1
|
Hodžić A, Duscher GG, Alić A, Beck R, Berry D. Peritrophic matrix: an important determinant of vector competence in hematophagous arthropods. Trends Parasitol 2025; 41:374-386. [PMID: 40148178 DOI: 10.1016/j.pt.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
The peritrophic matrix (PM) is a non-cellular, glycan-rich structure that lines the gut epithelium of most invertebrates, including arthropod vectors that transmit diseases of public health and veterinary concern. This semipermeable barrier, functionally analogous to the vertebrate mucosal layer, separates the gut lumen from epithelial cells and provides protection against invading pathogens and their toxins. Beyond its mechanical protective role in the gut, the PM plays a crucial part in arthropod innate immunity. Here, we summarize the most recent advances in understanding the molecular mechanisms of vector-pathogen interactions in blood-feeding arthropods and discuss the significance of the PM in modulating vector competence. This knowledge could contribute to the development of novel strategies to control vector-borne infections.
Collapse
Affiliation(s)
- Adnan Hodžić
- Centre for Microbiology and Environmental Systems Science (CMESS), Department of Microbiology and Ecosystem Science, Division of Microbial Ecology (DoME), University of Vienna, 1030 Vienna, Austria.
| | - Georg Gerhard Duscher
- AGES Research Services, Austrian Agency for Health and Food Safety, 2340 Mödling, Austria
| | - Amer Alić
- Department of Clinical Sciences of Veterinary Medicine, Faculty of Veterinary Medicine, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Relja Beck
- Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | - David Berry
- Centre for Microbiology and Environmental Systems Science (CMESS), Department of Microbiology and Ecosystem Science, Division of Microbial Ecology (DoME), University of Vienna, 1030 Vienna, Austria; Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
2
|
Hargrove JW, Van Sickle J. Improved models for the relationship between age and the probability of trypanosome infection in female tsetse, Glossina pallidipes Austen. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:469-480. [PMID: 37194504 DOI: 10.1017/s0007485323000159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Between 1990 and 1999, at Rekomitjie Research Station, Zambezi Valley, Zimbabwe, 29,360 female G. pallidipes were dissected to determine their ovarian category and trypanosome infection status. Overall prevalences were 3.45 and 2.66% for T. vivax and T. congolense, respectively, declining during each year as temperatures increased from July - December. Fits to age-prevalence data using Susceptible-Exposed-Infective (SEI) and SI compartmental models were statistically better than those obtained using a published catalytic model, which made the unrealistic assumption that no female tsetse survived more than seven ovulations. The improved models require knowledge of fly mortality, estimated separately from ovarian category distributions. Infection rates were not significantly higher for T. vivax than for T. congolense. For T. congolense in field-sampled female G. pallidipes, we found no statistical support for a model where the force of infection was higher at the first feed than subsequently. The long survival of adult female tsetse, combined with feeding at intervals ≤3 days, ensures that post-teneral feeds, rather than the first feed, play the dominant role in the epidemiology of T. congolense infections in G. pallidipes. This is supported by estimates that only about 3% of wild hosts at Rekomitjie were harbouring sufficient T. congolense to ensure that tsetse feeding off them take an infected meal, so that the probability of ingesting an infected meal is low at every meal.
Collapse
Affiliation(s)
- J W Hargrove
- SACEMA, University of Stellenbosch, Stellenbosch, South Africa
| | - J Van Sickle
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
3
|
Kallu SA, Ndebe J, Qiu Y, Nakao R, Simuunza MC. Prevalence and Association of Trypanosomes and Sodalis glossinidius in Tsetse Flies from the Kafue National Park in Zambia. Trop Med Infect Dis 2023; 8:tropicalmed8020080. [PMID: 36828496 PMCID: PMC9960957 DOI: 10.3390/tropicalmed8020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/25/2023] Open
Abstract
Tsetse flies are obligate hematophagous vectors of animal and human African trypanosomosis. They cyclically transmit pathogenic Trypanosoma species. The endosymbiont Sodalis glossinidius is suggested to play a role in facilitating the susceptibility of tsetse flies to trypanosome infections. Therefore, this study was aimed at determining the prevalence of S. glossinidius and trypanosomes circulating in tsetse flies and checking whether an association exists between trypanosomes and Sodalis infections in tsetse flies from Kafue National Park in Zambia. A total of 326 tsetse flies were sampled from the Chunga and Ngoma areas of the national park. After DNA extraction was conducted, the presence of S. glossinidius and trypanosome DNA was checked using PCR. The Chi-square test was carried out to determine whether there was an association between the presence of S. glossinidius and trypanosome infections. Out of the total tsetse flies collected, the prevalence of S. glossinidius and trypanosomes was 21.8% and 19.3%, respectively. The prevalence of S. glossinidius was 22.2% in Glossina morsitans and 19.6% in Glossina pallidipes. In relation to sampling sites, the prevalence of S. glossinidius was 26.0% in Chunga and 21.0% in Ngoma. DNA of trypanosomes was detected in 18.9% of G. morsitans and 21.4% of G. pallidipes. The prevalence of trypanosomes was 21.7% and 6.0% for Ngoma and Chunga, respectively. The prevalences of trypanosome species detected in this study were 6.4%, 4.6%, 4.0%, 3.7%, 3.1%, and 2.5% for T. vivax, T. simiae, T. congolense, T. godfreyi, T. simiae Tsavo, and T. b. brucei, respectively. Out of 63 trypanosome infected tsetse flies, 47.6% of the flies also carried S. glossinidius, and the remaining flies were devoid of S. glossinidius. A statistically significant association was found between S. glossinidius and trypanosomes (p < 0.001) infections in tsetse flies. Our findings indicated that presence of S. glossinidius increases the susceptibility of tsetse flies to trypanosome infections and S. glossinidius could be a potential candidate for symbiont-mediated vector control in these tsetse species.
Collapse
Affiliation(s)
- Simegnew Adugna Kallu
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
- College of Veterinary Medicine, Haramaya University, Dire Dawa P.O. Box 138, Ethiopia
- Correspondence: ; Tel.: +251-913786532
| | - Joseph Ndebe
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
| | - Yongjin Qiu
- Department of Virology-I, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo 162-8640, Japan
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo 162-8640, Japan
| | - Ryo Nakao
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, N18 W9, Kitaku, Sapporo 060-0818, Japan
| | - Martin C. Simuunza
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, Lusaka P.O. Box 32379, Zambia
| |
Collapse
|
4
|
Okello WO, MacLeod ET, Muhanguzi D, Waiswa C, Shaw AP, Welburn SC. Critical Linkages Between Livestock Production, Livestock Trade and Potential Spread of Human African Trypanosomiasis in Uganda: Bioeconomic Herd Modeling and Livestock Trade Analysis. Front Vet Sci 2021; 8:611141. [PMID: 34381829 PMCID: PMC8350160 DOI: 10.3389/fvets.2021.611141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Tsetse-transmitted human African trypanosomiasis (HAT) remains endemic in Uganda. The chronic form caused by Trypanosoma brucei gambiense (gHAT) is found in north-western Uganda, whereas the acute zoonotic form of the disease, caused by T. b. brucei rhodesiense (rHAT), occurs in the eastern region. Cattle is the major reservoir of rHAT in Uganda. These two forms of HAT are likely to converge resulting in a public health disaster. This study examines the intricate and intrinsic links between cattle herd dynamics, livestock trade and potential risk of spread of rHAT northwards. Methods: A bio-economic cattle herd model was developed to simulate herd dynamics at the farm level. Semi-structured interviews (n = 310), focus group discussions (n = 9) and key informant interviews (n = 9) were used to evaluate livestock markets (n = 9) as part of the cattle supply chain analysis. The cattle market data was used for stochastic risk analysis. Results: Cattle trade in eastern and northern Uganda is dominated by sale of draft and adult male cattle as well as exportation of young male cattle. The study found that the need to import draft cattle at the farm level was to cover deficits because of the herd structure, which is mostly geared towards animal traction. The importation and exportation of draft cattle and disposal of old adult male cattle formed the major basis of livestock movement and could result in the spread of rHAT northwards. The risk of rHAT infected cattle being introduced to northern Uganda from the eastern region via cattle trade was found to be high (i.e. probability of 1). Conclusion: Through deterministic and stochastic modelling of cattle herd and cattle trade dynamics, this study identifies critical links between livestock production and trade as well as potential risk of rHAT spread in eastern and northern Uganda. The findings highlight the need for targeted and routine surveillance and control of zoonotic diseases such as rHAT.
Collapse
Affiliation(s)
- Walter O Okello
- Infection Medicine, Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom.,Land & Water Business Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, ACT, Australia
| | - Ewan T MacLeod
- Infection Medicine, Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Dennis Muhanguzi
- Department of Biomolecular and Biolaboratory Sciences, School of Biosecurity, Biotechnical and Laboratory Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Charles Waiswa
- Infection Medicine, Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom.,The Coordinating Office for Control of Trypanosomiasis in Uganda (COCTU), Kampala, Uganda
| | - Alexandra P Shaw
- Infection Medicine, Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom.,Avia-GIS, Zoersel, Belgium
| | - Susan C Welburn
- Infection Medicine, Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| |
Collapse
|
5
|
Signaboubo D, Payne VK, Moussa IMA, Hassane HM, Berger P, Kelm S, Simo G. Diversity of tsetse flies and trypanosome species circulating in the area of Lake Iro in southeastern Chad. Parasit Vectors 2021; 14:293. [PMID: 34078431 PMCID: PMC8173974 DOI: 10.1186/s13071-021-04782-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND African trypanosomiases are vector-borne diseases that affect humans and livestock in sub-Saharan Africa. Although data have been collected on tsetse fauna as well as trypanosome infections in tsetse flies and mammals in foci of sleeping sickness in Chad, the situation of tsetse fly-transmitted trypanosomes remains unknown in several tsetse-infested areas of Chad. This study was designed to fill this epidemiological knowledge gap by determining the tsetse fauna as well as the trypanosomes infecting tsetse flies in the area of Lake Iro in southeastern Chad. METHODS Tsetse flies were trapped along the Salamat River using biconical traps. The proboscis and tsetse body were removed from each fly. DNA was extracted from the proboscis using proteinase K and phosphate buffer and from the tsetse body using Chelex 5%. Tsetse flies were identified by amplifying and sequencing the cytochrome c oxydase I gene of each tsetse fly. Trypanosome species were detected by amplifying and sequencing the internal transcribed spacer 1 of infecting trypanosomes. RESULTS A total of 617 tsetse flies were trapped; the apparent density of flies per trap per day was 2. 6. Of the trapped flies, 359 were randomly selected for the molecular identification and for the detection of infecting trypanosomes. Glossina morsitans submorsitans (96.1%) was the dominant tsetse fly species followed by G. fuscipes fuscipes (3.1%) and G. tachinoides (0.8%). Four trypanosome species, including Trypanosoma vivax, T. simiae, T. godfreyi and T. congolense savannah, were detected. Both single infection (56.7%) and mixed infections of trypanosomes (4.6%) were detected in G. m. submorsitans. The single infection included T. simiae (20.5%), T. congolense savannah (16.43%), T. vivax (11.7%) and T. godfreyi (9.8%). The trypanosome infection rate was 61.4% in G. m. submorsitans, 72.7% in G. f. fuscipes and 66.6% in G. tachinoides. Trypanosome infections were more prevalent in tsetse bodies (40.6%) than in the proboscis (16.3%). CONCLUSION This study revealed the presence of different tsetse species and a diversity of trypanosomes pathogenic to livestock in the area of Lake Iro. The results highlight the risks and constraints that animal African trypanosomiasis pose to livestock breeding and the importance of assessing trypanosome infections in livestock in this area.
Collapse
Affiliation(s)
- Djoukzoumka Signaboubo
- Molecular Parasitology and Applied Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon
- Centre for Biomolecular Interaction Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
- Laboratory of Biology and Ecology (LABEA), Department of Animal Biology, Faculty of Science, University of Dschang, PO Box 067, Dschang, Cameroon
| | - Vincent Khan Payne
- Laboratory of Biology and Ecology (LABEA), Department of Animal Biology, Faculty of Science, University of Dschang, PO Box 067, Dschang, Cameroon
| | - Ibrahim Mahamat Alhadj Moussa
- Centre for Biomolecular Interaction Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | | | - Petra Berger
- Centre for Biomolecular Interaction Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Soerge Kelm
- Centre for Biomolecular Interaction Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Gustave Simo
- Molecular Parasitology and Applied Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon.
| |
Collapse
|
6
|
Medina Munoz M, Brenner C, Richmond D, Spencer N, Rio RVM. The holobiont transcriptome of teneral tsetse fly species of varying vector competence. BMC Genomics 2021; 22:400. [PMID: 34058984 PMCID: PMC8166097 DOI: 10.1186/s12864-021-07729-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background Tsetse flies are the obligate vectors of African trypanosomes, which cause Human and Animal African Trypanosomiasis. Teneral flies (newly eclosed adults) are especially susceptible to parasite establishment and development, yet our understanding of why remains fragmentary. The tsetse gut microbiome is dominated by two Gammaproteobacteria, an essential and ancient mutualist Wigglesworthia glossinidia and a commensal Sodalis glossinidius. Here, we characterize and compare the metatranscriptome of teneral Glossina morsitans to that of G. brevipalpis and describe unique immunological, physiological, and metabolic landscapes that may impact vector competence differences between these two species. Results An active expression profile was observed for Wigglesworthia immediately following host adult metamorphosis. Specifically, ‘translation, ribosomal structure and biogenesis’ followed by ‘coenzyme transport and metabolism’ were the most enriched clusters of orthologous genes (COGs), highlighting the importance of nutrient transport and metabolism even following host species diversification. Despite the significantly smaller Wigglesworthia genome more differentially expressed genes (DEGs) were identified between interspecific isolates (n = 326, ~ 55% of protein coding genes) than between the corresponding Sodalis isolates (n = 235, ~ 5% of protein coding genes) likely reflecting distinctions in host co-evolution and adaptation. DEGs between Sodalis isolates included genes involved in chitin degradation that may contribute towards trypanosome susceptibility by compromising the immunological protection provided by the peritrophic matrix. Lastly, G. brevipalpis tenerals demonstrate a more immunologically robust background with significant upregulation of IMD and melanization pathways. Conclusions These transcriptomic differences may collectively contribute to vector competence differences between tsetse species and offers translational relevance towards the design of novel vector control strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07729-5.
Collapse
Affiliation(s)
- Miguel Medina Munoz
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Caitlyn Brenner
- Department of Biology, Washington and Jefferson College, Washington, PA, 15301, USA
| | - Dylan Richmond
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Noah Spencer
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Rita V M Rio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA.
| |
Collapse
|
7
|
Demirbas-Uzel G, Augustinos AA, Doudoumis V, Parker AG, Tsiamis G, Bourtzis K, Abd-Alla AMM. Interactions Between Tsetse Endosymbionts and Glossina pallidipes Salivary Gland Hypertrophy Virus in Glossina Hosts. Front Microbiol 2021; 12:653880. [PMID: 34122367 PMCID: PMC8194091 DOI: 10.3389/fmicb.2021.653880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Tsetse flies are the sole cyclic vector for trypanosomosis, the causative agent for human African trypanosomosis or sleeping sickness and African animal trypanosomosis or nagana. Tsetse population control is the most efficient strategy for animal trypanosomosis control. Among all tsetse control methods, the Sterile Insect Technique (SIT) is one of the most powerful control tactics to suppress or eradicate tsetse flies. However, one of the challenges for the implementation of SIT is the mass production of target species. Tsetse flies have a highly regulated and defined microbial fauna composed of three bacterial symbionts (Wigglesworthia, Sodalis and Wolbachia) and a pathogenic Glossina pallidipes Salivary Gland Hypertrophy Virus (GpSGHV) which causes reproduction alterations such as testicular degeneration and ovarian abnormalities with reduced fertility and fecundity. Interactions between symbionts and GpSGHV might affect the performance of the insect host. In the present study, we assessed the possible impact of GpSGHV on the prevalence of tsetse endosymbionts under laboratory conditions to decipher the bidirectional interactions on six Glossina laboratory species. The results indicate that tsetse symbiont densities increased over time in tsetse colonies with no clear impact of the GpSGHV infection on symbionts density. However, a positive correlation between the GpSGHV and Sodalis density was observed in Glossina fuscipes species. In contrast, a negative correlation between the GpSGHV density and symbionts density was observed in the other taxa. It is worth noting that the lowest Wigglesworthia density was observed in G. pallidipes, the species which suffers most from GpSGHV infection. In conclusion, the interactions between GpSGHV infection and tsetse symbiont infections seems complicated and affected by the host and the infection density of the GpSGHV and tsetse symbionts.
Collapse
Affiliation(s)
- Güler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Antonios A Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Vangelis Doudoumis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| |
Collapse
|
8
|
Lord JS, Lea RS, Allan FK, Byamungu M, Hall DR, Lingley J, Mramba F, Paxton E, Vale GA, Hargrove JW, Morrison LJ, Torr SJ, Auty HK. Assessing the effect of insecticide-treated cattle on tsetse abundance and trypanosome transmission at the wildlife-livestock interface in Serengeti, Tanzania. PLoS Negl Trop Dis 2020; 14:e0008288. [PMID: 32841229 PMCID: PMC7473525 DOI: 10.1371/journal.pntd.0008288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/04/2020] [Accepted: 07/13/2020] [Indexed: 11/19/2022] Open
Abstract
In the absence of national control programmes against Rhodesian human African trypanosomiasis, farmer-led treatment of cattle with pyrethroid-based insecticides may be an effective strategy for foci at the edges of wildlife areas, but there is limited evidence to support this. We combined data on insecticide use by farmers, tsetse abundance and trypanosome prevalence, with mathematical models, to quantify the likely impact of insecticide-treated cattle. Sixteen percent of farmers reported treating cattle with a pyrethroid, and chemical analysis indicated 18% of individual cattle had been treated, in the previous week. Treatment of cattle was estimated to increase daily mortality of tsetse by 5-14%. Trypanosome prevalence in tsetse, predominantly from wildlife areas, was 1.25% for T. brucei s.l. and 0.03% for T. b. rhodesiense. For 750 cattle sampled from 48 herds, 2.3% were PCR positive for T. brucei s.l. and none for T. b. rhodesiense. Using mathematical models, we estimated there was 8-29% increase in mortality of tsetse in farming areas and this increase can explain the relatively low prevalence of T. brucei s.l. in cattle. Farmer-led treatment of cattle with pyrethroids is likely, in part, to be limiting the spill-over of human-infective trypanosomes from wildlife areas.
Collapse
Affiliation(s)
- Jennifer S. Lord
- Dept. of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Rachel S. Lea
- Dept. of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Fiona K. Allan
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | - David R. Hall
- Natural Resources Institute, University of Greenwich, Chatham, United Kingdom
| | - Jessica Lingley
- Dept. of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Furaha Mramba
- Vector and Vector-Borne Diseases Research Institute, Tanga, Tanzania
| | - Edith Paxton
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Glyn A. Vale
- Natural Resources Institute, University of Greenwich, Chatham, United Kingdom
- SACEMA, University of Stellenbosch, Stellenbosch, South Africa
| | | | - Liam J. Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen J. Torr
- Dept. of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Harriet K. Auty
- Epidemiology Research Unit, SRUC, An Lochran, Inverness, IV2 5NA, United Kingdom
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
9
|
Aksoy S. Tsetse peritrophic matrix influences for trypanosome transmission. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103919. [PMID: 31425686 PMCID: PMC6853167 DOI: 10.1016/j.jinsphys.2019.103919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Tsetse flies are important vectors of parasitic African trypanosomes, agents of human and animal trypanosomiasis. Easily administrable and effective tools for disease control in the mammalian host are still lacking but reduction of the tsetse vector populations can reduce disease. An alternative approach is to reduce the transmission of trypanosomes in the tsetse vector. The gut peritrophic matrix (PM) has emerged as an important regulator of parasite transmission success in tsetse. Tsetse has a Type II PM that is constitutively produced by cells in the cardia organ. Tsetse PM lines the entire gut and functions as an immunological barrier to prevent the gut epithelia from responding to commensal environmental microbes present in the gut lumen. Tsetse PM also functions as a physical barrier to trypanosome infections that enter into the gut lumen in an infective blood meal. For persistence in the gut, African trypanosomes have developed an adaptive manipulative process to transiently reduce PM efficacy. The process is mediated by mammalian trypanosome surface coat proteins, Variant Surface Glycoproteins (VSGs) which are shed in the gut lumen and taken up by cardia cells. The mechanism of PM reduction involves a tsetse microRNA (miR-275) which acts thru the Wnt signaling pathway. The PM efficacy is once again reduced later in the infection process to enable the gut established parasites to reenter into the gut lumen to colonize the salivary glands, an essential process for transmission. The ability to modulate PM integrity can lead to innovative approaches to reduce disease transmission.
Collapse
Affiliation(s)
- Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St, LEPH 624, New Haven, CT 06520, United States.
| |
Collapse
|
10
|
Schneider DI, Saarman N, Onyango MG, Hyseni C, Opiro R, Echodu R, O’Neill M, Bloch D, Vigneron A, Johnson TJ, Dion K, Weiss BL, Opiyo E, Caccone A, Aksoy S. Spatio-temporal distribution of Spiroplasma infections in the tsetse fly (Glossina fuscipes fuscipes) in northern Uganda. PLoS Negl Trop Dis 2019; 13:e0007340. [PMID: 31369548 PMCID: PMC6692048 DOI: 10.1371/journal.pntd.0007340] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 08/13/2019] [Accepted: 07/13/2019] [Indexed: 12/13/2022] Open
Abstract
Tsetse flies (Glossina spp.) are vectors of parasitic trypanosomes, which cause human (HAT) and animal African trypanosomiasis (AAT) in sub-Saharan Africa. In Uganda, Glossina fuscipes fuscipes (Gff) is the main vector of HAT, where it transmits Gambiense disease in the northwest and Rhodesiense disease in central, southeast and western regions. Endosymbionts can influence transmission efficiency of parasites through their insect vectors via conferring a protective effect against the parasite. It is known that the bacterium Spiroplasma is capable of protecting its Drosophila host from infection with a parasitic nematode. This endosymbiont can also impact its host's population structure via altering host reproductive traits. Here, we used field collections across 26 different Gff sampling sites in northern and western Uganda to investigate the association of Spiroplasma with geographic origin, seasonal conditions, Gff genetic background and sex, and trypanosome infection status. We also investigated the influence of Spiroplasma on Gff vector competence to trypanosome infections under laboratory conditions. Generalized linear models (GLM) showed that Spiroplasma probability was correlated with the geographic origin of Gff host and with the season of collection, with higher prevalence found in flies within the Albert Nile (0.42 vs 0.16) and Achwa River (0.36 vs 0.08) watersheds and with higher prevalence detected in flies collected in the intermediate than wet season. In contrast, there was no significant correlation of Spiroplasma prevalence with Gff host genetic background or sex once geographic origin was accounted for in generalized linear models. Additionally, we found a potential negative correlation of Spiroplasma with trypanosome infection, with only 2% of Spiroplasma infected flies harboring trypanosome co-infections. We also found that in a laboratory line of Gff, parasitic trypanosomes are less likely to colonize the midgut in individuals that harbor Spiroplasma infection. These results indicate that Spiroplasma infections in tsetse may be maintained by not only maternal but also via horizontal transmission routes, and Spiroplasma infections may also have important effects on trypanosome transmission efficiency of the host tsetse. Potential functional effects of Spiroplasma infection in Gff could have impacts on vector control approaches to reduce trypanosome infections.
Collapse
Affiliation(s)
- Daniela I. Schneider
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
- * E-mail:
| | - Norah Saarman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Maria G. Onyango
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Chaz Hyseni
- Department of Biology, University of Mississippi, University, MS, United States of America
| | - Robert Opiro
- Department of Biology, Faculty of Science, Gulu University, Uganda
| | - Richard Echodu
- Department of Biology, Faculty of Science, Gulu University, Uganda
| | - Michelle O’Neill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Danielle Bloch
- Department of Health and Mental Hygiene, New York City, NY, United States of America
| | - Aurélien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - T. J. Johnson
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Kirstin Dion
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Brian L. Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Elizabeth Opiyo
- Department of Biology, University of Mississippi, University, MS, United States of America
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| |
Collapse
|
11
|
Alderton S, Macleod ET, Anderson NE, Machila N, Simuunza M, Welburn SC, Atkinson PM. Exploring the effect of human and animal population growth on vector-borne disease transmission with an agent-based model of Rhodesian human African trypanosomiasis in eastern province, Zambia. PLoS Negl Trop Dis 2018; 12:e0006905. [PMID: 30408045 PMCID: PMC6224050 DOI: 10.1371/journal.pntd.0006905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/05/2018] [Indexed: 11/19/2022] Open
Abstract
This paper presents the development of an agent-based model (ABM) to investigate Trypanosoma brucei rhodesiense human African trypanosomiasis (rHAT) disease transmission. The ABM model, fitted at a fine spatial scale, was used to explore the impact of a growing host population on the spread of disease along a 75 km transect in the Luangwa Valley, Zambia. The model was used to gain a greater understanding of how increases in human and domestic animal population could impact the contact network between vector and host, the subsequent transmission patterns, and disease incidence outcomes in the region. Modelled incidence rates showed increases in rHAT transmission in both humans and cattle. The primary demographic attribution of infection switched dramatically from young children of both sexes attending school, to adult women performing activities with shorter but more frequent trips, such as water and firewood collection, with men more protected due to the presence of cattle in their routines. The interpretation of model output provides a plausible insight into both population development and disease transmission in the near future in the region and such techniques could aid well-targeted mitigation strategies in the future. African trypanosomiasis is a parasitic disease which affects humans and other animals in 36 sub-Saharan African countries. The disease is transmitted by the tsetse fly, and the human form of the disease is known as sleeping sickness. With human and animal populations growing across Africa, demand for space to settle is on the rise, and people are being forced to occupy increasingly marginal spaces. This behaviour has the potential to increase exposure to pre-existing biological hazards, including vector-borne diseases. This investigation utilises agent-based modelling techniques to investigate the implications of a growing and spreading human and animal population in a region affected by Rhodesian human African trypanosomiasis. The model incorporates previously developed spatial data for the Luangwa Valley case study in Zambia, along with demographic data for its current inhabitants, and a detailed, seasonally-driven tsetse lifecycle. Tsetse and potential human and animal hosts are modelled at the individual level, allowing each contact and infection to be recorded through time. By modelling at a fine-scale, we can incorporate detailed mechanisms for tsetse birth, feeding, reproduction and death, as well as a realistic theoretical human and domestic animal population increase, before considering the possible spatial and demographic impact.
Collapse
Affiliation(s)
- Simon Alderton
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
- Centre for Health Informatics, Computing and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
- Geography and Environment, Faculty of Social and Human Sciences, University of Southampton, Southampton, United Kingdom
- * E-mail:
| | - Ewan T. Macleod
- Division of Infection and Pathway Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, 1 George Square, Edinburgh, United Kingdom
| | - Neil E. Anderson
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Roslin, United Kingdom
| | - Noreen Machila
- Division of Infection and Pathway Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, 1 George Square, Edinburgh, United Kingdom
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Martin Simuunza
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Susan C. Welburn
- Division of Infection and Pathway Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, 1 George Square, Edinburgh, United Kingdom
| | - Peter M. Atkinson
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
- Centre for Health Informatics, Computing and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
- Geography and Environment, Faculty of Social and Human Sciences, University of Southampton, Southampton, United Kingdom
- School of Geography, Archaeology and Palaeoecology, Queen's University Belfast, Northern Ireland, United Kingdom
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Krafsur ES, Maudlin I. Tsetse fly evolution, genetics and the trypanosomiases - A review. INFECTION GENETICS AND EVOLUTION 2018; 64:185-206. [PMID: 29885477 DOI: 10.1016/j.meegid.2018.05.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 01/27/2023]
Abstract
This reviews work published since 2007. Relative efforts devoted to the agents of African trypanosomiasis and their tsetse fly vectors are given by the numbers of PubMed accessions. In the last 10 years PubMed citations number 3457 for Trypanosoma brucei and 769 for Glossina. The development of simple sequence repeats and single nucleotide polymorphisms afford much higher resolution of Glossina and Trypanosoma population structures than heretofore. Even greater resolution is offered by partial and whole genome sequencing. Reproduction in T. brucei sensu lato is principally clonal although genetic recombination in tsetse salivary glands has been demonstrated in T. b. brucei and T. b. rhodesiense but not in T. b. gambiense. In the past decade most genetic attention was given to the chief human African trypanosomiasis vectors in subgenus Nemorhina e.g., Glossina f. fuscipes, G. p. palpalis, and G. p. gambiense. The chief interest in Nemorhina population genetics seemed to be finding vector populations sufficiently isolated to enable efficient and long-lasting suppression. To this end estimates were made of gene flow, derived from FST and its analogues, and Ne, the size of a hypothetical population equivalent to that under study. Genetic drift was greater, gene flow and Ne typically lesser in savannah inhabiting tsetse (subgenus Glossina) than in riverine forms (Nemorhina). Population stabilities were examined by sequential sampling and genotypic analysis of nuclear and mitochondrial genomes in both groups and found to be stable. Gene frequencies estimated in sequential samplings differed by drift and allowed estimates of effective population numbers that were greater for Nemorhina spp than Glossina spp. Prospects are examined of genetic methods of vector control. The tsetse long generation time (c. 50 d) is a major contraindication to any suggested genetic method of tsetse population manipulation. Ecological and modelling research convincingly show that conventional methods of targeted insecticide applications and traps/targets can achieve cost-effective reduction in tsetse densities.
Collapse
Affiliation(s)
- E S Krafsur
- Department of Entomology, Iowa State University, Ames, IA 50011, USA.
| | - Ian Maudlin
- School of Biomedical Sciences, The University of Edinburgh, Scotland, UK
| |
Collapse
|
13
|
A fine-tuned vector-parasite dialogue in tsetse's cardia determines peritrophic matrix integrity and trypanosome transmission success. PLoS Pathog 2018; 14:e1006972. [PMID: 29614112 PMCID: PMC5898766 DOI: 10.1371/journal.ppat.1006972] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/13/2018] [Accepted: 03/13/2018] [Indexed: 01/19/2023] Open
Abstract
Arthropod vectors have multiple physical and immunological barriers that impede the development and transmission of parasites to new vertebrate hosts. These barriers include the peritrophic matrix (PM), a chitinous barrier that separates the blood bolus from the midgut epithelia and modulates vector-pathogens interactions. In tsetse flies, a sleeve-like PM is continuously produced by the cardia organ located at the fore- and midgut junction. African trypanosomes, Trypanosoma brucei, must bypass the PM twice; first to colonize the midgut and secondly to reach the salivary glands (SG), to complete their transmission cycle in tsetse. However, not all flies with midgut infections develop mammalian transmissible SG infections—the reasons for which are unclear. Here, we used transcriptomics, microscopy and functional genomics analyses to understand the factors that regulate parasite migration from midgut to SG. In flies with midgut infections only, parasites fail to cross the PM as they are eliminated from the cardia by reactive oxygen intermediates (ROIs)—albeit at the expense of collateral cytotoxic damage to the cardia. In flies with midgut and SG infections, expression of genes encoding components of the PM is reduced in the cardia, and structural integrity of the PM barrier is compromised. Under these circumstances trypanosomes traverse through the newly secreted and compromised PM. The process of PM attrition that enables the parasites to re-enter into the midgut lumen is apparently mediated by components of the parasites residing in the cardia. Thus, a fine-tuned dialogue between tsetse and trypanosomes at the cardia determines the outcome of PM integrity and trypanosome transmission success. Insects are responsible for transmission of parasites that cause deadly diseases in humans and animals. Understanding the key factors that enhance or interfere with parasite transmission processes can result in new control strategies. Here, we report that a proportion of tsetse flies with African trypanosome infections in their midgut can prevent parasites from migrating to the salivary glands, albeit at the expense of collateral damage. In a subset of flies with gut infections, the parasites manipulate the integrity of a midgut barrier, called the peritrophic matrix, and reach the salivary glands for transmission to the next mammal. Either targeting parasite manipulative processes or enhancing peritrophic matrix integrity could reduce parasite transmission.
Collapse
|
14
|
Alderton S, Macleod ET, Anderson NE, Schaten K, Kuleszo J, Simuunza M, Welburn SC, Atkinson PM. A Multi-Host Agent-Based Model for a Zoonotic, Vector-Borne Disease. A Case Study on Trypanosomiasis in Eastern Province, Zambia. PLoS Negl Trop Dis 2016; 10:e0005252. [PMID: 28027323 PMCID: PMC5222522 DOI: 10.1371/journal.pntd.0005252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 01/09/2017] [Accepted: 12/13/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND This paper presents a new agent-based model (ABM) for investigating T. b. rhodesiense human African trypanosomiasis (rHAT) disease dynamics, produced to aid a greater understanding of disease transmission, and essential for development of appropriate mitigation strategies. METHODS The ABM was developed to model rHAT incidence at a fine spatial scale along a 75 km transect in the Luangwa Valley, Zambia. The method offers a complementary approach to traditional compartmentalised modelling techniques, permitting incorporation of fine scale demographic data such as ethnicity, age and gender into the simulation. RESULTS Through identification of possible spatial, demographic and behavioural characteristics which may have differing implications for rHAT risk in the region, the ABM produced output that could not be readily generated by other techniques. On average there were 1.99 (S.E. 0.245) human infections and 1.83 (S.E. 0.183) cattle infections per 6 month period. The model output identified that the approximate incidence rate (per 1000 person-years) was lower amongst cattle owning households (0.079, S.E. 0.017), than those without cattle (0.134, S.E. 0.017). Immigrant tribes (e.g. Bemba I.R. = 0.353, S.E.0.155) and school-age children (e.g. 5-10 year old I.R. = 0.239, S.E. 0.041) were the most at-risk for acquiring infection. These findings have the potential to aid the targeting of future mitigation strategies. CONCLUSION ABMs provide an alternative way of thinking about HAT and NTDs more generally, offering a solution to the investigation of local-scale questions, and which generate results that can be easily disseminated to those affected. The ABM can be used as a tool for scenario testing at an appropriate spatial scale to allow the design of logistically feasible mitigation strategies suggested by model output. This is of particular importance where resources are limited and management strategies are often pushed to the local scale.
Collapse
Affiliation(s)
- Simon Alderton
- Institute of Complex System Simulation, School of Electronics and Computer Science, University of Southampton, Southampton, United Kingdom
- Geography and Environment, Faculty of Social and Human Sciences, University of Southampton, Southampton, United Kingdom
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
- * E-mail:
| | - Ewan T. Macleod
- Division of Infection and Pathway Medicine, Edinburgh Medical School – Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Neil E. Anderson
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Roslin, United Kingdom
| | - Kathrin Schaten
- Division of Infection and Pathway Medicine, Edinburgh Medical School – Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna Kuleszo
- Geography and Environment, Faculty of Social and Human Sciences, University of Southampton, Southampton, United Kingdom
| | - Martin Simuunza
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Susan C. Welburn
- Division of Infection and Pathway Medicine, Edinburgh Medical School – Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Peter M. Atkinson
- Geography and Environment, Faculty of Social and Human Sciences, University of Southampton, Southampton, United Kingdom
- Faculty of Science and Technology, Engineering Building, Lancaster University, Lancaster, United Kingdom
- School of Geography, Archaeology and Palaeoecology, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
15
|
Peacock L, Bailey M, Gibson W. Dynamics of gamete production and mating in the parasitic protist Trypanosoma brucei. Parasit Vectors 2016; 9:404. [PMID: 27439767 PMCID: PMC4955137 DOI: 10.1186/s13071-016-1689-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sexual reproduction in Plasmodium falciparum and Trypanosoma brucei occurs in the insect vector and is important in generating hybrid strains with different combinations of parental characteristics. Production of hybrid parasite genotypes depends on the likelihood of co-infection of the vector with multiple strains. In mosquitoes, existing infection with Plasmodium facilitates the establishment of a second infection, although the asynchronicity of gamete production subsequently prevents mating. In the trypanosome/tsetse system, flies become increasingly refractory to infection as they age, so the likelihood of a fly acquiring a second infection also decreases. This effectively restricts opportunities for trypanosome mating to co-infections picked up by the fly on its first feed, unless an existing infection increases the chance of successful second infection as in the Plasmodium/mosquito system. RESULTS Using green and red fluorescent trypanosomes, we compared the rates of trypanosome infection and hybrid production in flies co-infected on the first feed, co-infected on a subsequent feed 18 days after emergence, or fed sequentially with each trypanosome clone 18 days apart. Infection rates were highest in the midguts and salivary glands (SG) of flies that received both trypanosome clones in their first feed, and were halved when the infected feed was delayed to day 18. In flies fed the two trypanosome clones sequentially, the second clone often failed to establish a midgut infection and consequently was not present in the SG. Nevertheless, hybrids were recovered from all three groups of infected flies. Meiotic stages and gametes were produced continuously from day 11 to 42 after the infective feed, and in sequentially infected flies, the co-occurrence of gametes led to hybrid formation. CONCLUSIONS We found that a second trypanosome strain can establish infection in the tsetse SG 18 days after the first infected feed, with co-mingling of gametes and production of trypanosome hybrids. Establishment of the second strain was severely compromised by the strong immune response of the fly to the existing infection. Although sequential infection provides an opportunity for trypanosome mating, the easiest way for a tsetse fly to acquire a mixed infection is by feeding on a co-infected host.
Collapse
Affiliation(s)
- Lori Peacock
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.,School of Clinical Veterinary Science, University of Bristol, Langford, Bristol, BS40 7DU, UK
| | - Mick Bailey
- School of Clinical Veterinary Science, University of Bristol, Langford, Bristol, BS40 7DU, UK
| | - Wendy Gibson
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
| |
Collapse
|
16
|
Isaac C, Ciosi M, Hamilton A, Scullion KM, Dede P, Igbinosa IB, Nmorsi OPG, Masiga D, Turner CMR. Molecular identification of different trypanosome species and subspecies in tsetse flies of northern Nigeria. Parasit Vectors 2016; 9:301. [PMID: 27216812 PMCID: PMC4877947 DOI: 10.1186/s13071-016-1585-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/11/2016] [Indexed: 11/26/2022] Open
Abstract
Background Animal African Trypanosomiasis (AAT) is caused by several species of trypanosomes including Trypanosoma congolense, T. vivax, T. godfreyi, T. simiae and T. brucei. Two of the subspecies of T. brucei also cause Human African Trypanosomiasis. Although some of them can be mechanically transmitted by biting flies; these trypanosomes are all transmitted by tsetse flies which are the cyclical vectors of Trypanosoma congolense, T. godfreyi, T. simiae and T. brucei. We present here the first report assessing the prevalence of trypanosomes in tsetse flies in Nigeria using molecular tools. Methods 488 tsetse flies of three species, Glossina palpalis palpalis, G. tachinoides and G. morsitans submorsitans were collected from Wuya, Niger State and Yankari National Park, Bauchi State in 2012. Trypanosomes were detected and identified using an ITS1 PCR assay on DNA purified from the ‘head plus proboscis’ (H + P) and abdomen (ABD) parts of each fly. Results T. vivax and T. congolense Savannah were the major parasites detected. Trypanosomes prevalence was 7.1 % in G. p. palpalis, 11.9 % in G. tachinoides and 13.5 % in G. m. submorsitans. Prevalences of T. congolense Savannah ranged from 2.5 to 6.7 % and of T. vivax were approximately 4.5 %. Trypanosoma congolense Forest, T. godfreyi and T. simiae were also detected in the site of Yankari. The main biological and ecological determinants of trypanosome prevalence were the fly sex, with more trypanosomes found in females than males, and the site, with T. congolense subspp. being more abundant in Yankari than in Wuya. As expected, the trypanosome species diversity was higher in Yankari National Park than in the more agricultural site of Wuya where vertebrate host species diversity is lower. Conclusions Our results show that T. congolense Savannah and T. vivax are the main species of parasite potentially causing AAT in the two study sites and that Yankari National Park is a potential reservoir of trypanosomes both in terms of parasite abundance and species diversity. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1585-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clement Isaac
- Department of Zoology, Ambrose Alli University, Ekpoma, Nigeria.,Institute of Infection Immunity and Inflammation, Sir Graeme Davis Building, University of Glasgow, 120 University Place, Glasgow, G12 0PT, UK
| | - Marc Ciosi
- Institute of Infection Immunity and Inflammation, Sir Graeme Davis Building, University of Glasgow, 120 University Place, Glasgow, G12 0PT, UK. .,International Centre for Insect Physiology and Ecology (ICIPE), P.O. Box 30772, 00100, Nairobi, Kenya.
| | - Alana Hamilton
- Institute of Infection Immunity and Inflammation, Sir Graeme Davis Building, University of Glasgow, 120 University Place, Glasgow, G12 0PT, UK
| | - Kathleen Maria Scullion
- Institute of Infection Immunity and Inflammation, Sir Graeme Davis Building, University of Glasgow, 120 University Place, Glasgow, G12 0PT, UK
| | - Peter Dede
- Nigerian Institute of Trypanosomiasis Research (NITR), Kaduna, Nigeria
| | | | | | - Dan Masiga
- Institute of Infection Immunity and Inflammation, Sir Graeme Davis Building, University of Glasgow, 120 University Place, Glasgow, G12 0PT, UK.,International Centre for Insect Physiology and Ecology (ICIPE), P.O. Box 30772, 00100, Nairobi, Kenya
| | - C Michael R Turner
- Institute of Infection Immunity and Inflammation, Sir Graeme Davis Building, University of Glasgow, 120 University Place, Glasgow, G12 0PT, UK
| |
Collapse
|
17
|
Ahmed HA, MacLeod ET, Welburn SC, Picozzi K. Development of real time PCR to study experimental mixed infections of T. congolense Savannah and T. b. brucei in Glossina morsitans morsitans. PLoS One 2015; 10:e0117147. [PMID: 25738803 PMCID: PMC4349444 DOI: 10.1371/journal.pone.0117147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 12/18/2014] [Indexed: 11/18/2022] Open
Abstract
Tsetse flies are able to acquire mixed infections naturally or experimentally either simultaneously or sequentially. Traditionally, natural infection rates in tsetse flies are estimated by microscopic examination of different parts of the fly after dissection, together with the isolation of the parasite in vivo. However, until the advent of molecular techniques it was difficult to speciate trypanosomes infections and to quantify trypanosome numbers within tsetse flies. Although more expensive, qPCR allows the quantification of DNA and is less time consuming due to real time visualization and validation of the results. The current study evaluated the application of qPCR to quantify the infection load of tsetse flies with T. b. brucei and T. congolense savannah and to study the possibility of competition between the two species. The results revealed that the two qPCR reactions are of acceptable efficiency (99.1% and 95.6%, respectively), sensitivity and specificity and can be used for quantification of infection load with trypanosomes in experimentally infected Glossina morsitans morsitans. The mixed infection of laboratory Glossina species and quantification of the infection suggests the possibility that a form of competition exists between the isolates of T. b. brucei and T. congolense savannah that we used when they co-exist in the fly midgut.
Collapse
Affiliation(s)
- Heba A. Ahmed
- Division of Pathway Medicine, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Faculty of Veterinary Medicine, Zagazig University, Zagazig, Ash Sharqiyah, Egypt
| | - Ewan T. MacLeod
- Division of Pathway Medicine, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Susan C. Welburn
- Division of Pathway Medicine, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Kim Picozzi
- Division of Pathway Medicine, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Hamidou Soumana I, Tchicaya B, Chuchana P, Geiger A. Midgut expression of immune-related genes in Glossina palpalis gambiensis challenged with Trypanosoma brucei gambiense. Front Microbiol 2014; 5:609. [PMID: 25426112 PMCID: PMC4226161 DOI: 10.3389/fmicb.2014.00609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 10/26/2014] [Indexed: 11/13/2022] Open
Abstract
Tsetse flies from the subspecies Glossina morsitans morsitans and Glossina palpalis gambiensis, respectively, transmit Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. The former causes the acute form of sleeping sickness, and the latter provokes the chronic form. Although several articles have reported G. m. morsitans gene expression following trypanosome infection, no comparable investigation has been performed for G. p. gambiensis. This report presents results on the differential expression of immune-related genes in G. p. gambiensis challenged with T. b. gambiense. The aim was to characterize transcriptomic events occurring in the tsetse gut during the parasite establishment step, which is the crucial first step in the parasite development cycle within its vector. The selected genes were chosen from those previously shown to be highly expressed in G. m. morsitans, to allow further comparison of gene expression in both Glossina species. Using quantitative PCR, genes were amplified from the dissected midguts of trypanosome-stimulated, infected, non-infected, and self-cleared flies at three sampling timepoints (3, 10, and 20 days) after a bloodmeal. At the 3-day sampling point, transferrin transcripts were significantly up-regulated in trypanosome-challenged flies versus flies fed on non-infected mice. In self-cleared flies, serpin-2 and thioredoxin peroxidase-3 transcripts were significantly up-regulated 10 days after trypanosome challenge, whereas nitric oxide synthase and chitin-binding protein transcripts were up-regulated after 20 days. Although the expression levels of the other genes were highly variable, the expression of immune-related genes in G. p. gambiensis appears to be a time-dependent process. The possible biological significance of these findings is discussed, and the results are compared with previous reports for G. m. morsitans.
Collapse
Affiliation(s)
| | | | - Paul Chuchana
- Inserm, U844, Hôpital Saint-Eloi Montpellier, France
| | | |
Collapse
|
19
|
Aksoy S, Weiss BL, Attardo GM. Trypanosome Transmission Dynamics in Tsetse. CURRENT OPINION IN INSECT SCIENCE 2014; 3:43-49. [PMID: 25580379 PMCID: PMC4286356 DOI: 10.1016/j.cois.2014.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Tsetse flies (Diptera:Glossinidae) are vectors of African trypanosomes. Tsetse undergo viviparous reproductive biology, and depend on their obligate endosymbiont (genus Wigglesworthia) for the maintenance of fecundity and immune system development. Trypanosomes establish infections in the midgut and salivary glands of the fly. Tsetse's resistance to trypanosome infection increases as a function of age. Among the factors that mediate resistance to parasites are antimicrobial peptides (AMPs) produced by the Immune deficiency (Imd) signaling pathway, peptidoglycan recognition protein (PGRP) LB, tsetse-EP protein and the integrity of the midgut peritrophic matrix (PM) barrier. The presence of obligate Wigglesworthia during larval development is essential for adult immune system maturation and PM development. Thus, Wigglesworthia prominently influences the vector competency of it's tsetse host.
Collapse
|
20
|
Dennis JW, Durkin SM, Horsley Downie JE, Hamill LC, Anderson NE, MacLeod ET. Sodalis glossinidius prevalence and trypanosome presence in tsetse from Luambe National Park, Zambia. Parasit Vectors 2014; 7:378. [PMID: 25138709 PMCID: PMC4153904 DOI: 10.1186/1756-3305-7-378] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/01/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tsetse flies are the biological vectors of African trypanosomes, the causative agents of sleeping sickness in humans and nagana in animals. The tsetse endosymbiont Sodalis glossinidius has been suggested to play a role in tsetse susceptibility to infection. Here we investigate the prevalence of African trypanosomes within tsetse from the Luambe National Park, Zambia and if there is an association between S. glossinidius and presence of trypanosomes within the tsetse examined. METHODS Tsetse representing three species (Glossina brevipalpis, Glossina morsitans morsitans and Glossina pallidipes), were sampled from Luambe National Park, Zambia. Following DNA extraction, PCR was used to examine the tsetse for presence of trypanosomes and the secondary endosymbiont S. glossinidius. RESULTS S. glossinidius infection rates varied significantly between tsetse species, with G. brevipalpis (93.7%) showing the highest levels of infection followed by G. m. morsitans (17.5%) and G. pallidipes (1.4%). ITS-PCR detected a wide variety of trypanosomes within the tsetse that were analysed. Significant differences were found in terms of trypanosome presence between the three tsetse species. A high proportion of G. m. morsitans were shown to carry T. brucei s.l. DNA (73.7%) and of these around 50% were positive for Trypanosoma brucei rhodesiense. T. vivax, T. godfreyi, T. simiae, T. simiae Tsavo and T. congolense were also detected. No association was found between the occurrence of S. glossinidius and the presence of trypanosome DNA in any of the three tsetse species tested. CONCLUSION The current work shows that T. b. rhodesiense was circulating in Luambe National Park, representing a risk for people living in the park or surrounding area and for tourists visiting the park. The differences in trypanosome DNA presence observed between the different tsetse species tested may indicate host feeding preferences, as the PCR will not discriminate between a fly with an active/resident infection compared to a refractory fly that has fed on an infected animal. This makes it difficult to establish if S. glossinidius may play a role in the susceptibility of tsetse flies to trypanosome infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Ewan T MacLeod
- Division of Pathway Medicine, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK.
| |
Collapse
|
21
|
Abstract
Human African trypanosomiasis (HAT), or sleeping sickness, is caused by Trypanosoma brucei gambiense, which is a chronic form of the disease present in western and central Africa, and by Trypanosoma brucei rhodesiense, which is an acute disease located in eastern and southern Africa. The rhodesiense form is a zoonosis, with the occasional infection of humans, but in the gambiense form, the human being is regarded as the main reservoir that plays a key role in the transmission cycle of the disease. The gambiense form currently assumes that 98% of the cases are declared; the Democratic Republic of the Congo is the most affected country, with more than 75% of the gambiense cases declared. The epidemiology of the disease is mediated by the interaction of the parasite (trypanosome) with the vectors (tsetse flies), as well as with the human and animal hosts within a particular environment. Related to these interactions, the disease is confined in spatially limited areas called “foci”, which are located in Sub-Saharan Africa, mainly in remote rural areas. The risk of contracting HAT is, therefore, determined by the possibility of contact of a human being with an infected tsetse fly. Epidemics of HAT were described at the beginning of the 20th century; intensive activities have been set up to confront the disease, and it was under control in the 1960s, with fewer than 5,000 cases reported in the whole continent. The disease resurged at the end of the 1990s, but renewed efforts from endemic countries, cooperation agencies, and nongovernmental organizations led by the World Health Organization succeeded to raise awareness and resources, while reinforcing national programs, reversing the trend of the cases reported, and bringing the disease under control again. In this context, sustainable elimination of the gambiense HAT, defined as the interruption of the transmission of the disease, was considered as a feasible target for 2030. Since rhodesiense HAT is a zoonosis, where the animal reservoir plays a key role, the interruption of the disease’s transmission is not deemed feasible.
Collapse
Affiliation(s)
- Jose R Franco
- World Health Organization, Control of Neglected Tropical Diseases, Innovative and Intensified Disease Management, Geneva, Switzerland
| | - Pere P Simarro
- World Health Organization, Control of Neglected Tropical Diseases, Innovative and Intensified Disease Management, Geneva, Switzerland
| | - Abdoulaye Diarra
- World Health Organization, Inter Country Support Team for Central Africa, Regional Office for Africa, Libreville, Gabon
| | - Jean G Jannin
- World Health Organization, Control of Neglected Tropical Diseases, Innovative and Intensified Disease Management, Geneva, Switzerland
| |
Collapse
|
22
|
Wamwiri FN, Ndungu K, Thande PC, Thungu DK, Auma JE, Ngure RM. Infection with the secondary tsetse-endosymbiont Sodalis glossinidius (Enterobacteriales: Enterobacteriaceae) influences parasitism in Glossina pallidipes (Diptera: Glossinidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:ieu134. [PMID: 25527583 PMCID: PMC5657924 DOI: 10.1093/jisesa/ieu134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 03/26/2014] [Indexed: 05/29/2023]
Abstract
The establishment of infection with three Trypanosoma spp (Gruby) (Kinetoplastida: Trypanosomatidae), specifically Trypanosoma brucei brucei (Plimmer and Bradford), T. b. rhodesiense (Stephen and Fatham) and T. congolense (Broden) was evaluated in Glossina pallidipes (Austen) (Diptera: Glossinidae) that either harbored or were uninfected by the endosymbiont Sodalis glossinidius (Dale and Maudlin) (Enterobacteriales: Enterobacteriaceae). Temporal variation of co-infection with T. b. rhodesiense and S. glossinidius was also assessed. The results show that both S. glossinidius infection (χ(2)= 1.134, df = 2, P = 0.567) and trypanosome infection rate (χ(2)= 1.85, df = 2, P = 0.397) were comparable across the three infection groups. A significant association was observed between the presence of S. glossinidius and concurrent trypanosome infection with T. b. rhodesiense (P = 0.0009) and T. congolense (P = 0.0074) but not with T. b. brucei (P = 0.5491). The time-series experiment revealed a slight decrease in the incidence of S. glossinidius infection with increasing fly age, which may infer a fitness cost associated with Sodalis infection. The present findings contribute to research on the feasibility of S. glossinidius-based paratransgenic approaches in tsetse and trypanosomiasis control, in particular relating to G. pallidipes control.
Collapse
Affiliation(s)
- Florence N Wamwiri
- KARI - Trypanosomiasis Research Institute, PO Box 362, 00902 Kikuyu, Kenya
| | - Kariuki Ndungu
- KARI - Trypanosomiasis Research Institute, PO Box 362, 00902 Kikuyu, Kenya
| | - Paul C Thande
- KARI - Trypanosomiasis Research Institute, PO Box 362, 00902 Kikuyu, Kenya
| | - Daniel K Thungu
- KARI - Trypanosomiasis Research Institute, PO Box 362, 00902 Kikuyu, Kenya
| | - Joanna E Auma
- KARI - Trypanosomiasis Research Institute, PO Box 362, 00902 Kikuyu, Kenya
| | - Raphael M Ngure
- Department of Biochemistry & Molecular Biology, Egerton University, PO Box 536, 20115 Njoro, Kenya
| |
Collapse
|
23
|
Haines LR. Examining the tsetse teneral phenomenon and permissiveness to trypanosome infection. Front Cell Infect Microbiol 2013; 3:84. [PMID: 24312903 PMCID: PMC3833344 DOI: 10.3389/fcimb.2013.00084] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/03/2013] [Indexed: 12/31/2022] Open
Abstract
Tsetse flies are the most important vectors of African trypanosomiasis but, surprisingly, are highly refractory to trypanosome parasite infection. In populations of wild caught flies, it is rare to find mature salivarian and mouthpart parasite infection rates exceeding 1 and 15%, respectively. This inherent refractoriness persists throughout the lifespan of the fly, although extreme starvation and suboptimal environmental conditions can cause a reversion to the susceptible phenotype. The teneral phenomenon is a phenotype unique to newly emerged, previously unfed tsetse, and is evidenced by a profound susceptibility to trypanosome infection. This susceptibility persists for only a few days post-emergence and decreases with fly age and bloodmeal acquisition. Researchers investigating trypanosome-tsetse interactions routinely exploit this phenomenon by using young, unfed (teneral) flies to naturally boost trypanosome establishment and maturation rates. A suite of factors may contribute, at least in part, to this unusual parasite permissive phenotype. These include the physical maturity of midgut barriers, the activation of immunoresponsive tissues and their effector molecules, and the role of the microflora within the midgut of the newly emerged fly. However, at present, the molecular mechanisms that underpin the teneral phenomenon still remain unknown. This review will provide a historical overview of the teneral phenomenon and will examine immune-related factors that influence, and may help us better understand, this unusual phenotype.
Collapse
Affiliation(s)
- Lee Rafuse Haines
- Department of Vector Biology, Liverpool School of Tropical Medicine Liverpool, UK
| |
Collapse
|
24
|
Pruzinova K, Votypka J, Volf P. The effect of avian blood on Leishmania development in Phlebotomus duboscqi. Parasit Vectors 2013; 6:254. [PMID: 24059328 PMCID: PMC3766276 DOI: 10.1186/1756-3305-6-254] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/27/2013] [Indexed: 12/03/2022] Open
Abstract
Background The development of pathogens transmitted by haematophagous invertebrate vectors is closely connected with the digestion of bloodmeals and is thus affected by midgut enzymatic activity. Some studies have demonstrated that avian blood inhibits Leishmania major infection in the Old World vector Phlebotomus papatasi; however, this effect has never been observed in the New World vectors of the genus Lutzomyia infected by other Leishmania species. Therefore, our study was focused on the effect of chicken blood on bloodmeal digestion and the development of Leishmania major in its natural vector Phlebotomus duboscqi, i.e. in a vector-parasite combination where the effect of blood is assumed. In addition, we tested the effect of avian blood on midgut trypsin activity and the influence of repeated feedings on the susceptibility of sand flies to Leishmania infection. Methods Phlebotomus duboscqi females were infected by rabbit blood containing L. major and either before or after the infection fed on chickens or mice. The individual guts were checked microscopically for presence and localization of Leishmania, parasite numbers were detected by Q-PCR. In addition, midgut trypsin activity was studied. Results Sand fly females fed on chicken blood had significantly lower midgut trypsin activity and delayed egg development compared to those fed on rabbits. On the other hand, there was no effect detected of avian blood on parasite development within the sand fly gut: similar infection rates and parasite loads were observed in P. duboscqi females infected by L. major and fed on chickens or mouse one or six days later. Similarly, previous blood feeding of sand flies on chickens or mice did not show any differences in subsequent Leishmania infections, and there was equal susceptibility of P. duboscqi to L. major infection during the first and second bloodmeals. Conclusion In spite of the fact that avian blood affects trypsin activity and the oocyte development of sand flies, no effect of chicken blood was observed on the development of L. major in P. duboscqi. Our study unambiguously shows that sand fly feeding on avian hosts is not harmful to Leishmania parasites within the sand fly midgut.
Collapse
Affiliation(s)
- Katerina Pruzinova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.
| | | | | |
Collapse
|
25
|
Abstract
Microbial symbionts can be instrumental to the evolutionary success of their hosts. Here, we discuss medically significant tsetse flies (Diptera: Glossinidae), a group comprised of over 30 species, and their use as a valuable model system to study the evolution of the holobiont (i.e., the host and associated microbes). We first describe the tsetse microbiota, which, despite its simplicity, harbors a diverse range of associations. The maternally transmitted microbes consistently include two Gammaproteobacteria, the obligate mutualists Wigglesworthia spp. and the commensal Sodalis glossinidius, along with the parasitic Alphaproteobacteria Wolbachia. These associations differ in their establishment times, making them unique and distinct from previously characterized symbioses, where multiple microbial partners have associated with their host for a significant portion of its evolution. We then expand into discussing the functional roles and intracommunity dynamics within this holobiont, which enhances our understanding of tsetse biology to encompass the vital functions and interactions of the microbial community. Potential disturbances influencing the tsetse microbiome, including salivary gland hypertrophy virus and trypanosome infections, are highlighted. While previous studies have described evolutionary consequences of host association for symbionts, the initial steps facilitating their incorporation into a holobiont and integration of partner biology have only begun to be explored. Research on the tsetse holobiont will contribute to the understanding of how microbial metabolic integration and interdependency initially may develop within hosts, elucidating mechanisms driving adaptations leading to cooperation and coresidence within the microbial community. Lastly, increased knowledge of the tsetse holobiont may also contribute to generating novel African trypanosomiasis disease control strategies.
Collapse
|
26
|
Weiss BL, Wang J, Maltz MA, Wu Y, Aksoy S. Trypanosome infection establishment in the tsetse fly gut is influenced by microbiome-regulated host immune barriers. PLoS Pathog 2013; 9:e1003318. [PMID: 23637607 PMCID: PMC3630092 DOI: 10.1371/journal.ppat.1003318] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 03/05/2013] [Indexed: 12/22/2022] Open
Abstract
Tsetse flies (Glossina spp.) vector pathogenic African trypanosomes, which cause sleeping sickness in humans and nagana in domesticated animals. Additionally, tsetse harbors 3 maternally transmitted endosymbiotic bacteria that modulate their host's physiology. Tsetse is highly resistant to infection with trypanosomes, and this phenotype depends on multiple physiological factors at the time of challenge. These factors include host age, density of maternally-derived trypanolytic effector molecules present in the gut, and symbiont status during development. In this study, we investigated the molecular mechanisms that result in tsetse's resistance to trypanosomes. We found that following parasite challenge, young susceptible tsetse present a highly attenuated immune response. In contrast, mature refractory flies express higher levels of genes associated with humoral (attacin and pgrp-lb) and epithelial (inducible nitric oxide synthase and dual oxidase) immunity. Additionally, we discovered that tsetse must harbor its endogenous microbiome during intrauterine larval development in order to present a parasite refractory phenotype during adulthood. Interestingly, mature aposymbiotic flies (Gmm(Apo)) present a strong immune response earlier in the infection process than do WT flies that harbor symbiotic bacteria throughout their entire lifecycle. However, this early response fails to confer significant resistance to trypanosomes. Gmm(Apo) adults present a structurally compromised peritrophic matrix (PM), which lines the fly midgut and serves as a physical barrier that separates luminal contents from immune responsive epithelial cells. We propose that the early immune response we observe in Gmm(Apo) flies following parasite challenge results from the premature exposure of gut epithelia to parasite-derived immunogens in the absence of a robust PM. Thus, tsetse's PM appears to regulate the timing of host immune induction following parasite challenge. Our results document a novel finding, which is the existence of a positive correlation between tsetse's larval microbiome and the integrity of the emerging adult PM gut immune barrier.
Collapse
Affiliation(s)
- Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America.
| | | | | | | | | |
Collapse
|
27
|
Dyer NA, Rose C, Ejeh NO, Acosta-Serrano A. Flying tryps: survival and maturation of trypanosomes in tsetse flies. Trends Parasitol 2013; 29:188-96. [PMID: 23507033 DOI: 10.1016/j.pt.2013.02.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/05/2013] [Accepted: 02/06/2013] [Indexed: 01/30/2023]
Abstract
Survival in and colonization of the tsetse fly midgut are essential steps in the transmission of many species of African trypanosomes. In the fly, bloodstream trypanosomes transform into the procyclic stage within the gut lumen and later migrate to the ectoperitrophic space, where they multiply, establishing an infection. Progression of the parasite infection in the fly depends on factors inherent to the biology of trypanosomes, tsetse, and the bloodmeal. Flies usually eradicate infection early on with both pre-existing and inducible factors. Parasites, in contrast, respond to these stimuli by undergoing developmental changes, allowing a few to both survive and migrate within the tsetse. Here we discuss parasite and fly factors determining trypanosome colonization of the tsetse, focusing mainly on the midgut.
Collapse
Affiliation(s)
- Naomi A Dyer
- Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | | | | | | |
Collapse
|
28
|
Hamidou Soumana I, Berthier D, Tchicaya B, Thevenon S, Njiokou F, Cuny G, Geiger A. Population dynamics of Glossina palpalis gambiensis symbionts, Sodalis glossinidius, and Wigglesworthia glossinidia, throughout host-fly development. INFECTION GENETICS AND EVOLUTION 2012; 13:41-8. [PMID: 23107774 DOI: 10.1016/j.meegid.2012.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
Abstract
The tsetse fly (Diptera: Glossinidae), the vector of trypanosomes causing human and animal trypanosomiasis, harbors symbiotic microorganisms including the primary symbiont Wigglesworthia glossinidia, involved in the fly's nutrition and fertility, and the secondary symbiont Sodalis glossinidius, involved in the trypanosome establishment in the fly's midgut. Both symbionts are maternally transmitted to the intrauterine progeny through the fly's milk gland secretions. In this study, we investigated the population dynamics of these symbionts during fly development. Wigglesworthia and Sodalis densities were estimated using quantitative PCR performed on Glossina palpalis gambiensis at different developmental stages. The results showed that the density of the primary Wigglesworthia symbiont was higher than that of Sodalis for all host developmental stages. Sodalis densities remained constant in pupae, but increased significantly in adult flies. The opposite situation was observed for Wigglesworthia, whose density increased in pupae and remained constant during the female adult stage. Moreover, Wigglesworthia density increased significantly during the transition from the pupal to the teneral stage, while mating had a contradictory effect depending on the age of the fly. Finally, tsetse fly colonization by both symbionts appears as a continuous and adaptive process throughout the insect's development. Last, the study demonstrated both symbionts of G. p. gambiensis, the vector of the chronic form of human African trypanosomiasis, to be permanent inhabitants of the colony flies throughout their life span. This was expected for the primary symbiont, Wigglesworthia, but not necessarily for the secondary symbiont, S. glossinidius, whose permanent presence is not required for the fly's survival. This result is of importance as Sodalis could be involved in the tsetse fly vector competence and may constitute a target in the frame of sleeping sickness fighting strategies.
Collapse
Affiliation(s)
- Illiassou Hamidou Soumana
- UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
29
|
PGRP-LB is a maternally transmitted immune milk protein that influences symbiosis and parasitism in tsetse's offspring. Proc Natl Acad Sci U S A 2012; 109:10552-7. [PMID: 22689989 DOI: 10.1073/pnas.1116431109] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Beneficial microbe functions range from host dietary supplementation to development and maintenance of host immune system. In mammals, newborn progeny are quickly colonized with a symbiotic fauna that is provisioned in mother's milk and that closely resembles that of the parent. Tsetse fly (Diptera: Glossinidae) also depends on the obligate symbiont Wigglesworthia for nutritional supplementation, optimal fecundity, and immune system development. Tsetse progeny develop one at a time in an intrauterine environment and receive nourishment and symbionts in mother's milk. We show that the host Peptidoglycan Recognition Protein (PGRP-LB) is expressed only in adults and is a major component of the milk that nourishes the developing progeny. The amidase activity associated with PGRP-LB may scavenge the symbiotic peptidoglycan and prevent the induction of tsetse's Immune Deficiency pathway that otherwise can damage the symbionts. Reduction of PGRP-LB experimentally diminishes female fecundity and damages Wigglesworthia in the milk through induction of antimicrobial peptides, including Attacin. Larvae that receive less maternal PGRP-LB give rise to adults with fewer Wigglesworthia and hyperimmune responses. Such adults also suffer dysregulated immunity, as indicated by the presence of higher trypanosome densities in parasitized adults. We show that recPGRP-LB has antimicrobial and antitrypanosomal activities that may regulate symbiosis and impact immunity. Thus, PGRP-LB plays a pivotal role in tsetse's fitness by protecting symbiosis against host-inflicted damage during development and by controlling parasite infections in adults that can otherwise reduce host fecundity.
Collapse
|
30
|
Walshe DP, Lehane MJ, Haines LR. Post eclosion age predicts the prevalence of midgut trypanosome infections in Glossina. PLoS One 2011; 6:e26984. [PMID: 22087240 PMCID: PMC3210762 DOI: 10.1371/journal.pone.0026984] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/07/2011] [Indexed: 11/18/2022] Open
Abstract
The teneral phenomenon, as observed in Glossina sp., refers to the increased susceptibility of the fly to trypanosome infection when the first bloodmeal taken is trypanosome-infected. In recent years, the term teneral has gradually become synonymous with unfed, and thus fails to consider the age of the newly emerged fly at the time the first bloodmeal is taken. Furthermore, conflicting evidence exists of the effect of the age of the teneral fly post eclosion when it is given the infected first bloodmeal in determining the infection prevalence. This study demonstrates that it is not the feeding history of the fly but rather the age (hours after eclosion of the fly from the puparium) of the fly when it takes the first (infective) bloodmeal that determines the level of fly susceptibility to trypanosome infection. We examine this phenomenon in male and female flies from two distinct tsetse clades (Glossina morsitans morsitans and Glossina palpalis palpalis) infected with two salivarian trypanosome species, Trypanosoma (Trypanozoon) brucei brucei and Trypanosoma (Nannomonas) congolense using Fisher's exact test to examine differences in infection rates. Teneral tsetse aged less than 24 hours post-eclosion (h.p.e.) are twice as susceptible to trypanosome infection as flies aged 48 h.p.e. This trend is conserved across sex, vector clade and parasite species. The life cycle stage of the parasite fed to the fly (mammalian versus insect form trypanosomes) does not alter this age-related bias in infection. Reducing the numbers of parasites fed to 48 h.p.e., but not to 24 h.p.e. flies, increases teneral refractoriness. The importance of this phenomenon in disease biology in the field as well as the necessity of employing flies of consistent age in laboratory-based infection studies is discussed.
Collapse
Affiliation(s)
- Deirdre P. Walshe
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Michael J. Lehane
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Lee R. Haines
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
31
|
Snyder AK, Deberry JW, Runyen-Janecky L, Rio RVM. Nutrient provisioning facilitates homeostasis between tsetse fly (Diptera: Glossinidae) symbionts. Proc Biol Sci 2010; 277:2389-97. [PMID: 20356887 PMCID: PMC2894912 DOI: 10.1098/rspb.2010.0364] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Accepted: 03/09/2010] [Indexed: 11/12/2022] Open
Abstract
Host-associated microbial interactions may involve genome complementation, driving-enhanced communal efficiency and stability. The tsetse fly (Diptera: Glossinidae), the obligate vector of African trypanosomes (Trypanosoma brucei subspp.), harbours two enteric Gammaproteobacteria symbionts: Wigglesworthia glossinidia and Sodalis glossinidius. Host coevolution has streamlined the Wigglesworthia genome to complement the exclusively sanguivorous tsetse lifestyle. Comparative genomics reveal that the Sodalis genome contains the majority of Wigglesworthia genes. This significant genomic overlap calls into question why tsetse maintains the coresidence of both symbionts and, furthermore, how symbiont homeostasis is maintained. One of the few distinctions between the Wigglesworthia and Sodalis genomes lies in thiamine biosynthesis. While Wigglesworthia can synthesize thiamine, Sodalis lacks this capability but retains a thiamine ABC transporter (tbpAthiPQ) believed to salvage thiamine. This genetic complementation may represent the early convergence of metabolic pathways that may act to retain Wigglesworthia and evade species antagonism. We show that thiamine monophosphate, the specific thiamine derivative putatively synthesized by Wigglesworthia, impacts Sodalis thiamine transporter expression, proliferation and intracellular localization. A greater understanding of tsetse symbiont interactions may generate alternative control strategies for this significant medical and agricultural pest, while also providing insight into the evolution of microbial associations within hosts.
Collapse
Affiliation(s)
- Anna K. Snyder
- Department of Biology, West Virginia University, 53 Campus Drive 5106 LSB, Morgantown, WV 26506, USA
| | - Jason W. Deberry
- Department of Biology, West Virginia University, 53 Campus Drive 5106 LSB, Morgantown, WV 26506, USA
| | | | - Rita V. M. Rio
- Department of Biology, West Virginia University, 53 Campus Drive 5106 LSB, Morgantown, WV 26506, USA
| |
Collapse
|
32
|
Akoda K, Van den Bossche P, Lyaruu EA, De Deken R, Marcotty T, Coosemans M, Van den Abbeele J. Maturation of a Trypanosoma brucei infection to the infectious metacyclic stage is enhanced in nutritionally stressed tsetse flies. JOURNAL OF MEDICAL ENTOMOLOGY 2009; 46:1446-1449. [PMID: 19960695 DOI: 10.1603/033.046.0629] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report on the effect of tsetse fly starvation on the maturation of an established Trypanosoma brucei brucei midgut infection, i.e., the development of procyclic infection into the infectious metacyclic parasites in the tsetse fly salivary glands. Glossina morsitans morsitans flies were nutritionally stressed 10 d after the uptake of a T. b. brucei-infected bloodmeal by depriving these flies from feeding for seven consecutive days, whereas the control fly group (nonstarved group) continued to be fed three times a week. After this period, both fly groups were again fed three times per week on uninfected rabbit. Thirty days after the infected bloodmeal, all surviving flies were dissected and examined for the presence of an immature midgut and a mature salivary gland trypanosome infections. Results showed a significantly increased proportion of flies with salivary gland infection in the nutritionally stressed fly group suggesting an enhanced maturation of the trypanosome infection. These data suggest that environmental factors that cause nutritional stress in a tsetse population do not only make tsetse flies significantly more susceptible to establish a midgut infection as was shown previously but also boost the maturation of these midgut infections.
Collapse
Affiliation(s)
- K Akoda
- Department of Animal Health, Institute of Tropical Medicine Antwerp, Nationalestraat 155, B-2000 Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
33
|
The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the tsetse fly. Appl Environ Microbiol 2008; 74:5965-74. [PMID: 18689507 DOI: 10.1128/aem.00741-08] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tsetse flies (Diptera: Glossinidae) are vectors for trypanosome parasites, the agents of the deadly sleeping sickness disease in Africa. Tsetse also harbor two maternally transmitted enteric mutualist endosymbionts: the primary intracellular obligate Wigglesworthia glossinidia and the secondary commensal Sodalis glossinidius. Both endosymbionts are transmitted to the intrauterine progeny through the milk gland secretions of the viviparous female. We administered various antibiotics either continuously by per os supplementation of the host blood meal diet or discretely by hemocoelic injections into fertile females in an effort to selectively eliminate the symbionts to study their individual functions. A symbiont-specific PCR amplification assay and fluorescence in situ hybridization analysis were used to evaluate symbiont infection outcomes. Tetracycline and rifampin treatments eliminated all tsetse symbionts but reduced the fecundity of the treated females. Ampicillin treatments did not affect the intracellular Wigglesworthia localized in the bacteriome organ and retained female fecundity. The resulting progeny of ampicillin-treated females, however, lacked Wigglesworthia but still harbored the commensal Sodalis. Our results confirm the presence of two physiologically distinct Wigglesworthia populations: the bacteriome-localized Wigglesworthia involved with nutritional symbiosis and free-living Wigglesworthia in the milk gland organ responsible for maternal transmission to the progeny. We evaluated the reproductive fitness, longevity, digestion, and vectorial competence of flies that were devoid of Wigglesworthia. The absence of Wigglesworthia completely abolished the fertility of females but not that of males. Both the male and female Wigglesworthia-free adult progeny displayed longevity costs and were significantly compromised in their blood meal digestion ability. Finally, while the vectorial competence of the young newly hatched adults without Wigglesworthia was comparable to that of their wild-type counterparts, older flies displayed higher susceptibility to trypanosome infections, indicating a role for the mutualistic symbiosis in host immunobiology. The ability to rear adult tsetse that lack the obligate Wigglesworthia endosymbionts will now enable functional investigations into this ancient symbiosis.
Collapse
|
34
|
Hu C, Rio RVM, Medlock J, Haines LR, Nayduch D, Savage AF, Guz N, Attardo GM, Pearson TW, Galvani AP, Aksoy S. Infections with immunogenic trypanosomes reduce tsetse reproductive fitness: potential impact of different parasite strains on vector population structure. PLoS Negl Trop Dis 2008; 2:e192. [PMID: 18335067 PMCID: PMC2265429 DOI: 10.1371/journal.pntd.0000192] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 01/17/2008] [Indexed: 11/18/2022] Open
Abstract
The parasite Trypanosoma brucei rhodesiense and its insect vector Glossina morsitans morsitans were used to evaluate the effect of parasite clearance (resistance) as well as the cost of midgut infections on tsetse host fitness. Tsetse flies are viviparous and have a low reproductive capacity, giving birth to only 6-8 progeny during their lifetime. Thus, small perturbations to their reproductive fitness can have a major impact on population densities. We measured the fecundity (number of larval progeny deposited) and mortality in parasite-resistant tsetse females and untreated controls and found no differences. There was, however, a typanosome-specific impact on midgut infections. Infections with an immunogenic parasite line that resulted in prolonged activation of the tsetse immune system delayed intrauterine larval development resulting in the production of fewer progeny over the fly's lifetime. In contrast, parasitism with a second line that failed to activate the immune system did not impose a fecundity cost. Coinfections favored the establishment of the immunogenic parasites in the midgut. We show that a decrease in the synthesis of Glossina Milk gland protein (GmmMgp), a major female accessory gland protein associated with larvagenesis, likely contributed to the reproductive lag observed in infected flies. Mathematical analysis of our empirical results indicated that infection with the immunogenic trypanosomes reduced tsetse fecundity by 30% relative to infections with the non-immunogenic strain. We estimate that a moderate infection prevalence of about 26% with immunogenic parasites has the potential to reduce tsetse populations. Potential repercussions for vector population growth, parasite-host coevolution, and disease prevalence are discussed.
Collapse
Affiliation(s)
- Changyun Hu
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Rita V. M. Rio
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jan Medlock
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Lee R. Haines
- Department of Biochemistry and Microbiology, Petch Building, University of Victoria, Victoria, British Columbia, Canada
| | - Dana Nayduch
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Amy F. Savage
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Nurper Guz
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Geoffrey M. Attardo
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Terry W. Pearson
- Department of Biochemistry and Microbiology, Petch Building, University of Victoria, Victoria, British Columbia, Canada
| | - Alison P. Galvani
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Serap Aksoy
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
35
|
Hu C, Aksoy S. Innate immune responses regulate trypanosome parasite infection of the tsetse fly Glossina morsitans morsitans. Mol Microbiol 2007; 60:1194-204. [PMID: 16689795 DOI: 10.1111/j.1365-2958.2006.05180.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tsetse flies transmit the protozoan parasite African trypanosomes, the agents of human sleeping sickness in sub-Saharan Africa. Parasite transmission in the insect is restricted by a natural resistance phenomenon (refractoriness). Understanding the mechanism of parasite resistance is important as strengthening fly's response(s) via transgenic approaches can prevent parasite transmission and lead to the development of novel vector control strategies. Here, we investigated the role of one of the two major pathways regulating innate immunity in invertebrates, the immunodeficiency (Imd) pathway, for Glossina morsitans morsitans's natural defence against Trypanosoma brucei spp. infections. We determined the molecular structure of the Imd pathway transcriptional activator Relish (GmmRel), which shows high amino acid identity and structural similarity to its Drosophila homologue. Through a double-stranded RNA-based interference approach, we showed that the pathogen-induced expression profile of the antimicrobial peptides (AMPs) attacin and cecropin is under the regulation of GmmRel. Unexpectedly, the AMP diptericin appears to be constitutively expressed in tsetse independent of the presence of the Rel factor. Through GmmRel knock-down, we could successfully block the induction of attacin and cecropin expression in the immune responsive tissues fat body and proventriculus (cardia) following microbial challenge. The midgut and salivary gland trypanosome infection prevalence, as well as the intensity of midgut parasite infections were found to be significantly higher in flies when attacin and relish expression were knocked down. Our results provide the first direct evidence for the involvement of antimicrobial peptides in trypanosome transmission in tsetse.
Collapse
Affiliation(s)
- Changyun Hu
- Department of Epidemiology and Public Health, Yale University School of Medicine, 60 College St., 606 LEPH, New Haven, CT 06510, USA
| | | |
Collapse
|
36
|
Kubi C, van den Abbeele J, DE Deken R, Marcotty T, Dorny P, van den Bossche P. The effect of starvation on the susceptibility of teneral and non-teneral tsetse flies to trypanosome infection. MEDICAL AND VETERINARY ENTOMOLOGY 2006; 20:388-92. [PMID: 17199750 DOI: 10.1111/j.1365-2915.2006.00644.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Transmission of vector-borne diseases depends largely on the ability of the insect vector to become infected with the parasite. In tsetse flies, newly emerged or teneral flies are considered the most likely to develop a mature, infective trypanosome infection. This was confirmed during experimental infections where laboratory-reared Glossina morsitans morsitans Westwood (Diptera: Glossinidae) were infected with Trypanosoma congolense or T. brucei brucei. The ability of mature adult tsetse flies to become infected with trypanosomes was significantly lower than that of newly emerged flies for both parasites. However, the nutritional status of the tsetse at the time of the infective bloodmeal affected its ability to acquire either a T. congolense or T. b. brucei infection. Indeed, an extreme period of starvation (3-4 days for teneral flies, 7 days for adult flies) lowers the developmental barrier for a trypanosome infection, especially at the midgut level of the tsetse fly. Adult G. m. morsitans became at least as susceptible as newly emerged flies to infection with T. congolense. Moreover, the susceptibility of adult flies, starved for 7 days, to an infection with T. b. brucei was also significantly increased, but only at the level of maturation of an established midgut infection to a salivary gland infection. The outcome of these experimental infections clearly suggests that, under natural conditions, nutritional stress in adult tsetse flies could contribute substantially to the epidemiology of tsetse-transmitted trypanosomiasis.
Collapse
Affiliation(s)
- C Kubi
- Department of Animal Health, Institute of Tropical medicine, Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
37
|
Attardo GM, Strickler-Dinglasan P, Perkin SAH, Caler E, Bonaldo MF, Soares MB, El-Sayeed N, Aksoy S. Analysis of fat body transcriptome from the adult tsetse fly, Glossina morsitans morsitans. INSECT MOLECULAR BIOLOGY 2006; 15:411-24. [PMID: 16907828 DOI: 10.1111/j.1365-2583.2006.00649.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Tsetse flies (Diptera: Glossinidia) are vectors of pathogenic African trypanosomes. To develop a foundation for tsetse physiology, a normalized expressed sequence tag (EST) library was constructed from fat body tissue of immune-stimulated Glossina morsitans morsitans. Analysis of 20,257 high-quality ESTs yielded 6372 unique genes comprised of 3059 tentative consensus (TC) sequences and 3313 singletons (available at http://aksoylab.yale.edu). We analysed the putative fat body transcriptome based on homology to other gene products with known functions available in the public domain. In particular, we describe the immune-related products, reproductive function related yolk proteins and milk-gland protein, iron metabolism regulating ferritins and transferrin, and tsetse's major energy source proline biosynthesis. Expression analysis of the three yolk proteins indicates that all are detected in females, while only the yolk protein with similarity to lipases, is expressed in males. Milk gland protein, apparently important for larval nutrition, however, is primarily synthesized by accessory milk gland tissue.
Collapse
Affiliation(s)
- G M Attardo
- Department of Epidemiology and Public Health, Section of Vector Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Rio RV, Wu YN, Filardo G, Aksoy S. Dynamics of multiple symbiont density regulation during host development: tsetse fly and its microbial flora. Proc Biol Sci 2006; 273:805-14. [PMID: 16618673 PMCID: PMC1560226 DOI: 10.1098/rspb.2005.3399] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Symbiotic associations often enhance hosts' physiological capabilities, allowing them to expand into restricted terrains, thus leading to biological diversification. Stable maintenance of partners is essential for the overall biological system to succeed. The viviparous tsetse fly (Diptera: Glossinidae) offers an exceptional system to examine factors that influence the maintenance of multiple symbiotic organisms within a single eukaryotic host. This insect harbours three different symbionts representing diverse associations, coevolutionary histories and transmission modes. The enterics, obligate mutualist Wigglesworthia and beneficial Sodalis, are maternally transmitted to the intrauterine larvae, while parasitic Wolbachia infects the developing oocyte. In this study, the population dynamics of these three symbionts were examined through host development and during potentially disruptive events, including host immune challenge, the presence of third parties (such as African trypanosomes) and environmental perturbations (such as fluctuating humidity levels). While mutualistic partners exhibited well-regulated density profiles over different host developmental stages, parasitic Wolbachia infections varied in individual hosts. Host immune status and the presence of trypanosome infections did not impact the steady-state density levels observed for mutualistic microbes in either sex, while these factors resulted in an increase in Wolbachia density in males. Interestingly, perturbation of the maternal environment resulted in the deposition of progeny harbouring greater overall symbiont loads. The regulation of symbiont density, arising from coadaptive processes, may be an important mechanism driving inter-specific relations to ensure their competitive survival and to promote specialization of beneficial associations.
Collapse
|
39
|
Kubi C, Van den Abbeele J, Dorny P, Coosemans M, Marcotty T, Van den Bossche P. Ability of trypanosome-infected tsetse flies (Diptera: Glossinidae) to acquire an infection with a second trypanosome species. JOURNAL OF MEDICAL ENTOMOLOGY 2005; 42:1035-8. [PMID: 16465745 DOI: 10.1093/jmedent/42.6.1035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The epidemiology of human and animal trypanosomiasis is determined to a large extent by the number of infected tsetse flies in a specific area. In the field, a substantial proportion of infected flies carry mixed trypanosome infections. The way in which these tsetse flies acquire a mixed infection is not fully understood. In particular, the susceptibility of tsetse flies to sequential infection with trypanosomes is not well understood. Accordingly, laboratory studies were made of the effects of age and prior infection on the probability of Glossina morsitans morsitans (Westwood) developing an infection of Trypanosoma congolense and Trypanosoma brucei brucei after feeding on infected mice. Results of these experiments clearly showed that 20-30-d-old G. m. morsitans can still pick up and develop a mature infection in the mouthparts/hypopharynx for T. congolense or in the salivary glands for T. b. brucei. However, their ability to acquire infection was significantly lower compared with teneral flies. Furthermore, 20-30-d-old flies that already carry a mature T. congolense or T. b. brucei infection remained at least as susceptible to a secondary trypanosome infection compared with noninfected flies of the same age. The immunological and epidemiological repercussions of those findings are discussed.
Collapse
Affiliation(s)
- C Kubi
- Department of Animal Health, Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
40
|
Aksoy S, Gibson WC, Lehane MJ. Interactions between tsetse and trypanosomes with implications for the control of trypanosomiasis. ADVANCES IN PARASITOLOGY 2003; 53:1-83. [PMID: 14587696 DOI: 10.1016/s0065-308x(03)53002-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Tsetse flies (Diptera: Glossinidae) are vectors of several species of pathogenic trypanosomes in tropical Africa. Human African trypanosomiasis (HAT) is a zoonosis caused by Trypanosoma brucei rhodesiense in East Africa and T. b. gambiense in West and Central Africa. About 100000 new cases are reported per year, with many more probably remaining undetected. Sixty million people living in 36 countries are at risk of infection. Recently, T. b. gambiense trypanosomiasis has emerged as a major public health problem in Central Africa, especially in the Democratic Republic of Congo, Angola and southern Sudan where civil war has hampered control efforts. African trypanosomes also cause nagana in livestock. T. vivax and T. congolense are major pathogens of cattle and other ruminants, while T. simiae causes high mortality in domestic pigs; T. brucei affects all livestock, with particularly severe effects in equines and dogs. Central to the control of these diseases is control of the tsetse vector, which should be very effective since trypanosomes rely on this single insect for transmission. However, the area infested by tsetse has increased in the past century. Recent advances in molecular technologies and their application to insects have revolutionized the field of vector biology, and there is hope that such new approaches may form the basis for future tsetse control strategies. This article reviews the known biology of trypanosome development in the fly in the context of the physiology of the digestive system and interactions of the immune defences and symbiotic flora.
Collapse
Affiliation(s)
- Serap Aksoy
- Department of Epidemiology and Public Health, Section of Vector Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
41
|
Hao Z, Kasumba I, Aksoy S. Proventriculus (cardia) plays a crucial role in immunity in tsetse fly (Diptera: Glossinidiae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:1155-1164. [PMID: 14563366 DOI: 10.1016/j.ibmb.2003.07.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fat body and hemocytes play a central role in cellular and humoral responses for systemic infections in invertebrates, similar to the mammalian liver and blood cells. Epithelial surfaces, in particular the midgut, participate in the initial local immune responses in order to aid in the generation of the terminal cytotoxic molecules that mediate non-self recognition. Here, we describe for the first time the immune responses of a cluster of cells at the foregut/midgut junction--known as proventriculus (cardia) in the medically and agriculturally important insect, tsetse fly (Diptera: Glossinidae). We provide evidence for the transcriptional induction of the antimicrobial peptides attacin and defensin as well as for the reactive nitrogen intermediate (RNI) nitric oxide synthase (NOS) upon microbial challenge by either microinjection or feeding. Proventriculus from immune challenged flies also has higher NOS and nitric oxide (NO) activities as well as increased levels of the reactive oxygen intermediate (ROI), hydrogen peroxide (H2O2). In several vector pathogen systems, including tsetse flies and African trypanosomes, stimulation of systemic responses prior to pathogen acquisition has been shown to reduce disease transmission. Furthermore, the induction of systemic immune responses has been documented while pathogens are still differentiating within the midgut environment. While evidence for a close molecular communication between the local and systemic responses is accumulating, the molecular signals that mediate these interactions are at present unknown. Reactive intermediates such as NO or H2O2 may function as immunological signals for mediating the molecular communication between the different insect compartments. We discuss the putative role of the proventriculus in invertebrate immunity and specifically speculate on its significance for trypanosome transmission in tsetse.
Collapse
Affiliation(s)
- Zhengrong Hao
- Department of Epidemiology and Public Health, Section of Vector Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
42
|
Yan J, Cheng Q, Li CB, Aksoy S. Molecular characterization of three gut genes from Glossina morsitans morsitans: cathepsin B, zinc-metalloprotease and zinc-carboxypeptidase. INSECT MOLECULAR BIOLOGY 2002; 11:57-65. [PMID: 11841503 DOI: 10.1046/j.0962-1075.2001.00308.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Insect gut enzymes are involved in digestion of dietary proteins. Additionally, these enzymes have been implicated in the process of pathogen establishment in several insects including the tsetse fly (Diptera:Glossinidae), which is the vector for African trypanosomes. Both the male and female tsetse can transmit trypanosomes and are strict blood feeders during all stages of their development. Here, we describe the molecular characterization of three gut genes: cathepsin B (GmCatB), zinc-metalloprotease (GmZmp) and zinc-carboxypeptidase (GmZcp). The cDNA for GmCatB encodes a protein for 340 amino acids with a predicted molecular mass of 38.2 kDa, while the 854 bp GmZmp cDNA encodes a protein of 254 amino acids with a molecular mass of 29 kDa. The GmZcp cDNA is 1319 bp in length and has a 354 amino acids open reading frame for coding a 40 kDa protein. All three cDNAs have signal peptide sequences associated with their N-terminal domains and structure analysis indicates that GmCatB and GmZmp are expressed as zymogens with pro-domains proteolytically removed for activity. The activation domain associated with the carboxypeptidase sequences is lacking in GmZcp. While GmCatB transcription is constitutive, teneral flies express very low levels of transcripts for GmZmp and GmZcp prior to the first bloodmeal. Transcription of all genes is induced and remains high throughout the digestion cycle within a few hours following the first bloodmeal ingestion. Both GmCatB and GmZcp are parasite responsive, with the expression of both genes being higher in trypanosome infected flies.
Collapse
Affiliation(s)
- J Yan
- Institute of Genetics, Fudan University, Shanghai, PR China
| | | | | | | |
Collapse
|
43
|
Welburn SC, Maudlin I. Tsetse-trypanosome interactions: rites of passage. PARASITOLOGY TODAY (PERSONAL ED.) 1999; 15:399-403. [PMID: 10481151 DOI: 10.1016/s0169-4758(99)01512-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Trypanosomes that cause sleeping sickness (Trypanosoma brucei rhodesiense and T. b. gambiense) are entirely dependent on tsetse for their transmission between hosts, but the flies are not easily infected. This situation has not arisen by chance - the tsetse has evolved an efficient defence system against trypanosome invasion. In this review, Susan Welburn and Ian Maudlin chart the progress of trypanosomes through the fly and identify some of the hazards faced by both parasite and fly that affect vector competence of tsetse.
Collapse
Affiliation(s)
- S C Welburn
- Centre for Tropical Veterinary Medicine, University of Edinburgh, Easter Bush, Roslin, Midlothian, UK EH25 9RG.
| | | |
Collapse
|
44
|
Abstract
The only trypanosomatid so far proved to undergo genetic exchange is Trypanosoma brucei, for which hybrid production after co-transmission of different parental strains through the tsetse fly vector has been demonstrated experimentally. Analogous mating experiments have been attempted with other Trypanosoma and Leishmania species, so far without success. However, natural Leishmania hybrids, with a combination of the molecular characters of two sympatric species, have been described amongst both New and Old World isolates. Typical homozygotic and heterozygotic banding patterns for isoenzyme and deoxyribonucleic acid markers have also been demonstrated amongst naturally-occurring T. cruzi isolates. The mechanism of genetic exchange in T. brucei remains unclear, although it appears to be a true sexual process involving meiosis. However, no haploid stage has been observed, and intermediates in the process are still a matter for conjecture. The frequency of sex in trypanosomes in nature is also a matter for speculation and controversy, with conflicting results arising from population genetics analysis. Experimental findings for T. brucei are discussed in the first section of this review, together with laboratory evidence of genetic exchange in other species. The second section covers population genetics analysis of the large body of data from field isolates of Leishmania and Trypanosoma species. The final discussion attempts to put the evidence from experimental and population genetics into its biological context.
Collapse
Affiliation(s)
- W Gibson
- School of Biological Sciences, University of Bristol, UK
| | | |
Collapse
|
45
|
Abstract
The history of human sleeping sickness in East Africa is characterized by the appearance of disease epidemics interspersed by long periods of endemicity. Despite the presence of the tsetse fly in large areas of East Africa, these epidemics tend to occur multiply in specific regions or foci rather than spreading over vast areas. Many theories have been proposed to explain this phenomenon, but recent molecular approaches and detailed analyses of epidemics have highlighted the stability of human-infective trypanosome strains within these foci. The new molecular data, taken alongside the history and biology of human sleeping sickness, are beginning to highlight the important factors involved in the generation of epidemics. Specific, human-infective trypanosome strains may be associated with each focus, which, in the presence of the right conditions, can be responsible for the generation of an epidemic. Changes in agricultural practice, favoring the presence of tsetse flies, and the important contribution of domestic animals as a reservoir for the parasite are key factors in the maintenance of such epidemics. This review examines the contribution of molecular and genetic data to our understanding of the epidemiology and history of human sleeping sickness in East Africa.
Collapse
Affiliation(s)
- G Hide
- Centre for Molecular Epidemiology and Ecology, Department of Biological Sciences, University of Salford, Salford M5 4WT, United Kingdom.
| |
Collapse
|
46
|
Dale C, Welburn SC, Maudlin I, Milligan PJ. The kinetics of maturation of trypanosome infections in tsetse. Parasitology 1995; 111 ( Pt 2):187-91. [PMID: 7675533 DOI: 10.1017/s0031182000064933] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Estimates of the time delay between the infective bloodmeal and maturation (incubation or maturation time) for 4 trypanosome stocks (2 Trypanozoon and 2 Trypanosoma congolense) show that maturation time in tsetse is not a parasite species-specific constant. The mean incubation time of a Trypanosoma brucei rhodesiense stock (EATRO 2340 - 18 days) was not significantly different from one T. congolense stock (SIKUDA88 - 15.5 days) but was significantly greater than another (1/148 FLY9 - 12.5 days). There was no significant difference in incubation times between male and female Glossina morsitans morsitans for any of the stocks but in both of the Trypanozoon stocks the proportion of female flies producing mature infections was significantly less than in males. However, estimates of gene frequency, assuming a model in which maturation is controlled by an X-linked recessive allele, gave inconsistent results indicating that maturation cannot be controlled by a single sex-linked gene. Maturation was shown to be a tsetse sex-dependent phenomenon in Trypanozoon but not in T. congolense infections. Incubation time was quite variable even for a single trypanosome stock (e.g., standard deviation of 5 days for one Trypanozoon stock); we discuss how this variability can affect disease transmission, and the interpretation of age-prevalence data.
Collapse
Affiliation(s)
- C Dale
- Department of Veterinary Medicine, University of Bristol, Langford,
| | | | | | | |
Collapse
|
47
|
McNamara JJ, Laveissière C, Masiga DK. Multiple trypanosome infections in wild tsetse in Côte d'Ivoire detected by PCR analysis and DNA probes. Acta Trop 1995; 59:85-92. [PMID: 7676910 DOI: 10.1016/0001-706x(94)00087-h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Trypanosomes were isolated from the midguts of Glossina palpalis palpalis, G. pallicera pallicera and G. nigrofusca nigrofusca captured around the village of Guediboua, South West of Daloa in Côte d'Ivoire. Seventy of the 124 isolates, obtained from 688 flies, were examined for four different kinds of trypanosome using the Polymerase Chain Reaction (PCR). Prevalences were: Trypanozoon 46%, riverine-forest T. congolense 86% and savannah T. congolense 54%. Only 29 samples were examined for T. simiae but it was not detected. Just 30% of the infections involved a single kind of trypanosome; the remainder were mixtures either of two (37%) or all three (27%) of the target organisms. 30 of the 70 isolates examined by PCR were successfully amplified to provide material for DNA probe hybridization. To a large extent, DNA probes confirmed the PCR results; all (28/28) of the riverine-forest and 82% (18/22) of the savannah T. congolense infections were identified. However, only 8% (1/13) of the PCR positives for Trypanozoon hybridized with the appropriate DNA probe. No T. simiae or T. godfreyi infections were identified using DNA probes but a large proportion (97%) (29/30) of the probed midguts were shown to contain Kilifi T. congolense. Four isolates out of 70 could not be identified by any method. There was no obvious association between the different species of flies and the infecting trypanosomes.
Collapse
Affiliation(s)
- J J McNamara
- MRC Trypanosomiasis Research Group, University of Bristol, Langford, UK
| | | | | |
Collapse
|
48
|
Hide G, Welburn SC, Tait A, Maudlin I. Epidemiological relationships of Trypanosoma brucei stocks from south east Uganda: evidence for different population structures in human infective and non-human infective isolates. Parasitology 1994; 109 ( Pt 1):95-111. [PMID: 7914692 DOI: 10.1017/s0031182000077805] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study represents an analysis of trypanosome strains circulating within a confined location over a short period of time during a sleeping sickness epidemic in S.E. Uganda. A large number of Trypanosoma brucei isolates (88) were collected from a variety of hosts (man, cattle, pigs and tsetse) from villages within a 10 km radius and were analysed for variation in isoenzyme patterns, restriction fragment length polymorphism (RFLP) in repetitive DNA sequences and susceptibility to human serum. The human infective stocks form a clearly distinguishable population when compared with other stocks circulating in the domestic cattle reservoir. The data here support the occurrence of genetic exchange between the cattle stocks while an 'epidemic' population structure involving limited genetic exchange is a characteristic of the human infective stocks. Furthermore, it is shown that when both RFLP and isoenzyme analysis are carried out most stocks appear to have individual genotypes. Stocks which were formerly grouped as zymodemes are better considered as a collected of distinct individuals.
Collapse
Affiliation(s)
- G Hide
- Department of Veterinary Parasitology, Glasgow University Veterinary School
| | | | | | | |
Collapse
|
49
|
Welburn SC, Maudlin I, Molyneux DH. Midgut lectin activity and sugar specificity in teneral and fed tsetse. MEDICAL AND VETERINARY ENTOMOLOGY 1994; 8:81-87. [PMID: 8161852 DOI: 10.1111/j.1365-2915.1994.tb00391.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Midgut infection rates of Trypanosoma congolense in Glossina palpalis palpalis and of Trypanosoma brucei rhodesiense in Glossina pallidipes are potentiated by the addition of D+ glucosamine to the infective feed, but not to the levels of super-infection reported for G.m.morsitans, G.p.palpalis and G.pallidipes are shown to possess two trypanocidal molecules: a glucosyl lectin which can be inhibited by D+ glucosamine and a galactosyl molecule inhibited by D+ galactose. Addition of both D+ glucosamine and D+ galactose to the teneral infective feed promotes super-infection of the midguts of G.p.palpalis. The glucosyl lectin is specific for rabbit erythrocytes and is present in guts of fed G.m.morsitans and G.p.palpalis, titres of lectin activity do not increase substantially after the second bloodmeal. The galactosyl specific molecule does not show any erythrocyte specificity, although haemolytic activity is observed only in G.p.palpalis and not in G.m.morsitans. The presence of two trypanocidal molecules in some species of tsetse may account for the innate refractoriness of these flies to trypanosome infection. As D+ glucosamine also inhibits the killing of procyclic trypanosomes taken as an infective feed, it is suggested that the midgut lectin is normally responsible for the agglutination of trypanosomes in the fly midgut by binding to the procyclic surface coat, prior to establishment in the ecto-peritrophic space.
Collapse
Affiliation(s)
- S C Welburn
- Tsetse Research Laboratory, University of Bristol, UK
| | | | | |
Collapse
|
50
|
Welburn SC, Arnold K, Maudlin I, Gooday GW. Rickettsia-like organisms and chitinase production in relation to transmission of trypanosomes by tsetse flies. Parasitology 1993; 107 ( Pt 2):141-5. [PMID: 8414668 DOI: 10.1017/s003118200006724x] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Rickettsia-like organisms (RLO) from testse midguts and mosquito cell cultures showed high levels of endochitinase activity. A line of Glossina morsitans morsitans highly susceptible to midgut trypanosome infection and with high incidence of RLO infection showed significantly greater chitinolytic activity than G. austeni which had low RLO incidence and were correspondingly refractory to midgut infection. Midgut infection rates of Trypanosoma brucei rhodesiense in G. m. morsitans showed a dose-related increase when flies were fed N-acetyl-D-glucosamine (GlcNAc) in the infective meal and for 4 subsequent days. A model is proposed for susceptibility to trypanosome infection based on the generation of GlcNAc by RLO endochitinase activity in tsetse pupae inhibiting midgut lectin in teneral flies.
Collapse
Affiliation(s)
- S C Welburn
- Tsetse Research Laboratory, ODA/University of Bristol, Langford
| | | | | | | |
Collapse
|