF pathways.
Collapse
|
14
|
Askari S, Azizi F, Javadpour P, Karimi N, Ghasemi R. Endoplasmic reticulum stress as an underlying factor in leading causes of blindness and potential therapeutic effects of 4-phenylbutyric acid: from bench to bedside. EXPERT REVIEW OF OPHTHALMOLOGY 2022. [DOI: 10.1080/17469899.2022.2145945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Sahar Askari
- Neuroscience Research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Azizi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Javadpour
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Karimi
- Eye and Skull Base Research Centers, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran5Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Askari S, Javadpour P, Rashidi FS, Dargahi L, Kashfi K, Ghasemi R. Behavioral and Molecular Effects of Thapsigargin-Induced Brain ER- Stress: Encompassing Inflammation, MAPK, and Insulin Signaling Pathway. Life (Basel) 2022; 12:life12091374. [PMID: 36143409 PMCID: PMC9500646 DOI: 10.3390/life12091374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Accumulation of misfolded proteins, known as endoplasmic reticulum (ER) stress, is known to participate in Alzheimer’s disease (AD). AD is also correlated with impaired central insulin signaling. However, few studies have probed the relationship between memory, central ER stress, inflammation, hippocampal mitogen-activated protein kinase (MAPK) activity and insulin resistance. The present study aimed to investigate the causative role and underlying mechanisms of brain ER stress in memory impairment and develop a reliable animal model for ER-mediated memory loss. Thapsigargin (TG), a known ER stress activator, was centrally administered. The cognitive function of animals was evaluated by the Morris Water Maze (MWM). To verify the induction of central ER stress, we investigated the mRNA expression of UPR markers in the hippocampus. In addition, the activation of ER stress markers, including Bip, CHOP, and some related apoptosis and pro-inflammatory proteins, such as caspase-3, Bax, Bcl-2, TNF-α, MAPK, and insulin signaling markers, were assessed by Western-blots. The results demonstrated that TG impairs spatial cognition and hippocampal insulin signaling. Meanwhile, molecular results showed a concurrent increment of hippocampal UPR markers, apoptosis, P38 activity, and TNF-α. This study introduced TG-induced ER stress as a pharmacological model for memory impairment in rats and revealed some underlying mechanisms.
Collapse
Affiliation(s)
- Sahar Askari
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
| | - Pegah Javadpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
| | - Fatemeh Sadat Rashidi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, New York, NY 10031, USA
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
- Correspondence: ; Tel.: +98-21-22439971
| |
Collapse
|
16
|
Goto H, Nakashima M, Nakashima H, Noguchi M, Imakiire T, Oshima N, Kinoshita M, Kumagai H. Heat acclimation ameliorated heat stress-induced acute kidney injury and prevented changes in kidney macrophages and fibrosis. Am J Physiol Renal Physiol 2022; 323:F243-F254. [PMID: 35796461 PMCID: PMC9394728 DOI: 10.1152/ajprenal.00065.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heatstroke can cause acute kidney injury (AKI), which reportedly progresses to chronic kidney disease. Kidney macrophages may be involved in such injury. Although heat acclimation (HA) provides thermal resilience, its renoprotective effect and mechanism remain unclear. To investigate heat stress-induced kidney injuries in mice and the mitigating effect of HA on them, male C57/BL6J mice were exposed to heat stress (40℃, 1 h), with or without 5-day HA (38℃, 3 h/day) prior to heat stress. Heat stress damaged kidney proximal tubules with elevation of urinary kidney injury molecule-1 (KIM-1). Kidney fibrosis was observed on day 7 and correlated with the urinary KIM-1 levels on day 3. Kidney resident macrophages decreased on day 1, whereas the number of infiltrating macrophages in the kidney did not change. Both subsets of macrophages polarized to the pro-inflammatory M1 phenotype on day 1; however, they polarized to the anti-inflammatory M2 phenotype on day 7. HA significantly ameliorated heat stress-induced proximal tubular damage and kidney fibrosis. HA substantially increased heat shock protein 70 (Hsp70) expression in the tubules before heat stress and reduced an elevation of cleaved caspase-3 expression after heat stress. HA also induced the Hsp70 expression of resident macrophages and prevented heat stress-induced changes in both subsets of kidney macrophages. These results provide pathophysiological data supporting the renoprotective effect of HA. Further studies are needed to confirm that HA can prevent kidney damage due to heat stress in humans.
Collapse
Affiliation(s)
- Hiroyasu Goto
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Masahiro Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroyuki Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Midori Noguchi
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Toshihiko Imakiire
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Naoki Oshima
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroo Kumagai
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
17
|
The effect of increased ambient temperature on Hsp70, superoxide dismutase, nitric oxide, malondialdehyde, and caspase activity in relation to the intrinsic and extrinsic apoptosis pathway of broiler blood cells. J Therm Biol 2022; 105:103211. [DOI: 10.1016/j.jtherbio.2022.103211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 11/19/2022]
|
18
|
Magalingam KB, Somanath SD, Ramdas P, Haleagrahara N, Radhakrishnan AK. 6-Hydroxydopamine Induces Neurodegeneration in Terminally Differentiated SH-SY5Y Neuroblastoma Cells via Enrichment of the Nucleosomal Degradation Pathway: a Global Proteomics Approach. J Mol Neurosci 2022; 72:1026-1046. [PMID: 35258800 PMCID: PMC9064865 DOI: 10.1007/s12031-021-01962-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/22/2021] [Indexed: 01/07/2023]
Abstract
The SH-SY5Y human neuroblastoma cells have been used for decades as a cell-based model of dopaminergic neurons to explore the underlying science of cellular and molecular mechanisms of neurodegeneration in Parkinson’s disease (PD). However, data revealing the protein expression changes in 6-OHDA induced cytotoxicity in differentiated SH-SY5Y cells remain void. Therefore, we investigated the differentially regulated proteins expressed in terminally differentiated SH-SY5Y cells (differ-SH-SY5Y neural cells) exposed to 6-hydroxydopamine (6-OHDA) using the LC–MS/MS technology and construed the data using the online bioinformatics databases such as PANTHER, STRING, and KEGG. Our studies demonstrated that the neuronal development in differ-SH-SY5Y neural cells was indicated by the overexpression of proteins responsible for neurite formations such as calnexin (CANX) and calreticulin (CALR) besides significant downregulation of ribosomal proteins. The enrichment of the KEGG ribosome pathway was detected with significant downregulation (p < 0.05) of all the 21 ribosomal proteins in differ-SH-SY5Y neural cells compared with undifferentiated cells. Whereas in the PD model, the pathological changes induced by 6-OHDA were indicated by the presence of unfolded and misfolded proteins, which triggered the response of 10 kDa heat shock proteins (HSP), namely HSPE1 and HSPA9. Moreover, the 6-OHDA-induced neurodegeneration in differ-SH-SY5Y neural cells also upregulated the voltage-dependent anion-selective channel protein 1 (VDAC1) protein and enriched the KEGG systemic lupus erythematosus (SLE) pathway that was regulated by 17 histone proteins (p < 0.05) in differ-SH-SY5Y neural cells. These results suggest that the nucleosomal degradation pathway may have regulated the 6-OHDA induced neurodegeneration in PD cell-based model, which is reflected by increased apoptosis and histone release in differ-SH-SY5Y neural cells.
Collapse
Affiliation(s)
- Kasthuri Bai Magalingam
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia, Bandar Sunway, Malaysia
| | - Sushela Devi Somanath
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Premdass Ramdas
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Nagaraja Haleagrahara
- College of Public Health, Medicine and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia, Bandar Sunway, Malaysia.
- Monash-Industry Palm Oil Education and Research Platform (MIPO), Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
19
|
Molina EM, Kavazis AN, Mendonça MT, Akingbemi BT. Effects of different DDE exposure paradigms on testicular steroid hormone secretion and hepatic oxidative stress in male Long-Evans rats. Gen Comp Endocrinol 2022; 317:113963. [PMID: 34902316 DOI: 10.1016/j.ygcen.2021.113963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 10/16/2021] [Accepted: 12/07/2021] [Indexed: 11/04/2022]
Abstract
Chronic exposure to low doses of anthropogenic chemicals in the environment continues to be a major health issue. Due to concerns about the effects in humans and wildlife, use of persistent organic pollutants, such as dichlorodiphenyltrichloroethane (DDT), is prohibited. However, their ubiquitous nature and persistence allows them to remain in the environment at low levels for decades. Dichlorodiphenyldichloroethylene (DDE) is the most persistent metabolite of DDT and has been shown to cause hepatotoxicity, nephrotoxicity, hormonal disorders, and induce oxidative stress in many organisms. Although the effects of acute exposure to DDT and its metabolite DDE have been extensively studied, the chronic effects of sub-lethal DDE exposure at levels comparable to those found in the environment have not been well documented. Long-Evans male rats were used to determine the effect of relatively chronic and short term DDE (doses ranged from 0.001 to 100 μg/L) exposure on endocrine function and oxidative stress at different developmental time points. We found that circulating serum testosterone (T) levels were significantly decreased and T secretion in testicular explants were significantly influenced in a dose dependent manner in both pre-pubertal and pubertal male rats after DDE exposure, with pubertal rats being the most affected contrary to our original prediction. Additionally, exposure to DDE increased expression of protein oxidation indicating a possible increase in cellular damage caused by oxidative stress. This study suggests that chronic exposures to environmentally relevant levels of DDE affected testicular function and decreased T secretion with implications for reproductive capacity.
Collapse
Affiliation(s)
- Erica M Molina
- Department of Biological Sciences, Auburn University, 331 Funchess Hall, 350 South College St, Auburn, AL 36849, USA.
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, 287 Kinesiology Building, 301 Wire Road, Auburn, AL 36849, USA.
| | - Mary T Mendonça
- Department of Biological Sciences, Auburn University, 331 Funchess Hall, 350 South College St, Auburn, AL 36849, USA.
| | - Benson T Akingbemi
- Department of Anatomy, Physiology and Pharmacology, Auburn University, 1130 Wire Road, Auburn, AL 36849, USA.
| |
Collapse
|
20
|
The Role of p53 Protein in the Realization of the Exogenous Heat Shock Protein 70 Anti-Apoptotic Effect during Axotomy. Cells 2021; 11:cells11010093. [PMID: 35011655 PMCID: PMC8750896 DOI: 10.3390/cells11010093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022] Open
Abstract
The search for effective neuroprotective agents for the treatment of neurotrauma has always been of great interest to researchers around the world. Extracellular heat shock protein 70 (eHsp70) is considered a promising agent to study, as it has been demonstrated to exert a significant neuroprotective activity against various neurodegenerative diseases. We showed that eHsp70 can penetrate neurons and glial cells when added to the incubation medium, and can accumulate in the nuclei of neurons and satellite glial cells after axotomy. eHsp70 reduces apoptosis and necrosis of the glial cells, but not the neurons. At the same time, co-localization of eHsp70 with p53 protein, one of the key regulators of apoptosis, was noted. eHsp70 reduces the level of the p53 protein apoptosis promoter both in glial cells and in the nuclei and cytoplasm of neurons, which indicates its neuroprotective effect. The ability of eHsp70 to reverse the proapoptotic effect of the p53 activator WR1065 may indicate its ability to regulate p53 activity or its proteosome-dependent degradation.
Collapse
|
21
|
Zhang H, Huang H, Zheng P, Feng R, Wang X, Huang F, Ma M, Tian Y, Zhang G. The alleviative effect of thyroid hormone on cold stress-induced apotosis via HSP70 and mitochondrial apoptosis signal pathway in bovine Sertoli cells. Cryobiology 2021; 105:63-70. [PMID: 34863702 DOI: 10.1016/j.cryobiol.2021.11.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022]
Abstract
Thyroid hormone was involved in gene expression and functional regulation in various signal pathways. Cold stress can increase triiodothyronine (T3) level in the blood. The aim of this study was to investigate the effect of T3 on HSP70 expression and apoptosis in Sertoli cells (SCs) under cold stress in vitro culture at 26 °C, and provide a theoretical and practical basis for improving the reproductive efficiency of bulls in cold areas. SCs were treated with different cold stress duration and different T3 concentrations for pre-screening. HSP70 inhibitor was added later, and the apoptotic rate was measured using flow cytometry. The expression of HSP70 and the main genes of mitochondrial apoptosis pathway were determined by means of real-time PCR and western-blot, respectively. The localization of HSP70 was assessed by immunofluorescence. The results showed that cold stress (26 °C, 6 h) played an inductive role in SCs apoptotic rate (P < 0.01) and the transfer of HSP70 into the nucleus. 100 nM T3 further promoted HSP70 expression and its transfer into the nucleus, which significantly inhibited the expression of vital genes (cyt-c, Caspase-9 and Caspase-3) in mitochondrial pathway (P < 0.05). Subsequently, higher survival and lower apoptotic rates of SCs (P < 0.01) were observed. When T3 and HSP70 inhibitor were added together, the expression of cyt-c, Caspase-9 and Caspase-3 were inhibited (P < 0.05), and then the declining apoptotic rate increased again (P < 0.01). In conclusion, T3 can regulate HSP70 expression and translocation to mediate mitochondrial apoptosis pathway to inhibit SCs apoptosis induced by cold stress.
Collapse
Affiliation(s)
- Han Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - He Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Peng Zheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Rui Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xue Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Fushuo Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Mingjun Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yaguang Tian
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Guixue Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
22
|
Zhou X, Lai Y, Zhu F. iTRAQ-based quantitative proteomic analysis of haemocyte proteins from crayfish (Procambarus clarkii) infected with white spot syndrome virus (WSSV). JOURNAL OF FISH DISEASES 2021; 44:1661-1668. [PMID: 34251044 DOI: 10.1111/jfd.13494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Xiujuan Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yongyong Lai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Fei Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
23
|
Nogueira JE, Amorim MR, Pinto AP, da Rocha AL, da Silva ASR, Branco LGS. Molecular hydrogen downregulates acute exhaustive exercise-induced skeletal muscle damage. Can J Physiol Pharmacol 2021; 99:812-820. [PMID: 33356867 DOI: 10.1139/cjpp-2020-0297] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Physical exercise-induced skeletal muscle damage may be characterized by increased oxidative stress, inflammation, and apoptosis which may be beneficial when exercise is regular, but it is rather harmful when exercise is exhaustive and performed acutely by unaccustomed individuals. Molecular hydrogen (H2) has emerged as a potent antioxidant, anti-inflammatory, and anti-apoptotic agent, but its action on the deleterious effects of acute exhaustive exercise in muscle damage remain unknown. Therefore, we tested the hypothesis that H2 decreases acute exhaustive exercise-induced skeletal muscle damage of sedentary rats. Rats ran to exhaustion on a sealed treadmill inhaling an H2-containing mixture or the control gas. We measured oxidative stress (SOD, GSH, and TBARS), inflammatory (TNF-α, IL-1β, IL-6, IL-10, and NF-κB phosphorylation), and apoptotic (expression of caspase-3, Bcl-2, and HSP70) markers. Exercise caused no changes in SOD activity but increased TBARS levels. H2 caused increases in exercise-induced SOD activity and blunted exercise-induced increased TBARS levels. We observed exercise-induced TNF-α and IL-6 surges as well as NF-κB phosphorylation, which were blunted by H2. Exercise increased cleaved caspase-3 expression, and H2 reduced this response. In conclusion, H2 effectively downregulates muscle damage, reducing oxidative stress, inflammation, and apoptosis after acute exhaustive exercise performed by an unaccustomed organism.
Collapse
Affiliation(s)
- Jonatas E Nogueira
- School of Physical Education and Sports of Ribeirao Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mateus R Amorim
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana P Pinto
- Postgraduate Program in Rehabilitation and Functional Performance, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Alisson L da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Adelino S R da Silva
- School of Physical Education and Sports of Ribeirao Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Postgraduate Program in Rehabilitation and Functional Performance, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz G S Branco
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
24
|
Zhang B, Fan Y, Cao P, Tan K. Multifaceted roles of HSF1 in cell death: A state-of-the-art review. Biochim Biophys Acta Rev Cancer 2021; 1876:188591. [PMID: 34273469 DOI: 10.1016/j.bbcan.2021.188591] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/24/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023]
Abstract
Cell death is a common and active process that is involved in various biological processes, including organ development, morphogenesis, maintaining tissue homeostasis and eliminating potentially harmful cells. Abnormal regulation of cell death significantly contributes to tumor development, progression and chemoresistance. The mechanisms of cell death are complex and involve not only apoptosis and necrosis but also their cross-talk with other types of cell death, such as autophagy and the newly identified ferroptosis. Cancer cells are chronically exposed to various stresses, such as lack of oxygen and nutrients, immune responses, dysregulated metabolism and genomic instability, all of which lead to activation of heat shock factor 1 (HSF1). In response to heat shock, oxidative stress and proteotoxic stresses, HSF1 upregulates transcription of heat shock proteins (HSPs), which act as molecular chaperones to protect normal cells from stresses and various diseases. Accumulating evidence suggests that HSF1 regulates multiple types of cell death through different signaling pathways as well as expression of distinct target genes in cancer cells. Here, we review the current understanding of the potential roles and molecular mechanism of HSF1 in regulating apoptosis, autophagy and ferroptosis. Deciphering HSF1-regulated signaling pathways and target genes may help in the development of new targeted anti-cancer therapeutic strategies.
Collapse
Affiliation(s)
- Bingwei Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yumei Fan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Pengxiu Cao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ke Tan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
25
|
Mathangasinghe Y, Fauvet B, Jane SM, Goloubinoff P, Nillegoda NB. The Hsp70 chaperone system: distinct roles in erythrocyte formation and maintenance. Haematologica 2021; 106:1519-1534. [PMID: 33832207 PMCID: PMC8168490 DOI: 10.3324/haematol.2019.233056] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Indexed: 01/14/2023] Open
Abstract
Erythropoiesis is a tightly regulated cell differentiation process in which specialized oxygen- and carbon dioxide-carrying red blood cells are generated in vertebrates. Extensive reorganization and depletion of the erythroblast proteome leading to the deterioration of general cellular protein quality control pathways and rapid hemoglobin biogenesis rates could generate misfolded/aggregated proteins and trigger proteotoxic stresses during erythropoiesis. Such cytotoxic conditions could prevent proper cell differentiation resulting in premature apoptosis of erythroblasts (ineffective erythropoiesis). The heat shock protein 70 (Hsp70) molecular chaperone system supports a plethora of functions that help maintain cellular protein homeostasis (proteostasis) and promote red blood cell differentiation and survival. Recent findings show that abnormalities in the expression, localization and function of the members of this chaperone system are linked to ineffective erythropoiesis in multiple hematological diseases in humans. In this review, we present latest advances in our understanding of the distinct functions of this chaperone system in differentiating erythroblasts and terminally differentiated mature erythrocytes. We present new insights into the protein repair-only function(s) of the Hsp70 system, perhaps to minimize protein degradation in mature erythrocytes to warrant their optimal function and survival in the vasculature under healthy conditions. The work also discusses the modulatory roles of this chaperone system in a wide range of hematological diseases and the therapeutic gain of targeting Hsp70.
Collapse
Affiliation(s)
| | - Bruno Fauvet
- Department of Plant Molecular Biology, Lausanne University, Lausanne
| | - Stephen M Jane
- Central Clinical School, Monash University, Prahran, Victoria, Australia; Department of Hematology, Alfred Hospital, Monash University, Prahran, Victoria
| | | | - Nadinath B Nillegoda
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria.
| |
Collapse
|
26
|
Lang BJ, Guerrero ME, Prince TL, Okusha Y, Bonorino C, Calderwood SK. The functions and regulation of heat shock proteins; key orchestrators of proteostasis and the heat shock response. Arch Toxicol 2021; 95:1943-1970. [PMID: 34003342 DOI: 10.1007/s00204-021-03070-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Cells respond to protein-damaging (proteotoxic) stress by activation of the Heat Shock Response (HSR). The HSR provides cells with an enhanced ability to endure proteotoxic insults and plays a crucial role in determining subsequent cell death or survival. The HSR is, therefore, a critical factor that influences the toxicity of protein stress. While named for its vital role in the cellular response to heat stress, various components of the HSR system and the molecular chaperone network execute essential physiological functions as well as responses to other diverse toxic insults. The effector molecules of the HSR, the Heat Shock Factors (HSFs) and Heat Shock Proteins (HSPs), are also important regulatory targets in the progression of neurodegenerative diseases and cancers. Modulation of the HSR and/or its extended network have, therefore, become attractive treatment strategies for these diseases. Development of effective therapies will, however, require a detailed understanding of the HSR, important features of which continue to be uncovered and are yet to be completely understood. We review recently described and hallmark mechanistic principles of the HSR, the regulation and functions of HSPs, and contexts in which the HSR is activated and influences cell fate in response to various toxic conditions.
Collapse
Affiliation(s)
- Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Martin E Guerrero
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), 5500, Mendoza, Argentina
| | - Thomas L Prince
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Yuka Okusha
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Cristina Bonorino
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil.,Department of Surgery, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
27
|
Yu J, Wang Y, Xiao Y, Li X, Zhou L, Wang Y, Du T, Ma X, Li J. Investigating the effect of nitrate on juvenile turbot (Scophthalmus maximus) growth performance, health status, and endocrine function in marine recirculation aquaculture systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111617. [PMID: 33396137 DOI: 10.1016/j.ecoenv.2020.111617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/14/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Nitrate (NO3-), a potential toxic nitrogenous compound to aquatic animals, is distributed in aquatic ecosystems worldwide. The aim of this study was to investigate the effects of different NO3- levels on growth performance, health status, and endocrine function of juvenile turbot (Scophthalmus maximus) in recirculating aquaculture systems (RAS). Fish were exposed to 0 mg/L (control, CK), 50 mg/L (low nitrate, LN), 200 mg/L (medium nitrate, MN), and 400 mg/L (high nitrate, HN) NO3-N for 60 d in experimental RAS. Cumulative survival (CS) was significantly decreased with increasing NO3- levels in LN, MN, and HN. The lowest CS was 35% in the HN group. Growth parameters, including absolute growth rate, specific growth rate, and feed conversion rate, were significantly different in HN compared with that in the CK. Histological survey of gills and liver revealed dose-dependent histopathological damage induced by NO3- exposure and significant differences in glutamate pyruvate transaminase and glutamate oxalate transaminase in MN and HN compared with that in the CK. The hepatosomatic index in HN was significantly higher than that in the CK. Additionally, NO3- significantly increased bioaccumulation in plasma in LN, MN, and HN compared to that in the CK. Significant decreases in hemoglobin and increases in methemoglobin levels indicated reduced oxygen-carrying capacity in HN. Additionally, qRT-PCR and enzyme-linked immunosorbent assay (ELISA) were developed to investigate key biomarkers involved in the GH/IGF-1, HPT, and HPI axes. Compared with that in the CK, the abundance of GH, GHRb, and IGF-1 was significantly lower in HN, whereas GHRa did not differ between treatments. The plasma T3 level significantly decreased in LN, MN, and HN and T4 significantly decreased in HN. The CRH, ACTH, and plasma cortisol levels were significantly upregulated in HN compared with that in the CK. We conclude that elevated NO3- exposure leads to growth retardation, impaired health status, and endocrine disorders in turbot and the NO3- level for juvenile turbot culture should not exceed 50 mg/L NO3-N in RAS. Our findings indicate that endocrine dysfunction of the GH/IGF-1, HPT, and HPI axes might be responsible for growth inhibition induced by NO3- exposure.
Collapse
Affiliation(s)
- Jiachen Yu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Yanfeng Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | - Yongshuang Xiao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | - Xian Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | - Li Zhou
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Yunong Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Tengfei Du
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Xiaona Ma
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | - Jun Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China.
| |
Collapse
|
28
|
Xu Z, Zhang Y, Cao Y. The Roles of Apoptosis in Swine Response to Viral Infection and Pathogenesis of Swine Enteropathogenic Coronaviruses. Front Vet Sci 2020; 7:572425. [PMID: 33324698 PMCID: PMC7725767 DOI: 10.3389/fvets.2020.572425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/28/2020] [Indexed: 01/18/2023] Open
Abstract
Apoptosis is a tightly regulated mechanism of cell death that plays important roles in various biological processes including biological evolution, multiple system development, anticancer, and viral infections. Swine enteropathogenic coronaviruses invade and damage villous epithelial cells of the small intestine causing severe diarrhea with high mortality rate in suckling piglets. Transmissible gastroenteritis virus (TGEV), Porcine epidemic diarrhea virus (PEDV), Porcine deltacoronavirus (PDCoV), and Swine acute diarrhea syndrome coronavirus (SADS-CoV) are on the top list of commonly-seen swine coronaviruses with a feature of diarrhea, resulting in significant economic losses to the swine industry worldwide. Apoptosis has been shown to be involved in the pathogenesis process of animal virus infectious diseases. Understanding the roles of apoptosis in host responses against swine enteropathogenic coronaviruses infection contribute to disease prevention and control. Here we summarize the recent findings that focus on the apoptosis during swine coronaviruses infection, in particular, TGEV, PEDV, PDCoV, and SADS-CoV.
Collapse
Affiliation(s)
- Zhichao Xu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
- Higher Education Mega Center, School of Life Science, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Siddiqui SH, Subramaniyan SA, Kang D, Park J, Khan M, Choi HW, Shim K. Direct exposure to mild heat stress stimulates cell viability and heat shock protein expression in primary cultured broiler fibroblasts. Cell Stress Chaperones 2020; 25:1033-1043. [PMID: 32696180 PMCID: PMC7591668 DOI: 10.1007/s12192-020-01140-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/30/2022] Open
Abstract
Fibroblasts produce collagen which is mainly essential for repairing tissue damage and maintaining the structural integrity of tissues. However, studies have given scientific evidence about harmful effect of thermal manipulation in fibroblast. Therefore, the aim of this study was to determine the mild heat stress temperature which increased broiler fibroblast viability. The experiment was divided into two groups (37 °C and 41 °C), and each group was divided into five subgroups based on different incubation times (6 h, 12 h, 24 h, 48 h, and 72 h) with three replications. In experimental group (41 °C), fibroblast viability increased significantly in 12 h but decreased in 72 h compared with control (37 °C). At 41 °C, live cell increased significantly in 24 h and then declined in 48 h as well as 72 h than control. Moreover, the S phase lengthened in shorter incubation time of experimental group compared with control. Protein and mRNA (HSP70, HSP60, and HSP47) expressions were significantly higher at 41 °C compared with 37 °C, but at the end of the experiment, HSP expression level was higher in both groups. Finally, this study recommended 41 °C as a mild heat stress temperature for increasing broiler fibroblast viability.
Collapse
Affiliation(s)
- Sharif Hasan Siddiqui
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sivakumar Allur Subramaniyan
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Darae Kang
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jinryong Park
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Mousumee Khan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University, Jeonju, 54907, Republic of Korea
| | - Hyun Woo Choi
- Department of Animal Science, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Kwanseob Shim
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
30
|
Kohler V, Andréasson C. Hsp70-mediated quality control: should I stay or should I go? Biol Chem 2020; 401:1233-1248. [PMID: 32745066 DOI: 10.1515/hsz-2020-0187] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/11/2020] [Indexed: 12/30/2022]
Abstract
Chaperones of the 70 kDa heat shock protein (Hsp70) superfamily are key components of the cellular proteostasis system. Together with its co-chaperones, Hsp70 forms proteostasis subsystems that antagonize protein damage during physiological and stress conditions. This function stems from highly regulated binding and release cycles of protein substrates, which results in a flow of unfolded, partially folded and misfolded species through the Hsp70 subsystem. Specific factors control how Hsp70 makes decisions regarding folding and degradation fates of the substrate proteins. In this review, we summarize how the flow of Hsp70 substrates is controlled in the cell with special emphasis on recent advances regarding substrate release mechanisms.
Collapse
Affiliation(s)
- Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
31
|
The Heat Shock Protein 70 Plays a Protective Role in Sepsis by Maintenance of the Endothelial Permeability. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2194090. [PMID: 32964021 PMCID: PMC7492929 DOI: 10.1155/2020/2194090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/10/2020] [Accepted: 08/20/2020] [Indexed: 11/30/2022]
Abstract
Sepsis is a severe system inflammatory response syndrome in response to infection. The vascular endothelium cells play a key role in sepsis-induced organ dysfunction. The heat shock protein 70 (HSP70) has been reported to play an anti-inflammatory role and protect from sepsis. The present study is aimed at finding the function of HSP70 against sepsis in vascular endothelium cells. Lipopolysaccharide (LPS) and HSP70 agonist and inhibitor were used to treat HUVEC. Cell permeability was measured by transepithelial electrical resistance (TEER) assay and FITC-Dextrans. Cell junction protein levels were measured by western blot. Mice were subjected to cecal ligation and puncture (CLP) to establish a sepsis model and were observed for survival. After LPS incubation, HSP70 expression was decreased in HUVEC. LPS induced the inhibition of cell viability and the increases of IL-1β, IL-6, and TNF-α. Furthermore, cell permeability was increased and cell junction proteins (E-cadherin, occludin, and ZO-1) were downregulated after treatment with LPS. However, HSP70 could reverse these effects induced by LPS in HUVEC. In addition, LPS-induced elevated phosphorylation of p38 can be blocked by HSP70. On the other hand, we found that inhibition of HSP70 had similar effects as LPS and these effects could be alleviated by the inhibitor of p38. Subsequently, HSP70 was also found to increase survival of sepsis mice in vivo. In conclusion, HSP70 plays a protective role in sepsis by maintenance of the endothelial permeability via regulating p38 signaling.
Collapse
|
32
|
Wang B, Huang T, Fang Q, Zhang X, Yuan J, Li M, Ge H. Bone-protective and anti-tumor effect of baicalin in osteotropic breast cancer via induction of apoptosis. Breast Cancer Res Treat 2020; 184:711-721. [PMID: 32939591 DOI: 10.1007/s10549-020-05904-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/29/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE Research suggested that bone is the specific target organ for breast cancer metastasis. The related tumor causes significant morbidity due to a reduction in quality of life and physical function. Increased osteoclast function is implicated in the bone microenvironment during the outgrowth of breast cancer. In the present experimental study, we examined the potential bone-protective effect of baicalin osteotropic breast Cancer and explored the possible mechanism of action. METHODS In vitro cell viability effect of baicalin was assessed on the breast cancer cell lines (MDA-MB-231 and MCF-7). We also estimated the in vitro osteoclast and bone resorption. Further, baicalin-regulated osteoblastogenesis and osteoclastogenesis were also estimated in vitro. Finally, the role of the baicalin in the expansion of osteolytic bone disease was scrutinized in a breast cancer bone metastases model. RESULTS Baicalin significantly (p < 0.001) downregulated the viability of murine and human cancer cell lines and diminished the osteoclastogenesis of osteoclast progenitors via estimation with the help of qRT-PCR. Baicalin showed the downregulation in the mRNA expression of OCN and ALP. Baicalin reduced the TRAP-positive cells in the presence of RANKL. Baicalin considerably upregulated the cytochrome c secretion into the cytoplasm. Baicalin markedly increased the DNA fragmentation, caspase-3, caspase-8, and caspase-9. Baicalin significantly (p < 0.001) reduced the metastatic growth of MDA-MB-231 cells,preserving the bone mass in a bone metastasis model. CONCLUSION Collectively, we can conclude that these results highlight the bone-protective effect of baicalin, which also highlighted the anti-tumor effect; further research is needed into the likely effects on bone health in the bone metastases and osteoporosis populations, such as post-menopausal women with breast cancer.
Collapse
Affiliation(s)
- Bangmin Wang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Tao Huang
- Department of Galactophore, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Qigen Fang
- Department of Thyroid, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Xu Zhang
- Department of Thyroid, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Junhui Yuan
- Department of Radiology, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Mengjie Li
- Department of Stomatology, Zhengzhou Stomatologic Hospital, Zhengzhou, 450008, Henan, China
| | - Hong Ge
- Department of Thyroid, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China.
- Department of Radiology, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China.
| |
Collapse
|
33
|
Tang J, Tang Y, Yi I, Chen DF. The role of commensal microflora-induced T cell responses in glaucoma neurodegeneration. PROGRESS IN BRAIN RESEARCH 2020; 256:79-97. [PMID: 32958216 DOI: 10.1016/bs.pbr.2020.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last decade, new evidence has become increasingly more compelling that commensal microflora profoundly influences the maturation and function of resident immune cells in host physiology. The concept of gut-retina axis is actively being explored. Studies have revealed a critical role of commensal microbes linked with neuronal stress, immune responses, and neurodegeneration in the retina. Microbial dysbiosis changes the blood-retina barrier permeability and modulates T cell-mediated autoimmunity to contribute to the pathogenesis of retinal diseases, such as glaucoma. Heat shock proteins (HSPs), which are evolutionarily conserved, are thought to function both as neuroprotectant and pathogenic antigens of T cells contributing to cell protection and tissue damage, respectively. Activated microglia recruit and interact with T cells during this process. Glaucoma, characterized by the progressive loss of retinal ganglion cells, is the leading cause of irreversible blindness. With nearly 70 million people suffering glaucoma worldwide, which doubles the number of patients with Alzheimer's disease, it represents the most frequent neurodegenerative disease of the central nervous system (CNS). Thus, understanding the mechanism of neurodegeneration in glaucoma and its association with the function of commensal microflora may help unveil the secrets of many neurodegenerative disorders in the CNS and develop novel therapeutic interventions.
Collapse
Affiliation(s)
- Jing Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Sichuan, China; Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Yizhen Tang
- Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Irvin Yi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
34
|
Zhang XH, Zhang M, Wu JX, Li YB, Sun JR, Tang S, Bao ED. Gingko biloba extract EGB761 alleviates heat-stress damage in chicken heart tissue by stimulating Hsp70 expression in vivo in vascular endothelial cells. Br Poult Sci 2020; 61:180-187. [PMID: 31760785 DOI: 10.1080/00071668.2019.1697425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
1. This study aimed to investigate the protective effects of Gingko biloba extract EGB761 on heat-stressed chicken heart in vivo and its underlying relevance to Hsp70.2. A total of 50 one-day-old female chicks were randomly divided into five groups: control (Con), heat-stress (HS), 0.1% EGB761 plus heat-stress (0.1%EGB+HS), 0.3%EGB761 plus heat-stress (0.3%EGB+HS) and 0.6%EGB761 plus heat-stress (0.6%EGB+HS) groups. After administration of EGB761 for 45 days, the chickens in each group were exposed to a single heat-stress event at 38 ± 1°C for 3 h.3. EGB761 attenuated the abnormal symptoms and pathological scores of myocardium of heat-stressed chickens. Despite a reduction in the transcription and translation of the Hsp70 gene in heat-stressed myocardium, EGB761 induced the expression of Hsp70 in endothelial cells of the microarteries and venules into the blood, and reduced heat-stress damage in vascular endothelial cells.4. Supplementation with EGB761 before heat-stress exposure protected chicken myocardium from damage by increasing serum Hsp70 protein from myocardial cells and cardiac microvascular endothelial cells and protected the microvascular system from adverse injury.
Collapse
Affiliation(s)
- X-H Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - M Zhang
- College of Animal Science and Technology, Jinling Institute of Technology, Nanjing, China
| | - J-X Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Y-B Li
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - J-R Sun
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - S Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - E-D Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
35
|
Zhou X, Bouitbir J, Liechti ME, Krähenbühl S, Mancuso RV. Hyperthermia Increases Neurotoxicity Associated with Novel Methcathinones. Cells 2020; 9:cells9040965. [PMID: 32295288 PMCID: PMC7227000 DOI: 10.3390/cells9040965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/29/2020] [Accepted: 04/09/2020] [Indexed: 12/16/2022] Open
Abstract
Hyperthermia is one of the severe acute adverse effects that can be caused by the ingestion of recreational drugs, such as methcathinones. The effect of hyperthermia on neurotoxicity is currently not known. The primary aim of our study was therefore to investigate the effects of hyperthermia (40.5 °C) on the neurotoxicity of methcathinone (MC), 4-chloromethcathinone (4-CMC), and 4-methylmethcathinone (4-MMC) in SH-SY5Y cells. We found that 4-CMC and 4-MMC were cytotoxic (decrease in cellular ATP and plasma membrane damage) under both hyper- (40.5 °C) and normothermic conditions (37 °C), whereby cells were more sensitive to the toxicants at 40.5 °C. 4-CMC and 4-MMC impaired the function of the mitochondrial electron transport chain and increased mitochondrial formation of reactive oxygen species (ROS) in SH-SY5Y cells, which were accentuated under hyperthermic conditions. Hyperthermia was associated with a rapid expression of the 70 kilodalton heat shock protein (Hsp70), which partially prevented cell death after 6 h of exposure to the toxicants. After 24 h of exposure, autophagy was stimulated by the toxicants and by hyperthermia but could only partially prevent cell death. In conclusion, hyperthermic conditions increased the neurotoxic properties of methcathinones despite the stimulation of protective mechanisms. These findings may be important for the understanding of the mechanisms and clinical consequences of the neurotoxicity associated with these compounds.
Collapse
Affiliation(s)
- Xun Zhou
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, 4031 Basel, Switzerland; (X.Z.); (J.B.); (M.E.L.); (R.V.M.)
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Jamal Bouitbir
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, 4031 Basel, Switzerland; (X.Z.); (J.B.); (M.E.L.); (R.V.M.)
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Swiss Centre for Applied Human Toxicology, 4031 Basel, Switzerland
| | - Matthias E. Liechti
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, 4031 Basel, Switzerland; (X.Z.); (J.B.); (M.E.L.); (R.V.M.)
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, 4031 Basel, Switzerland; (X.Z.); (J.B.); (M.E.L.); (R.V.M.)
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Swiss Centre for Applied Human Toxicology, 4031 Basel, Switzerland
- Correspondence: ; Tel.: +41-61-265-4715
| | - Riccardo V. Mancuso
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, 4031 Basel, Switzerland; (X.Z.); (J.B.); (M.E.L.); (R.V.M.)
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
36
|
Zhao H, Xie S, Zhang N, Ao Z, Wu X, Yang L, Shi J, Mai R, Zheng E, Cai G, Wu Z, Li Z. Source and Follicular Fluid Treatment During the In Vitro Maturation of Recipient Oocytes Affects the Development of Cloned Pig Embryo. Cell Reprogram 2020; 22:71-81. [PMID: 32125895 DOI: 10.1089/cell.2019.0091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pig cloning technique is valuable in agriculture, biomedicine, and life sciences. However, the full-term developmental efficiency of cloned pig embryos is only about 1%, which limits pig cloning application. The quality of recipient oocytes greatly affects the developmental competence of cloned pig embryos. Thus, this study investigated the effects of a recipient oocyte source (in vivo matured [IVVM] oocytes vs. slaughter house-derived in vitro matured [IVTM] oocytes), and follicular liquid treatment (slaughter house-derived immature follicle-derived fluid [IFF] vs. in vivo-matured follicle-derived fluid [MFF]) during the in vitro maturation (IVM) of oocytes on the development of the cloned pig embryos. Our results showed that using IVVM oocytes to replace IVTM oocytes as recipient oocytes, and using 10% MFF IVM medium to replace 10% IFF IVM medium could enhance the development of the cloned pig embryos. IFF and MFF contained different levels of oocyte quality-related proteins, resulting in different oocyte quality-related gene expression levels and reactive oxygen species levels between the 10% MFF medium-cultured oocytes and 10% IFF medium-cultured oocytes. This study provided useful information for enhancing the pig cloning efficiency by improving the quality of recipient oocytes.
Collapse
Affiliation(s)
- Huaxing Zhao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shaoyi Xie
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ning Zhang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zheng Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Xiao Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Liusong Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junsong Shi
- Guangdong Wens Pig Breeding Technology Co., Ltd., Wens Foodstuff Group Co., Ltd., Yunfu, China
| | - Ranbiao Mai
- Guangdong Wens Pig Breeding Technology Co., Ltd., Wens Foodstuff Group Co., Ltd., Yunfu, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
37
|
Chlorella sorokiniana Extract Prevents Cisplatin-Induced Myelotoxicity In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7353618. [PMID: 32047579 PMCID: PMC7003270 DOI: 10.1155/2020/7353618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/31/2019] [Accepted: 01/04/2020] [Indexed: 12/24/2022]
Abstract
Cisplatin chemotherapy causes myelosuppression and often limits treatment duration and dose escalation in patients. Novel approaches to circumvent or lessen myelotoxicity may improve clinical outcome and quality of life in these patients. Chlorella sorokiniana (CS) is a freshwater unicellular green alga and exhibits encouraging efficacy in immunomodulation and anticancer in preclinical studies. However, the efficacy of CS on chemoprotection remains unclear. We report here, for the first time, that CS extract (CSE) could protect normal myeloid cells and PBMCs from cisplatin toxicity. Also, cisplatin-induced apoptosis in HL-60 cells was rescued through reservation of mitochondrial function, inhibition of cytochrome c release to cytosol, and suppression of caspase and PARP activation. Intriguingly, cotreatment of CSE attenuated cisplatin-evoked hypocellularity of bone marrow in mice. Furthermore, we observed the enhancement of CSF-GM activity in bone marrow and spleen in mice administered CSE and cisplatin, along with increased CD11b levels in spleen. In conclusion, we uncovered a novel mechanism of CSE on myeloprotection, whereby potentially supports the use of CSE as a chemoprotector against cisplatin-induced bone marrow toxicity. Further clinical investigation of CSE in combination with cisplatin is warranted.
Collapse
|
38
|
Abosheasha MA, Abd El Khalik EAM, El-Gowily AH. Indispensable Role of Protein Turnover in Autophagy, Apoptosis and Ubiquitination Pathways. HEAT SHOCK PROTEINS 2020:447-468. [DOI: 10.1007/7515_2020_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
39
|
Hu J, Dong Y, Wang W, Zhang W, Lou H, Chen Q. Deletion of Atg22 gene contributes to reduce programmed cell death induced by acetic acid stress in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:298. [PMID: 31890026 PMCID: PMC6933646 DOI: 10.1186/s13068-019-1638-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/12/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Programmed cell death (PCD) induced by acetic acid, the main by-product released during cellulosic hydrolysis, cast a cloud over lignocellulosic biofuel fermented by Saccharomyces cerevisiae and became a burning problem. Atg22p, an ignored integral membrane protein located in vacuole belongs to autophagy-related genes family; prior study recently reported that it is required for autophagic degradation and efflux of amino acids from vacuole to cytoplasm. It may alleviate the intracellular starvation of nutrition caused by Ac and increase cell tolerance. Therefore, we investigate the role of atg22 in cell death process induced by Ac in which attempt is made to discover new perspectives for better understanding of the mechanisms behind tolerance and more robust industrial strain construction. RESULTS In this study, we compared cell growth, physiological changes in the absence and presence of Atg22p under Ac exposure conditions. It is observed that disruption and overexpression of Atg22p delays and enhances acetic acid-induced PCD, respectively. The deletion of Atg22p in S. cerevisiae maintains cell wall integrity, and protects cytomembrane integrity, fluidity and permeability upon Ac stress by changing cytomembrane phospholipids, sterols and fatty acids. More interestingly, atg22 deletion increases intracellular amino acids to aid yeast cells for tackling amino acid starvation and intracellular acidification. Further, atg22 deletion upregulates series of stress response genes expression such as heat shock protein family, cell wall integrity and autophagy. CONCLUSIONS The findings show that Atg22p possessed the new function related to cell resistance to Ac. This may help us have a deeper understanding of PCD induced by Ac and provide a new strategy to improve Ac resistance in designing industrial yeast strains for bioethanol production during lignocellulosic biofuel fermentation.
Collapse
Affiliation(s)
- Jingjin Hu
- Department of Food Science and Nutrition, Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Yachen Dong
- Department of Food Science and Nutrition, Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Wei Wang
- Institute of Quality and Standard for Agriculture Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Wei Zhang
- Department of Cardiovascular & Metabolic Sciences, The Lerner Research Institute, Cleveland Clinic, Cleveland, OH USA
| | - Hanghang Lou
- Department of Food Science and Nutrition, Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Qihe Chen
- Department of Food Science and Nutrition, Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
40
|
Hassan FU, Nawaz A, Rehman MS, Ali MA, Dilshad SM, Yang C. Prospects of HSP70 as a genetic marker for thermo-tolerance and immuno-modulation in animals under climate change scenario. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2019; 5:340-350. [PMID: 31890910 PMCID: PMC6920399 DOI: 10.1016/j.aninu.2019.06.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/31/2019] [Accepted: 06/24/2019] [Indexed: 01/28/2023]
Abstract
Heat stress induced by long periods of high ambient temperature decreases animal productivity, leading to heavy economic losses. This devastating situation for livestock production is even becoming worse under the present climate change scenario. Strategies focused to breed animals with better thermo-tolerance and climatic resilience are keenly sought these days to mitigate impacts of heat stress especially in high input livestock production systems. The 70-kDa heat shock proteins (HSP70) are a protein family known for its potential role in thermo-tolerance and widely considered as cellular thermometers. HSP70 function as molecular chaperons and have major roles in cellular thermotolerance, apoptosis, immune-modulation and heat stress. Expression of HSP70 is controlled by various factors such as, intracellular pH, cyclic adenosine monophosphate (cyclic AMP), protein kinase C and intracellular free calcium, etc. Over expression of HSP70 has been observed under oxidative stress leading to scavenging of mitochondrial reactive oxygen species and protection of pulmonary endothelial barrier against bacterial toxins. Polymorphisms in flanking and promoter regions in HSP70 gene have shown association with heat tolerance, weaning weight, milk production, fertility and disease susceptibility in livestock. This review provides insight into pivotal roles of HSP70 which make it an ideal candidate genetic marker for selection of animals with better climate resilience, immune response and superior performance.
Collapse
Affiliation(s)
- Faiz-ul Hassan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Ayesha Nawaz
- Department of Zoology Wildlife and Fisheries, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad S. Rehman
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad A. Ali
- Faculty of Veterinary Sciences, Bahauddin Zakriya University, Multan, Pakistan
| | - Syed M.R. Dilshad
- Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, 29050, Pakistan
| | - Chengjian Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| |
Collapse
|
41
|
Tian FJ, Li WX, Lyu Y, Zhang P, Mu JB, Pei QL, Zheng JP. Heat-shock protein 70 (HSP70) polymorphisms affect the risk of coke-oven emission-induced neurobehavioral damage. Neurotoxicology 2019; 76:174-182. [PMID: 31730894 DOI: 10.1016/j.neuro.2019.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/29/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Epidemiology studies indicated that coke-oven workers with long-term exposure to polycyclic aromatic hydrocarbons (PAHs) often have some neurobehavioral abnormalities especially impairment for cognitive function, while the underlying mechanisms are not fully understood. Numerous studies have indicated the antioxidant and anti-apoptosis roles of heat shock protein 70 (Hsp70). The genetic polymorphisms in HSP70 genes are associated with multiple diseases including neurotoxicity. However, it is unclear whether HSP70 polymorphisms are related to the neurotoxicity of PAH. We, therefore, investigate the possible association between HSP70 polymorphisms and neurobehavioral abnormalities. METHODS 188 coke-oven workers and 137 control workers were recruited in this study. Emotional and cognitive function was assessed using the WHO/NCTB. HSP70 polymorphisms (HSP70-1 G190C, HSP70-2 G1267 A and HSP70-hom T2437C) were checked by PCR-RFLP. RESULTS The results indicated that HSP70-1 CC genotypes in coke-oven workers were associated with poor neurobehavioral performance such as the attention /response speed and visual perception/memory, while the HSP70-2 AA genotypes were associated with lower short-term auditory memory. CONCLUSIONS HSP70-1 CC and HSP70-2 AA genotypes in coke-oven workers may increase the risk for neurobehavioral damage, especially attention, learning and memory.
Collapse
Affiliation(s)
- Feng-Jie Tian
- Department of Health Toxicology, School of Public Health in Shanxi Medical University, Taiyuan 030001, China
| | - Wei-Xing Li
- Taiyuan Health Bureau, Taiyuan 030001, China
| | - Yi Lyu
- Department of Health Toxicology, School of Public Health in Shanxi Medical University, Taiyuan 030001, China
| | - Ping Zhang
- Department of Health Toxicology, School of Public Health in Shanxi Medical University, Taiyuan 030001, China
| | - Jian-Bing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD 20852, USA
| | - Qiu-Ling Pei
- Department of Health Toxicology, School of Public Health in Shanxi Medical University, Taiyuan 030001, China
| | - Jin-Ping Zheng
- Department of Health Toxicology, School of Public Health in Shanxi Medical University, Taiyuan 030001, China; Changzhi Medical College, Changzhi 046000, China.
| |
Collapse
|
42
|
Pradhan A, Kumari A, Srivastava R, Panda D. Quercetin Encapsulated Biodegradable Plasmonic Nanoparticles for Photothermal Therapy of Hepatocellular Carcinoma Cells. ACS APPLIED BIO MATERIALS 2019; 2:5727-5738. [DOI: 10.1021/acsabm.9b00764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Arpan Pradhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076, India
| | - Anuradha Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
43
|
Lopes FG, da Costa EP, Queiroz-Castro VLD, Pereira ECM, Guimarães JD, Alves SVP, Fernandes CAC, Camargo LSA, Benjamim LDA. Use of two new formulations as bovine embryo manipulation solution. Anim Reprod 2019; 16:348-355. [PMID: 33224297 PMCID: PMC7673593 DOI: 10.21451/1984-3143-ar2018-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study aimed to evaluate the effect of two Embryo Manipulation Solutions (EMS and EMS supplemented) in maintenance of the viability of embryos, initially using structures derived from mice (first phase). Next, the efficiency of these solutions in routines of bovine embryo transfer was evaluated (second stage). Mice embryos were used in the stages of early blastocyst, and compact morula grades I and II. These embryos were initially randomly distributed and maintained for four hours in three solutions: Modified phosphate buffered saline (PBS; Control); EMS (treatment 1), and EMS supplemented (treatment 2). Subsequently, they were cultured in TCM 199 medium and evaluated in terms of total number of cells, morphometric characteristics, ultra structural aspects, detection of cell apoptosis, and quantification of Hsp70.3 gene expression. In the second phase, these same solutions were tested in the transfer of quality I and II bovine embryos (excellent and good). These embryos were transferred fresh to 58 recipients. The results showed that the total number of cells in embryos expanded blastocyst (ExB), the number of apoptotic cells, the cell, nuclear, nucleolar diameter and the nucleus/nucleolus ratio was similar among the treatments. The pregnancy rate shown on second phase was also similar. However, the EMS supplemented expressed more Hsp70.3 than EMS. The expression of Hsp70.3 was also greater for embryos in EMS than that of EMS supplemented. The McII embryos, EMS and EMS supplemented samples also expressed more Hsp70.3 compared to control embryos. In conclusion, the tested solutions can be used in routine embryo transfer techniques, replacing modified PBS solution as an effective media in maintaining embryo viability.
Collapse
Affiliation(s)
- Flavio Guisseli Lopes
- Veterinary Department, Federal University of Vicosa, Peter Henry Rolfs Avenue, Viçosa, Minas Gerais, Brazil
| | - Eduardo Paulino da Costa
- Veterinary Department, Federal University of Vicosa, Peter Henry Rolfs Avenue, Viçosa, Minas Gerais, Brazil
| | | | | | - José Domingos Guimarães
- Veterinary Department, Federal University of Vicosa, Peter Henry Rolfs Avenue, Viçosa, Minas Gerais, Brazil
| | | | | | | | - Laercio Dos Anjos Benjamim
- Veterinary Department, Federal University of Vicosa, Peter Henry Rolfs Avenue, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
44
|
Jiang L, Feng J, Ying R, Yin F, Pei S, Lu J, Cao Y, Guo J, Li Z. Individual and combined effects of ammonia-N and sulfide on the immune function and intestinal microbiota of Pacific white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 92:230-240. [PMID: 31200069 DOI: 10.1016/j.fsi.2019.06.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
In this study, we explored the individual and combined effects of ammonia-N and sulfide stress (1 mg/L sulfide and 15 mg/L ammonia-N) on the oxidation resistance, immune response and intestinal health of Litopenaeus vannamei during 72 h exposure. The total antioxidant capacity (T-AOC), malonaldehyde (MDA) and nitric oxide (NO) content, superoxide dismutase (SOD) and catalase activity (CAT), the immune-relative gene (caspase-3, hsp70 and IMD) expression in hepatopancreas and intestine of L.vannamei and the intestinal microbiota were measured. The result showed that MDA and NO contents in hepatopancreas of L. vannamei in all treatment groups increased and remain were at high levels at the end of the stress exposure. The L. vannamei employ antioxidant defense system by increasing the activities of T-AOC, SOD and CAT enzymes in hepatopancereas and intestine to reduce oxidant damage. More severe damages with combined ammonia-N and sulfide stress to antioxidant systems were observed. The gene expression results also demonstrated that antioxidant capacity of L. vannamei was severely impaired and the apoptosis cell was initiated under the ammonia-N and sulfide stress. In addition, the environmental stress also reshaped the intestinal microbial community structure of L. vannamei that a number of original genera decreased, such as Cellvibrio, Vibrio and Rheinheimera; some new genera increased or appeared, such as Photobacterium in all treatment groups, Arcobacter and Fusibacter in sulfide stress group. Therefore, the health of L. vannamei was severely impacted when exposed to the stress of ammonia nitrogen and sulfide and these two factors can have weak synergic effects.
Collapse
Affiliation(s)
- Li Jiang
- Guangdong Provincial Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianxiang Feng
- Guangdong Provincial Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Rui Ying
- Guangdong Provincial Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fangmin Yin
- Guangdong Provincial Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Surui Pei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China; Annoroad Gene Technology (Beijing) Co., Ltd, Beijing, 100176, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yiting Cao
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, China
| | - Jianlin Guo
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, China
| | - Zufu Li
- Guangdong Provincial Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
45
|
Ramos PM, Wright SA, Delgado EF, van Santen E, Johnson DD, Scheffler JM, Elzo MA, Carr CC, Scheffler TL. Resistance to pH decline and slower calpain-1 autolysis are associated with higher energy availability early postmortem in Bos taurus indicus cattle. Meat Sci 2019; 159:107925. [PMID: 31476681 DOI: 10.1016/j.meatsci.2019.107925] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 11/16/2022]
Abstract
Beef from Bos taurus indicus is associated with toughness compared to Bos taurus taurus, suggesting there is antagonism between adaptability to heat and beef quality. Resistance to cellular stress in muscle may be protective postmortem, thereby delaying its conversion to meat. Therefore, our objective was to determine pH decline, calpain-1 and caspase 3 activation, and proteolysis in different biological cattle types. Angus, Brangus, and Brahman steers (n = 18) were harvested, and Longissimus lumborum were assessed postmortem for pH decline, ATP content, protease activation, and calpastatin content; and myofibrillar protein degradation was evaluated in beef aged to 14d. Brahman Longissimus lumborum exhibited resistance to pH decline, greater ATP content at 1 h, and delayed calpain-1 autolysis. Although content of caspase-3 zymogen was lower in Brahman, there was no evidence of caspase-3 mediated proteolysis. Greater resistance to energetic and pH changes early postmortem in Brahman Longissimus lumborum are associated with calpain-1 autolysis but not mitochondria mediated apoptosis.
Collapse
Affiliation(s)
- Patricia M Ramos
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611-0910, USA; Department of Animal Sciences, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Av. Padua Dias, 11, CEP, 13418-900 Piracicaba, Sao Paulo, Brazil
| | - Shelby A Wright
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611-0910, USA
| | - Eduardo F Delgado
- Department of Animal Sciences, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Av. Padua Dias, 11, CEP, 13418-900 Piracicaba, Sao Paulo, Brazil
| | - Edzard van Santen
- Agronomy Department, University of Florida, Gainesville, FL 32611-0500, USA
| | - D Dwain Johnson
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611-0910, USA
| | - Jason M Scheffler
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611-0910, USA
| | - Mauricio A Elzo
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611-0910, USA
| | - C Chad Carr
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611-0910, USA
| | - Tracy L Scheffler
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611-0910, USA.
| |
Collapse
|
46
|
Wu Y, Wang Y, Liu Q, Zhu LJ, Gao H, Cui M, Liu J, Zhao P, Liu J, Chen L, Wang J, Zeng W, Woodruff TK, Zeng S. Conserved microRNA mediates heating tolerance in germ cells versus surrounding somatic cells. RNA Biol 2019; 16:1494-1503. [PMID: 31276432 DOI: 10.1080/15476286.2019.1639311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mammalian fertility is reduced during heat exposure in the summer, but is regained as temperatures decrease in the autumn again. However, the mechanism underlying the phenomenon remains unknown. We investigated heat stress tolerance of germ cells and their surrounding somatic cells, and discovered that microRNA ssc-ca-1 was upregulated after heat stress in cultured porcine granulosa cells (GCs), but not in serum-starved GCs. Ssc-ca-1 inhibited heat shock protein 70 (Hsp70) expression through its 3'- and 5'-UTRs. Although Hsp70 mRNA transcription was induced in GCs by in vivo exposure to heat in the summer, ssc-ca-1 inhibited Hsp70 expression. In ovarian cultures, heat stress-induced Hsp70 expression in primordial but not in growing follicles; ssc-ca-1 expression did not change in primordial follicles, but increased in growing follicles. Consistently, ssc-ca-1 was present in testicular cells and exhibited the same function as in ovarian cells. It modulated the different Hsp70 expression between spermatogonial stem cells and Sertoli cells after scrotal heat stress. This mechanism is of relevance to mammalian fertility in parts of the world dominated by heat stress associated with global climate change.
Collapse
Affiliation(s)
- Yi Wu
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University , Beijing , China.,School of Basic Medical Science, Capital Medical University , Beijing , China.,Laboratory Animal Center, Capital Medical University , Beijing , China
| | - Yingzheng Wang
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University , Beijing , China
| | - Qiang Liu
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University , Beijing , China
| | - Lihua Julie Zhu
- Molecular, Cell and Cancer Biology, Program in Molecular Medicine, Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School , Worcester , MA , USA
| | - Hui Gao
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University , Beijing , China
| | - Maosheng Cui
- Biotechnology Laboratory of Animal Reproduction, Tianjin Academy of Animal Science , Tianjin , China
| | - Jinghao Liu
- Laboratory Animal Center, Peking University , Beijing , China
| | - Pengju Zhao
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University , Beijing , China
| | - Jianfeng Liu
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University , Beijing , China
| | - Lei Chen
- Key Laboratory of Pig Industry Sciences (Ministry of Agriculture), Chongqing Academy of Animal Science , Chongqing , China
| | - Jinyong Wang
- Key Laboratory of Pig Industry Sciences (Ministry of Agriculture), Chongqing Academy of Animal Science , Chongqing , China
| | - Wenxian Zeng
- College of Animal Science and Technology, Northwest A&F University , Shaanxi , China
| | - Teresa K Woodruff
- Division of Fertility Preservation, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Shenming Zeng
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University , Beijing , China
| |
Collapse
|
47
|
Chauhan DS, Reddy BPK, Mishra SK, Prasad R, Dhanka M, Vats M, Ravichandran G, Poojari D, Mhatre O, De A, Srivastava R. Comprehensive Evaluation of Degradable and Cost-Effective Plasmonic Nanoshells for Localized Photothermolysis of Cancer Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7805-7815. [PMID: 31090425 DOI: 10.1021/acs.langmuir.8b03460] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Integrating the concept of biodegradation and light-triggered localized therapy in a functional nanoformulation is the current approach in onco-nanomedicine. Morphology control with an enhanced photothermal response, minimal toxicity, and X-ray attenuation of polymer-based nanoparticles is a critical concern for image-guided photothermal therapy. Herein, we describe the simple design of cost-effective and degradable polycaprolactone-based plasmonic nanoshells for the integrated photothermolysis as well as localized imaging of cancer cells. The gold-deposited polycaprolactone-based plasmonic nanoshells (AuPCL NS) are synthesized in a scalable and facile way under ambient conditions. The synthesized nanoshells are monodisperse, fairly stable, and highly inert even at five times (250 μg/mL) the therapeutic concentration in a week-long test. AuPCL NS are capable of delivering standalone photothermal therapy for the complete ablation of cancer cells without using any anticancerous drugs and causing toxicity. It delivers the same therapeutic efficacy to different cancer cell lines, irrespective of their chemorefractory status and also works as a potential computed tomography contrast agent for the integrated imaging-directed photothermal cancer therapy. High biocompatibility, degradability, and promising photothermal efficacy of AuPCL NS are attractive aspects of this report that could open new horizons of localized plasmonic photothermal therapy for healthcare applications.
Collapse
Affiliation(s)
- Deepak S Chauhan
- Department of Biosciences and Bioengineering (BSBE) , Indian Institute of Technology Bombay , Powai, Mumbai 400076 , India
| | - B Pradeep K Reddy
- Department of Biosciences and Bioengineering (BSBE) , Indian Institute of Technology Bombay , Powai, Mumbai 400076 , India
| | - Sumit K Mishra
- Molecular Functional Imaging Lab , Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre , Kharghar, Navi Mumbai 410210 , India
| | - Rajendra Prasad
- Department of Biosciences and Bioengineering (BSBE) , Indian Institute of Technology Bombay , Powai, Mumbai 400076 , India
| | - Mukesh Dhanka
- Department of Biosciences and Bioengineering (BSBE) , Indian Institute of Technology Bombay , Powai, Mumbai 400076 , India
| | - Mukti Vats
- Department of Biosciences and Bioengineering (BSBE) , Indian Institute of Technology Bombay , Powai, Mumbai 400076 , India
| | - Gayathri Ravichandran
- Molecular Functional Imaging Lab , Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre , Kharghar, Navi Mumbai 410210 , India
| | - Deeksha Poojari
- Department of Biosciences and Bioengineering (BSBE) , Indian Institute of Technology Bombay , Powai, Mumbai 400076 , India
| | - Omkar Mhatre
- Department of Biosciences and Bioengineering (BSBE) , Indian Institute of Technology Bombay , Powai, Mumbai 400076 , India
| | - Abhijit De
- Molecular Functional Imaging Lab , Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre , Kharghar, Navi Mumbai 410210 , India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering (BSBE) , Indian Institute of Technology Bombay , Powai, Mumbai 400076 , India
| |
Collapse
|
48
|
Sun J, Yin B, Tang S, Zhang X, Xu J, Bao E. Vitamin C mitigates heat damage by reducing oxidative stress, inducing HSP expression in TM4 Sertoli cells. Mol Reprod Dev 2019; 86:673-685. [PMID: 30989754 DOI: 10.1002/mrd.23146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/18/2019] [Accepted: 03/02/2019] [Indexed: 01/04/2023]
Abstract
Heat stress is a major stressor that can lead to male reproductive dysfunction. Sertoli cells play a crucial role in spermatogenesis by providing germ cells with structural and nutritional support, and contributing to blood-testis barrier formation. Vitamin C (Vc) is an antioxidant capable of neutralizing reactive oxygen species and preventing lipid peroxidation widely used because it is inexpensive and highly accessible. In the present study, we investigated the protective effect of Vc on TM4 cells following heat stress. Pretreatment with Vc could effectively inhibit apoptosis (p < 0.01), lipid peroxidation, and lactate dehydrogenase (LDH) activity. However, a significant increase in the malondialdehyde (MDA) level and LDH activity (p < 0.01) was observed in TM4 cells without Vc-pretreatment, in conjunction with vacuole degeneration and karyopyknosis. In addition, both the messenger RNA and protein levels of CryAB, Hsp27, Hsp70, and Hsp110 substantially increased in the 3 and 12 hr recovery groups (p < 0.01). Vc also prevented microtubule aggregation following heat stress. These results suggest that pretreatment with Vc-protected TM4 cells against heat stress by reducing the level of oxidative stress and inducing heat shock protein expression.
Collapse
Affiliation(s)
- Jiarui Sun
- Department of Veterinary Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Bin Yin
- Department of Veterinary Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shu Tang
- Department of Veterinary Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaohui Zhang
- Department of Veterinary Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiao Xu
- Department of Veterinary Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Endong Bao
- Department of Veterinary Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
49
|
Ramu D, Jain R, Kumar RR, Sharma V, Garg S, Ayana R, Luthra T, Yadav P, Sen S, Singh S. Design and synthesis of imidazolidinone derivatives as potent anti‐leishmanial agents by bioisosterism. Arch Pharm (Weinheim) 2019; 352:e1800290. [DOI: 10.1002/ardp.201800290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/22/2018] [Accepted: 01/03/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Dandugudumula Ramu
- Department of Life Sciences, School of Natural SciencesShiv Nadar UniversityGreater NoidaIndia
| | - Ravi Jain
- Department of Life Sciences, School of Natural SciencesShiv Nadar UniversityGreater NoidaIndia
| | - Ravi R. Kumar
- Department of Bioscience and BiotechnologyBanasthali Vidyapeeth UniversityVanasthaliIndia
- Special Centre for Molecular MedicineJawaharlal Nehru UniversityNew DelhiIndia
| | - Veena Sharma
- Department of Bioscience and BiotechnologyBanasthali Vidyapeeth UniversityVanasthaliIndia
| | - Swati Garg
- Department of Life Sciences, School of Natural SciencesShiv Nadar UniversityGreater NoidaIndia
| | - Rajagopal Ayana
- Department of Life Sciences, School of Natural SciencesShiv Nadar UniversityGreater NoidaIndia
| | - Tania Luthra
- Department of Chemistry, School of Natural SciencesShiv Nadar UniversityGreater NoidaIndia
| | - Preeti Yadav
- Special Centre for Molecular MedicineJawaharlal Nehru UniversityNew DelhiIndia
| | - Subhabrata Sen
- Department of Chemistry, School of Natural SciencesShiv Nadar UniversityGreater NoidaIndia
| | - Shailja Singh
- Special Centre for Molecular MedicineJawaharlal Nehru UniversityNew DelhiIndia
| |
Collapse
|
50
|
Silencing of Gal-7 inhibits TGF-β 1-induced apoptosis of human airway epithelial cells through JNK signaling pathway. Exp Cell Res 2018; 375:100-105. [PMID: 30594507 DOI: 10.1016/j.yexcr.2018.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 01/04/2023]
Abstract
Apoptosis of epithelial cells is regarded as the initial pathological process of many lung diseases, including asthma. Previous studies have identified that galectin-7 (Gal-7), a regulator of apoptosis, was overexpressed in bronchial epithelial cells in asthma. However, the effect and mechanism of Gal-7 in the progression of asthma is still unclear. In this study, we investigated the expression and role of Gal-7 in the apoptosis of bronchial epithelial cells BEAS-2B upon TGF-β1 stimulation. TGF-β1 significantly induced apoptosis of BEAS-2B cells, as determined by flow cytometry. Western blot results revealed that the mRNA and protein expression of Gal-7 were obviously increased after TGF-β1 stimulation. Small interfering RNA (siRNA)-mediated knockdown of Gal-7 abrogated TGF-β1-evoked cell apoptosis. Simultaneously, increased Bcl-2 expression, decreased Bax expression and the cleavage of poly ADP-ribose polymerase (PARP) and caspase-3 activity were also monitored in TGF-β1-treated cells after Gal-7 siRNA transfection. Gal-7 silence also inhibited TGF-β1-induced c-Jun N-terminal kinase (JNK) phosphorylation in BEAS-2B cells. Furthermore, anisomycin, a specific activator for JNK, reversed the effect of Gal-7 siRNA on cell apoptosis induced by TGF-β1. These results demonstrate that Gal-7 silence attenuates TGF-β1-induced apoptosis in bronchial epithelial cells through the inactivation of JNK pathway. Therefore, Gal-7 may act as a potential target for asthma treatment.
Collapse
|