1
|
Justice JL, Greco TM, Hutton JE, Reed TJ, Mair ML, Botas J, Cristea IM. Multi-epitope immunocapture of huntingtin reveals striatum-selective molecular signatures. Mol Syst Biol 2025; 21:492-522. [PMID: 40169779 PMCID: PMC12048488 DOI: 10.1038/s44320-025-00096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 03/03/2025] [Accepted: 03/13/2025] [Indexed: 04/03/2025] Open
Abstract
Huntington's disease (HD) is a debilitating neurodegenerative disorder affecting an individual's cognitive and motor abilities. HD is caused by a mutation in the huntingtin gene producing a toxic polyglutamine-expanded protein (mHTT) and leading to degeneration in the striatum and cortex. Yet, the molecular signatures that underlie tissue-specific vulnerabilities remain unclear. Here, we investigate this aspect by leveraging multi-epitope protein interaction assays, subcellular fractionation, thermal proteome profiling, and genetic modifier assays. The use of human cell, mouse, and fly models afforded capture of distinct subcellular pools of epitope-enriched and tissue-dependent interactions linked to dysregulated cellular pathways and disease relevance. We established an HTT association with nearly all subunits of the transcriptional regulatory Mediator complex (20/26), with preferential enrichment of MED15 in the tail domain. Using HD and KO models, we find HTT modulates the subcellular localization and assembly of the Mediator. We demonstrated striatal enriched and functional interactions with regulators of calcium homeostasis and chromatin remodeling, whose disease relevance was supported by HD fly genetic modifiers assays. Altogether, we offer insights into tissue- and localization-dependent (m)HTT functions and pathobiology.
Collapse
Affiliation(s)
- Joshua L Justice
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Josiah E Hutton
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Tavis J Reed
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Megan L Mair
- Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Juan Botas
- Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, 08544, USA.
| |
Collapse
|
2
|
Ge T, Brickner DG, Zehr K, VanBelzen DJ, Zhang W, Caffalette C, Moeller GC, Ungerleider S, Marcou N, Jacob A, Nguyen VQ, Chait B, Rout MP, Brickner JH. Exportin-1 functions as an adaptor for transcription factor-mediated docking of chromatin at the nuclear pore complex. Mol Cell 2025; 85:1101-1116.e8. [PMID: 40068679 PMCID: PMC11928253 DOI: 10.1016/j.molcel.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/16/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
Nuclear pore proteins (nucleoporins [Nups]) physically interact with hundreds of chromosomal sites, impacting transcription. In yeast, transcription factors mediate interactions between Nups and enhancers and promoters. To define the molecular basis of this mechanism, we exploited a separation-of-function mutation in the Gcn4 transcription factor that blocks its interaction with the nuclear pore complex (NPC). This mutation reduces the interaction of Gcn4 with the highly conserved nuclear export factor Crm1/Xpo1. Crm1 and Nups co-occupy enhancers, and Crm1 inhibition blocks interaction of the nuclear pore protein Nup2 with the genome. In vivo, Crm1 interacts stably with the NPC and in vitro, Crm1 binds directly to both Gcn4 and Nup2. Importantly, the interaction between Crm1 and Gcn4 requires neither Ran-guanosine triphosphate (GTP) nor the nuclear export sequence binding site. Finally, Crm1 and Ran-GTP stimulate DNA binding by Gcn4, suggesting that allosteric coupling between Crm1-Ran-GTP binding and DNA binding facilitates the docking of transcription-factor-bound enhancers at the NPC.
Collapse
Affiliation(s)
- Tiffany Ge
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Donna Garvey Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Kara Zehr
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - D Jake VanBelzen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Wenzhu Zhang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Christopher Caffalette
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Gavin C Moeller
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Sara Ungerleider
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Nikita Marcou
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Alexis Jacob
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Vu Q Nguyen
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Brian Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA.
| |
Collapse
|
3
|
de Jesus Ramires M, Hummel K, Hatfaludi T, Hess M, Bilic I. Host-specific targets of Histomonas meleagridis antigens revealed by immunoprecipitation. Sci Rep 2025; 15:5800. [PMID: 39962091 PMCID: PMC11832935 DOI: 10.1038/s41598-025-88855-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/31/2025] [Indexed: 02/20/2025] Open
Abstract
Histomonas meleagridis, a protozoan parasite responsible for histomonosis (syn. Blackhead disease, histomoniasis), presents an increasing challenge for poultry health, particularly with the ban of licensed prophylactic and treatment options. Recent studies have explored H. meleagridis proteome, exoproteome, and surfaceome, linking molecular data to virulence and in vitro attenuation. Nevertheless, proteins involved in interactions with hosts remain largely unknown. In this study, we conducted immunoproteome analyses to identify key antigens involved in the humoral immune response of the parasite's main hosts, turkeys and chickens. Immunogenic proteins were isolated via immunoprecipitation using sera from chickens and turkeys that were vaccinated with a single attenuated strain and challenged with virulent strains of the protozoan, respectively. Mass spectrometry identified 155 putative H. meleagridis immunogenic proteins, of which 43 were recognized by sera from both hosts. In silico antigenicity screening (VaxElan) identified 33 pan-reactive antigens, with VaxiDL further highlighting 10 as potential vaccine candidates. Comparative analysis revealed host-specific immune responses, with 16 differential immunogenic proteins in chickens (6 specific to virulent and 10 to attenuated preparations) and 19 unique proteins in turkeys, all associated with virulent strains. These results enhance our understanding of H. meleagridis immunogenic protein dynamics and host-pathogen specificities, supporting the development of improved diagnostic tools and potential protective measures against the infection.
Collapse
Affiliation(s)
- Marcelo de Jesus Ramires
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, A-1210, Austria
| | - Karin Hummel
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, A-1210, Austria
| | - Tamas Hatfaludi
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, A-1210, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, A-1210, Austria
| | - Ivana Bilic
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, A-1210, Austria.
| |
Collapse
|
4
|
Sanial M, Miled R, Alves M, Claret S, Joly N, Proux‐Gillardeaux V, Plessis A, Léon S. Direct observation of fluorescent proteins in gels: A rapid, cost-efficient, and quantitative alternative to immunoblotting. Biol Cell 2025; 117:e2400161. [PMID: 39924827 PMCID: PMC11808229 DOI: 10.1111/boc.202400161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND INFORMATION The discovery of green fluorescent protein (GFP) and its derivatives has revolutionized cell biology. These fluorescent proteins (FPs) have enabled the real-time observation of protein localization and dynamics within live cells. Applications of FP vary from monitoring gene/protein expression patterns, visualizing protein-protein interactions, measuring protein stability, assessing protein mobility, and creating biosensors. The utility of FPs also extends to biochemical approaches through immunoblotting and proteomic analyses, aided by anti-FP antibodies and nanobodies. FPs are notoriously robust proteins with a tightly folded domain that confers a strong stability and a relative resistance to degradation and denaturation. METHODS AND RESULTS In this study, we report that various green, orange, and red FPs can be maintained in a native, fluorescent state during the entire process of protein sample extraction, incubation with sample buffer, loading, and migration on SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) with only minor adaptations of traditional protocols. This protocol results in the ability to detect and quantify in-gel fluorescence (IGF) of endogenously-expressed proteins tagged with FPs directly after migration, using standard fluorescence-imaging devices. This approach eliminates the need for antibodies and chemiluminescent reagents, as well as the time-consuming steps inherent in immunoblotting such as transfer onto a membrane and antibody incubations. CONCLUSIONS AND SIGNIFICANCE Overall, IGF detection provides clearer data with less background interference, a sensitivity comparable to or better than antibody-based detection, a better quantification, and a broader dynamic range. After fluorescence imaging, gels can still be used for other applications such as total protein staining or immunoblotting if needed. It also expands possibilities by allowing the detection of FPs for which antibodies are not available. Our study explores the feasibility, limitations, and applications of IGF for detecting endogenously expressed proteins in cell extracts, providing insights into sample preparation, imaging conditions, and sensitivity optimizations, and potential applications such as co-immunoprecipitation experiments.
Collapse
Affiliation(s)
| | - Ryan Miled
- CNRSInstitut Jacques MonodUniversité Paris CitéParisFrance
| | - Marine Alves
- CNRSInstitut Jacques MonodUniversité Paris CitéParisFrance
| | - Sandra Claret
- CNRSInstitut Jacques MonodUniversité Paris CitéParisFrance
| | - Nicolas Joly
- CNRSInstitut Jacques MonodUniversité Paris CitéParisFrance
| | | | - Anne Plessis
- CNRSInstitut Jacques MonodUniversité Paris CitéParisFrance
| | - Sébastien Léon
- CNRSInstitut Jacques MonodUniversité Paris CitéParisFrance
| |
Collapse
|
5
|
Chen YJN, Shi RC, Xiang YC, Fan L, Tang H, He G, Zhou M, Feng XZ, Tan JD, Huang P, Ye X, Zhao K, Fu WY, Li LL, Bian XT, Chen H, Wang F, Wang T, Zhang CK, Zhou BH, Chen W, Liang TT, Lv JT, Kang X, Shi YX, Kim E, Qin YH, Hettinghouse A, Wang KD, Zhao XL, Yang MY, Tang YZ, Piao HL, Guo L, Liu CJ, Miao HM, Tang KL. Malate initiates a proton-sensing pathway essential for pH regulation of inflammation. Signal Transduct Target Ther 2024; 9:367. [PMID: 39737965 PMCID: PMC11683149 DOI: 10.1038/s41392-024-02076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 01/01/2025] Open
Abstract
Metabolites can double as a signaling modality that initiates physiological adaptations. Metabolism, a chemical language encoding biological information, has been recognized as a powerful principle directing inflammatory responses. Cytosolic pH is a regulator of inflammatory response in macrophages. Here, we found that L-malate exerts anti-inflammatory effect via BiP-IRF2BP2 signaling, which is a sensor of cytosolic pH in macrophages. First, L-malate, a TCA intermediate upregulated in pro-inflammatory macrophages, was identified as a potent anti-inflammatory metabolite through initial screening. Subsequent screening with DARTS and MS led to the isolation of L-malate-BiP binding. Further screening through protein‒protein interaction microarrays identified a L-malate-restrained coupling of BiP with IRF2BP2, a known anti-inflammatory protein. Interestingly, pH reduction, which promotes carboxyl protonation of L-malate, facilitates L-malate and carboxylate analogues such as succinate to bind BiP, and disrupt BiP-IRF2BP2 interaction in a carboxyl-dependent manner. Both L-malate and acidification inhibit BiP-IRF2BP2 interaction, and protect IRF2BP2 from BiP-driven degradation in macrophages. Furthermore, both in vitro and in vivo, BiP-IRF2BP2 signal is required for effects of both L-malate and pH on inflammatory responses. These findings reveal a previously unrecognized, proton/carboxylate dual sensing pathway wherein pH and L-malate regulate inflammatory responses, indicating the role of certain carboxylate metabolites as adaptors in the proton biosensing by interactions between macromolecules.
Collapse
Affiliation(s)
- Yu-Jia-Nan Chen
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China.
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA.
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China.
| | - Rong-Chen Shi
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Yuan-Cai Xiang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Li Fan
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Hong Tang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Gang He
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Mei Zhou
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xin-Zhe Feng
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
| | - Jin-Dong Tan
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Pan Huang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xiao Ye
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Kun Zhao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Wen-Yu Fu
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
- Department of Orthopedics and Rehabilitations, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Liu-Li Li
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
| | - Xu-Ting Bian
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Huan Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Feng Wang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Teng Wang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Chen-Ke Zhang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Bing-Hua Zhou
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Wan Chen
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Tao-Tao Liang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Jing-Tong Lv
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xia Kang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - You-Xing Shi
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Ellen Kim
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
| | - Yin-Hua Qin
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Army Medical University, Chongqing, 400038, China
| | - Aubryanna Hettinghouse
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
| | - Kai-di Wang
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266000, China
| | - Xiang-Li Zhao
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
- Department of Orthopedics and Rehabilitations, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Ming-Yu Yang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Yu-Zhen Tang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lin Guo
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Chuan-Ju Liu
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA.
- Department of Orthopedics and Rehabilitations, Yale University School of Medicine, New Haven, CT, 06519, USA.
| | - Hong-Ming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| | - Kang-Lai Tang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
6
|
Belghazi M, Iborra C, Toutendji O, Lasserre M, Debanne D, Goaillard JM, Marquèze-Pouey B. High-Resolution Proteomics Unravel a Native Functional Complex of Cav1.3, SK3, and Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels in Midbrain Dopaminergic Neurons. Cells 2024; 13:944. [PMID: 38891076 PMCID: PMC11172389 DOI: 10.3390/cells13110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Pacemaking activity in substantia nigra dopaminergic neurons is generated by the coordinated activity of a variety of distinct somatodendritic voltage- and calcium-gated ion channels. We investigated whether these functional interactions could arise from a common localization in macromolecular complexes where physical proximity would allow for efficient interaction and co-regulations. For that purpose, we immunopurified six ion channel proteins involved in substantia nigra neuron autonomous firing to identify their molecular interactions. The ion channels chosen as bait were Cav1.2, Cav1.3, HCN2, HCN4, Kv4.3, and SK3 channel proteins, and the methods chosen to determine interactions were co-immunoprecipitation analyzed through immunoblot and mass spectrometry as well as proximity ligation assay. A macromolecular complex composed of Cav1.3, HCN, and SK3 channels was unraveled. In addition, novel potential interactions between SK3 channels and sclerosis tuberous complex (Tsc) proteins, inhibitors of mTOR, and between HCN4 channels and the pro-degenerative protein Sarm1 were uncovered. In order to demonstrate the presence of these molecular interactions in situ, we used proximity ligation assay (PLA) imaging on midbrain slices containing the substantia nigra, and we could ascertain the presence of these protein complexes specifically in substantia nigra dopaminergic neurons. Based on the complementary functional role of the ion channels in the macromolecular complex identified, these results suggest that such tight interactions could partly underly the robustness of pacemaking in dopaminergic neurons.
Collapse
Affiliation(s)
- Maya Belghazi
- CRN2M Centre de Recherche Neurobiologie-Neurophysiologie, CNRS, UMR7286, Aix-Marseille Université, 13015 Marseille, France;
- Institut de Microbiologie de la Méditerranée (IMM), CNRS, Aix-Marseille Université, 13009 Marseille, France
| | - Cécile Iborra
- Ion Channel and Synaptic Neurobiology, INSERM, UMR1072, Aix-Marseille Université, 13015 Marseille, France; (C.I.); (O.T.); (M.L.); (D.D.); (J.-M.G.)
| | - Ophélie Toutendji
- Ion Channel and Synaptic Neurobiology, INSERM, UMR1072, Aix-Marseille Université, 13015 Marseille, France; (C.I.); (O.T.); (M.L.); (D.D.); (J.-M.G.)
| | - Manon Lasserre
- Ion Channel and Synaptic Neurobiology, INSERM, UMR1072, Aix-Marseille Université, 13015 Marseille, France; (C.I.); (O.T.); (M.L.); (D.D.); (J.-M.G.)
| | - Dominique Debanne
- Ion Channel and Synaptic Neurobiology, INSERM, UMR1072, Aix-Marseille Université, 13015 Marseille, France; (C.I.); (O.T.); (M.L.); (D.D.); (J.-M.G.)
| | - Jean-Marc Goaillard
- Ion Channel and Synaptic Neurobiology, INSERM, UMR1072, Aix-Marseille Université, 13015 Marseille, France; (C.I.); (O.T.); (M.L.); (D.D.); (J.-M.G.)
- Institut de Neurosciences de la Timone, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Béatrice Marquèze-Pouey
- Ion Channel and Synaptic Neurobiology, INSERM, UMR1072, Aix-Marseille Université, 13015 Marseille, France; (C.I.); (O.T.); (M.L.); (D.D.); (J.-M.G.)
| |
Collapse
|
7
|
Liu X, Abad L, Chatterjee L, Cristea IM, Varjosalo M. Mapping protein-protein interactions by mass spectrometry. MASS SPECTROMETRY REVIEWS 2024:10.1002/mas.21887. [PMID: 38742660 PMCID: PMC11561166 DOI: 10.1002/mas.21887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Protein-protein interactions (PPIs) are essential for numerous biological activities, including signal transduction, transcription control, and metabolism. They play a pivotal role in the organization and function of the proteome, and their perturbation is associated with various diseases, such as cancer, neurodegeneration, and infectious diseases. Recent advances in mass spectrometry (MS)-based protein interactomics have significantly expanded our understanding of the PPIs in cells, with techniques that continue to improve in terms of sensitivity, and specificity providing new opportunities for the study of PPIs in diverse biological systems. These techniques differ depending on the type of interaction being studied, with each approach having its set of advantages, disadvantages, and applicability. This review highlights recent advances in enrichment methodologies for interactomes before MS analysis and compares their unique features and specifications. It emphasizes prospects for further improvement and their potential applications in advancing our knowledge of PPIs in various biological contexts.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Lawrence Abad
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Lopamudra Chatterjee
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Ge T, Brickner DG, Zehr K, VanBelzen DJ, Zhang W, Caffalette C, Ungerleider S, Marcou N, Chait B, Rout MP, Brickner JH. Exportin-1 functions as an adaptor for transcription factor-mediated docking of chromatin at the nuclear pore complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593355. [PMID: 38798450 PMCID: PMC11118273 DOI: 10.1101/2024.05.09.593355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Nuclear pore proteins (Nups) in yeast, flies and mammals physically interact with hundreds or thousands of chromosomal sites, which impacts transcriptional regulation. In budding yeast, transcription factors mediate interaction of Nups with enhancers of highly active genes. To define the molecular basis of this mechanism, we exploited a separation-of-function mutation in the Gcn4 transcription factor that blocks its interaction with the nuclear pore complex (NPC) without altering its DNA binding or activation domains. SILAC mass spectrometry revealed that this mutation reduces the interaction of Gcn4 with the highly conserved nuclear export factor Crm1/Xpo1. Crm1 both interacts with the same sites as Nups genome-wide and is required for Nup2 to interact with the yeast genome. In vivo, Crm1 undergoes extensive and stable interactions with the NPC. In vitro, Crm1 binds to Gcn4 and these proteins form a complex with the nuclear pore protein Nup2. Importantly, the interaction between Crm1 and Gcn4 does not require Ran-GTP, suggesting that it is not through the nuclear export sequence binding site. Finally, Crm1 stimulates DNA binding by Gcn4, supporting a model in which allosteric coupling between Crm1 binding and DNA binding permits docking of transcription factor-bound enhancers at the NPC.
Collapse
Affiliation(s)
- Tiffany Ge
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | | | - Kara Zehr
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - D Jake VanBelzen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - Wenzhu Zhang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY
| | | | - Sara Ungerleider
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - Nikita Marcou
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
- Current address: Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Brian Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| |
Collapse
|
9
|
Rona G, Miwatani-Minter B, Zhang Q, Goldberg HV, Kerzhnerman MA, Howard JB, Simoneschi D, Lane E, Hobbs JW, Sassani E, Wang AA, Keegan S, Laverty DJ, Piett CG, Pongor LS, Xu ML, Andrade J, Thomas A, Sicinski P, Askenazi M, Ueberheide B, Fenyö D, Nagel ZD, Pagano M. CDK-independent role of D-type cyclins in regulating DNA mismatch repair. Mol Cell 2024; 84:1224-1242.e13. [PMID: 38458201 PMCID: PMC10997477 DOI: 10.1016/j.molcel.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/04/2024] [Accepted: 02/09/2024] [Indexed: 03/10/2024]
Abstract
Although mismatch repair (MMR) is essential for correcting DNA replication errors, it can also recognize other lesions, such as oxidized bases. In G0 and G1, MMR is kept in check through unknown mechanisms as it is error-prone during these cell cycle phases. We show that in mammalian cells, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins inhibit the proteasomal degradation of p21, which competes with MMR proteins for binding to PCNA, thereby inhibiting MMR. The ability of D-type cyclins to limit MMR is CDK4- and CDK6-independent and is conserved in G0 and G1. At the G1/S transition, the timely, cullin-RING ubiquitin ligase (CRL)-dependent degradation of D-type cyclins and p21 enables MMR activity to efficiently repair DNA replication errors. Persistent expression of D-type cyclins during S-phase inhibits the binding of MMR proteins to PCNA, increases the mutational burden, and promotes microsatellite instability.
Collapse
Affiliation(s)
- Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Bearach Miwatani-Minter
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Qingyue Zhang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hailey V Goldberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marc A Kerzhnerman
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jesse B Howard
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ethan Lane
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - John W Hobbs
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Elizabeth Sassani
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Andrew A Wang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sarah Keegan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Daniel J Laverty
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Cortt G Piett
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lorinc S Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Cancer Genomics and Epigenetics Core Group, Hungarian Centre of Excellence for Molecular Medicine, Szeged 6728, Hungary
| | - Miranda Li Xu
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Joshua Andrade
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Manor Askenazi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Biomedical Hosting LLC, 33 Lewis Avenue, Arlington, MA 02474, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Zachary D Nagel
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
10
|
Rona G, Miwatani-Minter B, Zhang Q, Goldberg HV, Kerzhnerman MA, Howard JB, Simoneschi D, Lane E, Hobbs JW, Sassani E, Wang AA, Keegan S, Laverty DJ, Piett CG, Pongor LS, Xu ML, Andrade J, Thomas A, Sicinski P, Askenazi M, Ueberheide B, Fenyö D, Nagel ZD, Pagano M. D-type cyclins regulate DNA mismatch repair in the G1 and S phases of the cell cycle, maintaining genome stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575420. [PMID: 38260436 PMCID: PMC10802603 DOI: 10.1101/2024.01.12.575420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The large majority of oxidative DNA lesions occurring in the G1 phase of the cell cycle are repaired by base excision repair (BER) rather than mismatch repair (MMR) to avoid long resections that can lead to genomic instability and cell death. However, the molecular mechanisms dictating pathway choice between MMR and BER have remained unknown. Here, we show that, during G1, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins shield p21 from its two ubiquitin ligases CRL1SKP2 and CRL4CDT2 in a CDK4/6-independent manner. In turn, p21 competes through its PCNA-interacting protein degron with MMR components for their binding to PCNA. This inhibits MMR while not affecting BER. At the G1/S transition, the CRL4AMBRA1-dependent degradation of D-type cyclins renders p21 susceptible to proteolysis. These timely degradation events allow the proper binding of MMR proteins to PCNA, enabling the repair of DNA replication errors. Persistent expression of cyclin D1 during S-phase increases the mutational burden and promotes microsatellite instability. Thus, the expression of D-type cyclins inhibits MMR in G1, whereas their degradation is necessary for proper MMR function in S.
Collapse
Affiliation(s)
- Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Bearach Miwatani-Minter
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Qingyue Zhang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hailey V. Goldberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marc A. Kerzhnerman
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jesse B. Howard
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ethan Lane
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - John W. Hobbs
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Elizabeth Sassani
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Andrew A. Wang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sarah Keegan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Cortt G. Piett
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lorinc S. Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Hungarian Centre of Excellence for Molecular Medicine, University of Szeged, Szeged, H-6728, Hungary
| | - Miranda Li Xu
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Joshua Andrade
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Manor Askenazi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Biomedical Hosting LLC, 33 Lewis Avenue, Arlington, MA 02474, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Zachary D. Nagel
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
11
|
Li J, Krause GJ, Gui Q, Kaushik S, Rona G, Zhang Q, Liang FX, Dhabaria A, Anerillas C, Martindale JL, Vasilyev N, Askenazi M, Ueberheide B, Nudler E, Gorospe M, Cuervo AM, Pagano M. A noncanonical function of SKP1 regulates the switch between autophagy and unconventional secretion. SCIENCE ADVANCES 2023; 9:eadh1134. [PMID: 37831778 PMCID: PMC10575587 DOI: 10.1126/sciadv.adh1134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
Intracellular degradation of proteins and organelles by the autophagy-lysosome system is essential for cellular quality control and energy homeostasis. Besides degradation, endolysosomal organelles can fuse with the plasma membrane and contribute to unconventional secretion. Here, we identify a function for mammalian SKP1 in endolysosomes that is independent of its established role as an essential component of the family of SCF/CRL1 ubiquitin ligases. We found that, under nutrient-poor conditions, SKP1 is phosphorylated on Thr131, allowing its interaction with V1 subunits of the vacuolar ATPase (V-ATPase). This event, in turn, promotes V-ATPase assembly to acidify late endosomes and enhance endolysosomal degradation. Under nutrient-rich conditions, SUMOylation of phosphorylated SKP1 allows its binding to and dephosphorylation by the PPM1B phosphatase. Dephosphorylated SKP1 interacts with SEC22B to promote unconventional secretion of the content of less acidified hybrid endosomal/autophagic compartments. Collectively, our study implicates SKP1 phosphorylation as a switch between autophagy and unconventional secretion in a manner dependent on cellular nutrient status.
Collapse
Affiliation(s)
- Jie Li
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Gregory J. Krause
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Qi Gui
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Qingyue Zhang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Feng-Xia Liang
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Avantika Dhabaria
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L. Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Manor Askenazi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Biomedical Hosting LLC, 33 Lewis Avenue, Arlington, MA 02474, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
12
|
Panda M, Kalita E, Singh S, Rao A, Prajapati VK. Application of functional proteomics in understanding RNA virus-mediated infection. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:301-325. [PMID: 38220429 DOI: 10.1016/bs.apcsb.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Together with the expansion of genome sequencing research, the number of protein sequences whose function is yet unknown is increasing dramatically. The primary goals of functional proteomics, a developing area of study in the realm of proteomic science, are the elucidation of the biological function of unidentified proteins and the molecular description of cellular systems at the molecular level. RNA viruses have emerged as the cause of several human infectious diseases with large morbidity and fatality rates. The introduction of high-throughput sequencing tools and genetic-based screening approaches over the last few decades has enabled researchers to find previously unknown and perplexing elements of RNA virus replication and pathogenesis on a scale never feasible before. Viruses, on the other hand, frequently disrupt cellular proteostasis, macromolecular complex architecture or stoichiometry, and post-translational changes to take over essential host activities. Because of these consequences, structural and global protein and proteoform monitoring is highly necessiated. Mass spectrometry (MS) has the potential to elucidate key details of virus-host interactions and speed up the identification of antiviral targets, giving precise data on the stoichiometry of cellular and viral protein complexes as well as mechanistic insights, has lately emerged as a key part of the RNA virus biology toolbox as a functional proteomics approach. Affinity-based techniques are primarily employed to identify interacting proteins in stable complexes in living organisms. A protein's biological role is strongly suggested by its relationship with other members of a certain protein complex that is involved in a particular process. With a particular emphasis on the most recent advancements in defining host responses and their translational implications to uncover novel tractable antiviral targets, this chapter provides insight on several functional proteomics techniques in RNA virus biology.
Collapse
Affiliation(s)
- Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India; Department of Neurology. Experimental Research in Stroke and Inflammation (ERSI),University Medical Center Hamburg-Eppendorf Martinistraße Hamburg, Germany
| | - Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Abhishek Rao
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
13
|
Desbois M, Pak JS, Opperman KJ, Giles AC, Grill B. Optimized protocol for in vivo affinity purification proteomics and biochemistry using C. elegans. STAR Protoc 2023; 4:102262. [PMID: 37294631 PMCID: PMC10323129 DOI: 10.1016/j.xpro.2023.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/11/2023] Open
Abstract
We present an optimized protocol for in vivo affinity purification proteomics and biochemistry using the model organism C. elegans. We describe steps for target tagging, large-scale culture, affinity purification using a cryomill, mass spectrometry and validation of candidate binding proteins. Our approach has proven successful for identifying protein-protein interactions and signaling networks with verified functional relevance. Our protocol is also suitable for biochemical evaluation of protein-protein interactions in vivo. For complete details on the use and execution of this protocol, please refer to Crawley et al.,1 Giles et al.,2 and Desbois et al.3.
Collapse
Affiliation(s)
- Muriel Desbois
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Joseph S Pak
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Karla J Opperman
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Andrew C Giles
- Division of Medical Sciences, University of Northern British Columbia, Prince George, BC V2N 4Z9 Canada
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington Medical School, Seattle, WA 98101, USA; Department of Pharmacology, University of Washington Medical School, Seattle, WA 98101, USA.
| |
Collapse
|
14
|
Ashley CL, McSharry BP, McWilliam HEG, Stanton RJ, Fielding CA, Mathias RA, Fairlie DP, McCluskey J, Villadangos JA, Rossjohn J, Abendroth A, Slobedman B. Suppression of MR1 by human cytomegalovirus inhibits MAIT cell activation. Front Immunol 2023; 14:1107497. [PMID: 36845106 PMCID: PMC9950634 DOI: 10.3389/fimmu.2023.1107497] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction The antigen presentation molecule MHC class I related protein-1 (MR1) is best characterized by its ability to present bacterially derived metabolites of vitamin B2 biosynthesis to mucosal-associated invariant T-cells (MAIT cells). Methods Through in vitro human cytomegalovirus (HCMV) infection in the presence of MR1 ligand we investigate the modulation of MR1 expression. Using coimmunoprecipitation, mass spectrometry, expression by recombinant adenovirus and HCMV deletion mutants we investigate HCMV gpUS9 and its family members as potential regulators of MR1 expression. The functional consequences of MR1 modulation by HCMV infection are explored in coculture activation assays with either Jurkat cells engineered to express the MAIT cell TCR or primary MAIT cells. MR1 dependence in these activation assays is established by addition of MR1 neutralizing antibody and CRISPR/Cas-9 mediated MR1 knockout. Results Here we demonstrate that HCMV infection efficiently suppresses MR1 surface expression and reduces total MR1 protein levels. Expression of the viral glycoprotein gpUS9 in isolation could reduce both cell surface and total MR1 levels, with analysis of a specific US9 HCMV deletion mutant suggesting that the virus can target MR1 using multiple mechanisms. Functional assays with primary MAIT cells demonstrated the ability of HCMV infection to inhibit bacterially driven, MR1-dependent activation using both neutralizing antibodies and engineered MR1 knockout cells. Discussion This study identifies a strategy encoded by HCMV to disrupt the MR1:MAIT cell axis. This immune axis is less well characterized in the context of viral infection. HCMV encodes hundreds of proteins, some of which regulate the expression of antigen presentation molecules. However the ability of this virus to regulate the MR1:MAIT TCR axis has not been studied in detail.
Collapse
Affiliation(s)
- Caroline L. Ashley
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Brian P. McSharry
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Hamish E. G. McWilliam
- Department of Microbiology and Immunology, The Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Pharmacology, Institute of Molecular Science and Biotechnology (Bio21), The University of Melbourne, Melbourne, VIC, Australia
| | - Richard J. Stanton
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Ceri A. Fielding
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Rommel A. Mathias
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - David P. Fairlie
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Jose A. Villadangos
- Department of Microbiology and Immunology, The Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Pharmacology, Institute of Molecular Science and Biotechnology (Bio21), The University of Melbourne, Melbourne, VIC, Australia
| | - Jamie Rossjohn
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Allison Abendroth
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Barry Slobedman
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Di Stefano LH, Saba LJ, Oghbaie M, Jiang H, McKerrow W, Benitez-Guijarro M, Taylor MS, LaCava J. Affinity-Based Interactome Analysis of Endogenous LINE-1 Macromolecules. Methods Mol Biol 2023; 2607:215-256. [PMID: 36449166 DOI: 10.1007/978-1-0716-2883-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
During their proliferation and the host's concomitant attempts to suppress it, LINE-1 (L1) retrotransposons give rise to a collection of heterogeneous ribonucleoproteins (RNPs); their protein and RNA compositions remain poorly defined. The constituents of L1-associated macromolecules can differ depending on numerous factors, including, for example, position within the L1 life cycle, whether the macromolecule is productive or under suppression, and the cell type within which the proliferation is occurring. This chapter describes techniques that aid the capture and characterization of protein and RNA components of L1 macromolecules from tissues that natively express them. The protocols described have been applied to embryonal carcinoma cell lines that are popular model systems for L1 molecular biology (e.g., N2102Ep, NTERA-2, and PA-1 cells), as well as colorectal cancer tissues. N2102Ep cells are given as the use case for this chapter; the protocols should be applicable to essentially any tissue exhibiting endogenous L1 expression with minor modifications.
Collapse
Affiliation(s)
- Luciano H Di Stefano
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
| | - Leila J Saba
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
| | - Mehrnoosh Oghbaie
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Wilson McKerrow
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
| | - Maria Benitez-Guijarro
- GENYO. Centro de Genómica e Investigación Oncológica: Pfizer-Universidad de Granada-Junta de Andalucía, Granada, Spain
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John LaCava
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands.
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
16
|
Xu S, Li G, Ye X, Chen D, Chen Z, Xu Z, Daniele M, Tambone S, Ceccacci A, Tomei L, Ye L, Yu Y, Solbach A, Farmer SM, Stimming EF, McAllister G, Marchionini DM, Zhang S. HAP40 is a conserved central regulator of Huntingtin and a potential modulator of Huntington's disease pathogenesis. PLoS Genet 2022; 18:e1010302. [PMID: 35853002 PMCID: PMC9295956 DOI: 10.1371/journal.pgen.1010302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/18/2022] [Indexed: 11/19/2022] Open
Abstract
Perturbation of huntingtin (HTT)'s physiological function is one postulated pathogenic factor in Huntington's disease (HD). However, little is known how HTT is regulated in vivo. In a proteomic study, we isolated a novel ~40kDa protein as a strong binding partner of Drosophila HTT and demonstrated it was the functional ortholog of HAP40, an HTT associated protein shown recently to modulate HTT's conformation but with unclear physiological and pathologic roles. We showed that in both flies and human cells, HAP40 maintained conserved physical and functional interactions with HTT. Additionally, loss of HAP40 resulted in similar phenotypes as HTT knockout. More strikingly, HAP40 strongly affected HTT's stability, as depletion of HAP40 significantly reduced the levels of endogenous HTT protein while HAP40 overexpression markedly extended its half-life. Conversely, in the absence of HTT, the majority of HAP40 protein were degraded, likely through the proteasome. Further, the affinity between HTT and HAP40 was not significantly affected by polyglutamine expansion in HTT, and contrary to an early report, there were no abnormal accumulations of endogenous HAP40 protein in HD cells from mouse HD models or human patients. Lastly, when tested in Drosophila models of HD, HAP40 partially modulated the neurodegeneration induced by full-length mutant HTT while showed no apparent effect on the toxicity of mutant HTT exon 1 fragment. Together, our study uncovers a conserved mechanism governing the stability and in vivo functions of HTT and demonstrates that HAP40 is a central and positive regulator of endogenous HTT. Further, our results support that mutant HTT is toxic regardless of the presence of its partner HAP40, and implicate HAP40 as a potential modulator of HD pathogenesis through its multiplex effect on HTT's function, stability and the potency of mutant HTT's toxicity.
Collapse
Affiliation(s)
- Shiyu Xu
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Gang Li
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Xin Ye
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Dongsheng Chen
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Zhihua Chen
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Zhen Xu
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Moretti Daniele
- Department of Translational and Discovery Research, IRBM SpA, Pomezia (RM), Italy
| | - Sara Tambone
- Department of Translational and Discovery Research, IRBM SpA, Pomezia (RM), Italy
| | - Alessandra Ceccacci
- Department of Translational and Discovery Research, IRBM SpA, Pomezia (RM), Italy
| | - Licia Tomei
- Department of Translational and Discovery Research, IRBM SpA, Pomezia (RM), Italy
| | - Lili Ye
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Yue Yu
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Programs in Genetics and Epigenetics and Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Amanda Solbach
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Programs in Genetics and Epigenetics and Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Stephen M. Farmer
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Biochemistry and Cell Biology, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Erin Furr Stimming
- Department of Neurology, HDSA Center of Excellence, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - George McAllister
- CHDI Management/CHDI Foundation, 350 Seventh Ave, New York, New York, United States of America
| | - Deanna M. Marchionini
- CHDI Management/CHDI Foundation, 350 Seventh Ave, New York, New York, United States of America
| | - Sheng Zhang
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Programs in Genetics and Epigenetics and Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
- Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| |
Collapse
|
17
|
Lee J, Olivieri C, Ong C, Masterson LR, Gomes S, Lee BS, Schaefer F, Lorenz K, Veglia G, Rosner MR. Raf Kinase Inhibitory Protein regulates the cAMP-dependent protein kinase signaling pathway through a positive feedback loop. Proc Natl Acad Sci U S A 2022; 119:e2121867119. [PMID: 35696587 PMCID: PMC9231499 DOI: 10.1073/pnas.2121867119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
Raf Kinase Inhibitory Protein (RKIP) maintains cellular robustness and prevents the progression of diseases such as cancer and heart disease by regulating key kinase cascades including MAP kinase and protein kinase A (PKA). Phosphorylation of RKIP at S153 by Protein Kinase C (PKC) triggers a switch from inhibition of Raf to inhibition of the G protein coupled receptor kinase 2 (GRK2), enhancing signaling by the β-adrenergic receptor (β-AR) that activates PKA. Here we report that PKA-phosphorylated RKIP promotes β-AR-activated PKA signaling. Using biochemical, genetic, and biophysical approaches, we show that PKA phosphorylates RKIP at S51, increasing S153 phosphorylation by PKC and thereby triggering feedback activation of PKA. The S51V mutation blocks the ability of RKIP to activate PKA in prostate cancer cells and to induce contraction in primary cardiac myocytes in response to the β-AR activator isoproterenol, illustrating the functional importance of this positive feedback circuit. As previously shown for other kinases, phosphorylation of RKIP at S51 by PKA is enhanced upon RKIP destabilization by the P74L mutation. These results suggest that PKA phosphorylation at S51 may lead to allosteric changes associated with a higher-energy RKIP state that potentiates phosphorylation of RKIP at other key sites. This allosteric regulatory mechanism may have therapeutic potential for regulating PKA signaling in disease states.
Collapse
Affiliation(s)
- Jiyoung Lee
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637
| | - Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Colin Ong
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637
| | - Larry R. Masterson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Suzana Gomes
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637
| | - Bok-Soon Lee
- Department of Biochemistry & Molecular Medicine, George Washington University, Washington, DC 20037
- George Washington University Cancer Center, George Washington University, Washington, DC 20037
| | - Florian Schaefer
- Department of Pharmacology and Toxicology, Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Kristina Lorenz
- Department of Pharmacology and Toxicology, Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
- Leibniz-Institut für Analytische Wissenschaften, 44139 Dortmund, Germany
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637
| |
Collapse
|
18
|
Robbe ZL, Shi W, Wasson LK, Scialdone AP, Wilczewski CM, Sheng X, Hepperla AJ, Akerberg BN, Pu WT, Cristea IM, Davis IJ, Conlon FL. CHD4 is recruited by GATA4 and NKX2-5 to repress noncardiac gene programs in the developing heart. Genes Dev 2022; 36:468-482. [PMID: 35450884 PMCID: PMC9067406 DOI: 10.1101/gad.349154.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/31/2022] [Indexed: 12/23/2022]
Abstract
The nucleosome remodeling and deacetylase (NuRD) complex is one of the central chromatin remodeling complexes that mediates gene repression. NuRD is essential for numerous developmental events, including heart development. Clinical and genetic studies have provided direct evidence for the role of chromodomain helicase DNA-binding protein 4 (CHD4), the catalytic component of NuRD, in congenital heart disease (CHD), including atrial and ventricular septal defects. Furthermore, it has been demonstrated that CHD4 is essential for mammalian cardiomyocyte formation and function. A key unresolved question is how CHD4/NuRD is localized to specific cardiac target genes, as neither CHD4 nor NuRD can directly bind DNA. Here, we coupled a bioinformatics-based approach with mass spectrometry analyses to demonstrate that CHD4 interacts with the core cardiac transcription factors GATA4, NKX2-5, and TBX5 during embryonic heart development. Using transcriptomics and genome-wide occupancy data, we characterized the genomic landscape of GATA4, NKX2-5, and TBX5 repression and defined the direct cardiac gene targets of the GATA4-CHD4, NKX2-5-CHD4, and TBX5-CHD4 complexes. These data were used to identify putative cis-regulatory elements controlled by these complexes. We genetically interrogated two of these silencers in vivo: Acta1 and Myh11 We show that deletion of these silencers leads to inappropriate skeletal and smooth muscle gene misexpression, respectively, in the embryonic heart. These results delineate how CHD4/NuRD is localized to specific cardiac loci and explicates how mutations in the broadly expressed CHD4 protein lead to cardiac-specific disease states.
Collapse
Affiliation(s)
- Zachary L Robbe
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Wei Shi
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Lauren K Wasson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Angel P Scialdone
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Caralynn M Wilczewski
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Xinlei Sheng
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Austin J Hepperla
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Brynn N Akerberg
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Ian J Davis
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Frank L Conlon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
19
|
Tan L, Yammani RR. Co-Immunoprecipitation-Blotting: Analysis of Protein-Protein Interactions. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2413:145-154. [PMID: 35044662 DOI: 10.1007/978-1-0716-1896-7_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Immunoprecipitation of protein complexes, also known as co-immunoprecipitation (Co-IP), is a powerful technique to analyze protein-protein interactions. Commercial availability of Dynabeads® Protein A magnetic beads provides a fast, convenient, and efficient method for protein interaction studies by Co-IP followed by immunoblotting (Co-IP-blotting). Recently, the Co-IP-blotting technique helped us to investigate complicated protein interactions/networks involving nuclear protein 1 (Nupr1), a recently discovered regulator of apoptosis in human cartilage cells. The methods and protocols for Co-IP-blotting are reported here in detail.
Collapse
Affiliation(s)
- Li Tan
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Raghunatha R Yammani
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
20
|
Marzio A, Kurz E, Sahni JM, Di Feo G, Puccini J, Jiang S, Hirsch CA, Arbini AA, Wu WL, Pass HI, Bar-Sagi D, Papagiannakopoulos T, Pagano M. EMSY inhibits homologous recombination repair and the interferon response, promoting lung cancer immune evasion. Cell 2022; 185:169-183.e19. [PMID: 34963055 PMCID: PMC8751279 DOI: 10.1016/j.cell.2021.12.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 09/01/2021] [Accepted: 12/04/2021] [Indexed: 01/01/2023]
Abstract
Non-small cell lung cancers (NSCLCs) harboring KEAP1 mutations are often resistant to immunotherapy. Here, we show that KEAP1 targets EMSY for ubiquitin-mediated degradation to regulate homologous recombination repair (HRR) and anti-tumor immunity. Loss of KEAP1 in NSCLC induces stabilization of EMSY, producing a BRCAness phenotype, i.e., HRR defects and sensitivity to PARP inhibitors. Defective HRR contributes to a high tumor mutational burden that, in turn, is expected to prompt an innate immune response. Notably, EMSY accumulation suppresses the type I interferon response and impairs innate immune signaling, fostering cancer immune evasion. Activation of the type I interferon response in the tumor microenvironment using a STING agonist results in the engagement of innate and adaptive immune signaling and impairs the growth of KEAP1-mutant tumors. Our results suggest that targeting PARP and STING pathways, individually or in combination, represents a therapeutic strategy in NSCLC patients harboring alterations in KEAP1.
Collapse
Affiliation(s)
- Antonio Marzio
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA.
| | - Emma Kurz
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jennifer M Sahni
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Giuseppe Di Feo
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Joseph Puccini
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Shaowen Jiang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Carolina Alcantara Hirsch
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Arnaldo A Arbini
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Warren L Wu
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Harvey I Pass
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Cardiothoracic Surgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Thales Papagiannakopoulos
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
21
|
Trahan C, Oeffinger M. Single-Step Affinity Purification (ssAP) and Mass Spectrometry of Macromolecular Complexes in the Yeast S. cerevisiae. Methods Mol Biol 2022; 2477:195-223. [PMID: 35524119 DOI: 10.1007/978-1-0716-2257-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cellular functions are mostly defined by the dynamic interactions of proteins within macromolecular networks. Deciphering the composition of macromolecular complexes and their dynamic rearrangements is the key to get a comprehensive picture of cellular behavior and to understand biological systems. In the past two decades, affinity purification coupled to mass spectrometry has become a powerful tool to comprehensively study interaction networks and their assemblies. To overcome initial limitations of the approach, in particular, the effect of protein and RNA degradation, loss of transient interactors, and poor overall yield of intact complexes from cell lysates, various modifications to affinity purification protocols have been devised over the years. In this chapter, we describe a rapid single-step affinity purification method for the efficient isolation of dynamic macromolecular complexes. The technique employs cell lysis by cryo-milling, which ensures nondegraded starting material in the submicron range, and magnetic beads, which allow for dense antibody-conjugation and thus rapid complex isolation, while avoiding loss of transient interactions. The method is epitope tag-independent, and overcomes many of the previous limitations to produce large interactomes with almost no contamination. The protocol as described here has been optimized for the yeast S. cerevisiae.
Collapse
Affiliation(s)
- Christian Trahan
- RNP Biochemistry Laboratory, Center for Genetic and Neurological Diseases, Institut de recherches cliniques de Montréal, Montréal, QC, Canada
| | - Marlene Oeffinger
- RNP Biochemistry Laboratory, Center for Genetic and Neurological Diseases, Institut de recherches cliniques de Montréal, Montréal, QC, Canada.
- Département de biochimie et médicine moléculaire, Faculté de médecine, Université de Montréal, Montréal, QC, Canada.
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|
22
|
Chandra S, Mannino PJ, Thaller DJ, Ader NR, King MC, Melia TJ, Lusk CP. Atg39 selectively captures inner nuclear membrane into lumenal vesicles for delivery to the autophagosome. J Cell Biol 2021; 220:e202103030. [PMID: 34714326 PMCID: PMC8575018 DOI: 10.1083/jcb.202103030] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/26/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022] Open
Abstract
Mechanisms that turn over components of the nucleus and inner nuclear membrane (INM) remain to be fully defined. We explore how components of the INM are selected by a cytosolic autophagy apparatus through a transmembrane nuclear envelope-localized cargo adaptor, Atg39. A split-GFP reporter showed that Atg39 localizes to the outer nuclear membrane (ONM) and thus targets the INM across the nuclear envelope lumen. Consistent with this, sequence elements that confer both nuclear envelope localization and a membrane remodeling activity are mapped to the Atg39 lumenal domain; these lumenal motifs are required for the autophagy-mediated degradation of integral INM proteins. Interestingly, correlative light and electron microscopy shows that the overexpression of Atg39 leads to the expansion of the ONM and the enclosure of a network of INM-derived vesicles in the nuclear envelope lumen. Thus, we propose an outside-in model of nucleophagy where INM is delivered into vesicles in the nuclear envelope lumen, which can be targeted by the autophagosome.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas J. Melia
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - C. Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
23
|
Chen Z, Chen J. Mass spectrometry-based protein‒protein interaction techniques and their applications in studies of DNA damage repair. J Zhejiang Univ Sci B 2021; 22:1-20. [PMID: 33448183 PMCID: PMC7818012 DOI: 10.1631/jzus.b2000356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
Proteins are major functional units that are tightly connected to form complex and dynamic networks. These networks enable cells and organisms to operate properly and respond efficiently to environmental cues. Over the past decades, many biochemical methods have been developed to search for protein-binding partners in order to understand how protein networks are constructed and connected. At the same time, rapid development in proteomics and mass spectrometry (MS) techniques makes it possible to identify interacting proteins and build comprehensive protein‒protein interaction networks. The resulting interactomes and networks have proven informative in the investigation of biological functions, such as in the field of DNA damage repair. In recent years, a number of proteins involved in DNA damage response and DNA repair pathways have been uncovered with MS-based protein‒protein interaction studies. As the technologies for enriching associated proteins and MS become more sophisticated, the studies of protein‒protein interactions are entering a new era. In this review, we summarize the strategies and recent developments for exploring protein‒protein interaction. In addition, we discuss the application of these tools in the investigation of protein‒protein interaction networks involved in DNA damage response and DNA repair.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Mahmoudi Gomari M, Saraygord-Afshari N, Farsimadan M, Rostami N, Aghamiri S, Farajollahi MM. Opportunities and challenges of the tag-assisted protein purification techniques: Applications in the pharmaceutical industry. Biotechnol Adv 2020; 45:107653. [PMID: 33157154 DOI: 10.1016/j.biotechadv.2020.107653] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 01/16/2023]
Abstract
Tag-assisted protein purification is a method of choice for both academic researches and large-scale industrial demands. Application of the purification tags in the protein production process can help to save time and cost, but the design and application of tagged fusion proteins are challenging. An appropriate tagging strategy must provide sufficient expression yield and high purity for the final protein products while preserving their native structure and function. Thanks to the recent advances in the bioinformatics and emergence of high-throughput techniques (e.g. SEREX), many new tags are introduced to the market. A variety of interfering and non-interfering tags have currently broadened their application scope beyond the traditional use as a simple purification tool. They can take part in many biochemical and analytical features and act as solubility and protein expression enhancers, probe tracker for online visualization, detectors of post-translational modifications, and carrier-driven tags. Given the variability and growing number of the purification tags, here we reviewed the protein- and peptide-structured purification tags used in the affinity, ion-exchange, reverse phase, and immobilized metal ion affinity chromatographies. We highlighted the demand for purification tags in the pharmaceutical industry and discussed the impact of self-cleavable tags, aggregating tags, and nanotechnology on both the column-based and column-free purification techniques.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Marziye Farsimadan
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Iran
| | - Shahin Aghamiri
- Student research committee, Department of medical biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad M Farajollahi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Abstract
For the last century we have relied on model organisms to help understand fundamental biological processes. Now, with advancements in genome sequencing, assembly, and annotation, non-model organisms may be studied with the same advanced bioanalytical toolkit as model organisms. Proteomics is one such technique, which classically relies on predicted protein sequences to catalog and measure complex proteomes across tissues and biofluids. Applying proteomics to non-model organisms can advance and accelerate biomimicry studies, biomedical advancements, veterinary medicine, agricultural research, behavioral ecology, and food safety. In this postmodel organism era, we can study almost any species, meaning that many non-model organisms are, in fact, important emerging model organisms. Herein we specifically focus on eukaryotic organisms and discuss the steps to generate sequence databases, analyze proteomic data with or without a database, and interpret results as well as future research opportunities. Proteomics is more accessible than ever before and will continue to rapidly advance in the coming years, enabling critical research and discoveries in non-model organisms that were hitherto impossible.
Collapse
Affiliation(s)
- Michelle Heck
- Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, NY, USA
- Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
- Boyce Thompson Institute, Ithaca, NY, USA
| | - Benjamin A. Neely
- Chemical Sciences Division, National Institute of Standards and Technology, Charleston, SC, USA
| |
Collapse
|
26
|
Schwechheimer C, Hebert K, Tripathi S, Singh PK, Floyd KA, Brown ER, Porcella ME, Osorio J, Kiblen JTM, Pagliai FA, Drescher K, Rubin SM, Yildiz FH. A tyrosine phosphoregulatory system controls exopolysaccharide biosynthesis and biofilm formation in Vibrio cholerae. PLoS Pathog 2020; 16:e1008745. [PMID: 32841296 PMCID: PMC7485978 DOI: 10.1371/journal.ppat.1008745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 09/11/2020] [Accepted: 06/25/2020] [Indexed: 11/19/2022] Open
Abstract
Production of an extracellular matrix is essential for biofilm formation, as this matrix both secures and protects the cells it encases. Mechanisms underlying production and assembly of matrices are poorly understood. Vibrio cholerae, relies heavily on biofilm formation for survival, infectivity, and transmission. Biofilm formation requires Vibrio polysaccharide (VPS), which is produced by vps gene-products, yet the function of these products remains unknown. Here, we demonstrate that the vps gene-products vpsO and vpsU encode respectively for a tyrosine kinase and a cognate tyrosine phosphatase. Collectively, VpsO and VpsU act as a tyrosine phosphoregulatory system to modulate VPS production. We present structures of VpsU and the kinase domain of VpsO, and we report observed autocatalytic tyrosine phosphorylation of the VpsO C-terminal tail. The position and amount of tyrosine phosphorylation in the VpsO C-terminal tail represses VPS production and biofilm formation through a mechanism involving the modulation of VpsO oligomerization. We found that tyrosine phosphorylation enhances stability of VpsO. Regulation of VpsO phosphorylation by the phosphatase VpsU is vital for maintaining native VPS levels. This study provides new insights into the mechanism and regulation of VPS production and establishes general principles of biofilm matrix production and its inhibition. The biofilm life style protects microbes from a plethora of harm, to increase their survival and pathogenicity. Exopolysaccharides are the essential glue of the microbial biofilm matrix, and loss of this glue negates biofilm formation and renders cells more sensitive to antimicrobial agents. Here, we show that a tyrosine phosphoregulatory system controls the biosynthesis and abundance of Vibrio exopolysaccharide (VPS), an essential biofilm component of the pathogen Vibrio cholerae. The phosphorylation state of the tyrosine autokinase VpsO, mediated by the tyrosine phosphatase VpsU, directly modulates VPS production and also affects the kinase’s own degradation, to regulate VPS production. This study provides new insights into the mechanisms of V. cholerae biofilm formation and consequently ways to combat pathogens more broadly, due to conservation of tyrosine phosphoregulatory systems among exopolysaccharide producing bacteria.
Collapse
Affiliation(s)
- Carmen Schwechheimer
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Kassidy Hebert
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Praveen K. Singh
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Kyle A. Floyd
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Elise R. Brown
- Department of Chemistry and Biochemistry, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Monique E. Porcella
- Department of Chemistry and Biochemistry, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Jacqueline Osorio
- Department of Chemistry and Biochemistry, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Joseph T. M. Kiblen
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Fernando A. Pagliai
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Seth M. Rubin
- Department of Chemistry and Biochemistry, University of California—Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (SMR), (FHY)
| | - Fitnat H. Yildiz
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (SMR), (FHY)
| |
Collapse
|
27
|
TaTLP1 interacts with TaPR1 to contribute to wheat defense responses to leaf rust fungus. PLoS Genet 2020; 16:e1008713. [PMID: 32658889 PMCID: PMC7357741 DOI: 10.1371/journal.pgen.1008713] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/11/2020] [Indexed: 11/19/2022] Open
Abstract
Thaumatin-like proteins (TLPs), which are defined as pathogenesis-related protein family 5 (PR5) members, are common plant proteins involved in defense responses and confer antifungal activity against many plant pathogens. Our earlier studies have reported that the TaTLP1 gene was isolated from wheat and proved to be involved in wheat defense in response to leaf rust attack. The present study aims to identify the interacting proteins of TaTLP1 and characterize the role of the interaction between wheat and Puccinia triticina (Pt). Pull-down experiments designed to isolate the molecular target of TaTLP1 in tobacco resulted in the identification of TaPR1, a pathogenesis-related protein of family 1, and the interaction between TaTLP1 and TaPR1 was confirmed by yeast two-hybrid experiments (Y2H), bimolecular fluorescence complementation (BiFC), and co-immunoprecipitation (Co-IP). In vitro, TaTLP1 and TaPR1 together increased antifungal activity against Pt. In vivo, the disease resistance phenotype, histological observations of fungal growth and host responses, and accumulation of H2O2 in TaTLP1-TaPR1 in co-silenced plants indicated that co-silencing significantly enhanced wheat susceptibility compared to single knockdown TaTLP1 or TaPR1 plants. The accumulation of reactive oxygen species (ROS) was significantly reduced in co-silenced plants compared to controls during Pt infection, which suggested that the TaTLP1-TaPR1 interaction positively modulates wheat resistance to Pt in an ROS-dependent manner. Our findings provide new insights for understanding the roles of two different PRs, TaTLP1 and TaPR1, in wheat resistance to leaf rust.
Collapse
|
28
|
Zhang X, Wang B, Liu Z, Zhou Y, Du L. How to Fluorescently Label the Potassium Channel: A Case in hERG. Curr Med Chem 2020; 27:3046-3054. [DOI: 10.2174/0929867326666181129094455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 11/22/2022]
Abstract
hERG (Human ether-a-go-go-related gene) potassium channel, which plays an essential
role in cardiac action potential repolarization, is responsible for inherited and druginduced
long QT syndrome. Recently, the Cryo-EM structure capturing the open conformation
of hERG channel was determined, thus pushing the study on hERG channel at 3.8 Å
resolution. This report focuses primarily on summarizing the design rationale and application
of several fluorescent probes that target hERG channels, which enables dynamic and real-time
monitoring of potassium pore channel affinity to further advance the understanding of the
channels.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Beilei Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Zhenzhen Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Yubin Zhou
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, United States
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
29
|
Olinares PDB, Chait BT. Native Mass Spectrometry Analysis of Affinity-Captured Endogenous Yeast RNA Exosome Complexes. Methods Mol Biol 2020; 2062:357-382. [PMID: 31768985 DOI: 10.1007/978-1-4939-9822-7_17] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Native mass spectrometry (MS) enables direct mass measurement of intact protein assemblies generating relevant subunit composition and stoichiometry information. Combined with cross-linking and structural data, native MS-derived information is crucial for elucidating the architecture of macromolecular assemblies by integrative structural methods. The exosome complex from budding yeast was among the first endogenous protein complexes to be affinity isolated and subsequently characterized by this technique, providing improved understanding of its composition and structure. We present a protocol that couples efficient affinity capture of yeast exosome complexes and sensitive native MS analysis, including rapid affinity isolation of the endogenous exosome complex from cryolysed yeast cells, elution in nondenaturing conditions by protease cleavage, depletion of the protease, buffer exchange, and native MS measurements using an Orbitrap-based instrument (Exactive Plus EMR).
Collapse
Affiliation(s)
- Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA.
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| |
Collapse
|
30
|
Winczura K, Domanski M, LaCava J. Affinity Proteomic Analysis of the Human Exosome and Its Cofactor Complexes. Methods Mol Biol 2020; 2062:291-325. [PMID: 31768983 DOI: 10.1007/978-1-4939-9822-7_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In humans, the RNA exosome consists of an enzymatically inactive nine-subunit core, with ribonucleolytic activity contributed by additional components. Several cofactor complexes also interact with the exosome-these enable the recruitment of, and specify the activity upon, diverse substrates. Affinity capture coupled with mass spectrometry has proven to be an effective means to identify the compositions of RNA exosomes and their cofactor complexes: here, we describe a general experimental strategy for proteomic characterization of macromolecular complexes, applied to the exosome and an affiliated adapter protein, ZC3H18.
Collapse
Affiliation(s)
- Kinga Winczura
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Michal Domanski
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA.
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, AV, The Netherlands.
| |
Collapse
|
31
|
Barrass SV, Butcher SJ. Advances in high-throughput methods for the identification of virus receptors. Med Microbiol Immunol 2019; 209:309-323. [PMID: 31865406 PMCID: PMC7248041 DOI: 10.1007/s00430-019-00653-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/02/2019] [Indexed: 12/26/2022]
Abstract
Viruses have evolved many mechanisms to invade host cells and establish successful infections. The interaction between viral attachment proteins and host cell receptors is the first and decisive step in establishing such infections, initiating virus entry into the host cells. Therefore, the identification of host receptors is fundamental in understanding pathogenesis and tissue tropism. Furthermore, receptor identification can inform the development of antivirals, vaccines, and diagnostic technologies, which have a substantial impact on human health. Nevertheless, due to the complex nature of virus entry, the redundancy in receptor usage, and the limitations in current identification methods, many host receptors remain elusive. Recent advances in targeted gene perturbation, high-throughput screening, and mass spectrometry have facilitated the discovery of virus receptors in recent years. In this review, we compare the current methods used within the field to identify virus receptors, focussing on genomic- and interactome-based approaches.
Collapse
Affiliation(s)
- Sarah V Barrass
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme and Helsinki Institute of Life Sciences, Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| | - Sarah J Butcher
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme and Helsinki Institute of Life Sciences, Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| |
Collapse
|
32
|
Wang X, Williams D, Müller I, Lemieux M, Dukart R, Maia IBL, Wang H, Woerman AL, Schmitt-Ulms G. Tau interactome analyses in CRISPR-Cas9 engineered neuronal cells reveal ATPase-dependent binding of wild-type but not P301L Tau to non-muscle myosins. Sci Rep 2019; 9:16238. [PMID: 31700063 PMCID: PMC6838314 DOI: 10.1038/s41598-019-52543-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 10/03/2019] [Indexed: 11/09/2022] Open
Abstract
Protein interactions of Tau are of interest in efforts to decipher pathogenesis in Alzheimer's disease, a subset of frontotemporal dementias, and other tauopathies. We CRISPR-Cas9 edited two human cell lines to generate broadly adaptable models for neurodegeneration research. We applied the system to inducibly express balanced levels of 3-repeat and 4-repeat wild-type or P301L mutant Tau. Following 12-h induction, quantitative mass spectrometry revealed the Parkinson's disease-causing protein DJ-1 and non-muscle myosins as Tau interactors whose binding to Tau was profoundly influenced by the presence or absence of the P301L mutation. The presence of wild-type Tau stabilized non-muscle myosins at higher steady-state levels. Strikingly, in human differentiated co-cultures of neuronal and glial cells, the preferential interaction of non-muscle myosins to wild-type Tau depended on myosin ATPase activity. Consistently, transgenic P301L Tau mice exhibited reduced phosphorylation of regulatory myosin light chains known to activate this ATPase. The direct link of Tau to non-muscle myosins corroborates independently proposed roles of Tau in maintaining dendritic spines and mitochondrial fission biology, two subcellular niches affected early in tauopathies.
Collapse
Affiliation(s)
- Xinzhu Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, M5T 2S8, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Ontario, M5S 1A8, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, M5T 2S8, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Ontario, M5S 1A8, Canada
| | - Iris Müller
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, M5T 2S8, Canada
| | - Mackenzie Lemieux
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, M5T 2S8, Canada
| | - Ramona Dukart
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Ontario, M5S 1A8, Canada
| | - Isabella B L Maia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, M5T 2S8, Canada
| | - Hansen Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, M5T 2S8, Canada
| | - Amanda L Woerman
- Department of Neurology, University of California San Francisco, California, 94158, USA
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, M5T 2S8, Canada. .,Department of Laboratory Medicine & Pathobiology, University of Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
33
|
Hashimoto Y, Greco TM, Cristea IM. Contribution of Mass Spectrometry-Based Proteomics to Discoveries in Developmental Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:143-154. [PMID: 31347046 DOI: 10.1007/978-3-030-15950-4_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Understanding multicellular organism development from a molecular perspective is no small feat, yet this level of comprehension affords clinician-scientists the ability to identify root causes and mechanisms of congenital diseases. Inarguably, the maturation of molecular biology tools has significantly contributed to the identification of genetic loci that underlie normal and aberrant developmental programs. In combination with cell biology approaches, these tools have begun to elucidate the spatiotemporal expression and function of developmentally-regulated proteins. The emergence of quantitative mass spectrometry (MS) for biological applications has accelerated the pace at which these proteins can be functionally characterized, driving the construction of an increasingly detailed systems biology picture of developmental processes. Here, we review the quantitative MS-based proteomic technologies that have contributed significantly to understanding the role of proteome regulation in developmental processes. We provide a brief overview of these methodologies, focusing on their ability to provide precise and accurate proteome measurements. We then highlight the use of discovery-based and targeted mass spectrometry approaches in model systems to study cellular differentiation states, tissue phenotypes, and spatiotemporal subcellular organization. We also discuss the current application and future perspectives of MS proteomics to study PTM coordination and the role of protein complexes during development.
Collapse
Affiliation(s)
- Yutaka Hashimoto
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Todd M Greco
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
34
|
Abstract
During my postdoc interview in June of 1998, I asked Günter why he was moving more towards the nucleus in his latest studies. He said, "Well Joe, that's where everything starts." By the end of the interview, I accepted the postdoc. He had a way of making everything sound so cool. Günter's progression was natural, since the endoplasmic reticulum and the nucleus are the only organelles that share the same membrane. The nuclear envelope extends into a double membrane system with nuclear pore complexes embedded in the pore membrane openings. Even while writing this review, I remember Günter stressing; it is the nuclear pore complex. Just saying nuclear pore doesn't encompass the full magnitude of its significance. The nuclear pore complex is one of the largest collection of proteins that fit together for an overall function: transport. This review will cover the Blobel lab contributions in the quest for the blueprint of the nuclear pore complex from isolation of the nuclear envelope and nuclear lamin to the ring structures.
Collapse
|
35
|
Lignitto L, LeBoeuf SE, Homer H, Jiang S, Askenazi M, Karakousi TR, Pass HI, Bhutkar AJ, Tsirigos A, Ueberheide B, Sayin VI, Papagiannakopoulos T, Pagano M. Nrf2 Activation Promotes Lung Cancer Metastasis by Inhibiting the Degradation of Bach1. Cell 2019; 178:316-329.e18. [PMID: 31257023 DOI: 10.1016/j.cell.2019.06.003] [Citation(s) in RCA: 401] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/19/2019] [Accepted: 06/03/2019] [Indexed: 01/01/2023]
Abstract
Approximately 30% of human lung cancers acquire mutations in either Keap1 or Nfe2l2, resulting in the stabilization of Nrf2, the Nfe2l2 gene product, which controls oxidative homeostasis. Here, we show that heme triggers the degradation of Bach1, a pro-metastatic transcription factor, by promoting its interaction with the ubiquitin ligase Fbxo22. Nrf2 accumulation in lung cancers causes the stabilization of Bach1 by inducing Ho1, the enzyme catabolizing heme. In mouse models of lung cancers, loss of Keap1 or Fbxo22 induces metastasis in a Bach1-dependent manner. Pharmacological inhibition of Ho1 suppresses metastasis in a Fbxo22-dependent manner. Human metastatic lung cancer display high levels of Ho1 and Bach1. Bach1 transcriptional signature is associated with poor survival and metastasis in lung cancer patients. We propose that Nrf2 activates a metastatic program by inhibiting the heme- and Fbxo22-mediated degradation of Bach1, and that Ho1 inhibitors represent an effective therapeutic strategy to prevent lung cancer metastasis.
Collapse
Affiliation(s)
- Luca Lignitto
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Perlmutter NYU Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Sarah E LeBoeuf
- Perlmutter NYU Cancer Center, New York University School of Medicine, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Harrison Homer
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Perlmutter NYU Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Shaowen Jiang
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Perlmutter NYU Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Manor Askenazi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Biomedical Hosting LLC, 33 Lewis Avenue, Arlington, MA 02474, USA
| | - Triantafyllia R Karakousi
- Perlmutter NYU Cancer Center, New York University School of Medicine, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Harvey I Pass
- Perlmutter NYU Cancer Center, New York University School of Medicine, New York, NY 10016, USA; Department of Cardiothoracic Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Arjun J Bhutkar
- Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Ave. Building 76, Cambridge, MA 02139, USA
| | - Aristotelis Tsirigos
- Perlmutter NYU Cancer Center, New York University School of Medicine, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Perlmutter NYU Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Volkan I Sayin
- Perlmutter NYU Cancer Center, New York University School of Medicine, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Thales Papagiannakopoulos
- Perlmutter NYU Cancer Center, New York University School of Medicine, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Perlmutter NYU Cancer Center, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
36
|
Hernández Durán A, Greco TM, Vollmer B, Cristea IM, Grünewald K, Topf M. Protein interactions and consensus clustering analysis uncover insights into herpesvirus virion structure and function relationships. PLoS Biol 2019; 17:e3000316. [PMID: 31199794 PMCID: PMC6594648 DOI: 10.1371/journal.pbio.3000316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/26/2019] [Accepted: 05/23/2019] [Indexed: 01/08/2023] Open
Abstract
Infections with human herpesviruses are ubiquitous and a public health concern worldwide. Current treatments reduce the severity of some symptoms associated to herpetic infections but neither remove the viral reservoir from the infected host nor protect from the recurrent symptom outbreaks that characterise herpetic infections. The difficulty in therapeutically tackling these viral systems stems in part from their remarkably large proteomes and the complex networks of physical and functional associations that they tailor. This study presents our efforts to unravel the complexity of the interactome of herpes simplex virus type 1 (HSV1), the prototypical herpesvirus species. Inspired by our previous work, we present an improved and more integrative computational pipeline for the protein–protein interaction (PPI) network reconstruction in HSV1, together with a newly developed consensus clustering framework, which allowed us to extend the analysis beyond binary physical interactions and revealed a system-level layout of higher-order functional associations in the virion proteome. Additionally, the analysis provided new functional annotation for the currently undercharacterised protein pUS10. In-depth bioinformatics sequence analysis unravelled structural features in pUS10 reminiscent of those observed in some capsid-associated proteins in tailed bacteriophages, with which herpesviruses are believed to share a common ancestry. Using immunoaffinity purification (IP)–mass spectrometry (MS), we obtained additional support for our bioinformatically predicted interaction between pUS10 and the inner tegument protein pUL37, which binds cytosolic capsids, contributing to initial tegumentation and eventually virion maturation. In summary, this study unveils new, to our knowledge, insights at both the system and molecular levels that can help us better understand the complexity behind herpesvirus infections. Consensus clustering of protein-protein interaction networks provides insights into the assembly mechanism of herpes simplex virus type 1 (HSV1) virions and structure-function relationships underlying herpesvirus infection.
Collapse
Affiliation(s)
- Anna Hernández Durán
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Todd M. Greco
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, New Jersey, United States of America
| | - Benjamin Vollmer
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Structural Cell Biology of Viruses, Centre for Structural Systems Biology, Heinrich Pette Institute, Leibnitz Institute of Experimental Virology, University of Hamburg, Hamburg, Germany
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, New Jersey, United States of America
| | - Kay Grünewald
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Structural Cell Biology of Viruses, Centre for Structural Systems Biology, Heinrich Pette Institute, Leibnitz Institute of Experimental Virology, University of Hamburg, Hamburg, Germany
- * E-mail: (MT); (KG)
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
- * E-mail: (MT); (KG)
| |
Collapse
|
37
|
HiBiT-qIP, HiBiT-based quantitative immunoprecipitation, facilitates the determination of antibody affinity under immunoprecipitation conditions. Sci Rep 2019; 9:6895. [PMID: 31053795 PMCID: PMC6499798 DOI: 10.1038/s41598-019-43319-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/31/2019] [Indexed: 12/23/2022] Open
Abstract
The affinity of an antibody for its antigen serves as a critical parameter for antibody evaluation. The evaluation of antibody-antigen affinity is essential for a successful antibody-based assay, particularly immunoprecipitation (IP), due to its strict dependency on antibody performance. However, the determination of antibody affinity or its quantitative determinant, the dissociation constant (Kd), under IP conditions is difficult. In the current study, we used a NanoLuc-based HiBiT system to establish a HiBiT-based quantitative immunoprecipitation (HiBiT-qIP) assay for determining the Kd of antigen-antibody interactions in solution. The HiBiT-qIP method measures the amount of immunoprecipitated proteins tagged with HiBiT in a simple yet quantitative manner. We used this method to measure the Kd values of epitope tag-antibody interactions. To accomplish this, FLAG, HA, V5, PA and Ty1 epitope tags in their monomeric, dimeric or trimeric form were fused with glutathione S-transferase (GST) and the HiBiT peptide, and these tagged GST proteins were mixed with cognate monoclonal antibodies in IP buffer for the assessment of the apparent Kd values. This HiBiT-qIP assay showed a considerable variation in the Kd values among the examined antibody clones. Additionally, the use of epitope tags in multimeric form revealed a copy number-dependent increase in the apparent affinity.
Collapse
|
38
|
Gillen J, Nita-Lazar A. Experimental Analysis of Viral-Host Interactions. Front Physiol 2019; 10:425. [PMID: 31031644 PMCID: PMC6470254 DOI: 10.3389/fphys.2019.00425] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/27/2019] [Indexed: 12/16/2022] Open
Abstract
Viral and pathogen protein complexity is often limited by their relatively small genomes, thus critical functions are often accomplished by complexes of host and pathogen proteins. This requirement makes the study of host-pathogen interactions critical for the understanding of pathogenicity and virology. This review article discusses proteomic methods that offer an opportunity to experimentally identify and analyze the binding partners of a target protein and presents the representative studies performed with these methods. These methods divide into two classes: ex situ and in situ. Ex situ assays depend on bindings that occur outside of the normal cellular environment and include yeast two hybrids, pull-downs, and nucleic acid-programmable protein arrays (NAPPA). In situ assays depend on bindings that occur inside of host cells and include affinity purification (AP) and proximity dependent labeling (PDL). Either ex or in situ methods can be reliably used for generating protein-protein interactions networks but it is important to understand and recognize the limitations of the chosen methods when developing an interactomic network. In summary, proteomic methods can be extremely useful for interactomics but it is important to recognize the nature of the method when designing and analyzing an experiment.
Collapse
Affiliation(s)
| | - Aleksandra Nita-Lazar
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
39
|
Thaller DJ, Allegretti M, Borah S, Ronchi P, Beck M, Lusk CP. An ESCRT-LEM protein surveillance system is poised to directly monitor the nuclear envelope and nuclear transport system. eLife 2019; 8:e45284. [PMID: 30942170 PMCID: PMC6461442 DOI: 10.7554/elife.45284] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022] Open
Abstract
The integrity of the nuclear membranes coupled to the selective barrier of nuclear pore complexes (NPCs) are essential for the segregation of nucleoplasm and cytoplasm. Mechanical membrane disruption or perturbation to NPC assembly triggers an ESCRT-dependent surveillance system that seals nuclear pores: how these pores are sensed and sealed is ill defined. Using a budding yeast model, we show that the ESCRT Chm7 and the integral inner nuclear membrane (INM) protein Heh1 are spatially segregated by nuclear transport, with Chm7 being actively exported by Xpo1/Crm1. Thus, the exposure of the INM triggers surveillance with Heh1 locally activating Chm7. Sites of Chm7 hyperactivation show fenestrated sheets at the INM and potential membrane delivery at sites of nuclear envelope herniation. Our data suggest that perturbation to the nuclear envelope barrier would lead to local nuclear membrane remodeling to promote membrane sealing. Our findings have implications for disease mechanisms linked to NPC assembly and nuclear envelope integrity.
Collapse
Affiliation(s)
- David J Thaller
- Department of Cell BiologyYale School of MedicineNew HavenUnited States
| | - Matteo Allegretti
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryMeyerhofstrasseGermany
| | - Sapan Borah
- Department of Cell BiologyYale School of MedicineNew HavenUnited States
| | - Paolo Ronchi
- Electron Microscopy Core FacilityEuropean Molecular Biology LaboratoryMeyerhofstrasseGermany
| | - Martin Beck
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryMeyerhofstrasseGermany
| | - C Patrick Lusk
- Department of Cell BiologyYale School of MedicineNew HavenUnited States
| |
Collapse
|
40
|
Schmitt ND, Rawlins CM, Randall EC, Wang X, Koller A, Auclair JR, Kowalski JM, Kowalski PJ, Luther E, Ivanov AR, Agar NY, Agar JN. Genetically Encoded Fluorescent Proteins Enable High-Throughput Assignment of Cell Cohorts Directly from MALDI-MS Images. Anal Chem 2019; 91:3810-3817. [PMID: 30839199 PMCID: PMC6827431 DOI: 10.1021/acs.analchem.8b03454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) provides a unique in situ chemical profile that can include drugs, nucleic acids, metabolites, lipids, and proteins. MSI of individual cells (of a known cell type) affords a unique insight into normal and disease-related processes and is a prerequisite for combining the results of MSI and other single-cell modalities (e.g. mass cytometry and next-generation sequencing). Technological barriers have prevented the high-throughput assignment of MSI spectra from solid tissue preparations to their cell type. These barriers include obtaining a suitable cell-identifying image (e.g. immunohistochemistry) and obtaining sufficiently accurate registration of the cell-identifying and MALDI-MS images. This study introduces a technique that overcame these barriers by assigning cell type directly from mass spectra. We hypothesized that, in MSI from mice with a defined fluorescent protein expression pattern, the fluorescent protein's molecular ion could be used to identify cell cohorts. A method was developed for the purification of enhanced yellow fluorescent protein (EYFP) from mice. To determine EYFP's molecular mass for MSI studies, we performed intact mass analysis and characterized the protein's primary structure and post-translational modifications through various techniques. MALDI-MSI methods were developed to enhance the detection of EYFP in situ, and by extraction of EYFP's molecular ion from MALDI-MS images, automated, whole-image assignment of cell cohorts was achieved. This method was validated using a well-characterized mouse line that expresses EYFP in motor and sensory neurons and should be applicable to hundreds of commercially available mice (and other animal) strains comprising a multitude of cell-specific fluorescent labels.
Collapse
Affiliation(s)
- Nicholas D. Schmitt
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
- These authors contributed equally to this work
| | - Catherine M. Rawlins
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
- These authors contributed equally to this work
| | - Elizabeth C. Randall
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xianzhe Wang
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
| | - Antonius Koller
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
| | - Jared R. Auclair
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
- Biopharmaceutical Analysis Training Laboratory (BATL), Northeastern University Innovation Campus, Burlington, MA, 01803, USA
| | | | | | - Ed Luther
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Alexander R. Ivanov
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
| | - Nathalie Y.R. Agar
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Jeffrey N. Agar
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
41
|
Bonanomi D, Valenza F, Chivatakarn O, Sternfeld MJ, Driscoll SP, Aslanian A, Lettieri K, Gullo M, Badaloni A, Lewcock JW, Hunter T, Pfaff SL. p190RhoGAP Filters Competing Signals to Resolve Axon Guidance Conflicts. Neuron 2019; 102:602-620.e9. [PMID: 30902550 PMCID: PMC8608148 DOI: 10.1016/j.neuron.2019.02.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/05/2018] [Accepted: 02/19/2019] [Indexed: 12/21/2022]
Abstract
The rich functional diversity of the nervous system is founded in the specific connectivity of the underlying neural circuitry. Neurons are often preprogrammed to respond to multiple axon guidance signals because they use sequential guideposts along their pathways, but this necessitates a strict spatiotemporal regulation of intracellular signaling to ensure the cues are detected in the correct order. We performed a mouse mutagenesis screen and identified the Rho GTPase antagonist p190RhoGAP as a critical regulator of motor axon guidance. Rather than acting as a compulsory signal relay, p190RhoGAP uses a non-conventional GAP-independent mode to transiently suppress attraction to Netrin-1 while motor axons exit the spinal cord. Once in the periphery, a subset of axons requires p190RhoGAP-mediated inhibition of Rho signaling to target specific muscles. Thus, the multifunctional activity of p190RhoGAP emerges from its modular design. Our findings reveal a cell-intrinsic gate that filters conflicting signals, establishing temporal windows of signal detection.
Collapse
Affiliation(s)
- Dario Bonanomi
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA; San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy.
| | - Fabiola Valenza
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy
| | - Onanong Chivatakarn
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Matthew J Sternfeld
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Shawn P Driscoll
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Aaron Aslanian
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Karen Lettieri
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Miriam Gullo
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Aurora Badaloni
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy
| | - Joseph W Lewcock
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Samuel L Pfaff
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA.
| |
Collapse
|
42
|
Pergu R, Dagar S, Kumar H, Kumar R, Bhattacharya J, Mylavarapu SVS. The chaperone ERp29 is required for tunneling nanotube formation by stabilizing MSec. J Biol Chem 2019; 294:7177-7193. [PMID: 30877198 DOI: 10.1074/jbc.ra118.005659] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/14/2019] [Indexed: 01/23/2023] Open
Abstract
Tunneling nanotubes (TNTs) are membrane conduits that mediate long-distance intercellular cross-talk in several organisms and play vital roles during development, pathogenic transmission, and cancer metastasis. However, the molecular mechanisms of TNT formation and function remain poorly understood. The protein MSec (also known as TNFα-induced protein 2 (TNFAIP2) and B94) is essential for TNT formation in multiple cell types. Here, using affinity protein purification, mass spectrometric identification, and confocal immunofluorescence microscopy assays, we found that MSec interacts with the endoplasmic reticulum (ER) chaperone ERp29. siRNA-mediated ERp29 depletion in mammalian cells significantly reduces TNT formation, whereas its overexpression induces TNT formation, but in a strictly MSec-dependent manner. ERp29 stabilized MSec protein levels, but not its mRNA levels, and the chaperone activity of ERp29 was required for maintaining MSec protein stability. Subcellular ER fractionation and subsequent limited proteolytic treatment suggested that MSec is associated with the outer surface of the ER. The ERp29-MSec interaction appeared to require the presence of other bridging protein(s), perhaps triggered by post-translational modification of ERp29. Our study implicates MSec as a target of ERp29 and reveals an indispensable role for the ER in TNT formation, suggesting new modalities for regulating TNT numbers in cells and tissues.
Collapse
Affiliation(s)
- Rajaiah Pergu
- From the Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, and.,the Manipal Academy of Higher Education, Manipal Karnataka 576104, and
| | - Sunayana Dagar
- From the Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, and.,the Kalinga Institute of Industrial Technology, Bhubaneswar Odisha 751024, India
| | - Harsh Kumar
- From the Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, and.,the Manipal Academy of Higher Education, Manipal Karnataka 576104, and
| | - Rajesh Kumar
- the HIV Vaccine Translational Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad Haryana 121001
| | - Jayanta Bhattacharya
- the HIV Vaccine Translational Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad Haryana 121001
| | - Sivaram V S Mylavarapu
- From the Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, and .,the Manipal Academy of Higher Education, Manipal Karnataka 576104, and.,the Kalinga Institute of Industrial Technology, Bhubaneswar Odisha 751024, India
| |
Collapse
|
43
|
Struk S, Jacobs A, Sánchez Martín-Fontecha E, Gevaert K, Cubas P, Goormachtig S. Exploring the protein-protein interaction landscape in plants. PLANT, CELL & ENVIRONMENT 2019; 42:387-409. [PMID: 30156707 DOI: 10.1111/pce.13433] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/16/2018] [Indexed: 05/24/2023]
Abstract
Protein-protein interactions (PPIs) represent an essential aspect of plant systems biology. Identification of key protein players and their interaction networks provide crucial insights into the regulation of plant developmental processes and into interactions of plants with their environment. Despite the great advance in the methods for the discovery and validation of PPIs, still several challenges remain. First, the PPI networks are usually highly dynamic, and the in vivo interactions are often transient and difficult to detect. Therefore, the properties of the PPIs under study need to be considered to select the most suitable technique, because each has its own advantages and limitations. Second, besides knowledge on the interacting partners of a protein of interest, characteristics of the interaction, such as the spatial or temporal dynamics, are highly important. Hence, multiple approaches have to be combined to obtain a comprehensive view on the PPI network present in a cell. Here, we present the progress in commonly used methods to detect and validate PPIs in plants with a special emphasis on the PPI features assessed in each approach and how they were or can be used for the study of plant interactions with their environment.
Collapse
Affiliation(s)
- Sylwia Struk
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Anse Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Elena Sánchez Martín-Fontecha
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
44
|
Considerations for Identifying Endogenous Protein Complexes from Tissue via Immunoaffinity Purification and Quantitative Mass Spectrometry. Methods Mol Biol 2019; 1977:115-143. [PMID: 30980326 DOI: 10.1007/978-1-4939-9232-4_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein complexes perform key roles in nearly all aspects of biology. Identification of the composition of these complexes offers insights into how different cellular processes are carried out. The use of affinity purification coupled to mass spectrometry has become a method of choice for identifying protein-protein interactions, but has been most frequently applied to cell model systems using tagged and overexpressed bait proteins. Although valuable, this approach can create several potential artifacts due to the presence of a tag on a protein and the higher abundance of the protein of interest (bait). The isolation of endogenous proteins using antibodies raised against the proteins of interest instead of an epitope tag offers a means to examine protein interactions in any cellular or animal model system and without the caveats of overexpressed, tagged proteins. Although conceptually simple, the limited use of this approach has been primarily driven by challenges associated with finding adequate antibodies and experimental conditions for effective isolations. In this chapter, we present a protocol for the optimization of lysis conditions, antibody evaluation, affinity purification, and ultimately identification of protein complexes from endogenous immunoaffinity purifications using quantitative mass spectrometry. We also highlight the increased use of targeted mass spectrometry analyses, such as parallel reaction monitoring (PRM) for orthogonal validation of protein isolation and interactions initially identified via data-dependent mass spectrometry analyses.
Collapse
|
45
|
Lum KK, Song B, Federspiel JD, Diner BA, Howard T, Cristea IM. Interactome and Proteome Dynamics Uncover Immune Modulatory Associations of the Pathogen Sensing Factor cGAS. Cell Syst 2018; 7:627-642.e6. [PMID: 30471916 DOI: 10.1016/j.cels.2018.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/18/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022]
Abstract
Viral DNA sensing is an essential component of the mammalian innate immune response. Upon binding viral DNA, the cyclic-GMP-AMP synthase (cGAS) catalyzes the production of cyclic dinucleotides to induce type I interferons. However, little is known about how cGAS is homeostatically maintained or regulated upon infection. Here, we define cytoplasmic cGAS interactions with cellular and viral proteins upon herpes simplex virus type 1 (HSV-1) infection in primary human fibroblasts. We compare several HSV-1 strains (wild-type, d109, d106) that induce cytokine responses and apoptosis and place cGAS interactions in the context of temporal proteome alterations using isobaric-labeling mass spectrometry. Follow-up analyses establish a functional interaction between cGAS and 2'-5'-oligoadenylate synthase-like protein OASL. The OAS-like domain interacts with the cGAS Mab21 domain, while the OASL ubiquitin-like domain further inhibits cGAS-mediated interferon response. Our findings explain how cGAS may be inactively maintained in cellular homeostasis, with OASL functioning as a negative feedback loop for cytokine induction.
Collapse
Affiliation(s)
- Krystal K Lum
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Bokai Song
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Joel D Federspiel
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Benjamin A Diner
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Timothy Howard
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
46
|
Nop-7-associated 2 (NSA2) is required for ribosome biogenesis and protein synthesis. Biochem Biophys Res Commun 2018; 505:249-254. [PMID: 30243719 DOI: 10.1016/j.bbrc.2018.09.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022]
Abstract
Ribosome biogenesis is a fundamental cellular process and occurs mainly in the nucleolus in eukaryotes. The process is exceptionally complex and highly regulated by numerous ribosomal and non-ribosomal factors. A recent discovery strengthened the link between ribosome biogenesis and malignant transformation. Here, we determined that Nop-7-associated 2 (NSA2) is a nucleolar protein required for ribosome biogenesis. NSA2 knockdown reduced the rate of rRNA synthesis, diminishing the 60S ribosomal subunit. Moreover, we demonstrated that depletion of NSA2 suppressed protein synthesis. To investigate the signaling pathway affected by NSA2, NSA2 was depleted, which triggered the inactivation of the mTOR signaling pathway. Taken together, our findings reveal a novel function of NSA2 and provide insight into the regulation of ribosome biogenesis by NSA2.
Collapse
|
47
|
Bottomley AL, Liew ATF, Kusuma KD, Peterson E, Seidel L, Foster SJ, Harry EJ. Coordination of Chromosome Segregation and Cell Division in Staphylococcus aureus. Front Microbiol 2017; 8:1575. [PMID: 28878745 PMCID: PMC5572376 DOI: 10.3389/fmicb.2017.01575] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/03/2017] [Indexed: 12/03/2022] Open
Abstract
Productive bacterial cell division and survival of progeny requires tight coordination between chromosome segregation and cell division to ensure equal partitioning of DNA. Unlike rod-shaped bacteria that undergo division in one plane, the coccoid human pathogen Staphylococcus aureus divides in three successive orthogonal planes, which requires a different spatial control compared to rod-shaped cells. To gain a better understanding of how this coordination between chromosome segregation and cell division is regulated in S. aureus, we investigated proteins that associate with FtsZ and the divisome. We found that DnaK, a well-known chaperone, interacts with FtsZ, EzrA and DivIVA, and is required for DivIVA stability. Unlike in several rod shaped organisms, DivIVA in S. aureus associates with several components of the divisome, as well as the chromosome segregation protein, SMC. This data, combined with phenotypic analysis of mutants, suggests a novel role for S. aureus DivIVA in ensuring cell division and chromosome segregation are coordinated.
Collapse
Affiliation(s)
- Amy L Bottomley
- The ithree Institute, University of Technology Sydney, SydneyNSW, Australia
| | - Andrew T F Liew
- The ithree Institute, University of Technology Sydney, SydneyNSW, Australia
| | - Kennardy D Kusuma
- The ithree Institute, University of Technology Sydney, SydneyNSW, Australia
| | - Elizabeth Peterson
- The ithree Institute, University of Technology Sydney, SydneyNSW, Australia
| | - Lisa Seidel
- The ithree Institute, University of Technology Sydney, SydneyNSW, Australia
| | - Simon J Foster
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of SheffieldSheffield, United Kingdom
| | - Elizabeth J Harry
- The ithree Institute, University of Technology Sydney, SydneyNSW, Australia
| |
Collapse
|
48
|
DeBlasio SL, Bereman MS, Mahoney J, Thannhauser TW, Gray SM, MacCoss MJ, Cilia Heck M. Evaluation of a Bead-Free Coimmunoprecipitation Technique for Identification of Virus-Host Protein Interactions Using High-Resolution Mass Spectrometry. J Biomol Tech 2017; 28:111-121. [PMID: 28785175 DOI: 10.7171/jbt.17-2803-002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein interactions between virus and host are essential for viral propagation and movement, as viruses lack most of the proteins required to thrive on their own. Precision methods aimed at disrupting virus-host interactions represent new approaches to disease management but require in-depth knowledge of the identity and binding specificity of host proteins within these interaction networks. Protein coimmunoprecipitation (co-IP) coupled with mass spectrometry (MS) provides a high-throughput way to characterize virus-host interactomes in a single experiment. Common co-IP methods use antibodies immobilized on agarose or magnetic beads to isolate virus-host complexes in solutions of host tissue homogenate. Although these workflows are well established, they can be fairly laborious and expensive. Therefore, we evaluated the feasibility of using antibody-coated microtiter plates coupled with MS analysis as an easy, less expensive way to identify host proteins that interact with Potato leafroll virus (PLRV), an insect-borne RNA virus that infects potatoes. With the use of the bead-free platform, we were able to detect 36 plant and 1 nonstructural viral protein significantly coimmunoprecipitating with PLRV. Two of these proteins, a 14-3-3 signal transduction protein and malate dehydrogenase 2 (mMDH2), were detected as having a weakened or lost association with a structural mutant of the virus, demonstrating that the bead-free method is sensitive enough to detect quantitative differences that can be used to pin-point domains of interaction. Collectively, our analysis shows that the bead-free platform is a low-cost alternative that can be used by core facilities and other investigators to identify plant and viral proteins interacting with virions and/or the viral structural proteins.
Collapse
Affiliation(s)
- Stacy L DeBlasio
- U.S. Department of Agriculture, Agricultural Research Service, Emerging Pests and Pathogens Research Unit, Ithaca, New York 14853, USA.,Boyce Thompson Institute, Ithaca, New York 14853, USA
| | - Michael S Bereman
- Department of Biological Sciences, North Carolina State University, Raleigh-Durham North Carolina 27695, USA
| | | | - Theodore W Thannhauser
- U.S. Department of Agriculture, Agricultural Research Service, Emerging Pests and Pathogens Research Unit, Ithaca, New York 14853, USA
| | - Stewart M Gray
- U.S. Department of Agriculture, Agricultural Research Service, Emerging Pests and Pathogens Research Unit, Ithaca, New York 14853, USA.,Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA; and
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, USA
| | - Michelle Cilia Heck
- U.S. Department of Agriculture, Agricultural Research Service, Emerging Pests and Pathogens Research Unit, Ithaca, New York 14853, USA.,Boyce Thompson Institute, Ithaca, New York 14853, USA.,Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA; and
| |
Collapse
|
49
|
Santos JM, Josling G, Ross P, Joshi P, Orchard L, Campbell T, Schieler A, Cristea IM, Llinás M. Red Blood Cell Invasion by the Malaria Parasite Is Coordinated by the PfAP2-I Transcription Factor. Cell Host Microbe 2017; 21:731-741.e10. [PMID: 28618269 PMCID: PMC5855115 DOI: 10.1016/j.chom.2017.05.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 02/16/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
Abstract
Obligate intracellular parasites must efficiently invade host cells in order to mature and be transmitted. For the malaria parasite Plasmodium falciparum, invasion of host red blood cells (RBCs) is essential. Here we describe a parasite-specific transcription factor PfAP2-I, belonging to the Apicomplexan AP2 (ApiAP2) family, that is responsible for regulating the expression of genes involved in RBC invasion. Our genome-wide analysis by ChIP-seq shows that PfAP2-I interacts with a specific DNA motif in the promoters of target genes. Although PfAP2-I contains three AP2 DNA-binding domains, only one is required for binding of the target genes during blood stage development. Furthermore, we find that PfAP2-I associates with several chromatin-associated proteins, including the Plasmodium bromodomain protein PfBDP1 and that complex formation is associated with transcriptional regulation. As a key regulator of red blood cell invasion, PfAP2-I represents a potential new antimalarial therapeutic target.
Collapse
Affiliation(s)
- Joana Mendonca Santos
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA 16802, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Gabrielle Josling
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA 16802, USA
| | - Philipp Ross
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA 16802, USA
| | - Preeti Joshi
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lindsey Orchard
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA 16802, USA
| | - Tracey Campbell
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Ariel Schieler
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA 16802, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry and Huck Center for Infectious Disease Dynamics, Pennsylvania State University, State College, PA 16802, USA.
| |
Collapse
|
50
|
Agrawal P, Fontanals-Cirera B, Sokolova E, Jacob S, Vaiana CA, Argibay D, Davalos V, McDermott M, Nayak S, Darvishian F, Castillo M, Ueberheide B, Osman I, Fenyö D, Mahal LK, Hernando E. A Systems Biology Approach Identifies FUT8 as a Driver of Melanoma Metastasis. Cancer Cell 2017; 31:804-819.e7. [PMID: 28609658 PMCID: PMC5649440 DOI: 10.1016/j.ccell.2017.05.007] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/12/2017] [Accepted: 05/15/2017] [Indexed: 12/20/2022]
Abstract
Association of aberrant glycosylation with melanoma progression is based mainly on analyses of cell lines. Here we present a systems-based study of glycomic changes and corresponding enzymes associated with melanoma metastasis in patient samples. Upregulation of core fucosylation (FUT8) and downregulation of α-1,2 fucosylation (FUT1, FUT2) were identified as features of metastatic melanoma. Using both in vitro and in vivo studies, we demonstrate FUT8 is a driver of melanoma metastasis which, when silenced, suppresses invasion and tumor dissemination. Glycoprotein targets of FUT8 were enriched in cell migration proteins including the adhesion molecule L1CAM. Core fucosylation impacted L1CAM cleavage and the ability of L1CAM to support melanoma invasion. FUT8 and its targets represent therapeutic targets in melanoma metastasis.
Collapse
Affiliation(s)
- Praveen Agrawal
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA; Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, NY 10003, USA
| | - Barbara Fontanals-Cirera
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Elena Sokolova
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Samson Jacob
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Institute for Systems Genetics, New York University School of Medicine, New York, NY 10016, USA
| | - Christopher A Vaiana
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, NY 10003, USA
| | - Diana Argibay
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Veronica Davalos
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Meagan McDermott
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, NY 10003, USA
| | - Shruti Nayak
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Farbod Darvishian
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Mireia Castillo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY 10029, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Iman Osman
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA; Department of Dermatology, New York University School of Medicine, New York, NY 10016, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Institute for Systems Genetics, New York University School of Medicine, New York, NY 10016, USA
| | - Lara K Mahal
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA; Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, NY 10003, USA.
| | - Eva Hernando
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|